skip to main content

DOE PAGESDOE PAGES

Title: Field-induced spin density wave and spiral phases in a layered antiferromagnet

Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba3Mn2O8 using single crystal neutron diffraction. We find that for magnetic fields between μ0H=8.80 T and 10.56 T applied along the $$1\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.
Authors:
 [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [3] ;  [3]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Quantum Condensed Matter Division
  2. Alternative Energies and Atomic Energy Commission (CEA), Grenoble (France). Inst. on Nanoscience and Cryogenics (INAC) and Statistical Physics, Magnetism and Superconductivity (SPSMS)
  3. Stanford Univ., CA (United States). Dept. of Applied Physics and Geballe Lab. for Advanced Materials
Publication Date:
OSTI Identifier:
1210151
Grant/Contract Number:
AC05-00OR22725; DMR-1205165; DMR-0454672
Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 2; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Spallation Neutron Source
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY