skip to main content

DOE PAGESDOE PAGES

Title: Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.
Authors:
 [1] ;  [2] ;  [3] ;  [3] ;  [4] ;  [5] ;  [6] ;  [5]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Leeds, Leeds (United Kingdom)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States)
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  4. Univ. of New Mexico, Albuquerque, NM (United States)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Consortium, Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
1213405
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Research Org:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 60 APPLIED LIFE SCIENCES bioinspired materials; membrane biophysics; two-dimensional materials