DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

Abstract

Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier's equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. In addition, these methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validationmore » and analysis.« less

Authors:
 [1];  [2];  [3];  [3];  [4];  [2];  [5];  [6];  [1]
  1. Univ. of California San Francisco, San Francisco, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Australian National Univ., Canberra, ACT (Australia)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California Berkeley, Berkeley, CA (United States)
  6. Institut de Genetique et de Biologie Moleculaire et Cellulaire, Illkirch (France); Univ. de Lorraine, Vandoeuvre-les-Nancy (France)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1214720
Alternate Identifier(s):
OSTI ID: 1225739
Report Number(s):
LA-UR-14-28191
Journal ID: ISSN 1399-0047; ABCRE6; PII: S1399004715007415
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Acta Crystallographica. Section D: Biological Crystallography (Online)
Additional Journal Information:
Journal Name: Acta Crystallographica. Section D: Biological Crystallography (Online); Journal Volume: 71; Journal Issue: 8; Journal ID: ISSN 1399-0047
Publisher:
International Union of Crystallography
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; diffuse scattering; TLS; correlated motion; structural ensemble; structure refinement

Citation Formats

Van Benschoten, Andrew H., Afonine, Pavel V., Terwilliger, Thomas C., Wall, Michael E., Jackson, Colin J., Sauter, Nicholas K., Adams, Paul D., Urzhumtsev, Alexandre, and Fraser, James S. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles. United States: N. p., 2015. Web. doi:10.1107/S1399004715007415.
Van Benschoten, Andrew H., Afonine, Pavel V., Terwilliger, Thomas C., Wall, Michael E., Jackson, Colin J., Sauter, Nicholas K., Adams, Paul D., Urzhumtsev, Alexandre, & Fraser, James S. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles. United States. https://doi.org/10.1107/S1399004715007415
Van Benschoten, Andrew H., Afonine, Pavel V., Terwilliger, Thomas C., Wall, Michael E., Jackson, Colin J., Sauter, Nicholas K., Adams, Paul D., Urzhumtsev, Alexandre, and Fraser, James S. Tue . "Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles". United States. https://doi.org/10.1107/S1399004715007415. https://www.osti.gov/servlets/purl/1214720.
@article{osti_1214720,
title = {Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles},
author = {Van Benschoten, Andrew H. and Afonine, Pavel V. and Terwilliger, Thomas C. and Wall, Michael E. and Jackson, Colin J. and Sauter, Nicholas K. and Adams, Paul D. and Urzhumtsev, Alexandre and Fraser, James S.},
abstractNote = {Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier's equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. In addition, these methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.},
doi = {10.1107/S1399004715007415},
journal = {Acta Crystallographica. Section D: Biological Crystallography (Online)},
number = 8,
volume = 71,
place = {United States},
year = {Tue Jul 28 00:00:00 EDT 2015},
month = {Tue Jul 28 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hidden alternative structures of proline isomerase essential for catalysis
journal, December 2009

  • Fraser, James S.; Clarkson, Michael W.; Degnan, Sheena C.
  • Nature, Vol. 462, Issue 7273
  • DOI: 10.1038/nature08615

Diffuse x-ray scattering from tropomyosin crystals
journal, May 1992


Evaluating Elastic Network Models of Crystalline Biological Molecules with Temperature Factors, Correlated Motions, and Diffuse X-Ray Scattering
journal, October 2010


Ensemble Refinement of Protein Crystal Structures: Validation and Application
journal, September 2007


Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics
journal, September 1990


From deep TLS validation to ensembles of atomic models built from elemental motions
journal, July 2015

  • Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 71, Issue 8
  • DOI: 10.1107/S1399004715011426

Correlations of atomic movements in lysozyme crystals
journal, February 1992

  • Clarage, James B.; Clarage, Michael S.; Phillips, Walter C.
  • Proteins: Structure, Function, and Genetics, Vol. 12, Issue 2
  • DOI: 10.1002/prot.340120208

Correlated intramolecular motions and diffuse x–ray scattering in lysozyme
journal, February 1994

  • Faure, P.; Micu, A.; Pérahia, D.
  • Nature Structural & Molecular Biology, Vol. 1, Issue 2
  • DOI: 10.1038/nsb0294-124

Structural Basis of the Tanford Transition of Bovine β-Lactoglobulin ,
journal, October 1998

  • Qin, Bin Y.; Bewley, Maria C.; Creamer, Lawrence K.
  • Biochemistry, Vol. 37, Issue 40
  • DOI: 10.1021/bi981016t

Collective motions in proteins investigated by X-ray diffuse scattering
journal, January 1994

  • Mizuguchi, Kenji; Kidera, Akinori; Gō, Nobuhiro
  • Proteins: Structure, Function, and Genetics, Vol. 18, Issue 1
  • DOI: 10.1002/prot.340180106

Proteasome allostery as a population shift between interchanging conformers
journal, November 2012

  • Ruschak, A. M.; Kay, L. E.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 50
  • DOI: 10.1073/pnas.1213640109

Towards automated crystallographic structure refinement with phenix.refine
journal, March 2012

  • Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 4
  • DOI: 10.1107/S0907444912001308

TLSMD web server for the generation of multi-group TLS models
journal, January 2006


A molecular viewer for the analysis of TLS rigid-body motion in macromolecules
journal, March 2005

  • Painter, Jay; Merritt, Ethan A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 61, Issue 4
  • DOI: 10.1107/S0907444905001897

The variety of X-ray diffuse scattering from macromolecular crystals and its respective components
journal, December 1991

  • Glover, I. D.; Harris, G. W.; Helliwell, J. R.
  • Acta Crystallographica Section B Structural Science, Vol. 47, Issue 6
  • DOI: 10.1107/S0108768191004585

Conformational substates in enzyme mechanism: The 120 K structure of α-lytic protease at 1.5 Å resolution
journal, July 1997


Molecular dynamics studied by analysis of the X-ray diffuse scattering from lysozyme crystals
journal, February 1987


Mining electron density for functionally relevant protein polysterism in crystal structures
journal, December 2010


Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering
journal, December 1997


Discovery and Characterization of Gut Microbiota Decarboxylases that Can Produce the Neurotransmitter Tryptamine
journal, October 2014

  • Williams, Brianna B.; Van Benschoten, Andrew H.; Cimermancic, Peter
  • Cell Host & Microbe, Vol. 16, Issue 4
  • DOI: 10.1016/j.chom.2014.09.001

Modelling dynamics in protein crystal structures by ensemble refinement
journal, December 2012


X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation 1 1Edited by R. Huber
journal, May 1998

  • Héry, Stéphanie; Genest, Daniel; Smith, Jeremy C.
  • Journal of Molecular Biology, Vol. 279, Issue 1
  • DOI: 10.1006/jmbi.1998.1754

UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

On the rigid-body motion of molecules in crystals
journal, January 1968

  • Schomaker, V.; Trueblood, K. N.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 24, Issue 1
  • DOI: 10.1107/S0567740868001718

Visualizing networks of mobility in proteins
journal, August 2013


Thermal diffuse X-ray scattering and its contribution to understanding protein dynamics
journal, January 1995


Analysis of Structural Dynamics in the Ribosome by TLS Crystallographic Refinement
journal, November 2007


Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering
journal, December 2014

  • Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 50
  • DOI: 10.1073/pnas.1416744111

Exploring the Structural Dynamics of the E.coli Chaperonin GroEL Using Translation-libration-screw Crystallographic Refinement of Intermediate States
journal, September 2004

  • Chaudhry, Charu; Horwich, Arthur L.; Brunger, Axel T.
  • Journal of Molecular Biology, Vol. 342, Issue 1
  • DOI: 10.1016/j.jmb.2004.07.015

Molecular Rigid-Body Displacements in a Tetragonal Lysozyme Crystal Confirmed by X-ray Diffuse Scattering
journal, July 1996

  • Pérez, J.; Faure, P.; Benoit, J. -P.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 52, Issue 4
  • DOI: 10.1107/S0907444996002594

The Structure and Function of a Novel Glycerophosphodiesterase from Enterobacter aerogenes
journal, April 2007

  • Jackson, Colin J.; Carr, Paul D.; Liu, Jian-Wei
  • Journal of Molecular Biology, Vol. 367, Issue 4
  • DOI: 10.1016/j.jmb.2007.01.032

Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement
journal, June 2010

  • Chen, X.; Wang, Q.; Ni, F.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 25
  • DOI: 10.1073/pnas.1000142107

Direct phase determination by entropy maximization and likelihood ranking: status report and perspectives
journal, January 1993


Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Use of TLS parameters to model anisotropic displacements in macromolecular refinement
journal, January 2001

  • Winn, M. D.; Isupov, M. N.; Murshudov, G. N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 57, Issue 1
  • DOI: 10.1107/S0907444900014736

PIM: Phase Integrated Method for Normal Mode Analysis of Biomolecules in a Crystalline Environment
journal, March 2013


Motions of tropomyosin. Crystal as metaphor
journal, October 1980


Protein dynamics from X-ray crystallography: Anisotropic, global motion in diffuse scattering patterns
journal, December 2006

  • Meinhold, Lars; Smith, Jeremy C.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 66, Issue 4
  • DOI: 10.1002/prot.21246

REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

TLS from fundamentals to practice
journal, October 2013


X-ray refinement significantly underestimates the level of microscopic heterogeneity in biomolecular crystals
journal, February 2014

  • Kuzmanic, Antonija; Pannu, Navraj S.; Zagrovic, Bojan
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4220

Peptide Crystal Simulations Reveal Hidden Dynamics
journal, May 2013

  • Janowski, Pawel A.; Cerutti, David S.; Holton, James
  • Journal of the American Chemical Society, Vol. 135, Issue 21
  • DOI: 10.1021/ja401382y

Modeling discrete heterogeneity in X-ray diffraction data by fitting multi-conformers
journal, September 2009

  • van den Bedem, Henry; Dhanik, Ankur; Latombe, Jean-Claude
  • Acta Crystallographica Section D Biological Crystallography, Vol. 65, Issue 10
  • DOI: 10.1107/S0907444909030613

Sassena — X-ray and neutron scattering calculated from molecular dynamics trajectories using massively parallel computers
journal, July 2012


PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

The Protein Data Bank. A Computer-Based Archival File for Macromolecular Structures
journal, November 1977


Charge-coupled device area x-ray detectors
journal, August 2002

  • Gruner, Sol M.; Tate, Mark W.; Eikenberry, Eric F.
  • Review of Scientific Instruments, Vol. 73, Issue 8
  • DOI: 10.1063/1.1488674

Dynamics May Significantly Influence the Estimation of Interatomic Distances in Biomolecular X-ray Structures
journal, August 2011

  • Kuzmanic, Antonija; Kruschel, Daniela; van Gunsteren, Wilfred F.
  • Journal of Molecular Biology, Vol. 411, Issue 1
  • DOI: 10.1016/j.jmb.2011.05.033

SERENA: a program for calculating X-ray diffuse scattering intensities from molecular dynamics trajectories
journal, September 1995


Three-dimensional diffuse x-ray scattering from crystals of Staphylococcal nuclease
journal, June 1997

  • Wall, M. E.; Ealick, S. E.; Gruner, S. M.
  • Proceedings of the National Academy of Sciences, Vol. 94, Issue 12
  • DOI: 10.1073/pnas.94.12.6180

Diffuse X-Ray Scattering to Model Protein Motions
journal, February 2014


Automated identification of functional dynamic contact networks from X-ray crystallography
journal, August 2013

  • van den Bedem, Henry; Bhabha, Gira; Yang, Kun
  • Nature Methods, Vol. 10, Issue 9
  • DOI: 10.1038/nmeth.2592

Interpretation of diffuse X-ray scattering via models of disorder
journal, June 1994


Diffuse scattering data acquisition techniques
journal, October 1998


Protein structural ensembles are revealed by redefining X-ray electron density noise
journal, December 2013

  • Lang, P. T.; Holton, J. M.; Fraser, J. S.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 1
  • DOI: 10.1073/pnas.1302823110

On the Relationship between Diffraction Patterns and Motions in Macromolecular Crystals
journal, October 2009


Optimal description of a protein structure in terms of multiple groups undergoing TLS motion
journal, March 2006

  • Painter, Jay; Merritt, Ethan A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 4
  • DOI: 10.1107/S0907444906005270

The Protein Data Bank
journal, January 2000


The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes
journal, June 2006

  • Jackson, Colin J.; Carr, Paul D.; Kim, Hye-Kyung
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 62, Issue 7
  • DOI: 10.1107/S1744309106020021

Correlated Dynamics Determining X-Ray Diffuse Scattering from a Crystalline Protein Revealed by Molecular Dynamics Simulation
journal, November 2005


Analyzing diffuse scattering with supercomputers
journal, November 2013

  • Michels-Clark, T. M.; Lynch, V. E.; Hoffmann, C. M.
  • Journal of Applied Crystallography, Vol. 46, Issue 6
  • DOI: 10.1107/S0021889813025399

Works referencing / citing this record:

Three-dimensional crystal structure of novel aluminophosphate PST-5 solved using a powder charge flipping method
journal, January 2017

  • Chang, Shuai; Jang, Hoi-Gu; Lee, Kwan-Young
  • RSC Advances, Vol. 7, Issue 61
  • DOI: 10.1039/c7ra05100j

Measuring and modeling diffuse scattering in protein X-ray crystallography
journal, March 2016

  • Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 15
  • DOI: 10.1073/pnas.1524048113

Liquid-like and rigid-body motions in molecular-dynamics simulations of a crystalline protein
journal, November 2019

  • Wych, David C.; Fraser, James S.; Mobley, David L.
  • Structural Dynamics, Vol. 6, Issue 6
  • DOI: 10.1063/1.5132692