skip to main content

DOE PAGESDOE PAGES

Title: Low Surface Recombination Velocity in Solution-Grown CH3NH3PbBr3 Perovskite Single Crystal

Organic-inorganic hybrid perovskites are attracting intense research effort due to their impressive performance in solar cells. While the carrier transport parameters such as mobility and bulk carrier lifetime shows sufficient characteristics, the surface recombination, which can have major impact on the solar cell performance, has not been studied. Here we measure surface recombination dynamics in CH3NH3PbBr3 perovskite single crystals using broadband transient reflectance spectroscopy. The surface recombination velocity is found to be 3.4±0.1 103 cm s-1, B2–3 orders of magnitude lower than that in many important unpassivated semiconductors employed in solar cells. Our result suggests that the planar grain size for the perovskite thin films should be larger thanB30 mm to avoid the influence of surface recombination on the effective carrier lifetime.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
OSTI Identifier:
1220695
Report Number(s):
NREL/JA--5900-63911
Journal ID: ISSN 2041-1723
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY surface recombination velocity; perovskite; single crystal