National Library of Energy BETA

Sample records for zone number climate

  1. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  2. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adams County,...

  3. Climate Zone Number 1 | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  4. ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Subtype A Subtype B Subtype C Climate Zone Number 1 Zone 1A Zone 1B NA Climate Zone Number 2 Zone 2A Zone 2B NA Climate Zone Number 3 Zone 3A Zone 3B Zone...

  5. Adams County, Washington ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  6. Baxter County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baxter County, Arkansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  7. Adams County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  8. Climate Zone 8A | Open Energy Information

    Open Energy Info (EERE)

    A. Climate Zone Number 8A is defined as Subarctic with IP Units 12600 < HDD65F and SI Units 7000 < HDD18C . The following places are categorized as class 8A climate zones:...

  9. Anderson County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number...

  10. Climate Zones | Department of Energy

    Office of Environmental Management (EM)

    Building America » Climate Zones Climate Zones Building America determines building practices based on climate zones to achieve the most energy savings in a home. This page offers some general guidelines on the definitions of the various climate regions based on heating degree-days, average temperatures, and precipitation. You can also view the Guide to Determining Climate Regions by County. Hot-Humid A hot-humid climate is generally defined as a region that receives more than 20 in. (50 cm) of

  11. Adams County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Ohio ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

  12. Barrow County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Barrow County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barrow County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  13. Bacon County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Bacon County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bacon County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  14. Baca County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Baca County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baca County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  15. Apache County, Arizona ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Apache County, Arizona ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Apache County, Arizona ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  16. Adams County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Indiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Indiana ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  17. Adams County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Idaho ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  18. Adams County, Illinois ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Illinois ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Illinois ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  19. Adams County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  20. Bates County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Bates County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bates County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  1. Climate Zone 1B | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype B. Climate Zone 1B is defined as Dry with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C . The following places are categorized as class 1B climate zones:...

  2. Property:Buildings/ModelClimateZone | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Pages using the property "BuildingsModelClimateZone" Showing 12 pages using this property. G General Merchandise...

  3. Climate Zone 8B | Open Energy Information

    Open Energy Info (EERE)

    Subtype B. Climate Zone 8B is defined as Subarctic with IP Units 12600 < HDD65F and SI Units 7000 < HDD18C . The following places are categorized as class 8B climate zones:...

  4. Climate Zone 1A | Open Energy Information

    Open Energy Info (EERE)

    A. Climate Zone 1A is defined as Very Hot - Humid with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C . The following places are categorized as class 1A climate zones:...

  5. Atkinson County, Georgia ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Atkinson County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atkinson County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  6. Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  7. Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  8. Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  9. Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Mississippi ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Mississippi ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  10. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  11. U.S. Climate Zones Map for Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Past Climate Zones U. S. Climate Zones for 1979-1999 CBECS: climate zone map Return to Climate Zones for 2003 CBECS Return to CBECS Home Page Note:Map updated with corrections,...

  12. Property:ASHRAE 169 Climate Zone Subtype | Open Energy Information

    Open Energy Info (EERE)

    A + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Subtype B + Adams County,...

  13. U.S. Climate Zones Map for Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Climate Zone U. S. Climate Zones for 2003 CBECS: climate zones map Note:Map updated with corrections, February 2012 Further Explanation on How Climate Zones are Defined...

  14. Alameda County, California ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County, California ASHRAE Standard ASHRAE 169-2006 Climate...

  15. Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

  16. Anderson County, Tennessee ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate...

  17. Climate Zone 2B | Open Energy Information

    Open Energy Info (EERE)

    are categorized as class 2B climate zones: Bandera County, Texas Dimmit County, Texas Edwards County, Texas Frio County, Texas Imperial County, California Kinney County, Texas La...

  18. Category:ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    Category Edit History Category:ASHRAE Climate Zones Jump to: navigation, search Climate Zones defined in the ASHRAE 169-2006 standards. Pages in category "ASHRAE Climate Zones" The...

  19. Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone |...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit History Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

  20. Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit History Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place...

  1. Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone |...

    Open Energy Info (EERE)

    Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bernalillo County, New Mexico ASHRAE Standard ASHRAE 169-2006...

  2. Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, South Carolina ASHRAE Standard ASHRAE 169-2006...

  3. Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone ...

    Open Energy Info (EERE)

    Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, West Virginia ASHRAE Standard ASHRAE 169-2006...

  4. Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  5. Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  6. Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  7. Anderson County, South Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Anderson County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, South Carolina ASHRAE Standard ASHRAE 169-2006...

  8. Climate Zone 5C | Open Energy Information

    Open Energy Info (EERE)

    C. Climate Zone 5C is defined as Marine with IP Units 5400 < HDD65F 7200 and SI Units 3000 < HDD18C 4000 . The following places are categorized as class 5C...

  9. Archived Reference Climate Zone: 8 Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  10. Archived Reference Climate Zone: 8 Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  11. Archive Reference Buildings by Climate Zone: 3A Atlanta, Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Archive Reference Buildings by Climate Zone: 3A Atlanta, Georgia Archive Reference Buildings by Climate Zone: 3A Atlanta, Georgia Here you will find past versions of the reference ...

  12. Adams County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  13. Anderson County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Anderson County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  14. Climate Zone Number 8 | Open Energy Information

    Open Energy Info (EERE)

    Alaska Northwest Arctic Borough, Alaska Southeast Fairbanks Census Area, Alaska Wade Hampton Census Area, Alaska Yukon-Koyukuk Census Area, Alaska Retrieved from "http:...

  15. Climate Zone Number 4 | Open Energy Information

    Open Energy Info (EERE)

    Dawson County, Georgia De Baca County, New Mexico DeKalb County, Tennessee Deaf Smith County, Texas Dearborn County, Indiana Decatur County, Tennessee Del Norte County,...

  16. Climate Zone Number 2 | Open Energy Information

    Open Energy Info (EERE)

    McLennan County, Texas McMullen County, Texas Medina County, Texas Milam County, Texas Miller County, Georgia Mitchell County, Georgia Mobile County, Alabama Montgomery County,...

  17. Climate Zone Number 3 | Open Energy Information

    Open Energy Info (EERE)

    California Merced County, California Meriwether County, Georgia Midland County, Texas Miller County, Arkansas Mills County, Texas Mississippi County, Arkansas Mitchell County,...

  18. Climate Zone Number 7 | Open Energy Information

    Open Energy Info (EERE)

    Prince of Wales-Outer Ketchikan Census Area, Alaska Ramsey County, North Dakota Red Lake County, Minnesota Renville County, North Dakota Rio Grande County, Colorado...

  19. Climate Zone Number 6 | Open Energy Information

    Open Energy Info (EERE)

    Morrison County, Minnesota Morton County, North Dakota Mower County, Minnesota Murray County, Minnesota Musselshell County, Montana Natrona County, Wyoming Newaygo County,...

  20. Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Baltimore County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County...

  1. Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search...

  2. Ben Hill County, Georgia ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Ben Hill County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ben Hill County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  3. Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit History Aroostook County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place...

  4. Details of U.S. Climate Zones:

    U.S. Energy Information Administration (EIA) Indexed Site

    that show the NOAA climate divisions by county, see http:www.cpc.ncep.noaa.govproductsanalysismonitoringregionalmonitoringCLIMDIVSstatescountiesclimate-divisions.shtml....

  5. Category:County Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    zone information in the United States of America. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "County Climate Zones" The following...

  6. Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North Dakota ASHRAE Standard ASHRAE 169-2006 Climate...

  7. Aiken County, South Carolina ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Aiken County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aiken County, South Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

  8. Anson County, North Carolina ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anson County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anson County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

  9. Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Ashe County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashe County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

  10. Archived Reference Climate Zone: 2B Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  11. Archived Reference Climate Zone: 2B Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  12. Archived Reference Climate Zone: 3C San Francisco, California

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  13. Archived Reference Climate Zone: 3C San Francisco, California

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  14. Archived Reference Climate Zone: 6B Helena, Montana

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  15. Archived Reference Climate Zone: 6B Helena, Montana

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  16. Archived Reference Climate Zone: 4A Baltimore, Maryland

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  17. Archived Reference Climate Zone: 4A Baltimore, Maryland

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  18. Archived Reference Climate Zone: 1A Miami, Florida

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  19. Archived Reference Climate Zone: 1A Miami, Florida

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  20. Archived Reference Climate Zone: 3B Los Angeles, California

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  1. Archived Reference Climate Zone: 3B Los Angeles, California

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  2. Archived Reference Climate Zone: 4B Albuquerque, New Mexico

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  3. Archived Reference Climate Zone: 4B Albuquerque, New Mexico

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  4. Archived Reference Climate Zone: 3B Las Vegas, Nevada

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  5. Archived Reference Climate Zone: 3B Las Vegas, Nevada

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  6. Adams County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Adams County, Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate...

  7. Visualizing Life Zone Boundary Sensitivities Across Climate Models and Temporal Spans

    SciTech Connect (OSTI)

    Sisneros, Roberto R; Huang, Jian; Ostrouchov, George; Hoffman, Forrest M

    2011-01-01

    Life zones are a convenient and quantifiable method for delineating areas with similar plant and animal communities based on bioclimatic conditions. Such ecoregionalization techniques have proved useful for defining habitats and for studying how these habitats may shift due to environmental change. The ecological impacts of climate change are of particular interest. Here we show that visualizations of the geographic projection of life zones may be applied to the investigation of potential ecological impacts of climate change using the results of global climate model simulations. Using a multi-factor classification scheme, we show how life zones change over time based on quantitative model results into the next century. Using two straightforward metrics, we identify regions of high sensitivity to climate changes from two global climate simulations under two different greenhouse gas emissions scenarios. Finally, we identify how preferred human habitats may shift under these scenarios. We apply visualization methods developed for the purpose of displaying multivariate relationships within data, especially for situations that involve a large number of concurrent relationships. Our method is based on the concept of multivariate classification, and is implemented directly in VisIt, a production quality visualization package.

  8. Table HC9.11 Home Electronics Characteristics by Climate Zone, 2005

    Gasoline and Diesel Fuel Update (EIA)

    11 Home Electronics Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Personal Computers Do Not Use a Personal Computer ............... 35.5 3.2 8.3 8.9 7.7 7.5 Use a Personal Computer............................. 75.6 7.8 17.8 18.4 16.3 15.3 Number of Desktop PCs 1.............................................................. 50.3 5.1 12.4 11.9 10.5 10.4

  9. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    SciTech Connect (OSTI)

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; Li, Dan

    2015-04-27

    The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ricr. The results show that the simulated global average of PBL height increases nearly linearly with Ricr, with a change of about 114 m for a change of 0.5 in Ricr. The surface sensible (latent) heat flux decreases (increases) as Ricr increases. The influence of Ricr on surface air temperature and specific humidity is not significant. The increasing Ricr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ricr affect stratiform and convective precipitations differently. Increasing Ricr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.

  10. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; Li, Dan

    2015-04-27

    The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ricr. The results show that the simulated global average of PBL height increases nearly linearly with Ricr, with a change of about 114 m for a change of 0.5 in Ricr. The surface sensible (latent) heat flux decreases (increases) as Ricr increases. The influence of Ricr on surface air temperature and specific humidity is not significant. The increasingmore » Ricr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ricr affect stratiform and convective precipitations differently. Increasing Ricr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.« less

  11. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    SciTech Connect (OSTI)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  12. Table HC1-1a. Housing Unit Characteristics by Climate Zone,

    Gasoline and Diesel Fuel Update (EIA)

    a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.8 1.0 1.1 1.2 1.1 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 8.0 Census Region and Division Northeast

  13. "Table HC9.10 Home Appliances Usage Indicators by Climate Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Appliances Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8

  14. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    SciTech Connect (OSTI)

    Culp, Thomas D.; Cort, Katherine A.

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  15. Analysis of climatic conditions and preliminary assessment of alternative cooling strategies for houses in California transition climate zones

    SciTech Connect (OSTI)

    Huang, Y.J.; Zhang, H.

    1995-07-01

    This is a preliminary scoping study done as part of the {open_quotes}Alternatives to Compressive Cooling in California Transition Climates{close_quotes} project, which has the goal of demonstrating that houses in the transitional areas between the coast and the Central Valley of California do not require air-conditioning if they are properly designed and operated. The first part of this report analyzes the climate conditions within the transitional areas, with emphasis on design rather than seasonal conditions. Transitional climates are found to be milder but more variable than those further inland. The design temperatures under the most stringent design criteria, e.g. 0.1 % annual, are similar to those in the Valley, but significantly lower under more relaxed design criteria, e.g., 2% annual frequency. Transition climates also have large day-night temperature swings, indicating significant potential for night cooling, and wet-bulb depressions in excess of 25 F, indicating good potential for evaporative cooling. The second part of the report is a preliminary assessment using DOE-2 computer simulations of the effectiveness of alternative cooling and control strategies in improving indoor comfort conditions in two conventional Title-24 houses modeled in various transition climate locations. The cooling measures studied include increased insulation, light colors, low-emissivity glazing, window overhangs, and exposed floor slab. The control strategies studied include natural and mechanical ventilation, and direct and two-stage evaporative cooling. The results indicate the cooling strategies all have limited effectiveness, and need to be combined to produce significant improvements in indoor comfort. Natural and forced ventilation provide similar improvements in indoor conditions, but during peak cooling periods, these will still be above the comfort zone. Two-stage evaporative coolers can maintain indoor comfort at all hours, but not so direct evaporative coolers.

  16. Table HC9.4 Space Heating Characteristics by Climate Zone, 2005

    Gasoline and Diesel Fuel Update (EIA)

    4 Space Heating Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total......................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Space Heating Equipment................ 1.2 Q Q N 0.3 0.8 Have Main Space Heating Equipment.................... 109.8 10.9 26.0 27.3 23.7 22.0 Use Main Space Heating Equipment..................... 109.1 10.9 26.0 27.3 23.2 21.7 Have Equipment But Do Not Use It........................ 0.8 N N Q

  17. Table HC9.6 Air Conditioning Characteristics by Climate Zone, 2005

    Gasoline and Diesel Fuel Update (EIA)

    6 Air Conditioning Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total......................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Cooling Equipment........................... 17.8 3.2 4.7 3.6 5.5 0.9 Have Cooling Equipment........................................ 93.3 7.7 21.4 23.7 18.5 21.9 Use Cooling Equipment......................................... 91.4 7.6 21.0 23.4 17.9 21.7 Have Equipment But Do Not Use

  18. Table HC9.9 Home Appliances Characteristics by Climate Zone, 2005

    Gasoline and Diesel Fuel Update (EIA)

    9 Home Appliances Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total U.S............................................................ 111.1 10.9 26.1 27.3 24.0 22.8 Cooking Appliances Conventional Ovens Use an Oven............................................... 109.6 10.9 25.7 27.1 23.4 22.4 1.............................................................. 103.3 10.2 24.3 25.3 22.2 21.3 2 or More................................................. 6.2 0.6 1.5 1.8 1.2 1.1 Do Not Use

  19. UNSATURATED ZONE CALCITE 813C EVIDENCE OF SOUTHERN NEVADA CLIMATES DURING THE PAST 9 MILLION YEARS

    SciTech Connect (OSTI)

    JOSEPH F. WHELAN AND RICHARD J. MOSCATI

    1998-01-26

    Yucca Mountain, Nevada, is presently the object of intense study as a potential permanent repository for the Nation's high-level radioactive wastes. The mountain consists of a thick sequence of volcanic tuffs in which the depth to the water table ranges from 500 to 700 meters below the land surface. This thick unsaturated zone (UZ), which would host the projected repository, coupled with the present-day arid to semi-arid environment, is considered a positive argument for the site. Evaluation of the site includes defining the relationship between climate variability, as the input function or driver of site- and regional-scale ground-water flow, and the possible transport and release of radionuclides. Secondary calcite and opal have been deposited in the UZ by meteoric waters that infiltrated through overlying soils and percolated through the tuffs. The oxygen isotopic composition ({delta}{sup 18}O values) of these minerals reflect contemporaneous meteoric waters and the {delta}{sup 13}C values reflect soil organic matter, and hence the resident plant community, at the time of infiltration (Whelan et al., 1994). Recent U/Pb age determinations of opal in these occurrences allows the {delta}{sup 13}C values of associated calcite to be used to reconstruct general climate variations during the past 9 M.y.

  20. Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Multifamily Retrofit in Climate Zone 5 Boulder, Colorado PROJECT INFORMATION Project Name: Evaluation of a Low-Rise Multifamily Retrofit in Boulder, CO Location: Boulder, CO Consortium of Advanced Residential Buildings www.carb-swa.com Building Component: Building envelope, lighting, appliances, water conservation Application: Retrofit Years Tested: 2012 Applicable Climate Zone(s): Cold, very cold PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $3,300-$6,100 per unit with

  1. Number

    Office of Legacy Management (LM)

    ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the

  2. Development Of Regional Climate Mitigation Baseline For A DominantAgro-Ecological Zone Of Karnataka, India

    SciTech Connect (OSTI)

    Sudha, P.; Shubhashree, D.; Khan, H.; Hedge, G.T.; Murthy, I.K.; Shreedhara, V.; Ravindranath, N.H.

    2007-06-01

    Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline, namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.

  3. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Home/Climate - subter_intern Permalink Gallery Subsurface Technology & Engineering Research (SubTER) Internship Opportunities Climate, News Subsurface Technology & Engineering Research (SubTER) Internship Opportunities Sandia National Laboratories will offer a Subsurface Technology & Engineering Research (SubTER) oriented summer internship mid-May through early August 2016 and focus on subjects including geophysical data processing, tomographic imaging, automatic picking, and

  4. Efficient Screening of Climate Model Sensitivity to a Large Number of Perturbed Input Parameters [plus supporting information

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Covey, Curt; Lucas, Donald D.; Tannahill, John; Garaizar, Xabier; Klein, Richard

    2013-07-01

    Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2-3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination.This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling,more » the Morris one-at-a-time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N-dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one-at-a-time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM’s behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT’s ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience. Supporting information is also provided at the end of the full text of the article.« less

  5. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Climate Home/Tag:Climate - Electricity use by water service sector and county. Shown are electricity use by (a) large-scale conveyance, (b) groundwater irrigation pumping, (c) surface water irrigation pumping, (d) drinking water, and (e) wastewater. Aggregate electricity use across these sectors (f) is also mapped. Permalink Gallery Sandians Recognized in Environmental Science & Technology's Best Paper Competition Analysis, Capabilities,

  6. Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)

    SciTech Connect (OSTI)

    Cort, Katherine A.; Culp, Thomas D.

    2013-09-01

    This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

  7. Comparison of the Vertical Velocity Used to Calculate the Cloud Droplet Number Concentration in a Cloud Resolving and a Global Climate Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor, Michigan Introduction Anthropogenic aerosols are effective cloud condensation nuclei (CCN). The availability of CCN affects the initial cloud droplet number concentration (CDNC) and droplet size; therefore, cloud optical

  8. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Building Science-Based Climate Maps - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on ...

  13. High-Performance Home Technologies: Guide to Determining Climate Regions by County-Volume 7.1

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory

    2010-08-01

    This guide describes the climate zone designations used by Building America and compares them with the climate zone designations used in the International Energy Conservation Code (IECC).

  14. Building Science-Based Climate Maps - Building America Top Innovation |

    Energy Savers [EERE]

    Department of Energy Building Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on the IECC climate zone map. It may not be intuitively obvious why a U.S. climate zone map is so important to the construction industry. Thanks to this Building America Top Innovation, building science education, energy code development, and residential design can much more effectively integrate

  15. Guides and Case Studies for Marine Climates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine Climates Guides and Case Studies for Marine Climates Map of the Marine Climate Zone of the United States. This zone contains the far western Pacific coast stretching from the Canadian border to mid-California. The Department of Energy (DOE) has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in marine climates. Best Practice Guides 40% Whole-House Energy Savings in Marine Climate - Volume 11 Optimized Climate

  16. Climate Zone 3C | Open Energy Information

    Open Energy Info (EERE)

    Napa County, California San Benito County, California San Francisco County, California San Luis Obispo County, California San Mateo County, California Santa Barbara County,...

  17. Climate Zone 4A | Open Energy Information

    Open Energy Info (EERE)

    Virginia Mason County, Kentucky Mason County, West Virginia Massac County, Illinois Mathews County, Virginia Maury County, Tennessee McCracken County, Kentucky McCreary County,...

  18. Climate Zone 4B | Open Energy Information

    Open Energy Info (EERE)

    Texas Curry County, New Mexico Dallam County, Texas De Baca County, New Mexico Deaf Smith County, Texas Del Norte County, California Donley County, Texas El Dorado County,...

  19. Climate Zone Subtype B | Open Energy Information

    Open Energy Info (EERE)

    Utah Dawson County, Montana Dawson County, Texas De Baca County, New Mexico Deaf Smith County, Texas Deer Lodge County, Montana Del Norte County, California Delta County,...

  20. Climate Zone 3A | Open Energy Information

    Open Energy Info (EERE)

    Alabama Shelby County, Tennessee Shelby County, Texas Simpson County, Mississippi Smith County, Mississippi Smith County, Texas Somervell County, Texas Spalding County,...

  1. Climate Zone Subtype C | Open Energy Information

    Open Energy Info (EERE)

    Washington Jackson County, Oregon Jefferson County, Washington Josephine County, Oregon King County, Washington Kitsap County, Washington Lane County, Oregon Lewis County,...

  2. Climate Zone 4C | Open Energy Information

    Open Energy Info (EERE)

    Washington Jackson County, Oregon Jefferson County, Washington Josephine County, Oregon King County, Washington Kitsap County, Washington Lane County, Oregon Lewis County,...

  3. Climate Zone 2A | Open Energy Information

    Open Energy Info (EERE)

    County, Georgia McLennan County, Texas McMullen County, Texas Milam County, Texas Miller County, Georgia Mitchell County, Georgia Mobile County, Alabama Montgomery County,...

  4. Climate Zone 3B | Open Energy Information

    Open Energy Info (EERE)

    County, Texas Stonewall County, Texas Sutter County, California Sutton County, Texas Taylor County, Texas Tehama County, California Terrell County, Texas Terry County, Texas...

  5. Climate Zone 7B | Open Energy Information

    Open Energy Info (EERE)

    Colorado Grand County, Colorado Gunnison County, Colorado Hinsdale County, Colorado Jackson County, Colorado Lake County, Colorado Lincoln County, Wyoming Mineral County,...

  6. Climate Zone 7A | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Polk County, Minnesota Price County, Wisconsin Ramsey County, North Dakota Red Lake County, Minnesota Renville County, North Dakota Rolette County, North Dakota...

  7. Climate Zone Subtype A | Open Energy Information

    Open Energy Info (EERE)

    Francois County, Missouri St. Helena Parish, Louisiana St. James Parish, Louisiana St. John the Baptist Parish, Louisiana St. Johns County, Florida St. Joseph County, Indiana...

  8. Climate Zone 6B | Open Energy Information

    Open Energy Info (EERE)

    Basin County, Montana Lake County, Montana Laramie County, Wyoming Lemhi County, Idaho Lewis and Clark County, Montana Liberty County, Montana Lincoln County, Montana Madison...

  9. Climate Zone 5B | Open Energy Information

    Open Energy Info (EERE)

    County, Nevada Larimer County, Colorado Lassen County, California Latah County, Idaho Lewis County, Idaho Lincoln County, Colorado Lincoln County, Idaho Lincoln County, Nevada...

  10. Climate Zone 6A | Open Energy Information

    Open Energy Info (EERE)

    Morrison County, Minnesota Morton County, North Dakota Mower County, Minnesota Murray County, Minnesota Newaygo County, Michigan Nicollet County, Minnesota Nobles County,...

  11. Climate Zone 5A | Open Energy Information

    Open Energy Info (EERE)

    Pennsylvania Jersey County, Illinois Jewell County, Kansas Jo Daviess County, Illinois Johnson County, Indiana Johnson County, Iowa Johnson County, Nebraska Jones County, Iowa...

  12. Sandia defines solar variability zones

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    defines solar variability zones - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  13. State","County","NOAA Climate Division (Number)","NOAA Climate...

    U.S. Energy Information Administration (EIA) Indexed Site

    CENTRAL",3 "KS","SHERIDAN",1,"NORTHWEST",2 "KS","SHERMAN",1,"NORTHWEST",2 "KS","SMITH",2,"NORTH CENTRAL",2 "KS","STAFFORD",8,"SOUTH CENTRAL",3 "KS","STANTON",7,"SOUTHWEST",...

  14. TECHNICAL BASIS DOCUMENT NO. 1: CLIMATE AND INFILTRATION

    SciTech Connect (OSTI)

    NA

    2004-05-01

    For the past 20 years, extensive field, laboratory, and modeling investigations have been performed at Yucca Mountain, which have led to the development of a number of conceptual models of infiltration and climate for the Yucca Mountain region around the repository site (Flint, A.L. et al. 2001; Wang and Bodvarsson 2003). Evaluating the amount of infiltrating water entering the subsurface is important, because this water may affect the percolation flux, which, in turn, controls seepage into the waste emplacement drifts and radionuclide transport from the repository to the water table. Forecasting of climatic data indicates that during the next 10,000 years at Yucca Mountain, the present-day climate should persist for 400 to 600 years, followed by a warmer and much wetter monsoon climate for 900 to 1,400 years, and by a cooler and wetter glacial-transition climate for the remaining 8,000 to 8,700 years. The analysis of climatic forecasting indicates that long-term climate conditions are generally predictable from a past climate sequence, while short-term climate conditions and weather predictions may be more variable and uncertain. The use of past climate sequences to bound future climate sequences involves several types of uncertainties, such as (1) uncertainty in the timing of future climate, (2) uncertainty in the methodology of climatic forecasting, and (3) uncertainty in the earth's future physical processes. Some of the uncertainties of the climatic forecasting are epistemic (reducible) and aleatoric (irreducible). Because of the size of the model domain, INFIL treats many flow processes in a simplified manner. For example, uptake of water by roots occurs according to the ''distributed model'', in which available water in each soil layer is withdrawn in proportion to the root density in that layer, multiplied by the total evapotranspirative demand. Runoff is calculated simply as the excess of precipitation over a sum of infiltration and water storage in the root zone. More significantly, water movement throughout the soil profile is treated according to the bucket model, in which the amount of water that moves down from one layer to the next is equal to the mass of water in excess of field capacity in the upper layer. The development of a numerical model of infiltration involves a number of abstractions and simplifications to represent the complexity of environmental conditions at Yucca Mountain, such as the arid climate, mountain-type topography, heterogeneous soils and fractured rock, and irregular soil-rock interface.

  15. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  16. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  17. Building America Top Innovations Hall of Fame Profile Â… Building Science-Based Climate Maps

    Energy Savers [EERE]

    a climate zone map for the DOE based on the IECC climate zone map. It may not be intuitively obvious why a U.S. climate zone map is so important to the construction industry. Thanks to this Building America innovation, building science education, energy code development, and residential design can much more effectively integrate climate-specific best practices and advanced technologies across the United States. Climate has a major impact on the energy use of residential buildings, and energy

  18. Guides and Case Studies for Marine Climates | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    climate zone. California Project: Cottle Zero Net Energy Home - San Jose Builder: One Sky Homes Profile: This builder took home the Grand Winner prize in the Custom Builder...

  19. Guides and Case Studies for All Climates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All Climates Guides and Case Studies for All Climates The Map of the United States shows climate zones in different colors. The Marine zone contains the Pacific coast from the Canadi The U.S. Department of Energy (DOE) Building America program has developed a series of technology-specific case studies and best practices guides that may be applicable to all climate zones. Technology Case Studies Guides for All Climates Technology Solutions for New and Existing Homes Image of a low-load HVAC

  20. Zone separator for multiple zone vessels

    DOE Patents [OSTI]

    Jones, John B. (Grand Junction, CO)

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  1. The effect of climate change, population distribution, and climate

    Office of Scientific and Technical Information (OSTI)

    mitigation on building energy use in the U.S. and China (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China Citation Details In-Document Search Title: The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China A changing climate will affect the energy system in a number of

  2. Building America Best Practices Series, Volume 7.2: Guide to Determining Climate Regions by County

    Broader source: Energy.gov [DOE]

    This report describes the climate zone designations used by the U.S. Department of Energy Building America Program, and is intended to help builders to identify the appropriate climate designation for the counties in which they are building.

  3. Netherlands Climate Assistance Program | Open Energy Information

    Open Energy Info (EERE)

    search Name: Netherlands Climate Assistance Program Address: ETC International P.O.Box 64, 3830 AB Place: Leusden, Netherlands Phone Number: 31 (0) 33 432 6000 Website:...

  4. Human choice and climate change. Volume 2: Resources and technology

    SciTech Connect (OSTI)

    Rayner, S.; Malone, E.L.

    1997-12-31

    Foreward: Preface; Introduction; The natural science of global climate change; Land and water use; Coastal zones and oceans; Energy and industry; Energy and social systems; Technological change; and Sponsoring organizations, International Advisory Board, and project participants.

  5. Potential for Microbial Stimulation in Deep Vadose Zone Sediments by Gas-Phase Nutrients

    SciTech Connect (OSTI)

    Li, S.W.; Plymale, A. E.; Brockman, F.J.

    2006-04-05

    Viable microbial populations are low, typically 10{sup 4} cells per gram, in deep vadose zones in arid climates. There is evidence that microbial distribution in these environments is patchy. In addition, infiltration or injection of nutrient-laden water has the potential to spread and drive contaminants downward to the saturated zone. For these reasons, there are uncertainties regarding the feasibility of bioremediation of recalcitrant contaminants in deep vadose zones. The objectives of this study were to investigate the occurrence of denitrifying activity and gaseous carbon-utilizing activity in arid-climate deep vadose zone sediments contaminated with, and/or affected by past exposure to, carbon tetrachloride (CT). These metabolisms are known to degrade CT and/or its breakdown product chloroform under anoxic conditions. A second objective was to determine if CT would be degraded in these sediments under unsaturated, bulk-phase aerobic incubation conditions. Both denitrifier population (determined by MPN) and microbial heterotrophic activity (measured by mineralization of 14-C labeled glucose and acetate) were relatively low and the sediments with greater in situ moisture (10-21% versus 2-7%) tended to have higher activities. When sediments were amended with gaseous nutrients (nitrous oxide and triethyl/tributyl phosphate) and gaseous C sources (a mixture of methane, ethane, propylene, propane, and butane) and incubated for 6 months, approximately 50% of the samples showed removal of one or more gaseous C sources, with butane most commonly used (44% of samples), followed by propylene (42%), propane (31%), ethane (22%), and methane (4%). Gaseous N and gaseous P did not stimulate removal of gaseous C substrates compared to no addition of N and P. CT and gaseous C sources were spiked into the sediments that removed gaseous C sources to determine if hydrocarbon-degraders have the potential to degrade CT under unsaturated conditions. In summary, gaseous C sources--particularly butane and propylene--have promise for increasing the numbers and activity of indigenous microbial populations in arid-climate deep vadose zone sediments.

  6. ARM - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Climate Climate refers to the long-term changes in atmospheric conditions including temperature, rainfall, wind, humidity, pressure and cloudiness. One would need to take into account the fact that superimposed on the arithmetical average of

  7. Renewable Energy Renaissance Zones

    Broader source: Energy.gov [DOE]

    For the purposes of renaissance zone designation, “renewable energy facility” means a facility that creates energy, fuels, or chemicals directly from the wind, the sun, trees, grasses, bio-solids,...

  8. Deep Vadose Zone - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Range Deep Vadose Zone Program Plan, (Rev. 0) - (PDF) Implementation Plan for the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC) - (PDF) Ecology's groundwater...

  9. Climate change and forests in India: note from the guest editors

    SciTech Connect (OSTI)

    Ravindtranath, N.H.; Aaheim, Asbjporn

    2010-12-23

    Forestry is one of the most important sectors in the context of climate change. It lies at the center-stage of global mitigation and adaptation efforts. Yet, it is one of the least understood sectors, especially in tropical zones, which constitute a significant portion of the global forests. Recently, there has been a growing interest in forests in addressing global climate change. The IPCC Assessment Report 4 (2007) Chapters related to forests have highlighted the limited number of studies on the impact of climate change on forests at the regional, national and sub-national level, while policy makers need information at these scales. Further, implication of projected climate change on mitigation potential of forest sector is only briefly mentioned in the IPCC report, with limited literature to support the conclusions. India is one among the top ten nations in the world in terms of forest cover. It is also sixth among the tropical countries in terms of forested area. As IPCC Assessment Report 5 work is about to be initiated soon, studies on the impact of climate change on forests as well as the mitigation potential of the forest sector, particularly at regional and national level, will be of great interest to the scientific and policy community. In order to conserve the carbon stored in forests and to reduce CO2 emissions from the forest sector, the Reduced Emissions from Deforestation and Degradation (REDD) mechanism is now being finalized under the UNFCCC. In this context, climate change itself may affect the mitigation potential significantly, and it is important to understand how vulnerable the forest carbon stock (biomass and soil) in the tropics is to the projected climate change. In fact, there is a need to study the impact of climate change on forests for all the major forested countries

  10. Building America Climate-Specific Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America » Tools & Resources » Building America Climate-Specific Guidance Building America Climate-Specific Guidance Marine Hot-Humid Hot-Dry/Mixed-Dry Mixed-Humid Cold/Very Cold Click on the map to access case studies in specific climate regions or visit the All Climates page to see technology-specific case studies applicable to all climate zones. 2015 Housing Innovation Awards! See the 2015 Housing Innovation Award winners-industry leaders who represent the very best in innovation on the

  11. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  12. Special Lecture - Climate Prisms: Understanding Climate Change...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Lecture - Climate Prisms Special Lecture - Climate Prisms: Understanding Climate Change for All WHEN: Feb 17, 2015 5:30 PM - 7:00 PM WHERE: Bradbury Science Museum, 1350...

  13. Study reveals urban smoke absorbs sunlight, exacerbating climate warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study reveals urban smoke absorbs sunlight Study reveals urban smoke absorbs sunlight, exacerbating climate warming Cloaking urban areas and wildfire zones, tiny smoke particles suspended in the atmosphere have a sizeable effect on our climate. September 30, 2015 A new study by a science team led by Los Alamos National Laboratory stresses the importance of understanding mixed black and brown carbon in smoke emissions for climate models. The particulates found in urban smoke are especially prone

  14. Our Changing Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Our Changing Climate Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of...

  15. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  16. Building America Best Practices Series: Volume 7.1: Guide to Determining Climate Regions by County

    SciTech Connect (OSTI)

    Baechler, Michael C.; Williamson, Jennifer L.; Gilbride, Theresa L.; Cole, Pamala C.; Hefty, Marye G.; Love, Pat M.

    2010-08-30

    This report for DOE's Building America program helps builders identify which Building America climate region they are building in. The guide includes maps comparing the Building America regions with climate designations used in the International Energy Conservation Code for Residential Buildings and lists all U.S. counties by climate zone. A very brief history of the development of the Building America climate map and descriptions of each climate zone are provided. This report is available on the Building America website www.buildingamerica.gov.

  17. Vadose zone water fluxmeter

    DOE Patents [OSTI]

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  18. Enterprise Zone | Open Energy Information

    Open Energy Info (EERE)

    Zone Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleEnterpriseZone&oldid542697"...

  19. Contaminants in Vadose Zone Environments

    Broader source: Energy.gov [DOE]

    The Deep Vadose Zone – Applied Field Research Initiative (DVZ-AFRI) partnered with the Vadose Zone Journal to create a special section of the journal's November 2012 issue.

  20. Renewable liquid reflecting zone plate

    DOE Patents [OSTI]

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  1. Radiant zone heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  2. Santa Clara County- Zoning Ordinance

    Broader source: Energy.gov [DOE]

    Santa Clara County's Zoning Ordinance includes standards for wind and solar structures for residential, agricultural, and commercial uses.

  3. Climate change: Effects on reef island resources

    SciTech Connect (OSTI)

    Oberdorfer, J.A.; Buddemeier, R.W.

    1988-06-27

    The salinity, depth, quantity, and reliability of fresh groundwater resources on coral reef islands and coastlines are environmentally important parameters. Groundwater influences or controls the terrestrial flora, salinity, and nutrient levels in the near-shore benthic environment, the rate and nature of sediment diagenesis, and the density of human habitation. Data from a number of Indo-Pacific reef islands suggest that freshwater inventory is a function of rainfall and island dimensions. A numerical model (SUTRA) has been used to simulate the responses of atoll island groundwater to changes in recharge (precipitation), sea level, and loss of island area due to flooding. The model has been calibrated for Enjebi Island, Enewetak Atoll, where a moderately permeable, water-table aquifer overlies a high-permeability formation. Total freshwater inventory is a monotonic but nonlinear function of recharge. If recharge and island area are constant, rising sea level increases the inventory of fresh water by increasing the useful volume of the aquifer above the high-permeability zone. Flooding of land area reduces the total freshwater inventory approximately in proportion to the loss of recharge area. The most significant results of the model simulation, however, are the findings that the inventory of low-salinity water (and by extrapolation, potable water) is disproportionately sensitive to changes in recharge, island dimensions, or recharge. Island freshwater resources may therefore be unexpectedly vulnerable to climate change.

  4. Regional-Scale Climate Change: Observations and Model Simulations

    SciTech Connect (OSTI)

    Raymond S. Bradley; Henry F. Diaz

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earthâ??s climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  5. Tribal Climate Change Webinars: BIA's Climate Change Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Climate Change Webinars: BIA's Climate Change Competitive Award Process Overview Tribal Climate Change Webinars: BIA's Climate Change Competitive Award Process Overview...

  6. MCA4Climate - Guidance for scientifically sound climate change...

    Open Energy Info (EERE)

    MCA4Climate - Guidance for scientifically sound climate change planning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Multicriteria Analysis for Climate (MCA4climate)...

  7. Liquid zone seal

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA)

    2001-01-01

    A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.

  8. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

  9. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    The annual Climate Leadership Conference convenes a global audience of climate, energy, and sustainability professionals to address climate change through policy, innovation, and business solutions. Now in its fifth year, the 2016 event will host the first U.S. climate conference post-Paris to further accelerate climate solutions and a low-carbon economy.

  10. Climate Modeling using High-Performance Computing

    SciTech Connect (OSTI)

    Mirin, A A

    2007-02-05

    The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon Science Group of Energy and Environment (E and E) are working together to improve predictions of future climate by applying the best available computational methods and computer resources to this problem. Over the last decade, researchers at the Lawrence Livermore National Laboratory (LLNL) have developed a number of climate models that provide state-of-the-art simulations on a wide variety of massively parallel computers. We are now developing and applying a second generation of high-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well.

  11. Big Numbers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of equipment, we

  12. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 34, GRIB including SZIP compression,...

  13. NASA Award for Marginal Ice Zone Observations and Process Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MIZOPEX) Award for Marginal Ice Zone Observations and Process Experiment (MIZOPEX) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  14. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during years with abnormally wet winters While we cannot observe future climate, Williams said, we can consider projections of future climate trends produced by a collection of...

  15. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  16. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  17. Climate Change Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Interior Climate Change Response "From the Everglades to the Great Lakes to Alaska and everywhere in between, climate change is a leading threat to natural and cultural ...

  18. Guides and Case Studies for Hot-Humid Climates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot-Humid Climates Guides and Case Studies for Hot-Humid Climates Map of the Hot and Humid Climate Zone of the United States. This zone covers eastern Texas through Florida and reaches up to mid-Georgia it also includes Puerto Rico and Hawaii. The U.S. Department of Energy (DOE) Building America program has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in hot-humid climates. Best Practice Guides 40% Whole-House

  19. Breathing zone air sampler

    DOE Patents [OSTI]

    Tobin, John (Bethel Park, PA)

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  20. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code also allows for preservation plans in historic districts to incorporate sustainability measures such as solar technologies and other energy generation and efficiency measures.

  1. Western Renewable Energy Zones (Presentation)

    SciTech Connect (OSTI)

    Hein, J.

    2011-06-01

    This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

  2. Deep Vadose Zone Field Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HANFORD ADVISORY BOARD, RAP March 6, 2013 Presented by: John Morse DEEP VADOSE ZONE ACTIVITIES Page 2 Deep Vadose Zone Areas Page 3 Deep Vadose Zone Field Activities FY 2014 Fieldwork Began in 2011 Page 4 Deep Vadose Zone Field Activities, Continued Page 5 0 20,000 40,000 60,000 80,000 100,000 120,000 0 500 1,000 1,500 2,000 2,500 3,000 Cumulative Gallons Removed Weekly Gallons Removed Perched Water Removal Shut down to address increased contamination levels and replace submersible pump Page 6 0

  3. Climate selection and development of climate indicators

    SciTech Connect (OSTI)

    Bowen, W.M.; Moreno, S.; Olsen, A.R.

    1982-09-01

    A climate analysis procedure for selecting climate locations which would represent the variation in climate conditions throughout the United States is documented. Separate energy analysis projects for three building categories were to use the results of the climate location project. The categories are: commercial buildings (including multifamily residences), single family residences, and mobile homes. The overall objectives, approach, and method used for all three categories are presented, then the specific application of the general method to each building category is discussed. Climate selection results, conclusions, recommendations, and limits for each building category are presented within the description of the application of the method for that category. (LEW)

  4. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  5. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

  6. EPA Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA), in collaboration with the Association of Climate Change Officers (ACCO), Center for Climate and Energy Solutions (C2ES), and the Climate Registry, is hosting the Climate Leadership Conference in Washington, D.C., on Feb. 23-25, 2015.

  7. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    Hosted and organized by the Association of Climate Change Officers (ACCO), Center for Climate and Energy Solutions (C2ES), and the Climate Registry, the three-day conference will showcase how new business opportunities, current policies, technologies, climate solutions and energy transformation will drive our low-carbon future.

  8. Environmental Tracers for Determining Water Resource Vulnerability to Climate Change

    SciTech Connect (OSTI)

    Singleton, M

    2009-07-08

    Predicted changes in the climate will have profound impacts on water availability in the Western US, but large uncertainties exist in our ability to predict how natural and engineered hydrological systems will respond. Most predictions suggest that the impacts of climate change on California water resources are likely to include a decrease in the percentage of precipitation that falls as snow, earlier onset of snow-pack melting, and an increase in the number of rain on snow events. These processes will require changes in infrastructure for water storage and flood control, since much of our current water supply system is built around the storage of winter precipitation as mountain snow pack. Alpine aquifers play a critical role by storing and releasing snowmelt as baseflow to streams long after seasonal precipitation and the disappearance of the snow pack, and in this manner significantly impact the stream flow that drives our water distribution systems. Mountain groundwater recharge and, in particular, the contribution of snowmelt to recharge and baseflow, has been identified as a potentially significant effect missing from current climate change impact studies. The goal of this work is to understand the behavior of critical hydrologic systems, with an emphasis on providing ground truth for next generation models of climate-water system interactions by implementing LLNL capabilities in environmental tracer and isotopic science. We are using noble gas concentrations and multiple isotopic tracers ({sup 3}H/{sup 3}He, {sup 35}S, {sup 222}Rn, {sup 2}H/{sup 1}H, {sup 18}O/{sup 16}O, and {sup 13}C/{sup 12}C) in groundwater and stream water in a small alpine catchment to (1) provide a snapshot of temperature, altitude, and physical processes at the time of recharge, (2) determine subsurface residence times (over time scales ranging from months to decades) of different groundwater age components, and (3) deconvolve the contribution of these different groundwater components to alpine stream baseflow. This research is showing that groundwater in alpine areas spends between a few years to several decades in the saturated zone below the surface, before feeding into streams or being pumped for use. This lag time may act to reduce the impact on water resources from extreme wet or dry years. Furthermore, our measurements show that the temperature of water when it reaches the water table during recharge is 4 to 9 degrees higher than would be expected for direct influx of snowmelt, and that recharge likely occurs over diffuse vegetated areas, rather than along exposed rock faces and fractures. These discoveries have implications for how alpine basins will respond to climate effects that lead to more rain than snow and earlier snow pack melting.

  9. Document Details Document Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA

  10. Formulating Climate Change Scenarios to Inform Climate - Resilient...

    Open Energy Info (EERE)

    Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Formulating Climate Change...

  11. Vadose Zone Transport Field Study: Summary Report

    SciTech Connect (OSTI)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.

  12. Building America Best Practices Series: Guide to Determining Climate Regions by County

    SciTech Connect (OSTI)

    Gilbride, Theresa L.

    2008-10-01

    This document describes the eight climate region designations used by the US Department of Energy Building America Program. In addition to describing the climate zones, the document includes a complete list of every county in the United States and their climate region designations. The county lists are grouped by state. The doucment is intended to assist builders to easily identify what climate region they are building in and therefore which climate-specific Building America best practices guide would be most appropriate for them.

  13. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  14. Eos Climate | Open Energy Information

    Open Energy Info (EERE)

    Eos Climate Place: South San Francisco, California Zip: 94080 Product: California-based firm focused on developing climate change mitigation strategies. References: Eos Climate1...

  15. Cohesive Zone Model User Element

    Energy Science and Technology Software Center (OSTI)

    2007-04-17

    Cohesive Zone Model User Element (CZM UEL) is an implementation of a Cohesive Zone Model as an element for use in finite element simulations. CZM UEL computes a nodal force vector and stiffness matrix from a vector of nodal displacements. It is designed for structural analysts using finite element software to predict crack initiation, crack propagation, and the effect of a crack on the rest of a structure.

  16. Predicting the Response of Electricity Load to Climate Change

    SciTech Connect (OSTI)

    Sullivan, Patrick; Colman, Jesse; Kalendra, Eric

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  17. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    The Climate Leadership Conference is your annual exchange for addressing global climate change through policy, innovation, and business solutions. Forward-thinking lead­ers from busi­ness, gov­ern...

  18. Indigenous Climate Justice Symposium

    Broader source: Energy.gov [DOE]

    The Indigenous Climate Justice Symposium brings together Native speakers who are working to keep fossil fuels in the ground, by stopping coals terminals, oil trains and fracking, and protecting treaty resources from the threat of climate change.

  19. GridZone | Open Energy Information

    Open Energy Info (EERE)

    search Name: GridZone Sector: Efficiency, Services, Transmission Technology: Smart Grid, Energy Storage, Energy Security ParentHolding Organization: GridZone Limited Company...

  20. Transition Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Unknown Planned Capacity 1 Geothermal Areas within the Transition Zone Geothermal Region Energy Generation Facilities within the Transition Zone Geothermal Region Geothermal Power...

  1. Wetlands and Riparian Zones | Open Energy Information

    Open Energy Info (EERE)

    Wetlands and Riparian Zones Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWetlandsandRiparianZones&oldid612217...

  2. Applied Field Research Initiative Deep Vadose Zone

    Office of Environmental Management (EM)

    in vadose zone environments * Overcomes heterogeneous distribution * Penetrates low-permeability, contaminant source zones Use of Foam Delivery Technology in the subsurface (not to...

  3. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participated in the 2013 Domenici Public Policy Conference Carbon Capture & Storage, Carbon Storage, Climate, Earth Sciences Research Center, Energy, Global Climate & Energy, Global Climate & Energy, News, News & Events, Systems Analysis, Systems Engineering, Water Security Sandia Participated in the 2013 Domenici Public Policy Conference Marianne Walck, Director of Sandia's Geoscience, Climate, and Consequence Effects Center, spoke on "Hydraulic Fracturing: The Role of

  4. ARM - Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SitesClimate Change Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Climate Change A Student's Guide to Global Climate Change The U.S. Environmental Protection Agency (EPA) developed A Student's Guide to Global Climate Change to help provide students and educators with clear, accurate

  5. Global Catastrophes in Perspective: Asteroid Impacts vs. Climate Change.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Global Catastrophes in Perspective: Asteroid Impacts vs. Climate Change. Citation Details In-Document Search Title: Global Catastrophes in Perspective: Asteroid Impacts vs. Climate Change. Abstract not provided. Authors: Boslough, Mark Bruce Elrick ; Harris, Alan W. Publication Date: 2008-08-01 OSTI Identifier: 1142731 Report Number(s): SAND2008-5552C 511673 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: American

  6. Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Dry and Mixed-Dry Climates Guides and Case Studies for Hot-Dry and Mixed-Dry Climates Map of the Hot-Dry and Mixed-Dry Zone of the United States. The zone contains the eastern side of California and follows the US border to cover the western half of Texas. The Department of Energy (DOE) has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in hot-dry and mixed-dry climates. Best Practice Guides 40%

  7. Reducing the Particulate Emission Numbers in DI Gasoline Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Particulate Emission Numbers in DI Gasoline Engines Reducing the Particulate Emission Numbers in DI Gasoline Engines Formation of droplets was minimized through optimization of fuel vaporization and distribution avoiding air/fuel zones richer than stoichiometric and temperatures that promote particle formation PDF icon deer10_klindt.pdf More Documents & Publications Bosch Powertrain Technologies Vehicle Emissions Review - 2012 Ethanol Effects on Lean-Burn and

  8. Texas Natural Gas Number of Residential Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Texas Natural Gas Number of Commercial Consumers (Number of Elements...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. Connecticut Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  11. Connecticut Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  12. North Carolina Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. New York Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  14. New York Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  15. Indiana Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. Global fish production and climate change

    SciTech Connect (OSTI)

    Brander, K.M.

    2007-12-11

    Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.

  17. Climate Mag_27JUN2013_ms07022013.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CLIMATE AND IMPACT RESEARCH at Los Alamos National Laboratory Climate Research and National Security Los Alamos National Laboratory is truly a national security science laboratory, tackling some of the world's most challenging science and engineering issues. We are interested in the potential future impacts of climate change on global security, such as the coastal e ects of sea level rise, increased number of extreme storms, and the consequences of extensive regional tree mortality. Gaining a

  18. Deep Vadose Zone | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Vadose Zone Deep Vadose Zone The Mission of the Deep Vadose Zone Applied Field Research Initiative is to protect water resources across the DOE complex over the long-term by developing effective solutions to solve DOE's most challenging deep vadose zone characterization, remediation, monitoring, and prediction challenges. PDF icon Deep Vadose Zone More Documents & Publications Remediation of Mercury and Industrial Contaminants Hanford Site C Tank Farm Meeting Summary - May 2010 Advanced

  19. Zoning and Permitting Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zoning and Permitting Resources Zoning and Permitting Resources Zoning and permitting is commonly controlled by local governments and may be applicable to both residential and commercial properties. However, the state may regulate the scope of local zoning laws. For instance, some states have passed laws limiting the ability of local governments to prohibit or unreasonably regulate the installation and operation of renewable energy systems. Zoning laws may also be structured to encourage energy

  20. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Attends World Water Week in Stockholm Climate, Energy, Global Climate & Energy, Modeling, Modeling & Analysis, News, News & Events, Water Security Sandia Team Attends World Water Week in Stockholm Stephanie Kuzio, Vince Tidwell, and Tom Lowry (all from Sandia's Earth Systems Analysis Dept.), represented Sandia's Water and Environment Program (part of the Sandia's Climate & Environment Program Area) at World Water Week in Stockholm August 31-September 5th. The theme for this

  1. ARM - Different Climates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListDifferent Climates Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Different Climates The earth's climate varies from place to place. Locations near the Equator tend to be constantly hot and wet, such as the Pacific islands and the Amazon Basins. Some places near the North and South

  2. Climate Change Response

    Office of Environmental Management (EM)

    Interior Climate Change Response "From the Everglades to the Great Lakes to Alaska and everywhere in between, climate change is a leading threat to natural and cultural resources across America, and tribal communities are often the hardest hit by severe weather events such as droughts, floods and wildfires" - Secretary of the Interior Sally Jewell "Impacts of climate change are increasingly evident for American Indian and Alaska Native communities and, in some cases, threaten the

  3. CANDIDATE PLANETS IN THE HABITABLE ZONES OF KEPLER STARS

    SciTech Connect (OSTI)

    Gaidos, Eric

    2013-06-20

    A key goal of the Kepler mission is the discovery of Earth-size transiting planets in ''habitable zones'' where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p{sub HZ} that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass, age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p{sub HZ}. Sixty-two planets have p{sub HZ} > 0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone ({eta}{sub Circled-Plus }) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.

  4. An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca

    Office of Scientific and Technical Information (OSTI)

    Mountain. (Conference) | SciTech Connect An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Abstract not provided. Authors: Arnold, Bill Walter ; Kelkar, Sharad ; Ding, Mei ; Chu, Shaoping ; ROBINSON, BRUCE ; Meijer, Arend Publication Date: 2007-09-01 OSTI Identifier: 1147462 Report Number(s): SAND2007-5874C 521772 DOE Contract

  5. Overlap zoned electrically heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

    2011-07-19

    A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  6. Climate Change Webinar Series

    Broader source: Energy.gov [DOE]

    Experts will provide findings from the Quadrennial Energy Review (QER) and outline federal energy policy objectives, proposals, and actions as they relate to climate change and resilience for...

  7. Climate & Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  8. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 3/4, GRIB including SZIP compression, EXTRA, SERVICE and IEG are supported as IO-formats. Apart from that cdo can be used to analyse any kind gridded data not related to climate science. CDO has very small memory requirements and can process files larger than the physical memory. How to Use CDO module load cdo cdo [Options] Operators ... Further

  9. Climate Prisms Bios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment (NGEE-Arctic); and has amassed photos, videos, and data charting Arctic climate change. Mark Petersen Mark Petersen, Scientist Mark Petersen works at the...

  10. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    SciTech Connect (OSTI)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  11. Cheyenne County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Cheyenne County, Kansas Bird City, Kansas St. Francis, Kansas Retrieved from "http:en.openei.orgw...

  12. Oceana County, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Oceana County, Michigan Hart, Michigan Hesperia, Michigan New Era, Michigan Pentwater, Michigan Rothbury, Michigan...

  13. Pender County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Pender County, North Carolina Atkinson, North Carolina Burgaw, North Carolina St. Helena, North Carolina Surf City, North...

  14. Frontier County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Frontier County, Nebraska Curtis, Nebraska Eustis, Nebraska Maywood, Nebraska Moorefield, Nebraska Stockville, Nebraska...

  15. Oconee County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Oconee County, Georgia Bishop, Georgia Bogart, Georgia North High Shoals, Georgia Watkinsville, Georgia Retrieved...

  16. Sioux County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Sioux County, Nebraska Harrison, Nebraska Retrieved from "http:en.openei.orgwindex.php?titleSiouxCounty,Nebras...

  17. Bibb County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Bibb County, Alabama Brent, Alabama Centreville, Alabama Vance, Alabama West Blocton, Alabama Woodstock, Alabama...

  18. Talladega County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Talladega County, Alabama Bon Air, Alabama Childersburg, Alabama Lincoln, Alabama Mignon, Alabama Munford, Alabama...

  19. Washington County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype B. Places in Washington County, Idaho Cambridge, Idaho Midvale, Idaho Weiser, Idaho Retrieved from "http:en.openei.orgw...

  20. Lincoln County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lincoln County, Mississippi Brookhaven, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleLincolnCounty,...

  1. Kidder County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Kidder County, North Dakota Dawson, North Dakota Kickapoo, North Dakota Pettibone, North Dakota Robinson, North Dakota...

  2. Hopkins County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Hopkins County, Kentucky Dawson Springs, Kentucky Earlington, Kentucky Hanson, Kentucky Madisonville, Kentucky Mortons...

  3. Caldwell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Caldwell County, Kentucky Dawson Springs, Kentucky Fredonia, Kentucky Princeton, Kentucky Retrieved from "http:...

  4. Allen Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in Allen Parish, Louisiana Elizabeth, Louisiana Kinder, Louisiana Oakdale, Louisiana Oberlin, Louisiana Reeves, Louisiana...

  5. Elbert County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype B. Places in Elbert County, Colorado Elizabeth, Colorado Kiowa, Colorado Ponderosa Park, Colorado Simla, Colorado Retrieved from...

  6. Oldham County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Oldham County, Kentucky Buckner, Kentucky Crestwood, Kentucky Goshen, Kentucky La Grange, Kentucky Orchard Grass...

  7. Calhoun County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Calhoun County, South Carolina Cameron, South Carolina St. Matthews, South Carolina Retrieved from "http:en.openei.orgw...

  8. Clinton County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Clinton County, Missouri Cameron, Missouri Gower, Missouri Holt, Missouri Lathrop, Missouri Osborn, Missouri...

  9. Jim Hogg County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in Jim Hogg County, Texas Guerra, Texas Hebbronville, Texas Las Lomitas, Texas South Fork Estates, Texas Retrieved from...

  10. Franklin County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Franklin County, Georgia Canon, Georgia Carnesville, Georgia Franklin Springs, Georgia Gumlog, Georgia Lavonia,...

  11. Stanton County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Stanton County, Kansas Johnson City, Kansas Manter, Kansas Retrieved from "http:en.openei.orgw...

  12. Lonoke County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lonoke County, Arkansas Allport, Arkansas Austin, Arkansas Cabot, Arkansas Carlisle, Arkansas Coy, Arkansas England,...

  13. Monroe County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Monroe County, Kentucky Fountain Run, Kentucky Gamaliel, Kentucky Tompkinsville, Kentucky Retrieved from "http:...

  14. Pope County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Pope County, Arkansas Atkins, Arkansas Dover, Arkansas Hector, Arkansas London, Arkansas Pottsville, Arkansas...

  15. Cheyenne County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Cheyenne County, Nebraska Dalton, Nebraska Gurley, Nebraska Lodgepole, Nebraska Potter, Nebraska Sidney, Nebraska...

  16. Fulton County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Fulton County, Arkansas Ash Flat, Arkansas Cherokee Village, Arkansas Hardy, Arkansas Horseshoe Bend, Arkansas...

  17. Sharp County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sharp County, Arkansas Ash Flat, Arkansas Cave City, Arkansas Cherokee Village, Arkansas Evening Shade, Arkansas...

  18. Pepin County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Pepin County, Wisconsin Durand, Wisconsin Frankfort, Wisconsin Pepin, Wisconsin Stockholm, Wisconsin Waterville,...

  19. Gratiot County, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Gratiot County, Michigan Alma, Michigan Ashley, Michigan Breckenridge, Michigan Ithaca, Michigan Perrinton, Michigan...

  20. Crawford County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Crawford County, Arkansas Alma, Arkansas Cedarville, Arkansas Chester, Arkansas Dyer, Arkansas Kibler, Arkansas...

  1. Clark County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Clark County, South Dakota Bradley, South Dakota Clark, South Dakota Garden City, South Dakota Naples, South Dakota...

  2. Lafayette County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lafayette County, Arkansas Bradley, Arkansas Buckner, Arkansas Lewisville, Arkansas Stamps, Arkansas Retrieved from...

  3. Crittenden County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Crittenden County, Kentucky Marion, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleCrittendenCounty,Ke...

  4. Marshall County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Marshall County, Illinois Henry, Illinois Hopewell, Illinois La Rose, Illinois Lacon, Illinois Sparland, Illinois...

  5. Claiborne County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Claiborne County, Mississippi Port Gibson, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleClaiborneCo...

  6. Newton County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 5 Climate Zone Subtype A. Places in Newton County, Indiana Brook, Indiana Goodland, Indiana Kentland, Indiana Lake Village, Indiana Morocco, Indiana...

  7. Hayes County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Hayes County, Nebraska Hamlet, Nebraska Hayes Center, Nebraska Palisade, Nebraska Retrieved from "http:...

  8. Brooks County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Brooks County, Texas Airport Road Addition, Texas Cantu Addition, Texas Encino, Texas Falfurrias, Texas Flowella,...

  9. Washakie County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Washakie County, Wyoming Airport Road, Wyoming Mc Nutt, Wyoming South Flat, Wyoming Ten Sleep, Wyoming Washakie Ten,...

  10. Jasper County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Jasper County, Missouri Airport Drive, Missouri Alba, Missouri Asbury, Missouri Avilla, Missouri Brooklyn Heights,...

  11. Hancock County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Hancock County, Georgia Sparta, Georgia Retrieved from "http:en.openei.orgwindex.php?titleHancockCounty,Georgi...

  12. Webster Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Webster Parish, Louisiana Cotton Valley, Louisiana Cullen, Louisiana Dixie Inn, Louisiana Doyline, Louisiana Dubberly,...

  13. Shannon County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Shannon County, Missouri Birch Tree, Missouri Eminence, Missouri Summersville, Missouri Winona, Missouri Retrieved from...

  14. Fillmore County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Fillmore County, Nebraska Exeter, Nebraska Fairmont, Nebraska Geneva, Nebraska Grafton, Nebraska Milligan, Nebraska...

  15. Hand County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Hand County, South Dakota Miller, South Dakota Northwest Hand, South Dakota Ree Heights, South Dakota St. Lawrence,...

  16. Chickasaw County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Chickasaw County, Iowa Alta Vista, Iowa Bassett, Iowa Fredericksburg, Iowa Ionia, Iowa Lawler, Iowa Nashua, Iowa New...

  17. Marion County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Marion County, Georgia Buena Vista, Georgia Retrieved from "http:en.openei.orgwindex.php?titleMarionCounty,Georgia...

  18. McCook County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in McCook County, South Dakota Bridgewater, South Dakota Canistota, South Dakota Montrose, South Dakota Salem, South Dakota...

  19. Rockingham County, Virginia: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Rockingham County, Virginia Bridgewater, Virginia Broadway, Virginia Dayton, Virginia Elkton, Virginia Grottoes, Virginia...

  20. Rockbridge County, Virginia: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Rockbridge County, Virginia Glasgow, Virginia Goshen, Virginia Retrieved from "http:en.openei.orgw...

  1. Upson County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Upson County, Georgia Hannahs Mill, Georgia Lincoln Park, Georgia Salem, Georgia Sunset Village, Georgia Thomaston,...

  2. Union County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in Union County, Florida Lake Butler, Florida Raiford, Florida Worthington Springs, Florida Retrieved from "http:...

  3. Pendleton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Pendleton County, Kentucky Butler, Kentucky Falmouth, Kentucky Williamstown, Kentucky Retrieved from "http:...

  4. St. Johns County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in St. Johns County, Florida Butler Beach, Florida Crescent Beach, Florida Fruit Cove, Florida Hastings, Florida...

  5. Choctaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Choctaw County, Alabama Butler, Alabama Gilbertown, Alabama Lisman, Alabama Needham, Alabama Pennington, Alabama...

  6. Breathitt County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Breathitt County, Kentucky Jackson, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleBreathittCounty,Ke...

  7. Morrow County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype B. Places in Morrow County, Oregon Boardman, Oregon Heppner, Oregon Ione, Oregon Irrigon, Oregon Lexington, Oregon Retrieved from...

  8. St. Clair County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in St. Clair County, Alabama Argo, Alabama Ashville, Alabama Leeds, Alabama Margaret, Alabama Moody, Alabama Odenville,...

  9. Garden County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Garden County, Nebraska Cisco, Nebraska Lewellen, Nebraska Oshkosh, Nebraska Retrieved from "http:en.openei.orgw...

  10. Orange County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Orange County, Indiana French Lick, Indiana Orleans, Indiana Paoli, Indiana West Baden Springs, Indiana Retrieved...

  11. Warren County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Warren County, Missouri Foristell, Missouri Innsbrook, Missouri Marthasville, Missouri...

  12. Garfield County, Washington: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype B. Places in Garfield County, Washington Pomeroy, Washington Retrieved from "http:en.openei.orgwindex.php?titleGarfieldCounty,W...

  13. Colfax County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype A. Places in Colfax County, Nebraska Clarkson, Nebraska Howells, Nebraska Leigh, Nebraska Richland, Nebraska Rogers, Nebraska...

  14. Barton County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Barton County, Kansas Albert, Kansas Claflin, Kansas Ellinwood, Kansas Galatia, Kansas Great Bend, Kansas...

  15. Powell County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Powell County, Montana Avon, Montana Deer Lodge, Montana Elliston, Montana Garrison, Montana Ovando, Montana...

  16. Cedar County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Cedar County, Missouri El Dorado Springs, Missouri Jerico Springs, Missouri Stockton, Missouri Umber View Heights,...

  17. Sumter County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sumter County, Alabama Cuba, Alabama Emelle, Alabama Epes, Alabama Gainesville, Alabama Geiger, Alabama Livingston,...

  18. Boone County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Registered Energy Companies in Boone County, Missouri AFuels Technologies LLC Renewable Alternatives...

  19. Meriwether County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Meriwether County, Georgia Gay, Georgia Greenville, Georgia Haralson, Georgia Lone Oak, Georgia Luthersville, Georgia...

  20. Effingham County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in Effingham County, Georgia Guyton, Georgia Rincon, Georgia Springfield, Georgia Retrieved from "http:en.openei.orgw...

  1. Caswell County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Caswell County, North Carolina Milton, North Carolina Yanceyville, North Carolina Retrieved from "http:en.openei.orgw...

  2. Murray County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype A. Places in Murray County, Minnesota Avoca, Minnesota Chandler, Minnesota Currie, Minnesota Dovray, Minnesota...

  3. Callahan County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype B. Places in Callahan County, Texas Baird, Texas Clyde, Texas Cross Plains, Texas Putnam, Texas Retrieved from "http:...

  4. Benton County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Benton County, Missouri Cole Camp, Missouri Ionia, Missouri Lincoln, Missouri Warsaw, Missouri Retrieved from...

  5. Iron County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Iron County, Wisconsin Anderson, Wisconsin Carey, Wisconsin Gurney, Wisconsin Hurley, Wisconsin Kimball, Wisconsin...

  6. Grimes County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Grimes County, Texas Anderson, Texas Bedias, Texas Navasota, Texas Todd Mission, Texas Retrieved from "http:...

  7. Lauderdale County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lauderdale County, Alabama Anderson, Alabama Florence, Alabama Killen, Alabama Lexington, Alabama Rogersville, Alabama...

  8. Kingman County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Kingman County, Kansas Cunningham, Kansas Kingman, Kansas Nashville, Kansas Norwich, Kansas Penalosa, Kansas Spivey,...

  9. Pawnee County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Pawnee County, Oklahoma Blackburn, Oklahoma Cleveland, Oklahoma Hallett, Oklahoma Jennings, Oklahoma Mannford,...

  10. DeSoto County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in DeSoto County, Mississippi Hernando, Mississippi Horn Lake, Mississippi Lynchburg, Mississippi Olive Branch, Mississippi...

  11. Niobrara County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Niobrara County, Wyoming Lance Creek, Wyoming Lusk, Wyoming Manville, Wyoming Van Tassell, Wyoming Retrieved from...

  12. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study ... for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research ...

  13. The Netherlands Climate Assistance Programme | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: The Netherlands Climate Assistance Programme Address: P.O.Box 64, 3830 AB Place: Leusden, The Netherlands Phone Number: +31 (0) 33 432 6000...

  14. MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.; Kley, Wilhelm

    2013-03-10

    The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size and shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.

  15. U.S. OpenLabs - Climate Change | Open Energy Information

    Open Energy Info (EERE)

    gases while pursuing sustainable economic development. Climate Activities at NREL The National Renewable Energy Laboratory (NREL) is involved in a number of international...

  16. Climate Change Adaptation | Department of Energy

    Energy Savers [EERE]

    Climate Change Adaptation Climate Change Adaptation DOE is adapting to climate change by applying a risk-based resiliency approach to identify and minimize climate-related...

  17. NREL Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    NREL Climate Activities (Redirected from Climate Activities at NREL) Jump to: navigation, search Logo: Climate Activities at NREL Name Climate Activities at NREL AgencyCompany...

  18. European Climate Foundation (ECF) | Open Energy Information

    Open Energy Info (EERE)

    European Climate Foundation (ECF) (Redirected from European Climate Foundation) Jump to: navigation, search Logo: European Climate Foundation (ECF) Name: European Climate...

  19. Special Lecture - Climate Prisms: Understanding Climate Change for All

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Lecture - Climate Prisms Special Lecture - Climate Prisms: Understanding Climate Change for All WHEN: Feb 17, 2015 5:30 PM - 7:00 PM WHERE: Bradbury Science Museum, 1350 Central Ave, Los Alamos, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Climate Lecture Event Description Climate Prisms is the museum's latest addition to their environment exhibit. The lecture intends to reinvent the way the public processes climate change data. Through a deep,

  20. ClimateChangeLIVE Webcast: Join the Climate Conversation

    Broader source: Energy.gov [DOE]

    Join ClimateChangeLIVE's webcast, bringing together students and climate experts for a discussion about climate change and what students and classes around the country are doing to be part of the climate solution. Students will be able to interact with climate scientists and experts online through Facebook and Twitter. A GreenWorks! grant will be offered to help schools with climate action projects.

  1. Task Force on Climate Preparedness and Resilience Announces Tribal Climate

    Energy Savers [EERE]

    Resilience Program | Department of Energy Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program July 16, 2014 - 3:38pm Addthis Access Recordings from the Climate Change Impacts and Indian Country Webinar Series On July 16, at the fourth and final meeting of the White House State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience, the

  2. Indigenous Climate Justice Symposium

    Broader source: Energy.gov [DOE]

    The Indigenous Climate Justice Symposium brings together Native speakers who are working to keep fossil fuels in the ground, by stopping coals terminals, oil trains and fracking, and protecting treaty resources from the threat of climate change. All events are free and open to Evergreen students and the public.

  3. TASK 2: QUENCH ZONE SIMULATION

    SciTech Connect (OSTI)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual results on the pilot plant gasifier and demonstration plant design recommendations, based on cold flow simulation results.

  4. NERSC Climate PIs Telecon!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Applications at NERSC Climate Projects --- 2 --- 75 Climate Projects at NERSC (AY2015) * Awards a re p ublished a t: - h%ps://www.nersc.gov/users/accounts/awarded---projects/2015--- alloca<on---awards/ * Or y ou c an s earch i n N IM * 29 p rojects u se C ESM o r C ESM c omponents. 2 47 u sers * 16 p rojects u se W RF. 3 6 u sers. --- 3 --- Climate Projects at NERSC (AY2015)-1 Repo Project T itle PI OrganizaMon Codes mp9 Climate C hange S imula<ons w ith C ESM: M oderate a nd H igh

  5. Farmland Security Zone | Open Energy Information

    Open Energy Info (EERE)

    Security Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Farmland Security ZoneLegal Abstract California Department of...

  6. Pellet Zone Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pellet Zone Ltd Jump to: navigation, search Name: Pellet Zone Ltd Place: England, United Kingdom Zip: NR19 1AE Sector: Biomass Product: UK based biomass pellet trading firm....

  7. Zero Zone Comment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Zone Comment Zero Zone Comment These comments are submitted by Zero Zone Inc., a manufacturer of CRE equipment, in response to the U.S. Department of Energy's (DOE) notice in the July 3, 2014 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its regulatory program more effective and less burdensome. PDF icon Zero Zone comments More Documents & Publications Regulatory Burden RFI Executive Order 13563 certification, compliance and

  8. Building America Case Study: Field Performance of Inverter-Driven Heat Pumps in Cold Climates - Connecticut, Massachusetts, and Vermont (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Inverter-Driven Heat Pumps in Cold Climates Connecticut, Massachusetts, and Vermont PROJECT INFORMATION Project Name: Field Performance of Inverter-Driven Heat Pumps in Cold Climates Location: CT, MA, and VT Partners: Efficiency Vermont, efficiencyvermont.com Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Heating, ventilating, and air conditioning Application: New and retrofit; single- family and multifamily Year Tested: 2013-2014 Climate Zone(s):

  9. OPEN HOUSE - Climate Prisms: Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An interactive exploration of Arctic climate science through prisms of the visual arts, literary arts, info-vis, scientific presentations and more. Climate Prisms: Arctic is...

  10. Climate Advisers | Open Energy Information

    Open Energy Info (EERE)

    and climate-related forest conservation. Climate Advisers is known for its vision, policy expertise, political acumen, and access to senior policymakers in the United States...

  11. Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Climate Change Climate Change March 17, 2016 How to Store Carbon Find out how National Labs scientists are developing new tools to ensure carbon storage is ...

  12. Sandia Energy - Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    user facility in 2003, ARM Climate Research Facility sites provide the national and international research community with climate data from three permanent...

  13. Climate Energy | Open Energy Information

    Open Energy Info (EERE)

    Climate Energy Jump to: navigation, search Name: Climate Energy Place: Witham, England, United Kingdom Zip: CM8 3UN Sector: Efficiency Product: Essex, UK, based provider of advice...

  14. Climate Change/Paleoclimate & Geochronology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate ChangePaleoclimate & Geochronology "The instrumental record is generally considered not to be long enough to give a complete picture of climate variability... It is...

  15. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas

  16. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas Industrial

  17. Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region (Redirected from Central Nevada Seismic Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Central Nevada Seismic Zone...

  18. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  19. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  20. Refining climate models

    ScienceCinema (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2014-06-26

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  1. Climate Prisms: The Acrtic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An interactive exploration of Arctic climate science through prisms of the visual arts, literary arts, info-vis, sci-vis, interviews with scientists with an inside look at...

  2. Climate Change Adaptation Planning

    Broader source: Energy.gov [DOE]

    This course provides an introduction to planning for climate change impacts, with examples of tribes that have been going through the adaptation planning process. The course is intended for tribal...

  3. Refining climate models

    SciTech Connect (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2012-10-31

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  4. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Global Climate & Energy Home/Tag:Global Climate & Energy - Electricity use by water service sector and county. Shown are electricity use by (a) large-scale conveyance, (b) groundwater irrigation pumping, (c) surface water irrigation pumping, (d) drinking water, and (e) wastewater. Aggregate electricity use across these sectors (f) is also mapped. Permalink Gallery Sandians Recognized in Environmental Science & Technology's Best Paper

  5. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  6. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  7. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World's premier ground-based observations facility advancing climate change research Feature Tracking Clouds Down Under Tracking Clouds Down Under While penguins and seals are the main inhabitants of Macquarie Island, a remote grassy outcrop which lies about half-way between New Zealand and Antarctica, they will soon be joined by a suite of instruments from the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. These instruments will measure

  9. Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Measurements - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  10. Climate Action Champion: Technical

    Office of Environmental Management (EM)

    Learn more at energy.gov/betterbuildings Climate Action Champion: Technical Assistance to the City of Seattle Planning for Seattle's new Building Energy Code Overview The City of Seattle, identified as a Climate Action Champion (CAC) by the Department of Energy (DOE), is revising its 2012 Energy Code, already one of the most progressive in the country. Seattle has made a pledge to be carbon neutral by 2050. Seattle received technical assistance from the Pacific Northwest National Laboratory in

  11. Climate Action Champions: Southeast Florida Regional Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact, FL | Department of Energy Southeast Florida Regional Climate Change Compact, FL Climate Action Champions: Southeast Florida Regional Climate Change Compact, FL The Southeast Florida Regional Climate Change Compact was executed by Broward, Miami-Dade, Monroe, and Palm Beach Counties in January 2010 to coordinate mitigation and adaptation efforts across county lines. The Compact represents a new form of regional climate governance designed to allow local governments to set the agenda

  12. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  13. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  14. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. New Hampshire Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 153 295 376 1990's 364 361 344 334 324 332 367 385 389 417 2000's 432 331 437 550 305 397 421 578 5,298 155 2010's 306 362 466 403 326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  16. North Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138 148 151 1990's 165 170 171 174 186 189 206 216 404 226 2000's 192 203 223 234 241 239 241 253 271 279 2010's 307 259 260 266 269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  17. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  18. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  19. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 551 627 550 1990's 1,508 631 783 345 252 713 923 3,379 3,597 3,625 2000's 3,576 3,535 949 924 312 191 274 278 313 293 2010's 293 286 302 323 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  20. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22 21 14 1990's 15 13 18 20 24 23 27 30 36 37 2000's 38 36 38 41 43 41 35 37 35 36 2010's 38 36 38 13 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  1. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  2. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  3. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  5. West Virginia Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 463 208 211 1990's 182 198 159 197 191 192 182 173 217 147 2000's 207 213 184 142 137 145 155 114 109 101 2010's 102 94 97 95 92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  6. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  7. SIMULATION OF NET INFILTRATION FOR MODERN AND POTENTIAL FUTURE CLIMATES

    SciTech Connect (OSTI)

    J.A. Heveal

    2000-06-16

    This Analysis/Model Report (AMR) describes enhancements made to the infiltration model documented in Flint et al. (1996) and documents an analysis using the enhanced model to generate spatial and temporal distributions over a model domain encompassing the Yucca Mountain site, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone, the average depth below the ground surface (at a given location) from which water is removed by evapotranspiration. The estimates of net infiltration are used for defining the upper boundary condition for the site-scale 3-dimensional Unsaturated-Zone Ground Water Flow and Transport (UZ flow and transport) Model (CRWMS M&O 2000a). The UZ flow and transport model is one of several process models abstracted by the Total System Performance Assessment model to evaluate expected performance of the potential repository at Yucca Mountain, Nevada, in terms of radionuclide transport (CRWMS M&O 1998). The net-infiltration model is important for assessing potential repository-system performance because output from this model provides the upper boundary condition for the UZ flow and transport model that is used to generate flow fields for evaluating potential radionuclide transport through the unsaturated zone. Estimates of net infiltration are provided as raster-based, 2-dimensional grids of spatially distributed, time-averaged rates for three different climate stages estimated as likely conditions for the next 10,000 years beyond the present. Each climate stage is represented using a lower bound, a mean, and an upper bound climate and corresponding net-infiltration scenario for representing uncertainty in the characterization of daily climate conditions for each climate stage, as well as potential climate variability within each climate stage. The set of nine raster grid maps provide spatially detailed representations of the magnitude and distribution of net-infiltration rates that are used to define specified flux upper boundary conditions for the UZ flow and transport model.

  8. Climate Change Adaptation/Resilience

    Broader source: Energy.gov [DOE]

    DOE facilities are located in all eight climate regions identified in the 2014 National Climate Assessment (as established by the U.S. Global Change Research Program), and are vulnerable to identified climate change impacts in those regions. To assist with establishing and maintaining an effective climate adaptation process, DOE is working to integrate climate adaptation concerns into all applicable DOE orders, policies, and planning documents.

  9. Geoengineering the Earth's Climate

    ScienceCinema (OSTI)

    Google Tech Talks

    2009-09-01

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  10. Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP)

    SciTech Connect (OSTI)

    Mearns, L. O.; Sain, Steve; Leung, Lai-Yung R.; Bukovsky, M. S.; McGinnis, Seth; Biner, S.; Caya, Daniel; Arritt, R.; Gutowski, William; Takle, Eugene S.; Snyder, Mark A.; Jones, Richard; Nunes, A M B.; Tucker, S.; Herzmann, D.; McDaniel, Larry; Sloan, Lisa

    2013-10-01

    We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.

  11. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  12. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  13. Document ID Number: RL-721

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ---------------------------------------------------------- Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings,

  14. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 - = No Data Reported; -- = Not

  1. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  4. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  5. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  6. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  7. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  10. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  11. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  13. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  14. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  15. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  16. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  19. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  3. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  5. New Hampshire Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8,831 9,159 10,237 1990's 10,521 11,088 11,383 11,726 12,240 12,450 12,755 13,225 13,512 13,932 2000's 14,219 15,068 15,130 15,047 15,429 16,266 16,139 16,150 41,332 16,937 2010's 16,645 17,186 17,758 17,298 17,421 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. New Hampshire Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,078 61,969 64,059 1990's 65,310 67,991 69,356 70,938 72,656 74,232 75,175 77,092 78,786 80,958 2000's 82,813 84,760 87,147 88,170 88,600 94,473 94,600 94,963 67,945 96,924 2010's 95,361 97,400 99,738 98,715 99,146 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  7. North Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,236 3,196 3,381 1990's 2,802 3,506 3,119 2,664 3,401 3,652 3,973 5,375 6,228 5,672 2000's 5,288 2,962 3,200 3,101 3,021 2,891 2,701 2,991 2,984 2,384 2010's 2,457 2,468 2,525 2,567 2,596 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. North Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435,826 472,928 492,821 1990's 520,140 539,321 575,096 607,388 652,307 678,147 699,159 740,013 777,805 815,908 2000's 858,004 891,227 905,816 953,732 948,283 992,906 1,022,430 1,063,871 1,095,362 1,102,001 2010's 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 - = No Data

  9. North Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. North Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 83,517 84,059 84,643 1990's 85,646 87,880 89,522 91,237 93,398 95,818 97,761 98,326 101,930 104,051 2000's 105,660 106,758 108,716 110,048 112,206 114,152 116,615 118,100 120,056 122,065 2010's 123,585 125,392 130,044 133,975 137,972 - = No Data Reported; -- = Not Applicable; NA =

  11. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  14. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  19. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  1. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  3. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  5. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  6. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  8. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  10. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  11. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  13. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Utah Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 414,020 418,569 432,377 1990's 453,023 455,649 467,664 484,438 503,583 523,622 562,343 567,786 588,364 609,603 2000's 641,111 657,728 660,677 678,833 701,255 743,761 754,554 778,644 794,880 810,442 2010's 821,525 830,219 840,687 854,389 869,052 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Vermont Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,447 2,698 2,768 1990's 2,949 3,154 3,198 3,314 3,512 3,649 3,790 3,928 4,034 4,219 2000's 4,316 4,416 4,516 4,602 4,684 4,781 4,861 4,925 4,980 5,085 2010's 5,137 5,256 5,535 5,441 5,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Vermont Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,553 16,616 16,920 1990's 18,300 19,879 20,468 21,553 22,546 23,523 24,383 25,539 26,664 27,931 2000's 28,532 29,463 30,108 30,856 31,971 33,015 34,081 34,937 35,929 37,242 2010's 38,047 38,839 39,917 41,152 42,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Virginia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 54,071 54,892 61,012 1990's 63,751 67,997 69,629 70,161 72,188 74,690 77,284 78,986 77,220 80,500 2000's 84,646 84,839 86,328 87,202 87,919 90,577 91,481 93,015 94,219 95,704 2010's 95,401 96,086 96,503 97,499 98,741 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Virginia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 877 895 895 1990's 929 1,156 1,101 2,706 2,740 2,812 2,822 2,391 2,469 2,984 2000's 1,749 1,261 1,526 1,517 1,217 1,402 1,256 1,271 1,205 1,126 2010's 1,059 1,103 1,132 1,132 1,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  20. Virginia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 550,318 573,731 601,906 1990's 622,883 651,203 664,500 690,061 721,495 753,003 789,985 812,866 847,938 893,887 2000's 907,855 941,582 982,521 996,564 1,029,389 1,066,302 1,085,509 1,101,863 1,113,016 1,124,717 2010's 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 - = No Data Reported; -- = Not

  1. Washington Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,365 56,487 55,231 1990's 58,148 60,887 63,391 65,810 68,118 70,781 73,708 75,550 77,770 80,995 2000's 83,189 84,628 85,286 87,082 93,559 92,417 93,628 95,615 97,799 98,965 2010's 99,231 99,674 100,038 100,939 101,730 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Washington Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,355 3,564 3,365 1990's 3,428 3,495 3,490 3,448 3,586 3,544 3,587 3,748 3,848 4,040 2000's 4,007 3,898 3,928 3,775 3,992 3,489 3,428 3,630 3,483 3,428 2010's 3,372 3,353 3,338 3,320 3,355 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Washington Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 392,469 413,008 425,624 1990's 458,013 492,189 528,913 565,475 604,315 638,603 673,357 702,701 737,208 779,104 2000's 813,319 841,617 861,943 895,800 926,510 966,199 997,728 1,025,171 1,047,319 1,059,239 2010's 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 - = No Data Reported; -- = Not

  4. California Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 - = No Data Reported; -- = Not Applicable; NA =

  5. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. California Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  7. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  10. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  14. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  18. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  5. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  7. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  18. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  2. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  3. West Virginia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,283 33,192 33,880 1990's 32,785 32,755 33,289 33,611 33,756 36,144 33,837 33,970 35,362 35,483 2000's 41,949 35,607 35,016 35,160 34,932 36,635 34,748 34,161 34,275 34,044 2010's 34,063 34,041 34,078 34,283 34,339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  4. West Virginia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 351,024 349,765 349,347 1990's 349,673 350,489 352,463 352,997 352,929 353,629 358,049 362,432 359,783 362,292 2000's 360,471 363,126 361,171 359,919 358,027 374,301 353,292 347,433 347,368 343,837 2010's 344,131 342,069 340,256 340,102 338,652 - = No Data Reported; -- = Not

  5. Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,760 99,157 102,492 1990's 106,043 109,616 112,761 115,961 119,788 125,539 129,146 131,238 134,651 135,829 2000's 140,370 144,050 149,774 150,128 151,907 155,109 159,074 160,614 163,026 163,843 2010's 164,173 165,002 165,657 166,845 167,901 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,411 7,218 7,307 1990's 7,154 7,194 7,396 7,979 7,342 6,454 5,861 8,346 9,158 9,756 2000's 9,630 9,864 9,648 10,138 10,190 8,484 5,707 5,999 5,969 6,396 2010's 6,413 6,376 6,581 6,677 7,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,054,347 1,072,585 1,097,514 1990's 1,123,557 1,151,939 1,182,834 1,220,500 1,253,333 1,291,424 1,324,570 1,361,348 1,390,068 1,426,909 2000's 1,458,959 1,484,536 1,514,700 1,541,455 1,569,719 1,592,621 1,611,772 1,632,200 1,646,644 1,656,614 2010's 1,663,583 1,671,834 1,681,001 1,692,891

  8. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Coastal Zone Management Act | Open Energy Information

    Open Energy Info (EERE)

    and the National Estuarine Research Reserve System. The 34 coastal programs aim to balance competing land and water issues in the coastal zone, while estuarine reserves serve...

  11. Mapping Hydrothermal Upwelling and Outflow Zones: Preliminary...

    Open Energy Info (EERE)

    temperature anomaly has been mapped. A group of subtle temperature anomalies along Simpson Pass, south of the current production area, are interpreted as an upwelling zone with...

  12. Coastal Zone Management Act and Regulations (NOAA)

    Broader source: Energy.gov [DOE]

    The Coastal Zone Management Act (CZMA) of 1972 provides for the management of the nation’s coastal resources, including the Great Lakes.

  13. Vadose Zone Microbiology: Science and Applications

    SciTech Connect (OSTI)

    Brockman, Fred J.; Bradley, Stephen D.; Kieft, Thomas L.

    2002-03-12

    Brockman FJ, SN Bradley and TL Kieft. 2002. Vadose zone microbiology. In Encyclopedia of Environmental Microbiology, volume 6, pp. 3236-3246. John Wiley and Sons, New York.

  14. Maricopa County- Renewable Energy Systems Zoning Ordinance

    Broader source: Energy.gov [DOE]

    The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil...

  15. Coastal Zone Management Act and Regulations

    Broader source: Energy.gov [DOE]

    The Coastal Zone Management Act (CZMA) of 1972 provides for the management of the nation’s coastal resources, including the Great Lakes.

  16. Washington Coastal Zone Management Regulatory Handbook | Open...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - GuideHandbook: Washington Coastal Zone Management Regulatory HandbookPermittingRegulatory GuidanceGuideHandbook Author Washington...

  17. Regional Climate Change Webinar Presentation | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Regional Climate Change Webinar presentation dated August 6, 2015. Regional Climate Change Webinar Presentation More Documents & Publications Regional Climate Change Webinar...

  18. NREL Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    NREL Climate Activities Jump to: navigation, search Logo: Climate Activities at NREL Name Climate Activities at NREL AgencyCompany Organization National Renewable Energy...

  19. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    Climate Adaptation for Transportation (Redirected from 03 Climate Adaptation for Transportation) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 03 Climate Adaptation...

  20. European Climate Foundation (ECF) | Open Energy Information

    Open Energy Info (EERE)

    European Climate Foundation (ECF) Jump to: navigation, search Logo: European Climate Foundation (ECF) Name: European Climate Foundation (ECF) Address: Tournooiveld 4 2511 CX Place:...