skip to main content

DOE PAGESDOE PAGES

Title: Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te

In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb0.5Sn0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb0.5Sn0.5)0.7In0.3Te is produced by In doping in Pb0.5Sn0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5)0.7In0.3Te on a (001)-oriented surface. The spectrum can be well fitted by an anisotropic s-wave gap function of Δ = 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [1]
  1. Nanjing Univ., Nanjing (China)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
OSTI Identifier:
1226051
Report Number(s):
BNL--108427-2015-JA
Journal ID: ISSN 1098-0121; PRBMDO; R&D Project: PO010; KC0201060
Grant/Contract Number:
SC00112704
Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 2; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY