DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Collisionless shock experiments with lasers and observation of Weibel instabilities

Abstract

Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without preexisting magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagnetic in nature with an inferred magnetization level as high as ~1% These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.

Authors:
 [1]; ORCiD logo [1];  [1]; ORCiD logo [2];  [3];  [4];  [5];  [6];  [2];  [7];  [1];  [8];  [4];  [9]; ORCiD logo [8];  [1];  [1];  [8];  [8];  [1] more »;  [1]; ORCiD logo [9];  [10];  [9];  [1];  [7];  [1];  [8] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. University of Michigan, Ann Arbor, MI (United States)
  3. Univ. of Rochester, NY (United States)
  4. Univ. of Oxford, Oxford (United Kingdom)
  5. LULI, Ecole Polytechnique, Palaiseau (France)
  6. Lam Research Corporation, Fremont, CA (United States)
  7. Univ. of Chicago, Chicago, CA (United States)
  8. MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)
  9. Osaka Univ., Osaka (Japan)
  10. Princeton Univ., NJ (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1182658
Alternate Identifier(s):
OSTI ID: 1228320
Grant/Contract Number:  
NA0001857; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Weibel instability; collisionless shocks; astrophysical collisionless shocks; electromagnetic plasma instabilities

Citation Formats

Park, H. -S., Huntington, C. M., Fiuza, F., Drake, R. P., Froula, D. H., Gregori, G., Koenig, M., Kugland, N. L., Kuranz, C. C., Lamb, D. Q., Levy, M. C., Li, C. K., Meinecke, J., Morita, T., Petrasso, R. D., Pollock, B. B., Remington, B. A., Rinderknecht, H. G., Rosenberg, M., Ross, J. S., Ryutov, D. D., Sakawa, Y., Spitkovsky, A., Takabe, H., Turnbull, D. P., Tzeferacos, P., Weber, S. V., and Zylstra, A. B. Collisionless shock experiments with lasers and observation of Weibel instabilities. United States: N. p., 2015. Web. doi:10.1063/1.4920959.
Park, H. -S., Huntington, C. M., Fiuza, F., Drake, R. P., Froula, D. H., Gregori, G., Koenig, M., Kugland, N. L., Kuranz, C. C., Lamb, D. Q., Levy, M. C., Li, C. K., Meinecke, J., Morita, T., Petrasso, R. D., Pollock, B. B., Remington, B. A., Rinderknecht, H. G., Rosenberg, M., Ross, J. S., Ryutov, D. D., Sakawa, Y., Spitkovsky, A., Takabe, H., Turnbull, D. P., Tzeferacos, P., Weber, S. V., & Zylstra, A. B. Collisionless shock experiments with lasers and observation of Weibel instabilities. United States. https://doi.org/10.1063/1.4920959
Park, H. -S., Huntington, C. M., Fiuza, F., Drake, R. P., Froula, D. H., Gregori, G., Koenig, M., Kugland, N. L., Kuranz, C. C., Lamb, D. Q., Levy, M. C., Li, C. K., Meinecke, J., Morita, T., Petrasso, R. D., Pollock, B. B., Remington, B. A., Rinderknecht, H. G., Rosenberg, M., Ross, J. S., Ryutov, D. D., Sakawa, Y., Spitkovsky, A., Takabe, H., Turnbull, D. P., Tzeferacos, P., Weber, S. V., and Zylstra, A. B. Wed . "Collisionless shock experiments with lasers and observation of Weibel instabilities". United States. https://doi.org/10.1063/1.4920959. https://www.osti.gov/servlets/purl/1182658.
@article{osti_1182658,
title = {Collisionless shock experiments with lasers and observation of Weibel instabilities},
author = {Park, H. -S. and Huntington, C. M. and Fiuza, F. and Drake, R. P. and Froula, D. H. and Gregori, G. and Koenig, M. and Kugland, N. L. and Kuranz, C. C. and Lamb, D. Q. and Levy, M. C. and Li, C. K. and Meinecke, J. and Morita, T. and Petrasso, R. D. and Pollock, B. B. and Remington, B. A. and Rinderknecht, H. G. and Rosenberg, M. and Ross, J. S. and Ryutov, D. D. and Sakawa, Y. and Spitkovsky, A. and Takabe, H. and Turnbull, D. P. and Tzeferacos, P. and Weber, S. V. and Zylstra, A. B.},
abstractNote = {Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without preexisting magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagnetic in nature with an inferred magnetization level as high as ~1% These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.},
doi = {10.1063/1.4920959},
journal = {Physics of Plasmas},
number = 5,
volume = 22,
place = {United States},
year = {Wed May 13 00:00:00 EDT 2015},
month = {Wed May 13 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
journal, January 2015

  • Huntington, C. M.; Fiuza, F.; Ross, J. S.
  • Nature Physics, Vol. 11, Issue 2
  • DOI: 10.1038/nphys3178

Formation and Structure of Electrostatic Collisionless Shocks
journal, December 1970


Generation of Magnetic Fields in the Relativistic Shock of Gamma‐Ray Burst Sources
journal, December 1999

  • Medvedev, Mikhail V.; Loeb, Abraham
  • The Astrophysical Journal, Vol. 526, Issue 2
  • DOI: 10.1086/308038

Cosmological Magnetic Field Generation by the Weibel Instability
journal, December 2003

  • Schlickeiser, R.; Shukla, P. K.
  • The Astrophysical Journal, Vol. 599, Issue 2
  • DOI: 10.1086/381246

Weibel, Two-Stream, Filamentation, Oblique, Bell, Buneman...Which one Grows Faster?
journal, June 2009


Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution
journal, February 1959


Simulation studies of the magnetic field generation in cosmological plasmas
journal, September 2004


On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas
journal, December 2007

  • Spitkovsky, Anatoly
  • The Astrophysical Journal, Vol. 673, Issue 1
  • DOI: 10.1086/527374

MAGNETIC FIELDS AND COSMIC RAYS IN GRBs: A SELF-SIMILAR COLLISIONLESS FORESHOCK
journal, April 2009


Generation of Magnetic Fields in Cosmological Shocks
journal, December 2004

  • Medvedev, Mikhail V.; Silva, Luis O.; Fiore, Massimiliano
  • Journal of The Korean Astronomical Society, Vol. 37, Issue 5
  • DOI: 10.5303/JKAS.2004.37.5.533

Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation
journal, March 2010

  • Kato, Tsunehiko N.; Takabe, Hideaki
  • Physics of Plasmas, Vol. 17, Issue 3
  • DOI: 10.1063/1.3372138

Simulations of relativistic collisionless shocks: shock structure and particle acceleration
conference, January 2005

  • Spitkovsky, Anatoly
  • ASTROPHYSICAL SOURCES OF HIGH ENERGY PARTICLES AND RADIATION, AIP Conference Proceedings
  • DOI: 10.1063/1.2141897

Filamentation Instability of Counterstreaming Laser-Driven Plasmas
journal, November 2013


Design Considerations for Unmagnetized Collisionless-Shock Measurements in Homologous Flows
journal, April 2012


Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers
journal, March 2012


Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks
journal, May 2012

  • Ross, J. S.; Glenzer, S. H.; Amendt, P.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3694124

Intra-jet shocks in two counter-streaming, weakly collisional plasma jets
journal, July 2012

  • Ryutov, D. D.; Kugland, N. L.; Park, H. -S.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4736973

Nonrelativistic Collisionless Shocks in Unmagnetized Electron-Ion Plasmas
journal, June 2008

  • Kato, Tsunehiko N.; Takabe, Hideaki
  • The Astrophysical Journal, Vol. 681, Issue 2
  • DOI: 10.1086/590387

Collisional effects in the ion Weibel instability for two counter-propagating plasma streams
journal, March 2014

  • Ryutov, D. D.; Fiuza, F.; Huntington, C. M.
  • Physics of Plasmas, Vol. 21, Issue 3
  • DOI: 10.1063/1.4867062

The upgrade to the OMEGA laser system
journal, January 1995

  • Boehly, T. R.; Craxton, R. S.; Hinterman, T. H.
  • Review of Scientific Instruments, Vol. 66, Issue 1
  • DOI: 10.1063/1.1146333

Thomson-scattering measurements in the collective and noncollective regimes in laser produced plasmas (invited)
journal, October 2010

  • Ross, J. S.; Glenzer, S. H.; Palastro, J. P.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3478975

Collisionless Coupling of Ion and Electron Temperatures in Counterstreaming Plasma Flows
journal, April 2013


Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

Monoenergetic proton backlighter for measuring E and B fields and for radiographing implosions and high-energy density plasmas (invited)
journal, October 2006

  • Li, C. K.; Séguin, F. H.; Frenje, J. A.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2228252

Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics
journal, May 2013

  • Kugland, N. L.; Ross, J. S.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4804548

Using high-intensity laser-generated energetic protons to radiograph directly driven implosions
journal, January 2012

  • Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.
  • Review of Scientific Instruments, Vol. 83, Issue 1
  • DOI: 10.1063/1.3680110

Monoenergetic-Proton-Radiography Measurements of Implosion Dynamics in Direct-Drive Inertial-Confinement Fusion
journal, June 2008


Spectrometry of charged particles from inertial-confinement-fusion plasmas
journal, February 2003

  • Séguin, F. H.; Frenje, J. A.; Li, C. K.
  • Review of Scientific Instruments, Vol. 74, Issue 2
  • DOI: 10.1063/1.1518141

Invited Article: Relation between electric and magnetic field structures and their proton-beam images
journal, October 2012

  • Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4750234

OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators
book, January 2002

  • Fonseca, R. A.; Silva, L. O.; Tsung, F. S.
  • Computational Science — ICCS 2002, p. 342-351
  • DOI: 10.1007/3-540-47789-6_36

Mechanism for Instability of Transverse Plasma Waves
journal, January 1959


Nonlinear Development of Electromagnetic Instabilities in Anisotropic Plasmas
journal, January 1972


Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas
journal, September 2012

  • Kugland, N. L.; Ryutov, D. D.; Chang, P-Y.
  • Nature Physics, Vol. 8, Issue 11
  • DOI: 10.1038/nphys2434

Magnetic field advection in two interpenetrating plasma streams
journal, March 2013

  • Ryutov, D. D.; Kugland, N. L.; Levy, M. C.
  • Physics of Plasmas, Vol. 20, Issue 3
  • DOI: 10.1063/1.4794200

Linear plasmoid instability of thin current sheets with shear flow
journal, May 2010

  • Ni, Lei; Germaschewski, Kai; Huang, Yi-Min
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3428553

Works referencing / citing this record:

Growth and propagation of self-generated magnetic dipole vortices in collisionless shocks produced by interpenetrating plasmas
journal, January 2018

  • Naseri, N.; Bochkarev, S. G.; Ruan, P.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5008278

Scaling laws for dynamical plasma phenomena
journal, October 2018


Observation of collisionless-to-collisional transition in colliding plasma jets with optical Thomson scattering
journal, January 2019

  • Young, R. P.; Kuranz, C. C.; Froula, D.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5047218

Characterizing filamentary magnetic structures in counter-streaming plasmas by Fourier analysis of proton images
journal, October 2019

  • Levesque, Joseph; Kuranz, Carolyn; Handy, Timothy
  • Physics of Plasmas, Vol. 26, Issue 10
  • DOI: 10.1063/1.5100728

MPRAD: A Monte Carlo and ray-tracing code for the proton radiography in high-energy-density plasma experiments
journal, December 2019

  • Lu, Yingchao; Li, Hui; Flippo, Kirk A.
  • Review of Scientific Instruments, Vol. 90, Issue 12
  • DOI: 10.1063/1.5123392

Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas
journal, June 2015

  • Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 27
  • DOI: 10.1073/pnas.1502079112

Distinguishing and diagnosing the spontaneous electric and magnetic fields of Weibel instability through proton radiography
journal, December 2019

  • Du, Bao; Cai, Hong-Bo; Zhang, Wen-Shuai
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 2
  • DOI: 10.1088/1361-6587/ab57ed

Probing thermal Weibel instability in optical-field-ionized plasmas using relativistic electron bunches
journal, January 2020

  • Zhang, Chaojie; Huang, Chen-Kang; Marsh, Ken A.
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 2
  • DOI: 10.1088/1361-6587/ab61e0

Machine learning applied to proton radiography of high-energy-density plasmas
journal, April 2017

  • Chen, Nicholas F. Y.; Kasim, Muhammad Firmansyah; Ceurvorst, Luke
  • Physical Review E, Vol. 95, Issue 4
  • DOI: 10.1103/physreve.95.043305

Status of NIF laser and high power laser research at LLNL
conference, February 2017

  • Bowers, Mark; Wisoff, Jeff; Herrmann, Mark
  • SPIE LASE, SPIE Proceedings
  • DOI: 10.1117/12.2257571

Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks
journal, May 2018

  • Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro
  • The Astrophysical Journal, Vol. 858, Issue 2
  • DOI: 10.3847/1538-4357/aaba7a

Evolution of Three-dimensional Relativistic Ion Weibel Instability: Competition with Kink Instability
journal, June 2019

  • Takamoto, Makoto; Matsumoto, Yosuke; Kato, Tsunehiko N.
  • The Astrophysical Journal, Vol. 877, Issue 2
  • DOI: 10.3847/1538-4357/ab1911