skip to main content

DOE PAGESDOE PAGES

Title: Electric-field-induced strain effects on the magnetization of a Pr0.67Sr0.33MnO3 film

The electric-field control of magnetic properties of Pr0.67Sr0.33MnO3 (PSMO) film on piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) substrate was investigated. The piezoelectric response of the PMNT substrate to the electric field produced strain that was coupled to the PSMO film. The in-plane compressive (tensile) strain increased (decreased) the magnetization. The change of magnetic moment was associated with the Mn ions. First principle simulations showed that the strain-induced electronic redistribution of the two eg orbitals (3dz2 and 3dx2-y2) of Mn ions was responsible for the change of magnetic moment. This work demonstrates that the magnetoelectric effect in manganite/piezoelectric hetero-structures originates from the change in eg orbital occupancy of Mn ions induced by strain rather than the interfacial effect.
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [3] ;  [3] ;  [1] ;  [1]
  1. National Univ. of Singapore (Singapore)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
OSTI Identifier:
1226033
Report Number(s):
BNL--108282-2015-JA
Journal ID: ISSN 1098-0121; R&D Project: MA015MACA; KC0201010
Grant/Contract Number:
SC00112704
Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 17; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY