skip to main content

DOE PAGESDOE PAGES

Title: Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions (84Kr22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x1010 ions/cm2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO3, resulting in increases in track diameter of amore » factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less
Authors:
 [1] ;  [1] ;  [2] ;  [2] ;  [1] ;  [1] ;  [3] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States)
  3. Shandong Univ., Jinan (China)
Publication Date:
OSTI Identifier:
1185888
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 117; Journal Issue: 13; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Lithium niobate; LiNbO3; swift heavy ions; irradiation effects; band gap engineering