skip to main content

DOE PAGESDOE PAGES

Title: First NuSTAR Observations of Mrk 501 within a Radio to TeV Multi-Instrument Campaign

We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 2013 April 1 and August 10, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope, Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsähovi, and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a Light Detection and Ranging (LIDAR) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution (SED) between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the fourmore » extended NuSTAR observations) show evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton (SSC) model to five simultaneous broadband SEDs. We find that the SSC model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission.« less
Authors:
 [1]
  1. Stanford Univ., CA (United States). et al.
Publication Date:
OSTI Identifier:
1221587
Report Number(s):
SLAC-PUB--16396
Journal ID: ISSN 1538-4357; arXiv:1509.04936
Grant/Contract Number:
AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 812; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Contributing Orgs:
NuSTAR Team; MAGIC Collaboration; VERITAS Collaboration; F-Gamma Consortium
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS Astrophysics; ASTRO; GRQC