skip to main content

DOE PAGESDOE PAGES

Title: Detection and characterization of multi-filament evolution during resistive switching

We present resistive switching data in TaOx memristors displaying signatures of multi-filament switching modes, and develop a geometrically defined equivalent circuit to separate the individual resistances and powers dissipated in each filament. Using these resolved values, we compare the individual switching curves of each filament and demonstrate that the switching data of each filament collapse onto a single switching curve determined by the analytical steady-state resistive switching solution for filamentary switching. Analyzing our results in terms of this solution, we determine the switching temperature, heat flow, conductivity, and time evolving areas of each filament during resistive switching. Finally, we discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance.
Authors:
 [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
1145719
Report Number(s):
SAND2014--4055J
Journal ID: ISSN 0003-6951; APPLAB; 518013
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 105; Journal Issue: 5; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY