DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Single-electron detection and spectroscopy via relativistic cyclotron radiation

Abstract

It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

Authors:
 [1];  [2];  [3];  [4];  [1];  [4];  [1];  [5];  [5];  [1];  [4];  [3];  [3];  [4];  [4];  [5];  [3];  [5];  [4];  [4] more »;  [4];  [5];  [4];  [1];  [6];  [1];  [4] « less
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. National Radio Astronomy Observatory, Charlottesville, VA (United States)
  3. Univ. of California, Santa Barbara, CA (United States)
  4. Univ. of Washington, Seattle, WA (United States)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  6. Karlsruhe Inst. of Technology (KIT), Karlsruhe (Germany)
Publication Date:
Research Org.:
Univ. of California, Santa Barbara, CA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP)
Contributing Org.:
Project 8 Collaboration
OSTI Identifier:
1332971
Alternate Identifier(s):
OSTI ID: 1178479; OSTI ID: 1191786
Report Number(s):
PNNL-SA-104834
Journal ID: ISSN 0031-9007; PRLTAO
Grant/Contract Number:  
SC0004036; FG02-97ER41020; SC0011091; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 114; Journal Issue: 16; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; Single electron detection and spectroscopy via relativistic cyclotron radiation

Citation Formats

Asner, D. M., Bradley, R. F., de Viveiros, L., Doe, P. J., Fernandes, J. L., Fertl, M., Finn, E. C., Formaggio, J. A., Furse, D., Jones, A. M., Kofron, J. N., LaRoque, B. H., Leber, M., McBride, E. L., Miller, M. L., Mohanmurthy, P., Monreal, B., Oblath, N. S., Robertson, R. G. H., Rosenberg, L. J., Rybka, G., Rysewyk, D., Sternberg, M. G., Tedeschi, J. R., Thummler, T., VanDevender, B. A., and Woods, N. L. Single-electron detection and spectroscopy via relativistic cyclotron radiation. United States: N. p., 2015. Web. doi:10.1103/PhysRevLett.114.162501.
Asner, D. M., Bradley, R. F., de Viveiros, L., Doe, P. J., Fernandes, J. L., Fertl, M., Finn, E. C., Formaggio, J. A., Furse, D., Jones, A. M., Kofron, J. N., LaRoque, B. H., Leber, M., McBride, E. L., Miller, M. L., Mohanmurthy, P., Monreal, B., Oblath, N. S., Robertson, R. G. H., Rosenberg, L. J., Rybka, G., Rysewyk, D., Sternberg, M. G., Tedeschi, J. R., Thummler, T., VanDevender, B. A., & Woods, N. L. Single-electron detection and spectroscopy via relativistic cyclotron radiation. United States. https://doi.org/10.1103/PhysRevLett.114.162501
Asner, D. M., Bradley, R. F., de Viveiros, L., Doe, P. J., Fernandes, J. L., Fertl, M., Finn, E. C., Formaggio, J. A., Furse, D., Jones, A. M., Kofron, J. N., LaRoque, B. H., Leber, M., McBride, E. L., Miller, M. L., Mohanmurthy, P., Monreal, B., Oblath, N. S., Robertson, R. G. H., Rosenberg, L. J., Rybka, G., Rysewyk, D., Sternberg, M. G., Tedeschi, J. R., Thummler, T., VanDevender, B. A., and Woods, N. L. Mon . "Single-electron detection and spectroscopy via relativistic cyclotron radiation". United States. https://doi.org/10.1103/PhysRevLett.114.162501. https://www.osti.gov/servlets/purl/1332971.
@article{osti_1332971,
title = {Single-electron detection and spectroscopy via relativistic cyclotron radiation},
author = {Asner, D. M. and Bradley, R. F. and de Viveiros, L. and Doe, P. J. and Fernandes, J. L. and Fertl, M. and Finn, E. C. and Formaggio, J. A. and Furse, D. and Jones, A. M. and Kofron, J. N. and LaRoque, B. H. and Leber, M. and McBride, E. L. and Miller, M. L. and Mohanmurthy, P. and Monreal, B. and Oblath, N. S. and Robertson, R. G. H. and Rosenberg, L. J. and Rybka, G. and Rysewyk, D. and Sternberg, M. G. and Tedeschi, J. R. and Thummler, T. and VanDevender, B. A. and Woods, N. L.},
abstractNote = {It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.},
doi = {10.1103/PhysRevLett.114.162501},
journal = {Physical Review Letters},
number = 16,
volume = 114,
place = {United States},
year = {Mon Apr 20 00:00:00 EDT 2015},
month = {Mon Apr 20 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 45 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Tentativo di una Teoria Dei Raggi β
journal, January 1934


Upper Limits on the Neutrino Mass from the Tritium Beta Spectrum
journal, December 1953

  • Hamilton, Donald R.; Alford, W. Parker; Gross, Leonard
  • Physical Review, Vol. 92, Issue 6
  • DOI: 10.1103/PhysRev.92.1521

A method for measuring the electron antineutrino rest mass
journal, October 1985

  • Lobashev, V. M.; Spivak, P. E.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 240, Issue 2
  • DOI: 10.1016/0168-9002(85)90640-0

A solenoid retarding spectrometer with high resolution and transmission for keV electrons
journal, February 1992

  • Picard, A.; Backe, H.; Barth, H.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 63, Issue 3
  • DOI: 10.1016/0168-583X(92)95119-C

Final results from phase II of the Mainz neutrino mass searchin tritium ${\beta}$ decay
journal, April 2005


Upper limit on the electron antineutrino mass from the Troitsk experiment
journal, December 2011


Review of Particle Physics
journal, August 2014


A Dynamical Theory of the Electric and Luminiferous Medium. Part III. Relations with Material Media
journal, January 1897

  • Larmor, J.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 190, Issue 0
  • DOI: 10.1098/rsta.1897.0020

The Radiation from an Electron describing a Circular Orbit
journal, January 1904


Precise Measurements of Axial, Magnetron, Cyclotron, and Spin-Cyclotron-Beat Frequencies on an Isolated 1-meV Electron
journal, February 1977


New high-precision comparison of electron and positron g factors
journal, July 1987

  • Van Dyck, Robert S.; Schwinberg, Paul B.; Dehmelt, Hans G.
  • Physical Review Letters, Vol. 59, Issue 1
  • DOI: 10.1103/PhysRevLett.59.26

New Measurement of the Electron Magnetic Moment and the Fine Structure Constant
journal, March 2008


CODATA recommended values of the fundamental physical constants: 2010
journal, November 2012


Precision measurement of the conversion electron spectrum of83m Kr with a solenoid retarding spectrometer
journal, March 1992

  • Picard, A.; Backe, H.; Bonn, J.
  • Zeitschrift f�r Physik A Hadrons and Nuclei, Vol. 342, Issue 1
  • DOI: 10.1007/BF01294491

Kr radioactive source based on Rb trapped in cation-exchange paper or in zeolite
journal, September 2005


Correspondence of electron spectra from photoionization and nuclear internal conversion
journal, October 1991


Review of Particle Physics
text, January 2008


Review of Particle Physics
text, January 2018


Review of Particle Physics
text, January 2012

  • Beringer, J.; Arguin, J.; Barnett, R.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/phppubdb-24149

CODATA Recommended Values of the Fundamental Physical Constants: 2010
journal, December 2012

  • Mohr, Peter J.; Taylor, Barry N.; Newell, David B.
  • Journal of Physical and Chemical Reference Data, Vol. 41, Issue 4
  • DOI: 10.1063/1.4724320

Works referencing / citing this record:

Review of absolute neutrino mass measurements
journal, November 2018


Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8
journal, March 2017

  • Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 44, Issue 5
  • DOI: 10.1088/1361-6471/aa5b4f

Kassiopeia: a modern, extensible C++ particle tracking package
journal, May 2017


Locust: C++ software for simulation of RF detection
journal, November 2019

  • Ashtari Esfahani, A.; Böser, S.; Buzinsky, N.
  • New Journal of Physics, Vol. 21, Issue 11
  • DOI: 10.1088/1367-2630/ab550d

A White Paper on keV sterile neutrino Dark Matter
journal, January 2017


Direct Neutrino Mass Experiments
journal, May 2016


Working principle and demonstrator of microwave-multiplexing for the HOLMES experiment microcalorimeters
journal, October 2019


The electron capture in 163Ho experiment – ECHo
journal, June 2017

  • Gastaldo, L.; Blaum, K.; Chrysalidis, K.
  • The European Physical Journal Special Topics, Vol. 226, Issue 8
  • DOI: 10.1140/epjst/e2017-70071-y

The Use of Low Temperature Detectors for Direct Measurements of the Mass of the Electron Neutrino
journal, January 2016


Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects
journal, October 2018

  • de Salas, Pablo F.; Gariazzo, Stefano; Mena, Olga
  • Frontiers in Astronomy and Space Sciences, Vol. 5
  • DOI: 10.3389/fspas.2018.00036

Locust: C++ software for simulation of RF detection
text, January 2019


The electron capture in 163Ho experiment – ECHo
text, January 2017


A White Paper on keV sterile neutrino Dark Matter
text, January 2017

  • Hassel, C.; Wendt, K.; Mavromatos, N. E.
  • Institute of Physics Publishing IOP
  • DOI: 10.7892/boris.95470

Direct Neutrino Mass Experiments
text, January 2016


Kassiopeia : a modern, extensible C++ particle tracking package
text, January 2017


The electron capture in $^{163}$Ho experiment – ECHo
text, January 2017


A White Paper on keV Sterile Neutrino Dark Matter
text, January 2016


Direct Neutrino Mass Experiments
text, January 2016