DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH

Abstract

Hydrogen generation from formic acid (FA), one of the most promising hydrogen storage materials, has attracted much attention due to the demand for the development of renewable energy carriers. Catalytic dehydrogenation of FA in an efficient and green manner remains challenging. Here, we report a series of bio-inspired Ir complexes for highly robust and selective hydrogen production from FA in aqueous solutions without organic solvents or additives. One of these complexes bearing an imidazoline moiety (complex 6) achieved a turnover frequency (TOF) of 322,000 h⁻¹ at 100 °C, which is higher than ever reported. The novel catalysts are very stable and applicable in highly concentrated FA. For instance, complex 3 (1 μmol) affords an unprecedented turnover number (TON) of 2,050,000 at 60 °C. Deuterium kinetic isotope effect experiments and density functional theory (DFT) calculations employing a “speciation” approach demonstrated a change in the rate-determining step with increasing solution pH. This study provides not only more insight into the mechanism of dehydrogenation of FA but also offers a new principle for the design of effective homogeneous organometallic catalysts for H₂ generation from FA.

Authors:
 [1];  [2];  [2];  [3];  [3];  [4];  [3];  [3];  [2];  [4]
  1. Dalian Univ. of Technology, Panjin (China)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan)
  4. National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan); Japan Science and Technology Agency, Saitama (Japan)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1213386
Report Number(s):
BNL-108268-2015-JA
Journal ID: ISSN 2155-5435; R&D Project: CO026; KC0304030
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 3; Journal Issue: 36; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; formic acid dehydrogenation; Ir complexes; mechanism; kinetic isotope effect; pH-dependence

Citation Formats

Wang, Wan -Hui, Fujita, Etsuko, Ertem, Mehmed Z., Xu, Shaoan, Onishi, Naoya, Manaka, Yuichi, Suna, Yuki, Kambayashi, Hide, Muckerman, James T., and Himeda, Yuichiro. Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH. United States: N. p., 2015. Web. doi:10.1021/acscatal.5b01090.
Wang, Wan -Hui, Fujita, Etsuko, Ertem, Mehmed Z., Xu, Shaoan, Onishi, Naoya, Manaka, Yuichi, Suna, Yuki, Kambayashi, Hide, Muckerman, James T., & Himeda, Yuichiro. Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH. United States. https://doi.org/10.1021/acscatal.5b01090
Wang, Wan -Hui, Fujita, Etsuko, Ertem, Mehmed Z., Xu, Shaoan, Onishi, Naoya, Manaka, Yuichi, Suna, Yuki, Kambayashi, Hide, Muckerman, James T., and Himeda, Yuichiro. Thu . "Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH". United States. https://doi.org/10.1021/acscatal.5b01090. https://www.osti.gov/servlets/purl/1213386.
@article{osti_1213386,
title = {Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH},
author = {Wang, Wan -Hui and Fujita, Etsuko and Ertem, Mehmed Z. and Xu, Shaoan and Onishi, Naoya and Manaka, Yuichi and Suna, Yuki and Kambayashi, Hide and Muckerman, James T. and Himeda, Yuichiro},
abstractNote = {Hydrogen generation from formic acid (FA), one of the most promising hydrogen storage materials, has attracted much attention due to the demand for the development of renewable energy carriers. Catalytic dehydrogenation of FA in an efficient and green manner remains challenging. Here, we report a series of bio-inspired Ir complexes for highly robust and selective hydrogen production from FA in aqueous solutions without organic solvents or additives. One of these complexes bearing an imidazoline moiety (complex 6) achieved a turnover frequency (TOF) of 322,000 h⁻¹ at 100 °C, which is higher than ever reported. The novel catalysts are very stable and applicable in highly concentrated FA. For instance, complex 3 (1 μmol) affords an unprecedented turnover number (TON) of 2,050,000 at 60 °C. Deuterium kinetic isotope effect experiments and density functional theory (DFT) calculations employing a “speciation” approach demonstrated a change in the rate-determining step with increasing solution pH. This study provides not only more insight into the mechanism of dehydrogenation of FA but also offers a new principle for the design of effective homogeneous organometallic catalysts for H₂ generation from FA.},
doi = {10.1021/acscatal.5b01090},
journal = {ACS Catalysis},
number = 36,
volume = 3,
place = {United States},
year = {Thu Jul 30 00:00:00 EDT 2015},
month = {Thu Jul 30 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 129 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Towards the development of a hydrogen battery
journal, January 2012

  • Boddien, Albert; Federsel, Christopher; Sponholz, Peter
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22043a

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 47, Issue 21, p. 3966-3968
  • DOI: 10.1002/anie.200800320

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Formic acid as a hydrogen source – recent developments and future trends
journal, January 2012

  • Grasemann, Martin; Laurenczy, Gábor
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21928j

Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation
journal, January 2013

  • Wang, Ning; Wang, Mei; Chen, Lin
  • Dalton Transactions, Vol. 42, Issue 34
  • DOI: 10.1039/c3dt51371h

Learning from the Neighbors: Improving Homogeneous Catalysts with Functional Ligands Motivated by Heterogeneous and Biocatalysis
journal, February 2012

  • Askevold, Bjorn; Roesky, Herbert W.; Schneider, Sven
  • ChemCatChem, Vol. 4, Issue 3
  • DOI: 10.1002/cctc.201100347

Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides
journal, January 2014

  • Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.
  • Chem. Commun., Vol. 50, Issue 24
  • DOI: 10.1039/c3cc46135a

Ruthenium(II)-Catalyzed Hydrogen Generation from Formic Acid using Cationic, Ammoniomethyl-Substituted Triarylphosphine Ligands
journal, March 2013

  • Gan, Weijia; Snelders, Dennis J. M.; Dyson, Paul J.
  • ChemCatChem, Vol. 5, Issue 5
  • DOI: 10.1002/cctc.201200782

Hydrogen generation from formic acid and alcohols using homogeneous catalysts
journal, January 2010

  • Johnson, Tarn C.; Morris, David J.; Wills, Martin
  • Chem. Soc. Rev., Vol. 39, Issue 1
  • DOI: 10.1039/B904495G

Interconversion between Formic Acid and H2/CO2 using Rhodium and Ruthenium Catalysts for CO2 Fixation and H2 Storage
journal, January 2011


Long-range metal–ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid
journal, January 2013

  • Barnard, Jonathan H.; Wang, Chao; Berry, Neil G.
  • Chemical Science, Vol. 4, Issue 3
  • DOI: 10.1039/c2sc21923a

Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO 2 Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes
journal, April 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • ACS Catalysis, Vol. 3, Issue 5
  • DOI: 10.1021/cs400172j

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Immobilizing Highly Catalytically Active Noble Metal Nanoparticles on Reduced Graphene Oxide: A Non-Noble Metal Sacrificial Approach
journal, January 2015

  • Chen, Yao; Zhu, Qi-Long; Tsumori, Nobuko
  • Journal of the American Chemical Society, Vol. 137, Issue 1
  • DOI: 10.1021/ja511511q

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
journal, September 2011


Towards a Practical Setup for Hydrogen Production from Formic Acid
journal, June 2013


Base-Free Production of H 2 by Dehydrogenation of Formic Acid Using An Iridium-bisMETAMORPhos Complex
journal, July 2013

  • Oldenhof, Sander; de Bruin, Bas; Lutz, Martin
  • Chemistry - A European Journal, Vol. 19, Issue 35
  • DOI: 10.1002/chem.201302230

Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H 2 /O 2 Fuel Cells
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie International Edition, Vol. 47, Issue 21
  • DOI: 10.1002/anie.200705972

Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions
journal, May 2013

  • Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa
  • Chemistry - A European Journal, Vol. 19, Issue 25
  • DOI: 10.1002/chem.201301383

Shapes of curves of pH-dependence of reactions
journal, January 1973


A Rechargeable Hydrogen Battery Based on Ru Catalysis
journal, May 2014

  • Hsu, Shih-Fan; Rommel, Susanne; Eversfield, Philipp
  • Angewandte Chemie International Edition, Vol. 53, Issue 27
  • DOI: 10.1002/anie.201310972

Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption in organic molecules
journal, January 2009

  • Makowski, Philippe; Thomas, Arne; Kuhn, Pierre
  • Energy & Environmental Science, Vol. 2, Issue 5
  • DOI: 10.1039/b822279g

Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst
journal, April 2014

  • Filonenko, Georgy A.; van Putten, Robbert; Schulpen, Erik N.
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201402119

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Heterogeneous Silica-Supported Ruthenium Phosphine Catalysts for Selective Formic Acid Decomposition
journal, June 2013


Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

Chemical and Physical Solutions for Hydrogen Storage
journal, August 2009

  • Eberle, Ulrich; Felderhoff, Michael; Schüth, Ferdi
  • Angewandte Chemie International Edition, Vol. 48, Issue 36
  • DOI: 10.1002/anie.200806293

A Charge/Discharge Device for Chemical Hydrogen Storage and Generation
journal, September 2011

  • Papp, Gábor; Csorba, Jenő; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 50, Issue 44
  • DOI: 10.1002/anie.201104951

Perspectives on How Nature Employs the Principles of Organometallic Chemistry in Dihydrogen Activation in Hydrogenases
journal, November 2010

  • Gordon, John C.; Kubas, Gregory J.
  • Organometallics, Vol. 29, Issue 21
  • DOI: 10.1021/om100436c

Dehydrogenation of formic acid by Ir–bisMETAMORPhos complexes: experimental and computational insight into the role of a cooperative ligand
journal, January 2015

  • Oldenhof, Sander; Lutz, Martin; de Bruin, Bas
  • Chemical Science, Vol. 6, Issue 2
  • DOI: 10.1039/C4SC02555E

Structure and Function of [Fe]-Hydrogenase and its Iron-Guanylylpyridinol (FeGP) Cofactor
journal, December 2010

  • Shima, Seigo; Ermler, Ulrich
  • European Journal of Inorganic Chemistry, Vol. 2011, Issue 7
  • DOI: 10.1002/ejic.201000955

An Aqueous Rechargeable Formate-Based Hydrogen Battery Driven by Heterogeneous Pd Catalysis
journal, November 2014

  • Bi, Qing-Yuan; Lin, Jian-Dong; Liu, Yong-Mei
  • Angewandte Chemie International Edition, Vol. 53, Issue 49
  • DOI: 10.1002/anie.201409500

CO2-“Neutral” Hydrogen Storage Based on Bicarbonates and Formates
journal, May 2011

  • Boddien, Albert; Gärtner, Felix; Federsel, Christopher
  • Angewandte Chemie International Edition, Vol. 50, Issue 28
  • DOI: 10.1002/anie.201101995

Reversible CO 2 binding triggered by metal–ligand cooperation in a rhenium( i ) PNP pincer-type complex and the reaction with dihydrogen
journal, January 2014

  • Vogt, Matthias; Nerush, Alexander; Diskin-Posner, Yael
  • Chem. Sci., Vol. 5, Issue 5
  • DOI: 10.1039/c4sc00130c

Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight
journal, May 2014


Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex
journal, December 2011

  • Tanaka, Ryo; Yamashita, Makoto; Chung, Lung Wa
  • Organometallics, Vol. 30, Issue 24
  • DOI: 10.1021/om2010172

An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen
journal, February 2013

  • Liu, Tianbiao; DuBois, Daniel L.; Bullock, R. Morris
  • Nature Chemistry, Vol. 5, Issue 3
  • DOI: 10.1038/nchem.1571

Hydrogen from formic acid decomposition over Pd and Au catalysts
journal, September 2010


Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
journal, January 2012

  • Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03315a

The roles of the first and second coordination spheres in the design of molecular catalysts for H 2 production and oxidation
journal, January 2009

  • Rakowski DuBois, M.; DuBois, Daniel L.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B801197B

Production of HCOOH/NEt 3 Adducts by CO 2 /H 2 Incorporation into Neat NEt 3
journal, March 2010

  • Preti, Debora; Squarcialupi, Sergio; Fachinetti, Giuseppe
  • Angewandte Chemie International Edition, Vol. 49, Issue 14
  • DOI: 10.1002/anie.200906054

The Hydrogen Issue
journal, December 2010


Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H 2 and H/D Exchange with a Water-Soluble Rhodium Complex in Aqueous Solution
journal, October 2008

  • Fukuzumi, Shunichi; Kobayashi, Takeshi; Suenobu, Tomoyoshi
  • ChemSusChem, Vol. 1, Issue 10
  • DOI: 10.1002/cssc.200800147

The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site
journal, July 2008


Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H 2 and CO 2
journal, January 2014


Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds
journal, January 2015

  • Neary, Michelle C.; Parkin, Gerard
  • Chemical Science, Vol. 6, Issue 3
  • DOI: 10.1039/C4SC03128H

Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study
journal, February 2009

  • Fellay, Céline; Yan, Ning; Dyson, Paul J.
  • Chemistry - A European Journal, Vol. 15, Issue 15
  • DOI: 10.1002/chem.200801824

Second-coordination-sphere and electronic effects enhance iridium(iii)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure
journal, January 2012

  • Wang, Wan-Hui; Hull, Jonathan F.; Muckerman, James T.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21888g

Efficient production of hydrogen from formic acid using a Covalent Triazine Framework supported molecular catalyst
journal, February 2015


Liquid-phase chemical hydrogen storage materials
journal, January 2012

  • Yadav, Mahendra; Xu, Qiang
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee22937d

Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials
journal, May 2010


Hydroxy-substituted pyridine-like N-heterocycles: versatile ligands in organometallic catalysis
journal, January 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • New Journal of Chemistry, Vol. 37, Issue 7
  • DOI: 10.1039/c3nj41146j

Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?
journal, January 2010

  • Enthaler, Stephan; von Langermann, Jan; Schmidt, Thomas
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/b907569k

Works referencing / citing this record:

Poly(ethyleneimine)-tethered Ir Complex Catalyst Immobilized in Titanate Nanotubes for Hydrogenation of CO 2 to Formic Acid
journal, May 2017

  • Kuwahara, Yasutaka; Fujie, Yuki; Yamashita, Hiromi
  • ChemCatChem, Vol. 9, Issue 11
  • DOI: 10.1002/cctc.201700508

Base‐Free Dehydrogenation of Aqueous and Neat Formic Acid with Iridium(III) Cp*(dipyridylamine) Catalysts
journal, November 2018


Coordination versatility of p-hydroquinone-functionalized dibenzobarrelene-based PC(sp 3 )P pincer ligands
journal, January 2016

  • De-Botton, Sophie; Romm, Ronit; Bensoussan, Guillaume
  • Dalton Transactions, Vol. 45, Issue 40
  • DOI: 10.1039/c6dt02201d

Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid
journal, August 2016

  • Iguchi, Masayuki; Himeda, Yuichiro; Manaka, Yuichi
  • ChemSusChem, Vol. 9, Issue 19
  • DOI: 10.1002/cssc.201600697

Kinetic Studies on Formic Acid Dehydrogenation Catalyzed by an Iridium Complex towards Insights into the Catalytic Mechanism of High-Pressure Hydrogen Gas Production
journal, September 2017

  • Iguchi, Masayuki; Zhong, Heng; Himeda, Yuichiro
  • Chemistry - A European Journal, Vol. 23, Issue 67
  • DOI: 10.1002/chem.201702969

Protic N-Heterocyclic Carbene Versus Pyrazole: Rigorous Comparison of Proton- and Electron-Donating Abilities in a Pincer-Type Framework
journal, September 2016

  • Toda, Tatsuro; Yoshinari, Akihiro; Ikariya, Takao
  • Chemistry - A European Journal, Vol. 22, Issue 46
  • DOI: 10.1002/chem.201602552

Cobalt‐Catalyzed Aqueous Dehydrogenation of Formic Acid
journal, May 2019

  • Zhou, Wei; Wei, Zhihong; Spannenberg, Anke
  • Chemistry – A European Journal, Vol. 25, Issue 36
  • DOI: 10.1002/chem.201805612

Mixed-valence copper( i,ii ) complexes with 4-(1H-pyrazol-1-yl)-6-R-pyrimidines: from ionic structures to coordination polymers
journal, January 2016

  • Vinogradova, Katerina A.; Krivopalov, Viktor P.; Nikolaenkova, Elena B.
  • Dalton Transactions, Vol. 45, Issue 2
  • DOI: 10.1039/c5dt04005a

Hydrogen generation from formic acid decomposition on a highly efficient iridium catalyst bearing a diaminoglyoxime ligand
journal, January 2018

  • Lu, Sheng-Mei; Wang, Zhijun; Wang, Jijie
  • Green Chemistry, Vol. 20, Issue 8
  • DOI: 10.1039/c8gc00495a

Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO 2 Hydrogenation
journal, November 2017


Reactivity of Silanes with ( t Bu PONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition
journal, September 2017

  • Anderson, Nickolas H.; Boncella, James M.; Tondreau, Aaron M.
  • Chemistry - A European Journal, Vol. 23, Issue 55
  • DOI: 10.1002/chem.201703722

Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N -Heterocyclic Carbene Complexes of Late Transition Metals
journal, September 2016

  • Jantke, Dominik; Pardatscher, Lorenz; Drees, Markus
  • ChemSusChem, Vol. 9, Issue 19
  • DOI: 10.1002/cssc.201600861

Carbon Dioxide Capturing for Purifying Hydrogen Generated by Formic Acid Decomposition
journal, March 2018


Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline‐Based, Proton‐Responsive Ligand
journal, December 2016


A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water: A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water
journal, April 2019

  • Fink, Cornel; Laurenczy, Gábor
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 18
  • DOI: 10.1002/ejic.201900344

A highly efficient Ir-catalyst for the solventless dehydrogenation of formic acid: the key role of an N-heterocyclic olefin
journal, January 2018

  • Iturmendi, Amaia; Iglesias, Manuel; Munarriz, Julen
  • Green Chemistry, Vol. 20, Issue 21
  • DOI: 10.1039/c8gc02794c

Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: investigation and mechanistic insights
journal, January 2020

  • Léval, Alexander; Agapova, Anastasiya; Steinlechner, Christoph
  • Green Chemistry, Vol. 22, Issue 3
  • DOI: 10.1039/c9gc02453k

Half‐sandwich ruthenium complexes with S chiff base ligands bearing a hydroxyl group: Preparation, characterization and catalytic activities
journal, November 2019

  • Jia, Wei‐Guo; Wang, Zhi‐Bao; Zhi, Xue‐Ting
  • Applied Organometallic Chemistry, Vol. 34, Issue 1
  • DOI: 10.1002/aoc.5289

Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid
journal, September 2018

  • Onishi, Naoya; Iguchi, Masayuki; Yang, Xinchun
  • Advanced Energy Materials, Vol. 9, Issue 23
  • DOI: 10.1002/aenm.201801275

Iridium-catalyzed efficient reduction of ketones in water with formic acid as a hydride donor at low catalyst loading
journal, January 2018

  • Liu, Ji-tian; Yang, Shiyi; Tang, Weiping
  • Green Chemistry, Vol. 20, Issue 9
  • DOI: 10.1039/c8gc00348c

Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source
journal, January 2017

  • Yang, Zhanhui; Zhu, Zhongpeng; Luo, Renshi
  • Green Chemistry, Vol. 19, Issue 14
  • DOI: 10.1039/c7gc01289f

Structure–activity relationship study of half-sandwich metal complexes in aqueous transfer hydrogenation catalysis
journal, January 2020

  • Ngo, Anh H.; Do, Loi H.
  • Inorganic Chemistry Frontiers, Vol. 7, Issue 3
  • DOI: 10.1039/c9qi01310e

Streamlined hydrogen production from biomass
journal, April 2018


Picolinamide‐Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability
journal, March 2018

  • Kanega, Ryoichi; Onishi, Naoya; Wang, Lin
  • Chemistry – A European Journal, Vol. 24, Issue 69
  • DOI: 10.1002/chem.201800428