skip to main content

DOE PAGESDOE PAGES

Title: Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149° static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 °C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Lastly, carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.
Authors:
 [1] ;  [1] ;  [1] ;  [2] ;  [3] ;  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Fujian Agricultural and Forestry Univ., Fuzhou (China)
Publication Date:
OSTI Identifier:
1185769
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Cellulose
Additional Journal Information:
Journal Volume: 22; Journal Issue: 1; Journal ID: ISSN 0969-0239
Publisher:
Springer
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE nanocellulose; carbon aerogel; oil absorption; 3D network structure