DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

Abstract

Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the design and utility of functional materials based on peptides.

Authors:
 [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1143195
Report Number(s):
SAND2014-2972J
Journal ID: ISSN 1520-6106; 517106
Grant/Contract Number:  
AC04-94AL85000; KC0203010
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 118; Journal Issue: 29; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Ting, Christina L., Frischknecht, Amalie L., Stevens, Mark J., and Spoerke, Erik D. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides. United States: N. p., 2014. Web. doi:10.1021/jp503414p.
Ting, Christina L., Frischknecht, Amalie L., Stevens, Mark J., & Spoerke, Erik D. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides. United States. https://doi.org/10.1021/jp503414p
Ting, Christina L., Frischknecht, Amalie L., Stevens, Mark J., and Spoerke, Erik D. Thu . "Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides". United States. https://doi.org/10.1021/jp503414p. https://www.osti.gov/servlets/purl/1143195.
@article{osti_1143195,
title = {Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides},
author = {Ting, Christina L. and Frischknecht, Amalie L. and Stevens, Mark J. and Spoerke, Erik D.},
abstractNote = {Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the design and utility of functional materials based on peptides.},
doi = {10.1021/jp503414p},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 29,
volume = 118,
place = {United States},
year = {Thu Jun 19 00:00:00 EDT 2014},
month = {Thu Jun 19 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials
journal, January 2010

  • Cui, Honggang; Webber, Matthew J.; Stupp, Samuel I.
  • Biopolymers, Vol. 94, Issue 1, p. 1-18
  • DOI: 10.1002/bip.21328

Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials
journal, April 2002

  • Hartgerink, J. D.; Beniash, E.; Stupp, S. I.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 8, p. 5133-5138
  • DOI: 10.1073/pnas.072699999

Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles
journal, April 2002

  • Vauthey, S.; Santoso, S.; Gong, H.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 8, p. 5355-5360
  • DOI: 10.1073/pnas.072089599

Self-Assembly of a Designed Protein Polymer into β-Sheet Fibrils and Responsive Gels
journal, April 2003

  • Goeden-Wood, Nichole L.; Keasling, Jay D.; Muller, Susan J.
  • Macromolecules, Vol. 36, Issue 8
  • DOI: 10.1021/ma025952z

One-Dimensional Optoelectronic Nanostructures Derived from the Aqueous Self-Assembly of π-Conjugated Oligopeptides
journal, October 2008

  • Diegelmann, Stephen R.; Gorham, Justin M.; Tovar, John D.
  • Journal of the American Chemical Society, Vol. 130, Issue 42
  • DOI: 10.1021/ja805491d

Effect of the Peptide Secondary Structure on the Peptide Amphiphile Supramolecular Structure and Interactions
journal, May 2011

  • Missirlis, Dimitris; Chworos, Arkadiusz; Fu, Caroline J.
  • Langmuir, Vol. 27, Issue 10
  • DOI: 10.1021/la200800e

Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications
journal, January 2011

  • Valéry, Céline; Artzner, Franck; Paternostre, Maité
  • Soft Matter, Vol. 7, Issue 20
  • DOI: 10.1039/c1sm05698k

Electrostatically-Directed Self-Assembly of Cylindrical Peptide Amphiphile Nanostructures
journal, July 2004

  • Tsonchev, Stefan; Schatz, George C.; Ratner, Mark A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 26
  • DOI: 10.1021/jp037731g

On the Structure and Stability of Self-Assembled Zwitterionic Peptide Amphiphiles:  A Theoretical Study
journal, March 2004

  • Tsonchev, Stefan; Troisi, Alessandro; Schatz, George C.
  • Nano Letters, Vol. 4, Issue 3
  • DOI: 10.1021/nl0351439

Phase Diagram for Assembly of Biologically-Active Peptide Amphiphiles
journal, January 2008

  • Tsonchev, Stefan; Niece, Krista L.; Schatz, George C.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 2
  • DOI: 10.1021/jp076273z

Micellization of ionic surfactants: calculations based on a self-consistent field lattice model
journal, November 1991

  • Bohmer, Marcel R.; Koopal, Luuk K.; Lyklema, Johannes
  • The Journal of Physical Chemistry, Vol. 95, Issue 23
  • DOI: 10.1021/j100176a095

On the self-consistent field theory of surfactant micelles
journal, November 1992


Field theoretical modeling of the coexistence of micelles and vesicles in binary copolymer mixtures
journal, January 2009

  • Li, Feng; Marcelis, Antonius T. M.; Sudhölter, Ernst J. R.
  • Soft Matter, Vol. 5, Issue 21
  • DOI: 10.1039/b904525b

A Theoretical Study of Phase Behaviors for Diblock Copolymers in Selective Solvents
journal, September 2009

  • Suo, Tongchuan; Yan, Dadong; Yang, Shuang
  • Macromolecules, Vol. 42, Issue 17
  • DOI: 10.1021/ma900939u

Self-Assembly Behavior of AB/AC Diblock Copolymer Mixtures in Dilute Solution
journal, February 2009

  • Zhuang, Ying; Lin, Jiaping; Wang, Liquan
  • The Journal of Physical Chemistry B, Vol. 113, Issue 7
  • DOI: 10.1021/jp809181d

Controlling the Self-Assembly of Binary Copolymer Mixtures in Solution through Molecular Architecture
journal, July 2011

  • Greenall, Martin J.; Schuetz, Peter; Furzeland, Steve
  • Macromolecules, Vol. 44, Issue 13
  • DOI: 10.1021/ma2008546

Mechanical and chemical unfolding of a single protein: A comparison
journal, March 1999

  • Carrion-Vazquez, M.; Oberhauser, A. F.; Fowler, S. B.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 7
  • DOI: 10.1073/pnas.96.7.3694

Theory of Unsymmetric Polymer-Polymer Interfaces in the Presence of Solvent
journal, July 1980

  • Hong, K.; Noolandi, J.; Dennis, K. S.
  • Macromolecules, Vol. 13, Issue 4
  • DOI: 10.1021/ma60076a038

Fluctuation in electrolyte solutions: The self energy
journal, February 2010


A new interpretation of the effective Born radius from simulation and experiment
journal, August 1999


Micelles of Coil−Comb Block Copolymers in Selective Solvents: Competition of Length Scales
journal, January 2010

  • Wang, Jiafang; Guo, Kunkun; An, Lijia
  • Macromolecules, Vol. 43, Issue 4
  • DOI: 10.1021/ma901977h

High Apparent Dielectric Constants in the Interior of a Protein Reflect Water Penetration
journal, September 2000


Crystalline polymorphism induced by charge regulation in ionic membranes
journal, September 2013

  • Leung, C. -Y.; Palmer, L. C.; Kewalramani, S.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 41
  • DOI: 10.1073/pnas.1316150110

Molecular Crystallization Controlled by pH Regulates Mesoscopic Membrane Morphology
journal, November 2012

  • Leung, Cheuk-Yui; Palmer, Liam C.; Qiao, Bao Fu
  • ACS Nano, Vol. 6, Issue 12
  • DOI: 10.1021/nn304321w

Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds
journal, July 2006

  • Harrington, Daniel A.; Cheng, Earl Y.; Guler, Mustafa O.
  • Journal of Biomedical Materials Research Part A, Vol. 78A, Issue 1
  • DOI: 10.1002/jbm.a.30718

Presentation of Bioactive Epitopes with free N-Termini on Self-Assembling Peptide Nanofibers
journal, February 2011


pH-responsive branched peptide amphiphile hydrogel designed for applications in regenerative medicine with potential as injectable tissue scaffolds
journal, January 2012

  • Lin, Brian F.; Megley, Katie A.; Viswanathan, Nickesh
  • Journal of Materials Chemistry, Vol. 22, Issue 37
  • DOI: 10.1039/c2jm31745a

Interactions of a Charged Nanoparticle with a Lipid Membrane: Implications for Gene Delivery
journal, March 2011


Solving the finite-difference non-linear Poisson-Boltzmann equation
journal, November 1992

  • Luty, Brock A.; Davis, Malcolm E.; McCammon, J. Andrew
  • Journal of Computational Chemistry, Vol. 13, Issue 9
  • DOI: 10.1002/jcc.540130911