skip to main content

DOE PAGESDOE PAGES

Title: Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. As a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.
Authors:
 [1] ;  [1] ;  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
OSTI Identifier:
1193206
Report Number(s):
BNL--107980-2015-JA
Journal ID: ISSN 1098-0121; PRBMDO; R&D Project: PO015; KC0202030
Grant/Contract Number:
SC00112704
Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 7; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY