skip to main content

DOE PAGESDOE PAGES

Title: Probing top-Z dipole moments at the LHC and ILC

We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirect constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.
Authors:
 [1] ;  [2]
  1. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  2. European Organization for Nuclear Research (CERN), Geneva (Switzerland)
Publication Date:
OSTI Identifier:
1221236
Report Number(s):
FERMILAB-PUB--15-010-T; CERN-PH-TH--2015-004
Journal ID: ISSN 1029-8479; arXiv eprint number arXiv:1501.05939
Grant/Contract Number:
AC02-07CH11359
Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2015; Journal Issue: 8; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Research Org:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QCD phenomenology; NLO computations