skip to main content

DOE PAGESDOE PAGES

Title: Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): Importance of orbital symmetry in the application of the d-band model

The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observation is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4dxz and 4dyz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.
Authors:
 [1] ;  [2] ;  [1] ;  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1223666
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 119; Journal Issue: 41; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY