skip to main content


Title: Structural and magnetic phase transitions inEuTi1-xNbxO3

We have investigated the structural and magnetic phase transitions in EuTi1-xNbxO3 (0 ≤ x ≤ 0.3) with synchrotron powder x-ray diffraction, resonant ultrasound spectroscopy, and magnetization measurements. Upon Nb doping, the Pm3¯m ↔ I4/mcm structural transition shifts to higher temperatures and the room temperature lattice parameter increases while the magnitude of the octahedral tilting decreases. In addition, Nb substitution for Ti destabilizes the antiferromagnetic ground state of the parent compound and long-range ferromagnetic order is observed in the samples with x ≥ 0.1. The structural transition in pure and doped compounds is marked by a dramatic steplike softening of the elastic moduli near TS , which resembles that of SrTiO3 and can be adequately modeled using the Landau free energy model employing the same coupling between strain and octahedral tilting order parameter as previously used to model SrTiO3.
 [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Publisher's Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 2; Journal ID: ISSN 1098-0121
American Physical Society
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States