skip to main content

DOE PAGESDOE PAGES

Title: Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation

We studied the radiation growth of zirconium using a reaction–diffusion model which takes into account intra-cascade clustering of self-interstitial atoms and one-dimensional diffusion of interstitial clusters. The observed dose dependence of strain rates is accounted for by accumulation of sessile dislocation loops during irradiation. Moreover, the computational model developed and fitted to available experimental data is applied to study deformation of Zr single crystals under irradiation up to hundred dpa. Finally, the effect of cold work and the reasons for negative prismatic strains and co-existence of vacancy and interstitial loops are elucidated.
Authors:
 [1] ;  [2] ;  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1185364
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Journal of Nuclear Materials
Additional Journal Information:
Journal Volume: 461; Journal Issue: C; Journal ID: ISSN 0022-3115
Publisher:
Elsevier
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE radiation growth; hcp metals; neutron irradiation; theory; displacement cascades