Powered by Deep Web Technologies
Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Property:ASHRAE 169 Climate Zone Subtype | Open Energy Information  

Open Energy Info (EERE)

ASHRAE 169 Climate Zone Subtype ASHRAE 169 Climate Zone Subtype Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Climate Zone Subtype" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Ada County, Idaho ASHRAE 169-2006 Climate Zone + Climate Zone Subtype B + Adair County, Iowa ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adair County, Missouri ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A +

2

Climate Zone Subtype A | Open Energy Information  

Open Energy Info (EERE)

Subtype A Subtype A Jump to: navigation, search Moist (A) definition-Locations that are not marine and not dry. The following places are categorized as subtype A climate zones: Abbeville County, South Carolina Acadia Parish, Louisiana Accomack County, Virginia Adair County, Iowa Adair County, Kentucky Adair County, Missouri Adair County, Oklahoma Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Mississippi Adams County, Nebraska Adams County, North Dakota Adams County, Ohio Adams County, Pennsylvania Adams County, Wisconsin Addison County, Vermont Aiken County, South Carolina Aitkin County, Minnesota Alachua County, Florida Alamance County, North Carolina Albany County, New York Albemarle County, Virginia Alcona County, Michigan Alcorn County, Mississippi

3

Climate Zone Subtype B | Open Energy Information  

Open Energy Info (EERE)

B B Jump to: navigation, search Dry (B) definition-Locations meeting the following criteria: not marine and P < 0.44 × (T - 19.5) [I-P units] P < 2.0 × (T + 7) [SI units] where P = annual precipitation in inches (cm) and T = annual mean temperature in °F (°C). The following places are categorized as subtype B climate zones: Ada County, Idaho Adams County, Colorado Adams County, Idaho Adams County, Washington Alamosa County, Colorado Albany County, Wyoming Alpine County, California Amador County, California Andrews County, Texas Apache County, Arizona Arapahoe County, Colorado Archuleta County, Colorado Armstrong County, Texas Asotin County, Washington Baca County, Colorado Bailey County, Texas Baker County, Oregon Bandera County, Texas Bannock County, Idaho

4

Climate Zone Subtype C | Open Energy Information  

Open Energy Info (EERE)

C C Jump to: navigation, search Marine (C) definition-Locations meeting all four criteria: 1. Mean temperature of coldest month between 27°F (-3°C) and 65°F (18°C) 2. Warmest month mean < 72°F (22°C) 3. At least four months with mean temperatures over 50°F (10°C) 4. Dry season in summer. The month with the heaviest precipitation in the cold season has at least three times as much precipitation as the month with the least precipitation in the rest of the year. The cold season is October through March in the Northern Hemisphere and April through September in the Southern Hemisphere. The following places are categorized as subtype C climate zones: Alameda County, California Benton County, Oregon Clackamas County, Oregon Clallam County, Washington Clark County, Washington

5

ASHRAE Climate Zones | Open Energy Information  

Open Energy Info (EERE)

ASHRAE Climate Zones Jump to: navigation, search Subtype A Subtype B Subtype C Climate Zone Number 1 Zone 1A Zone 1B NA Climate Zone Number 2 Zone 2A Zone 2B NA Climate Zone...

6

Climate Zone 5C | Open Energy Information  

Open Energy Info (EERE)

Climate Zone 5C Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 5 and Climate Zone Subtype C. Climate Zone...

7

Climate Zone 1B | Open Energy Information  

Open Energy Info (EERE)

search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 1 and Climate Zone Subtype B. Climate Zone 1B is defined as Dry with...

8

Climate Zone 8B | Open Energy Information  

Open Energy Info (EERE)

search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 8 and Climate Zone Subtype B. Climate Zone 8B is defined as Subarctic...

9

Category:ASHRAE Climate Zones | Open Energy Information  

Open Energy Info (EERE)

ASHRAE Climate Zones ASHRAE Climate Zones Jump to: navigation, search Climate Zones defined in the ASHRAE 169-2006 standards. Pages in category "ASHRAE Climate Zones" The following 30 pages are in this category, out of 30 total. C Climate Zone 1A Climate Zone 1B Climate Zone 2A Climate Zone 2B Climate Zone 3A Climate Zone 3B Climate Zone 3C Climate Zone 4A Climate Zone 4B Climate Zone 4C C cont. Climate Zone 5A Climate Zone 5B Climate Zone 5C Climate Zone 6A Climate Zone 6B Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Climate Zone Number 1 C cont. Climate Zone Number 2 Climate Zone Number 3 Climate Zone Number 4 Climate Zone Number 5 Climate Zone Number 6 Climate Zone Number 7 Climate Zone Number 8 Climate Zone Subtype A Climate Zone Subtype B Climate Zone Subtype C Retrieved from

10

Benewah County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Benewah County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 5 Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169...

11

Bannock County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bannock County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 6 Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169...

12

Bear Lake County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bear Lake County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 6 Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE...

13

Beckham County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleBeckham...

14

Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

15

Adams County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

16

Appomattox County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAppomat...

17

Amite County, Mississippi ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAmiteC...

18

Amador County, California ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAmador...

19

Allegany County, Maryland ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAllegan...

20

Alleghany County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAllegha...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Arkansas County, Arkansas ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleArkansa...

22

Antelope County, Nebraska ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAntelop...

23

Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAcadia...

24

Adams County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

25

Adams County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

26

Allen Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAllenP...

27

Angelina County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAngelin...

28

Baldwin County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleBaldwin...

29

Anderson County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAnderso...

30

Atoka County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAtokaC...

31

Autauga County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAutauga...

32

Audubon County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAudubon...

33

Adair County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdairC...

34

Barrow County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleBarrow...

35

Climate Zone 3B | Open Energy Information  

Open Energy Info (EERE)

Climate Zone 3B Climate Zone 3B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 3 and Climate Zone Subtype B. Climate Zone 3B is defined as Dry with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 . The following places are categorized as class 3B climate zones: Andrews County, Texas Baylor County, Texas Borden County, Texas Brewster County, Texas Butte County, California Callahan County, Texas Chaves County, New Mexico Childress County, Texas Clark County, Nevada Cochise County, Arizona Coke County, Texas Coleman County, Texas Collingsworth County, Texas Colusa County, California Concho County, Texas Contra Costa County, California Cottle County, Texas Crane County, Texas Crockett County, Texas

36

Climate Zone 5B | Open Energy Information  

Open Energy Info (EERE)

Climate Zone 5B Climate Zone 5B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 5 and Climate Zone Subtype B. Climate Zone 5B is defined as Dry with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 . The following places are categorized as class 5B climate zones: Ada County, Idaho Adams County, Colorado Adams County, Washington Apache County, Arizona Arapahoe County, Colorado Asotin County, Washington Baker County, Oregon Beaver County, Utah Benewah County, Idaho Bent County, Colorado Benton County, Washington Boulder County, Colorado Broomfield County, Colorado Canyon County, Idaho Carson City County, Nevada Cassia County, Idaho Catron County, New Mexico Chelan County, Washington Cheyenne County, Colorado

37

Climate Zone 2A | Open Energy Information  

Open Energy Info (EERE)

Climate Zone 2A Climate Zone 2A Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 2 and Climate Zone Subtype A. Climate Zone 2A is defined as Hot - Humid with IP Units 6300 < CDD50ºF ≤ 9000 and SI Units 3500 < CDD10ºC ≤ 5000 . The following places are categorized as class 2A climate zones: Acadia Parish, Louisiana Alachua County, Florida Allen Parish, Louisiana Anderson County, Texas Angelina County, Texas Appling County, Georgia Aransas County, Texas Ascension Parish, Louisiana Assumption Parish, Louisiana Atascosa County, Texas Atkinson County, Georgia Austin County, Texas Avoyelles Parish, Louisiana Bacon County, Georgia Baker County, Florida Baker County, Georgia Baldwin County, Alabama Bastrop County, Texas

38

Climate Zone 7B | Open Energy Information  

Open Energy Info (EERE)

B B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 7 and Climate Zone Subtype B. Climate Zone 7A is defined as Very Cold with IP Units 9000 < HDD65ºF ≤ 12600 and SI Units 5000 < HDD18ºC ≤ 7000 . The following places are categorized as class 7B climate zones: Clear Creek County, Colorado Grand County, Colorado Gunnison County, Colorado Hinsdale County, Colorado Jackson County, Colorado Lake County, Colorado Lincoln County, Wyoming Mineral County, Colorado Park County, Colorado Pitkin County, Colorado Rio Grande County, Colorado Routt County, Colorado San Juan County, Colorado Sublette County, Wyoming Summit County, Colorado Teton County, Wyoming Retrieved from "http://en.openei.org/w/index.php?title=Climate_Zone_7B&oldid=2161

39

Climate Zone 6B | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Climate Zone 6B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 6 and Climate Zone Subtype B. Climate Zone 6B is defined as Dry with IP Units 7200 < HDD65ºF ≤ 9000 and SI Units 4000 < HDD18ºC ≤ 5000 . The following places are categorized as class 6B climate zones: Adams County, Idaho Alamosa County, Colorado Albany County, Wyoming Alpine County, California Archuleta County, Colorado Bannock County, Idaho Bear Lake County, Idaho Beaverhead County, Montana Big Horn County, Montana Big Horn County, Wyoming

40

Climate Zone 4C | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Climate Zone 4C Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 4 and Climate Zone Subtype C. Climate Zone 4C is defined as Mixed - Marine with IP Units 3600 < HDD65ºF ≤ 5400 and SI Units 2000 < HDD18ºC ≤ 3000 . The following places are categorized as class 4C climate zones: Benton County, Oregon Clackamas County, Oregon Clallam County, Washington Clark County, Washington Clatsop County, Oregon Columbia County, Oregon Coos County, Oregon Cowlitz County, Washington Curry County, Oregon Douglas County, Oregon

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Climate Zone 5A | Open Energy Information  

Open Energy Info (EERE)

Zone 5A Zone 5A Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 5 and Climate Zone Subtype A. Climate Zone 5A is defined as Cool- Humid with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 . The following places are categorized as class 5A climate zones: Adair County, Iowa Adair County, Missouri Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Nebraska Adams County, Pennsylvania Albany County, New York Allegan County, Michigan Alleghany County, North Carolina Allegheny County, Pennsylvania Allen County, Indiana Allen County, Ohio Andrew County, Missouri Antelope County, Nebraska Appanoose County, Iowa Armstrong County, Pennsylvania Arthur County, Nebraska

42

Climate Zone 2B | Open Energy Information  

Open Energy Info (EERE)

B B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 2 and Climate Zone Subtype B. Climate Zone 2B is defined as Dry with IP Units 6300 < CDD50ºF ≤ 9000 and SI Units 3500 < CDD10ºC ≤ 5000 . The following places are categorized as class 2B climate zones: Bandera County, Texas Dimmit County, Texas Edwards County, Texas Frio County, Texas Imperial County, California Kinney County, Texas La Paz County, Arizona La Salle County, Texas Maricopa County, Arizona Maverick County, Texas Medina County, Texas Pima County, Arizona Pinal County, Arizona Real County, Texas Uvalde County, Texas Val Verde County, Texas Webb County, Texas Yuma County, Arizona Zapata County, Texas Zavala County, Texas Retrieved from

43

Climate Zone 4A | Open Energy Information  

Open Energy Info (EERE)

A A Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 4 and Climate Zone Subtype A. Climate Zone 4A is defined as Mixed - Humid with IP Units CDD50ºF ≤ 4500 AND 3600 < HDD65ºF ≤ 5400 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 3000 . The following places are categorized as class 4A climate zones: Accomack County, Virginia Adair County, Kentucky Adams County, Ohio Alamance County, North Carolina Albemarle County, Virginia Alexander County, Illinois Alexander County, North Carolina Alexandria County, Virginia Allegany County, Maryland Alleghany County, Virginia Allen County, Kansas Allen County, Kentucky Amelia County, Virginia Amherst County, Virginia Anderson County, Kansas Anderson County, Kentucky

44

Climate Zone 4B | Open Energy Information  

Open Energy Info (EERE)

B B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 4 and Climate Zone Subtype B. Climate Zone 4B is defined as Dry with IP Units CDD50ºF ≤ 4500 AND 3600 < HDD65ºF ≤ 5400 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 3000 . The following places are categorized as class 4B climate zones: Amador County, California Armstrong County, Texas Baca County, Colorado Bailey County, Texas Beaver County, Oklahoma Bernalillo County, New Mexico Briscoe County, Texas Calaveras County, California Carson County, Texas Castro County, Texas Cibola County, New Mexico Cimarron County, Oklahoma Cochran County, Texas Curry County, New Mexico Dallam County, Texas De Baca County, New Mexico Deaf Smith County, Texas

45

Climate Zone 6A | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 6 and Climate Zone Subtype A. Climate Zone 6A is defined as Cold - Humid with IP Units 7200 < HDD65ºF ≤ 9000 and SI Units 4000 < HDD18ºC ≤ 5000 . The following places are categorized as class 6A climate zones: Adams County, North Dakota Adams County, Wisconsin Addison County, Vermont Alcona County, Michigan Alger County, Michigan Allamakee County, Iowa Allegany County, New York Alpena County, Michigan Androscoggin County, Maine Anoka County, Minnesota Antrim County, Michigan Arenac County, Michigan Aurora County, South Dakota Barron County, Wisconsin Beadle County, South Dakota Belknap County, New Hampshire Bennington County, Vermont

46

Climate Zone 3C | Open Energy Information  

Open Energy Info (EERE)

C C Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 3 and Climate Zone Subtype C. Climate Zone 3C is defined as Warm - Marine with IP Units CDD50ºF ≤ 4500 AND HDD65ºF ≤ 3600 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 2000 . The following places are categorized as class 3C climate zones: Alameda County, California Marin County, California Mendocino County, California Monterey County, California Napa County, California San Benito County, California San Francisco County, California San Luis Obispo County, California San Mateo County, California Santa Barbara County, California Santa Clara County, California Santa Cruz County, California Sonoma County, California Ventura County, California

47

Climate Zone 3A | Open Energy Information  

Open Energy Info (EERE)

A A Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 3 and Climate Zone Subtype A. Climate Zone 3A is defined as Warm - Humid with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 . The following places are categorized as class 3A climate zones: Abbeville County, South Carolina Adair County, Oklahoma Adams County, Mississippi Aiken County, South Carolina Alcorn County, Mississippi Alfalfa County, Oklahoma Allendale County, South Carolina Amite County, Mississippi Anderson County, South Carolina Anson County, North Carolina Archer County, Texas Arkansas County, Arkansas Ashley County, Arkansas Atoka County, Oklahoma Attala County, Mississippi Autauga County, Alabama Baldwin County, Georgia

48

Building Technologies Office: Climate Zones  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Zones to Climate Zones to someone by E-mail Share Building Technologies Office: Climate Zones on Facebook Tweet about Building Technologies Office: Climate Zones on Twitter Bookmark Building Technologies Office: Climate Zones on Google Bookmark Building Technologies Office: Climate Zones on Delicious Rank Building Technologies Office: Climate Zones on Digg Find More places to share Building Technologies Office: Climate Zones on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

49

Climate Zones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Climate Zones Residential Buildings » Building America » Climate Zones Climate Zones Building America determines building practices based on climate zones to achieve the most energy savings in a home. This page offers some general guidelines on the definitions of the various climate regions based on heating degree-days, average temperatures, and precipitation. You can also view the Guide to Determining Climate Regions by County. Hot-Humid A hot-humid climate is generally defined as a region that receives more than 20 in. (50 cm) of annual precipitation and where one or both of the following occur: A 67°F (19.5°C) or higher wet bulb temperature for 3,000 or more hours during the warmest 6 consecutive months of the year; or A 73°F (23°C) or higher wet bulb temperature for 1,500 or more

50

Benton County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

51

Benton County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

52

Benton County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

53

Allegan County, Michigan ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Allegan County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allegan County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

54

Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

55

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anchorage Borough, Alaska ASHRAE Standard ASHRAE 169-2006 Climate Zone...

56

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arapahoe County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone...

57

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

58

Augusta County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Augusta County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Augusta County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

59

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

60

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Audrain County, Missouri ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Audrain County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Audrain County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

62

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

63

Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

64

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ballard County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

65

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashland County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

66

Accomack County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Accomack County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Accomack County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

67

Asotin County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Asotin County, Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Asotin County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone...

68

Property:ASHRAE 169 Climate Zone Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Climate Zone Number" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + Climate Zone Number 2 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 +

69

U.S. Climate Zones Map for Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Past Climate Zones U. S. Climate Zones for 1979-1999 CBECS: climate zone map Return to Climate Zones for 2003 CBECS Return to CBECS Home Page Note:Map updated with corrections,...

70

U.S. Climate Zones Map for Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Climate Zone U. S. Climate Zones for 2003 CBECS: climate zones map Note:Map updated with corrections, February 2012 Further Explanation on How Climate Zones are Defined...

71

Property:Buildings/ModelClimateZone | Open Energy Information  

Open Energy Info (EERE)

ModelClimateZone ModelClimateZone Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Model. The allowed values for this property are: Climate Zone 1A Climate Zone 1B Climate Zone 2A Climate Zone 2B Climate Zone 3A Climate Zone 3B Climate Zone 3C Climate Zone 4A Climate Zone 4B Climate Zone 4C Climate Zone 5A Climate Zone 5B Climate Zone 5C Climate Zone 6A Climate Zone 6B Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Pages using the property "Buildings/ModelClimateZone" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + Climate Zone 5A + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Climate Zone 5A + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + Climate Zone 5A +

72

Climate Zone Number 1 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 1 Climate Zone Number 1 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50ºF and SI Units 5000 < CDD10ºC Dry(1B) with IP Units 9000 < CDD50ºF and SI Units 5000 < CDD10ºC . The following places are categorized as class 1 climate zones: Broward County, Florida Hawaii County, Hawaii Honolulu County, Hawaii Kalawao County, Hawaii Kauai County, Hawaii Maui County, Hawaii Miami-Dade County, Florida Monroe County, Florida Retrieved from "http://en.openei.org/w/index.php?title=Climate_Zone_Number_1&oldid=21604" Category: ASHRAE Climate Zones What links here Related changes Special pages Printable version Permanent link Browse properties

73

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Androscoggin County, Maine ASHRAE Standard ASHRAE 169-2006 Climate...

74

Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bennington County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bennington County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate...

75

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore County, Maryland ASHRAE Standard ASHRAE 169-2006 Climate...

76

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Albemarle County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

77

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berks County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

78

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bayfield County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate...

79

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Archuleta County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate...

80

Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beauregard Parish, Louisiana ASHRAE Standard ASHRAE 169-2006 Climate...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Avoyelles Parish, Louisiana ASHRAE Standard ASHRAE 169-2006 Climate...

82

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beltrami County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate...

83

Arlington County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arlington County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arlington County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

84

Climate Zone Number 8 | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Climate Zone Number 8 Jump to: navigation, search A type of climate defined in the ASHRAE...

85

Climate Zone 1A | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Climate Zone 1A Jump to: navigation, search A type of climate defined in the ASHRAE...

86

Details of U.S. Climate Zones:  

U.S. Energy Information Administration (EIA) Indexed Site

Details of U.S. Climate Zones Details of U.S. Climate Zones Details of U.S. Climate Zones: The CBECS climate zones are groups of climate divisions, as defined by the National Oceanic and Atmospheric Administration (NOAA), which are regions within a state that are as climatically homogeneous as possible. Each NOAA climate division is placed into one of five CBECS climate zones based on its 30-year average heating degree-days (HDD) and cooling degree-days (CDD) for the period 1971 through 2000. (These climate zones have been updated for the 2003 CBECS. All previous CBECS used averages for the 45-year period from 1931 through 1975.) A HDD is a measure of how cold a location was over a period of time, relative to a base temperature (in CBECS, 65 degrees Fahrenheit). The heating degree-day is the difference between that day's average temperature and 65 degrees if the daily average is less than 65; it is zero if the daily average temperature is greater than or equal to 65. For example, if the average temperature for a given day is 40 degrees, then the heating degree-days for that single day equal 25. Heating degree-days for a year are the sum of the daily heating degree-days that year.

87

Category:County Climate Zones | Open Energy Information  

Open Energy Info (EERE)

County Climate Zones County Climate Zones Jump to: navigation, search This category contains county climate zone information in the United States of America. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "County Climate Zones" The following 200 pages are in this category, out of 3,141 total. (previous 200) (next 200) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone Accomack County, Virginia ASHRAE 169-2006 Climate Zone Ada County, Idaho ASHRAE 169-2006 Climate Zone Adair County, Iowa ASHRAE 169-2006 Climate Zone Adair County, Kentucky ASHRAE 169-2006 Climate Zone Adair County, Missouri ASHRAE 169-2006 Climate Zone Adair County, Oklahoma ASHRAE 169-2006 Climate Zone

88

Climate Zone Number 7 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Number 7 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 7 is defined as Very Cold with IP Units 9000 < HDD65ºF ≤ 12600 and SI Units 5000 < HDD18ºC ≤ 7000 . The following places are categorized as class 7 climate zones: Aitkin County, Minnesota Aleutians East Borough, Alaska Aleutians West Census Area, Alaska Anchorage Borough, Alaska Aroostook County, Maine Ashland County, Wisconsin Baraga County, Michigan Barnes County, North Dakota Bayfield County, Wisconsin Becker County, Minnesota Beltrami County, Minnesota Benson County, North Dakota Bottineau County, North Dakota Bristol Bay Borough, Alaska Burke County, North Dakota Burnett County, Wisconsin Carlton County, Minnesota Cass County, Minnesota

89

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, South Carolina ASHRAE Standard ASHRAE 169-2006...

90

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Abbeville County, South Carolina ASHRAE Standard ASHRAE 169-2006...

91

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnwell County, South Carolina ASHRAE Standard ASHRAE 169-2006...

92

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkshire County, Massachusetts ASHRAE Standard ASHRAE 169-2006...

93

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aleutians East Borough, Alaska ASHRAE Standard ASHRAE 169-2006...

94

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

95

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

96

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allendale County, South Carolina ASHRAE Standard ASHRAE 169-2006...

97

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore City County, Maryland ASHRAE Standard ASHRAE 169-2006...

98

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, South Carolina ASHRAE Standard ASHRAE 169-2006...

99

Alameda County, California ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County,...

100

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford City County, Virginia ASHRAE Standard ASHRAE 169-2006...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

History Facebook icon Twitter icon Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaufort County, North...

102

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

103

Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aitkin County, Minnesota...

104

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, West Virginia ASHRAE Standard ASHRAE 169-2006...

105

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belknap County, New Hampshire ASHRAE Standard ASHRAE 169-2006...

106

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bertie County, North Carolina ASHRAE Standard ASHRAE 169-2006...

107

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bamberg County, South Carolina ASHRAE Standard ASHRAE 169-2006...

108

Reference Buildings by Climate Zone and Representative City:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas Reference Buildings by Building Type: Small Hotel Reference Buildings by Climate Zone...

109

Adams County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

110

Climate Zone Number 5 | Open Energy Information  

Open Energy Info (EERE)

5 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 Dry(5B) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 Marine(5C) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 . The following places are categorized as class 5 climate zones: Ada County, Idaho Adair County, Iowa Adair County, Missouri Adams County, Colorado Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Nebraska Adams County, Pennsylvania Adams County, Washington Albany County, New York Allegan County, Michigan Alleghany County, North Carolina

111

Climate Zone Number 3 | Open Energy Information  

Open Energy Info (EERE)

Number 3 Number 3 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 3 is defined as Warm - Humid(3A) with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 Dry(3B) with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 Warm - Marine(3C) with IP Units CDD50ºF ≤ 4500 AND HDD65ºF ≤ 3600 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 2000 . The following places are categorized as class 3 climate zones: Abbeville County, South Carolina Adair County, Oklahoma Adams County, Mississippi Aiken County, South Carolina Alameda County, California Alcorn County, Mississippi Alfalfa County, Oklahoma Allendale County, South Carolina Amite County, Mississippi Anderson County, South Carolina

112

Baraga County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baraga County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baraga County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

113

Berrien County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Berrien County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berrien County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

114

Barbour County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barbour County, Alabama ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, Alabama ASHRAE Standard ASHRAE 169-2006 Climate Zone...

115

Banner County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Banner County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Banner County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone...

116

Amelia County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Amelia County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Amelia County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

117

Andrew County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Andrew County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Andrew County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

118

Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Aroostook County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aroostook County, Maine ASHRAE Standard ASHRAE 169-2006 Climate Zone...

119

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baldwin County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

120

Alpena County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alpena County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alpena County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alcona County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alcona County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alcona County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

122

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network (OSTI)

in a California Hot Climate Zone. California Energyin a California Hot Climate Zone Peng Xu & Rongxin Yin,conditions (California Climate Zones 24). However, this

Xu, Peng

2010-01-01T23:59:59.000Z

123

Armstrong County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Armstrong County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Armstrong County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

124

Atchison County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Atchison County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atchison County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

125

Addison County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Addison County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Addison County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate Zone...

126

Antrim County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Antrim County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Antrim County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

127

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anoka County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

128

Alachua County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alachua County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alachua County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone...

129

Barton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barton County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barton County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

130

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaver County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

131

Benton County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Arkansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Arkansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

132

Allen County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Indiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allen County, Indiana ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

133

Benton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

134

Adams County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

135

Adair County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adair County, Iowa ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 5...

136

Adair County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adair County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

137

Adams County, Illinois ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Illinois ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Illinois ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

138

Allen County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allen County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

139

Benton County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Iowa ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number...

140

Ada County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Idaho ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ada County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 5...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Climate Zone Map - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Climate Zone Map Note: Cooling degree-days (CDD) and heating degree-days (HDD) are explained in the glossary.

142

Climate Zone Number 6 | Open Energy Information  

Open Energy Info (EERE)

6 is defined as 6 is defined as Cold - Humid(6A) with IP Units 7200 < HDD65ºF ≤ 9000 and SI Units 4000 < HDD18ºC ≤ 5000 Dry(6B) with IP Units 7200 < HDD65ºF ≤ 9000 and SI Units 4000 < HDD18ºC ≤ 5000 . The following places are categorized as class 6 climate zones: Adams County, Idaho Adams County, North Dakota Adams County, Wisconsin Addison County, Vermont Alamosa County, Colorado Albany County, Wyoming Alcona County, Michigan Alger County, Michigan Allamakee County, Iowa Allegany County, New York Alpena County, Michigan Alpine County, California Androscoggin County, Maine Anoka County, Minnesota Antrim County, Michigan Archuleta County, Colorado Arenac County, Michigan Aurora County, South Dakota Bannock County, Idaho Barron County, Wisconsin Beadle County, South Dakota

143

Climate Zone Number 2 | Open Energy Information  

Open Energy Info (EERE)

2 is defined as 2 is defined as Hot - Humid(2A) with IP Units 6300 < CDD50ºF ≤ 9000 and SI Units 3500 < CDD10ºC ≤ 5000 Dry(2B) with IP Units 6300 < CDD50ºF ≤ 9000 and SI Units 3500 < CDD10ºC ≤ 5000 . The following places are categorized as class 2 climate zones: Acadia Parish, Louisiana Alachua County, Florida Allen Parish, Louisiana Anderson County, Texas Angelina County, Texas Appling County, Georgia Aransas County, Texas Ascension Parish, Louisiana Assumption Parish, Louisiana Atascosa County, Texas Atkinson County, Georgia Austin County, Texas Avoyelles Parish, Louisiana Bacon County, Georgia Baker County, Florida Baker County, Georgia Baldwin County, Alabama Bandera County, Texas Bastrop County, Texas Bay County, Florida Beauregard Parish, Louisiana Bee County, Texas

144

Reference Buildings by Climate Zone and Representative City: 8 Fairbanks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Zone and Representative City: 8 Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_8a_usa_ak_fairbanks_post1980_v1.3_5.0.zip refbldg_8a_usa_ak_fairbanks_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana Reference Buildings by Building Type: Secondary school

145

Bay County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bay County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bay County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

146

Barton County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barton County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barton County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

147

Bergen County, New Jersey ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bergen County, New Jersey ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bergen County, New Jersey ASHRAE Standard ASHRAE 169-2006 Climate Zone...

148

Adams County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Adams County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

149

Baylor County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baylor County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baylor County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

150

Appanoose County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Appanoose County, Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Appanoose County, Iowa ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

151

Aransas County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Aransas County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aransas County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

152

Banks County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Banks County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Banks County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

153

Athens County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Athens County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Athens County, Ohio ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

154

Bacon County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bacon County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bacon County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

155

Austin County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Austin County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Austin County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

156

Atascosa County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Atascosa County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atascosa County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

157

Beaver County, Utah ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Beaver County, Utah ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaver County, Utah ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

158

Bastrop County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bastrop County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bastrop County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

159

Alger County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alger County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alger County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

160

Baker County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baker County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baker County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Bath County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bath County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bath County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

162

Bell County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bell County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bell County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

163

Baker County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baker County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baker County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

164

Albany County, New York ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Albany County, New York ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Albany County, New York ASHRAE Standard ASHRAE 169-2006 Climate Zone...

165

Barry County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barry County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barry County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

166

Climate Zone Number 4 | Open Energy Information  

Open Energy Info (EERE)

4 is defined as 4 is defined as Mixed - Humid(4A) with IP Units CDD50ºF ≤ 4500 AND 3600 < HDD65ºF ≤ 5400 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 3000 Dry(4B) with IP Units CDD50ºF ≤ 4500 AND 3600 < HDD65ºF ≤ 5400 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 3000 Mixed - Marine(4C) with IP Units 3600 < HDD65ºF ≤ 5400 and SI Units 2000 < HDD18ºC ≤ 3000 . The following places are categorized as class 4 climate zones: Accomack County, Virginia Adair County, Kentucky Adams County, Ohio Alamance County, North Carolina Albemarle County, Virginia Alexander County, Illinois Alexander County, North Carolina Alexandria County, Virginia Allegany County, Maryland Alleghany County, Virginia Allen County, Kansas Allen County, Kentucky Amador County, California

167

Arthur County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Arthur County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arthur County, Nebraska...

168

Bee County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Bee County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bee County, Texas...

169

Table HC3-1a. Space Heating by Climate Zone, Million U.S ...  

U.S. Energy Information Administration (EIA)

Table HC3-1a. Space Heating by Climate Zone, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Climate Zone1 RSE

170

Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aleutians West Census Area, Alaska ASHRAE Standard ASHRAE...

171

Ashley County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Ashley County, Arkansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashley County, Arkansas...

172

Bates County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Bates County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bates County, Missouri...

173

Adams County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Adams County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Ohio ASHRAE...

174

Belmont County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Belmont County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belmont County, Ohio...

175

Barnes County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Barnes County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnes County, North...

176

Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North...

177

Table HC1-1a. Housing Unit Characteristics by Climate Zone ...  

U.S. Energy Information Administration (EIA)

Table HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Climate Zone1

178

Bennett County, South Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Page Edit History Share this page on Facebook icon Twitter icon Bennett County, South Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

179

Reference Buildings by Climate Zone and Representative City: 7 Duluth,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_7a_usa_mn_duluth_pre1980_v1.3_5.0.zip refbldg_7a_usa_mn_duluth_pre1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3B Los Angeles, California Reference Buildings by Climate Zone and Representative City: 3C San Francisco, California Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois

180

Reference Buildings by Climate Zone and Representative City: 6A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_6a_usa_mn_minneapolis_post1980_v1.3_5.0.zip refbldg_6a_usa_mn_minneapolis_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5B Boulder,

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Property:ASHRAE 169 Climate Zone | Open Energy Information  

Open Energy Info (EERE)

Property Edit with form History Facebook icon Twitter icon Property:ASHRAE 169 Climate Zone Jump to: navigation, search This is a property of type Page. Retrieved from "http:...

182

Reference Buildings by Climate Zone and Representative City:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Houston, Texas Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas In addition to the ZIP file for each building type, you can directly view the...

183

Benson County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Benson County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benson County, North Dakota ASHRAE Standard ASHRAE 169-2006 Climate...

184

Aiken County, South Carolina ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Aiken County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aiken County, South Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

185

Atlantic County, New Jersey ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Atlantic County, New Jersey ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atlantic County, New Jersey ASHRAE Standard ASHRAE 169-2006 Climate...

186

Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashe County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashe County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

187

Local Climate Zones for Urban Temperature Studies  

Science Conference Proceedings (OSTI)

The effect of urban development on local thermal climate is widely documented in scientific literature. Observations of urbanrural air temperature differencesor urban heat islands (UHIs)have been reported for cities and regions worldwide, often with ...

I. D. Stewart; T. R. Oke

2012-12-01T23:59:59.000Z

188

Observed and Projected Future Shifts of Climatic Zones in Europe and Their Use to Visualize Climate Change Information  

Science Conference Proceedings (OSTI)

A Web site questionnaire survey in Finland suggested that maps illustrating projected shifts of Kppen climatic zones are an effective visualization tool for disseminating climate change information. The climate classification is based on ...

Kirsti Jylh; Heikki Tuomenvirta; Kimmo Ruosteenoja; Hanna Niemi-Hugaerts; Krista Keisu; Juha A. Karhu

2010-04-01T23:59:59.000Z

189

Beadle County, South Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Data Page Edit History Share this page on Facebook icon Twitter icon Beadle County, South Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

190

Aurora County, South Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Data Page Edit History Share this page on Facebook icon Twitter icon Aurora County, South Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

191

Archive Reference Buildings by Climate Zone: 5B Boulder, Colorado |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Boulder, Colorado B Boulder, Colorado Archive Reference Buildings by Climate Zone: 5B Boulder, Colorado Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-5b_co_boulder.zip benchmark-v1.1_3.1-5b_usa_co_boulder.zip benchmark-new-v1.2_4.0-5b_usa_co_boulder.zip More Documents & Publications

192

Archive Reference Buildings by Climate Zone: 6B Helena, Montana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Helena, Montana B Helena, Montana Archive Reference Buildings by Climate Zone: 6B Helena, Montana Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-6b_mt_helena.zip benchmark-v1.1_3.1-6b_usa_mt_helena.zip benchmark-new-v1.2_4.0-6b_usa_mt_helena.zip More Documents & Publications

193

Archive Reference Buildings by Climate Zone: 5A Chicago, Illinois |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Chicago, Illinois A Chicago, Illinois Archive Reference Buildings by Climate Zone: 5A Chicago, Illinois Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-5a_il_chicago.zip benchmark-v1.1_3.1-5a_usa_il_chicago-ohare.zip benchmark-new-v1.2_4.0-5a_usa_il_chicago-ohare.zip More Documents & Publications

194

Archive Reference Buildings by Climate Zone: 6A Minneapolis, Minnesota |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Minneapolis, A Minneapolis, Minnesota Archive Reference Buildings by Climate Zone: 6A Minneapolis, Minnesota Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-6a_mn_minneapolis.zip benchmark-v1.1_3.1-6a_usa_mn_minneapolis.zip benchmark-new-v1.2_4.0-6a_usa_mn_minneapolis.zip

195

Archive Reference Buildings by Climate Zone: 4A Baltimore, Maryland |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Baltimore, Maryland A Baltimore, Maryland Archive Reference Buildings by Climate Zone: 4A Baltimore, Maryland Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-4a_md_baltimore.zip benchmark-v1.1_3.1-4a_usa_md_baltimore.zip benchmark-new-v1.2_4.0-4a_usa_md_baltimore.zip More Documents & Publications

196

Archive Reference Buildings by Climate Zone: 7 Duluth, Minnesota |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Duluth, Minnesota 7 Duluth, Minnesota Archive Reference Buildings by Climate Zone: 7 Duluth, Minnesota Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-7a_mn_duluth.zip benchmark-v1.1_3.1-7a_usa_mn_duluth.zip benchmark-new-v1.2_4.0-7a_usa_mn_duluth.zip More Documents & Publications

197

Archive Reference Buildings by Climate Zone: 4C Seattle, Washington |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C Seattle, Washington C Seattle, Washington Archive Reference Buildings by Climate Zone: 4C Seattle, Washington Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-4c_wa_seattle.zip benchmark-v1.1_3.1-4c_usa_wa_seattle.zip benchmark-new-v1.2_4.0-4c_usa_wa_seattle.zip More Documents & Publications

198

Archive Reference Buildings by Climate Zone: 2B Phoenix, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Phoenix, Arizona B Phoenix, Arizona Archive Reference Buildings by Climate Zone: 2B Phoenix, Arizona Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-2b_az_phoenix.zip benchmark-v1.1_3.1-2b_usa_az_phoenix.zip benchmark-new-v1.2_4.0-2b_usa_az_phoenix.zip More Documents & Publications

199

Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Fairbanks, Alaska 8 Fairbanks, Alaska Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-8a_ak_fairbanks.zip benchmark-v1.1_3.1-8a_usa_ak_fairbanks.zip benchmark-new-v1.2_4.0-8a_usa_ak_fairbanks.zip More Documents & Publications

200

Reference Buildings by Climate Zone and Representative City: 4C Seattle,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reference Buildings by Climate Zone and Representative City: 4C Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_4c_usa_wa_seattle_new2004_v1.3_5.0.zip refbldg_4c_usa_wa_seattle_new2004_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 2B Phoenix,

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reference Buildings by Climate Zone and Representative City: 5A Chicago,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reference Buildings by Climate Zone and Representative City: 5A Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_5a_usa_il_chicago-ohare_post1980_v1.3_5.0.zip refbldg_5a_usa_il_chicago-ohare_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 5B Boulder, Colorado Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6B Helena,

202

Table HC9.4 Space Heating Characteristics by Climate Zone, 2005  

Annual Energy Outlook 2012 (EIA)

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

203

"Table HC9.12 Home Electronics Usage Indicators by Climate Zone...  

U.S. Energy Information Administration (EIA) Indexed Site

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

204

"Table HC9.5 Space Heating Usage Indicators by Climate Zone...  

U.S. Energy Information Administration (EIA) Indexed Site

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

205

"Table HC9.12 Home Electronics Usage Indicators by Climate Zone, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Climate Zone, 2005" 2 Home Electronics Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Electronics Usage Indicators" "Total",111.1,10.9,26.1,27.3,24,22.8 "Personal Computers" "Do Not Use a Personal Computer",35.5,3.2,8.3,8.9,7.7,7.5 "Use a Personal Computer",75.6,7.8,17.8,18.4,16.3,15.3 "Most-Used Personal Computer" "Type of PC" "Desk-top Model",58.6,6.2,14.3,14.2,12.1,11.9

206

The Effect of Potential Future Climate Change on the Marine Methane Hydrate Stability Zone  

Science Conference Proceedings (OSTI)

The marine gas hydrate stability zone (GHSZ) is sensitive to temperature changes at the seafloor, which likely affected the GHSZ in the past and may do so in the future in response to anthropogenic greenhouse gas emissions. A series of climate ...

Jeremy G. Fyke; Andrew J. Weaver

2006-11-01T23:59:59.000Z

207

Visualizing Life Zone Boundary Sensitivities Across Climate Models and Temporal Spans  

SciTech Connect

Life zones are a convenient and quantifiable method for delineating areas with similar plant and animal communities based on bioclimatic conditions. Such ecoregionalization techniques have proved useful for defining habitats and for studying how these habitats may shift due to environmental change. The ecological impacts of climate change are of particular interest. Here we show that visualizations of the geographic projection of life zones may be applied to the investigation of potential ecological impacts of climate change using the results of global climate model simulations. Using a multi-factor classification scheme, we show how life zones change over time based on quantitative model results into the next century. Using two straightforward metrics, we identify regions of high sensitivity to climate changes from two global climate simulations under two different greenhouse gas emissions scenarios. Finally, we identify how preferred human habitats may shift under these scenarios. We apply visualization methods developed for the purpose of displaying multivariate relationships within data, especially for situations that involve a large number of concurrent relationships. Our method is based on the concept of multivariate classification, and is implemented directly in VisIt, a production quality visualization package.

Sisneros, Roberto R [ORNL; Huang, Jian [University of Tennessee, Knoxville (UTK); Ostrouchov, George [ORNL; Hoffman, Forrest M [ORNL

2011-01-01T23:59:59.000Z

208

Table C10A. Consumption and Gross Energy Intensity by Climate Zone ...  

U.S. Energy Information Administration (EIA)

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings ..... 1,086 1,929 1,243 1,386 879 11,529 ...

209

Pacific Northwest residential energy survey. Volume 12. Climate Zone 4 cross-tabulations  

Science Conference Proceedings (OSTI)

Responses for Climate Zone 4 to fifty questions asked during the survey (plus four variables computed from responses to several other questions) are presented. Climate Zone 4 is defined according to the sum of heating and cooling degree days, and amounts to over 8000. A map outlines the four zones. The fifty questions were cross-tabulated against responses to nine questions which represent key explanatory characteristics of residential energy use. The nine key questions are: means of payment for housing; type of dwelling; year dwelling built; total square-footage of living space; type of fuel for main heating system; combined 1978 income; unit cost of electricity; annual electricity consumption; and annual natural gas consumption. The fifty questions and four computed variables which were cross-tabulated against the above fall into six categories: dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and dwelling characteristics; and insulation. The survey was conducted throughout the states of Washington, Oregon, Idaho, and Montana, with a total of 4030 households sampled; 992 househould were sampled in Climate Zone 4. Information on 54 tables is explained. (MCW)

Not Available

1980-07-01T23:59:59.000Z

210

Pacific Northwest residential energy survey. Volume 11. Climate Zone 3 cross-tabulations  

Science Conference Proceedings (OSTI)

Responses for Climate Zone 3 to fifty questions asked during the survey (plus four variables computed from responses to several other questions) are presented. Climate Zone 3 is defined according to the sum of heating and cooling degree days, and amounts to 7000 to 7999. A map outlines these four zones. The fifty questions were cross-tabulated against responses to nine questions which represent key explanatory characteristics of residential energy use. The nine key questions are: means of payment for housing; type of dwelling; year dwelling built; total square-footage of living space; type of fuel for main heating system; combined 1978 income; unit cost of electricity; annual electricity consumption; and annual natural gas consumption. The fifty questions and four computed variables which were cross-tabulated against the above fall into six categories: dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and dwelling characteristics; and insulation. The survey was conducted throughout the states of Washington, Oregon, Idaho, and Montana, with a total of 4030 households sampled. 480 households were sampled in Climate Zone 3. Information on 54 tables is explained. (MCW)

Not Available

1980-07-01T23:59:59.000Z

211

Archive Reference Buildings by Climate Zone: 1A Miami, Florida | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1A Miami, Florida 1A Miami, Florida Archive Reference Buildings by Climate Zone: 1A Miami, Florida Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-1a_fl_miami.zip benchmark-v1.1_3.1-1a_usa_fl_miami.zip benchmark-new-v1.2_4.0-1a_usa_fl_miami.zip More Documents & Publications

212

Archive Reference Buildings by Climate Zone: 3B Las Vegas, Nevada |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Las Vegas, Nevada Las Vegas, Nevada Archive Reference Buildings by Climate Zone: 3B Las Vegas, Nevada Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-3b_nv_las_vegas.zip benchmark-v1.1_3.1-3b_usa_nv_las_vegas.zip benchmark-new-v1.2_4.0-3b_usa_nv_las_vegas.zip More Documents & Publications

213

Archive Reference Buildings by Climate Zone: 3C San Francisco, California |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C San Francisco, C San Francisco, California Archive Reference Buildings by Climate Zone: 3C San Francisco, California Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-3c_ca_san_francisco.zip benchmark-v1.1_3.1-3c_usa_ca_san_francisco.zip benchmark-new-v1.2_4.0-3c_usa_ca_san_francisco.zip

214

Archive Reference Buildings by Climate Zone: 4B Albuquerque, New Mexico |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Albuquerque, New B Albuquerque, New Mexico Archive Reference Buildings by Climate Zone: 4B Albuquerque, New Mexico Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-4b_nm_albuquerque.zip benchmark-v1.1_3.1-4b_usa_nm_albuquerque.zip benchmark-new-v1.2_4.0-4b_usa_nm_albuquerque.zip

215

Archive Reference Buildings by Climate Zone: 2A Houston, Texas | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Houston, Texas A Houston, Texas Archive Reference Buildings by Climate Zone: 2A Houston, Texas Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-2a_tx_houston.zip benchmark-v1.1_3.1-2a_usa_tx_houston.zip benchmark-new-v1.2_4.0-2a_usa_tx_houston.zip More Documents & Publications

216

Table HC1-1a. Housing Unit Characteristics by Climate Zone,  

U.S. Energy Information Administration (EIA) Indexed Site

a. Housing Unit Characteristics by Climate Zone, a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.8 1.0 1.1 1.2 1.1 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 8.0 Census Region and Division Northeast ...................................... 20.3 1.9 10.0 8.4 Q Q 6.8 New England .............................. 5.4 1.4 4.0 Q Q Q 18.4 Middle Atlantic ............................ 14.8 0.5 6.0 8.4 Q Q 4.6 Midwest ......................................... 24.5 5.4 14.8 4.3 Q Q 19.0 East North Central ...................... 17.1

217

Pacific Northwest residential energy survey. Volume 9. Climate Zone 1 cross-tabulations  

Science Conference Proceedings (OSTI)

Responses for Climate Zone 1 to fifty questions asked during the survey (plus four variables computed from responses to several other questions) are presented. Climate Zone 1, defined according to the sum of heating and cooling degree days, amounts to less than 6000. The fifty questions were cross-tabulated against responses to nine questions which represent key explanatory characteristics of residential energy use. The nine key questions are: means of payment for housing; type of dwelling; year dwelling built; total square-footage of living space; type of fuel for main heating system; combined 1978 income; unit cost of electricity; annual electricity consumption; and annual natural gas consumption. The fifty questions and four computed variables which were cross-tabulated against the above fall into six categories; dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and dwelling characteristics; and insulation. The survey was conducted throughout the states of Washington, Oregon, Idaho, and Montana, with a total of 4030 households sampled; 1873 households were sampled in Climate Zone 1. Information in 54 tables is explained. (MCW)

Not Available

1980-07-01T23:59:59.000Z

218

Analysis of climatic conditions and preliminary assessment of alternative cooling strategies for houses in California transition climate zones  

SciTech Connect

This is a preliminary scoping study done as part of the {open_quotes}Alternatives to Compressive Cooling in California Transition Climates{close_quotes} project, which has the goal of demonstrating that houses in the transitional areas between the coast and the Central Valley of California do not require air-conditioning if they are properly designed and operated. The first part of this report analyzes the climate conditions within the transitional areas, with emphasis on design rather than seasonal conditions. Transitional climates are found to be milder but more variable than those further inland. The design temperatures under the most stringent design criteria, e.g. 0.1 % annual, are similar to those in the Valley, but significantly lower under more relaxed design criteria, e.g., 2% annual frequency. Transition climates also have large day-night temperature swings, indicating significant potential for night cooling, and wet-bulb depressions in excess of 25 F, indicating good potential for evaporative cooling. The second part of the report is a preliminary assessment using DOE-2 computer simulations of the effectiveness of alternative cooling and control strategies in improving indoor comfort conditions in two conventional Title-24 houses modeled in various transition climate locations. The cooling measures studied include increased insulation, light colors, low-emissivity glazing, window overhangs, and exposed floor slab. The control strategies studied include natural and mechanical ventilation, and direct and two-stage evaporative cooling. The results indicate the cooling strategies all have limited effectiveness, and need to be combined to produce significant improvements in indoor comfort. Natural and forced ventilation provide similar improvements in indoor conditions, but during peak cooling periods, these will still be above the comfort zone. Two-stage evaporative coolers can maintain indoor comfort at all hours, but not so direct evaporative coolers.

Huang, Y.J.; Zhang, H.

1995-07-01T23:59:59.000Z

219

Mixed-mode simulations for climate feasibility  

E-Print Network (OSTI)

across all 16 California climate zones. Quantify the largerspan all 16 official CA climate zones with system sizing andClimate analysis For each climate zone: Quantitative climate

Borgeson, Sam; Brager, Gail; Coffey, Brian; Haves, Phil

2009-01-01T23:59:59.000Z

220

The impact of climate change on vadose zone pore waters and its implication for long-term monitoring  

Science Conference Proceedings (OSTI)

Protecting groundwater is of growing interest as pressure on these resources grows. Recharge of groundwater takes place through the vadose zone, where complex interactions between thermal-hydrological-geochemical processes affect water quality. Monitoring ... Keywords: climate change, massively parallel computers, monitoring, nuclear waste disposal, pore water chemistry, reactive transport, vadose zone

William E. Glassley; John J. Nitao; Charles W. Grant; James W. Johnson; Carl I. Steefel; James R. Kercher

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table HC9.6 Air Conditioning Characteristics by Climate Zone, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

6 Air Conditioning Characteristics by Climate Zone, 2005 6 Air Conditioning Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total......................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Cooling Equipment........................... 17.8 3.2 4.7 3.6 5.5 0.9 Have Cooling Equipment........................................ 93.3 7.7 21.4 23.7 18.5 21.9 Use Cooling Equipment......................................... 91.4 7.6 21.0 23.4 17.9 21.7 Have Equipment But Do Not Use it........................ 1.9 Q 0.4 0.4 0.6 0.3 Air-Conditioning Equipment 2, 3 Central System...................................................... 65.9 4.8 12.3 15.1 14.9 18.7 Without a Heat Pump......................................... 53.5 4.7 11.5 11.6 12.3 13.6 With a Heat Pump..............................................

222

Table HC9.11 Home Electronics Characteristics by Climate Zone, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

11 Home Electronics Characteristics by Climate Zone, 2005 11 Home Electronics Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Personal Computers Do Not Use a Personal Computer ............... 35.5 3.2 8.3 8.9 7.7 7.5 Use a Personal Computer............................. 75.6 7.8 17.8 18.4 16.3 15.3 Number of Desktop PCs 1.............................................................. 50.3 5.1 12.4 11.9 10.5 10.4 2.............................................................. 16.2 1.8 3.4 4.2 3.6 3.2 3 or More................................................. 9.0 0.9 2.0 2.3 2.2 1.7 Number of Laptop PCs 1.............................................................. 22.5 2.1 4.9 5.8 5.1 4.6 2..............................................................

223

Table HC9.9 Home Appliances Characteristics by Climate Zone, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

9 Home Appliances Characteristics by Climate Zone, 2005 9 Home Appliances Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total U.S............................................................ 111.1 10.9 26.1 27.3 24.0 22.8 Cooking Appliances Conventional Ovens Use an Oven............................................... 109.6 10.9 25.7 27.1 23.4 22.4 1.............................................................. 103.3 10.2 24.3 25.3 22.2 21.3 2 or More................................................. 6.2 0.6 1.5 1.8 1.2 1.1 Do Not Use an Oven................................... 1.5 Q 0.3 Q 0.6 0.4 Most-Used Oven Fuel Electric..................................................... 67.9 7.2 14.1 16.7 13.2 16.7 Natural Gas.............................................. 36.4 2.5 10.6 9.6 9.0 4.8 Propane/LPG...........................................

224

Integration of Weather System Variability to Multidecadal Regional Climate Change: The West African SudanSahel Zone, 195198  

Science Conference Proceedings (OSTI)

Since the late 1960s, the West African SudanSahel zone (1018N) has experienced persistent and often severe drought, which is among the most undisputed and largest regional climate changes in the last half-century. Previous documentation of ...

Michael A. Bell; Peter J. Lamb

2006-10-01T23:59:59.000Z

225

Condensation Risk of Mechanically Attached Roof Systems in Cold Climate Zones  

Science Conference Proceedings (OSTI)

A white roof, cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with mechanically attached membrane, have shown to have a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparisons with similar construction with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in Northern U.S. climate zones. A white roof surface reflects more of the incident solar radiation in comparisons with a dark surface, which makes a distinguished difference on the surface temperature of the roof. However, flat roofs with either a light or dark surface and if facing a clear sky, are constantly losing energy to the sky due to the exchange of infrared radiation. This phenomenon exists both during the night and the day. During the day, if the sun shines on the roof surface, the exchange of infrared radiation typically becomes insignificant. During nights and in cold climates, the temperature difference between the roof surface and the sky can deviate up to 20 C (Hagentoft, 2001) which could result in a very cold surface temperature compared to the ambient temperature. Further, a colder surface temperature of the roof increases the energy loss and the risk of condensation in the building materials below the membrane. In conclusion, both light and dark coated roof membranes are cooled by the infrared radiation exchange during the night, though a darker membrane is more heated by the solar radiation during the day, thus decreasing the risk of condensation. The phenomenon of night time cooling from the sky and the lack of solar gains during the day is not likely the exclusive problem concerning the risk of condensation in cool roofs with mechanically attached membranes. Roof systems with thermoplastic membranes are prone to be more effected by interior air intrusion into the roof construction; both due to the wind induced pressure differences and due to the flexibility and elasticity of the membrane (Molleti, Baskaran, Kalinger, & Beaulieu, 2011). Depending on the air permeability of the material underneath the membrane, wind forces increase the risk of fluttering (also referred as billowing) of the thermoplastic membrane. Expectably, the wind induced pressure differences creates a convective air flow into the construction i.e. Page 2 air intrusion. If the conditions are right, moisture from the exchanging air may condensate on surfaces with a temperature below dew-point. The definite path of convective airflows through the building envelope is usually very difficult to determine and therefore simplified models (K nzel, Zirkelbach, & Scfafaczek, 2011) help to estimate an additional moisture loads as a result of the air intrusion. The wind uplifting pressure in combination with wind gusts are important factors for a fluttering roof. Unfortunately, the effect from a fluctuating wind is difficult to estimate as this is a highly dynamic phenomenon and existing standards (ASTM, 2011a) only take into account a steady state approach i.e. there is no guidance or regulations on how to estimate the air intrusion rate. Obviously, a more detailed knowledge on the hygrothermal performance of mechanically attached cool roof system is requested; in consideration to varying surface colors, roof air tightness, climate zones and indoor moisture supply.

Pallin, Simon B [ORNL

2013-01-01T23:59:59.000Z

226

Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate simulation map Climate Global climate change processes and impacts research in EETD is aimed at understanding the factors-and the feedbacks among these factors-driving...

227

Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of a Multifamily Evaluation of a Multifamily Retrofit in Climate Zone 5 Boulder, Colorado PROJECT INFORMATION Project Name: Evaluation of a Low-Rise Multifamily Retrofit in Boulder, CO Location: Boulder, CO Consortium of Advanced Residential Buildings www.carb-swa.com Building Component: Building envelope, lighting, appliances, water conservation Application: Retrofit Years Tested: 2012 Applicable Climate Zone(s): Cold, very cold PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $3,300-$6,100 per unit with total complex cost estimate of ~$150,000 Projected Energy Savings: 27%-41% depending on unit location/orientation Projected Energy Cost Savings: $154-$304 utility savings per year In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent

228

Subtyping in alloy  

E-Print Network (OSTI)

A type system for the Alloy modelling language is described that supports subtypes and allows overloading of relation names. No special syntactic features needed to be added to the language to support the type system; there ...

Torlak, Emina, 1979-

2004-01-01T23:59:59.000Z

229

A New Design Tool for Visualizing the Energy Implications of California's Climates  

E-Print Network (OSTI)

there are 16 different climate zones, as defined in thecharts for Californias Climate Zone 12, that includesexample shows that for Climate Zone 12 the annual record

Milne, M; Liggett, Robin; Alshaali, Rashed

2007-01-01T23:59:59.000Z

230

From the Cover: Rapid shifts in plant distribution with recent climate change  

E-Print Network (OSTI)

represent the range of climate zones within the transectinterval. of elevations, climate zones, plant communities,range of elevations and climate zones within the transect.

Kelly, A. E.; Goulden, M. L.

2008-01-01T23:59:59.000Z

231

Indoor air movement acceptability and thermal comfort in hot-humid climates  

E-Print Network (OSTI)

in Brazil's hot humid climate zone. Building and Environmentin moderate thermal climate zones. Building and EnvironmentBrazil's hot humid climate zone. Building and Environment,

Candido, Christhina Maria

2010-01-01T23:59:59.000Z

232

Delineation of Mesoscale Climate Zones in the Northeastern United States Using a Novel Approach to Cluster Analysis  

Science Conference Proceedings (OSTI)

Climate regions within the northeastern United States are defined using a combination of multivariate statistical techniques. A set of over 100 climatic variables from 641 United States and Canadian Cooperative Observer Network stations form the ...

Arthur T. Degaetano

1996-08-01T23:59:59.000Z

233

Exploring the Effectiveness of LEED Certification in LEED Certified Healthcare Settings in Climate Zone 2 and 3  

E-Print Network (OSTI)

Most LEED (Leadership in Energy and Environmental Design) certified buildings are commercial office buildings and multi-use buildings. As of October 2009, 35,000 projects were registered in the LEED system, "comprising over 4.5 billion square feet of construction space in all 50 states and 91 countries." However, as of April 30, 2009, only 43 healthcare projects had achieved LEED certification. Currently, most studies focus on the economic benefits and energy consumption of LEED certified buildings, rather than human factors. A small gain in productivity can result in a heftier financial gain. Even modest improvements in productivity and absenteeism can substantially outweigh the energy cost. This study surveyed 164 staff in the two healthcare settings for case study, and 146 staff in the six LEED certified healthcare settings for the main study in climate zone 2 and 3. Telephone interviews with the six facility managers were used to verify the survey results and further examine the healthcare facilities? performance and the effectiveness of the LEED strategies from facility managers' perspectives. Independent t-test was used to examine the difference between the LEED and Non-LEED hospitals in one healthcare system and results showed that building performance were rated higher by staff in LEED certified hospital than Non-LEED hospital. MANOVA was conducted to compare the staff's ratings between Silver and Gold certification levels, male and female, and also explore the possibility of interaction effect. Multilevel regression modeling was used to test how the building performance variables affect the overall comfort and productivity. Study results showed that staff in the Gold certified hospital had significant higher ratings in most the performance variables. Gold certified healthcare settings were significant better in rated building overall, overall comfort and controllability than Silver certified healthcare settings. And males felt more comfortable in temperature than females in healthcare facilities. Regarding the overall comfort and productivity, building design, efficiency of the space use, temperature comfort and controllability over building system were significant predictors for staff overall comfort; and lighting comfort, temperature comfort and controllability over building system had significant positive relationship with perceived productivity. LEED certified healthcare settings appear to have a good environment and building performance for occupants. Controllability, lighting, temperature, use of space, building design were important factors in staff comfort and productivity.

Xuan, Xiaodong

2012-08-01T23:59:59.000Z

234

Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)  

SciTech Connect

This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

Cort, Katherine A.; Culp, Thomas D.

2013-09-01T23:59:59.000Z

235

Study of the Dynamics of the Intertropical Convergence Zone with a Symmetric Version of the GLAS Climate Model  

Science Conference Proceedings (OSTI)

The results of some calculations with a zonally symmetric version of the Goddard Laboratory of Atmospheric Sciences (GLAS) climate model are described. The model was first used to study the nature of symmetric circulation in response to various ...

B. N. Goswami; J. Shukla; E. K. Schneider; Y. C. Sud

1984-01-01T23:59:59.000Z

236

Evaluation of the South Pacific Convergence Zone in IPCC AR4 Climate Model Simulations of the Twentieth Century  

Science Conference Proceedings (OSTI)

Understanding how the South Pacific convergence zone (SPCZ) may change in the future requires the use of global coupled atmosphereocean models. It is therefore important to evaluate the ability of such models to realistically simulate the SPCZ. ...

Josephine R. Brown; Scott B. Power; Francois P. Delage; Robert A. Colman; Aurel F. Moise; Bradley F. Murphy

2011-03-01T23:59:59.000Z

237

Essays on the Impact of Climate Change and Building Codes on Energy Consumption and the Impact of Ozone on Crop Yield  

E-Print Network (OSTI)

Commission building climate zones . . . . . . . . . Share ofclimate response functions for CEC climate zones 1 to 8. .response functions for CEC climate zones 9 to 16. Change in

Aroonruengsawat, Anin

2010-01-01T23:59:59.000Z

238

Development of a Regional Climate Model for U.S. Midwest Applications. Part I: Sensitivity to Buffer Zone Treatment  

Science Conference Proceedings (OSTI)

A regional climate model (RCM) is being developed for U.S. Midwest applications on the basis of the newly released Pennsylvania State UniversityNCAR Fifth-Generation Mesoscale Model (MM5), version 3.3. This study determines the optimal RCM ...

Xin-Zhong Liang; Kenneth E. Kunkel; Arthur N. Samel

2001-12-01T23:59:59.000Z

239

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.  

E-Print Network (OSTI)

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S in the U.S. market--to evaluate the cost of saved energy as a function of climate. The performance of HPWHs laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

240

Climate Suitability Tool Description  

Science Conference Proceedings (OSTI)

... The Climate Suitability Tool implements the method outlined in the following publications ... The analysis is based on a single-zone model of natural ...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Influence of the Summer Marine Layer on Maritime Chaparral and Implications for Conservation Policy in the California Coastal Zone  

E-Print Network (OSTI)

dry season variables). Climate zones are Maritime (n = 25),238) unique to each climate zone group (inside circles),variables by climate zones 85 Fig. 10 Non-metric

Vasey, Michael Charles

2012-01-01T23:59:59.000Z

242

Additions to a Design Tool for Visualizing the Energy Implications of Californias Climates  

E-Print Network (OSTI)

of Californias 16 climate zones. These different buildingincluding Californias 16 climate zones, plus data for 21any of Californias 16 climate zones: Ground Temperature (

Milne, Murray; Liggett, Robin rliggett@ucla.edu; Benson, Andrew; Bhattacharya, Yasmin

2009-01-01T23:59:59.000Z

243

Habitable Climates  

E-Print Network (OSTI)

According to the standard liquid-water definition, the Earth is only partially habitable. We reconsider planetary habitability in the framework of energy-balance models, the simplest seasonal models in physical climatology, to assess the spatial and temporal habitability of Earth-like planets. We quantify the degree of climatic habitability of our models with several metrics of fractional habitability. Previous evaluations of habitable zones may have omitted important climatic conditions by focusing on close Solar System analogies. For example, we find that model pseudo-Earths with different rotation rates or different land-ocean fractions have fractional habitabilities that differ significantly from that of the Earth itself. Furthermore, the stability of a planet's climate against albedo-feedback snowball events strongly impacts its habitability. Therefore, issues of climate dynamics may be central in assessing the habitability of discovered terrestrial exoplanets, especially if astronomical forcing conditions are different from the moderate Solar System cases.

David S. Spiegel; Kristen Menou; Caleb A. Scharf

2007-11-30T23:59:59.000Z

244

Secular Trends in Ischemic Stroke Subtypes.  

E-Print Network (OSTI)

??Background: With an aging population and an increasing prevalence of therapy for atherosclerosis, it might be expected that stroke subtypes would be changing over time. (more)

Bogiatzi, Chrysi

2013-01-01T23:59:59.000Z

245

Revisiting Climate Region Definitions via Clustering  

Science Conference Proceedings (OSTI)

This paper introduces a new distance metric that enables the clustering of general climatic time series. Clustering methods have been frequently used to partition a domain of interest into distinct climatic zones. However, previous techniques ...

Robert Lund; Bo Li

2009-04-01T23:59:59.000Z

246

Moffat County, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 6 Climate Zone Subtype B. Places in Moffat County, Colorado Craig, Colorado Dinosaur, Colorado Retrieved from "http:en.openei.orgw...

247

Luce County, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Subtype A. Places in Luce County, Michigan Newberry, Michigan Retrieved from "http:en.openei.orgwindex.php?titleLuceCounty,Michiga...

248

Chippewa County, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Subtype A. Places in Chippewa County, Michigan De Tour Village, Michigan Sault Ste. Marie, Michigan Retrieved from "http:en.openei.orgw...

249

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate-Specific Guidance Climate-Specific Guidance The Map of the United States shows climate zones in different colors. The Marine zone contains the Pacific coast from the Canadian border to mid-California. The Hot-dry/Mixed-Dry zone contains the rest of California and follows the US border to mid-Texas. The Hot-Humid zone covers eastern Texas through Florida and includes Puerto Rico and Hawaii. The Mixed-Humid zone covers the mid-central to mid-eastern regions of the country. The Cold/Very Cold zone contains all of the Northern United States. Hot-Dry / Mixed-Dry Marine Hot-Humid Mixed-Humid Cold / Very Cold Select a climate zone from the map above, and view a listing of climate regions by county in the Guide to Determining Climate Regions: Volume 7.1 to view climates by county.

250

Detailed Analysis of the Builder Option Packages for Climate Zones 3,4,5, and 6 for Texas' Senate Bill 5 Legislation for Reducing Pollution in Non-Attainment and Affected Areas  

E-Print Network (OSTI)

This report is a detailed description of the analysis completed on the Energy Star Builder Option Packages (BOPs) using the Energy Systems Laboratorys (ESL) Code Compliant Test Suite of Tools. This report outlines the basic procedure, which was followed. A description of the Test Suite, along with a detailed explanation of the naming the procedure of the different runs is also a part of this report. A CD-ROM is also provided which has all the 137 runs, inputs and outputs, the window inputs and the summary spreadsheets. BOPs for climate zones 3,4,5 and 6 were submitted for approval to ESL on April 29,2002. It was stated that the suggested BOPs were 10 to 15% less consumptive than the IECC chapter 4/5 house. Analysis was done on these BOPs and the BOPs which were less consumptive than the standard house were posted on the ESLs website. The same tables have also been included in this report along with the detailed spreadsheets.

Ahmad, M.; Haberl, J. S.

2003-01-01T23:59:59.000Z

251

Climate, comfort, & natural ventilation: a new adaptive comfort standard for ASHRAE standard 55  

E-Print Network (OSTI)

ASHRAE began funding a series of field studies of thermal comfort in office buildings in four different climate zones.

Brager, G. S.; de Dear, R.

2001-01-01T23:59:59.000Z

252

Indoor air movement acceptability and thermal comfort in hot-humid climates  

E-Print Network (OSTI)

climate zone showed almost 90% thermal acceptabil- ity within the operative temperature ranges prescribed in the ASHRAE

Candido, Christhina Maria

2010-01-01T23:59:59.000Z

253

Dorchester County- Renewable Zoning  

Energy.gov (U.S. Department of Energy (DOE))

Dorchester County zoning codes specifically permit solar arrays and small wind turbines in many zoning districts.

254

Sullivan County, Pennsylvania: Energy Resources | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype A. Places in Sullivan County, Pennsylvania Dushore, Pennsylvania Eagles Mere, Pennsylvania Forksville, Pennsylvania Laporte, Pennsylvania Retrieved from...

255

Student Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Zone Student Zone Homework Helpers All About Atoms - Learn about the parts of the atom! Virginia State Standards of Learning Practice Tests - Practice taking the SOL tests! Subjects currently include algebra, math, science and technology. Table of Elements - Basic physical and historical information about the elements! [Printable Version] Questions and Answers - Have a question? Need an answer? Check here first! Glossary of Science Terms - Definitions of some of the terms used on this site. Jefferson Lab Virtual Tour - How do scientists explore inside atoms? Video Resources Frostbite Theater - Short science experiments using liquid nitrogen, static electricity and more! Physics Out Loud - Jefferson Lab scientists and other experts explain some of the common words and terms used in nuclear physics research.

256

Examples of Applications of Climatic Data and Information Provided by State Climate Groups  

Science Conference Proceedings (OSTI)

The value of climate data and the information derived from the data still seems to be an unknown to many. Five persons engaged in providing climate services in different U.S. climatic zones have assembled a few widely different examples of recent ...

Stanley A. Changnon Jr.; Howard J. Critchfield; Robert W. Durrenberger; Charles L. Hosler; Thomas B. McKee

1980-12-01T23:59:59.000Z

257

Subtyping algorithm of regular tree grammars with disjoint production rules  

Science Conference Proceedings (OSTI)

Most type systems of statically typed XML processing languages are implemented based on regular expression types, where subtyping reduces to checking inclusion between tree automata, which is not efficient enough. The paper proposes the regular tree ... Keywords: XML, algorithm, subtyping, tree grammar

Lei Chen; Haiming Chen

2010-09-01T23:59:59.000Z

258

Climate Collections  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional/Global > Climate Collections Regional/Global > Climate Collections Climate Collections Overview Climate encompasses the statistics of temperature, humidity, atmospheric pressure, wind, rainfall, atmospheric particle count, and numerous other meteorological elements in a given region over long periods of time. Climate can be contrasted to weather, which is the present condition of these same elements over periods up to two weeks. The climate collections project includes data sets containing measured and modeled values for variables such as temperature, precipitation, humidity, radiation, wind velocity, and cloud cover and include station measurements as well as gridded mean values. The ORNL DAAC Climate Collections Data archive includes 10 data products from the following categories:

259

Building America Climate-Specific Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America » Building America America » Building America Climate-Specific Guidance Building America Climate-Specific Guidance Building America Climate-Specific Guidance Building America's Best Practices guides and case studies demonstrate real world solutions for improving the energy performance and quality of new and existing homes in five major climate regions. Find examples of proven high-performance home building and remodeling in your area by selecting a climate zone below. In addition, you may view technology-specific building solutions that work across all climates. Cold and Very Cold Climates Hot-Dry and Mixed-Dry Climates Hot-Humid Climates Marine Climates Mixed-Humid Climates All Climates For additional, updated information on hundreds of building science topics that can help you build or retrofit to the most recent high-performance

260

Building America Top Innovations Hall of Fame Profile … Building Science-Based Climate Maps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a a climate zone map for the DOE based on the IECC climate zone map. It may not be intuitively obvious why a U.S. climate zone map is so important to the construction industry. Thanks to this Building America innovation, building science education, energy code development, and residential design can much more effectively integrate climate-specific best practices and advanced technologies across the United States. Climate has a major impact on the energy use of residential buildings, and energy codes and standards rely on a clear definition of climate zones to convey requirements to builders. However, prior to 2004, there was no single, agreed- upon climate zone map for the United States for use with building codes. Four different methods for specifying climate-dependent requirements were used by

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technology Zones (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Virginias 26 designated Technology Zones offer tax relief in the form of abatements, credits, deductions, deferrals, exemptions, or rebates. Local governments may designate technology zones to...

262

PrimerHunter: A Primer Design Tool for PCR-Based Virus Subtype Identification  

E-Print Network (OSTI)

PrimerHunter: A Primer Design Tool for PCR-Based Virus Subtype Identification Jorge Duitama viral subtypes such as avian influenza H5N1. The Polymerase Chain Reaction (PCR) has become the method of choice for virus subtype identifica- tion. However, designing subtype specific PCR primer pairs is a very

Mandoiu, Ion

263

Climate Indices  

NLE Websites -- All DOE Office Websites (Extended Search)

Indices Indices Climate Indices Climate indices are diagnostic tools used to describe the state of the climate system and monitor climate. They are most often represented with a time series, where each point in time corresponds to one index value. An index can be constructed to describe almost any atmospheric event; as such, they are myriad. Therefore, CDIAC provides these links to other web sites to help guide users to the most widely used climate indices, which in many cases are updated monthly. Data Set Website/Name NOAA's Climate Prediction Center, Monitoring and Data Index Page NOAA's Earth Systems Research Laboratory, Monthly Atmospheric and Ocean Time Series Page (plot, analyze, and compare time series) The Monthly Teleconnection Indices Page from NOAA's National

264

Climate Science Overview  

Science Conference Proceedings (OSTI)

NIST Home > Climate Science Overview. NIST Greenhouse Gas Measurements and Climate Research Program Overview. Earth's climate is ...

2010-07-06T23:59:59.000Z

265

POLL: What has the winter of 2009-2010 taught us about climate ...  

Science Conference Proceedings (OSTI)

Mar 23, 2010 ... Select, TMS Presidential and Executive Blog and Podcast Zone, TMS ... Evidence of irreversible, human-created climate change is at least...

266

Guides and Case Studies for All Climates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guides and Case Studies for All Climates Guides and Case Studies for All Climates Guides and Case Studies for All Climates The Map of the United States shows climate zones in different colors. The Marine zone contains the Pacific coast from the Canadi The U.S. Department of Energy (DOE) Building America program has developed a series of best practices guides and technology-specific case studies that may be applicable to all climate zones. Technology Case Studies Guides for All Climates Technology Solutions for New and Existing Homes These case studies from Building America research teams and national laboratories describe energy-saving solutions for both new and existing homes, classified into two basic categories: Building Envelope (insulation, air sealing, windows, foundations) Building Equipment (HVAC, water heating, lighting, appliances,

267

Enterprise Zone Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Enterprise Zone Program provides eligible businesses that relocate or expand to a designated zone with tax incentives such as: 1) an investment tax credit; 2) a job tax credit for each job...

268

MODIFIED ZONE METHOD CALCULATOR  

NLE Websites -- All DOE Office Websites (Extended Search)

Zone Method is recommended for R-value calculations in steel stud walls by the 1997 ASHRAE Handbook of Fundamentals ASHRAE 1997. The Modified Zone Method is similar to the...

269

Reinvestment Zones (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Reinvestment Zones a local economic development tool used by municipalities and counties throughout the state of Texas. These zones can be created for the purpose of granting local businesses ad...

270

A Climate Transect through Tropical Montane Rain Forest in Hawaii  

Science Conference Proceedings (OSTI)

Two years of climate data from a transect of three surface meteorological stations on the windward slopes of Mauna Loa, Hawaii, are analyzed. The stations constitute a transect between 700 and 1640 m through the wet, montane rain forest zone ...

James O. Juvik; Dennis Nullet

1994-11-01T23:59:59.000Z

271

Development of Real Time RT-PCR Assays for Neuraminidase Subtyping of  

E-Print Network (OSTI)

Development of Real Time RT-PCR Assays for Neuraminidase Subtyping of Avian Influenza Virus Yanyan (PCR) has become the method of choice for virus subtype identification, largely replacing traditional]. However, designing subtype specific PCR primer pairs is a very challenging task [4]: on one hand, selected

Mandoiu, Ion

272

Richmond City County, Virginia: Energy Resources | Open Energy...  

Open Energy Info (EERE)

City County is a county in Virginia. Its FIPS County Code is 760. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Retrieved from "http:...

273

Montgomery County, Kentucky: Energy Resources | Open Energy Informatio...  

Open Energy Info (EERE)

County is a county in Kentucky. Its FIPS County Code is 173. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Montgomery County,...

274

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Registered Energy Companies in Park County, Wyoming Nacel...

275

Park County, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Montana. Its FIPS County Code is 067. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Park County, Montana Clyde Park, Montana Cooke...

276

Carroll County, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County is a county in Tennessee. Its FIPS County Code is 017. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Carroll County,...

277

Bristol County, Rhode Island: Energy Resources | Open Energy...  

Open Energy Info (EERE)

County is a county in Rhode Island. Its FIPS County Code is 001. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in...

278

Knox County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Knox County is a county in Kentucky. Its FIPS County Code is 121. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Knox County, Kentucky...

279

Geothermal: Educational Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Educational Zone Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

280

Renaissance Zones (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

Renaissance Zones allow qualifying businesses and individuals to claim one or more tax incentives for purchasing, leasing, or making improvements to real property located in a North Dakota...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microsoft Word - Key-note-Cold climate_HVAC2009-neuer.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

software tools for moisture Protection of buildings in software tools for moisture Protection of buildings in different climate zones Special Example: Control of air humidifier in a cold climate for high comfort and no risk of mould growth in building room Krus Martin 1* , Thierry Nouidui 1 and Sedlbauer Klaus 1 1 Fraunhofer Institute for Building Physics, Germany * Corresponding email: Martin.Krus@ibp.fraunhofer.de SUMMARY The application of software tools for moisture protection of buildings in different climatic zones is demonstrated in this paper. The basics of the programs are presented together with a typical application for a problem specific for the chosen climatic zone. A 1-D calculation has been performed for tropical climate zone with the improvement of a flat roof in Bangkok as an example. For half timbered buildings, which are common in the temperate zone with the

282

Climate VISION: News - Bush Administration Launches "Climate...  

Office of Scientific and Technical Information (OSTI)

Will Address Challenge of Climate Change WASHINGTON, D.C., - Today, the Department of Energy, on behalf of the Administration, launched the President's "Climate VISION"...

283

Application: Cold Climate  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Application: Cold Climate. Fire Suppression in Cold Climates: A Technical Review.. Catchpole, DV; 2000. ...

2011-12-22T23:59:59.000Z

284

China-Low Carbon Development Zones | Open Energy Information  

Open Energy Info (EERE)

China-Low Carbon Development Zones China-Low Carbon Development Zones Jump to: navigation, search Name China-Low Carbon Development Zones Agency/Company /Organization Third Generation Environmentalism (E3G) Sector Energy, Land Focus Area Energy Efficiency Topics Finance, Low emission development planning, Market analysis, Policies/deployment programs Resource Type Lessons learned/best practices Website http://www.chathamhouse.org.uk Country China UN Region Eastern Asia References Low Carbon Development Zones in China[1] Overview "Building on the successful work of the Interdependencies on Energy and Climate Security for China and Europe project, this 18 month project with E3G, the Chinese Academy of Social Sciences (CASS) and the Chinese Energy Research Institute (ERI), will focus on four key areas - low carbon zones;

285

Urban Enterprise Zone Program (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urban Enterprise Zone Program (New Jersey) Urban Enterprise Zone Program (New Jersey) Urban Enterprise Zone Program (New Jersey) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Enterprise Zone New Jersey's Urban Enterprise (UEZ) Program operates under the Department of Community Affairs. The UEZ Program exists to foster an economic climate that revitalizes designated urban communities and stimulates their growth by encouraging businesses to develop and create private sector jobs through public and private investment. Applicant businesses must be registered, located in one of the designated zones, be in tax compliance with the state, and certified by the Program.

286

Building America Best Practices Series: Volume 7.1: Guide to Determining Climate Regions by County  

SciTech Connect

This report for DOE's Building America program helps builders identify which Building America climate region they are building in. The guide includes maps comparing the Building America regions with climate designations used in the International Energy Conservation Code for Residential Buildings and lists all U.S. counties by climate zone. A very brief history of the development of the Building America climate map and descriptions of each climate zone are provided. This report is available on the Building America website www.buildingamerica.gov.

Baechler, Michael C.; Williamson, Jennifer L.; Gilbride, Theresa L.; Cole, Pamala C.; Hefty, Marye G.; Love, Pat M.

2010-08-30T23:59:59.000Z

287

The Study on Thermal Performance and Applicability of Energy-saving Wall Materials in Hot Summer and Cold Winter Zones  

E-Print Network (OSTI)

The hot summer and cold winter zone is a transition zone between the cold zone and hot zone, sweltering in summer and chilly in winter, of which climate is worse. In recent years, with people's raised requirements on indoor living environments, the energy consumption of buildings in hot summer and cold winter zone has been greatly increased. However, the thermal performance of walls in this zone is worse, and thus a mass of energy is wasted. This paper thoroughly analyzes and compares some energy-saving wall materials and thermal insulation systems used in projects in general, according to the climate in the zone combined with the design standard for the walls of residential buildings in the hot summer and cold winter zone. The results indicate that reasonably selecting the applicable wall materials and thermal insulation systems according to the local energy consumption characteristics could optimize resource utilization and have a positive effect on energy efficiency.

Ren, W.; Lan, M.; Hao, Y.

2006-01-01T23:59:59.000Z

288

Development Opportunity Zone Credit  

Energy.gov (U.S. Department of Energy (DOE))

The Development Opportunity Zone Credits incent new and expanding businesses in the Cities of Beloit, Janesville and Kenosha by providing non-refundable tax credits to assist with the creation and...

289

Keystone Opportunity Zones (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

Keystone Opportunity Zones allows businesses located within designated areas to qualify for a tax exemption, deduction, credit, or abatement of state and local taxes such as sales and use tax,...

290

Deep Vadose Zone  

Energy.gov (U.S. Department of Energy (DOE))

The Mission of the Deep Vadose Zone Applied Field Research Initiative is to protect water resources across the DOE complex over the long-term by developing effective solutions to solve DOEs most...

291

Queen Anne's County- Solar Zoning  

Energy.gov (U.S. Department of Energy (DOE))

Queen Anne's County zoning code allows for ground mounted solar arrays in areas zoned as "open space," "agricultural," and "countryside" districts.

292

Regional-Scale Climate Change: Observations and Model Simulations  

SciTech Connect

This collaborative proposal addressed key issues in understanding the Earth??s climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

Raymond S. Bradley; Henry F. Diaz

2010-12-14T23:59:59.000Z

293

Egypt-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Jump to: navigation, search Name Egypt-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy Focus Area Energy Efficiency, Renewable Energy, Biomass, Wind, Transportation Topics Background analysis Country Egypt Northern Africa References World Bank project database[1] Contents 1 World Bank Active Climate Projects in Egypt 1.1 Egypt Vehicle Scrapping and Recycling Program 1.2 EG-LAND FILLING AND PROCESING SERVICES FOR SOUTHERN ZONE IN CAIRO 1.3 Egypt - Wind Power Development Project 1.4 Pollution Abatement Project 1.5 ONYX solid Waste Alexandria 2 References World Bank Active Climate Projects in Egypt Egypt Vehicle Scrapping and Recycling Program (8.32M) Carbon Offset, Pipeline EG-LAND FILLING AND PROCESING SERVICES FOR SOUTHERN ZONE IN CAIRO

294

Climate Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Employee Operations Employee Climate Survey March 2009 Acknowledgements The Berkeley Lab Survey Team consisted of the following: Jim Krupnick, Sponsor Vera Potapenko, Project Lead Karen Ramorino, Project Manager Chris Paquette, MOR Associates Alexis Bywater, MOR Associates MOR Associates, an external consulting firm, acted as project manager for this effort, analyzing the data and preparing this report. MOR Associates specializes in continuous improve- ment, strategic thinking and leadership development. MOR Associates has conducted a number of large-scale surveys for organizations in higher education, including MIT, Stanford, the University of Chicago, and others. MOR Associates, Inc. 462 Main Street, Suite 300 Watertown, MA 02472 tel: 617.924.4501

295

Arctic Methane, Hydrates, and Global Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Arctic Methane, Hydrates, and Global Climate Arctic Methane, Hydrates, and Global Climate Speaker(s): Matthew T. Reagan Date: March 17, 2010 - 12:00pm Location: 90-3122 Paleooceanographic evidence has been used to postulate that methane may have had a significant role in regulating past climate. However, the behavior of contemporary permafrost deposits and oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. A recent expedition to the west coast of Spitsbergen discovered substantial methane gas plumes exiting the seafloor at depths that correspond to the upper limit of the receding gas hydrate stability zone. It has been suggested that these plumes may be the

296

Climate Change Development Policy Loan | Open Energy Information  

Open Energy Info (EERE)

Development Policy Loan Development Policy Loan Jump to: navigation, search Name Climate Change Development Policy Loan Agency/Company /Organization World Bank Sector Energy, Land Topics Finance, Policies/deployment programs, Background analysis Website http://web.worldbank.org/WBSIT Country Indonesia UN Region South-Eastern Asia References Indonesia Climate Change Project[1] "The project will support the Government's policy agenda on climate change, an issue of growing global concern. Indonesia is highly vulnerable to climate change impacts - sea level rise, changing weather patterns, and increased uncertainty. Potential impacts include: increased threats to food security and agricultural productivity; impacts on productive coastal zones and community livelihoods; consequences for water storage; intensification

297

U.S. Climate Zones-Households - - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

298

Climatic Change  

E-Print Network (OSTI)

Carbon dioxide (CO2) sequestration has been proposed as a key component in technological portfolios for managing anthropogenic climate change, since it may provide a faster and cheaper route to significant reductions in atmospheric CO2 concentrations than abating CO2 production. However, CO2 sequestration is not a perfect substitute for CO2 abatement because CO2 may leak back into the atmosphere (thus imposing future climate change impacts) and because CO2 sequestration requires energy (thus producing more CO2 and depleting fossil fuel resources earlier). Here we use analytical and numerical models to assess the economic efficiency of CO2 sequestration and analyze the optimal timing and extent of CO2 sequestration. The economic efficiency factor of CO2 sequestration can be expressed as the ratio of the marginal net benefits of sequestering CO2 and avoiding CO2 emissions. We derive an analytical solution for this efficiency factor for a simplified case in which we account for CO2 leakage, discounting, the additional fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical model, the economic efficiency of CO2 sequestration decreases as the CO2 tax growth rate, leakage rates and energy requirements for CO2 sequestration increase.

Klaus Keller; David Mcinerney; David F. Bradford

2007-01-01T23:59:59.000Z

299

Philosophy of Climate Science  

Science Conference Proceedings (OSTI)

The use of climate simulations in scientific assessments of climate change and in the formulation of climatechange scenarios has been contested for, among others, methodological reasons. The "philosophy of climate science"encompasses discussions ...

Arthur C. Petersen

2000-02-01T23:59:59.000Z

300

Habitable Climates: The Influence of Obliquity  

E-Print Network (OSTI)

Extrasolar terrestrial planets with the potential to host life might have large obliquities or be subject to strong obliquity variations. We revisit the habitability of oblique planets with an energy balance climate model (EBM) allowing for dynamical transitions to ice-covered snowball states as a result of ice-albedo feedback. Despite the great simplicity of our EBM, it captures reasonably well the seasonal cycle of global energetic fluxes at Earth's surface. It also performs satisfactorily against a full-physics climate model of a highly oblique Earth-like planet, in an unusual regime of circulation dominated by heat transport from the poles to the equator. Climates on oblique terrestrial planets can violate global radiative balance through much of their seasonal cycle, which limits the usefulness of simple radiative equilibrium arguments. High obliquity planets have severe climates, with large amplitude seasonal variations, but they are not necessarily more prone to global snowball transitions than low obliquity planets. We find that terrestrial planets with massive CO2 atmospheres, typically expected in the outer regions of habitable zones, can also be subject to such dynamical snowball transitions. Some of the snowball climates investigated for CO2-rich atmospheres experience partial atmospheric collapse. Since long-term CO2 atmospheric build-up acts as a climatic thermostat for habitable planets, partial CO2 collapse could limit the habitability of such planets. A terrestrial planet's habitability may thus depend sensitively on its short-term climatic stability.

David S. Spiegel; Kristen Menou; Caleb A. Scharf

2008-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Breast Conservation Therapy: The Influence of Molecular Subtype and Margins  

SciTech Connect

Purpose: To evaluate treatment results and prognostic factors, especially margin status and molecular subtype, in early-stage breast cancer patients treated with breast conservation therapy (BCT). Methods and Materials: The records of 1,058 Stage I or II breast cancer patients treated with BCT (surgical excision plus radiotherapy) at Duke University Medical Center, Durham, North Carolina, from 1985-2005 were retrospectively reviewed. Conventional receptor analyses were used as surrogate markers for molecular subtype classification (luminal A, luminal B, Her2 positive, and basal like). Actuarial estimates of overall survival (OS), cause-specific survival (CSS), failure-free survival, and locoregional control (LRC) were computed by use of Kaplan-Meier plots. We analyzed prognostic variables for significance using Cox proportional hazards univariate and multivariate analysis. The study was approved by the Duke University Medical Center Institutional Review Board. Results: The median age of the patients was 56 years (range, 18-89 years). Of the patients, 80% had T1 disease and 66% N0 disease pathologically. With a median follow-up of 9.8 years, an in-breast recurrence developed in 53 patients and 10 patients had nodal failure. For all patients, the 10-year CSS rate was 94%; LRC rate, 94%; and failure-free survival rate, 88%. Luminal A patients had a CSS rate of 95% and LRC rate of 99%. Basal-type patients appeared to do worse, with regard to both CSS rate (74%) and LRC rate (76%), but the numbers were small and the difference was not statistically significant. LRC rates of patients with negative margins (widely negative, close, and extent of margin not known) were virtually identical (93%, 96%, and 94%, respectively). Those with positive margins appeared to fare slightly worse based on LRC rate (88%), but again, the numbers were small and the difference was not statistically significant. Conclusions: BCT remains the treatment of choice for early-stage breast cancer patients irrespective of molecular subtype. Negative margins of excision are desirable, but the width of the negative margin does not influence outcome.

Demirci, Senem, E-mail: senem.demirci@ege.edu.tr [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Department of Radiation Oncology, Ege University Faculty of Medicine, Izmir (Turkey); Broadwater, Gloria [Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Durham, NC (United States); Cancer and Leukemia Group B Statistical Center, Duke Cancer Institute, Durham, NC (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Clough, Robert; Prosnitz, Leonard R. [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

2012-07-01T23:59:59.000Z

302

Changing climate  

SciTech Connect

This article reviews a book written by a committee of the National Research Council. The book discussed the Greenhouse Effect which is a warming of the earth's atmosphere caused by the doubling of the atmospheric carbon dioxide concentration. The excess carbon dioxide is pollution derived from the burning of fossil fuels. The report suggested that the warming of the atmosphere would cause thawing of the polar regions which in turn would cause a rise in sea levels and flooding of the coastal lowlands. In addition to the flooding, the report predicted climate changes that would effect the productivity of croplands in the west. The authors of the report stressed that there was no way to avoid this warming of the earth. They suggested that people should start preparing for the inevitable.

1983-01-01T23:59:59.000Z

303

Climate Action Plan (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

The Commonwealth of Kentucky established the Kentucky Climate Action Plan Council (KCAPC) process to identify opportunities for Kentucky to respond to the challenge of global climate change while...

304

SEAB Climate Action Plan  

Energy.gov (U.S. Department of Energy (DOE))

A presentation on the Climate Action Plan presented by Dr. Jonathan Pershing, Deputy Assistant Secretary for Climate Change at the U.S. Department of Energy.

305

Subduction Zone | Open Energy Information  

Open Energy Info (EERE)

Subduction Zone Subduction Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Subduction Zone Dictionary.png Subduction Zone: A tectonic process in which one tectonic plate is forced beneath another and sinks into the mantle as the plates converge Other definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot Non-Tectonic Strike-Slip A classic cartoon illustrating a typical simplified subduction zone. http://www.columbia.edu/~vjd1/subd_zone_basic.htm Subduction zones occur where one tectonic plate is pulled under another. Most often the subducting plate is oceanic crust and contains many hydrous minerals. As the oceanic plate subducts it dewaters into the mantle,

306

MORPHOMETRIC SUBTYPING FOR A PANEL OF BREAST CANCER CELL LINES  

Science Conference Proceedings (OSTI)

A panel of cell lines of diverse molecular background offers an improved model system for high-content screening, comparative analysis, and cell systems biology. A computational pipeline has been developed to collect images from cell-based assays, segment individual cells and colonies, represent segmented objects in a multidimensional space, and cluster them for identifying distinct subpopulations. While each segmentation strategy can vary for different imaging assays, representation and subpopulation analysis share a common thread. Application of this pipeline to a library of 41 breast cancer cell lines is demonstrated. These cell lines are grown in 2D and imaged through immunofluorescence microscopy. Subpopulations in this panel are identified and shown to correlate with previous subtyping literature that was derived from transcript data.

Han, Ju; Chang, Hang; Fontenay, Gerald; Wang, Nicholas J.; Gray, Joe W.; Parvin, Bahram

2009-05-08T23:59:59.000Z

307

Accommodation Zone | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Accommodation Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Accommodation Zone Dictionary.png Accommodation Zone: Accommodation zones occur at fault intersections consisting of belts of interlocking, oppositely dipping normal faults. Multiple subsurface fault intersections in these zones are a favorable host for geothermal activity. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones

308

Rift Zone | Open Energy Information  

Open Energy Info (EERE)

Rift Zone Rift Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rift Zone Dictionary.png Rift Zone: A divergent plate boundary within a continent Other definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot Non-Tectonic Strike-Slip The Rio Grande Rift exemplifies rift zone tectonics - increased volcanic activity and the formation of graben structures (reference: science-art.com) Rift valleys occur at divergent plate boundaries, resulting in large graben structures and increased volcanism. The East African Rift is an example of a continental rift zone with increased volcanism, while the Atlantic's spreading Mid-Ocean Ridge is host to an enormous amount of geothermal

309

The Enterprise Zone (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The Enterprise Zone offers tax incentives to business expanding their workforce by 5% at facilities in designated enterprise zones. The tax credit is equal to 50% of the annual wages paid to a new...

310

Radiant zone heated particulate filter  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-12-27T23:59:59.000Z

311

Coastal communities and climate change : a dynamic model of risk perception, storms, and adaptation  

E-Print Network (OSTI)

Climate change impacts, including sea-level rise and changes in tropical storm frequency and intensity, will pose signicant challenges to city planners and coastal zone managers trying to make wise investment and protection ...

Franck, Travis Read

2009-01-01T23:59:59.000Z

312

CO2 Emissions - Panama Canal Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

Panama Canal Zone Graphics CO2 Emissions from Panama Canal Zone Data graphic Data CO2 Emissions from Panama Canal Zone...

313

Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region (Redirected from Transition Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Transition Zone Geothermal Region edit Details...

314

Formulating Climate Change Scenarios to Inform Climate - Resilient...  

Open Energy Info (EERE)

Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary Name: Formulating Climate Change Scenarios to...

315

Liquid zone seal  

DOE Patents (OSTI)

A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.

Klebanoff, Leonard E. (Dublin, CA)

2001-01-01T23:59:59.000Z

316

Why sequence microbial communities in expanding dead zones?  

NLE Websites -- All DOE Office Websites (Extended Search)

microbial communities in expanding dead zones? microbial communities in expanding dead zones? Oxygen minimum zones (OMZs) are widespread oceanographic features expanding due to global warming. There is increasing evidence that ocean warming trends will decrease dissolved oxygen concentrations, causing hypoxic boundary layer expansion that impacts the global carbon cycle, marine nutrient cycles and the climate system. To properly diagnose these transitions, this project launches a systems-level investigation of microbial community responses to OMZ expansion, charting the gene expression patterns of indigenous microbial communities found in coastal and open ocean OMZs in the eastern Subarctic Pacific Ocean as part of an ongoing time series program monitoring microbial community responses to changing levels of water column oxygen deficiency.

317

CDIAC Climate Reconstruction Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Reconstructions CDIAC Climate Holdings Containing Climate Reconstruction Data Data Set Name Investigators Data TypeFormat Period of Record Historic isotopic temperature...

318

Eos Climate | Open Energy Information  

Open Energy Info (EERE)

Eos Climate Jump to: navigation, search Name Eos Climate Place South San Francisco, California Zip 94080 Product California-based firm focused on developing climate change...

319

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Climate Change Climate Change Learn about the effects climate change can have on our energy supplies and infrastructure and explore a...

320

Inflatable Evergreen Polar Zone Dome (EPZD) Settlements  

E-Print Network (OSTI)

Sustaining human life at the Earth antipodal Polar Regions is very difficult especially during Winter when water-freezing air temperature, blizzards and whiteouts make normal human existence dangerous. To counter these environmental stresses, we offer the innovative artificial Evergreen Polar Zone Dome (EPZD), an inflated half-hemisphere with interiors continuously providing a Mediterranean Sea-like climate. The Evergreen EPZD structural theory is developed, substantiated by key computations that show it is possible for current building technology to construct and heat large enclosed volumes inexpensively. Specifically, a satisfactory result is reached by using sunlight reflectors and a special double thin film, which concentrates all available solar energy inside the EPZD while, at the same time markedly decreasing the heat loss to exterior Polar Region air. Someday a similar, but remarkably more technological, EPZD design may be employed at proposed Moon and Mars settlements. Key words: artificial hemisphere, inflatable film building, Polar Region homes, solar energy concentrator.

Alexander Bolonkin; Richard Cathcart

2007-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building America Best Practices Series: Guide to Determining Climate Regions by County  

SciTech Connect

This document describes the eight climate region designations used by the US Department of Energy Building America Program. In addition to describing the climate zones, the document includes a complete list of every county in the United States and their climate region designations. The county lists are grouped by state. The doucment is intended to assist builders to easily identify what climate region they are building in and therefore which climate-specific Building America best practices guide would be most appropriate for them.

Gilbride, Theresa L.

2008-10-01T23:59:59.000Z

322

Guides and Case Studies for Hot-Humid Climates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Humid Climates Humid Climates Guides and Case Studies for Hot-Humid Climates Map of the Hot and Humid Climate Zone of the United States. This zone covers eastern Texas through Florida and reaches up to mid-Georgia it also includes Puerto Rico and Hawaii. The U.S. Department of Energy (DOE) Building America program has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in hot-humid climates. Best Practice Guides New Construction Case Studies Improvements to Existing Homes Case Studies Best Practice Guides 40% Whole-House Energy Savings in the Hot-Humid Climates - Volume 15 New Construction Case Studies Florida Project: Ravenwood Homes and Energy Smart Home Plans, Inc. - Cape Coral Builder: Ravenwood Homes

323

Linking Weather and Climate  

Science Conference Proceedings (OSTI)

Historically, the atmospheric sciences have tended to treat problems of weather and climate separately. The real physical system, however, is a continuum, with short-term (minutes to days) weather fluctuations influencing climate variations and ...

Randall M. Dole

2008-11-01T23:59:59.000Z

324

The Climate Policy Dilemma  

E-Print Network (OSTI)

Climate policy poses a dilemma for environmental economists. The economic argument for stringent GHG abatement is far from clear. There is disagreement among both climate scientists and economists over the likelihood of ...

Pindyck, Robert S.

325

Climate Action Plan (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Climate Change Action Plan (DCCAP) was prepared with funding from the Delaware State Energy Office and the U.S. Environmental Protection Agencys State and Local Climate Change Program...

326

Breathing zone air sampler  

DOE Patents (OSTI)

A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

Tobin, John (Bethel Park, PA)

1989-01-01T23:59:59.000Z

327

Climate Science Measurements Portal  

Science Conference Proceedings (OSTI)

... comparability and for international acceptance of measurement results and insights concerning climatic ... Global Warming and Greenhouse Gases ...

2012-12-27T23:59:59.000Z

328

Statistical Descriptors of Climate  

Science Conference Proceedings (OSTI)

An adequate description of climate is required to meet the informational needs of planners and policy-makers who use climate as a factor in their decision-making processes. Because normals have become firmly entrenched as a descriptor of climate, ...

Nathaniel B. Guttman

1989-06-01T23:59:59.000Z

329

Western Renewable Energy Zones (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

Hein, J.

2011-06-01T23:59:59.000Z

330

DOE Solar Decathlon: Comfort Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

Decathlon Comfort Zone Contest, teams design their houses to keep temperature and humidity steady, uniform, and comfortable. Full points are awarded for maintaining narrow...

331

Interfacial Transition Zone Bibliography Database  

Science Conference Proceedings (OSTI)

... Saito, M., and Kawamura, M., Effect of Fly Ash and Slag on the Interfacial Zone Between Cement and Aggregate , in ACI SP 114: Fly Ash, Silica ...

2013-05-14T23:59:59.000Z

332

International Governance of Climate Engineering  

E-Print Network (OSTI)

Solar Radiation Management Governance Initiative conference); Daniel Bodansky, Governing Climate Engineering: Scenarios for Analysis (Harvard Project on Climate Agreements,

Parson, Edward; Ernst, Lia

2012-01-01T23:59:59.000Z

333

A New Homogenized Climate Division Precipitation Dataset for Analysis of Climate Variability and Climate Change  

Science Conference Proceedings (OSTI)

A new homogeneous climate division monthly precipitation dataset [based on full network estimated precipitation (FNEP)] was created as an alternative to the National Climatic Data Center (NCDC) climate division dataset. These alternative climate ...

D. Brent McRoberts; John W. Nielsen-Gammon

2011-06-01T23:59:59.000Z

334

Formulating Climate Change Scenarios to Inform Climate - Resilient  

Open Energy Info (EERE)

Formulating Climate Change Scenarios to Inform Climate - Resilient Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary Name: Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Agency/Company /Organization: United Nations Development Programme (UNDP) Topics: Low emission development planning Resource Type: Guide/manual Website: www.climatefinanceoptions.org/cfo/node/256 Language: English Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Screenshot References: Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies[1] Tool Overview "This guidebook is part of a series of manuals, guidebooks, and toolkits that draw upon the experience and information generated by UNDP's support

335

Alternate Air Delivery Systems for Hot and Humid Climates  

E-Print Network (OSTI)

Carter & Burgess first began using triple deck multi-zone units, in place of traditional VAV systems, on the Texas State Capitol restoration. Since the completion of that project design in early 1991, our firm has now used triple deck multi-zone units in the Harris County Criminal Courts Building in Houston, one of the most hot and humid climates in the United States, as well as in several other facilities. This paper will discuss the adoption of ASHRAE 62, its effects on VAV systems, and how triple deck multi-zone units offer an alternative system to cooling in hot and humid climates. We recommend all design firms add triple deck multizone units to their repertoire of design solutions.

Wallace, M.

1996-01-01T23:59:59.000Z

336

Climate Literacy Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Literacy Framework Print E-mail Climate Literacy Framework Print E-mail A Guide for Individuals and Communities The Essential Principles of Climate Science presents important information for individuals and communities to understand Earth's climate, impacts of climate change, and approaches for adapting and mitigating change. Principles in the guide can serve as discussion starters or launching points for scientific inquiry. The guide can also serve educators who teach climate science as part of their science curricula. Development of the guide began at a workshop sponsored by the National Oceanic and Atmospheric Administration (NOAA) and the American Association for the Advancement of Science (AAAS). Multiple science agencies, non-governmental organizations, and numerous individuals also contributed through extensive review and comment periods. Discussion at the National Science Foundation (NSF) and NOAA-sponsored Atmospheric Sciences and Climate Literacy workshop contributed substantially to the refinement of the document.

337

Little Climates -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

Part One Part One Nature Bulletin No. 478-A January 27, 1973 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation LITTLE CLIMATES -- Part One: Weather in the Soi. Climate vitally affects our lives. Wherever we live, climate has largely determined the plant and animal life in that region, the development of civilization there and what people do. The climate of any region represents its overall weather picture: the sum of its weather today, tomorrow, and during past centuries. We are accustomed to think of climate as a set of conditions occurring entirely in the atmosphere above the earth's surface, and it may sound silly when we say that there are climates underground -- little climates just as real as those above -- but it's true, There are special kinds of weather in the soil.

338

Zone refining of plutonium metal  

Science Conference Proceedings (OSTI)

The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

Blau, M.S.

1994-08-01T23:59:59.000Z

339

E3G-China-Low Carbon Development Zones | Open Energy Information  

Open Energy Info (EERE)

G-China-Low Carbon Development Zones G-China-Low Carbon Development Zones Jump to: navigation, search Name Low Carbon Development Zones in China Agency/Company /Organization Third Generation Environmentalism (E3G) Sector Energy, Land Focus Area Energy Efficiency Topics Finance, Low emission development planning, Market analysis, Policies/deployment programs Resource Type Lessons learned/best practices Website http://www.chathamhouse.org.uk Country China UN Region Eastern Asia References Low Carbon Development Zones in China[1] Overview "Building on the successful work of the Interdependencies on Energy and Climate Security for China and Europe project, this 18 month project with E3G, the Chinese Academy of Social Sciences (CASS) and the Chinese Energy Research Institute (ERI), will focus on four key areas - low carbon zones;

340

Table C10. Consumption and Gross Energy Intensity by Climate ...  

U.S. Energy Information Administration (EIA)

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings* ..... 990 1,761 1,134 1,213 ...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Climate Change Science Program Issues Report on Climate Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Science Program Issues Report on Climate Models Climate Change Science Program Issues Report on Climate Models Climate Change Science Program Issues Report on Climate Models July 31, 2008 - 2:40pm Addthis WASHINGTON, DC - The U.S. Climate Change Science Program (CCSP) today announced the release of the report "Climate Models: An Assessment of Strengths and Limitations," the 10th in a series of 21 Synthesis and Assessment Products (SAPs) managed by U.S. federal agencies. Developed under the leadership of the U.S. Department of Energy (DOE), this report, SAP 3.1, describes computer models of the Earth's climate and their ability to simulate current climate change. "Complex climate models are tools that provide insights and knowledge into how future climate may evolve. To assure that future climate projections

342

MCA4Climate - Guidance for scientifically sound climate change planning |  

Open Energy Info (EERE)

MCA4Climate - Guidance for scientifically sound climate change planning MCA4Climate - Guidance for scientifically sound climate change planning Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Multicriteria Analysis for Climate (MCA4climate) Agency/Company /Organization: United Nations Environment Programme (UNEP), World Bank Climate Smart Planning Platform Sector: Climate, Energy, Land Topics: Co-benefits assessment, Low emission development planning, Policies/deployment programs Resource Type: Guide/manual Complexity/Ease of Use: Moderate Website: www.mca4climate.info/ Program Start: 2011 Cost: Free Multicriteria Analysis for Climate (MCA4climate) Screenshot References: MCA4Climate - Guidance for scientifically sound climate change planning[1]

343

Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dry and Mixed-Dry Climates Dry and Mixed-Dry Climates Guides and Case Studies for Hot-Dry and Mixed-Dry Climates Map of the Hot-Dry and Mixed-Dry Zone of the United States. The zone contains the eastern side of California and follows the US border to cover the western half of Texas. The Department of Energy (DOE) has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in hot-dry and mixed-dry climates. Best Practice Guides New Construction Case Studies Improvements to Existing Homes Case Studies Best Practice Guides 40% Whole-House Energy Savings in Hot-Dry and Mixed-Dry Climates - Volume 9 New Construction Case Studies Arizona Project: Gordon Estates - Phoenix Builder: Mandalay Homes Profile: Fourteen homes in this subdivision achieved Challenge Home

344

Is this climate porn? How does climate change communication  

E-Print Network (OSTI)

Is this climate porn? How does climate change communication affect our perceptions and behaviour;1 Is this climate porn? How does climate change communication affect our perceptions and behaviour? Thomas D. Lowe 1 these kinds of messages (which have recently been dubbed `climate porn' (Ereaut and Segnit, 2006)), can

Watson, Andrew

345

Global Climate Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Data The climate data at the ORNL DAAC are used primarily as driving variables in terrestrial biogeochemistry models. These models typically use data on temperature (min,max), precipitation, humidity (relative humidity, vapor pressure deficit, dew point), radiation (PFD in PAR, shortwave, direct/diffuse, and UV radiation, daylength), and wind velocity. Climate / meteorology data are required at hourly to monthly time scales, either point or gridded, at spatial scales ranging from regional to continental to global. The ORNL DAAC currently distributes climate data from several related projects: VEMAP-1 Hydroclimatology, and Global Historical Climatology Network. We are also now distributing climate data developed at the East Anglia Climate Research Unit and the Potsdam Institute for Climate Research.

346

Additional Climate Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Additional Climate Reports Print E-mail Additional Climate Reports Print E-mail Intergovernmental Panel on Climate Change (IPCC) Reports Internationally, many assessments have been produced to address important questions related to environmental issues such as ozone depletion, climate change, and the loss of biodiversity. Many of these assessments have provided the scientific basis for the elaboration of international agreements, including the Assessment Report Series from the Intergovernmental Panel on Climate Change (IPCC). The IPCC is a scientific intergovernmental body set up by the World Meteorological Organization (WMO) and by the United Nations Environment Programme (UNEP). IPCC assesses the scientific, technical and socio-economic information relevant for the understanding of the risk of human-induced climate change. Because of its intergovernmental nature, the IPCC is able to provide scientific technical and socio-economic information in a policy-relevant but policy neutral way to decision makers.

347

National Climate Assessment: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Team Production Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate Assessment: Overview Print E-mail What is the National Climate Assessment (NCA)? The NCA is an important resource for understanding and communicating climate change science and impacts in the United States. It informs the nation about already observed changes, the current status of the climate, and anticipated trends for the future. The NCA report process integrates scientific information from multiple sources and sectors to highlight key findings and significant gaps in our knowledge. The NCA also establishes consistent methods for evaluating climate impacts in the U.S. in the context of broader global change. Finally, findings from the NCA provide input to Federal science priorities and are used by U.S. citizens, communities, and businesses as they create more sustainable and environmentally sound plans for the nation's future.

348

The changing climate  

SciTech Connect

The earth owes its hospitable climate to the greenhouse effect, but now the effect threatens to intensify, rapidly warming the planet. Rising concentrations of carbon dioxide and other gases are the cause. The danger of warming is serious enough to warrant prompt action. The paper examines data on atmospheric warming and attempts to project effects into the future using atmospheric models. Three kinds of response to the threat are described: technical measures to counteract climatic change; adaptation to the changing climate; and prevention.

Schneider, S.H.

1989-09-01T23:59:59.000Z

349

Environment/Climate Portal  

Science Conference Proceedings (OSTI)

... exercises for environmental contaminants in marine specimens were administered in 2007/2008 by the more. >> see all Environment/Climate ...

2013-10-23T23:59:59.000Z

350

Energy and Climate  

Science Conference Proceedings (OSTI)

Implementation of renewable energy and climate change related policies around the ... These will be critical for both policy-making purposes ...

2013-12-05T23:59:59.000Z

351

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

TR-081.2 iii Abstract This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval...

352

Regional Climate Information & Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Information & Modeling Print E-mail The specific impacts and vulnerabilities posed by climate change are largely defined by regional differences 9in things like geography,...

353

Evaluation of Energy Efficiency Measures in Hot and Humid Climates  

E-Print Network (OSTI)

Hot and humid climates present some of the most complex challenges for sustainable building designs. High temperatures coupled with high humidity create extreme comfort problems and exacerbate the potential for condensation, mold and mildew. These are usually remedied with conventional mechanical air conditioning systems, but the move toward sustainability urges designers to find less energy intensive solutions. An integrated design process coupled with energy modeling and lifecycle analysis can unite design teams around desired outcomes to provide an optimized design solution for projects in these climates. Such an approach involves first minimizing building loads and then reducing residual energy consumed by the HVAC systems. This paper presents an integrated design approach to evaluating the most efficient energy measures in hot and humid climates and summarizes the findings of a series of cases using this approach, including international examples of office, education, and small retail buildings in ASHRAE Climate Zones 1A and 2A.

Zhao, Y.; Erwine, B.; Leonard, P.; Pease, B.; Dole, A.; Lee, A.

2010-08-01T23:59:59.000Z

354

CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS  

Science Conference Proceedings (OSTI)

Feedbacks that can destabilize the climates of synchronously rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable planets maintain stable surface liquid water over geologic time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, are expected to be in synchronous rotation (tidally locked). In this paper, we investigate two hypothetical feedbacks that can destabilize climate on planets in synchronous rotation. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runaway positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. We call this feedback enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, a further decrease in pressure will occur. This substellar dissolution feedback can also cause a runaway climate shift. We use an idealized energy balance model to map out the conditions under which these instabilities may occur. In this simplified model, the weathering runaway can shrink the habitable zone and cause geologically rapid 10{sup 3}-fold atmospheric pressure shifts within the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure. It can only cause runaway changes for small, deep oceans and highly soluble atmospheric gases. Both instabilities are suppressed if the atmosphere has a high radiative efficiency. Our results are most relevant for atmospheres that are thin, have low greenhouse-gas radiative efficiency, and have a principal greenhouse gas that is also the main constituent of the atmosphere. ESWI also requires land near the substellar point, and tectonic resurfacing (volcanism, mountain-building) is needed for large jumps in pressure. These results identify a new pathway by which habitable-zone planets can undergo rapid climate shifts and become uninhabitable.

Kite, Edwin S.; Manga, Michael [Department of Earth and Planetary Science, University of California at Berkeley, CA 94720 (United States); Gaidos, Eric, E-mail: edwin.kite@gmail.com [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

2011-12-10T23:59:59.000Z

355

Climate and Architecture: The TVA Climatic Data Base  

Science Conference Proceedings (OSTI)

The TVA Climatic Data Base (Finsen, 1980) is a graphic portrayal and analysis of the climatic elements and influences important to the building professions toward the resolution of climate responsive architectural design. The data base, including ...

Peter I. Finsen; Charles L. Bach; Robert C. Beebe

1981-12-01T23:59:59.000Z

356

Alternative Energy Zone (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Energy Zone (Ohio) Alternative Energy Zone (Ohio) < Back Eligibility Local Government StateProvincial Govt Savings Category Buying & Making Electricity Water Home...

357

Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Transition Zone Geothermal Region edit Details Areas (5) Power Plants (0) Projects...

358

Climate-Science Computational Development Team: The Climate End...  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory Robert Jacob, Argonne National Laboratory Climate-Science Computational Development Team: The Climate End Station II PI Name: Warren Washington...

359

Climate Change and National Security  

Science Conference Proceedings (OSTI)

Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communitieswith resultant advantages and differences. Climate change research has ...

Elizabeth L. Malone

2013-01-01T23:59:59.000Z

360

Climate change risk and response  

E-Print Network (OSTI)

Climate Change Center White Paper. Cayan, Dan, PeterClimate Change Center White Paper. Cayan, Daniel R. , EdwinClimate Change Center White Paper. duVair, Pierre, Douglas

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Climate Modeling with Spectral Elements  

Science Conference Proceedings (OSTI)

As an effort toward improving climate modelcomponent performance and accuracy, an atmospheric-component climate model has been developed, entitled the Spectral Element Atmospheric Climate Model and denoted as CAM_SEM. CAM_SEM includes a unique ...

Ferdinand Baer; Houjun Wang; Joseph J. Tribbia; Aim Fournier

2006-12-01T23:59:59.000Z

362

The Atlantic Climate Change Program  

Science Conference Proceedings (OSTI)

The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and ...

Robert L. Molinari; David Battisti; Kirk Bryan; John Walsh

1994-07-01T23:59:59.000Z

363

CLIMATE PROTECTION UPDATE  

E-Print Network (OSTI)

Climate disruption is an urgent threat to the environmental and economic health of our communities. With less than 5 % of the worlds population, the United States produces more than 25 % of the global greenhouse gas emissions, and those emissions are continuing to grow. On February 16, 2005 the Kyoto Protocol, the international agreement to address climate disruption, became law for the 163

unknown authors

2006-01-01T23:59:59.000Z

364

Climate VISION: News  

Office of Scientific and Technical Information (OSTI)

News Climate Vison RSS Recent News Feed News Climate Vison RSS Recent News Feed July 20, 2010 Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean Energy Ministerial Read the Press Release and Download Fact Sheet (PDF 76 KB) July 20, 2010 Government and corporate leaders announced a new public-private partnership, Global Superior Energy Performancecm at the Clean Energy Ministerial in Washington D.C. Read More and Download Fact Sheet (PDF 124 KB) June 20, 2010 Seventh Meeting of the Leaders' Representatives of the Major Economies Forum on Energy and Climate Read the Co-Chair's Summary June 1, 2010 Department of State releases Fifth U.S. Climate Action Report Read the Press Release December 18, 2009 Remarks by the President at the Morning Plenary Session of the United Nations Climate Change Conference

365

climate | OpenEI  

Open Energy Info (EERE)

climate climate Dataset Summary Description The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Services (NESDIS), in conjunction with the National Climatic Data Center (NCDC) publish monthly and annual climate data by state for the U.S., including, cooling degree days (total number of days per month and per year). The average values for each state are weighted by population, using 2000 Census data. The base temperature for this dataset is 65 degrees F. Source NOAA Date Released Unknown Date Updated June 24th, 2005 (9 years ago) Keywords climate cooling degree days NOAA Data application/vnd.ms-excel icon hcs_51_avg_cdd.xls (xls, 215.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

366

Climate VISION: News Archive  

Office of Scientific and Technical Information (OSTI)

News Archive News Archive Collapse all | Expand all 2007 November 30, 2007 USTR Schwab to Announce New Climate Initiatives for WTO, Including a New Environmental Goods and Services Agreement November 28, 2007 U.S. Energy Information Administration Anounces U.S. Greenhouse Gas Emissions Declined 1.5 Percent in 2006 November 20, 2007 Nobel Peace Prize for Research on Climate Change Awarded to U.S. Forest Service Scientists November 16, 2007 Our Changing Planet: The U.S. Climate Change Science Program for Fiscal Year 2008 Report Released October 18, 2007 U.S. DOE Issues Third U.S. Climate Change Science Program Report October 15, 2007 The Government of India Hosts the Second Asia-Pacific Partnership on Clean Development and Climate Ministerial Meeting Fall 2007 EPA's 2nd measurement campaign to evaluate the performance of installed PFC

367

TECHNICAL BASIS DOCUMENT NO. 1: CLIMATE AND INFILTRATION  

SciTech Connect

For the past 20 years, extensive field, laboratory, and modeling investigations have been performed at Yucca Mountain, which have led to the development of a number of conceptual models of infiltration and climate for the Yucca Mountain region around the repository site (Flint, A.L. et al. 2001; Wang and Bodvarsson 2003). Evaluating the amount of infiltrating water entering the subsurface is important, because this water may affect the percolation flux, which, in turn, controls seepage into the waste emplacement drifts and radionuclide transport from the repository to the water table. Forecasting of climatic data indicates that during the next 10,000 years at Yucca Mountain, the present-day climate should persist for 400 to 600 years, followed by a warmer and much wetter monsoon climate for 900 to 1,400 years, and by a cooler and wetter glacial-transition climate for the remaining 8,000 to 8,700 years. The analysis of climatic forecasting indicates that long-term climate conditions are generally predictable from a past climate sequence, while short-term climate conditions and weather predictions may be more variable and uncertain. The use of past climate sequences to bound future climate sequences involves several types of uncertainties, such as (1) uncertainty in the timing of future climate, (2) uncertainty in the methodology of climatic forecasting, and (3) uncertainty in the earth's future physical processes. Some of the uncertainties of the climatic forecasting are epistemic (reducible) and aleatoric (irreducible). Because of the size of the model domain, INFIL treats many flow processes in a simplified manner. For example, uptake of water by roots occurs according to the ''distributed model'', in which available water in each soil layer is withdrawn in proportion to the root density in that layer, multiplied by the total evapotranspirative demand. Runoff is calculated simply as the excess of precipitation over a sum of infiltration and water storage in the root zone. More significantly, water movement throughout the soil profile is treated according to the bucket model, in which the amount of water that moves down from one layer to the next is equal to the mass of water in excess of field capacity in the upper layer. The development of a numerical model of infiltration involves a number of abstractions and simplifications to represent the complexity of environmental conditions at Yucca Mountain, such as the arid climate, mountain-type topography, heterogeneous soils and fractured rock, and irregular soil-rock interface.

NA

2004-05-01T23:59:59.000Z

368

The primary control on ancient land plant diversity is climate  

Science Conference Proceedings (OSTI)

Reproductive strategy and competition have been proposed as determinants of ancient land plant diversity. However climate is the primary control on modern plant productivity and diversity and may be the primary control on ancient diversity. For Silurian through Mid-Carboniferous land plants, the most profound diversity collapse and the greatest diversity increase occurred during times of global climate change. In the middle to late Frasnian, land plant diversity fell precipitously and remained low through the middle Famennian. Global warming probably triggered this event. Climate models suggest global warming at the end of Frasnian; the cosmopolitan faunas and floras of the Famennian indicate a uniform global climate. The diverse floras of the late Givetian and early Frasnian show pronounced latitudinal differentiation which disappeared after the diversity collapse. The depauperate floras of the late Frasnian--middle Famennian fall into two or three biogeographic units, each of which spans a large paleolatitudinal range. Land plant diversity remained constant during the Early Carboniferous and rose dramatically at the Mid-Carboniferous boundary at the onset of, and perhaps in response to, Southern Hemisphere glaciation. Polar glaciation contributes to ever wet, ever warm tropical climate because polar high pressure zones confine the intertropical convergence zone to a narrow latitudinal belt near the equator. As land plant diversity rose, the paleoequatorial coal belt of the Late Carboniferous became established, suggesting a correlation between increases in land plant diversity and tropical precipitation.

Raymond, A. (Texas A M Univ., College Station, TX (United States). Dept. of Geology)

1993-03-01T23:59:59.000Z

369

Climate Advisers | Open Energy Information  

Open Energy Info (EERE)

strategies, and investments. In short, the firm is working with others to actively shape the low carbon economy. Climate Advisers believes climate change poses serious...

370

National Climate Assessment: Production Team  

NLE Websites -- All DOE Office Websites (Extended Search)

NCA & Development Advisory Committee NCA & Development Advisory Committee Production Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate Assessment: Production Team Print E-mail National Climate Assessment Staff (USGCRP National Coordination Office) Current NCA Staff Dr. Fabien Laurier, Director, Third National Climate Assessment Dr. Glynis Lough, Chief of Staff for the National Climate Assessment Emily Therese Cloyd, Engagement Coordinator for the National Climate Assessment Bryce Golden-Chen, Program Coordinator for the National Climate Assessment Alison Delgado, Scientist Dr. Ilya Fischhoffkri, Scientist Melissa Kenney, Indicators Coordinator Dr. Fred Lipschultz, Regional Coordinator for the National Climate Assessment

371

Climate change risk and response  

E-Print Network (OSTI)

Climate Change and Electricity Demand: Applying the NewClimate Change and Electricity Demand in California. Extreme Heat, and Electricity Demand in California.

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

372

National Climate Assessment: Previous Assessments  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate...

373

Second National Climate Assessment (2009)  

NLE Websites -- All DOE Office Websites (Extended Search)

Print E-mail alt What is the Second National Climate Assessment? The Second National Climate Assessment, entitled Global Change Impacts in the United States, was published in...

374

Tracing the HIV-1 subtype B mobility in Europe: a phylogeographic approach  

SciTech Connect

The prevalence and the origin of HIV-1 subtype B, the most prevalent circulating clade among the long-term residents in Europe, have been studied extensively. However the spatial diffusion of the epidemic from the perspective of the virus has not previously been traced. In the current study we inferred the migration history of HIV-1 subtype B by way of a phylogeography of viral sequences sampled from 16 European countries and Israel. Migration events were inferred from viral phylogenies by character reconstruction using parsimony. With regard to the spatial dispersal of the HIV subtype B sequences across viral phylogenies, in most of the countries in Europe the epidemic was introduced by multiple sources and subsequently spread within local networks. Poland provides an exception where most of the infections were the result of a single point introduction. According to the significant migratory pathways, we show that there are considerable differences across Europe. Specifically, Greece, Portugal, Serbia and Spain, provide sources shedding HIV-1; Austria, Belgium and Luxembourg, on the other hand, are migratory targets, while for Denmark, Germany, Italy, Israel, Norway, the Netherlands, Sweden, Switzerland and the UK we inferred significant bidirectional migration. For Poland no significant migratory pathways were inferred. Subtype B phylogeographies provide a new insight about the geographical distribution of viral lineages, as well as the significant pathways of virus dispersal across Europe, suggesting that intervention strategies should also address tourists, travellers and migrants.

Leitner, Thomas [Los Alamos National Laboratory; Paraskevis, D [KATHOLIEKE UNIV; Pybus, O [UNIV OF OXFORD; Magiorkinis, G [KATHOLIEKE UNIV; Hatzakis, A [KATHOLIEKE UNIV

2008-01-01T23:59:59.000Z

375

Climate change 2007 - mitigation of climate change  

SciTech Connect

This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry, agriculture, forestry and waste management. It links sustainable development policies with climate change practices. This volume will again be the standard reference for all those concerned with climate change. Contents: Foreword; Preface; Summary for policymakers; Technical Summary; 1. Introduction; 2. Framing issues; 3. Issues related to mitigation in the long term context; 4. Energy supply; 5. Transport and its infrastructure; 6. Residential and commercial buildings; 7. Industry; 8. Agriculture; 9. Forestry; 10. Waste management; 11. Mitigation from a cross sectoral perspective; 12. Sustainable development and mitigation; 13. Policies, instruments and co-operative agreements. 300 figs., 50 tabs., 3 annexes.

Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. (eds.)

2007-07-01T23:59:59.000Z

376

Climate VISION: Program Mission  

Office of Scientific and Technical Information (OSTI)

PROGRAM MISSION PROGRAM MISSION Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a voluntary public-private partnership initiative to improve energy efficiency and greenhouse gas intensity in energy-intensive industrial sectors. Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a public-private partnership initiative launched by the Department of Energy on February 12, 2003. Its primary goal is to identify and pursue cost-effective options to improve the energy or GHG intensity of industry operations by accelerating the transition to technologies, practices, and processes that are cleaner, more efficient, and capable of reducing, capturing or sequestering GHGs. Climate VISION links these objectives with technology development,

377

Considerations for the habitable zone of super-Earth planets in Gliese 581  

E-Print Network (OSTI)

We assess the possibility that planets Gliese 581 c and d are within the habitable zone. In analogy with our solar system, we use an empirical definition of the habitable zone. We include assumptions such as planetary climates, and atmospheric circulation on gravitationally locked synchronous rotation. Based on the different scenarios, we argue that both planets in Gliese 581 could develop conditions for a habitable zone. In an Earth-like environment planet d could be within a habitable zone, if an atmosphere producing greenhouse effect of 100K could have developed. If the planets are gravitationally locked-in, planet c could develop atmospheric circulation that would allow it to reach temperatures consistent with the existence of surface liquid water, which in turn could support life.

P. Chylek; M. R. Perez

2007-09-10T23:59:59.000Z

378

INDICATION OF INSENSITIVITY OF PLANETARY WEATHERING BEHAVIOR AND HABITABLE ZONE TO SURFACE LAND FRACTION  

Science Conference Proceedings (OSTI)

It is likely that unambiguous habitable zone terrestrial planets of unknown water content will soon be discovered. Water content helps determine surface land fraction, which influences planetary weathering behavior. This is important because the silicate-weathering feedback determines the width of the habitable zone in space and time. Here a low-order model of weathering and climate, useful for gaining qualitative understanding, is developed to examine climate evolution for planets of various land-ocean fractions. It is pointed out that, if seafloor weathering does not depend directly on surface temperature, there can be no weathering-climate feedback on a waterworld. This would dramatically narrow the habitable zone of a waterworld. Results from our model indicate that weathering behavior does not depend strongly on land fraction for partially ocean-covered planets. This is powerful because it suggests that previous habitable zone theory is robust to changes in land fraction, as long as there is some land. Finally, a mechanism is proposed for a waterworld to prevent complete water loss during a moist greenhouse through rapid weathering of exposed continents. This process is named a 'waterworld self-arrest', and it implies that waterworlds can go through a moist greenhouse stage and end up as planets like Earth with partial ocean coverage. This work stresses the importance of surface and geologic effects, in addition to the usual incident stellar flux, for habitability.

Abbot, Dorian S.; Ciesla, Fred J. [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Cowan, Nicolas B., E-mail: abbot@uchicago.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States)

2012-09-10T23:59:59.000Z

379

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

President-Elect Obama's Address to the Global Climate Summit President-Elect Obama's Address to the Global Climate Summit November 18, 2008 THE PRESIDENT: Let me begin by thanking the bipartisan group of U.S. governors who convened this meeting. Few challenges facing America - and the world - are more urgent than combating climate change. The science is beyond dispute and the facts are clear. Sea levels are rising. Coastlines are shrinking. We've seen record drought, spreading famine, and storms that are growing stronger with each passing hurricane season. Climate change and our dependence on foreign oil, if left unaddressed, will continue to weaken our economy and threaten our national security. I know many of you are working to confront this challenge. In particular, I want to commend Governor Sebelius, Governor Doyle, Governor Crist, Governor

380

Related Federal Climate Efforts  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Federal Climate Efforts Print E-mail Related Federal Climate Efforts Print E-mail Interagency Task Force on Carbon Capture and Storage The Interagency Task Force on Carbon Capture and Storage (CCS) is a group of technologies for capturing, compressing, transporting and permanently storing power plant and industrial source emissions of carbon dioxide. Rapid development and deployment of clean coal technologies, particularly CCS, will help position the United States as a leader in the global clean energy race. Climate Change Adaptation Task Force The Task Force's work has been guided by a strategic vision of a resilient, healthy, and prosperous Nation in the face of a changing climate. To achieve this vision, the Task Force identified a set of guiding principles that public and private decision-makers should consider in designing and implementing adaptation strategies.

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

G-Climate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

67 67 AUDIT REPORT THE U.S. DEPARTMENT OF ENERGY'S GLOBAL CLIMATE CHANGE ACTIVITIES U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES APRIL 2000 April 6, 2000 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "The U.S. Department of Energy's Global Climate Change Activities" BACKGROUND The President's Climate Change Proposal of October 1997 and the United Nation's Framework Convention on Climate Change (FCCC), were intended to identify methods of reducing greenhouse gas emissions. The FCCC was ratified by the U.S. Senate in 1992 and put into force in July 1994. The purpose of the Kyoto

382

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

Remarks by the President at the Morning Plenary Session of the United Remarks by the President at the Morning Plenary Session of the United Nations Climate Change Conference Bella Center Copenhagen, Denmark December 18, 2009 (Read the White House Press page.) THE PRESIDENT: Good morning. It is an honor for me to join this distinguished group of leaders from nations around the world. We come here in Copenhagen because climate change poses a grave and growing danger to our people. All of you would not be here unless you -- like me -- were convinced that this danger is real. This is not fiction, it is science. Unchecked, climate change will pose unacceptable risks to our security, our economies, and our planet. This much we know. The question, then, before us is no longer the nature of the challenge -- the question is our capacity to meet it. For while the reality of climate

383

Global Climate Change Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Climate Change Links Global Climate Change Links This page provides links to web pages that we at CDIAC feel do a responsible job of presenting information and discussion pertinent to the science behind the global climate change ("global warming") debate. These sites include those on both sides of the debate; some asserting that global warming is a clear and present danger, and others that might be labeled global warming "skeptics." Some of these sites don't take a position per se; they exist to offer the public objective scientific information and results on our present understanding of the climate system. The list is not intended to be comprehensive, by any means. We hope it will be especially helpful for those who may be just beginning their research into global

384

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman August 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

385

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman June 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

386

Climate: The Elements  

Science Conference Proceedings (OSTI)

The authors present an analytical climate model, which has the features that (i) the atmosphere is a simple oscillator for all periods ?1 year, (ii) the ocean stores heat, (iii) the ocean exchanges momentum with the atmosphere, and (iv) random ...

John A. T. Bye; Roland A. D. Byron-Scott; Adrian H. Gordon

1996-07-01T23:59:59.000Z

387

Climate Action Plan (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

On July 12 and 13, 2007, Governor Charlie Crist hosted Serve to Preserve: A Florida Summit on Global Climate Change. The summit brought together leaders of business, government, science and...

388

Climate Action Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

There is a growing scientific consensus that increasing emissions of greenhouse gases to the atmosphere are affecting the temperature and variability of the Earths climate. Recognizing the...

389

Regional Climate Research  

Science Conference Proceedings (OSTI)

The Workshop on Regional Climate Research: Needs and Opportunities was held 24 April 2001 at the National Center for Atmospheric Research, Boulder, Colorado. The workshop was cosponsored by the National Science Foundation and the Department of ...

L. Ruby Leung; Linda O. Mearns; Filippo Giorgi; Robert L. Wilby

2003-01-01T23:59:59.000Z

390

DOE Climate Change Researchers  

Office of Scientific and Technical Information (OSTI)

Mike (LLNL) Structure of the Tropical Lower Stratosphere as Revealed by Three Reanalysis Data Sets An Appraisal of Coupled Climate Model Simulations A B C D E F G H J K L M P R S...

391

Detecting Climate Change  

Science Conference Proceedings (OSTI)

The likelihood ratio of the data for a hypothesis of some change, relative to the hypothesis of no change, is a suitable statistical measure for the detection of climate change. Likelihood ratios calculated on the basis of Angell and Korshover's (...

Edward S. Epstein

1982-08-01T23:59:59.000Z

392

Climate Assessment for 1999  

Science Conference Proceedings (OSTI)

The global climate during 1999 was impacted by Pacific cold episode (La Nia) conditions throughout the year, which resulted in regional precipitation and atmospheric circulation patterns across the Pacific Ocean and the Americas that are ...

Gerald D. Bell; Michael S. Halpert; Russell C. Schnell; R. Wayne Higgins; Jay Lawrimore; Vernon E. Kousky; Richard Tinker; Wasila Thiaw; Muthuvel Chelliah; Anthony Artusa

2000-06-01T23:59:59.000Z

393

OpenEI - climate  

Open Energy Info (EERE)

617 at http:en.openei.orgdatasets Climate: monthly and annual average relative humidity GIS data at one-degree resolution of the World from NASASSE http:en.openei.org...

394

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman May 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

395

Global Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

When President Bush announced his Global Climate Change Initiative in February 2002, he committed the United States to a new strategy to cut greenhouse gas emissions over the next...

396

Climate Action Plan (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

On April 20, 2007, Governor Martin OMalley signed Executive Order 01.01.2007.07 establishing the Maryland Climate Change Commission (MCCC) charged with collectively developing an action plan to...

397

Bayesian Climate Change Assessment  

Science Conference Proceedings (OSTI)

A Bayesian fingerprinting methodology for assessing anthropogenic impacts on climate was developed. This analysis considers the effect of increased CO2 on near-surface temperatures. A spatial CO2 fingerprint based on control and forced model ...

L. Mark Berliner; Richard A. Levine; Dennis J. Shea

2000-11-01T23:59:59.000Z

398

Valuing Climate Forecast Information  

Science Conference Proceedings (OSTI)

The article describes research opportunities associated with evaluating the characteristics of climate forecasts in settings where sequential decisions are made. Illustrative results are provided for corn production in east central Illinois. ...

Steven T. Sonka; James W. Mjelde; Peter J. Lamb; Steven E. Hollinger; Bruce L. Dixon

1987-09-01T23:59:59.000Z

399

Climate Action Plan (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Recognizing the implications that global climate change may have on the economy, environment and quality of life in Minnesota, Governor Tim Pawlenty signed into law the 2007 Next Generation Energy...

400

Achieving Climate Sustainability  

Science Conference Proceedings (OSTI)

It is often assumed that climate change policies, including the Kyoto Protocol and the follow-on Copenhagen agreement now being negotiated, align well with sustainability's tenets. A closer look reveals this is not the case. First, they treat ...

William B. Gail

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy, Climate & Infrastructure Security  

E-Print Network (OSTI)

Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1670P Thermal thermal environments different from regulatory standards. Packaging, Transport, Storage & Security

402

NIST Testimony on Climate Change  

Science Conference Proceedings (OSTI)

NIST Testimony on Climate Change. 2009. Monitoring, Measurement and Verification of Greenhouse Gas Emissions II: The ...

2010-10-05T23:59:59.000Z

403

The Polar Marine Climate Revisited  

Science Conference Proceedings (OSTI)

As an additional classification to Kppens climate classification for polar (E) climates, the Polar Marine (EM) climate was presented nearly five decades ago and is revisited in this paper. The EM climate was traced to the North Atlantic, North ...

Thomas J. Ballinger; Thomas W. Schmidlin; Daniel F. Steinhoff

2013-06-01T23:59:59.000Z

404

Climate Change and Runoff Management  

E-Print Network (OSTI)

· Adaptation strategies #12;What is climate? "Climate is properly the long average of weather in a single place UV radiation Solar radiation Reflected by atmosphere (34% ) Radiated by atmosphere as heat (66%) Heat climate concerns us? Humans experience climate as weather #12;High water impacts June 1-15, 2008 38 River

Sheridan, Jennifer

405

Zone refining of plutonium metal  

Science Conference Proceedings (OSTI)

The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

NONE

1997-05-01T23:59:59.000Z

406

Climatic regimes of tropical convection and rainfall  

SciTech Connect

Annual distribution and phase propagation of tropical convection are delineated using harmonic and amplitude-phase characteristics analysis of climatological pentad mean outgoing longwave radiation and monthly frequencies of highly reflective cloud. An annual eastward propagation of peak rainy season along the equator from the central Indian Ocean (60[degrees]E) to Arafura Sea (130[degrees]E) is revealed. This indicates a transition from the withdrawal of the Indian summer monsoon to the onset of the Australian summer monsoon. Significant bimodal variations are found around major summer monsoon regions. These variations originate from the interference of two adjacent regimes. The convergence zones over the eastern North Pacific, the South Pacific, and the southwest Indian Ocean are identified as a marine monsoon regime that is characterized by a unimodal variation with a concentrated summer rainfall associated with the development of surface westerlies equatorward of a monsoon trough. Conversely, the central North Pacific and North Atlantic convergence zones between persistent northeast and southeast trades are classified as trade-wind convergence zones; which differ from the marine monsoon regime by their persistent rainy season and characteristic bimodal variation with peak rainy seasons occurring in late spring and fall. The roles of the annual march of sea surface temperature in the phase propagation and formation of various climatic regimes of tropical convection are also discussed. 34 refs., 8 figs., 1 tab.

Wang, Bin (Univ. of Hawaii, Honolulu, HI (United States))

1994-07-01T23:59:59.000Z

407

Overlap zoned electrically heated particulate filter  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

2011-07-19T23:59:59.000Z

408

Habitable Zones Around Main-Sequence Stars: New Estimates  

E-Print Network (OSTI)

Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on 1-D, cloud-free, climate model calculations by Kasting et al.(1993). The inner edge of the HZ in Kasting et al.(1993) model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our Solar system is 0.95-1.67 AU. Here, an updated 1-D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water loss (inner HZ) and maximum greenhouse (outer HZ) limits for our Solar Syste...

Kopparapu, Ravi kumar; Kasting, James F; Eymet, Vincent; Robinson, Tyler D; Mahadevan, Suvrath; Terrien, Ryan C; Domagal-Goldman, Shawn; Meadows, Victoria; Deshpande, Rohit

2013-01-01T23:59:59.000Z

409

Global Climate Change Alliance Training Workshops on Mainstreaming Climate  

Open Energy Info (EERE)

Global Climate Change Alliance Training Workshops on Mainstreaming Climate Global Climate Change Alliance Training Workshops on Mainstreaming Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Climate Change Alliance Training Workshop on Mainstreaming Climate Change Agency/Company /Organization: Global Climate Change Alliance (GCCA) Sector: Climate Topics: Low emission development planning, -LEDS Resource Type: Training materials, Workshop Website: www.gcca.eu/pages/75_2-OCT-Workshop.html Cost: Free References: GCCA Countries Training Workshop[1] A GCCA workshop for OCT countries took place 27-28 January 2012 immediately following the OCT-EU Forum meeting in Brussels, Belgium. The workshop aimed at sharing views, knowledge, tools and experiences on climate change mitigation and adaptation and at raising awareness on the benefits and

410

Unsaturated Zone and Saturated Zone Transport Properties (U0100)  

Science Conference Proceedings (OSTI)

This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

J. Conca

2000-12-20T23:59:59.000Z

411

Enterprise Zone Program (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise Zone Program (Louisiana) Enterprise Zone Program (Louisiana) Enterprise Zone Program (Louisiana) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Nonprofit Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Corporate Tax Incentive Enterprise Zone Provider Louisiana Economic Development The Enterprise Zone Program is a jobs incentive program providing Louisiana income and franchise tax credits to businesses hiring at least 35% of net, new jobs from targeted groups. Enterprise Zones (EZs) are areas with high unemployment, low income, or a high percentage of residents receiving some

412

Enterprise Zone Program (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama) Alabama) Enterprise Zone Program (Alabama) < Back Eligibility Commercial Construction Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Enterprise Zone Provider Alabama Department of Economic and Community Affairs The Enterprise Zone Program provides certain tax incentives to corporations, partnerships and proprietorships that locate or expand within designated Enterprise Zones. In addition to state-level tax incentives, businesses may also receive local tax and non-tax incentives for locating or expanding within a designated Enterprise Zone. Section 5 of the Alabama Enterprise Zone Program offers the following tax incentives: Credit based

413

Renewable Energy Renaissance Zones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Renaissance Zones Renewable Energy Renaissance Zones Renewable Energy Renaissance Zones < Back Eligibility Commercial Industrial Local Government Savings Category Bioenergy Solar Buying & Making Electricity Alternative Fuel Vehicles Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate None Program Info Start Date 07/12/2006 State Michigan Program Type Industry Recruitment/Support Rebate Amount 100% abatement of Michigan Business Tax, state education tax, personal and real property taxes, and local income taxes Provider Michigan Economic Development Corporation In 2006, Michigan enacted legislation allowing for the creation of Renewable Energy Renaissance Zones (RERZ). Renaissance zones -- renewable energy renaissance zones are just one type -- offer significant tax

414

CANCELLED: From Energy Conscious Buildings to Climate-Sensitive Urban  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELLED: From Energy Conscious Buildings to Climate-Sensitive Urban CANCELLED: From Energy Conscious Buildings to Climate-Sensitive Urban Design Speaker(s): Edna Shaviv Date: March 14, 2006 - 12:00pm Location: Bldg. 90 The consideration of solar rights in urban design is essential in order to allow passive heating of buildings in winter and to improve the comfort conditions of people in the street, sidewalks and open spaces. A new energy code for residential buildings in Israel defines a required level of solar insolation of the buildings according to different city areas, orientations and climatic zones. These requirements were used to define objective criteria for solar rights regulations. Following, we define a method and a simple design tool that allows achieving the required solar insolation. Three methods were suggested; two are based on performance approach while

415

Climate Data Operators (CDO)  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 3/4, GRIB including SZIP compression, EXTRA, SERVICE and IEG are supported as IO-formats. Apart from that cdo can be used to analyse any kind gridded data not related to climate science. CDO has very small memory requirements and can process files larger than the physical memory. How to Use CDO module load cdo cdo [Options] Operators ... Further Information CDO Online Documentation Availability Package Platform Category Version Module Install Date Date Made Default cdo carver libraries/ I/O 1.4.1 cdo/1.4.1 2012-01-13 2012-01-13 cdo carver libraries/ I/O 1.4.6 cdo/1.4.6 2012-05-24 2012-05-25 cdo carver libraries/ I/O 1.6.1 cdo/1.6.1 2013-07-02

416

The Border Cities Enterprise Zone Program (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

The Border Cities Enterprise Zone Program provides business tax credits to businesses that invest, develop, expand, and create jobs in identified Border-Cities Enterprise Zones. Companies may be...

417

Enterprise Zone Real Property Investment Grant (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Enterprise Zone Real Property Investment Grantprovides qualified zone investors with cash grants for industrial, commercial or mixed use property. The grant is equal to 20% of the excess...

418

Enterprise Zone Sales Tax Exemption (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Enterprise Zone Sales Tax Exemption offers businesses located in such economic development zones a 100 percent sales tax exemption on the purchase of labor and materials to construct or remodel...

419

Mobile Climate Observatory on the Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Observatory on the Pacific The AMF2 mobile climate observatory is traveling the Pacific ocean between Los Angeles and Honolulu to improve the way global climate models...

420

Chicago Climate Exchange CCX | Open Energy Information  

Open Energy Info (EERE)

Chicago Climate Exchange CCX Jump to: navigation, search Name Chicago Climate Exchange (CCX) Place Chicago, Illinois Zip 60604 Product Chicago Climate Exchange (CCX) is aiming at...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SEAB Climate Action Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Action Plan presented by Dr. Jonathan Pershing, Deputy Assistant Secretary for Climate Change at the U.S. Department of Energy. Climate Action Plan (pdf) More Documents...

422

Climate Change Science Institute | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and...

423

ORISE: Climate and Atmospheric Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate and Atmospheric Research Climate and Atmospheric Research Capabilities Overview U.S. Climate Reference Network U.S. Historical Climate Network Contact Us Oak Ridge Institute for Science Education Climate and Atmospheric Research The Oak Ridge Institute for Science and Education (ORISE) partners with the National Oceanic and Atmospheric Administration's Atmospheric Turbulence and Diffusion Division (ATDD) to conduct climate research focused on issues of national and global importance. Research is performed with personnel support from ORISE's Independent Environmental Assessment and Verification (IEAV) programs, as well as in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL), and numerous other organizations, government agencies, universities and private research institutions.

424

BNL | Climate, Environment and Bisoscience  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate, Environment, and Biosciences Climate, Environment, and Biosciences bioscience research Revealing Nature-from Microscopic to Atmospheric Scales With recognized expertise in plant sciences, imaging, and climate studies, Brookhaven Lab advances some of the most promising scientific methods of achieving a sustainable future. This cross-disciplinary research seeks to understand the relationships between climate change, sustainable energy initiatives, and the planet's natural ecosystems. As environmental and economic issues mount, this research will provide increasingly important guidance and opportunities for climate change management strategies, approaches to adaptation, and policy decisions. Building a Sustainable Future Major goals include: Significantly improving climate models based on high-quality data

425

Climate change cripples forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Cripples Forests Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "There will still be wet winters, but they will more often be followed by warm summers, putting stress on trees and limiting their ability to respond

426

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

Remarks by the President at Major Economies Meeting on Energy Security and Remarks by the President at Major Economies Meeting on Energy Security and Climate Change September 28, 2007 THE PRESIDENT: Good morning. Thank you. Welcome to the State Department. I'm honored to address this historic meeting on energy security and climate change. And I appreciate you all being here. Energy security and climate change are two of the great challenges of our time. The United States takes these challenges seriously. The world's response will help shape the future of the global economy and the condition of our environment for future generations. The nations in this room have special responsibilities. We represent the world's major economies, we are major users of energy, and we have the resources and knowledge base to develop clean energy technologies.

427

Reduce Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Climate Change Reduce Climate Change Highway vehicles release about 1.5 billion metric tons of greenhouse gases (GHGs) into the atmosphere each year-mostly in the form of carbon dioxide (CO2)-contributing to global climate change. Each gallon of gasoline you burn creates 20 pounds of CO2. That's roughly 5 to 9 tons of CO2 each year for a typical vehicle. more... How can a gallon of gasoline create 20 pounds of carbon dioxide? It seems impossible that a gallon of gasoline, which weighs about 6.3 pounds, could produce 20 pounds of carbon dioxide (CO2) when burned. However, most of the weight of the CO2 doesn't come from the gasoline itself, but the oxygen in the air. When gasoline burns, the carbon and hydrogen separate. The hydrogen combines with oxygen to form water (H2O), and carbon combines with oxygen

428

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

at United Nations Secretary General Ban Ki-Moon's at United Nations Secretary General Ban Ki-Moon's Climate Change Summit United Nations Headquarters New York, New York September 22, 2009 (Read the White House Press page.) PRESIDENT OBAMA: Thank you very much. Good morning. I want to thank the Secretary General for organizing this summit, and all the leaders who are participating. That so many of us are here today is a recognition that the threat from climate change is serious, it is urgent, and it is growing. Our generation's response to this challenge will be judged by history, for if we fail to meet it -- boldly, swiftly, and together -- we risk consigning future generations to an irreversible catastrophe. No nation, however large or small, wealthy or poor, can escape the impact of climate change. Rising sea levels threaten every coastline. More

429

Climate change cripples forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate change cripples forests Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "There will still be wet winters, but they will more often be followed by warm summers, putting stress on trees and limiting their ability to respond

430

Climate VISION: Contact Us  

Office of Scientific and Technical Information (OSTI)

CONTACT US CONTACT US General Contact Information Please contact the individuals below for all general questions about information found on this website. Department of Energy Contact Russell Conklin Policy Analyst U.S. Climate Change Technology Program U.S. Department of Energy Office of Climate Change Policy and Technology (PI-50) 202-586-8339 Web Site Contacts Matt Antes 410-953-6218 Energetics, Incorporated Or Rebecca Gordon 202-406-4138 Energetics, Incorporated Private Sector Initiatives Contact Information Please contact the individuals below for questions about information found on this website regarding the private sector initiatives. Collapse all | Expand all Aluminum - Contacts Association Climate VISION Lead Bob Streiter Aluminum Association 900 19th Street, NW Washington, D.C. 20006

431

Climate change cripples forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Cripples Forests Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "There will still be wet winters, but they will more often be followed by warm summers, putting stress on trees and limiting their ability to respond

432

Cattle and Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Cattle and Climate Cattle and Climate Name: Peter Location: N/A Country: N/A Date: N/A Question: Is there any link bteween global warming / climate change and the increased population of cattle worldwide. If so can it be estimated what proportion of the potential problem arises from this source. Replies: Some scientist speculate that when cows expel intestinal gas (to put it politely!) they contribute to global warming by increasing the amount of methane in the atmosphere. They certainly aren't the only source-a study was done on termites also that showed that methane was expelled as they broke down cellulose-but if they are increasing in number they probably are one of many sources. I'm sorry I can't steer you towards actual studies, but I think they were done in the 1970's

433

Constraints on Climate Sensitivity from Radiation Patterns in Climate Models  

Science Conference Proceedings (OSTI)

The estimated range of climate sensitivity, the equilibrium warming resulting from a doubling of the atmospheric carbon dioxide concentration, has not decreased substantially in past decades. New statistical methods for estimating the climate ...

Markus Huber; Irina Mahlstein; Martin Wild; John Fasullo; Reto Knutti

2011-02-01T23:59:59.000Z

434

Second National Climate Assessment: Climate Change Impacts By...  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Impacts By Region Print E-mail alt An affiliated website was created specifically for the 2009 National Climate Assessment so that the report would be more...

435

Second National Climate Assessment: Climate Change Impacts By...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment: Climate Change Impacts By Sector Print E-mail alt An affiliated website was created specifically for the 2009 National Climate Assessment so that the report would be...

436

Climate System Response to External Forcings and Climate Change...  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate System Response to External Forcings and Climate Change Projections in CCSM4 Submitted by mkaczmar on March 8, 2012 - 11:03 Authors: Meehl, G.A., Washington, WM, Arblaster,...

437

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

438

Guides and Case Studies for Cold and Very Cold Climates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cold and Very Cold Climates Cold and Very Cold Climates Guides and Case Studies for Cold and Very Cold Climates Map of the Cold & Very Cold Zones of the United States. The far tips of North Dakota, Maine, and southern Alaska are shown as Very Cold. The northern half of the United States is shown as Cold. The U.S. Department of Energy (DOE) Building America program has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in cold and very cold climates. Best Practice Guides New Construction Case Studies Improvements to Existing Homes Case Studies Best Practice Guides 40% Whole-House Energy Savings in Cold and Very Cold Climates - Volume 12 New Construction Case Studies Colorado Project: The Hale Plan - Denver

439

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

of California Rift Zone Geothermal Region (Redirected from Gulf of California Rift Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone...

440

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Climate Change Climate Change View our interactive climate vulnerability map to learn more about how climate change could impact energy supplies and delivery near your home. | Map by Daniel Wood, Energy Department. View our interactive climate vulnerability map to learn more about how climate change could impact energy supplies and delivery near your home. | Map by Daniel Wood, Energy Department. Addressing the effects of climate change is a top priority of the Energy Department. As global temperature rise, wildfires, drought and high electricity demand put stress on the nation's energy infrastructure. And severe weather -- the leading cause of power outages and fuel supply disruption in the United States -- is projected to worsen,

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Climate Change | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Climate Change Climate Change The Office of Climate Change Policy and Technology (PI-50), located within the Office of Policy and International Affairs (PI), serves as the focal point within the U.S. Department of Energy (DOE) for the development, coordination, and implementation of DOE-related aspects of climate change technical programs, policies, and initiatives. The mission of the Office of Climate Change Policy and Technology is to accelerate the development and deployment of advanced technologies and best practices to mitigate climate change. To the extent delegated by the Secretary, the Office provides planning, analysis, and technical advisory services to other Federal agencies, and to Cabinet and sub-Cabinet-level interagency committees, working on climate

442

Climate Action Plan (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

29 members of Governor John Lynchs Climate Change Policy Task Force developed a Climate Action Plan in 2009. It is aimed at achieving the greatest feasible reductions in greenhouse gas emissions...

443

The Community Climate System Model  

Science Conference Proceedings (OSTI)

The community Earth System Model (CESM) is a fully coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states.

Worley, Patrick H [ORNL

2011-01-01T23:59:59.000Z

444

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Climate Change November 19, 2013 Statement on U.S. Secretary of Energy Ernest Moniz's Travel to Istanbul, Turkey U.S. Secretary of Energy Ernest Moniz will travel to...

445

Storm Tracks and Climate Change  

Science Conference Proceedings (OSTI)

Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by ...

Lennart Bengtsson; Kevin I. Hodges; Erich Roeckner

2006-08-01T23:59:59.000Z

446

Climate Action Plan (New Orleans)  

Energy.gov (U.S. Department of Energy (DOE))

New Orleans' Climate Action Plan will provide a road map to reach the City's greenhouse gas (GHG) reduction goal by 2030 while orchestrating its adaptation to climate change. The CAP will outline...

447

Testing Climate Models: An Approach  

Science Conference Proceedings (OSTI)

The scientific merit of decadal climate projections can only be established by means of comparisons with observations. Testing of models that are used to predict climate change is of such importance that no single approach will provide the ...

Richard Goody; James Anderson; Gerald North

1998-11-01T23:59:59.000Z

448

Some thoughts about the Climatic  

E-Print Network (OSTI)

& variance) ­ probability #12;Afforestation has been proposed as a climate mitigation strategy #12;Vegetation and grasslands in mid-latitude with deciduous trees · Equilibrium calculations with the NCAR carbon-climate model

Kammen, Daniel M.

449

book review: Climate change mapped  

E-Print Network (OSTI)

6596 newsandupdate bookreview Climatechangemappedatlasismorethanjustabookofmaps. By thatcriterionthan just a science book. It alsocoversclimate

Shanahan, Mike

2012-01-01T23:59:59.000Z

450

Contrails, Cirrus Trends, and Climate  

Science Conference Proceedings (OSTI)

Rising global air traffic and its associated contrails have the potential for affecting climate via radiative forcing. Current estimates of contrail climate effects are based on coverage by linear contrails that do not account for spreading and, ...

Patrick Minnis; J. Kirk Ayers; Rabindra Palikonda; Dung Phan

2004-04-01T23:59:59.000Z

451

Enterprise Zones (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Zones (Iowa) Zones (Iowa) Enterprise Zones (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Enterprise Zone Industry Recruitment/Support Training/Technical Assistance Provider Iowa Economic Development Authority The Enterprise Zones Program is an incentive for business expansion designed to stimulate development by targeting economically distressed areas in Iowa. Through state and local tax incentives, businesses and developers are encouraged to make new investments, and create or retain

452

Enterprise Zone Program (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia) Georgia) Enterprise Zone Program (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Enterprise Zone Personal Tax Incentives Property Tax Incentive Provider Georgia Department of Community Affairs The Enterprise Zone Program provides various tax incentives to businesses within designated underdeveloped zones in rural or urban areas. The State Enterprise Zone program intends to improve geographic areas within cities

453

Geothermal Lost Circulation Zone Mapping Tool  

DOE Green Energy (OSTI)

Lost circulation is an expensive and often encountered problem when drilling into geothermal formations. A method is needed to more accurately describe loss zones encountered during geothermal drilling to allow for more realistic testing since present testing techniques are inadequate. A Lost Circulation Zone Mapping Tool (LCZMT) is being developed that will quickly locate a loss zone and then provide a visual image of this zone as it intersects the wellbore. A modified Sandia high temperature Acoustic Borehole Televiewer should allow modeling of geothermal loss zones, which would in turn lead to testing that can be performed to evaluate lost circulation materials under simulated downhole conditions. 5 refs., 5 figs.

Bauman, T.J.

1985-01-01T23:59:59.000Z

454

Climatic Aspects of Droughts  

Science Conference Proceedings (OSTI)

Drought is an inevitable part of climate, even in regions of usually ample rainfall. Because of the effects of drought on food supply, long time series of occurrence exist in many parts of the world. Incidence is dominated by the long wave ...

H. E. Landsberg

1982-06-01T23:59:59.000Z

455

Vermont Climate Change Indicators  

Science Conference Proceedings (OSTI)

Climate change indicators are developed for Vermont in recent decades based on the trends in freeze dates, the length of the growing season, the frozen period of small lakes, and the onset of spring. These trends, which show a consistent pattern ...

Alan K. Betts

2011-04-01T23:59:59.000Z

456

Energy, Climate & Infrastructure Security  

E-Print Network (OSTI)

Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1846P CustomTraining Sandia providesPRAsandhowtheycanbemanaged to increase levels of safety and security. Like othertrainings,Sandiaexpertsdesigncoursesto beasbroadorin

457

Energy, Climate & Infrastructure Security  

E-Print Network (OSTI)

Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-0987P Transportation of the safe and secure transport of radioactive and hazardous materials. AWaytoEnsureSafeTransport Sandia

458

Expectations of Indoor Climate Control  

E-Print Network (OSTI)

humid climate, ASHRAE Trans.. 100(2) (1994). [7] A . Lovins,isothermal environments, ASHRAE Trans. , 100 (2) (1994) 14.

Fountain, M.; Brager, G.; de Dear, Richard

1996-01-01T23:59:59.000Z

459

Environment and Climate in MML  

Science Conference Proceedings (OSTI)

... Laboratory's work in the areas of environment and climate ... soil, atmosphere, marine and aquatic environments, and environmental threats, and ...

2012-06-12T23:59:59.000Z

460

Climate Change and Aluminum - TMS  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... Softcover book: Carbon Dioxide Reduction Metallurgy. Knowledge Product: Sustainability, Climate Change, and Greenhouse Gas Emissions...

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Climate Action Plan (Manitoba, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Manitoba's Climate Action Plan centers around energy efficiency, although it includes mandates and initiatives for renewable sources of energy.

462

On Climate Prediction in the Tropics  

Science Conference Proceedings (OSTI)

Climatic disasters are common in many tropical regions, and rainfall anomalies in particular have a severe human impact. Accordingly, both the World Climate Programme and the U.S. National Climate Program have identified climate prediction as a ...

Stefan Hastenrath

1986-06-01T23:59:59.000Z

463

Documenting Climate Models and Their Simulations  

Science Conference Proceedings (OSTI)

The results of climate models are of increasing and widespread importance. No longer is climate model output of sole interest to climate scientists and researchers in the climate change impacts and adaptation fields. Now nonspecialists such as government ...

Eric Guilyardi; V. Balaji; Bryan Lawrence; Sarah Callaghan; Cecelia Deluca; Sbastien Denvil; Michael Lautenschlager; Mark Morgan; Sylvia Murphy; Karl E. Taylor

2013-05-01T23:59:59.000Z

464

Zoned heating and air conditioning system  

SciTech Connect

This patent describes a zoned heating and air conditioning system comprising: a central air handling system with an air heating means and an air cooling means and a blower connected to an air duct system; thermostats each have heating and cooling set points, respectively associated with and located in different zones of a building; dampers respectively associated with each building zone positioned in the air duct system. Each damper has an open position allowing air into the respective zone from the duct system and a closed position; relay means for connecting one thermostat to the air handling system upon a call for heating or cooling by one thermostat and disconnecting all other thermostats by connecting one thermostat's connections between the thermostat and air handling system. Only one thermostat is connected to the air handling system at a time and the relay means disconnects one thermostat from the air handling system after one thermostat is satisified; and damper actuating means for unlocking each damper in one building zone responsive actuated by a respective zone thermostat connected to the air handling system by the relay means. The damper actuates means including a damper solenoid for each damper located adjacent each damper and connected to a respective zone thermostat. It unlocks each damper in one building zone responsive to being actuated by the respective zone thermostat and unlocks the dampers in one building zone when one thermostat is actuated while preventing the dampers in another thermostat's building zone from unlocking.

Beachboard, S.A.

1987-06-16T23:59:59.000Z

465

Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data  

SciTech Connect

At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

B. Faybishenko

2006-09-11T23:59:59.000Z

466

Overview: Zoning for Small Wind Turbines  

Wind Powering America (EERE)

Overview: Overview: Zoning for Small Wind Turbines Jim Green NREL ASES Small Wind Division Webinar January 17, 2008 2 Zoning Basics * Zoning is one form of land use law * Based on legal principle of "police power:" the power to regulate in order to promote the health, morals, safety, and general welfare of the community * Zoning authority originates from state laws called "zoning enabling legislation" - Standard Zoning Enabling Act, Dept. of Commerce, 1920s * Enabling legislation delegates land use authority to local jurisdictions, "Home Rule" - counties, parishes, boroughs, townships, municipalities, cities, villages, etc. 3 Zoning is Daunting * 3,034 counties (National Association of Counties) * 16,504 townships * 19,429 municipalities (National League of Cities)

467

Enhanced Enterprise Zones (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Enterprise Zones (Missouri) Enhanced Enterprise Zones (Missouri) Enhanced Enterprise Zones (Missouri) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Missouri Program Type Enterprise Zone Corporate Tax Incentive Provider Missouri Department of Economic Development Enhanced Enterprise Zones aim at attracting new businesses or promoting an expansion of existing business in Missouri Enhanced Enterprise Zone. Tax credits will be an amount authorized by DED, based on the state economic benefit, supported by the number of new jobs, wages and new capital investment that the project will create. To qualify, individual business eligibility will be determined by the zone, based on creation of

468

Measurements and Standards for the Climate Change ...  

Science Conference Proceedings (OSTI)

Measurements and Standards for the Climate Change Science Program (+$5 million). ... Shutterstock. Challenge. The climate is changing. ...

2010-10-05T23:59:59.000Z

469

Inferring Climate Change from Underground Temperatures: Apparent Climatic Stability and Apparent Climatic Warming  

Science Conference Proceedings (OSTI)

Data are used to demonstrate two effects apparent in ground surface temperature histories coming from inversions of borehole temperatures: apparent climatic warming and apparent climatic stability. Unrecognized local terrain effects, such as ...

Trevor Lewis; Walter Skinner

2003-09-01T23:59:59.000Z

470

Regional Climate Centers: New Institutions for Climate Services and Climate-Impact Research  

Science Conference Proceedings (OSTI)

In response to the need to improve climate services at the local, state, and regional levels, a national network of regional climate centers has developed. This paper provides the background to this development, and outlines the functions of the ...

Stanley A. Changnon; Peter J. Lamb; Kenneth G. Hubbard

1990-04-01T23:59:59.000Z

471

Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations  

Science Conference Proceedings (OSTI)

A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled atmosphereocean general circulation models (AOGCMs). This climate forcing differs from the conventionally defined radiative ...

Piers Mde F. Forster; Karl E. Taylor

2006-12-01T23:59:59.000Z

472

Zoning for Small Wind: The Importance of Tower Height  

Wind Powering America (EERE)

1 1 Zoning for Small Wind: The Importance of Tower Height An ASES Small Wind Webinar Mick Sagrillo-Wisconsin's Focus on Energy © 2008 by Mick Sagrillo 2 Definitions: rotor L&S Tech. Assoc., Inc. Rotor = "collector" for a wind system 3 Definitions: wind * Wind = the 'fuel' * Wind has two 'components' - Quantity = wind speed (velocity or V) - Quality = 'clean' flowing wind 4 Quantity * = average annual wind speed * Climate, not weather * Akin to annual average sun hours for PV or head and flow for hydro * Wind speed increases with height above ground... * ...Due to diminished ground drag (friction) 5 Power in the wind V³ * Wind speed = V * Power available is proportional to wind speed x wind speed x wind speed - or P ~ V x V x V - or P ~ V ³ * Therefore, 10% V = 33% P * Lesson !

473

Welcome to Climate VISION  

Office of Scientific and Technical Information (OSTI)

Program Mission Program Mission Private Sector Initiatives Asia Pacific Partnership ClimateTechnology.gov Resources and Links 1605(b) Site Map Technology Pathways Contact Us News and Events How to Participate Voluntary Actions to Reduce Greenhouse Gas Emissions in the United States [ More News ] Recent News RSS Feed RECENT NEWS AND EVENTS July 20, 2010 Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean Energy Ministerial Learn more Fact Sheet (PDF 76 KB) July 20, 2010 Government and corporate leaders announced a new public-private partnership, Global Superior Energy Performancecm at the Clean Energy Ministerial in Washington D.C. Learn more Fact Sheet (PDF 124 KB) June 20, 2010 Seventh Meeting of the Leaders' Representatives of the Major Economies Forum on Energy and Climate

474

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

on Major Economies Forum Declaration on Major Economies Forum Declaration G-8 Press Conference Room L'Aquila, Italy July 9, 2009 (Read the White House Press page.) THE PRESIDENT: Buona sera, good afternoon. We have just finished a productive meeting of the Major Economies Forum on Energy and Climate Change, and I'd like to begin by recognizing Prime Minister Berlusconi for co-chairing this forum, as well as the extraordinary hospitality that he, his team, and the people of L'Aquila and the people of Italy have shown us during this stay. We are very grateful to all of you. I also want to thank the 17 other leaders who participated. We had a candid and open discussion about the growing threat of climate change and what our nations must do -- both individually and collectively -- to address it. And while we don't expect to solve this problem in one

475

Prevalence of hepatitis B surface antigen, hepatitis B e antigen and antibody, and antigen subtypes in atomic bomb survivors  

SciTech Connect

On the basis of previous studies showing an association between hepatitis B surface antigen (HBsAg) positivity and radiation exposure in atomic bomb (A-bomb) survivors, we investigated further the active state of hepatitis B virus (HBV) infection by incorporating tests of hepatitis B e antigen (HBeAg) and hepatitis B e antibody (anti-HBe) and HBsAg subtypes into our biennial health examinations. Among 6548 A-bomb survivors for whom HBsAg was assayed between July 1979 and July 1981, 129 persons were HBsAg positive. HBeAg and anti-HBe were measured in 104 of these persons and subtypes of HBsAg in 98 persons. Among those exposed to radiation (average liver dose 0.58 Sv), the odds ratio of HBsAg positivity tended to increase with radiation dose (P for trend = 0.024). The P values for association between the prevalence of HB e antigen and radiation dose were 0.094 and 0.17, respectively. The HB antigen subtype adr was predominant over other subtypes in both Hiroshima and Nagasaki, but the distribution of subtypes did not seem to differ in relation to radiation dose. These results suggested that A-bomb survivors remain in active state of HBV infection and that the mechanism(s) of seroconversion may be impaired. 29 refs., 6 tabs.

Neriishi, K.; Kodama, K. [Radiation Effects Research Foundation, Hiroshima (Japan); Akiba, S. [Radiation Effects Research Foundation, Hiroshima (Japan)]|[Kagoshima Univ. (Japan)] [and others

1995-11-01T23:59:59.000Z

476

Climate Funds Update | Open Energy Information  

Open Energy Info (EERE)

Funds Update Funds Update Jump to: navigation, search Name Climate Funds Update Agency/Company /Organization Overseas Development Institute, The Green Political Foundation Sector Climate Topics Finance Resource Type Training materials, Lessons learned/best practices Website http://www.climatefundsupdate. References Climate Funds Update[1] Abstract Climate Funds Update is an independent website that provides information on the growing number of international climate finance initiatives designed to help developing countries address the challenges of climate change. Climate Funds Update Screenshot "Climate Funds Update is an independent website that provides information on the growing number of international climate finance initiatives designed to help developing countries address the challenges of climate change."

477

Climate Change Science Institute | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate & Environment Climate & Environment Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy, Water and Ecosystem Engineering Human Health Risk and Environmental Analysis Renewable Energy Systems Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Climate & Environment | Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and inform policy on the outcomes of climate change responses. The Climate Change Science Institute is an inter-disciplinary, cross-directorate research organization created in 2009 to advance climate change science research. More than 100 researchers from the Computing and

478

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

1990-10-01T23:59:59.000Z

479

Displacement Transfer Zone | Open Energy Information  

Open Energy Info (EERE)

Displacement Transfer Zone Displacement Transfer Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Displacement Transfer Zone Dictionary.png Displacement Transfer Zone: Displacement transfer zones facilitate the transfer of strain between normal and strike-slip faults. Intersections between strike-slip faults in the Walker Lane and N- to NNE-striking normal faults commonly host geothermal systems, focused along the normal faults proximal to their dilational intersections with nearby strike-slip faults. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault

480

Enterprise Zone Program (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise Zone Program (Texas) Enterprise Zone Program (Texas) Enterprise Zone Program (Texas) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Corporate Tax Incentive Enterprise Zone Provider Texas Wide Open for Business The Enterprise Zone Program eligible projects to apply for state sales and use tax refunds on purchases of all taxable items purchased for use at qualified business sites related to the project or activity. The level and amount of refund is related to the capital investment and jobs created at the qualified business site. In addition, local communities must offer incentives to participants under the enterprise zone program, such as tax

Note: This page contains sample records for the topic "zone subtype climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Coastal Zone Management Act | Open Energy Information  

Open Energy Info (EERE)

Zone Management Act Zone Management Act Jump to: navigation, search Statute Name Coastal Zone Management Act Year 1972 Url [[File:|160px|link=]] Description The Coastal Zone Management Act of 1972 (CZMA; Pub.L. 92-583, 86 Stat. 1280, enacted October 27, 1972, 16 U.S.C. §§ 1451-1464, Chapter 33) is an Act of Congress passed in 1972 to encourage coastal states to develop and implement coastal zone management plans (CZMPs). This act was established as a United States National policy to preserve, protect, develop, and where possible, restore or enhance, the resources of the Nation's coastal zone for this and succeeding generations. References Wikipedia[1] National Oceanic and Atmospheric Administration[2] The U.S. Congress recognized the importance of meeting the challenge of

482

Discussions@TMS -- JOM Reader Zone  

Science Conference Proceedings (OSTI)

POLL: Which area of future study will have the greatest impact on energy efficiency ... POLL: What has the winter of 2009-2010 taught us about climate change?

483

Climatic Forecasting of Net Infiltration at Yucca Mountain UsingAnalogue Meteorological Data  

SciTech Connect

At Yucca Mountain, NV, future changes in climatic conditionswill probably alter net infiltration, drainage below the bottom of theevapotranspiration zone within the soil profile, or flow across theinterface between soil and the densely welded part of the Tiva CanyonTuff. The objectives of this study were to: (i) develop a semiempiricalmodel and forecast average net infiltration rates, using the limitedmeteorological data from analog meteorological stations, for interglacial(present day), and future monsoon, glacial transition, and glacialclimates over the Yucca Mountain region; and (ii) corroborate thecomputed net infiltration ratesby comparing them with the empiricallyand numerically determined groundwater recharge and percolation ratesthrough the unsaturated zone from published data. This study approachedcalculations of net infiltration, aridity, and precipitationeffectiveness indices using a modified Budyko's water-balance model, withreference-surface potential evapotranspiration determined from theradiation-based Penman formula. Results of calculations show that netinfiltration rates are expected to generally increase from thepresent-day climate to monsoon climate, to glacial transition climate,and then to the glacial climate, following a power law relationshipbetween net infiltration and precipitation. The forecasting resultsindicate the overlap between the ranges of net infiltration for differentclimates. Forecasting of net infiltration for different climate states issubject to numerous uncertainties associated with selecting climateanalog sites, using relatively short analog meteorological records,neglecting the effects of vegetation and surface runoff and run-on on alocal scale, as well as possible anthropogenically induced climatechanges.

Faybishenko, Boris

2005-12-22T23:59:59.000Z

484

Streamside Management Zones (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Streamside Management Zones (Montana) Streamside Management Zones (Montana) Streamside Management Zones (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Natural Resources and Conservation This chapter sets streamside management zones as encompassing a strip at

485

Enterprise Zone Incentives (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentives (Florida) Incentives (Florida) Enterprise Zone Incentives (Florida) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Retail Supplier Systems Integrator Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Enterprise Zone Provider Florida Department of Economic Opportunity Enterprise Zone Incentives encourage business growth within certain geographic areas targeted for economic revitalization. Businesses which create jobs within a designated zone are eligible for several tax incentives, including sales and use tax credit, tax refunds for machinery or equipment, sales tax refund for building materials, and a sales tax exemption for electrical energy

486

The role of solar absorption in climate and climate change  

NLE Websites -- All DOE Office Websites (Extended Search)

role of solar absorption in climate and role of solar absorption in climate and climate change William Collins UC Berkeley and Lawrence Berkeley Lab with Andrew Conley, David Fillmore, and Phil Rasch National Center for Atmospheric Research Boulder, Colorado, USA 2 Prior Research on Absorption and Climate Field Experiments: * Central Equatorial Pacific Experiment * Indian Ocean Experiment Modeling studies of clouds: * The color of the planet * Climate with enhanced cloud absorption Synthesis of models and aerosol observations: * Development of aerosol assimilation * Application to aerosol/climate interactions 3 Natural and anthropogenic aerosols India, March 2000 California, October 2003 Africa, March 2003 4 Historical and projected sulfate emissions * Emissions from India have tripled in last 20 years of 20 th century..

487

NREL: Climate Neutral Research Campuses - Implementing the Climate Action  

NLE Websites -- All DOE Office Websites (Extended Search)

Implementing the Climate Action Plan Implementing the Climate Action Plan When implementing climate action plans on research campuses, two important and related questions must be answered. How do we pay for climate actions? And, who will manage and oversee implementation of the plan? The answer to each question will be specific to your campus. Narrow climate action plans focus on incremental savings through low-cost and voluntary measures. This approach begs the question about what should be done after the short-term, incremental improvements are completed. In contrast, a portfolio approach can help achieve deep reductions in energy consumption and move toward campus-wide climate neutrality. Build a Portfolio After considering a wide array of individual measures, a single portfolio is created for implementation. This approach allows research campuses to

488

The role of solar absorption in climate and climate change  

E-Print Network (OSTI)

1 The role of solar absorption in climate and climate change William Collins UC Berkeley alter the radiative energy budget of the climate. · We will focus on solar reflection, absorption.43 -0.84 CO2 0.31 0.04 -0.31 (CH4) 0.22 0.40 -0.53 Change in Shortwave Absorption (2000-1860) Solar CH4

489

Climate VISION: News - DOE Releases Climate Change Technology...  

Office of Scientific and Technical Information (OSTI)

and Climate, Methane to Markets Partnership, and the International Partnership for a Hydrogen Economy. The Plan sets six complementary goals: (1) reducing emissions from energy...

490

www.mdpi.com/journal/ijerph Building Climate Resilience in the Blue Nile/Abay Highlands: A Role for Earth System Sciences  

E-Print Network (OSTI)

interannual climate variability, complex topography and associated local climate contrasts, erosive rains and erodible soils, and intense land pressure due to an increasing population and an economy that is almost entirely dependent on smallholder, low-input agriculture. As a result, these highland zones are highly vulnerable to negative impacts of climate variability. As patterns of variability and precipitation intensity alter under anthropogenic climate change, there is concern that this vulnerability will increase, threatening economic development and food security in the region. In order to overcome these challenges and to enhance sustainable development in the context of climate change, it is necessary to establish climate resilient development strategies that are informed by best-available EarthInt. J. Environ. Res. Public Health 2012, 9 436 System Science (ESS) information. This requirement is complicated by the fact that climate projections for the Abay Highlands contain significant and perhaps irreducible

Benjamin F. Zaitchik; Belay Simane; Shahid Habib; Martha C. Anderson; Mutlu Ozdogan; Jeremy D. Foltz

2012-01-01T23:59:59.000Z

491

National Climate Assessment: Indicators System  

NLE Websites -- All DOE Office Websites (Extended Search)

Indicators System Print E-mail Indicators System Print E-mail What are the goals for the NCA indicators? The vision for the National Climate Assessment (NCA) is to create a system of indicators that will help inform policy-makers and citizens understand key aspects of our changing climate. Scientific information about physical climate conditions, climate impacts, vulnerabilities, and preparedness will be tracked and compiled. These measures are called indicators. The goals of the Indicators System are to: Provide meaningful, authoritative climate-relevant measures about the status, rates, and trends of key physical, ecological, and societal variables and values Inform decisions on management, research, and education at regional to national scales Identify climate-related conditions and impacts to help develop effective mitigation and adaptation measures

492

Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006  

SciTech Connect

This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia Successfully deploying the ARM Mobile Facility in Niger, Africa Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

LR Roeder

2005-11-30T23:59:59.000Z

493

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman October 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

494

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

495

Earthwatch: The climate from space  

SciTech Connect

This concise textbook shows how observations from satellites can be used to derive variables important to the monitoring of the climate system. The aim of this book is not to provide a rigorous treatment of climate or of remote sensing and instrumentation, but to attempt to integrate the different disciplines at a level appropriate for undergraduate students of meteorology. The general topics covered are as follows: components of the climate system, basic physical laws (radiations and radiative transfer), current climate issues (greenhouse effect, ozone depletion, Southern Oscillations), remote sensing techniques, and operational principles of sensors aboard space platforms.

Harries, J.E.

1990-01-01T23:59:59.000Z

496

CDIAC Climate Data: Available Variables  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Variables Available in CDIAC Data Products Temperature Precipitation Cloudiness Sunshine Duration Snowfall and Snow Depth Atmospheric Pressure Atmospheric Moisture Surface...

497

Climate Action Plan (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

Governor Sanford issued Executive Order 2007-04 on February 16, 2007, establishing the South Carolina Climate, Energy & Commerce Advisory Committee (CECAC).

498

Climate Action Plan (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

Recognizing the profound implications that global warming and climate variation could have on the economy, environment and quality of life in the Southwest, New Mexico Governor Bill Richardson...

499

Climate Strategy | Open Energy Information  

Open Energy Info (EERE)

firm specialising in projects in clean energy, energy efficiency, environment and sustainability. References Climate Strategy1 LinkedIn Connections CrunchBase Profile No...

500

First National Climate Assessment (2000)  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally First National...