skip to main content

DOE PAGESDOE PAGES

Title: Collective Effects in a Diffraction Limited Storage Ring

Our paper gives an overview of collective effects that are likely to appear and possibly limit the performance in a diffraction-limited storage ring (DLSR) that stores a high-intensity ultra-low-emittance beam. Beam instabilities and other intensity-dependent effects that may significantly impact the machine performance are covered. The latter include beam-induced machine heating, Touschek scattering, intra-beam scattering, as well as incoherent tune shifts. The general trend that the efforts to achieve ultra-low emittance result in increasing the machine coupling impedance and the beam sensitivity to instability is reviewed. The nature of coupling impedance in a DLSR is described, followed by a series of potentially dangerous beam instabilities driven by the former, such as resistive-wall, TMCI (transverse mode coupling instability), head-tail and microwave instabilities. Additionally, beam-ion and CSR (coherent synchrotron radiation) instabilities are also treated. Means to fight against collective effects such as lengthening of the bunch with passive harmonic cavities and bunch-by-bunch transverse feedback are introduced. Numerical codes developed and used to evaluate the machine coupling impedance, as well as to simulate beam instability using the former as inputs are described.
Authors:
 [1] ;  [2]
  1. Synchrotron SOLEIL, Saint-Aubin (France)
  2. SLAC National Accelerator Lab., Standford, CA (United States)
Publication Date:
OSTI Identifier:
1224072
Report Number(s):
SLAC-PUB--16406
Journal ID: ISSN 1600-5775
Grant/Contract Number:
AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
Journal of Synchrotron Radiation (Online)
Additional Journal Information:
Journal Name: Journal of Synchrotron Radiation (Online); Journal Volume: 21; Journal ID: ISSN 1600-5775
Publisher:
International Union of Crystallography
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY diffraction-limited storage ring; beam instability; collective effects; wake function; impedance; low emittance; light source