skip to main content

DOE PAGESDOE PAGES

Title: Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory

Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB2 and AB13 crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu5Zr(C15b), Cu51Zr14(β), Cu10Zr7(φ), CuZr(B2) and CuZr2 (C11b), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of the hard sphere crystal complexes in the two dimensional Gaussian space, namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu10Zr7(φ). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.
Authors:
 [1] ;  [2]
  1. Ames Lab., Ames, IA (United States)
  2. Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States). Department of Chemistry
Publication Date:
OSTI Identifier:
1221914
Report Number(s):
IS0-J--8762
Journal ID: ISSN 1520-6106
Grant/Contract Number:
AC02-07CH11358; W-7405-ENG-82
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 119; Journal Issue: 29; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY