skip to main content

DOE PAGESDOE PAGES

Title: First-principles study of the Kondo physics of a single Pu impurity in a Th host

Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are indicative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5f electrons and the heavy actinides that have localized 5f electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantum Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal. With the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. We show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due tomore » a weakened Pu - 5f hybridization with the ligands at the surface.« less
Authors:
 [1] ;  [1] ;  [2] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Rutgers Univ., Piscataway, NJ (United States)
Publication Date:
OSTI Identifier:
1221763
Report Number(s):
LA-UR--12-26128
Journal ID: ISSN 1098-0121; PRBMDO
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 16; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Research Org:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY