National Library of Energy BETA

Sample records for zn zurn ot

  1. Approved Module Information for AM30OT, 2014/5 Module Title/Name: Option Theory Module Code: AM30OT

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for AM30OT, 2014/5 Module Title/Name: Option Theory Module Code: AM30OT School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 Module Management Information Module Leader Name Sudhir Jain Email Address jains@aston.ac.uk Telephone

  2. UC-Secure Multi-Session OT Using Tamper-Proof Hardware Tokens

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    UC-Secure Multi-Session OT Using Tamper-Proof Hardware Tokens Kaoru Kurosawa1 Ryo Nojima2 Le Trieu-no,phong}@nict.go.jp Abstract In this paper, we show the first UC-secure multi-session OT proto- col using tamper-proof hardware under the Many DH assumption or under the DDHE assumption (in the standard model). Keywords: tamper

  3. Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle, Alexander Romanovsky

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    1 Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle employing an OTS (Off-The-Shelf) item. The case study used a Simulink model of a steam boiler system, employing software models of the PID controller and the steam boiler system rather than conducting

  4. Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle, Alexander Romanovsky

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle-The-Shelf) item. The case study used a Simulink model of a steam boiler system together with an OTS PID in practice, employing software models of the PID controller and the steam boiler system rather than

  5. The OmniTread OT-4 Serpentine Robot for Emergencies and Hazardous Environments

    E-Print Network [OSTI]

    Borenstein, Johann

    that derives propulsion from undulations (a wave-like mo- tion of the joints only), that is, it uses no driven propulsion from wheels, legs, or tracks. Joints connecting the segments may be either powered or unpowered assure propulsion even when the vehicle rolls over. The OT-4 is designed to climb over obstacles

  6. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    SciTech Connect (OSTI)

    Carter, R.L. Jr.

    1994-11-07

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS).

  7. OT SPECIFIED I OTHER AMENDMENT OF SOLICITATI ON/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificand TechnicalScientific andOT

  8. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the Weldon Spring,7=cr5rnP 7694 i+lJNewS e TAugust 4,

  9. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ ., .,. c3

  10. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ ., .,. c3February

  11. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ ., .,.

  12. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ ., .,.January 15,

  13. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ ., .,.January 15,@

  14. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ ., .,.January

  15. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ ., .,.January5,

  16. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ .,

  17. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ .,2, 1990 TO: W.

  18. OTS NOTF

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ .,2, 1990 TO:

  19. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    SciTech Connect (OSTI)

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  20. \\IEIl. ,'Hunt. (1983), \\'ot. 8, :"-0. 3, 187-195 A logic-based approach to conceptual data base analysis

    E-Print Network [OSTI]

    Michalski, Ryszard S.

    1983-01-01

    \\IEIl. ,'Hunt. (1983), \\'ot. 8, :"-0. 3, 187-195 A logic-based approach to conceptual data base/erenu; Conceptual clustering, 1. Introduction Data bases are constructed for two major reasons: to keep track of information (data base management); and to learn more about the phenomena which produce the data (data base

  1. Coating Glass Cells with OTS The glass cells we use to polarize xenon or to store polarized

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    Coating Glass Cells with OTS The glass cells we use to polarize xenon or to store polarized xenon need to be coated. This is because without coating wall collisions of the xenon can bring with a trichlorosilane at one end. In the coating process that group binds to the silicates in the glass, relinquishing

  2. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures forphotovoltaic applications

    SciTech Connect (OSTI)

    Schrier, Joshua; Demchenko, Denis O.; Wang, Lin-Wang; Alivisatos,A. Paul

    2007-05-01

    Although ZnO and ZnS are abundant, stable, environmentallybenign, their band gap energies (3.44 eV, 3.72 eV) are too large foroptimal photovoltaic efficiency. By using band-corrected pseudopotentialdensity-functional theory calculations, we study how the band gap,opticalabsorption, and carrier localization canbe controlled by formingquantum-well like and nanowire-based heterostructures ofZnO/ZnS andZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can besynthesized using existing methods, we obtain a band gap of 2.07 eV,which corresponds to a Shockley-Quiesser efficiency limitof 23 percent.Based on these nanowire results, we propose that ZnO/ZnScore/shellnanowires can be used as photovoltaic devices with organic polymersemiconductors as p-channel contacts.

  3. Changes in Zn speciation during soil formation from Zn-rich Olivier Jacquat a

    E-Print Network [OSTI]

    -containing calcite (at site Dornach), Zn-containing goethite (Gurnigel) and Zn-containing goethite and sphalerite contained substantial amounts of Zn-containing goethite ($50%) stemming from the parent rock, smaller in recalcitrant extraction steps, confirming that Zn-HIV, Zn-containing kaolinite and Zn-containing goethite

  4. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications

    E-Print Network [OSTI]

    Schrier, Joshua; Demchenko, Denis O.; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-01-01

    ZnTe heterostructures for photovoltaic applications Joshuatoo large for optimal photovoltaic e?ciency. By using band-nanowires can be used as photovoltaic devices with organic

  5. Enhancement of photoluminescence in ZnS/ZnO quantum dots interfacial heterostructures

    SciTech Connect (OSTI)

    Rajalakshmi, M.; Sohila, S.; Ramesh, R.; Bhalerao, G.M.

    2012-09-15

    Highlights: ? ZnS/ZnO quantum dots (QDs) were synthesized by controlled oxidation of ZnS nanoparticles. ? Interfacial heterostructure formation of ZnS/ZnO QDs is seen in HRTEM. ? Enormous enhancement of UV emission (?10 times) in ZnS/ZnO QDs heterostructure is observed. ? Phonon confinement effect is seen in the Raman spectrum. -- Abstract: ZnS/ZnO quantum dots (QDs) were synthesized by controlled oxidation of ZnS nanoparticles. HRTEM image showed small nanocrystals of size 4 nm and the magnified image of single quantum dot shows interfacial heterostructure formation. The optical absorption spectrum shows a blue shift of 0.19 and 0.23 eV for ZnO and ZnS QDs, respectively. This is due to the confinement of charge carries within the nanostructures. Enormous enhancement in UV emission (10 times) is reported which is attributed to interfacial heterostructure formation. Raman spectrum shows phonons of wurtzite ZnS and ZnO. Phonon confinement effect is seen in the Raman spectrum wherein LO phonon peaks of ZnS and ZnO are shifted towards lower wavenumber side and are broadened.

  6. Toward ZnO Light Emitting Diode

    E-Print Network [OSTI]

    Liu, Jianlin

    2008-01-01

    applications such as light emitting diodes (LEDs) and laser009 "Toward ZnO Light Emitting Diode" Jianlin Liu July 2008Title: “Toward ZnO Light Emitting Diode” Sponsor: UC Energy

  7. Preparation of new morphological ZnO and Ce-doped ZnO

    SciTech Connect (OSTI)

    Chelouche, A.; Djouadi, D.; Aksas, A. [Laboratoire de Génie de l'Environnement, Université A. Mira de Béjaia, Route de Targua Ouzemmour Béjaia (Algeria)

    2013-12-16

    ZnO micro-tori and cerium doped hexangulars ZnO have been prepared by the sol-gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. Photoluminescence spectra at room temperature of the samples have revealed that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.

  8. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect (OSTI)

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-02-03

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  9. Synthesis and structural characterization of ZnTe/ZnSe core/shell tunable quantum dots

    E-Print Network [OSTI]

    Guan, Juan

    2008-01-01

    Colloidal semiconductor nanocrystals or quantum dots have attracted much attention recently with their unique optical properties. Here we present a novel approach to synthesize ZnTe/ZnSe core/shell tunable quantum dots. ...

  10. Blue electroluminescence from ZnO based heterojunction diodes with CdZnO active layers

    E-Print Network [OSTI]

    Yang, Zheng

    with CdO.3­5 This makes ZnO based light sources emitting light from ultraviolet region to green band were used as p-type layer. Our group has demonstrated stable Sb doped p-type ZnO grown on Si substrate8 and several ZnO hetero- and homojunction devices using Sb doped ZnO as p-type layer.9­11 Dominant UV emissions

  11. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N. (Littleton, CO)

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  12. Local coordination of Zn in hydroxy-interlayered minerals and implications for Zn retention in soils

    E-Print Network [OSTI]

    in soils Olivier Jacquat, Andreas Voegelin *, Ruben Kretzschmar Institute of Biogeochemistry and Pollutant-interlayered minerals (HIM) for Zn retention in contaminated soils. Published and newly collected extended X. In a second part, we determined the spe- ciation of Zn in eight contaminated soils (251­1039 mg/kg Zn

  13. Product (a) Type (b) Time of Harvest Gear Code (c) Area of catch (d) Net Weight No. of Fish F/FR RD/GG/DR/FL/OT (mm/yy) (kg) (when RD, GG or DR)

    E-Print Network [OSTI]

    Product (a) Type (b) Time of Harvest Gear Code (c) Area of catch (d) Net Weight No. of Fish F/FR RD=Other (describe the type of product; ____________________.) (c): If the Gear Code is OT, describe the type of gear

  14. 891070-9932/142014IEEE sEptEmbEr 2014 IEEE rObOtICs & AUtOmAtION mAGAZINE By Yaroslav Tenzer, Leif P. Jentoft, and Robert D. Howe

    E-Print Network [OSTI]

    of the recently available miniature barometric sensor chips, which include a microelectromechanical systems (MEMS891070-9932/14©2014IEEE sEptEmbEr 2014 · IEEE rObOtICs & AUtOmAtION mAGAZINE · The Feel of MEMS Barometers The Feel of MEMS Barometers By Yaroslav Tenzer, Leif P. Jentoft, and Robert D. Howe Inexpensive

  15. Fluorescent Sensors for Zn2+ Based on a Fluorescein Platform

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Versity of California at San Diego, La Jolla, California 92093-0647 ReceiVed January 5, 2001 Abstract: Two new homologous Zn2+ transport proteins (ZnT-1, ZnT-2, and ZnT-3)11-13 and by metallothio- neins (MTs),14 properties § Massachusetts Institute of Technology. Department of Pharmacology, University of California

  16. Optical transitions and multiphonon Raman scattering of Cu doped ZnO and MgZnO ceramics

    E-Print Network [OSTI]

    McCluskey, Matthew

    Optical transitions and multiphonon Raman scattering of Cu doped ZnO and MgZnO ceramics Jesse Huso doped ZnO and MgZnO ceramics were created via a process of cold pressing and annealing, and their optical properties and phonon dynamics were studied. It was found that the ceramics exhibit infrared

  17. ZnCuInS/ZnSe/ZnS Quantum Dot-Based Downconversion Light-Emitting Diodes and Their Thermal Effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Wenyan; Zhang, Yu; Ruan, Cheng; Wang, Dan; Zhang, Tieqiang; Feng, Yi; Gao, Wenzhu; Yin, Jingzhi; Wang, Yiding; Riley, Alexis P.; et al

    2015-01-01

    The quantum dot-based light-emitting diodes (QD-LEDs) were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0?lm/W for red, 47.1?lm/W for yellow, and 62.4?lm/W for green LEDs at 2.6?V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half maximum (FWHM), and power efficiency (PE). The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed little due to themore »low emission temperature coefficients of 0.022, 0.050, and 0.068?nm/°C for red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. These indicate that ZnCuInS/ZnSe/ZnS QDs are more suitable for downconversion LEDs compared to CdSe QDs.« less

  18. ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huso, Jesse; Morrison, John L.; Che, Hui; Sundararajan, Jency P.; Yeh, Wei Jiang; McIlroy, David; Williams, Thomas J.; Bergman, Leah

    2011-01-01

    An emerging material for flexible UV applications isMgxZn1?xO which is capable of tunable bandgap and luminescence in the UV range of ~3.4?eV–7.4?eV depending on the compositionx. Studies on the optical and material characteristics of ZnO and Mg0.3Zn0.7O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg0.3Zn0.7O have bandgaps of 3.34?eV and 4.02?eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316?eV inherent to the nanocrystalline morphology. The PL of the Mg0.3Zn0.7O film exhibits two broad peaks at 3.38?eV and at 3.95?eV that are discussed in terms ofmore »the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less

  19. Homoepitaxy of ZnO and MgZnO Films at 90 °C

    SciTech Connect (OSTI)

    Ehrentraut, Dirk; Goh, Gregory K.L.; Fujii, Katsushi; Ooi, Chin Chun; Quang, Le Hong; Fukuda, Tsuguo; Kano, Masataka; Zhang, Yuantao; Matsuoka, Takashi

    2014-06-01

    The aqueous synthesis of uniform single crystalline homoepitaxial zinc oxide, ZnO, and magnesium zinc oxide, Mg{sub x}Zn{sub 1?x}O, films under very low temperature conditions at T=90 °C and ambient pressure has been explored. A maximum Mg content of 1 mol% was recorded by energy dispersive spectroscopy. The growth on the polar (0 0 0 1) and (0 0 0 1¯) faces resulted in films that are strongly different in their structural and optical quality as evidenced by high-resolution X-ray diffraction, secondary electron microscopy, and photoluminescence. This is a result of the chemistry and temperature of the solution dictating the stability range of growth-governing metastable species. The use of trisodium citrate, Na{sub 3}C{sub 6}H{sub 5}O{sub 7}, yielded coalesced, mirror-like homoepitaxial films whereas adding magnesium nitrate hexahydrate, Mg(NO{sub 3}){sub 2}·6H{sub 2}O, favors the growth of films with pronounced faceting. - Graphical abstract: Homoepitaxial ZnO films grown from aqueous solution below boiling point of water on a ZnO substrate with off-orientation reveal parallel grooves that are characterized by (1 0 1{sup ¯} 1) facets. Adding trisodium citrate yields closed, single-crystalline ZnO films, which can further be functionalized. Alloying with MgO yields MgZnO films with low Mg content only. - Highlights: • A simple method to synthesize uniform single crystalline homoepitaxial ZnO and MgZnO films. • ZnO growth on (0 0 0 1) and (0 0 0 1{sup ¯}) face resulted in films that are strongly different in their structural and optical quality. • Single crystalline MgZnO film was fabricated under mild conditions (90 °C and ambient pressure). • Mg incorporation of nearly 1 mol% was obtained while maintaining single phase wurtzite structure.

  20. Cyclotron production of {sup 61}Cu using natural Zn and enriched {sup 64}Zn targets

    SciTech Connect (OSTI)

    Asad, A. H.; Smith, S. V.; Chan, S.; Jeffery, C. M.; Morandeau, L.; Price, R. I. [RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia, Imaging and Applied Physics, Curtin University, Perth, Australia, and Center of Excellence in Anti-matter Matter Studies, Australian National University, Can (Australia); Brookhaven National Laboratory, Upton, NY (United States) and Center of Excellence in Anti-matter Matter Studies, Australian National University, Canberra (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth (Australia); Center of Excellence in Anti-matter Matter Studies, Australian National University, Canberra, Australia, and Chemistry, University of Western Australia, Pe (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia and Physics, University of Western Australia, Perth (Australia)

    2012-12-19

    Copper-61 ({sup 61}Cu) shares with {sup 64}Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study {sup 61}Cu was produced using the {sup 64}Zn(p,{alpha}){sup 61}Cu reaction on natural Zn or enriched {sup 64}Zn targets. The enriched {sup 64}Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30{mu}A; at 11.7, 14.5 or 17.6MeV over 30-60min. The {sup 61}Cu (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The {sup 64}Zn target material was recovered after each run, for re-use. In a direct comparison with enriched {sup 64}Zn-target results, {sup 61}Cu production using the cheaper {sup nat}Zn target proved to be an effective alternative.

  1. Electroluminescence of ZnO-based semiconductor heterostructures

    SciTech Connect (OSTI)

    Novodvorskii, O A; Lotin, A A; Panchenko, Vladislav Ya; Parshina, L S; Khaidukov, E V; Zuev, D A; Khramova, O D [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2011-01-31

    Using pulsed laser deposition, we have grown n-ZnO/p-GaN, n-ZnO/i-ZnO/p-GaN and n-ZnO/n-Mg{sub 0.2}Zn{sub 0.8}O/i-Cd{sub 0.2}Zn{sub 0.8}O/p-GaN light-emitting diode (LED) heterostructures with peak emission wavelengths of 495, 382 and 465 nm and threshold current densities (used in electroluminescence measurements) of 1.35, 2, and 0.48 A cm{sup -2}, respectively. Because of the spatial carrier confinement, the n-ZnO/n-Mg{sub 0.2}Zn{sub 0.8}O/i-Cd{sub 0.2}Zn{sub 0.8}O/p-GaN double heterostructure LED offers a higher electroluminescence intensity and lower electroluminescence threshold in comparison with the n-ZnO/p-GaN and n-ZnO/i-ZnO/p-GaN LEDs. (lasers)

  2. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils

    SciTech Connect (OSTI)

    Jacquat, Olivier; Voegelin, Andreas; Villard, Andre; Marcus, Matthew A.; Kretzschmar, Ruben

    2007-10-15

    Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2 to 7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322 to 30090 mg/kg Zn). Based on 12 bulk and 23 microfocused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from {approx}20% to {approx}80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn ({approx}30% to {approx}80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH{sub 4}NO{sub 3} followed by 1 M NH{sub 4}-acetate at pH 6.0. Even though the formation of Zn precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.

  3. Study of stability of ZnO nanoparticles and growth mechanisms of colloidal ZnO nanorods 

    E-Print Network [OSTI]

    Lee, Kwang Jik

    2006-10-30

    After hydrolyzing zinc acetate in methanol solution, spherical ZnO nanoparticles in the size range from about 2.5 to 5 nm were synthesized by maintaining a ZnO concentration of 0.02M. Compared to ZnO nanoparticles prepared via other methods...

  4. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect (OSTI)

    Mohan, R. Raj [Department of ECE, Gojan School of Business and Technology, Chennai (India); Rajendran, K. [Department of Electronics, Government Arts College for Women, Ramanathapuram, TN (India); Sambath, K. [Department of ECS, Sri Krishna Arts and Science College, Coimbatore, TN (India)

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  5. Emission and Excitation Spectra of ZnO:Ga and ZnO:Ga,N Ceramics

    E-Print Network [OSTI]

    P. A. Rodnyi; I. V. Khodyuk; E. I. Gorokhova; S. B. Mikhrin; P. Dorenbos

    2010-09-07

    The spectral characteristics of ZnO:Ga and ZnO:Ga,N ceramics prepared by uniaxial hot pressing have been investigated. At room temperature, the edge (exciton) band at 3.12 eV dominates in the luminescence spectra of ZnO:Ga, while a wide luminescence band at 2.37 eV, which is likely to be due to zinc vacancies, is observed in the spectra of ZnO:Ga,N. Upon heating, the edge band maximum shifts to lower energies and the bandwidth increases. The extrapolated position of the edge-band maximum at zero temperature, Em(0) = 3.367 +/- 0.005 eV, is in agreement with the data for thin zinc oxide films. The luminescence excitation spectra in the range from 3 to 6.5 eV are reported and the mechanism of energy transfer to excitons and luminescence centers is considered.

  6. Twinning effect on photoluminescence spectra of ZnSe nanowires

    SciTech Connect (OSTI)

    Xu, Jing; Wang, Chunrui Wu, Binhe; Xu, Xiaofeng; Chen, Xiaoshuang; Oh, Hongseok; Baek, Hyeonjun; Yi, Gyu-Chul

    2014-11-07

    Bandgap engineering in a single material along the axial length of nanowires may be realized by arranging periodic twinning, whose twin plane is vertical to the axial length of nanowires. In this paper, we report the effect of twin on photoluminescence of ZnSe nanowires, which refers to the bandgap of it. The exciton-related emission peaks of transverse twinning ZnSe nanowires manifest a 10-meV-blue-shift in comparison with those of longitudinal twinning ZnSe nanowires. The blue-shift is attributed to quantum confinement effect, which is influenced severely by the proportion of wurtzite ZnSe layers in ZnSe nanowires.

  7. OTS NOTE DATE: TO: FROM:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ .,2, 1990 TO: W.

  8. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Che, Hui; Huso, Jesse; Morrison, John L.; Thapa, Dinesh; Huso, Michelle; Yeh, Wei Jiang; Tarun, M. C.; McCluskey, M. D.; Bergman, Leah

    2012-01-01

    ZnO is emerging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4?eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research onMgxZn1?xOandZnS1?xOxnanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO andMg0.3Zn0.7Ofilms were found to have bandgaps at 3.35 and 4.02?eV, respectively. The photoluminescence of theMg0.3Zn0.7Oexhibited a bandedge emission at 3.95?eV, and at lower energy 3.38?eV due to the limited solubility inherent to these alloys.ZnS0.76O0.24andZnS0.16O0.84were found tomore »have bandgaps at 3.21 and 2.65?eV, respectively. The effect of nitrogen doping onZnS0.16O0.84is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.« less

  9. Novel Scintillation Material - ZnO Transparent Ceramics

    E-Print Network [OSTI]

    Rodnyi, P A; Gorokhova, E I; Kozlovskii, S S; Khanin, V M; Khodyuk, I V

    2011-01-01

    ZnO-based scintillation ceramics for application in HENPA LENPA analyzers have been investigated. The following ceramic samples have been prepared: undoped ones (ZnO), an excess of zinc in stoichiometry (ZnO:Zn), doped with gallium (ZnO:Ga) and lithium (ZnO:Li). Optical transmission, x-ray excited emission, scintillation decay and pulse height spectra were measured and analyzed. Ceramics have reasonable transparency in visible range (up to 60% for 0.4 mm thickness) and energy resolution (14.9% at 662 keV Cs137 gamma excitation). Undoped ZnO shows slow (1.6 {\\mu}s) luminescence with maximum at 2.37 eV and light yield about 57% of CsI:Tl. ZnO:Ga ceramics show relatively low light yield with ultra fast decay time (1 ns). Lithium doped ceramics ZnO:Li have better decay time than undoped ZnO with fair light yield. ZnO:Li ceramics show good characteristics under alpha-particle excitation and can be applied for the neutral particle analyzers.

  10. Novel Scintillation Material - ZnO Transparent Ceramics

    E-Print Network [OSTI]

    P. A. Rodnyi; K. A. Chernenko; E. I. Gorokhova; S. S. Kozlovskii; V. M. Khanin; I. V. Khodyuk

    2011-11-09

    ZnO-based scintillation ceramics for application in HENPA LENPA analyzers have been investigated. The following ceramic samples have been prepared: undoped ones (ZnO), an excess of zinc in stoichiometry (ZnO:Zn), doped with gallium (ZnO:Ga) and lithium (ZnO:Li). Optical transmission, x-ray excited emission, scintillation decay and pulse height spectra were measured and analyzed. Ceramics have reasonable transparency in visible range (up to 60% for 0.4 mm thickness) and energy resolution (14.9% at 662 keV Cs137 gamma excitation). Undoped ZnO shows slow (1.6 {\\mu}s) luminescence with maximum at 2.37 eV and light yield about 57% of CsI:Tl. ZnO:Ga ceramics show relatively low light yield with ultra fast decay time (1 ns). Lithium doped ceramics ZnO:Li have better decay time than undoped ZnO with fair light yield. ZnO:Li ceramics show good characteristics under alpha-particle excitation and can be applied for the neutral particle analyzers.

  11. Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes Xiang Yang Kong,, Yong Ding, and Zhong Lin Wang*,

    E-Print Network [OSTI]

    Wang, Zhong L.

    with silica,10 tape structured nanobelts of SnO2 and TiO2,11 core-shell structured Si-Ge nanowires,12 and ZnMetal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes Xiang Yang Kong,, Yong Ding-semiconductor Zn-ZnO core-shell nanobelts and nanotubes have been synthesized. The core is a belt-shaped Zn single

  12. Impact of air-exposure on the chemical and electronic structure ofZnO:Zn3N2 thin films

    SciTech Connect (OSTI)

    Bar, M.; Ahn, K.-S.; Shet, S.; Yan, Y.; Weinhardt, L.; Fuchs, O.; Blum, M.; Pookpanratana, S.; George, K.; Yang, W.; Denlinger, J.D.; Al-Jassim, M.; Heske, C.

    2008-09-08

    The chemical and electronic surface structure of ZnO:Zn3N2 ("ZnO:N") thin films with different N contents was investigated by soft x-ray emission spectroscopy. Upon exposure to ambient air (in contrast to storage in vacuum), the chemical and electronic surface structure of the ZnO:N films changes substantially. In particular, we find that the Zn3N2/(Zn3N2+ZnO) ratio decreases with exposure time and that this change depends on the initial N content. We suggest a degradation mechanism based on the reaction of the Zn3N2 content with atmospheric humidity.

  13. Spin noise spectroscopy of ZnO

    SciTech Connect (OSTI)

    Horn, H.; Berski, F.; Hübner, J.; Oestreich, M.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.

    2013-12-04

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  14. Optical, luminescence, and scintillation properties of ZnO and ZnO:Ga ceramics

    E-Print Network [OSTI]

    E. I. Gorokhova; G. V. Anan'eva; V. A. Demidenko; P. A. Rodny; I. V. Khodyuk; E. D. Bourret-Courchesne

    2010-09-07

    Uniaxial hot pressing has been used to obtain ceramics based on zinc oxide, and their optical, x-ray-structure, luminescence, and scintillation characteristics have been studied. It is shown that, by changing the concentration of the dopant (Ga) and the codopant (N), it is possible to change the intensities of the edge band (397.5 nm) and the intraband luminescence (510 nm) of the ZnO luminescence, as well as their ratio. Undoped ZnO ceramic has good transparency in the visible region and fairly high luminous yield: 9050 photons per MeV. Ceramic ZnO:Ga possesses intense edge luminescence with a falloff time of about 1 ns.

  15. Evolution of quasiparticle states with and without a Zn impurity...

    Office of Scientific and Technical Information (OSTI)

    Evolution of quasiparticle states with and without a Zn impurity in doped 122 iron pnictides Citation Details In-Document Search Title: Evolution of quasiparticle states with and...

  16. Controllable Template Synthesis of Superconducting Zn Nanowires with

    E-Print Network [OSTI]

    June 9, 2005 ABSTRACT A systematic study was conducted on the fabrication, structural characterization by electrodepositing Zn into commercially available polycarbonate (PC) or anodic aluminum oxide (AAO) membranes

  17. Cs6Ge8Zn: A Zintl Phase with Isolated Heteroatomic Clusters of Ge8Zn

    E-Print Network [OSTI]

    a single phase of Cs6Ge8Zn.8 The plate-like crystals of the compound are brittle, black, and with coal-like luster. Single-crystal studies unveiled a new type of cluster formation, a dimer of corner different types. The clusters of type A have only a horizontal mirror plane (Cm) while the clusters of type

  18. Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts

    E-Print Network [OSTI]

    Wang, Zhong L.

    Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts Brent A. Buchine, William L. Hughes, F, a bulk acoustic resonator based on ZnO belts is demonstrated. This device shows a great deal of promise-like geometry, making them ideal candidates as SMR, FBAR, and beam resonators.13 However, handling belts can

  19. Electrodeposition of Zn based nanostructure thin films for photovoltaic applications

    SciTech Connect (OSTI)

    Al-Bat’hi, S. A. M.

    2015-03-30

    We present here a systematic study on the synthesis thin films of various ZnO, CdO, Zn{sub x}Cd{sub 1-x} (O) and ZnTe nanostructures by electrodeposition technique with ZnCl{sub 2,} CdCl{sub 2} and ZnSO{sub 4} solution as starting reactant. Several reaction parameters were examined to develop an optimal procedure for controlling the size, shape, and surface morphology of the nanostructure. The results showed that the morphology of the products can be carefully controlled through adjusting the concentration of the electrolyte. The products present well shaped Nanorods arrays at specific concentration and temperature. UV-VIS spectroscopy and X-ray diffraction results show that the product presents good crystallinity. A possible formation process has been proposed.

  20. SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} - two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)

    SciTech Connect (OSTI)

    Stegmaier, Saskia [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching (Germany); Faessler, Thomas F., E-mail: Thomas.Faessler@lrz.tum.de [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching (Germany)

    2012-08-15

    SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn{sub 2}Sn{sub 2} comprises (anti-)PbO-like {l_brace}ZnSn{sub 4/4}{r_brace} and {l_brace}SnZn{sub 4/4}{r_brace} layers. Ca{sub 2}Zn{sub 3}Sn{sub 6} shows similar {l_brace}ZnSn{sub 4/4}{r_brace} layers and {l_brace}Sn{sub 4}Zn{r_brace} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn{sub 2}Sn{sub 2} adopts the SrPd{sub 2}Bi{sub 2} structure type, and Ca{sub 2}Zn{sub 3}Sn{sub 6} is isotypic to the R{sub 2}Zn{sub 3}Ge{sub 6} compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {l_brace}Sn{sub 4}Zn{r_brace} layers of Ca{sub 2}Zn{sub 3}Sn{sub 6}. - Graphical abstract: Crystal structures of the new Ae-Zn-Sn polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Highlights: Black-Right-Pointing-Pointer New polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Black-Right-Pointing-Pointer Obtained by high temperature reactions of the elements. Black-Right-Pointing-Pointer Single crystal XRD structure determination and DFT electronic structure calculations. Black-Right-Pointing-Pointer Closely related crystal and electronic structures. Black-Right-Pointing-Pointer Metallic conductivity coexisting with lone pairs and covalent bonding features.

  1. Stimulated electroluminescence emission from n-ZnO/p-GaAs:Zn heterojunctions fabricated by electro-deposition

    SciTech Connect (OSTI)

    Köç, P.; Tekmen, S.; Baltakesmez, A.; Tüzemen, S.; Meral, K.; Onganer, Y.

    2013-12-15

    In this study, n-ZnO thin films were electrochemically deposited on p-GaAs:Zn substrates. The XRD results of ZnO thin films deposited on p-GaAs:Zn substrates at potentials varied from ?0.9 V to ?1.2 V show a strong c-axis (002) orientation and homogeneity. The current-voltage characteristics exhibit rectification, proving a low turn-on voltage and an ideality factor of 4.71. The n-ZnO/p-GaAs heterostructures show blue-white electroluminescence (EL) emission, which is composed of broad emission bands. In addition to these broad peaks, stimulated emission also appear on the top of the spectra due to the multiple reflections from the mirror like surfaces of ZnO-ZnO and ZnO-GaAs interfaces. Besides, three broad photoluminescence (PL) emission peaks have also been observed peaking at respectively around 3.36 eV, 3.28 eV and 3.07 eV generally attributed to the near bandedge emission, the residual donor level and deep level emission due to the localized defects, respectively.

  2. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    E-Print Network [OSTI]

    Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method­12]. Compared to other deposition techniques, spray pyrolysis offers several advantages like non-vacuum use

  3. STM Study of Copper Growth on ZnO(0001)-Zn and ZnO(0001bar)-O Surfaces Lynn Vogel Koplitz, Olga Dulub, and Ulrike Diebold*,

    E-Print Network [OSTI]

    Diebold, Ulrike

    -4 the production of hydro- gen by steam reforming5,6 or decomposition of methanol,7 and the water-gas shift reaction for CO removal from reformed fuels to enable their use in fuel cells.8,9 Similar catalysts have of the interaction of the Cu with ZnO substrate, and the exact role of the ZnO in the catalytic activity of Cu

  4. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOE Patents [OSTI]

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  5. Air-gap gating of MgZnO/ZnO heterostructures

    SciTech Connect (OSTI)

    Tambo, T.; Falson, J. Kozuka, Y.; Maryenko, D.; Tsukazaki, A.; Kawasaki, M.

    2014-08-28

    The adaptation of “air-gap” dielectric based field-effect transistor technology to controlling the MgZnO/ZnO heterointerface confined two-dimensional electron system (2DES) is reported. We find it possible to tune the charge density of the 2DES via a gate electrode spatially separated from the heterostructure surface by a distance of 5??m. Under static gating, the observation of the quantum Hall effect suggests that the charge carrier density remains homogeneous, with the 2DES in the 3?mm square sample the sole conductor. The availability of this technology enables the exploration of the charge carrier density degree of freedom in the pristine sample limit.

  6. Electrical resistivity of Au-ZnO nanocomposite films

    SciTech Connect (OSTI)

    Argibay, N.; Goeke, R. S.; Dugger, M. T.; Rodriguez, M. A.; Michael, J. R.; Prasad, S. V. [Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2013-04-14

    The electrical resistivity of electron beam codeposited gold and zinc oxide (Au-ZnO) films was investigated over the full composition range. The electrical resistivity was shown to increase monotonically with increasing ZnO content, with three characteristic regimes of behavior associated primarily with (1) grain boundary electron scattering due to grain refinement at ZnO volume fractions below 0.3, (2) percolation theory for ZnO volume fractions at and above the percolation threshold (f{sub c} = 0.85), and (3) a transition region between these where it was proposed that resistivity was influenced by the formation of Au-Zn complexes due to an oxygen deficiency in the deposited ZnO. The electrical resistivity of the composite films remained below 100 {mu}{Omega} cm for ZnO volume fractions below 0.5. A model combining the general effective media equation and Mayadas-Shatzkes grain boundary electron scattering model was shown to generally describe the composition dependence of electrical resistivity for the investigated oxide dispersion hardened metal-matrix composite thin films.

  7. Radioactive contamination of ZnWO4 crystal scintillators

    E-Print Network [OSTI]

    P. Belli; R. Bernabei; F. Cappella; R. Cerulli; F. A. Danevich; A. M. Dubovik; S. d'Angelo; E. N. Galashov; B. V. Grinyov; A. Incicchitti; V. V. Kobychev; M. Laubenstein; L. L. Nagornaya; F. Nozzoli; D. V. Poda; R. B. Podviyanuk; O. G. Polischuk; D. Prosperi; V. N. Shlegel; V. I. Tretyak; I. A. Tupitsyna; Ya. V. Vasiliev; Yu. Ya. Vostretsov

    2010-09-05

    The radioactive contamination of ZnWO4 crystal scintillators has been measured deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN in Italy with a total exposure 3197 kg x h. Monte Carlo simulation, time-amplitude and pulse-shape analyses of the data have been applied to estimate the radioactive contamination of the ZnWO4 samples. One of the ZnWO4 crystals has also been tested by ultra-low background gamma spectrometry. The radioactive contaminations of the ZnWO4 samples do not exceed 0.002 -- 0.8 mBq/kg (depending on the radionuclide), the total alpha activity is in the range: 0.2 - 2 mBq/kg. Particular radioactivity, beta active 65Zn and alpha active 180W, has been detected. The effect of the re-crystallization on the radiopurity of the ZnWO4 crystal has been studied. The radioactive contamination of samples of the ceramic details of the set-ups used in the crystals growth has been checked by low background gamma spectrometry. A project scheme on further improvement of the radiopurity level of the ZnWO4 crystal scintillators is briefly addressed.

  8. Electrodeposition of zinc on glassy carbon from ZnCl/sub 2/ and ZnBr/sub 2/ electrolytes

    SciTech Connect (OSTI)

    McBreen, J.; Gannon, E.

    1983-08-01

    The initial stages of the electrocrystallization of zinc from 3M ZnCl/sub 2/ and 3M ZnBr/sub 2/ on glassy carbon has been investigated using cyclic voltametry, the potential step method, and scanning electron microscopy. Particular care was taken to ensure electrolyte purity and to eliminate resistance effects in the measurements. The nucleation overvoltage in 3M ZnCl/sub 2/ was about 17 and about 12 mV in 3M ZnBr/sub 2/. In 3M ZnCl/sub 2/, the current transients from the potential step measurements could be fitted to a simple model that assumes instantaneous nucleation followed by growth of three dimensional centers under kinetic control. A similar mechanism is operative for 3M ZnBr/sub 2/ at low overvoltages. At higher overvoltages, the current transient is governed by mixed kinetic and diffusion control and cannot be fitted to a simple model. The lower nucleation overvoltage and the faster kinetics in 3M ZnBr/sub 2/ is correlated with the lower stability constants for the zinc bromide complexes. Erroneous results are obtained when resistance effects are not accounted for.

  9. Hot exciton transport in ZnSe quantum wells

    E-Print Network [OSTI]

    Zhao, Hui; Moehl, Sebastian; Wachter, Sven; Kalt, Heinz

    2002-02-01

    The in-plane transport of excitons in ZnSe quantum wells is investigated directly by microphotoluminescence in combination with a solid immersion lens. Due to the strong Froehlich coupling, the initial kinetic energy of the excitons is well...

  10. DIRECT EVIDENCE OF MG-ZN-P ALLOY FORMATION IN MG/ZN3P2 SOLAR CELLS Gregory M. Kimball

    E-Print Network [OSTI]

    Kimball, Gregory

    Te, CIGS, a-Si) for thin film photovoltaics. The record solar energy conversion efficiency for Zn3P2 cellsDIRECT EVIDENCE OF MG-ZN-P ALLOY FORMATION IN MG/ZN3P2 SOLAR CELLS Gregory M. Kimball 1 , Nathan S indicate that high efficiency should be realizable by optimization of Mg treatment in Mg/Zn3P2 solar cells

  11. Selective Zn2+ sensing using a modified bipyridine complex

    SciTech Connect (OSTI)

    Akula, Mahesh; El-Khoury, Patrick Z.; Nag, Amit; Bhattacharya, Anupam

    2014-06-01

    A novel fluorescent Zn2+ sensor, 4-(pyridin-2-yl)-3H-pyrrolo[2, 3-c]quinoline (PPQ), has been designed, synthesized and characterized by various spectroscopic and analytical techniques. PPQ exhibits superior detection of Zn2+ in the presence of various cations tested, including Cd2+ and Hg2+, via wavelength shifted fluorescence intensity enhancement. The emission wavelength at 500 nm, ensures probable noninterference from cellular components while performing biological applications.

  12. Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia*

    E-Print Network [OSTI]

    Iglesia, Enrique

    Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia* Department rates during propane conversion at 773 K on Zn/Na-ZSM5 are about ten times higher than on Zn/H-ZSM5 catalysts with similar Zn content. The total rate of propane conversion is also higher on Zn/Na-ZSM5

  13. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01

    www.Zurn.com PAGE 35 Radiant Cooling Research Scoping Study1988. “Radiant Heating and Cooling, Displacement VentilationHeat Recovery and Storm Water Cooling: An Environmentally

  14. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    SciTech Connect (OSTI)

    Huang, Lei, E-mail: leihuang@shnu.edu.cn; Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-10-15

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

  15. Nanoparticulate PdZn as a Novel Catalyst for ZnO Nanowire Growth

    E-Print Network [OSTI]

    2010-03-14

    at 500?C (see below). The prepared grids were dip coated with a methanol suspension of PdZn colloid (molar metal ratio 50:50) with a total metal concentration of 0.490 mg/ml. As a control sample, a silicon wafer was coated with particles under the same... at temperatures ranging from 560 to 820?C. An Ar/O2 mixture was used as the carrier gas. Subsequent analyses were carried out by both HRSEM and HRTEM along with EDS and SAED. An overview of the parameter combinations investigated is shown in Table 1. Selected...

  16. Improve the open-circuit voltage of ZnO solar cells with inserting ZnS layers by two ways

    SciTech Connect (OSTI)

    Sun, Yunfei; Yang, Jinghai; Yang, Lili; Cao, Jian; Gao, Ming; Zhang, Zhiqiang; Wang, Zhe; Song, Hang

    2013-04-15

    ZnS NPs layers were deposited on ZnO NRs by two different ways. One is spin coating; the other is successive ionic layer adsorption and reaction (SILAR) method. The ZnO NRs/ZnS NPs composites were verified by X-ray diffraction, X-ray photoelectron spectroscopy, and UV–visible spectrophotometer; their morphologies and thicknesses were examined by scanning electron microscopic and transmission electron microscopic images. The CdS quantum dot sensitized solar cells (QDSSCs) were constructed using ZnO NRs/ZnS NPs composites as photoanode and their photovoltaic characteristic was studied by J–V curves. The results indicated that the way of SILAR is more beneficial for retarding the back transfer of electrons to CdS and electrolyte than spin coating method. The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method. When ZnS NPs layer was deposited for 10 times on ZnO NRs, the conversion efficiency of QDSSC shows ?3.3 folds increments of as-synthesized ZnO solar cell. - Graphical abstract: When ZnO nanorods were deposited by ZnS for 10 times, the conversion efficiency of QDSSC shows ?3.3 folds increments of as-synthesized ZnO solar cell. Highlights: ? ZnS layers were deposited with two different ways. ? The way of SILAR is more beneficial for retarding the back transfer of electrons. ? The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method.

  17. Photoluminescence study of the substitution of Cd by Zn during the growth by atomic layer epitaxy of alternate CdSe and ZnSe monolayers

    SciTech Connect (OSTI)

    Hernández-Calderón, I.; Salcedo-Reyes, J. C.

    2014-05-15

    We present a study of the substitution of Cd atoms by Zn atoms during the growth of alternate ZnSe and CdSe compound monolayers (ML) by atomic layer epitaxy (ALE) as a function of substrate temperature. Samples contained two quantum wells (QWs), each one made of alternate CdSe and ZnSe monolayers with total thickness of 12 ML but different growth parameters. The QWs were studied by low temperature photoluminescence (PL) spectroscopy. We show that the Cd content of underlying CdSe layers is affected by the exposure of the quantum well film to the Zn flux during the growth of ZnSe monolayers. The amount of Cd of the quantum well film decreases with higher exposures to the Zn flux. A brief discussion about the difficulties to grow the Zn{sub 0.5}Cd{sub 0.5}Se ordered alloy (CuAu-I type) by ALE is presented.

  18. Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: A composition dependent study

    SciTech Connect (OSTI)

    Hemalatha, K.S. [Department of Physics, Bangalore University, Bangalore 560 056, Karnataka (India); Department of Physics, Maharani's Science College for Women, Palace Road, Bangalore 560 001, Karnataka (India); Rukmani, K., E-mail: rukmani9909@yahoo.co.in [Department of Physics, Bangalore University, Bangalore 560 056, Karnataka (India); Suriyamurthy, N. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Nagabhushana, B.M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore 560 054, Karnataka (India)

    2014-03-01

    Graphical abstract: - Highlights: • ZnO nanoparticles were prepared by solution combustion method. • PVA–ZnO nanocomposites were synthesized by solution casting method. • Doped and undoped films were characterized using different techniques. • Red shift in optical band gap was observed in Nanocomposite films with respect to nano ZnO. • Photoluminescence intensity was found to be optimum for PVA–10 mol% ZnO nanocomposite film. - Abstract: Nanocomposites of poly vinyl alcohol (PVA) and ZnO have been synthesized using the solution casting technique for different concentrations of nano ZnO powder prepared by low temperature solution combustion method. The formation of polymer nanocomposite and changes in the structural and micro structural properties of the materials were investigated by X-ray diffraction, Energy dispersive X ray spectroscopy and optical microscopy techniques (FTIR and UV–Visible). The surface morphology of PVA–ZnO nanocomposite films were elucidated using Scanning Electron Microscopy. The optical absorption spectrum of nano ZnO shows blue shift in the optical band gap energy with respect to characteristic bulk ZnO at room temperature, whereas PVA–ZnO hybrid films show red shift with respect to nano ZnO. The photoluminescence studies show that the intensity of the blue emission (470 nm) varies with change in concentration of ZnO with an optimum intensity observed at 10 mol% of ZnO.

  19. Structural Studies of Al:ZnO Powders and Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ingham, Associate Investigator, MacDiarmid Institute for Advanced Materials & Nanotechnology Al-doped ZnO (Al:ZnO) is a promising transparent conducting oxide. We have used...

  20. Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells

    E-Print Network [OSTI]

    Iza, Diana C; Muñoz-Rojas, David; Jia, Quanxi; Swartzentruber, Brian; MacManus-Driscoll, Judith L

    2012-11-27

    Abstract With particular focus on bulk heterojunction solar cells incorporating ZnO nanorods, we study how different annealing environments (air or Zn environment) and temperatures impact on the photoluminescence response. Our work gives new insight...

  1. An improved understanding of fluorescent Zn(II) sensors and their uses in biological settings

    E-Print Network [OSTI]

    Wong, Brian Alexander

    2009-01-01

    Chapter 1. An Introduction to Fluorescent Zn(II) Sensors and Their Applications in Biological Systems This chapter opens with an overview of the numerous roles of zinc in biology, with an emphasis on labile Zn(II), that ...

  2. One-step electrochemical synthesis of a graphene–ZnO hybrid for improved photocatalytic activity

    SciTech Connect (OSTI)

    Wei, Ang; Xiong, Li; Sun, Li; Liu, Yanjun; Li, Weiwei; Lai, Wenyong; Liu, Xiangmei; Wang, Lianhui; Huang, Wei; Dong, Xiaochen

    2013-08-01

    Graphical abstract: - Highlights: • Graphene–ZnO hybrid was synthesized by one-step electrochemical deposition. • Graphene–ZnO hybrid presents a special structure and wide UV–vis absorption spectra. • Graphene–ZnO hybrid exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue. - Abstract: A graphene–ZnO (G-ZnO) hybrid was synthesized by one-step electrochemical deposition. During the formation of ZnO nanostructure by cathodic electrochemical deposition, the graphene oxide was electrochemically reduced to graphene simultaneously. Scanning electron microscope images, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectra, and UV–vis absorption spectra indicate the resulting G-ZnO hybrid presents a special structure and wide UV–vis absorption spectra. More importantly, it exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue than that of pure ZnO nanostructure under both ultraviolet and sunlight irradiation.

  3. Nitrogen is a deep acceptor in ZnO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore »relative to the vacuum level.« less

  4. Structural recovery of ion implanted ZnO nanowires G. Perillat-Merceroz,1, 2, a)

    E-Print Network [OSTI]

    Boyer, Edmond

    applications, ZnO nanowires are studied for making light- emitting diodes (LEDs) because of the advantages

  5. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect (OSTI)

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  6. Structure of graphene oxide dispersed with ZnO nanoparticles

    SciTech Connect (OSTI)

    Yadav, Rishikesh Pandey, Devendra K.; Khare, P. S.

    2014-10-15

    Graphene has been proposed as a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal and mechanical properties for many applications. In present work a process of dispersion of graphene oxide with ZnO nanoparticles in ethanol solution with different pH values, have been studied. Samples have been characterized by XRD, SEM, PL, UV-visible spectroscopy and particles size measurement. The results analysis indicates overall improved emission spectrum. It has been observed that the average diameter of RGO (Reduced Graphene Oxide) decreases in presence of ZnO nanoparticles from 3.8?m to 0.41?m.

  7. Room-temperature larger-scale highly ordered nanorod imprints of ZnO film

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    ordered nanorod-patterned ZnO films directly integrated on III-nitride light-emitting diodes (LEDs nm in height continuous ZnO wetting layer, the light output power of the resulting integrated ZnO-nanorod-film/semi-transparent metal/GaN/InGaN LED shows a two-fold enhancement (100% light extraction efficiency improvement

  8. Hydrogen-related defects in bulk ZnO Matthew D. McCluskey,1

    E-Print Network [OSTI]

    McCluskey, Matthew

    Hydrogen-related defects in bulk ZnO Matthew D. McCluskey,1 Slade J. Jokela,1 and Marianne C. Tarun. This paper reviews recent work on hydrogen donors and nitrogen-hydrogen complexes in ZnO. INTRODUCTION Zinc be understood. One such defect is hydrogen, a common impurity in ZnO. We have studied hydrogen donors using

  9. Precipitation and mechanical properties of supersaturated Al-Zn-Mg alloys processed by severe plastic deformation

    E-Print Network [OSTI]

    Gubicza, Jenõ

    Precipitation and mechanical properties of supersaturated Al-Zn-Mg alloys processed by severe density, precipitation. Abstract. Supersaturated Al-4.8Zn-1.2Mg-0.14Zr and Al-5.7Zn-1.9Mg-0.35Cu (wt distribution and the characteristic parameters of the dislocation structure of both Al matrix and precipitates

  10. Cyan electroluminescence from n-ZnO/i-CdZnO/p-Si heterojunction diodes Lin Li, Zheng Yang and Jianlin Liu

    E-Print Network [OSTI]

    Yang, Zheng

    .8 eV by alloying with CdO [3-6]. This property makes ZnO based light sources emitting light from for 5 min under vacuum, then a 350 nm Ga-doped ZnO layer was deposited at 500 °C as n-type layer. Room used for contacts of both Ga-doped ZnO and p-type Si. The contacts were subjected to rapid thermal

  11. ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo SOLAR CELL WITH 18.6% EFFICIENCY M.A. Contreras, 2

    E-Print Network [OSTI]

    Sites, James R.

    ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo SOLAR CELL WITH 18.6% EFFICIENCY 1 M.A. Contreras, 2 T. Nakada, 2 M analysis between this type of solar cell and the slightly more efficient ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell for conversion efficiency above 20% in thin-film polycrystalline solar cells. It quantifies the gains in current

  12. Defect Chemistry Study of Nitrogen Doped ZnO Thin Films

    SciTech Connect (OSTI)

    Miami University: Dr. Lei L. Kerr Wright State University: Dr. David C. Look and Dr. Zhaoqiang Fang

    2009-11-29

    Our team has investigated the defect chemistry of ZnO:N and developed a thermal evaporation (vapor-phase) method to synthesis p-type ZnO:N. Enhanced p-type conductivity of nitrogen doped ZnO via nano/micro structured rods and Zn-rich Co-doping process were studied. Also, an extended X-Ray absorption fine structure study of p-type nitrogen doped ZnO was conducted. Also reported are Hall-effect, photoluminescence, and DLTS studies.

  13. The Nature of Zn Precipitates Formed in the Presence of

    E-Print Network [OSTI]

    Sparks, Donald L.

    D D O N A L D L . S P A R K S Department of Plant and Soil Sciences, University of Delaware, NewarkThe Nature of Zn Precipitates Formed in the Presence of Pyrophyllite R O B E R T G . F O R D * A N

  14. ZnO Nanotube Based Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    ZnO Nanotube Based Dye-Sensitized Solar Cells Alex B. F. Martinson,, Jeffrey W. Elam, Joseph T templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition of the best dye- sensitized solar cells (DSSCs) is the product of a dye with moderate extinction

  15. Seven-year performance of eucalyptus speczes zn

    E-Print Network [OSTI]

    Seven-year performance of eucalyptus speczes zn Napa County Dean R. Donaldson o John W. LeBlanc o RichardB. Standiford SherriGallagher LI CharlesJ. Jourdain o George E. Miller Eucalyptus was promoted to sour on the purported "miracle tree" when it became evident that eucalyptus grown in California

  16. Scintillating bolometers based on ZnMoO$_4$ and Zn$^{100}$MoO$_4$ crystals to search for 0$\

    E-Print Network [OSTI]

    Poda, D V; Arnaud, Q; Augier, C; Benoît, A; Bergé, L; Boiko, R S; Bergmann, T; Blümer, J; Broniatowski, A; Brudanin, V; Camus, P; Cazes, A; Censier, B; Chapellier, M; Charlieux, F; Chernyak, D M; Coron, N; Coulter, P; Cox, G A; Danevich, F A; de Boissière, T; Decourt, R; De Jesus, M; Devoyon, L; Drillien, A -A; Dumoulin, L; Eitel, K; Enss, C; Filosofov, D; Fleischmann, A; Fourches, N; Gascon, J; Gastaldo, L; Gerbier, G; Giuliani, A; Gros, M; Hehn, L; Henry, S; Hervé, S; Heuermann, G; Humbert, V; Ivanov, I M; Juillard, A; Kéfélian, C; Kleifges, M; Kluck, H; Kobychev, V V; Koskas, F; Kozlov, V; Kraus, H; Kudryavtsev, V A; Sueur, H Le; Loidl, M; Magnier, P; Makarov, E P; Mancuso, M; de Marcillac, P; Marnieros, S; Marrache-Kikuchi, C; Menshikov, A; Nasonov, S G; Navick, X-F; Nones, C; Olivieri, E; Pari, P; Paul, B; Penichot, Y; Pessina, G; Piro, M C; Plantevin, O; Redon, T; Robinson, M; Rodrigues, M; Rozov, S; Sanglard, V; Schmidt, B; Shlegel, V N; Siebenborn, B; Strazzer, O; Tcherniakhovski, D; Tenconi, M; Torres, L; Tretyak, V I; Vagneron, L; Vasiliev, Ya V; Velazquez, M; Viraphong, O; Walker, R J; Weber, M; Yakushev, E; Zhang, X; Zhdankov, V N

    2015-01-01

    The technology of scintillating bolometers based on zinc molybdate (ZnMoO$_4$) crystals is under development within the LUMINEU project to search for 0$\

  17. Origin of high Zn contents in Jurassic limestone of the Jura mountain range and the Burgundy: evidence from Zn speciation

    E-Print Network [OSTI]

    Introduction Jurassic limestone of the Jura mountain range (JMR) and the Burgundy bear anomalously high zincOrigin of high Zn contents in Jurassic limestone of the Jura mountain range and the Burgundy in Jurassic limestone of the Jura mountain range (JMR) and the Burgundy (B), we investigated four loca- tions

  18. Hybrid density functional calculations of the defect properties of ZnO:Rh and ZnO:Ir

    E-Print Network [OSTI]

    Muñoz Ramo, David; Bristowe, Paul D.

    2014-03-31

    gap region and near the conduction band minimum, with a d-d splitting larger than 2 eV, which helps maintain transparency in the material. Addition of a hole to the simulation cell of both spinels and doped ZnO leads to charge localization...

  19. Theoretical study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001) surface

    SciTech Connect (OSTI)

    Zhao, Ya-Fan; Rousseau, Roger J.; Li, Jun; Mei, Donghai

    2012-08-02

    Methanol synthesis from syngas (CO/CO2/H2) hydrogenation on the perfect Zn–terminated polar ZnO(0001) surface have been investigated using periodic density functional theory calculations. Our results show that direct CO2 hydrogenation to methanol on the perfect ZnO(0001) surface is unlikely because in the presence of surface atomic H and O the highly stable formate (HCOO) and carbonate (CO3) readily produced from CO2 with low barriers 0.11 and 0.09 eV will eventually accumulate and block the active sites of the ZnO(0001) surface. In contrast, methanol synthesis from CO hydrogenation is thermodynamically and kinetically feasible on the perfect ZnO(0001) surface. CO can be consecutively hydrogenated into formyl (HCO), formaldehyde (H2CO), methoxy (H3CO) intermediates, leading to the final formation of methanol (H3COH). The reaction route via hydroxymethyl (H2COH) intermediate, a previously proposed species on the defected O–terminated ZnO( ) surface, is kinetically inhibited on the perfect ZnO(0001) surface. The rate-determining step in the consecutive CO hydrogenation route is the hydrogenation of H3CO to H3COH. We also note that this last hydrogenation step is pronouncedly facilitated in the presence of water by lowering the activation barrier from 1.02 to 0.55 eV. This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences, and performed at EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). Computational resources were provided at EMSL and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. J. Li and Y.-F. Zhao were also financially supported by the National Natural Science Foundation of China (Nos. 20933003 and 91026003) and the National Basic Research Program of China (No. 2011CB932400). Y.-F. Zhao acknowledges the fellowship from PNNL.

  20. Local structures of polar wurtzites Zn1-xMgxO studied by raman and 67Zn/25Mg NMR spectroscopies and by total neutron scattering

    SciTech Connect (OSTI)

    Proffen, Thomas E; Kim, Yiung- Il; Cadars, Sylvian; Shayib, Ramzy; Feigerle, Charles S; Chmelka, Bradley F; Seshadri, Ram

    2008-01-01

    Research in the area of polar semiconductor heterostructures has been growing rapidly, driven in large part by interest in two-dimensional electron gas (2DEG) systems. 2DEGs are known to form at heterojunction interfaces that bear polarization gradients. They can display extremely high electron mobilities, especially at low temperatures, owing to spatial confinement of carrier motions. Recent reports of 2DEG behaviors in Ga{sub 1-x}Al{sub x}N/GaN and Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have great significance for the development of quantum Hall devices and novel high-electron-mobility transistors (HEMTs). 2DEG structures are usually designed by interfacing a polar semiconductor with its less or more polar alloys in an epitaxial manner. Since the quality of the 2DEG depends critically on interface perfection, as well as the polarization gradient at the heterojunction, understanding compositional and structural details of the parent and alloy semiconductors is an important component in 2DEG design and fabrication. Zn{sub 1-x}Mg{sub x}O/ZnO is one of the most promising heterostructure types for studies of 2DEGs, due to the large polarization of ZnO, the relatively small lattice mismatch, and the large conduction band offsets in the Zn{sub 1-x}Mg{sub x}O/ZnO heterointerface. Although 2DEG formation in Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have been researched for some time, a clear understanding of the alloy structure of Zn{sub 1-x}Mg{sub x}O is currently lacking. Here, we conduct a detailed and more precise study of the local structure of Zn{sub 1-x}Mg{sub x}O alloys using Raman and solid-state nuclear magnetic resonance (NMR), in conjunction with neutron diffraction techniques.

  1. Growth of Single- and Bilayer ZnO on Au(111) and Interaction with Copper

    SciTech Connect (OSTI)

    Deng, Xingyi; Yao, Kun; Sun, Keju; Li, Wei-Xue; Lee, Junseok; Matranga, Christopher

    2013-05-30

    The stoichiometric single- and bi-layer ZnO(0001) have been prepared by reactive deposition of Zn on Au(111) and studied in detail with X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. Both single- and bi-layer ZnO(0001) adopt a planar, graphite-like structure similar to freestanding ZnO(0001) due to the weak van der Waals interactions dominating their adhesion with the Au(111) substrate. At higher temperature, the single-layer ZnO(0001) converts gradually to bi-layer ZnO(0001) due to the twice stronger interaction between two ZnO layers than the interfacial adhesion of ZnO with Au substrate. It is found that Cu atoms on the surface of bi-layer ZnO(0001) are mobile with a diffusion barrier of 0.31 eV, and likely to agglomerate and form nanosized particles at low coverages; while Cu atoms tend to penetrate a single layer of ZnO(0001) with a barrier of 0.10 eV, resulting in a Cu free surface.

  2. ZnO:Sb/ZnO:Ga Light Emitting Diode on c-Plane Sapphire by Molecular Beam Epitaxy Zheng Yang, Sheng Chu, Winnie V. Chen1

    E-Print Network [OSTI]

    Yang, Zheng

    ZnO:Sb/ZnO:Ga Light Emitting Diode on c-Plane Sapphire by Molecular Beam Epitaxy Zheng Yang, Sheng substrates using plasma-assisted molecular-beam epitaxy. Mesa geometry light emitting diodes (LEDs) were demonstrated in recent years, such as photodetectors,8,9) light-emitting diodes (LEDs),10­13) and random lasing

  3. Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures

    E-Print Network [OSTI]

    2010-08-07

    Abstract In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs) is achieved using atomic layer deposition (ALD). Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous...

  4. Metal contacts on ZnSe and GaN

    SciTech Connect (OSTI)

    Duxstad, K J [Univ. of California, Berkeley, CA (United States). Materials Science and Mineral Engineering

    1997-05-01

    Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.

  5. Impact of strain on electronic defects in (Mg,Zn)O thin films

    SciTech Connect (OSTI)

    Schmidt, Florian Müller, Stefan; Wenckstern, Holger von; Benndorf, Gabriele; Pickenhain, Rainer; Grundmann, Marius

    2014-09-14

    We have investigated the impact of strain on the incorporation and the properties of extended and point defects in (Mg,Zn)O thin films by means of photoluminescence, X-ray diffraction, deep-level transient spectroscopy (DLTS), and deep-level optical spectroscopy. The recombination line Y?, previously detected in ZnO thin films grown on an Al-doped ZnO buffer layer and attributed to tensile strain, was exclusively found in (Mg,Zn)O samples being under tensile strain and is absent in relaxed or compressively strained thin films. Furthermore a structural defect E3´ can be detected via DLTS measurements and is only incorporated in tensile strained samples. Finally it is shown that the omnipresent deep-level E3 in ZnO can only be optically recharged in relaxed ZnO samples.

  6. Supporting information for: Na-doped p-type ZnO , Faxian Xiu2

    E-Print Network [OSTI]

    Yang, Zheng

    S1 Supporting information for: Na-doped p-type ZnO microwires Wei Liu1* , Faxian Xiu2 , Ke Sun1 flow was switched to argon followed by cooling to room temperature. After the growth, high-density Zn distribution of the Na Doped ZnO microwire 1.3 EDX line scans spectra #12;S3 Figure S3 a) a typical TEM image

  7. Magnetism in undoped ZnS studied from density functional theory

    SciTech Connect (OSTI)

    Xiao, Wen-Zhi E-mail: llwang@hun.edu.cn; Rong, Qing-Yan; Xiao, Gang; Wang, Ling-ling E-mail: llwang@hun.edu.cn; Meng, Bo

    2014-06-07

    The magnetic property induced by the native defects in ZnS bulk, thin film, and quantum dots are investigated comprehensively based on density functional theory within the generalized gradient approximation + Hubbard U (GGA?+?U) approach. We find the origin of magnetism is closely related to the introduction of hole into ZnS systems. The relative localization of S-3p orbitals is another key to resulting in unpaired p-electron, due to Hund's rule. For almost all the ZnS systems under study, the magnetic moment arises from the S-dangling bonds generated by Zn vacancies. The charge-neutral Zn vacancy, Zn vacancy in 1? charge sate, and S vacancy in the 1+ charge sate produce a local magnetic moment of 2.0, 1.0, and 1.0??{sub B}, respectively. The Zn vacancy in the neutral and 1? charge sates are the important cause for the ferromagnetism in ZnS bulk, with a Curie temperature (T{sub C}) above room temperature. For ZnS thin film with clean (111) surfaces, the spins on each surface are ferromagnetically coupled but antiferromagnetically coupled between two surfaces, which is attributable to the internal electric field between the two polar (111) surfaces of the thin film. Only surface Zn vacancies can yield local magnetic moment for ZnS thin film and quantum dot, which is ascribed to the surface effect. Interactions between magnetic moments on S-3p states induced by hole-doping are responsible for the ferromagnetism observed experimentally in various ZnS samples.

  8. ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells

    E-Print Network [OSTI]

    Cao, Guozhong

    NW and TiO2 nanotube arrays.6­9 However, the PCE of such DSC remained low, for example, ZnO NW DSC, typically TiO2 and ZnO network with dye molecules adsorbed onto the sur- face forming a monolayer. Dye into the conduction band of TiO2 or ZnO and transported to charge collector. In order to achieve high power conversion

  9. Hot-pressed ceramic Cr2+ :ZnSe gain-switched

    E-Print Network [OSTI]

    Mirov, Sergey B.

    Hot-pressed ceramic Cr2+ :ZnSe gain-switched laser A. Gallian, V. V. Fedorov, and S. B. Mirov: The technology of hot-pressed Cr2+ :ZnSe ceramic preparation is reported. Comparative gain-switched lasing of hot­pressed ceramic and CVD grown Cr2+ :ZnSe samples with slope efficiencies up to 10 % and output energies up to 2 m

  10. Optical and morphological properties of graphene sheets decorated with ZnO nanowires via polyol enhancement

    SciTech Connect (OSTI)

    Sharma, Vinay, E-mail: winn201@gmail.com; Rajaura, Rajveer Singh, E-mail: winn201@gmail.com [Centre for Converging Technologies, University of Rajasthan, Jaipur - 302004 (India); Sharma, Preetam K.; Srivastava, Subodh; Vijay, Y. K. [Department of Physics, Thin Film and Membrane Science Lab., University of Rajasthan, Jaipur - 302004 (India); Sharma, S. S. [Department of Physics, Govt. Women Engineering College, Ajmer- 305002 (India)

    2014-04-24

    Graphene-ZnO nanocomposites have proven to be very useful materials for photovoltaic and sensor applications. Here, we report a facile, one-step in situ polymerization method for synthesis of graphene sheets randomly decorated with zinc oxide nanowires using ethylene glycol as solvent. We have used hydrothermal treatment for growth of ZnO nanowires. UV-visible spectra peak shifting around 288nm and 307 nm shows the presence of ZnO on graphene structure. Photoluminiscence spectra (PL) in 400nm-500nm region exhibits the luminescence quenching effect. Scanning electron microscopy (SEM) image confirms the growth of ZnO nanowires on graphene sheets.

  11. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    SciTech Connect (OSTI)

    G, Sreeja V; Anila, E. I., E-mail: anilaei@gmail.com; R, Reshmi, E-mail: anilaei@gmail.com; John, Manu Punnan, E-mail: anilaei@gmail.com [Optolectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva-683 102, Kerala (India); V, Sabitha P; Radhakrishnan, P. [International School of Photonics, CUSAT, Cochin-22 (India)

    2014-10-15

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  12. Metallic filament formation by aligned oxygen vacancies in ZnO-based resistive switches

    SciTech Connect (OSTI)

    Gu, Tingkun

    2014-05-28

    The electronic structure of ZnO with defects of oxygen vacancies were investigated by using first-principles methods. Some structure models were constructed in order to investigate the effects of the distribution of oxygen vacancies on the electronic properties of ZnO. By analyzing the calculated results, we found that only the aligned oxygen vacancies can form the conducting channel in ZnO, and the transformation of the oxygen vacancy from charged state to neutral state is consistent with the energetics rule of the forming aligned oxygen vacancies. As for the heterojunction of Pt/ZnO/Pt, the oxygen vacancies near the interface of Pt/ZnO depress the local Schottky barrier effectively, and the aligned oxygen vacancies in ZnO form a conducting filament connecting two Pt electrodes. The metallic filament formation in Pt/ZnO/Pt resistive switching cells should be closely related to the carrier injection from Pt electrode into ZnO and the arrangement of oxygen vacancies in ZnO slab.

  13. Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties

    SciTech Connect (OSTI)

    Wang Jun; Gao Zan; Li Zhanshuang; Wang Bin; Yan Yanxia; Liu Qi; Mann, Tom; Zhang Milin; Jiang Zhaohua

    2011-06-15

    A green and facile approach was demonstrated to prepare graphene nanosheets/ZnO (GNS/ZnO) composites for supercapacitor materials. Glucose, as a reducing agent, and exfoliated graphite oxide (GO), as precursor, were used to synthesize GNS, then ZnO directly grew onto conducting graphene nanosheets as electrode materials. The small ZnO particles successfully anchored onto graphene sheets as spacers to keep the neighboring sheets separate. The electrochemical performances of these electrodes were analyzed by cyclic voltammetry, electrochemical impedance spectrometry and chronopotentiometry. Results showed that the GNS/ZnO composites displayed superior capacitive performance with large capacitance (62.2 F/g), excellent cyclic performance, and maximum power density (8.1 kW/kg) as compared with pure graphene electrodes. Our investigation highlight the importance of anchoring of small ZnO particles on graphene sheets for maximum utilization of electrochemically active ZnO and graphene for energy storage application in supercapacitors. - Graphical abstract: Glucose was used to synthesize GNS, then ZnO directly grew onto conducting graphene nanosheets as electrode materials for supercapacitor. Results showed that the composites have superior capacitive performance. Highlights: > Graphene nanosheets were synthesized via using glucose as a reducing agent. > The reductant and the oxidized product are environmentally friendly. > ZnO grew onto conducting graphene sheets keeping neighboring sheets separate. > The structure improves the contact between the electrode and the electrolyte. > Results showed that these composites have good electrochemical property.

  14. Visualization of Peroxynitrite-Induced Changes of Labile Zn[superscript 2+] in the Endoplasmic Reticulum with Benzoresorufin-based Fluorescent Probes

    E-Print Network [OSTI]

    Lin, Wei

    Zn[superscript 2+] plays essential roles in biology, and the homeostasis of Zn[superscript 2+] is tightly regulated in all cells. Subcellular distribution and trafficking of labile Zn[superscript 2+], and its inter-relation ...

  15. Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application

    SciTech Connect (OSTI)

    Saravanan, R.; Santhi, Kalavathy; Sivakumar, N.; Narayanan, V.; Stephen, A.

    2012-05-15

    Zinc oxide nanorods and diluted magnetic semiconducting Ni doped ZnO nanorods were prepared by thermal decomposition method. This method is simple and cost effective. The decomposition temperature of acetate and formation of oxide were determined by TGA before the actual synthesis process. The X-ray diffraction result indicates the single phase hexagonal structure of zinc oxide. The transmission electron microscopy and scanning electron microscopy images show rod like structure of ZnO and Ni doped ZnO samples with the diameter {approx} 35 nm and the length in few micrometers. The surface analysis was performed using X-ray photoelectron spectroscopic studies. The Ni doped ZnO exhibits room temperature ferromagnetism. This diluted magnetic semiconducting Ni doped ZnO nanorods finds its application in spintronics. - Highlights: Black-Right-Pointing-Pointer The method used is very simple and cost effective compared to all other methods for the preparation DMS materials. Black-Right-Pointing-Pointer ZnO and Ni doped ZnO nanorods Black-Right-Pointing-Pointer Ferromagnetism at room temperature.

  16. Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo

    SciTech Connect (OSTI)

    Santana Palacio, Juan A [ORNL; Krogel, Jaron T [ORNL; Kim, Jeongnim [ORNL; Kent, Paul R [ORNL; Reboredo, Fernando A [ORNL

    2015-01-01

    We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.

  17. Influence of external electric field on piezotronic effect in ZnO nanowires

    E-Print Network [OSTI]

    Wang, Zhong L.

    Wurtzite and zinc blende structured materials, such as ZnO, ZnS, GaN, CdS, and CdSe, have significant], piezopotential gated transistors [5, 6], LEDs [7], solar cells [8], photodetectors [9], and temperature sensors

  18. Band-gap tailoring of ZnO by means of heavy Al doping

    SciTech Connect (OSTI)

    Sernelius, B.E.; Berggren, K.; Jin, Z.; Hamberg, I.; Granqvist, C.G.

    1988-06-15

    Films of ZnO:Al were produced by weakly reactive dual-target magnetron sputtering. Optical band gaps, evaluated from spectrophotometric data, were widened in proportion to the Al doping. The widening could be quantitatively reconciled with an effective-mass model for n-doped semiconductors, provided the polar character of ZnO was accounted for.

  19. Recycling ZnTe, CdTe, and Other Compound Semiconductors by Ambipolar Electrolysis

    E-Print Network [OSTI]

    Osswald, Sebastian

    The electrochemical behavior of ZnTe and CdTe compound semiconductors dissolved in molten ZnCl[subscript 2] and equimolar CdCl[subscript 2]–KCl, respectively, was examined. In these melts dissolved Te is present as the ...

  20. Magnetic and structural properties of Zn doped MnV{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Shahi, Prashant; Shukla, K. K.; Singh, Rahul; Chatterjee, Sandip; Das, A.; Ghosh, A. K.; Nigam, A. K.

    2014-04-24

    The magnetization, Neutron diffraction and X-ray diffraction of Zn doped MnV{sub 2}O{sub 4} as a function of temperature have been measured. It has been observed, with increase of Zn the non-linear orientation of Mn spins with the V spins will decrease which effectively decrease the structural transition temperature more rapidly than Curie Temperature.

  1. Corrosion of, and cellular responses to MgZnCa bulk metallic glasses Xuenan Gu a

    E-Print Network [OSTI]

    Zheng, Yufeng

    Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China c metallic glass with different compositions (Mg66Zn30Ca4 and Mg70Zn25Ca5) have been prepared for this study and their feasibility as biodegradable metallic materials have been eval- uated by the microstructural, surface analysis

  2. Water adsorption on stepped ZnO surfaces from MD simulation David Raymand a

    E-Print Network [OSTI]

    Goddard III, William A.

    Water adsorption on stepped ZnO surfaces from MD simulation David Raymand a , Adri C.T. van Duin b Keywords: Zinc oxide Water Solid­gas interfaces Construction and use of effective interatomic interactions force-field for use in molecular dynamics simulations of the ZnO­ water system. The force

  3. Manganese-doped ZnO nanobelts for spintronics C. Ronning,a)

    E-Print Network [OSTI]

    Wang, Zhong L.

    Manganese-doped ZnO nanobelts for spintronics C. Ronning,a) P. X. Gao, Y. Ding, and Z. L. Wangb and luminescence. The produced high-quality ZnO:Mn nanobelts are potentially useful for spintronics. © 2004 of the promising materials for spintronics (spin electronics), a proposed technology that uses the electron spin

  4. ZnO Spintronics and Nanowire Devices S.J. PEARTON,1,4

    E-Print Network [OSTI]

    Hebard, Arthur F.

    ZnO Spintronics and Nanowire Devices S.J. PEARTON,1,4 D.P. NORTON,1 Y.W. HEO,1 L.C. TIEN,1 M, University of Florida. 4.--E-mail: spear@mse. ufl.edu ZnO is a very promising material for spintronics

  5. Hierarchical Ag/ZnO micro/nanostructure: Green synthesis and enhanced photocatalytic performance

    SciTech Connect (OSTI)

    Gao, Shuyan; Jia, Xiaoxia; Yang, Shuxia; Li, Zhengdao; Jiang, Kai

    2011-04-15

    Ag/ZnO metal-semiconductor nanocomposites with hierarchical micro/nanostructure have been prepared by the hydrothermal synthesis in the presence of bovine serum albumin (BSA). The results suggest that this biomolecule-assisted hydrothermal method is an efficient route for the fabrication of Ag/ZnO nanocomposites by using BSA both a shape controller and a reducing agent of Ag{sup +} ions. Moreover, Ag nanoparticles on the ZnO act as electron sinks, improving the separation of photogenerated electrons and holes, increasing the surface hydroxyl contents of ZnO, facilitating trapping the photoinduced electrons and holes to form more active hydroxyl radicals, and thus, enhancing the photocatalytic efficiency of ZnO. This is a good example for the organic combination of green chemistry and functional materials. -- Graphical Abstract: A green strategy is report to construct Ag/ZnO metal-semiconductor nanocomposites with hierarchical micro/nanostructure and enhanced photocatalytic activity. Display Omitted Research highlights: > Hierarchical micro/nanostructured Ag/ZnO nanocomposites have been prepared via a green route. > Ag nanoparticles improve the separation of photogenerated electrons and holes. > This facilitates trapping the photoinduced electrons and holes to form more hydroxyl radicals. Therefore, it enhances the photocatalytic efficiency of ZnO.

  6. Optical and Excitonic Properties of Crystalline ZnS Nanowires: Toward Efficient Ultraviolet

    E-Print Network [OSTI]

    Xiong, Qihua

    semiconductor, has been most widely used for phosphor host,5 optical coating, and solar cells.6 Due to the wide luminescence. Despite their advantageous band gap, bulk or thin film ZnS materials have not been able, such as ZnS epilayers fabricated on GaAs by MBE8 and NWs grown by PLV15 or MBE.20 Although those reports

  7. Optical and electronic properties of highly stable and textured hydrogenated ZnO:Al thin films

    SciTech Connect (OSTI)

    Hwang, Younghun, E-mail: younghh@ulsan.ac.kr [Basic Science Research Institute, University of Ulsan, Ulsan 680-749 (Korea, Republic of)] [Basic Science Research Institute, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kim, Hyungmin [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of)] [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Um, Youngho, E-mail: yhum@ulsan.ac.kr [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of)] [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Park, Hyoyeol [Semiconductor Applications, Ulsan College, Ulsan 680-749 (Korea, Republic of)] [Semiconductor Applications, Ulsan College, Ulsan 680-749 (Korea, Republic of)

    2012-09-15

    Highlights: ? We investigate the impact of hydrogen treatment at high temperature of ZnO:Al film. ? Electrical properties of the ZnO:Al films improved due to hydrogen annealing. ? Optical properties of the ZnO:Al films enhanced due to hydrogen annealing. ? ZnO:Al film properties strongly depend on the hydrogen treatment temperature. -- Abstract: We have experimentally investigated the effects of hydrogen-annealing on the structural, electrical, and optical properties of Al-doped ZnO (ZnO:Al) thin films prepared by RF magnetron sputtering at room temperature. From the X-ray diffraction observations, the orientation of ZnO:Al films was found to be a c-axis in the hexagonal structure. We found that intentionally incorporated hydrogen plays an important role in n-type conduction as a donor, improving free carrier concentration and electrical stability. We simultaneously obtained improved optical transmission and enhanced absorption edge of the ZnO:Al film due to hydrogen-annealing. Our experimental data suggest the hydrogen-annealing process as an important role in the enhancement of electrical and optical properties, which is promising as a back reflector material for thin-film solar cells.

  8. RETENTION OF Cd, Cu, Pb AND Zn BY WOOD ASH, LIME AND FUME DUST

    E-Print Network [OSTI]

    Ma, Lena

    RETENTION OF Cd, Cu, Pb AND Zn BY WOOD ASH, LIME AND FUME DUST TAIT CHIRENJE1 , LENA Q. MA2 and ecosystem health. This study investigated the effectiveness of wood ash in immobilizing the heavy metals Pb, Cd, Cu and Zn from aqueous solutions. The effects of initial metal concentrations, solution pH, ash

  9. Soil and Mold Influences on Fe and Zn Concentrations of Sorghum Grain in Mali, West Africa 

    E-Print Network [OSTI]

    Verbree, Cheryl

    2012-10-19

    breeders in Mali are working to increase sorghum grain Fe and Zn concentrations. The objective of this study was to investigate soil and mold influences that affect Fe and Zn uptake and accumulation in sorghum grain. In southern Mali, soils from...

  10. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2

    E-Print Network [OSTI]

    Kimball, Gregory

    .6 However, even the basic materials parameters of Zn3P2, such as the energy gap, remainPhotoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 Gregory M and Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA Received 29 June

  11. Formation of single crystalline ZnO nanotubes without catalysts and templates

    E-Print Network [OSTI]

    Geohegan, David B.

    nanotubes. GaN,1 silica,2 ZnO,3,4 and TiO2 Ref. 5 nanotubes have been synthesized by using multistep#12;Formation of single crystalline ZnO nanotubes without catalysts and templates Samuel L. Mensah January 2007; published online 13 March 2007 Oxide and nitride nanotubes have gained attention

  12. ZnO/LSMO Nanocomposites for Energy Harvesting Robert Kinner1$

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    , and underutilized from other sources. Since green vegetation and plants utilize carbon dioxide to store sun's energy ZnO/LSMO Nanocomposites for Energy Harvesting Robert Kinner1$ , Abdul-Majeed Azad1 , G (LSMO) with zinc oxide (ZnO) are candidate materials for energy harvesting by virtue of their magnetic

  13. Precipitation microstructure of ultrafine-grained Al-Zn-Mg alloys processed by severe plastic deformation

    E-Print Network [OSTI]

    Gubicza, Jenõ

    Precipitation microstructure of ultrafine-grained Al-Zn-Mg alloys processed by severe plastic analysis, supersaturated AlZnMg alloys, dislocation density, precipitation. Abstract. Supersaturated Al-4 of the dislocation structure of both Al matrix and precipitates were determined by X-ray diffraction line profile

  14. Phosphorus Doped Zn1-xMgxO Nanowire J. I. Hong,

    E-Print Network [OSTI]

    Wang, Zhong L.

    output measurements, X-ray photoelectron spectroscopy, and the transport property between the NWs and a n in high-efficiency all-ZnO NWs based LED, high-output ZnO nanogenerator, and other optical or electrical,2 biosciences,3 and energy sciences.4 Nanowire light emitting diodes (LEDs), for example, have

  15. Dielectric properties of Bi2(Zn1/3Nb2/3)2O7 electroceramics and thin lms

    E-Print Network [OSTI]

    Ku?el, Petr

    Dielectric properties of Bi2(Zn1/3Nb2/3)2O7 electroceramics and thin ®lms Hsiu-Fung Cheng a, *, Yi 2000 Abstract Dielectric response of Bi2(Zn1/3Nb2/3)2O7, BiZN, ceramic materials and thin ®lms were at optimized sintering temperature (1050 C, 4 h). Crystalline BiZN thin ®lms, can be easily obtained when

  16. PUBLISHED ONLINE: 27 SEPTEMBER 2009 | DOI: 10.1038/NMAT2542 MgZnCa glasses without clinically observable

    E-Print Network [OSTI]

    Giger, Christine

    by a model based on the calculated Pourbaix diagram of Zn in simulated body fluid. We document animal studies

  17. SrAgZn and EuAgZn with KHg{sub 2}-type structure—Structure, magnetic properties, and {sup 151}Eu Mössbauer spectroscopy

    SciTech Connect (OSTI)

    Gerke, Birgit; Rodewald, Ute Ch.; Niehaus, Oliver; Pöttgen, Rainer

    2013-07-15

    Samples of SrAgZn and EuAgZn were synthesized by reaction of the elements in sealed tantalum crucibles. Both structures were refined on the basis of single crystal X-ray diffractometer data: KHg{sub 2}-type, Imma, a=476.7(1), b=780.9(2), c=810.1(2) pm, R{sub 1}/wR{sub 2}=0.0189/0.0119, 381 F² values for SrAg{sub 1.12}Zn{sub 0.88} and a=474.43(9), b=760.8(2), c=799.0(2) pm, R{sub 1}/wR{sub 2}=0.0226/0.0483, 370 F² values for EuAg{sub 1.17}Zn{sub 0.83} with 13 variables per refinement. Silver and zinc are randomly distributed on the Hg position and build up three-dimensional networks. EuAgZn shows ferromagnetic ordering at 29(1) K. In the temperature range from 75 to 300 K the sample shows Curie–Weiss behaviour with ?{sub eff}=7.87(1) ?{sub B}/Eu atom and ?{sub P}=37.1(1) K, indicating divalent europium. {sup 151}Eu Mössbauer spectroscopic measurements confirmed the divalent state with an isomer shift of ?9.31 mm/s at 78 K. Temperature dependent {sup 151}Eu data show first magnetic hyperfine field splitting at 25 K and a saturated magnetization of 17 T at 5.2 K. The temperature dependence can be described by an S=7/2 Brillouin function. - Graphical abstract: The near neighbor coordination of the strontium and europium atoms in SrAg{sub 1.12}Zn{sub 0.88}, EuAg{sub 1.17}Zn{sub 0.83}, and EuAuZn. - Highlights: • Synthesis of new intermetallic zinc compounds SrAgZn and EuAgZn. • Ferromagnetic ordering of EuAgZn at 29 K. • Magnetic hyperfine field splitting in the {sup 151}Eu Mössbauer spectrum.

  18. Polymer-ZnO nanocomposites foils and thin films for UV protection

    SciTech Connect (OSTI)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang (Malaysia)

    2014-09-03

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images.

  19. Emission Properties from ZnO Quantum Dots Dispersed in SiO{sub 2} Matrix

    SciTech Connect (OSTI)

    Panigrahi, Shrabani; Basak, Durga

    2011-07-15

    Dispersion of ZnO quantum dots in SiO{sub 2} matrix has been achieved in two techniques based on StOeber method to form ZnO QDs-SiO{sub 2} nanocomposites. Sample A is formed with random dispersion by adding tetraethyl orthosilicate (TEOS) to an ethanolic solution of ZnO nanoparticles and sample B is formed with a chain-like ordered dispersion by adding ZnO nanoparticles to an already hydrolyzed ethanolic TEOS solution. The photoluminescence spectra of the as-grown nanocomposites show strong emission in the ultraviolet region. When annealed at higher temperature, depending on the sample type, these show strong red or white emission. Interestingly, when the excitation is removed, the orderly dispersed ZnO QDs-SiO{sub 2} composite shows a very bright blue fluorescence visible by naked eyes for few seconds indicating their promise for display applications.

  20. Atomic layer deposition of zinc sulfide with Zn(TMHD){sub 2}

    SciTech Connect (OSTI)

    Short, Andrew; Jewell, Leila; Doshay, Sage; Church, Carena; Keiber, Trevor; Bridges, Frank; Carter, Sue; Alers, Glenn

    2013-01-15

    The atomic layer deposition (ALD) of ZnS films with Zn(TMHD){sub 2} and in situ generated H{sub 2}S as precursors was investigated, over a temperature range of 150-375 Degree-Sign C. ALD behavior was confirmed by investigation of growth behavior and saturation curves. The properties of the films were studied with atomic force microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, ultraviolet-visible-infrared spectroscopy, and extended x-ray absorption fine structure. The results demonstrate a film that can penetrate a porous matrix, with a local Zn structure of bulk ZnS, and a band gap between 3.5 and 3.6 eV. The ZnS film was used as a buffer layer in nanostructured PbS quantum dot solar cell devices.

  1. Controlled etching of hexagonal ZnO architectures in an alcohol thermal process

    SciTech Connect (OSTI)

    Wu, Junshu [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)] [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China); Xue, Dongfeng, E-mail: dfxue@chem.dlut.edu.cn [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)] [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)

    2010-03-15

    An alcohol thermal technique was applied to the controlled growth of hexagonal ZnO architectures via selective chemical etching. ZnO microdisks were produced first under mild alcohol thermal conditions in presence of formamide. Due to a higher surface energy/atomic density of Zn{sup 2+} {l_brace}0 0 0 1{r_brace} than that of the other faces, hexagonal ZnO microring was obtained by selectively etching positive polar surface of disk-like precursor with a high density of planar defects at the center. The selective etching of ZnO is related to its crystallographic characteristics of surface polarity and chemical activities, which opens a new opportunity for the shape-controlled synthesis of wurtzite-structured materials.

  2. Luminescence properties of ZnO layers grown on Si-on-insulator substrates

    SciTech Connect (OSTI)

    Kumar, Bhupendra; Gong, Hao; Vicknesh, S.; Chua, S. J.; Tripathy, S. [Department of Materials Science and Engineering, National University of Singapore, 119260 Singapore (Singapore); Institute of Materials Research and Engineering, 3 Research Link, 117602 Singapore (Singapore)

    2006-10-02

    The authors report on the photoluminescence properties of polycrystalline ZnO thin films grown on compliant silicon-on-insulator (SOI) substrates by radio frequency magnetron sputtering. The ZnO thin films on SOI were characterized by micro-Raman and photoluminescence (PL) spectroscopy. The observation of E{sub 2}{sup high} optical phonon mode near 438 cm{sup -1} in the Raman spectra of the ZnO samples represents the wurtzite crystal structure. Apart from the near-band-edge free exciton (FX) transition around 3.35 eV at 77 K, the PL spectra of such ZnO films also showed a strong defect-induced violet emission peak in the range of 3.05-3.09 eV. Realization of such ZnO layers on SOI would be useful for heterointegration with SOI-based microelectronics and microelectromechanical systems.

  3. Defect-free ZnO nanorods for low temperature hydrogen sensor applications

    SciTech Connect (OSTI)

    Ranwa, Sapana; Kumar, Mahesh; Kulriya, Pawan K.; Sahu, Vikas Kumar; Kukreja, L. M.

    2014-11-24

    Uniformly distributed and defect-free vertically aligned ZnO nanorods (NRs) with high aspect ratio are deposited on Si by sputtering technique. X-ray diffraction along with transmission electron microscopy studies confirmed the single crystalline wurtzite structure of ZnO. Absence of wide band emission in photoluminescence spectra showed defect-free growth of ZnO NRs which was further conformed by diamagnetic behavior of the NRs. H{sub 2} sensing mechanism based on the change in physical dimension of channel is proposed to explain the fast response (?21.6?s) and recovery times (?27?s) of ZnO NRs/Si/ZnO NRs sensors. Proposed H{sub 2} sensor operates at low temperature (?70?°C) unlike the existing high temperature (>150?°C) sensors.

  4. Development of ZnNiCd coatings by pulse electrodeposition process Prabhu Ganesan, Swaminatha P. Kumaraguru, Branko N. Popov

    E-Print Network [OSTI]

    Popov, Branko N.

    Development of Zn­Ni­Cd coatings by pulse electrodeposition process Prabhu Ganesan, Swaminatha P indicated that Zn­Ni­Cd alloys exhibit superior barrier properties when compared to Cd or Zn­Ni coatings of corrosion resistant coating in aerospace, electrical, and fastener industries due to its excel- lent

  5. Speciation of Zn in Blast Furnace Sludge from Former Sedimentation Ponds Using Synchrotron Xray Diffraction, Fluorescence, and

    E-Print Network [OSTI]

    in the octahedral sheets of phyllosilicates, (2) Zn sulfide minerals (ZnS, sphalerite, or wurtzite), (3) Zn in a KZn-ferrocyanide of the BFS. Similarly, the abundance of the KZn-ferrocyanide phase was closely correlated with the total CN

  6. Iron-based soft magnetic composites with MnZn ferrite nanoparticles coating obtained by solgel method

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Iron-based soft magnetic composites with Mn­Zn ferrite nanoparticles coating obtained by sol nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm­Zn ferrites. Mn­Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced

  7. Purification of CdZnTe by Electromigration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 lm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. Furthermore, a CZT detector fabricated from the middle portion of themore »electromigrated CZT boule showed an improved mobility-lifetime product of 0.91 10-2 cm2 /V, compared to that of 1.4 10-3 cm2 /V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.« less

  8. Plasmonic excitations in ZnO/Ag/ZnO multilayer systems: Insight into interface and bulk electronic properties

    SciTech Connect (OSTI)

    Philipp, Martin; Knupfer, Martin; Buechner, Bernd; Gerardin, Hadia

    2011-03-15

    Electron energy-loss spectroscopy experiments in transmission were carried out on silver-based multi-layer systems, consisting of a silver layer of various thicknesses (8, 10 and 50 nm) sandwiched between two Al-doped ZnO layers. The films were produced by magnetron sputtering using potassium bromide single crystals as substrates. The electronic structure of these systems was probed and analyzed with respect to their plasmonic excitations, which can be basically split up into excitations of the electrons in the bulk silver and excitations at the ZnO:Al/Ag interface. A detailed examination of the momentum dependence of the plasmon peaks revealed a positive dispersion for both, the volume and the interface plasmon, where only for the first one a quadratic behavior (as expected for a free electron gas) could be observed. Furthermore, the peak width was analyzed and set into relation to electrical conductivity measurements by calculating the plasmon lifetime and the electron scattering rate. Here, a good agreement between these different methods was obtained.

  9. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces

    SciTech Connect (OSTI)

    Dominguez, A.; Lorke, M.; Rosa, A. L.; Frauenheim, Th. [BCCMS, Universität Bremen, Am Fallturm 1, 28359 Bremen (Germany); Schoenhalz, A. L.; Dalpian, G. M. [CCNH, Universidade Federal do ABC, Av. dos Estados 5001, Santo André (Brazil); Rocha, A. R. [IFT, Universidade Estadual Paulista, R. Dr. Bento Teobaldo Ferraz, 271, São Paulo (Brazil)

    2014-05-28

    We report on density functional theory investigations of the electronic properties of monofunctional ligands adsorbed on ZnO-(1010) surfaces and ZnO nanowires using semi-local and hybrid exchange-correlation functionals. We consider three anchor groups, namely thiol, amino, and carboxyl groups. Our results indicate that neither the carboxyl nor the amino group modify the transport and conductivity properties of ZnO. In contrast, the modification of the ZnO surface and nanostructure with thiol leads to insertion of molecular states in the band gap, thus suggesting that functionalization with this moiety may customize the optical properties of ZnO nanomaterials.

  10. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect (OSTI)

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250?°C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80?°C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80?°C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  11. Ethanol Steam Reforming on Co/CeO2: The Effect of ZnO Promoter

    SciTech Connect (OSTI)

    Davidson, Stephen; Sun, Junming; Wang, Yong

    2013-12-02

    A series of ZnO promoted Co/CeO2 catalysts were synthesized and characterized using XRD, TEM, H2-TPR, CO chemisorption, O2-TPO, IR-Py, and CO2-TPD. The effects of ZnO on the catalytic performances of Co/CeO2 were studied in ethanol steam reforming. It was found that the addition of ZnO facilitated the oxidation of Co0 via enhanced oxygen mobility of the CeO2 support which decreased the activity of Co/CeO2 in C–C bond cleavage of ethanol. 3 wt% ZnO promoted Co/CeO2 exhibited minimum CO and CH4 selectivity and maximum CO2 selectivity. This resulted from the combined effects of the following factors with increasing ZnO loading: (1) enhanced oxygen mobility of CeO2 facilitated the oxidation of CHx and CO to form CO2; (2) increased ZnO coverage on CeO2 surface reduced the interaction between CHx/CO and Co/CeO2; and (3) suppressed CO adsorption on Co0 reduced CO oxidation rate to form CO2. In addition, the addition of ZnO also modified the surface acidity and basicity of CeO2, which consequently affected the C2–C4 product distributions.

  12. Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paulauskas, I. E.; Jellison, G. E.; Boatner, L. A.; Brown, G. M.

    2011-01-01

    The photoelectrochemical stability and surface-alteration characteristics of doped and undoped n-type ZnO single-crystal photoanode electrodes were investigated. The single-crystal ZnO photoanode properties were analyzed using current-voltage measurements plus spectral and time-dependent quantum-yield methods. These measurements revealed a distinct anodic peak and an accompanying cathodic surface degradation process at negative potentials. The features of this peak depended on time and the NaOH concentration in the electrolyte, but were independent of the presence of electrode illumination. Current measurements performed at the peak indicate that charging and discharging effects are apparently taking place at the semiconductor/electrolyte interface. This result is consistent with themore »significant reactive degradation that takes place on the ZnO single crystal photoanode surface and that ultimately leads to the reduction of the ZnO surface to Zn metal. The resulting Zn-metal reaction products create unusual, dendrite-like, surface alteration structural features that were analyzed using x-ray diffraction, energy-dispersive analysis, and scanning electron microscopy. ZnO doping methods were found to be effective in increasing the n-type character of the crystals. Higher doping levels result in smaller depletion widths and lower quantum yields, since the minority carrier diffusion lengths are very short in these materials.« less

  13. H2S removal with ZnO during fuel processing for PEM fuel cell applications

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2006-09-15

    The possibility of using ZnO as a H2S absorbent to protect catalysts in the gasoline and diesel fuel processor for PEM fuel cell applications was studied. It is possible to use commercial ZnO absorbent as a guard bed to protect the PROX catalyst and PEM fuel cell. However, it is not feasible to use ZnO to protect high and low temperature WGS catalysts, most likely due to COS formation via reactions CO + H2S = COS + H2 and CO2 + H2S = COS + H2O.

  14. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu

    SciTech Connect (OSTI)

    Tu, Dong; Kamimura, Sunao [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Xu, Chao-Nan, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Fujio, Yuki; Sakata, Yoshitaro [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Ueno, Naohiro [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Graduate School of Science and Engineering, Saga University, Saga 840-8502 (Japan)

    2014-07-07

    We have found that phosphorescence intensity of CaZnOS:Cu decreased visibly under an applied load. This mechanical quenching (MQ) of phosphorescence in CaZnOS:Cu corresponded to the mechanical stimuli. We have thus demonstrated that the MQ of CaZnOS:Cu could be used for visualizing stress distributions in practical applications. We propose that MQ arises from non-radiative recombination due to electron-transfer from trap levels to non-radiative centers as a result of the mechanical load.

  15. ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars

    SciTech Connect (OSTI)

    Wang, Dong, E-mail: dong.wang@tu-ilmenau.de; Yan, Yong; Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Sharp, Thomas [Oxford Instruments Plasma Technology Ltd., Yatton, Bristol BS49 4AP (United Kingdom); Schönherr, Sven; Ronning, Carsten [Institute for Solid State Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Ji, Ran [SUSS MicroTec Lithography GmbH, Schleissheimer Str. 90, 85748 Garching (Germany)

    2015-01-01

    Porous Si nanopillar arrays are used as templates for atomic layer deposition of ZnO and TiO{sub 2}, and thus, ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars are fabricated. The diffusion of the precursor molecules into the inside of the porous structure occurs via Knudsen diffusion and is strongly limited by the small pore size. The luminescence of the ZnO/porous-Si nanocomposite nanopillars is also investigated, and the optical emission can be changed and even quenched after a strong plasma treatment. Such nanocomposite nanopillars are interesting for photocatalysis and sensors.

  16. Nonlinear optical properties of ZnO/poly (vinyl alcohol) nanocomposite films

    SciTech Connect (OSTI)

    Jeeju, P. P., E-mail: jeejupp@gmail.com [Department of Physics, S N M College, Maliankara, Ernakulam, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Chandrasekharan, K. [Department of Physics, National Institute of Technology, Calicut, Kerala (India)

    2014-01-28

    Extensive studies have already been reported on the optical characteristics of ZnO/polymer nanocomposite films, using a variety of polymers including transparent polymers such as polystyrene, polymethyl methacrylate etc and many interesting results have been established regarding the non linear optical characteristics of these systems. Poly (vinyl alcohol)(PVA) is a water soluble polymer. Though the structural and optical studies of ZnO/PVA nanocomposite films have already been investigated, there are no detailed reports on the nonlinear optical characteristics of ZnO/PVA nanocomposite films, irrespective of the fact that these nanocomposite films can be synthesized using quite easy and cost effective methods. The present work is an attempt to study in detail the nonlinear optical behaviour of ZnO/PVA nanocomposite films using Z-scan technique. Highly transparent ZnO/PVA nanocomposite films were prepared from the ZnO incorporated PVA solution in water using spin coating technique. The ZnO nanoparticles were synthesized by the simple chemical route at room temperature. High-resolution transmission electron microscopy studies show that the ZnO nanoparticles are of size around 10 nm. The ZnO/PVA nanocomposite films were structurally characterized by X-ray diffraction technique, from which the presence of both PVA and ZnO in the nanocomposite was established. The optical absorptive nonlinearity in the nanocomposite films was investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption in ZnO with efficiency more than 50%. These films also show a self defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. The present studies indicate that, highly transparent and homogeneous films of ZnO/PVA nanocomposite can be obtained on glass substrates using simple methods, in a highly cost effective way, since PVA is water soluble. These nanocomposite films offer prospects of application as efficient optical limiters to protect light sensitive devices from the possible damage on exposure to high intensity radiation.

  17. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    SciTech Connect (OSTI)

    Srinet, Gunjan Kumar, Ravindra Sajal, Vivek

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  18. Inverse spin Hall effect induced by spin pumping into semiconducting ZnO

    SciTech Connect (OSTI)

    Lee, Jung-Chuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Huang, Leng-Wei [Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China); Hung, Dung-Shing, E-mail: dshung@mail.mcu.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111, Taiwan (China); Chiang, Tung-Han [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Huang, J. C. A., E-mail: jcahuang@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Liang, Jun-Zhi [Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Physics, Fu Jen Catholic University, Taipei 242, Taiwan (China); Lee, Shang-Fan, E-mail: leesf@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China)

    2014-02-03

    The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered.

  19. X-ray absorption studies of mixed salt polymer electrolytes: ZnBr{sub 2}/CaBr{sub 2}-PEO, ZnBr{sub 2}/LiBr-PEO, and ZnBr{sub 2}/RbBr-PEO complexes

    SciTech Connect (OSTI)

    McBreen, J.; Yang, X.Q.; Lee, H.S.; Okamoto, Y.

    1995-02-01

    Polyethylene oxide (PEO)-salt systems are an important new class of electrolytes that are being considered for many uses. X-ray absorption (XAS) studies of ZnBr{sub 2}-PEO complexes, at the Zn K edge, at temperatures between 25 and 120 C, indicate that additions of bromide salts of Li, Rb, or Ca result in the formation of ZnBr{sub 4}{sup {minus} 2} complexes with a Zn-Br bond length of 2.42 {angstrom}. XAS, at the Rb K edge, in mixed RbBr/ZnBr{sub 2}-PEO complexes with an excess of ZnBr{sub 2}, shows that the ZnBr{sub 2} causes the RbBr to dissolve in the polymer. The Rb{sup +} ions are weakly complexed with the PEO with an Rb-O bond distance of 2.93 {angstrom}.

  20. Luminescence and electrical properties of single ZnO/MgO core/shell nanowires

    SciTech Connect (OSTI)

    Grinblat, Gustavo; Comedi, David; Bern, Francis; Barzola-Quiquia, José; Esquinazi, Pablo; Tirado, Mónica

    2014-03-10

    To neutralise the influence of the surface of ZnO nanowires for photonics and optoelectronic applications, we have covered them with insulating MgO film and individually contacted them for electrical characterisation. We show that such a metal-insulator-semiconductor-type nanodevice exhibits a high diode ideality factor of 3.4 below 1?V. MgO shell passivates ZnO surface states and provides confining barriers to electrons and holes within the ZnO core, favouring excitonic ultraviolet radiative recombination, while suppressing defect-related luminescence in the visible and improving electrical conductivity. The results indicate the potential use of ZnO/MgO nanowires as a convenient building block for nano-optoelectronic devices.

  1. Development of ZnO Based Light Emitting Diodes and Laser Diodes

    E-Print Network [OSTI]

    Kong, Jieying

    2012-01-01

    E. Fred Schubert, Light-Emitting Diodes, New York (2006) [8]ZnO homojunction light emitting diode 3. 1. Motivation ofAlGaAs red light-emitting diodes, in: G.B. Stringfellow, M.

  2. Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures

    SciTech Connect (OSTI)

    Haur Kao, Chyuan; Chun Liu, Che; Ueng, Herng-Yih [Department of Electronic Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Chen, Hsiang, E-mail: hchen@ncnu.edu.tw; Cheng Chu, Yu; Jie Chen, Yu [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli, Nantou 545, Taiwan (China); Ling Lee, Ming; Ming Chang, Kow [Department of Electronic Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan (China)

    2014-05-14

    Multianalyte electrolyte–insulator–semiconductor (EIS) sensors with a ZnO sensing membrane annealed on silicon substrate for use in pH sensing were fabricated. Material analyses were conducted using X-ray diffraction and atomic force microscopy to identify optimal treatment conditions. Sensing performance for various ions of Na{sup +}, K{sup +}, urea, and glucose was also tested. Results indicate that an EIS sensor with a ZnO membrane annealed at 600?°C exhibited good performance with high sensitivity and a low drift rate compared with all other reported ZnO-based pH sensors. Furthermore, based on well-established pH sensing properties, pH-ion-sensitive field-effect transistor sensors have also been developed for use in detecting urea and glucose ions. ZnO-based EIS sensors show promise for future industrial biosensing applications.

  3. ZnO nanowires on glass via chemical routes: A prospective photocatalyst for indoors applications

    E-Print Network [OSTI]

    O:Al Seed layer Photocatalysis Stearic acid A B S T R A C T Versatile ZnO nanowires with controlled applications. ã 2014 Elsevier Ltd. All rights reserved. Introduction Heterogeneous photocatalysis is attracting

  4. Imaging and characterization of piezoelectric potential in a single bent ZnO microwire

    SciTech Connect (OSTI)

    Wang, Chiang-Lun; Chen, Jhih-Wei; Chen, Yi-Chun; Wu, Chung-Lin, E-mail: clwuphys@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Tsai, Shu-Ju [Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); Shiu, Hong-Wei; Chang, Lo-Yueh; Chen, Chia-Hao [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Lin, Kai-Hsiang; Hsu, Hsu-Cheng [Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-09-22

    We achieved direct visualization of the piezoelectric potentials in a single bent ZnO microwire (MW) using focused synchrotron radiation (soft x-ray) scanning photoelectron spectro-microscopy. Using radial-line scan across the bent section of ZnO MW, the characteristic core-level shifts were directly related to the spatial distribution of piezoelectric potentials perpendicular to the ZnO polar direction. Using piezoelectric modeling in ZnO, we delineated the band structure distortion and carrier concentration change from tensile to compressed sides by combining the spatial resolved cathodoluminescence characteristics in an individual microwire. This spectro-microscopic technique allows imaging and identification of the electric-mechanical couplings in piezoelectric micro-/nano-wire systems.

  5. Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting

    E-Print Network [OSTI]

    Li, Yat

    . ZnO is a direct bandgap semiconductor with similar bandgap and band edge positions as TiO2 nanosheets,15 nanotubes,16 and nanorods,17,18 as they offer advantages over their bulk counterparts

  6. Efficient light emitting devices utilizing CdSe(ZnS) quantum dots in organic host matrices

    E-Print Network [OSTI]

    Coe-Sullivan, Seth (Seth Alexander)

    2002-01-01

    We demonstrate efficient electroluminescence from thin film structures containing core-shell CdSe(ZnS) quantum dots dispersed in molecular organic host materials. In the most efficient devices, excitons are created on the ...

  7. Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties

    SciTech Connect (OSTI)

    Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V.

    2014-05-07

    Zinc oxide/Graphene (GZ) composites with different concentrations of ZnO were successfully synthesized through simple chemical precipitation method. The X-ray diffraction pattern and the micro-Raman spectroscopic technique revealed the formation of GZ composite, and the energy dispersive X-ray spectrometry analysis showed the purity of the prepared samples. The ZnO nanoparticles decorated graphene sheets were clearly visible in the field emission scanning electron micrograph. Raman mapping was employed to analyze the homogeneity of the prepared samples. The diffuse-reflectance spectra clearly indicated that the formation of GZ composites promoted the absorption in the visible region also. The photocatalytic activity of ZnO and GZ composites was studied by the photodegradation of Methylene blue dye. The results revealed that the GZ composites exhibited a higher photocatalytic activity than pristine ZnO. Hence, we proposed a simple wet chemical method to synthesize GZ composite and its application on photocatalysis was demonstrated.

  8. Simulation, Modeling, and Crystal Growth of Cd0.9Zn0.1Te for...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Simulation, Modeling, and Crystal Growth of Cd0.9Zn0.1Te for Nuclear Spectrometers Citation Details In-Document Search Title: Simulation, Modeling, and Crystal...

  9. Single-valley quantum Hall ferromagnet in a dilute MgxZn1-xO/ZnO strongly correlated two-dimensional electron system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kozuka, Y.; Tsukazaki, A.; Maryenko, D.; Falson, J.; Bell, C.; Kim, M.; Hikita, Y.; Hwang, H. Y.; Kawasaki, M.

    2012-02-03

    We investigate the spin susceptibility (g*m*) of dilute two-dimensional (2D) electrons confined at the MgxZn1-xO/ZnO heterointerface. Magnetotransport measurements show a four-fold enhancement of g*m*, dominated by the increase in the Landé g-factor. The g-factor enhancement leads to a ferromagnetic instability of the electron gas as evidenced by sharp resistance spikes. At high magnetic field, the large g*m* leads to full spin polarization, where we found sudden increase in resistance around the filling factors of half-integer, accompanied by complete disappearance of fractional quantum Hall (QH) states. Along with its large effective mass and the high electron mobility, our result indicates thatmore »the ZnO 2D system is ideal for investigating the effect of electron correlations in the QH regime.« less

  10. Zn speciation in a soil contaminated by the deposition of a dredged sediment by synchrotron X-ray techniques

    SciTech Connect (OSTI)

    Isaure, Marie-Pierre; Manceau, Alain; Laboudigue, Agnes; Tamura, Nobumichi; Marcus, Matthew A.

    2003-09-01

    The nature and proportion of Zn species present in an agricultural soil overlaid by a dredged contaminated sediment have been untangled by the novel combination of three non-invasive synchrotron-based x-ray techniques: x-ray microfluorescence ({mu}SXRF), microdiffraction ({mu}XRD), and absorption spectroscopy (EXAFS). One primary (franklinite) and two secondary (phyllomanganate and phyllosilicate) Zn-containing minerals were identified in the initial soil, and another primary (ZnS) and a new secondary (Fe-(oxyhydr)oxide) Zn species in the covered soil. The quantitative analysis of EXAFS spectra recorded on bulk samples indicated that ZnS and Zn-Fe (oxyhydr)oxides amounted to 71+-10 percent and 27+-10 percent, respectively, and the other Zn species to less than 10 percent. The two new Zn species found in the covered soil result from the gravitational migration of ZnS particles initially present in the sediment, and from their further oxidative dissolution and fixation of leached Zn on F e (oxyhydr) oxides.

  11. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    SciTech Connect (OSTI)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  12. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

    SciTech Connect (OSTI)

    Xiong, Haifeng; DelaRiva, Andrew; Wang, Yong; Dayte, Abhaya

    2015-01-01

    Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H-2 production from ethanol at low temperature (250 degrees C). On Pd, the H-2 yield was low (similar to 0.3 mol H-2/mol ethanol reacted) and the CH4/CO2 ratio was high (similar to 1.7). Addition of Zn to Pd formed the intermetallic PdZn beta phase (atomic ratio of Zn to Pd is 1) with increased H-2 yield (similar to 1.9 mol H-2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H-2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L1(0) PdZn beta phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZn beta particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 degrees C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H-2 is considerably lower than the theoretical value of 6 H-2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

  13. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    SciTech Connect (OSTI)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup ?1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 ?m in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup ?2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  14. Mechanical and transparent conductive properties of ZnO and Ga-doped ZnO films sputtered using electron-cyclotron-resonance plasma on polyethylene naphtalate substrates

    SciTech Connect (OSTI)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp [NTT Microsystem Integration Laboratories 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2014-03-15

    Transparent conductive ZnO and Ga-doped ZnO (GZO) films were deposited on polyethylene naphtalate (PEN) sheet substrates using electron cyclotron resonance plasma sputtering. Both ZnO and GZO films were highly adhesive to the PEN substrates without inserting an intermediate layer in the interface. When compared at the same thickness, the transparent conductive properties of GZO films on PEN substrates were only slightly inferior to those on glass substrates. However, the carrier concentration of ZnO films on PEN substrates was 1.5?times that of those on glass substrates, whereas their Hall mobility was only 60% at a thickness of 300?nm. The depth profile of elements measured by secondary ion mass spectroscopy revealed the diffusion of hydrocarbons out of the PEN substrate into the ZnO film. Hence, doped carbons may act as donors to enhance carrier concentration, and the intermixing of elements at the interface may deteriorate the crystallinity, resulting in the lower Hall mobility. When the ZnO films were thicker than 400?nm, cracks became prevalent because of the lattice mismatch strain between the film and the substrate, whereas GZO films were free of cracks. The authors investigated how rolling the films around a cylindrical pipe surface affected their conductive properties. Degraded conductivity occurred at a threshold pipe radius of 10?mm when tensile stress was applied to the film, but it occurred at a pipe radius of 5?mm when compressive stress was applied. These values are guidelines for bending actual devices fabricated on PEN substrates.

  15. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    SciTech Connect (OSTI)

    Yilmaz, Ceren; Unal, Ugur; Yagci Acar, Havva

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures. The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.

  16. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    SciTech Connect (OSTI)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zou, Chao; Yang, Jun; Dong, Juan [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China)

    2013-12-16

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078Zn ferrite coated sample (k{sub 2} =1.4058) in comparison with other samples.

  17. Ferromagnetism in Gd doped ZnO nanowires: A first principles study

    SciTech Connect (OSTI)

    Aravindh, S. Assa; Schwingenschloegl, Udo E-mail: iman.roqan@kaust.edu.sa; Roqan, Iman S. E-mail: iman.roqan@kaust.edu.sa

    2014-12-21

    In several experimental studies, room temperature ferromagnetism in Gd-doped ZnO nanostructures has been achieved. However, the mechanism and the origin of the ferromagnetism remain controversial. We investigate the structural, magnetic, and electronic properties of Zn{sub 48}O{sub 48} nanowires doped with Gd, using density functional theory. Our findings indicate that substitutionally incorporated Gd atoms prefer occupying the surface Zn sites. Moreover, the formation energy increases with the distance between Gd atoms, signifying that no Gd-Gd segregation occurs in the nanowires within the concentration limit of ?2%. Gd induces ferromagnetism in ZnO nanowires with magnetic coupling energy up to 21?meV in the neutral state, which increases with additional electron and O vacancy, revealing the role of carriers in magnetic exchange. The potential for achieving room temperature ferromagnetism and high T{sub C} in ZnO:Gd nanowires is evident from the large ferromagnetic coupling energy (200?meV) obtained with the O vacancy. Density of states shows that Fermi level overlaps with Gd f states with the introduction of O vacancy, indicating the possibility of s-f coupling. These results will assist in understanding experimental findings in Gd-doped ZnO nanowires.

  18. Structural, compositional, and photoluminescence characterization of thermal chemical vapor deposition-grown Zn?N? microtips

    SciTech Connect (OSTI)

    Wei, Pai-Chun, E-mail: pcwei68@gmail.com, E-mail: tsengcm@phys.sinica.edu.tw; Chang, Chung-Chieh; Hsu, Chia-Hao [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Tong, Shih-Chang; Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Tseng, Chuan-Ming, E-mail: pcwei68@gmail.com, E-mail: tsengcm@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Materials Science and Engineering, National Central University, Tao-Yuan 32001, Taiwan (China)

    2014-10-14

    The catalytic growth of Zn?N? using guided-stream thermal chemical vapor deposition has been investigated within the parameter range of acicular growth to obtain uniform microtips with a high crystalline quality. The cubic anti-bixbyite crystal structure of Zn?N? microtips and its related phonon mode are revealed by X-ray diffraction and Raman spectroscopy, respectively. The surface morphologies of pure and surface-oxidized Zn?N? microtips are depicted by scanning electron microscopy and show the crack formation on the surface-oxidized Zn?N? microtips. The spatial element distribution map confirms the VLS growth mechanism for Zn?N? microtips and reveals the depth profile of zinc, nitrogen, oxygen, and nickel elements. Photoluminescence (PL) spectra of Zn?N? microtips show a sharp infrared band-to-band emission peak at 1.34 eV with a full width at half maximum of ~100 meV and a very broad oxygen-related defect band emission peak centered at ~0.85 eV.

  19. In vitro cytotoxicity tests of ZnO?Bi{sub 2}O{sub 3}?Mn{sub 2}O{sub 3}-based varistor fabricated from ZnO micro and nanoparticle powders on L929 mouse cells

    SciTech Connect (OSTI)

    Sendi, Rabab Khalid, E-mail: last-name3@hotmail.com, E-mail: shahromx@hotmail.com, E-mail: ameerah7@hotmail.com; Mahmud, Shahrom, E-mail: last-name3@hotmail.com, E-mail: shahromx@hotmail.com, E-mail: ameerah7@hotmail.com; Munshi, Ayman, E-mail: last-name3@hotmail.com, E-mail: shahromx@hotmail.com, E-mail: ameerah7@hotmail.com [Nano-optoelectronics Research and Technology Laboratory (N.O.R.), School of Physics, Universiti Sains Malaysia, 11800, Penang (Malaysia); Seeni, Azman, E-mail: azanseeni@gmail.com [Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Pulau Pinang (Malaysia)

    2014-10-24

    The present study investigated the cytotoxicity of ZnO?Bi{sub 2}O{sub 3}?Mn{sub 2}O{sub 3}-varistors. To this effect, ZnO?Bi{sub 2}O{sub 3}?Mn{sub 2}O{sub 3} varistors fabricated from ZnO micro-and nanoparticle powders are prepared via conventional ceramic processing method. The effects of ZnO particle size on the properties of ZnO varistors are also investigated. The strong solid-state reaction during sintering may be attributed to the high surface area of the 20 nm ZnO nanoparticles that promote strong surface reaction. The intensity of XRD peaks reflected the high degree of crystallinity of the ZnO nanoparticles. However, the width of the peaks in case of ZnO nanoparticles has increased due to the quantum size effect. The cytotoxicity evaluation of ZnO varistor was conducted on mouse connective tissue fibroblast cells (L929) using Trypan Blue Exclusion Assay analysis. The results show that the four types of varistor samples lead to cellular mitochondrial dysfunction, morphological modifications and apoptosis at the various concentration range and the toxic effects are obviously displayed in high concentration samples. 20nm-VDR is the most toxic materials followed by 40nm-VDR, P8-VDR, and W4-VDR in a descending order.

  20. Scintillating bolometers based on ZnMoO$_4$ and Zn$^{100}$MoO$_4$ crystals to search for 0$?$2$?$ decay of $^{100}$Mo (LUMINEU project): first tests at the Modane Underground Laboratory

    E-Print Network [OSTI]

    D. V. Poda; E. Armengaud; Q. Arnaud; C. Augier; A. Benoît; A. Benoît; L. Bergé; R. S. Boiko; T. Bergmann; J. Blümer; A. Broniatowski; V. Brudanin; P. Camus; A. Cazes; B. Censier; M. Chapellier; F. Charlieux; D. M. Chernyak; N. Coron; P. Coulter; G. A. Cox; F. A. Danevich; T. de Boissière; R. Decourt; M. De Jesus; L. Devoyon; A. -A. Drillien; L. Dumoulin; K. Eitel; C. Enss; D. Filosofov; A. Fleischmann; N. Fourches; J. Gascon; L. Gastaldo; G. Gerbier; A. Giuliani; M. Gros; L. Hehn; S. Henry; S. Hervé; G. Heuermann; V. Humbert; I. M. Ivanov; A. Juillard; C. Kéfélian; M. Kleifges; H. Kluck; V. V. Kobychev; F. Koskas; V. Kozlov; H. Kraus; V. A. Kudryavtsev; H. Le Sueur; M. Loidl; P. Magnier; E. P. Makarov; M. Mancuso; P. de Marcillac; S. Marnieros; C. Marrache-Kikuchi; A. Menshikov; S. G. Nasonov; X-F. Navick; C. Nones; E. Olivieri; P. Pari; B. Paul; Y. Penichot; G. Pessina; M. C. Piro; O. Plantevin; T. Redon; M. Robinson; M. Rodrigues; S. Rozov; V. Sanglard; B. Schmidt; V. N. Shlegel; B. Siebenborn; O. Strazzer; D. Tcherniakhovski; M. Tenconi; L. Torres; V. I. Tretyak; L. Vagneron; Ya. V. Vasiliev; M. Velazquez; O. Viraphong; R. J. Walker; M. Weber; E. Yakushev; X. Zhang; V. N. Zhdankov

    2015-02-04

    The technology of scintillating bolometers based on zinc molybdate (ZnMoO$_4$) crystals is under development within the LUMINEU project to search for 0$\

  1. Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes

    SciTech Connect (OSTI)

    Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng [Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300 Taiwan (China); Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China)

    2010-07-15

    This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

  2. Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source

    SciTech Connect (OSTI)

    Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Feuillet, G.; Kolobov, A. V.; Fons, P.; Mitrofanov, K. V.; Tominaga, J.; Tamenori, Y.

    2014-05-21

    In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites.

  3. Optical injection probing of single ZnO tetrapod lasers

    SciTech Connect (OSTI)

    Szarko, Jodi M.; Song, Jae Kyu; Blackledge, Charles Wesley; Swart, Ingmar; Leone, Stephen R.; Li, Shihong; Zhao, Yiping

    2004-11-23

    The properties of zinc oxide (ZnO) nanotetrapod lasers are characterized by a novel ultrafast two-color pump/stimulated emission probe technique. Single legs of tetrapod species are isolated by a microscope objective, pumped by 267 nm pulses, and subjected to a time-delayed 400 nm optical injection pulse, which permits investigation of the ultrafast carrier dynamics in the nanosize materials. With the optical injection pulse included, a large increase in the stimulated emission at 400 nm occurs, which partially depletes the carriers at this wavelength and competes with the normal 390 nm lasing. At the 390 nm lasing wavelengths, the optical injection causes a decrease in the stimulated emission due to the energetic redistribution of the excited carrier depletion, which occurs considerably within the time scale of the subpicosecond duration of the injection pulse. The effects of the optical injection on the spectral gain are employed to probe the lasing dynamics, which shows that the full width at half maximum of the lasing time is 3 ps.

  4. The Effect Of ZnO Addition On Co/C Catalyst For Vapor And Aqueous Phase Reforming Of Ethanol

    SciTech Connect (OSTI)

    Davidson, Stephen; Sun, Junming; Hong, Yongchun; Karim, Ayman M.; Datye, Abhaya K.; Wang, Yong

    2014-02-05

    The effect of ZnO addition on the oxidation behavior of Co along with catalytic performance in vapor and aqueous phase reforming of ethanol were investigated on Co supported on carbon black (XC-72R). Carbon was selected to minimize the support interactions. Effect of ZnO addition during both vapor and aqueous phase reforming were compared at 250 °C. ZnO addition inhibited the reduction of cobalt oxides by H2 and created surface sites for H2O activation. During vapor phase reforming at 450 °C the redox of cobalt, driven by steam oxidation and H2 reduction, trended to an equilibrium of Co0/Co2+. ZnO showed no significant effect on cobalt oxidation, inferred from the minor changes of C1 product yield. Surface sites created by ZnO addition enhanced water activation and oxidation of surface carbon species, increasing CO2 selectivity. At 250 °C cobalt reduction was minimal, in situ XANES demonstrated that ZnO addition significantly facilitated oxidation of Co0 under vapor phase reforming conditions, demonstrated by lower C1 product yield. Sites introduced by ZnO addition improved the COx selectivity at 250 °C. Both Co/C and Co-ZnO/C rapidly oxidized under aqueous phase reaction conditions at 250 °C, showing negligible activity in aqueous phase reforming. This work suggests that ZnO affects the activation of H2O for Co catalysts in ethanol reforming.

  5. The effect of Ce{sup 4+} incorporation on structural, morphological and photocatalytic characters of ZnO nanoparticles

    SciTech Connect (OSTI)

    Kannadasan, N.; Shanmugam, N. Cholan, S.; Sathishkumar, K.; Viruthagiri, G.; Poonguzhali, R.

    2014-11-15

    We report a simple chemical precipitation method for the preparation of undoped and cerium doped ZnO nanocrystals. The concentration of cerium in the products can be controlled in the range of 0.025–0.125 mol. The structure and chemical compositions of the products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy; energy dispersive spectrum and Fourier transform infrared spectroscopy. The results demonstrate that Ce{sup 4+} ions were successfully incorporated into the lattice position of Zn{sup 2+} ions in ZnO. The morphology of the products was analyzed by field emission scanning electron microscopy and confirmed by high resolution transmission electron microscope analysis. The optical properties of the products were studied by ultraviolet–visible and room temperature photoluminescence measurements. The photoluminescence emission spectra of Ce-doped ZnO showed enhanced visible emissions as a result of 5d ? 4f transition of cerium. In particular, a novel photocatalytic activity of the products was assessed using methylene blue. The obtained result reveals that Ce-doped products show higher reduction efficiency for methylene blue than the undoped ZnO. - Highlights: • Nanocrystals of ZnO and ZnO:Ce{sup 4+} were grown. • XPS results confirmed the incorporated cerium in tetravalence. • PL emission exhibited 5d ? 4f transition on cerium doping. • Doped ZnO decolorizes MB faster than undoped ZnO.

  6. Swift heavy ion irradiation of ZnO nanoparticles embedded in silica: Radiation-induced deoxidation and shape elongation

    SciTech Connect (OSTI)

    Amekura, H.; Tsuya, D.; Mitsuishi, K.; Nakayama, Y. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0003 (Japan)] [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0003 (Japan); Okubo, N.; Ishikawa, N. [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki (Japan)] [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki (Japan); Singh, U. B.; Khan, S. A.; Avasthi, D. K. [Inter-University Accelerator Centre (IUAC), New Delhi (India)] [Inter-University Accelerator Centre (IUAC), New Delhi (India); Mohapatra, S. [Guru Gobind Singh Indraprastha University, New Delhi (India)] [Guru Gobind Singh Indraprastha University, New Delhi (India)

    2013-11-11

    ZnO nanoparticles (NPs) embedded in amorphous SiO{sub 2} were irradiated with 200 MeV Xe{sup 14+} swift heavy ions (SHIs) to a fluence of 5.0 × 10{sup 13} ions/cm{sup 2}. Optical linear dichroism was induced in the samples by the irradiation, indicating shape transformation of the NPs from spheres to anisotropic ones. Transmission electron microscopy observations revealed that some NPs were elongated to prolate shapes; the elongated NPs consisted not of ZnO but of Zn metal. The SHI irradiation induced deoxidation of small ZnO NPs and successive shape elongation of the deoxidized metal NPs.

  7. The Investigation of Decomposition of Supersaturated Si<Zn> Solid Solution by X-Ray Diffuse Scattering

    SciTech Connect (OSTI)

    Shcherbachev, Kirill; Privezentsev, Vladimir

    2010-04-06

    The results of investigation of microstructure of Zn doped n-type Si by X-ray Diffuse Scattering (XRDS) are presented. Experimental samples were made by a high-temperature Zn diffusion annealing with subsequent quenching and tempering. Reciprocal space maps of XRDS were obtained. They resulted in that crystal lattice of the samples contains spherical MDs of vacancy type and plane shape MDs of interstitial type. The MDs average radius and their type depend on Zn doping level and thermal treatment after Zn diffusion.

  8. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    SciTech Connect (OSTI)

    Gareso, P. L. Rauf, N. Juarlin, E.; Sugianto,; Maddu, A.

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes. The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.

  9. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    SciTech Connect (OSTI)

    Li, Keyan; Kang, Congying [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1?x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1?x}O and Cd{sub x}Zn{sub 1?x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1?x}O and Ca{sub x}Zn{sub 1?x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereas the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.

  10. Dynamic recrystallization and texture evolution of Mg–Y–Zn alloy during hot extrusion process

    SciTech Connect (OSTI)

    Tong, L.B. [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Li, X. [Institut für Metallkunde und Metallphysik, RWTH-Aachen University, D-52056 Aachen (Germany); Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651 (China); Zhang, D.P.; Cheng, L.R.; Meng, J. [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, H.J., E-mail: hongjie@ciac.ac.cn [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-06-01

    The microstructure and texture evolution of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} and Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} (atomic percent) alloys during hot extrusion were systematically investigated. The coarse LPSO phases with higher volume fraction (? 57%) suppressed the twinning generation in the initial stage of extrusion, and accelerated the dynamic recrystallization through the particle deformation zones. Therefore, the volume fraction of DRXed grains in as-extruded Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy was much higher than that of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} alloy. The intensive recrystallization process resulted in the conventional basal texture weakening, although the texture evolution was mainly dominated by flow behavior. The dynamic recrystallization behavior in Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy restricted the formation of deformation texture, and thus the more random texture was observed during the whole extrusion process. - Highlights: • The densely coarse LPSO phases suppressed the twinning deformation. • Coarse LPSO phases induced the particle stimulated nucleation effect. • Dynamic recrystallization resulted in the basal texture weakening effect.

  11. Synthesis and Characterization of PhotocatalyticTiO2-ZnFe2O4Nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    A new coprecipitation/hydrolysis synthesis route is used to create aTiO2-ZnFe2O4nanocomposite that is directed towards extending the photoresponse ofTiO2from UV to visible wavelengths (>400?nm). The effect ofTiO2's accelerated anatase-rutile phase transformation due to the presence of the coupledZnFe2O4narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, andZnFe2O4concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in aZnFe2O4nanocomposite are outlined. The visible-light-activated photocatalytic activity of theTiO2-ZnFe2O4nanocomposites has been compared to an AldrichTiO2reference catalyst, using a solar-simulated photoreactor formore »the degradation of phenol.« less

  12. FINAL REPORT OF RESEARCH ON CuxS/ (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS 3/77 - 9/79

    E-Print Network [OSTI]

    Chin, B.L.

    2013-01-01

    and (Cd,Zn)S/CuxS photovoltaic cells. The approach was tothe CuxS/(Cd,Zn)S photovoltaic cell in order to betterstudying CdS/CuxS photovoltaic cells, films prepared by the

  13. Three series of quaternary rare-earth transition-metal pnictides with CaAl{sub 2}Si{sub 2}-type structures: RECuZnAs{sub 2}, REAgZnP{sub 2}, and REAgZnAs{sub 2}

    SciTech Connect (OSTI)

    Stoyko, Stanislav S.; Ramachandran, Krishna K.; Blanchard, Peter E.R. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Rosmus, Kimberly A.; Aitken, Jennifer A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

    2014-05-01

    Three series of quaternary rare-earth transition-metal pnictides REMM?Pn{sub 2} (M=Cu, Ag; M?=Zn; Pn=P, As) have been prepared by reaction of the elements at 800 °C, with crystal growth promoted through the addition of iodine. The extent of RE substitution is broad in these series: RECuZnAs{sub 2} (RE=Y, La-Nd, Sm, Gd–Lu), REAgZnP{sub 2} (RE=La–Nd, Sm, Gd–Dy), and REAgZnAs{sub 2} (RE=La-Nd, Sm, Gd-Dy). Powder and single-crystal X-ray diffraction analysis revealed that they adopt the trigonal CaAl{sub 2}Si{sub 2}-type structure (space group P3{sup ¯}m1, Z=1), in which Cu or Ag atoms are disordered with Zn atoms over the unique tetrahedrally coordinated transition-metal site. Magnetic measurements indicated Curie–Weiss behavior for several members of the RECuZnAs{sub 2} and REAgZnP{sub 2} series. Core-line X-ray photoelectron spectra (XPS) collected on some RECuZnAs{sub 2} members corroborate the charge assignment deduced by the Zintl concept for these compounds, (RE{sup 3+})(M{sup 1+})(Zn{sup 2+})(Pn{sup 3?}){sub 2}. Optical diffuse reflectance spectra and valence band XPS spectra established that these compounds are small band-gap semiconductors (up to ?0.8 eV in REAgZnP{sub 2}) or semimetals (RECuZnAs{sub 2}). Band structure calculations also support this electronic structure and indicate that the band gap can be narrowed through appropriate chemical substitution (RE=smaller atoms, M=Cu, and Pn=As). - Graphical abstract: Cu or Ag atoms are disordered with Zn atoms over the tetrahedral site within relatively rigid [M{sub 2}Pn{sub 2}] slabs in three series of quaternary pnictides adopting the CaAl{sub 2}Si{sub 2}-type structure. - Highlights: • Three series (comprising 25 compounds) of pnictides REMM'Pn{sub 2} were prepared. • Cu or Ag atoms are disordered with Zn atoms within relatively rigid [M{sub 2}Pn{sub 2}] slabs. • They are semimetals or small band-gap semiconductors. • RECuZnAs{sub 2} and REAgZnP{sub 2} are generally paramagnetic.

  14. Study of difference in interfacial reaction at Fe{sub 3}O{sub 4}/ZnO and ZnO/Fe{sub 3}O{sub 4} heterostructure using synchrotron radiation

    SciTech Connect (OSTI)

    Wadikar, A. D. Master, Ridhi Choudhary, R. J. Phase, D. M.

    2014-04-24

    We have prepared Fe{sub 3}O{sub 4}/ZnO and ZnO/Fe{sub 3}O{sub 4} bilayer structure on p-Si substrate using pulsed laser deposition technique (PLD). X-ray diffraction study revealed (0001) oriented growth of ZnO and (111) oriented growth of Fe{sub 3}O{sub 4} in both the bilayer structure. We observed a change in the density of states near the Fermi level in valence band spectra in case of Fe{sub 3}O{sub 4}/ZnO bilayer when compared to that of ZnO/Fe{sub 3}O{sub 4}. Nonlinear current–voltage (I-V) characteristics were observed in both the samples confirmed that these bilayer structures can be used for spintronic application.

  15. A Novel and Functional Single Layer Sheet of ZnSe

    SciTech Connect (OSTI)

    Zhou, Jia [ORNL; Sumpter, Bobby G [ORNL; Kent, Paul R [ORNL; Huang, Jingsong [ORNL

    2015-01-01

    In this Communication, we report a novel singlelayer sheet of ZnSe, with a three-atomic thickness, which demonstrates a strong quantum confinement effect by exhibiting a large blue shift of 2.0 eV in its absorption edge relative to the zinc blende (ZB) bulk phase. Theoretical optical absorbance shows that the largest absorption of this ultrathin single-layer sheet of ZnSe occurs at a wavelength similar to its four-atom-thick doublelayer counterpart but with higher photoabsorption efficiency, suggesting a superior behavior on incident photon-to-current conversion efficiency for solar water splitting, among other potential applications. The results presented herein for ZnSe may be generalized to other group II-VI analogues.

  16. Structural analysis of Cr aggregation in ferromagnetic semiconductor (Zn,Cr)Te

    SciTech Connect (OSTI)

    Kobayashi, H.; Yamawaki, K.; Nishio, Y.; Kanazawa, K.; Kuroda, S.; Mitome, M.; Bando, Y.

    2013-12-04

    The Cr aggregation in a ferromagnetic semiconductor (Zn,Cr)Te was studied by performing precise analyses using TEM and XRD of microscopic structure of the Cr-aggregated regions formed in iodine-doped Zn{sub 1?x}Cr{sub x}Te films with a relatively high Cr composition x ? 0.2. It was found that the Cr-aggregated regions are composed of Cr{sub 1??}Te nanocrystals of the hexagonal structure and these hexagonal precipitates are stacked preferentially on the (111)A plane of the zinc-blende (ZB) structure of the host ZnTe crystal with its c-axis nearly parallel to the (111){sub ZB} plane.

  17. Homojunction p-n photodiodes based on As-doped single ZnO nanowire

    SciTech Connect (OSTI)

    Cho, H. D.; Zakirov, A. S.; Yuldashev, Sh. U.; Kang, T. W.; Ahn, C. W.; Yeo, Y. K.

    2013-12-04

    Photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. The ZnO nanowire p-n diode consists of an as-grown n-type segment and an in-situ arsenic doped p-type segment. This p-n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased condition. Our results demonstrate that present ZnO p-n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nano-scale electronic, optoelectronic, and medical devices.

  18. Luminescence of CdSe/ZnS quantum dots infiltrated into an opal matrix

    SciTech Connect (OSTI)

    Gruzintsev, A. N. Emelchenko, G. A.; Masalov, V. M.; Yakimov, E. E.; Barthou, C.; Maitre, A.

    2009-02-15

    The effect of the photonic band gap in the photonic crystal, the synthesized SiO{sub 2} opal with embedded CdSe/ZnS quantum dots, on its luminescence in the visible spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra for the infiltrated opal depends on the diameter of the constituent nanospheres and on the angle of recording the signal. The optimal conditions for embedding the CdSe/ZnS quantum dots from the solution into the opal matrix are determined. It is found that, for the opal-CdSe/ZnS nanocomposites, the emission intensity decreases and the luminescence decay time increases in the spatial directions, in which the spectral positions of the photonic band gap and the luminescence peak of the quantum dots coincide.

  19. Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catalyst

    E-Print Network [OSTI]

    Wang, Zhong L.

    technology. Patterned growth of aligned ZnO NWs has also been accomplished by PVD using nanospherePatterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low, Georgia Institute of Technology, Atlanta, Georgia 30332 Received September 2, 2008; E-mail: zhong

  20. Crystalline ZnMgSe:Cr2+: a new material for active elements of tunable IR-lasers

    E-Print Network [OSTI]

    Yu. A. Zagoruiko; N. O. Kovalenko; O. A. Fedorenko; V. A. Khristyan

    2008-07-01

    Obtained is a new thermostable material for active elements of tunable IR-lasers - Zn1-xMgxSe:Cr2+ single crystals. The position of the absorption band of Cr2+ ions in wurtzite-type Zn0.8Mg0.2Se matrix is established.

  1. Flexible dye-sensitized solar cells with ZnO nanoparticles grown by Sonochemistry over Graphene/PET substrates.

    E-Print Network [OSTI]

    Pala, Nezih

    Flexible dye-sensitized solar cells with ZnO nanoparticles grown by Sonochemistry over Graphene characteristics of ZnO nanostructures over Graphene/PET as photoanode for flexible dye sensitized solar cells. #12; and Engineering University of North Texas, Denton, Texas Flexible Dye sensitized solar cells (FDSSCs) are light

  2. Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: improved interface quality and solar cell performance

    E-Print Network [OSTI]

    Ievskaya, Y.; Hoye, R. L. Z.; Sadhanala, A.; Musselman, K.; MacManus-Driscoll, J. L.

    2014-01-01

    ZnO/Cu2O 1.46 0.49 AALD ITO/Zn0.79Mg0.21O/Cu2O 2.2 0.65 AALD PLD – pulsed laser deposition, ALD – atomic layer deposition, ECD – electrochemi- cal deposition, IBS – ion beam sputtering, VAPE – vacuum arc plasma evaporation, dc-MSP – direct current...

  3. Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    % in solution. CdTe and CdSe/ZnS dots of different sizes have further been studied for energy trans- fer in filmHighly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution Evren Mutlugün,a Sedat Nizamolu, and Hilmi Volkan Demirb Department of Physics; Department

  4. DOI: 10.1002/adma.200602927 Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    Cao, Guozhong

    DOI: 10.1002/adma.200602927 Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells* The interest in dye-sensitized solar cells has increased due to reduced energy sources and higher energy, zinc oxide (ZnO) has recently been explored as an alternative material in dye-sensitized solar cells

  5. Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process

    E-Print Network [OSTI]

    Wang, Zhong L.

    Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLSO substrate, we demonstrate the effect of substrate surface termination on nanowire growth. Symmetric) substrates have asymmetrically grown nanostructures. For the Zn-terminated (0001) substrate surface, uniform

  6. Large-Area (over 50 cm 50 cm) Freestanding Films of Colloidal InP/ ZnS Quantum Dots

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ ZnS Quantum Dots Evren of flexible, freestanding films of InP/ZnS quantum dots (QDs) using fatty acid ligands across very large areas avoiding the need for ligand exchange. When pumped by a blue LED, these Cd-free QD films allow for high

  7. Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M=Co,Rh) compounds

    E-Print Network [OSTI]

    Lawrence, Jon

    Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M Atómica, 8400 Bariloche, Argentina 6 Department of Chemistry and Biochemistry, University of Delaware-field effects corroborate an ionic-like uranium electronic configura- tion in UM2Zn20. DOI: 10.1103/PhysRevB.78

  8. Effect of Pre-Aging on the Microstructure and Strength of Supersaturated AlZnMg Alloys Processed by ECAP

    E-Print Network [OSTI]

    Gubicza, Jenõ

    Effect of Pre-Aging on the Microstructure and Strength of Supersaturated AlZnMg Alloys Processed langdon@usc.edu Keywords: Supersaturated AlZnMg alloys, natural aging, Guinier-Prestion zones, Equal on the effect of the combination of natural aging and severe plastic deformation (SPD) produced by Equal

  9. Study of Even-Even/Odd-Even/Odd-Odd Nuclei in Zn-Ga-Ge Region in the Proton-Neutron IBM/IBFM/IBFFM

    SciTech Connect (OSTI)

    Yoshida, N.; Brant, S.; Zuffi, L.

    2009-08-26

    We study the even-even, odd-even and odd-odd nuclei in the region including Zn-Ga-Ge in the proton-neutron IBM and the models derived from it: IBM2, IBFM2, IBFFM2. We describe {sup 67}Ga, {sup 65}Zn, and {sup 68}Ga by coupling odd particles to a boson core {sup 66}Zn. We also calculate the beta{sup +}-decay rates among {sup 68}Ge, {sup 68}Ga and {sup 68}Zn.

  10. Local compositional environment of Er in ZnS:ErF(3) thin film electroluminescent phosphors

    SciTech Connect (OSTI)

    DeVito, David M [ORNL; Neal, John S [ORNL

    2011-01-01

    ZnS:Er thin film electroluminescent phosphors have been shown to exhibit a marked maximum in the near infrared emission (NIR) after a 425 C post-deposition anneal with a very narrow temperature window of {+-} 25 C for optimal NIR emission. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been obtained from both the Zn and Er edges in order to examine the local structure of the host and dopant in this NIR phosphor material. Interestingly, the addition of only {approx}0.5 mol. % of Er as ErF{sub 3} into the host is found to reduce the Zn-S bond length of one of the two nearest Zn-S shells by 0.6 {angstrom} relative to high-quality, atomic layer epitaxy (ALE) grown, pure ZnS. The coordination number of this shorter Zn-S bond increases after the optimal 425 C anneal. Longer range fits indicate a highly disordered structure, overall, consistent with earlier TEM results. Erbium-L{sub 3} EXAFS data from the second and third shells show increasing crystallinity with increasing annealing temperature in the vicinity of the Er dopant. Data from the first shell cannot be fit with S atoms, but are fit equally well with either O or F. Comparison with earlier analyses indicates that the Er is most likely surrounded by F in the first shell. Based on these data and previous studies, we develop a model in which the Er dopant is present as an Er:F{sub x} complex with associated S vacancies, which may include one sulfur atom remaining in the Er nearest shell. Upon annealing, there is a reduction in the F present and a rearrangement of the crystal structure in the vicinity of the Er atom. Optimum annealing conditions occur when optimal crystalline environment is achieved prior to the loss of too much F from the Er:F{sub x} complex.

  11. Surface Modification of ZnO Using Triethoxysilane-Based Molecules

    SciTech Connect (OSTI)

    Allen, C. G.; Baker, D. J.; Albin, J. M.; Oertli, H. E.; Gillaspie, D. T.; Olson, D. C.; Furtak, T. E.; Collins, R. T.

    2008-12-01

    Zinc oxide (ZnO) is an important material for hybrid inorganic-organic devices in which the characteristics of the interface can dominate both the structural and electronic properties of the system. These characteristics can be modified through chemical functionalization of the ZnO surface. One of the possible strategies involves covalent bonding of the modifier using silane chemistry. Whereas a significant body of work has been published regarding silane attachments to glass and SiO{sub 2}, there is less information about the efficacy of this method for controlling the surface of metal oxides. Here we report our investigation of molecular layers attached to polycrystalline ZnO through silane bonding, controlled by an amine catalyst. The catalyst enables us to use triethoxysilane precursors and thereby avoid undesirable multilayer formation. The polycrystalline surface is a practical material, grown by sol-gel processing, that is under active exploration for device applications. Our study included terminations with alkyl and phenyl groups. We used water contact angles, infrared spectroscopy, and X-ray photoemission spectroscopy to evaluate the modified surfaces. Alkyltriethoxysilane functionalization of ZnO produced molecular layers with submonolayer coverage and evidence of disorder. Nevertheless, a very stable hydrophobic surface with contact angles approaching 106{sup o} resulted. Phenyltriethoxysilane was found to deposit in a similar manner. The resulting surface, however, exhibited significantly different wetting as a result of the nature of the end group. Molecular layers of this type, with a variety of surface terminations that use the same molecular attachment scheme, should enable interface engineering that optimizes the chemical selectivity of ZnO biosensors or the charge-transfer properties of ZnO-polymer interfaces found in oxide-organic electronics.

  12. Characteristics of ZnO nanostructures produced with [DMIm]BF{sub 4} using ultrasonic radiation

    SciTech Connect (OSTI)

    Rahman, I. B. Abdul; Ayob, M. T. M.; Ishak, I. S.; Mohd Lawi, R. L.; Isahak, W. N. R. W.; Hamid, M. H. N. Abd; Othman, N. K.; Radiman, S.

    2012-11-27

    Great interests in metallic oxides have emerged because of the promising properties of these materials for various applications such as solar cells and sensors. ZnO nanostructures with different morphologies were successfully synthesized from Zn(CH{sub 3}COO){sub 2} Bullet 2H{sub 2}O, NaOH and room temperature ionic liquid (RTIL) 1-decyl-3-methylimidazolium tetrafluoroborate, [DMIm][BF{sub 4}] with ultrasound irradiation. Parameters such as the effect of sonication time (30, 60 and 90 minutes) and Zn(Ac){sub 2} precursor to [DMIm][BF{sub 4}] ratios of 3:5, 5:5 and 5:3 were investigated. X-ray diffraction patterns revealed that the ZnO nanocrystals were hexagonal zincite crystalline in structure. The band gap energies (E{sub g}) were estimated to be 3.35-3.55 eV from the UV-Visible spectrum. The solution with the highest ratio of Zn was analysed with photoluminescence spectroscopy, which exhibited peaks at 362, 403, 468 and 539 nm, at room temperature. The micrographs of field emission scanning electron microscopy and transmission electron microscopy showed that the synthesis products were spherical (30-60 nm), spindle ({approx}10 Multiplication-Sign 70 nm for width Multiplication-Sign length) and whisker-like (100-200 nm), with their dimensions decreasing systematically with increased sonication time. Chemical compositions were approximated at 1:1 for Zn and O, estimated by electron dispersive x-ray spectrum.

  13. Interaction of light with the ZnO surface: Photon induced oxygen “breathing,” oxygen vacancies, persistent photoconductivity, and persistent photovoltage

    SciTech Connect (OSTI)

    Gurwitz, Ron; Cohen, Rotem; Shalish, Ilan

    2014-01-21

    ZnO surfaces adsorb oxygen in the dark and emit CO{sub 2} when exposed to white light, reminiscent of the lungs of living creatures. We find that this exchange of oxygen with the ambient affects the integrity of the ZnO surface. Thus, it forms a basis for several interesting surface phenomena in ZnO, such as photoconductivity, photovoltage, and gas sensing, and has a role in ZnO electrical conduction. Using x-ray photoelectron spectroscopy on ZnO nanowires, we observed a decomposition of ZnO under white light and formation of oxygen-depleted surface, which explains photoconductivity by the electron donation of oxygen vacancies. Our findings suggest that the observed decomposition of the ZnO lattice may only take place due to photon-induced reduction of ZnO by carbon containing molecules (or carbo-photonic reduction), possibly from the ambient gas, accounting in a consistent way for both the reduced demands on the energy required for decomposition and for the observed emission of lattice oxygen in the form of CO{sub 2}. The formation of oxygen-vacancy rich surface is suggested to induce surface delta doping, causing accumulation of electrons at the surface, which accounts for both the increase in conductivity and the flattening of the energy bands. Using surface photovoltage spectroscopy in ultra high vacuum, we monitored changes in the deep level spectrum. We observe a wide optical transition from a deep acceptor to the conduction band, which energy position coincides with the position of the so called “green luminescence” in ZnO. This green transition disappears with the formation of surface oxygen vacancies. Since the oxygen vacancies are donors, while the green transition involves surface acceptors, the results suggest that the initial emission of oxygen originates at the defect sites of the latter, thereby eliminating each other. This suggests that the green transition originates at surface Zn vacancy acceptors. Removing an oxygen atom from a Zn vacancy completes the vacancy to become a full ZnO molecule vacancy, which does not produce deep levels. Our results explain why ZnO finds use as an electrical detector for oxygen and for carbon containing gas molecules. They may also shed new light on photocatalytic uses of ZnO. It is suggested that similar surface phenomena may affect other semiconducting oxides.

  14. Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains

    SciTech Connect (OSTI)

    Matsui, Hiroaki, E-mail: hiroaki@ee.t.u-tokyo.ac.jp; Tabata, Hitoshi [Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Electrical Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hasuike, Noriyuki; Harima, Hiroshi [Department of Electronics and Information Science, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan)

    2014-09-21

    In-plane anisotropic strains in A-plane layers on the electronic band structure of ZnO were investigated from the viewpoint of optical polarization anisotropy. Investigations utilizing k·p perturbation theory revealed that energy transitions and associated oscillation strengths were dependent on in-plane strains. The theoretical correlation between optical polarizations and in-plane strains was experimentally demonstrated using A-plane ZnO layers with different in-plane strains. Finally, optical polarization anisotropy and its implications for in-plane optical properties are discussed in relation to the energy shift between two orthogonal directions. Higher polarization rotations were obtained in an A-plane ZnO layer with in-plane biaxially compressive strains as compared to strain-free ZnO. This study provides detailed information concerning the role played by in-plane strains in optically polarized applications based on nonpolar ZnO in the ultra-violet region.

  15. Preparation and characterization of nanodiamond cores coated with a thin Ni-Zn-P alloy film

    SciTech Connect (OSTI)

    Wang Rui; Ye Weichun; Ma Chuanli; Wang Chunming

    2008-02-15

    Nanodiamond cores coated with a thin Ni-Zn-P alloy film were prepared by an electroless deposition method under the conditions of tin chloride sensitization and palladium chloride activation. The prepared materials were analyzed by Fourier transform infrared (FTIR) spectrometry and X-ray diffraction (XRD). The nanostructure of the materials was then characterized by transmission electron microscopy (TEM). The alloy film composition was characterized by Energy Dispersive X-ray (EDX) analysis. The results indicated the approximate composition 49.84%Ni-37.29%Zn-12.88%P was obtained.

  16. Analysis of the thermoelectric properties of n-type ZnO

    SciTech Connect (OSTI)

    Ong, Khuong P [IHPC, Singapore; Singh, David J [ORNL; Wu, Ping [IHPC, Singapore

    2011-01-01

    We report an investigation of the temperature- and doping-dependent thermoelectric behavior of n-type ZnO. The results are based on a combination of experimental data from the literature and calculated transport functions obtained from Boltzmann transport theory applied to the first-principles electronic structure. From this we obtain the dependence of the figure of merit ZT on doping and temperature. We find that improvement of the lattice thermal conductivity is essential for obtaining high ZT in n-type ZnO.

  17. Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andelman, Tamar; Gong, Yinyan; Neumark, Gertrude; O'Brien, Stephen

    2007-01-01

    A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm) nanorods were synthesized from trihexylamine, and large diameter (50–80 nm) nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green) emission of the photoluminescence (PL) spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.

  18. Effects of Mg composition on open circuit voltage of Cu2OMgxZn1xO heterojunction solar cells

    E-Print Network [OSTI]

    Garfunkel, Eric

    (ZnO) Cuprous oxide (Cu2O) Solar cells Electrodeposition MOCVD (metal-organic chemical vapor solar cells, where Ag and FTO are used as top and bottom electrodes, respectively. An enhancement on the MgxZn1ÀxO (x¼10%) based solar cell. & 2011 Elsevier B.V. All rights reserved. 1. Introduction Zn

  19. Pseudomorphic growth and strain relaxation of a-Zn3P2 on GaAs(001) by molecular beam epitaxy

    E-Print Network [OSTI]

    Kimball, Gregory

    -abundant semiconductor material that has excellent optoe- lectronic properties. Zn3P2 is an interesting, potentially for scalable thin-film applications. Studies of Zn3P2 as a PV material have primarily focused on the properties]. These properties, in addition to the abundance and low cost of elemental zinc and phosphorus, make Zn3P2 attractive

  20. Role of copper in the regulation of CU, ZN-superoxide dismutase in human K562 erythroleukemia cells and human fibroblasts 

    E-Print Network [OSTI]

    Yu, Dan

    1994-01-01

    Activation of the enzyme CU2Zn2-SUperoxide dismutase (CuZnSOD) by its copper cofactor was studied in K562 erythroleukemia cells and skin fibroblasts. K562 cells were incubated in medium supplemented with 0-50 IIM CUC12 or ZnCI2 for 24 h and extracts...

  1. Dual acceptor doping and aging effect of p-ZnO:(Na, N) nanorod thin films by spray pyrolysis

    SciTech Connect (OSTI)

    Swapna, R., E-mail: swapna.ramella@yahoo.com, E-mail: santhoshmc@nitt.edu; Amiruddin, R., E-mail: swapna.ramella@yahoo.com, E-mail: santhoshmc@nitt.edu; Santhosh Kumar, M. C., E-mail: swapna.ramella@yahoo.com, E-mail: santhoshmc@nitt.edu [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli-620 015 (India)

    2014-01-28

    An attempt has been made to realize p-type ZnO by dual acceptor doping (Na-N) into ZnO thin films. Na and N doped ZnO thin films of different concentrations (0 to 8 at.%) have been grown by spray pyrolysis at 623 K. The grown films on glass substrate have been characterized by X-ray diffraction (XRD), Hall measurement, UV-Vis spectrophotometer, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. The surface morphology and roughness of the ZnO:(Na, N) films are studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Hall measurement shows that all the films exhibit p-type conductivity except for 0 at.% Na-N doped ZnO film. The obtained resistivity (5.60×10{sup ?2} ? cm) and hole concentration (3.15×10{sup 18} cm{sup ?3}) for the best dual acceptor doped film is 6 at.%. It has been predicted that (Na{sub Zn}?N{sub O}) acceptor complex is responsible for the p-type conduction. The p-type conductivity of the ZnO:(Na, N) films is stable even after 6 months. The crystallinity of the films has been studied by XRD. Energy dispersive spectroscopy (EDS) confirms the presence of Na and N in 6 at.% ZnO:(Na, N) film. Photoluminescence (PL) spectra of ZnO:(Na, N) films show NBE and deep level emissions in the UV and visible regions, respectively. The ZnO:(Na, N) films exhibit a high transmittance about 90% in the visible region.

  2. Ab initio description of heterostructural alloys: Thermodynamic and structural properties of MgxZn1-xO and CdxZn1-xO

    E-Print Network [OSTI]

    Schleife, André

    received 4 May 2010; published 17 June 2010 Pseudobinary heterostructural alloys of ZnO with MgO or CdO-coordinated rocksalt rs structure e.g., MgO and CdO under ambient conditions.14,15 Isovalent and isostructural alloys in its own right.1­4 When doped with Al, it plays a role as a transparent conduct- ing oxide in solar

  3. Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence

    E-Print Network [OSTI]

    Russell, Kasey

    of the optical gap and Burstein-Moss shift in CdO thin films: A consequence of extended misuse of 2-versusNarrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence-like opto-electronic properties Appl. Phys. Lett. 99, 141917 (2011) Oxygen enhanced ferromagnetism in Cr-doped

  4. Cell-Trappable Quinoline-Derivatized Fluoresceins for Selective and Reversible Biological Zn(II) Detection

    E-Print Network [OSTI]

    McQuade, Lindsey E.

    The synthesis and spectroscopic characterization of two new, cell-trappable fluorescent probes for Zn(II) are presented. These probes, 2-(4,5-bis(((6-(2-ethoxy-2-oxoethoxy)quinolin-8-yl)amino)methyl)-6-hydroxy-3-oxo-3H-8 ...

  5. ZnO-PVA nanocomposite films for low threshold optical limiting applications

    SciTech Connect (OSTI)

    Viswanath, Varsha; Beenakumari, C.; Muneera, C. I. [Department of Physics, University of Kerala, Kariavattom, Trivandrum-695581, Kerala (India)

    2014-10-15

    Zinc oxide-PVA nanocomposite films were fabricated adopting a simple method based on solution-casting, incorporating small weight percentages (<1.2 wt%) of ZnO in PVA (?0.625×10{sup ?3}M to 7×10{sup ?3}M), and their structure, morphology, linear and low threshold nonlinear optical properties were investigated. The films were characterized as nanostructured ZnO encapsulated between the molecules/chains of the semicrystalline host polymer PVA. The samples exhibited low threshold nonlinear absorption and negative nonlinear refraction, as studied using the Z-scan technique. A switchover from SA to RSA was observed as the concentration of ZnO was increased. The optical limiting of 632.8 nm CW laser light displayed by these nanocomposite films is also demonstrated. The estimated values of the effective coefficients of nonlinear absorption, nonlinear refraction and third-order nonlinear susceptibility, |?{sup (3)}|, compared to those reported for continuous wave laser light excitation, measure up to the highest among them. The results show that the ZnO-PVA nanocomposite films have great potential applications in future optical and photonic devices.

  6. XRD, Photoluminescence and Optical Absorption Investigations of Cobalt-doped ZnO

    SciTech Connect (OSTI)

    Sujinnapram, Supphadate; Onreabroy, Wandee; Nantawisarakul, Tuangrak

    2009-07-07

    Zn{sub 1-x}Co{sub x}O(with x = 0, 0.01, 0.10 and 0.20) were synthesized by solid-state reaction method sintered at 600 deg. C for 12 hours. The samples were studied by X-ray diffraction (XRD), optical absorption (UV-Vis) and Photoluminescence (PL). Structural analysis by Rietveld method using XRD showed that the peaks of secondary phase Co{sub 3}O{sub 4} with a cubic structure were visible in the high-doped sample (x = 0.1, 0.2), besides the main peaks of wurtzite-like structure the same as that of ZnO. Shift of the XRD peaks proved the incorporation of Co{sup 2+} into the ZnO lattice. The band gap energy decreased from 3.18 to 3.14 eV with the increasing of cobalt concentration. PL spectra at room temperature showed the blue emission with the peak around 412 nm. In addition, the intensity of the blue emission decreased upon increasing the Co concentration, which indicated their high structural, defects and optical quality in the ZnO.

  7. ß-delayed ?-proton Decay in 56Zn: Analysis of the Charged-particle Spectrum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Orrigo, S.E.A.; Rubio, B.; Fujita, Y.; Blank, B.; Gelletly, W.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; et al

    2015-01-01

    A study of the ? decay of the proton-rich Tz = -2 nucleus 56Zn has been reported in a recent publication. A rare and exotic decay mode, ?-de-layed ?-proton decay, has been observed there for the first time in the fp shell. Here, we expand on some of the details of the data analysis, focussing on the charged particle spectrum.

  8. Interpenetrative and transverse growth process of self-catalyzed ZnO nanorods

    E-Print Network [OSTI]

    Wang, Zhong L.

    Interpenetrative and transverse growth process of self-catalyzed ZnO nanorods Rusen Yanga , Zhong Lin Wanga,b, * a School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr, Atlanta, GA 30332-0245, USA b National Center for Nanoscience and Technology, Beijing 100080

  9. Low-temperature solution growth of ZnO nanotube arrays

    E-Print Network [OSTI]

    Cao, Guozhong

    128 Low-temperature solution growth of ZnO nanotube arrays Ki-Woong Chae1,2, Qifeng Zhang1, Jeong, South Korea and 4National Center for Nanomaterials Technology, Pohang University of Science and Technology, Pohang, South Korea Email: Qifeng Zhang - qfzhang@u.washington.edu; Guozhong Cao* - gzcao

  10. Modelling the Zn emissions from roofing materials at Crteil city scale -Defining a methodology

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling the Zn emissions from roofing materials at Créteil city scale - Defining a methodology@cereve.enpc.fr) Abstract Today, urban runoff is considered as an important source of environment pollution. Roofing. An accurate evaluation of contaminant flows from roofs is thus required at the city scale. This paper aims

  11. ß-delayed ?-proton decay in ??Zn: Analysis of the charged-particle spectrum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Orrigo, S. E.A.; Rubio, B.; Fujita, Y.; Blank, B.; Gelletly, W.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; et al

    2015-01-01

    A study of the ? decay of the proton-rich Tz = –2 nucleus ??Zn has been reported in a recent publication. A rare and exotic decay mode, ?-de-layed ?-proton decay, has been observed there for the first time in the fp shell. Here, we expand on some of the details of the data analysis, focusing on the charged particle spectrum.

  12. Mineralogical characterization of the Hakkari nonsulfide Zn(Pb) deposit (Turkey): The benefits of QEMSCAN

    E-Print Network [OSTI]

    Boni, Maria

    Mineralogical characterization of the Hakkari nonsulfide Zn(Pb) deposit (Turkey): The benefits, Penryn TR10 9EF, United Kingdom c Ebullio Resources & Mining A.S., Turkey a r t i c l e i n f o Article history: Received 29 March 2014 Accepted 2 July 2014 Keywords: Supergene Nonsulfides Turkey QEMSCANÒ a b

  13. Hierarchically Structured ZnO Nanorods-Nanosheets for Improved Quantum-Dot-Sensitized Solar Cells

    E-Print Network [OSTI]

    Cao, Guozhong

    Hierarchically Structured ZnO Nanorods-Nanosheets for Improved Quantum-Dot-Sensitized Solar Cells NR-NS photoelectrode for constructing CdS/ CdSe quantum-dot-sensitized solar cells (QDSCs). This hierarchical structure had two advantages in improving the power conversion efficiency (PCE) of the solar cells

  14. DOI: 10.1002/adma.200702781 Aerogel Templated ZnO Dye-Sensitized Solar Cells**

    E-Print Network [OSTI]

    DOI: 10.1002/adma.200702781 Aerogel Templated ZnO Dye-Sensitized Solar Cells** By Thomas W. Hamann, Alex B. F. Martinson, Jeffrey W. Elam, Michael J. Pellin, and Joseph T. Hupp* Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 have exhibited solar energy-conversion efficiencies of over

  15. Sonochemically grown ZnO nanowalls on Graphene layers as Photoanode in Dye sensitized Solar cells.

    E-Print Network [OSTI]

    Pala, Nezih

    Sonochemically grown ZnO nanowalls on Graphene layers as Photoanode in Dye sensitized Solar cells whole solar spectrum Graphene can be a very promising material in Dye Sensitized Solar cells (DSSC University of North Texas, Denton, Texas Graphene is a two dimensional nanostructure, composed of sp2

  16. A mathematical model of a Zn/Br? cell on charge 

    E-Print Network [OSTI]

    Mader, Michael Joseph

    1985-01-01

    follows the style of The Journal o/ the Electrochemical Society. Ftow 0 0+ caw aran Fig. 1. Schematic of a Zn, 'Br2 flow battery. is discharged by circulating the stored electrolyte through the cell stack with the terminal leads of the cell stack...

  17. Factors Affecting Ni and Zn Hydroxide Precipitate Formation in Soils. (S02-peltier222185-oral)

    E-Print Network [OSTI]

    Sparks, Donald L.

    Factors Affecting Ni and Zn Hydroxide Precipitate Formation in Soils. (S02-peltier222185-oral) Authors: E.F. Peltier* - Univ. of Delaware D.L. Sparks - Univ. of Delaware Abstract: The formation matter in the soil. Speaker Information: Edward Peltier, Univ. of Delaware, Dept. of Plant and Soil

  18. Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics Xukai Xinab

    E-Print Network [OSTI]

    Lin, Zhiqun

    Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics Jun Wang,a Xukai Xinab advances in the synthesis and utilization of CZTS nanocrystals and colloidal GQDs for photovoltaics emerged to achieve low cost, high perfor- mance photovoltaics, including organic solar cells,2­6 dye

  19. Morphological Evolution of ZnO Thin Films Deposited by Reactive Sputtering

    E-Print Network [OSTI]

    Evans, Paul G.

    ,1 optical waveguides,2 gas sensors,3 heat mirrors for energy saving,4 solar cells,5 optoelectronic studied for a variety of applications due to their unique combination of electrical, optical bandwidth allow higher data transfer rates in wireless networks; for example, ZnO would be suitable

  20. Piezotronic Effect on ZnO Nanowire Film Based Temperature Sensor Limin Zhang,,

    E-Print Network [OSTI]

    Wang, Zhong L.

    potential in novel applications by conjunction of piezoelectric effect and semiconductor proper- ties.1-structured piezoelectric semiconductors, such as ZnO, GaN, and InN, have been of particular interest owing to their unique a piezoelectric potential across the crystal under strain. Piezoelectric-polarization- induced piezopotential

  1. Tunable White-Light-Emitting Mn-Doped ZnSe Nanocrystals Vijay Kumar Sharma,

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Se-related blue emission (410 and 435 nm), Zn-related defect state green emission (520 nm), and Mn-dopant related for the purpose of generation of photometrically high quality white light while maintaining the energy efficiency is to combine red-, green-, and blue-emitting NCs in an appropriate ratio.1,2 However, when one simply mixes

  2. Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots

    SciTech Connect (OSTI)

    Chowdhury, S. Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A.

    2008-12-01

    The present study compares structural and optical modifications of bare and silica (SiO{sub 2}) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni{sup 12+} ion beam with fluences 10{sup 12} to 10{sup 13} ions/cm{sup 2}. Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one.

  3. Migration and reorientation of grain boundaries in Zn bicrystals during annealing in a high magnetic field

    E-Print Network [OSTI]

    Garmestani, Hamid

    Migration and reorientation of grain boundaries in Zn bicrystals during annealing in a high angles to the free surfaces are annealed in the field of 17 T. Boundaries migrate reorienting almost driven boundary migration. The absolute boundary mobility was measured to be about 2:5 Â 10À8 m4 /J s. Ó

  4. Boundary migration in Zn bicrystal induced by a high magnetic field A. D. Sheikh-Alia)

    E-Print Network [OSTI]

    Garmestani, Hamid

    Boundary migration in Zn bicrystal induced by a high magnetic field A. D. Sheikh-Alia) National migrated under the action of a magnetic driving force in the direction of the grain with higher diamagnetic.1063/1.1572536 Magnetically induced grain boundary migration has been established for diamagnetic bismuth1­3 and zinc.4

  5. Growth of vertically aligned ZnO nanowalls for inverted polymer solar cells

    E-Print Network [OSTI]

    Cao, Guozhong

    vertically aligned 1D metal oxide could improve the performance of the inverted polymer solar cellsGrowth of vertically aligned ZnO nanowalls for inverted polymer solar cells Zhiqiang Liang a May 2013 Keywords: Inverted polymer solar cells Zinc oxide Nanowalls Aqueous solution growth a b s t r

  6. Microstructured porous ZnO thin film for increased light scattering and improved

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    (12), 3408­3418 (2011). 3. J. D. Servaites, M. A. Ratner, and T. J. Marks, "Organic solar cells: A new look, "Inverted tandem organic solar cells with a MoO3/Ag/Al/Ca intermediate layer," Appl. Phys. Lett. 97, D. W. Zhao, and D. L. Kwong, "An inverted organic solar cell employing a sol-gel derived Zn

  7. Energy level alignment of polythiophene/ZnO hybrid solar cells

    E-Print Network [OSTI]

    Garfunkel, Eric

    Energy level alignment of polythiophene/ZnO hybrid solar cells W. Feng,a S. Rangan,b Y. Cao,c E between energy level alignment and photovoltaic properties of a model bilayer hybrid solar cell. Galoppini,c R. A. Bartynskib and E. Garfunkel*ab Energy level alignment at interfaces is critical

  8. Mn-Substituted Inorganic-Organic Hybrid Materials Based on ZnSe

    E-Print Network [OSTI]

    Li, Jing

    Mn-Substituted Inorganic-Organic Hybrid Materials Based on ZnSe: Nanostructures That May Lead research that deals with synthesis, characterization, and modification of organic-inorganic hybrid to integrate functional materials that utilize both electron charge and spin.1 Thus, the introduction

  9. Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition

    E-Print Network [OSTI]

    Yamilov, Alexey

    Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition M. Scharrer, X. Wu, A templates using a low-temperature atomic layer deposition process. The polystyrene is removed by firing into opal or inverted opal backbones.3,5,13,14 Recently, atomic layer deposition ALD has been pro- posed

  10. Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array

    E-Print Network [OSTI]

    Wang, Zhong L.

    Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array Guang Zhu, Rusen Yang scalable sweeping-printing-method, for fabricating flexible high- output nanogenerator (HONG) that can-circuit voltage of up to 2.03 V and a peak output power density of 11 mW/cm3 have been achieved. The generated

  11. Supplementary Information Flexible high-output nanogenerator based on lateral ZnO nanowire array

    E-Print Network [OSTI]

    Wang, Zhong L.

    1 Supplementary Information Flexible high-output nanogenerator based on lateral ZnO nanowire array voltage input was provided by a functional generator (peak value of 2 V and 0.5 Hz); and the output direction is along the c-axis. #12;3 Durability test Figure S3. Result of the durability test on the output

  12. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore »and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  13. The "calamine" nonsulfide ZnPb deposits of Belgium: Petrographical, mineralogical and geochemical characterization

    E-Print Network [OSTI]

    Boni, Maria

    The "calamine" nonsulfide Zn­Pb deposits of Belgium: Petrographical, mineralogical and geochemical, Germany c Geological Survey of Belgium, 13 Rue Jenner, B-1000 Brussels, Belgium d Geologisch the historical basis for the zinc mining and smelting industry in Europe. The zinc ores were called "calamines

  14. Hydrothermal Synthesis and Structural Characterization of Novel Zn-Triazole-Benzenedicarboxylate Frameworks

    SciTech Connect (OSTI)

    Park, Hyunsoo; Moureau, David M.; Parise, John B.

    2008-10-03

    Three new metal-organic coordination polymers were synthesized hydrothermally using Zn2+ ion, 1,2,4-triazole, and 1,4-benzenedicarboxylic acid (BDC): Zn5(H2O)2(C2H2N3)4(C8H4O4)3 {center_dot} 3.9H2O (1), Zn2(C2H2N3)2(C2H3N3)(C8H4O4) {center_dot} 2.5H2O (2), and Zn4(H2O)2(C2H2N3)4(C8H4O4)2 {center_dot} 14H2O (3). Their crystal structures were determined by single-crystal X-ray diffraction. Their thermal properties were examined by thermogravimetric analysis. Structure 1 crystallizes in the monoclinic P21/n space group with a = 10.192(2) {angstrom}, b = 17.764(4) {angstrom}, c = 24.437(5) {angstrom}, {beta} = 91.19(3){sup o}, and V = 4423.3(15) {angstrom}3. Structure 2 crystallizes in the triclinic P space group with a = 7.797(2) {angstrom}, b = 10.047(2) {angstrom}, c = 13.577(3) {angstrom}, {alpha} = 110.18(3){sup o}, {beta} = 105.46(3){sup o}, {gamma} = 93.90(3){sup o}, and V = 947.0(3) {angstrom}3. Structure 3 crystallizes in monoclinic P21/n space group with a = 13.475(3) {angstrom}, b = 26.949(5) {angstrom}, c = 13.509(3) {angstrom}, {beta} = 95.18(3){sup o}, and V = 4885.7(17) {angstrom}3. In structure 1, the units of the triazole-Zn polyhedra are linked by BDC in a zigzag fashion to create the stacking of phenyl groups along the a axis. In structure 2, both triazole and BDC bridge Zn polyhedra in the (011) plane, resulting in the eight-membered channels along the a axis. In the case of structure 3, the BDC links the Zn polyhedra along the b axis to form a pillared open framework. This structure is the most porous of the compounds presented in this work.

  15. Single-step in-situ synthesis and optical properties of ZnSe nanostructured dielectric nanocomposites

    SciTech Connect (OSTI)

    Dey, Chirantan; Rahaman Molla, Atiar; Tarafder, Anal; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, Glass Science and Technology Section, Glass Division, 196, Raja S. C. Mullick Road, 700032 Kolkata (India); Kr Mishra, Manish; De, Goutam [CSIR-Central Glass and Ceramic Research Institute, Nano-Structured Materials Division, 196, Raja S. C. Mullick Road, 700032 Kolkata (India); Goswami, Madhumita; Kothiyal, G. P. [Glass and Advanced Ceramics Division, Bhaba Atomic Research Centre, Trombay, 400085 Mumbai (India)

    2014-04-07

    This work provides the evidence of visible red photoluminescent light emission from ZnSe nanocrystals (NCs) grown within a dielectric (borosilicate glass) matrix synthesized by a single step in-situ technique for the first time and the NC sizes were controlled by varying only the concentration of ZnSe in glass matrix. The ZnSe NCs were investigated by UV-Vis optical absorption spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM). The sizes of the ZnSe NCs estimated from the TEM images are found to alter in the range of 2–53?nm. Their smaller sizes of the NCs were also calculated by using the optical absorption spectra and the effective mass approximation model. The band gap enlargements both for carrier and exciton confinements were evaluated and found to be changed in the range of 0–1.0?eV. The Raman spectroscopic studies showed blue shifted Raman peaks of ZnSe at 295 and 315?cm{sup ?1} indicating phonon confinement effect as well as compressive stress effect on the surface atoms of the NCs. Red photoluminescence in ZnSe-glass nanocomposite reveals a broad multiple-peak structure due to overlapping of emission from NC size related electron-hole recombination (?707?nm) and emissions from defects to traps, which were formed due to Se and Zn vacancies signifying potential application in photonics.

  16. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    SciTech Connect (OSTI)

    Sheeba, N. H., E-mail: sheebames.naser@gmail.com [M.E.S. Asmabi College, P. Vemballur, Thrissur, Kerala (India); Naduvath, J., E-mail: johnsnaduvath@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai (India); Abraham, A., E-mail: anithakklm@gmail.com; Philip, R. R., E-mail: reenatara@rediffmail.com [Thin Film Research Lab, U.C. College, Aluva, Kerala (India); Weiss, M. P., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu; Diener, Z. J., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu; Remillard, S. K., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu; DeYoung, P. A., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu [Hope Ion Beam Accelerator Laboratory, Hope College, Holland, MI (United States)

    2014-10-15

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  17. Synthesis of monodispersed ZnAl{sub 2}O{sub 4} nanoparticles and their tribology properties as lubricant additives

    SciTech Connect (OSTI)

    Song, Xiaoyun; Zheng, Shaohua; Zhang, Jun; Li, Wei; Chen, Qiang; Cao, Bingqiang

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? The preparation of ZnAl{sub 2}O{sub 4} nanoparticles was realized by hydrothermal method. ? After surface modification, ZnAl{sub 2}O{sub 4} nanoparticles of narrow size distribution can disperse in lubricating oil stably. ? The modified ZnAl{sub 2}O{sub 4} nanoparticles as lubricating oil additives exhibit good tribology properties. -- Abstract: Monodispersed spherical zinc aluminate spinel (ZnAl{sub 2}O{sub 4}) nanoparticles were synthesized via a solvothermal method and modified by oleic acid in cyclohexanol solution. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and infrared spectrum (IR). The dispersion ability of nanoparticles in lubricant oil was measured with optical absorbance spectrum. The results show that the modified nanoparticles are nearly monodispersed and can stably disperse in lubricant oil. The tribological properties of the ZnAl{sub 2}O{sub 4} nanoparticles as an additive in lubricant oil were evaluated with four-ball test and thrust-ring test. For comparison, ZnO and Al{sub 2}O{sub 3} nanoparticles as additive in lubricant oil were also tested respectively. The results show that ZnAl{sub 2}O{sub 4} nanoparticles exhibit better tribology properties in terms of anti-wear and anti-friction than ZnO or Al{sub 2}O{sub 3} nanoparticles. The anti-friction and anti-wear mechanisms were discussed and the lubricating effect of ZnAl{sub 2}O{sub 4} nanoparticles can be attributed to nano-bearings effect and tribo-sintering mechanism.

  18. Zn-doped and undoped SnO{sub 2} nanoparticles: A comparative structural, optical and LPG sensing properties study

    SciTech Connect (OSTI)

    Mishra, R.K.; Sahay, P.P.

    2012-12-15

    Graphical abstract: The X-ray diffraction (XRD) analyses confirm that all the materials prepared are polycrystalline SnO{sub 2} possessing tetragonal rutile structure. On Zn-doping, the crystallite size has been found to decrease from 25 nm (undoped sample) to 13 nm (1 at% Zn-doped sample). Display Omitted Highlights: ? Zn-doped SnO{sub 2} nanoparticles show smaller crystallite size (11–17 nm). ? Optical band gap in SnO{sub 2} nanoparticles increases on Zn-doping. ? 2 at% Zn-doped sample show minimum room temperature resistivity. ? LPG response of the Zn-doped SnO{sub 2} nanoparticles increases considerably. ? 1 at% Zn-doped sample shows maximum response (87%) at 300 °C to 1 vol% concentration. -- Abstract: SnO{sub 2} nanoparticles were prepared by the co-precipitation method with SnCl{sub 4}·5H{sub 2}O as the starting material and Zn(CH{sub 3}COO){sub 2}·2H{sub 2}O as the source of dopant. All the materials prepared have been found to be polycrystalline SnO{sub 2} possessing tetragonal rutile structure with crystallite sizes in the range 11–25 nm. Optical analyses reveal that for the SnO{sub 2} nanoparticles, both undoped and Zn-doped, direct transition occurs with the bandgap energies in the range 3.05–3.41 eV. Variation in the room temperature resistivity of the SnO{sub 2} nanoparticles as a function of dopant concentration has been explained on the basis of two competitive processes: (i) replacement of Sn{sup 4+} ion by an added Zn{sup 2+} ion, and (ii) ionic compensation of Zn{sup 2+} by the formation of oxygen vacancies. Among all the samples examined for LPG sensing, the 1 at% Zn-doped sample exhibits fast and maximum response (?87%) at 300 °C for 1 vol% concentration of LPG in air.

  19. Zn-Doping Dependence of Stripe Order in La1.905Ba0.095CuO4

    SciTech Connect (OSTI)

    Hucker, M.; Zimmermann, M.v.; Xu, Z.J.; Wen, J.S.; Gu, G.D.; Tian, W.; Zarestky, J.; Tranquada, J.M.

    2011-04-01

    The effect of Zn-doping on the stripe order in La{sub 1.905}Ba{sub 0.095}CuO{sub 4} has been studied by means of x-ray and neutron diffraction as well as magnetization measurements. While 1% Zn leads to an increase of the spin stripe order, it unexpectedly causes a wipe out of the visibility of the charge stripe order. A magnetic field of 10 Tesla applied along the c-axis has no reversing effect on the charge order. We compare this observation with the Zn-doping dependence of the crystal structure, superconductivity, and normal state magnetism.

  20. Magnetic field induced third order susceptibility of third order harmonic generation in a ZnMgSe strained quantum well

    SciTech Connect (OSTI)

    Mark, J. Abraham Hudson, E-mail: a.john.peter@gmail.com; Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, SSM Institute of Engineering and Technology, Dindigul-624002 (India)

    2014-04-24

    Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.

  1. Reaction-based fluorescent sensor for investigating mobile Zn[superscript 2+] in mitochondria of healthy versus cancerous prostate cells

    E-Print Network [OSTI]

    Chyan, Wen

    Chelatable, mobile forms of divalent zinc, Zn(II), play essential signaling roles in mammalian biology. A complex network of zinc import and transport proteins has evolved to control zinc concentration and distribution on ...

  2. Electrochemical Synthesis of Nanostructured ZnO Films Utilizing Self-Assembly of Surfactant Molecules at Solid-Liquid Interfaces

    E-Print Network [OSTI]

    Lichtenegger, Helga C.

    , cetyl trimethylammonium bromide (CTAB), or anionic surfactant, sodium dodecyl sulfate (SDS).6 coordinate zinc species (i.e., [Zn(H2O)4]2+)7 and fail to form organized nanostructured surfactant

  3. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe

    SciTech Connect (OSTI)

    Zha, Gangqiang; Yang, Jian; Xu, Lingyan; Feng, Tao; Wang, Ning; Jie, Wanqi

    2014-01-28

    Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance can be explained using the deep trap model.

  4. Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films

    SciTech Connect (OSTI)

    Ding, Jijun; Wang, Minqiang Zhang, Xiangyu; Ran, Chenxin; Shao, Jinyou; Ding, Yucheng

    2014-12-08

    In-situ sputtering ZnO films on graphene oxide (GO) paper are used to fabricate graphene based ZnO films. Crystal structure and surface chemical states are investigated. Results indicated that GO paper can be effectively deoxygenated by in-situ sputtering ZnO on them without adding any reducing agent. Based on the principle of radio frequency magnetron sputtering, we propose that during magnetron sputtering process, plasma streams contain large numbers of electrons. These electrons not only collide with argon atoms to produce secondary electrons but also they are accelerated to bombard the substrates (GO paper) resulting in effective deoxygenation of oxygen-containing functional groups. In-situ sputtering ZnO films on GO paper provide an approach to design graphene-semiconductor nanocomposites.

  5. Zn13(CrxAl1-x)27 (x = 0.34-0.37): a new intermetallic phase containing...

    Office of Scientific and Technical Information (OSTI)

    Zn13(CrxAl1-x)27 (x 0.34-0.37): a new intermetallic phase containing icosahedra as building units Re-direct Destination: The title compounds Znsub 13(Crsub xAlsub 1-x)sub...

  6. DOI: 10.1002/adma.200602467 In Situ Field Emission of Density-Controlled ZnO Nanowire

    E-Print Network [OSTI]

    Wang, Zhong L.

    sources in- stead of CNTs. With a large exciton binding energy and high melting temperature, ZnO NWs have NASA Vehicle Systems, Department of Defense Research and Engineering (DDR&E), and from the Defense

  7. Dielectric properties of a polar ZnSnO{sub 3} with LiNbO{sub...

    Office of Scientific and Technical Information (OSTI)

    range of 300 K to 780 K. LiNbOsub 3-type ZnSnOsub 3 exhibits the maximum SHG efficiency of approximately 50 times that of quartz. We then compare the structure and SHG...

  8. Use of separate ZnTe interface layers to form ohmic contacts to p-CdTe films

    DOE Patents [OSTI]

    Gessert, T.A.

    1999-06-01

    A method of is disclosed improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurium-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact. 11 figs.

  9. Use of separate ZnTe interface layers to form OHMIC contacts to p-CdTe films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO)

    1999-01-01

    A method of improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurim-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact.

  10. (XUYUZ) —~ (Yn Z) ='(,XnY')0(,Xn Z)u (,Yn Z)u (_Zn>Y)

    E-Print Network [OSTI]

    MA 387 Final Exam, May 6, 1982. Name _ .. , . v ' v .,. (15) 1. Show that for all sets X, Y _'and Z _ __ _. (XUYUZ) —~ (Yn Z) ='(,XnY')0(,Xn Z)u (,Yn Z)u (_Zn>Y).

  11. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2006-04-24

    We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

  12. Carrier dynamics in bulk ZnO. I. Intrinsic conductivity measured by terahertz time-domain spectroscopy

    E-Print Network [OSTI]

    at room temperature.3 Thin films of ZnO are useful in transparent transistors and transparent conducting coatings because of their combination of wide band gap, high conductivity, and processability.4

  13. Cooperative behavior of Zn cations in Bi-based perovskites: A comparison of (Bi,Sr)2ZnNbO6 and (Bi,Sr)2MgNbO6

    SciTech Connect (OSTI)

    Takagi, Shigeyuki M [ORNL; Cooper, Valentino R [ORNL; Singh, David J [ORNL

    2011-01-01

    We investigated the polar behavior of the double perovskite (Bi,Sr)2MgNbO6 using first-principles density-functional theory calculations. We find that the magnitude (75 C/cm2) and direction (along [111]) of the polarization are comparable to our previous results for the A-site size difference (Bi,Sr)2ZnNbO6 and (Bi,Pb)2ZnNbO6 systems. However, comparisons with the (Bi,Sr)2ZnNbO6 compound indicate that the presence of Zn modestly enhances the off-centering of the Sr and Nb cations as well as the Born effective charges of both Bi and Nb. Analogous to the corresponding Pb- based perovskites, Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3, we demonstrate that the difference in the experimentally observed critical temperatures are related to the differences in polarization between the two materials. A local dipole analysis indicates that the most significant contribution arises from the enhanced cooperative couplings with the larger Zn displacements.

  14. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    SciTech Connect (OSTI)

    Bostanci, Zeynep; Alam, Samina; Soybel, David I.; Kelleher, Shannon L.

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER?) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  15. Spectral photoresponse of ZnSe/GaAs(001) heterostructures with CdSe ultra-thin quantum well insertions

    SciTech Connect (OSTI)

    Valverde-Chávez, D. A.; Sutara, F.; Hernández-Calderón, I.

    2014-05-15

    We present a study of the spectral photoresponse (SPR) of ZnSe/GaAs(001) heterostructures for different ZnSe film thickness with and without CdSe ultra-thin quantum well (UTQW) insertions. We observe a significant increase of the SPR of heterostructures containing 3 monolayer thick CdSe UTQW insertions; these results encourage their use in photodetectors and solar cells.

  16. Interactions of aqueous amino acids and proteins with the (110) surface of ZnS in molecular dynamics simulations

    SciTech Connect (OSTI)

    Nawrocki, Grzegorz; Cieplak, Marek

    2014-03-07

    The growing usage of nanoparticles of zinc sulfide as quantum dots and biosensors calls for a theoretical assessment of interactions of ZnS with biomolecules. We employ the molecular-dynamics-based umbrella sampling method to determine potentials of mean force for 20 single amino acids near the ZnS (110) surface in aqueous solutions. We find that five amino acids do not bind at all and the binding energy of the remaining amino acids does not exceed 4.3 kJ/mol. Such energies are comparable to those found for ZnO (and to hydrogen bonds in proteins) but the nature of the specificity is different. Cysteine can bind with ZnS in a covalent way, e.g., by forming the disulfide bond with S in the solid. If this effect is included within a model incorporating the Morse potential, then the potential well becomes much deeper—the binding energy is close to 98 kJ/mol. We then consider tryptophan cage, a protein of 20 residues, and characterize its events of adsorption to ZnS. We demonstrate the relevance of interactions between the amino acids in the selection of optimal adsorbed conformations and recognize the key role of cysteine in generation of lasting adsorption. We show that ZnS is more hydrophobic than ZnO and that the density profile of water is quite different than that forming near ZnO—it has only a minor articulation into layers. Furthermore, the first layer of water is disordered and mobile.

  17. ZnO Nanotubes Grown at Low Temperature Using Ga as Catalysts and Their Enhanced Photocatalytic Activities

    E-Print Network [OSTI]

    Wang, Zhong L.

    substantial reports on tubular nanostructures of various materials including GaN,12 MoS2,13 TiO2,14 SiO2,15 AlZnO Nanotubes Grown at Low Temperature Using Ga as Catalysts and Their Enhanced PhotocatalyticVed: April 8, 2009 We report the synthesis of ZnO nanotubes grown via the Ga-catalyzed vapor transport method

  18. Effect of temperature and time on properties of Spark Plasma Sintered NiCuZn: Co ferrite

    E-Print Network [OSTI]

    Effect of temperature and time on properties of Spark Plasma Sintered NiCuZn: Co ferrite K. Zehani hundred MHz, and a high resistivity, but the conventional sintering temperature is too high for co. EXPERIMENTAL: Powders of basic oxides Fe2O3, NiO, CuO and ZnO and Co2O3 were used for the preparation of Ni

  19. Boric acid flux synthesis, structure and magnetic property of MB??O??(OH)?? (M=Mn, Fe, Zn)

    SciTech Connect (OSTI)

    Yang, Dingfeng; Cong, Rihong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Gao, Wenliang, E-mail: gaowl@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Yang, Tao, E-mail: taoyang@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2013-05-01

    Three new borates MB??O??(OH)?? (M=Mn, Fe, Zn) have been synthesized by boric acid flux methods, which are isotypic to NiB??O??(OH)??. Single-crystal XRD was performed to determine the crystal structures in detail. They all crystallize in the monoclinic space group P2?/c. The size of MO{sub 6} (M=Mg, Mn, Fe, Co, Ni, Zn) octahedron shows a good agreement with the Shannon effective ionic radii of M²?. Magnetic measurements indicate MnB??O??(OH)?? is antiferromagnetic without a long-range ordering down to 2 K. The values of its magnetic superexchange constants were evaluated by DFT calculations, which explain the observed magnetic behavior. The UV–vis diffuse reflectance spectrum of ZnB??O??(OH)?? suggests a band gap ~4.6 eV. DFT calculations indicate it has a direct band gap 4.9 eV. The optical band gap is contributed by charge transfers from the occupied O 2p to the unoccupied Zn 4s states. - Graphical abstract: Experimental and theoretical studies indicate MnB??O??(OH)?? is antiferromagnetic without a long-range ordering. DFT calculations show ZnB??O??(OH)?? has a direct band gap of 4.9 eV. Highlights: • MB??O??(OH)?? (M=Mn, Fe, Zn) are synthesized by two-step boric acid flux method. • Single-crystal XRD was performed to determine the crystal structures in detail. • Size of MO? (M=Mg, Mn, Fe, Co, Ni, Zn) agrees with the effective ionic radii. • MnB??O??(OH)?? is antiferromagnetic without a long-range ordering down to 2 K. • DFT calculations indicate ZnB??O??(OH)?? has a direct band gap 4.9 eV.

  20. Optically optimal wavelength-scale patterned ITO/ZnO composite coatings for thin film solar cells

    E-Print Network [OSTI]

    Moreau, Antoine; Centeno, Emmanuel; Seassal, Christian

    2012-01-01

    A new methodology is proposed for finding structures that are, optically speaking, locally optimal : a physical analysis of much simpler structures is used to constrain the optimization process. The obtained designs are based on a flat amorphous silicon layer (to minimize recombination) with a patterned anti-reflective coating made of ITO or ZnO, or a composite ITO/ZnO coating. These latter structures are realistic and present good performances despite very thin active layers.

  1. COURTESYOFFURMANUNIVERSITY ot so long ago, the green move-

    E-Print Network [OSTI]

    of California, Davis, train students to farm in more eco-friendly, efficient ways. ENVIRONMENTAL TECH Students

  2. Supplementary Material Peter S. C. Wu and Gottfried Otting

    E-Print Network [OSTI]

    Otting, Gottfried

    DANTE pulses and disregarding radiation damping effects. The profile was calculated by selecting the z, respectively, in order to simulate the radiofrequency inhomogeneity. 75 Hz was the experimentally determined frequency distribution of the rf-field (Figure 1), the presence of radiation damping arising from steady

  3. Released on receipt hut intended * f ot use

    E-Print Network [OSTI]

    by sun and sky together, o r by the sky alone.: Tho total energy of d i r e c t sunshine, measured There are various ways of measuring the t o t a l amount of energy i n the sunbeams and still others of measuring the distribution of energy throughthe different Parts of the solar spectrum. heat wits called ~lcalories

  4. Faster Private Set Intersection based on OT Extension (Full Version)

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    circuits and 1https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix- whats-actually that Facebook and Datalogix, a consumer data collection company, perform this type of measurements.1 (The ar

  5. James L. Liveman, Acting AssLBtaOt

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V. Andolina:I 1 ' , :1 - * -w :

  6. Changes induced in a ZnS:Cr-based electroluminescent waveguide structure by intrinsic near-infrared laser radiation

    SciTech Connect (OSTI)

    Vlasenko, N. A. Oleksenko, P. F.; Mukhlyo, M. A.; Veligura, L. I.

    2013-08-15

    The causes of changes that occur in a thin-film electroluminescent metal-insulator-semiconductor-insulator-metal waveguide structure based on ZnS:Cr (Cr concentration of {approx}4 Multiplication-Sign 10{sup 20} cm{sup -3}) upon lasing ({lambda} Almost-Equal-To 2.6 {mu}m) and that induce lasing cessation are studied. It is established that lasing ceases because of light-scattering inhomogeneities formed in the structure and, hence, optical losses enhance. The origin of the inhomogeneities and the causes of their formation are clarified by studying the surface topology and the crystal structure of constituent layers of the samples before and after lasing. The studies are performed by means of atomic force microscopy and X-ray radiography. It is shown that a substantial increase in the sizes of grains on the surface of the structure is the manifestation of changes induced in the ZnS:Cr film by recrystallization. Recrystallization is initiated by local heating by absorbed laser radiation in existing Cr clusters and quickened by a strong electric field (>1 MV cm{sup -1}). The changes observed in the ZnS:Cr film are as follows: the textured growth of ZnS crystallites, an increase in the content of Cr clusters, and the appearance of some CrS and a rather high ZnO content. Some ways for improving the stability of lasing in the ZnS:Cr-based waveguide structures are proposed.

  7. Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO{sub 3}/Pt heterostructure

    SciTech Connect (OSTI)

    Fan, Zhen; Yao, Kui E-mail: msewangj@nus.edu.sg; Wang, John E-mail: msewangj@nus.edu.sg

    2014-10-20

    We have studied the photovoltaic effect in a metal/semiconductor/ferroelectric/metal heterostructure of In{sub 2}O{sub 3}-SnO{sub 2}/ZnO/BiFeO{sub 3}/Pt (ITO/ZnO/BFO/Pt) multilayer thin films. The heterolayered structure shows a short-circuit current density (J{sub sc}) of 340??A/cm{sup 2} and an energy conversion efficiency of up to 0.33% under blue monochromatic illumination. The photovoltaic mechanism, specifically in terms of the major generation site of photo-excited electron-hole (e-h) pairs and the driving forces for the separation of e-h pairs, is clarified. The significant increase in photocurrent of the ITO/ZnO/BFO/Pt compared to that of ITO/BFO/Pt is attributed to the abundant e-h pairs generated from ZnO. Ultraviolet photoelectron spectroscopy reveals the energy band alignment of ITO/ZnO/BFO/Pt, where a Schottky barrier and an n{sup +}-n junction are formed at the BFO/Pt and ZnO/BFO interfaces, respectively. Therefore, two built-in fields developed at the two interfaces are constructively responsible for the separation and transport of photo-excited e-h pairs.

  8. Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity

    SciTech Connect (OSTI)

    Chang, Chi-Jung Yang, Tsung-Lin; Weng, Yu-Ching

    2014-06-01

    Immobilized photocatalysts with high catalytic activity under UV light were prepared by growing Cr-doped ZnO nanorods on glass substrates by a hydrothermal method. The effects of Cr dopant on the surface texture, crystallinity, surface chemistry, and photoinduced charge separation and their relation with the photocatalytic degradation of Cr-doped ZnO were investigated by scanning electron microscopy, diffuse reflectance spectra, photoelectrochemical scanning electrochemical microscopy, and X-ray photoemission spectroscopy. Adding the appropriate amount of Cr dopant is a powerful way to enhance the separation of charge carriers in ZnO photocatalyst. The photocatalytic activity was improved due to the increase in surface oxygen vacancies, the separation of charge carriers, modification of the band gap, and the large surface area of the doped ZnO nanorod photocatalyst. - Graphical abstract: Photoinduced charge separation and its relation with the photocatalytic degradation activity of Cr-doped ZnO were investigated by photoelectrochemical scanning electrochemical microscopy. - Highlights: • Cr dopant enhances separation of charge carries in ZnO nanorod photocatalyst. • Photoinduced charge carries separation monitored by PEC-SECM. • The higher the photocurrent is, the higher the photocatalytic activity is. • Degradation of DB86 dye solutions under visible light finished within 50 min. • Higher activity due to more oxygen vacancy, tuned band gap and more surface area.

  9. Anisotropic hot deformed magnets prepared from Zn-coated MRE-Fe-B ribbon powder (MRE?=?Nd?+?Y?+?Dy)

    SciTech Connect (OSTI)

    Tang, W; Zhou, L; Sun, K W; Dennis, K W; Kramer, M J; Anderson, I E; McCallum, R W

    2014-05-07

    Milled melt-spun ribbon flake of MRE-Fe-B coated with Zn coating using a vapor transport technique was found to have significant increase in coercivity without degrading the magnetization when the Zn thickness and heat treatment were optimized. Magnetic measurements show that 0.5–1?wt.?% Zn coating increases the coercivity about 1?kOe over the initial ribbon powder. After vacuum hot deformation (VHD), the VHD magnet with Zn coating of 0.5?wt.?% results in a nearly 3?kOe higher coercivity than an un-coated alloy magnet. An optimized VHD magnet with 0.5?wt.?% Zn coating obtains a coercivity of 11.2?kOe and (BH)max of 23.0 MGOe, respectively. SEM and TEM microstructures analysis demonstrates that the Zn coating on the surface of ribbon powder has diffused along the intergranular boundaries after the ribbon powder was annealed at 750?°C for 30?min or was hot deformed at 700–750?°C.

  10. Characterization of a large CdZnTe coplanar quad-grid semiconductor detector

    E-Print Network [OSTI]

    The COBRA collaboration; Joachim Ebert; Claus Gößling; Daniel Gehre; Caren Hagner; Nadine Heidrich; Rainer Klingenberg; Kevin Kröninger; Christian Nitsch; Christian Oldorf; Thomas Quante; Silke Rajek; Henning Rebber; Katja Rohatsch; Jan Tebrügge; Robert Temminghoff; Robert Theinert; Jan Timm; Björn Wonsak; Stefan Zatschler; Kai Zuber

    2015-09-08

    The COBRA collaboration aims to search for neutrinoless double beta-decay of $^{116}$Cd. A demonstrator setup with 64 CdZnTe semiconductor detectors, each with a volume of 1cm$^3$, is currently being operated at the LNGS underground laboratory in Italy. This paper reports on the characterization of a large (2 $\\times$ 2 $\\times$ 1.5)cm$^3$ CdZnTe detector with a new coplanar-grid design for applications in $\\gamma$-ray spectroscopy and low-background operation. Several studies of electric properties as well as of the spectrometric performance, like energy response and resolution, are conducted. Furthermore, measurements including investigating the operational stability and a possibility to identify multiple-scattered photons are presented.

  11. Defect-induced magnetism in cobalt-doped ZnO epilayers

    SciTech Connect (OSTI)

    Ciatto, G.; Fonda, E.; Trolio, A. Di; Alippi, P.; Varvaro, G.; Bonapasta, A. Amore; Polimeni, A.; Capizzi, M.

    2014-02-21

    We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoO epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.

  12. ZnO buffer layer for metal films on silicon substrates

    SciTech Connect (OSTI)

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  13. Study of 57 Fe Mössbauer effect in RFe2Zn20 ( R = Lu, Yb, Gd)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bud’ko, Sergey L.; Kong, Tai; Ma, Xiaoming; Canfield, Paul C.

    2015-08-04

    In this document we report measurements of 57Fe Mössbauer spectra for RFe2Zn20 (R = Lu, Yb, Gd) from ~ 4.5 K to room temperature. The obtained isomer shift values are very similar for all three compounds, their temperature dependence was analyzed within the Debye model and resulted in an estimate of the Debye temperatures of 450-500 K. The values of quadrupole splitting at room temperature change with the cubic lattice constant a in a linear fashion. For GdFe2Zn20, ferromagnetic order is seen as an appearance of a sextet in the spectra. The 57Fe site hyperfine field for T ? 0more »was evaluated to be ~ 2.4 T.« less

  14. Crystal structure and physical properties of quaternary clathrates Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}, Ba{sub 8}(Zn,Cu){sub x}Ge{sub 46-x} and Ba{sub 8}(Zn,Pd){sub x}Ge{sub 46-x}

    SciTech Connect (OSTI)

    Nasir, Navida; Grytsiv, Andriy; Melnychenko-Koblyuk, Nataliya [Institute of Physical Chemistry, University of Vienna, A-1090 Wien (Austria); Rogl, Peter, E-mail: peter.franz.rogl@univie.ac.a [Institute of Physical Chemistry, University of Vienna, A-1090 Wien (Austria); Bednar, Ingeborg; Bauer, Ernst [Institute of Solid State Physics, Vienna University of Technology, A-1040 Wien (Austria)

    2010-10-15

    Three series of vacancy-free quaternary clathrates of type I, Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}, Ba{sub 8}(Zn,Cu){sub x}Ge{sub 46-x}, and Ba{sub 8}(Zn,Pd){sub x}Ge{sub 46-x}, have been prepared by reactions of elemental ingots in vacuum sealed quartz at 800 {sup o}C. In all cases cubic primitive symmetry (space group Pm3n, a{approx}1.1 nm) was confirmed for the clathrate phase by X-ray powder diffraction and X-ray single crystal analyses. The lattice parameters show a linear increase with increase in Ge for Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}. M atoms (Zn, Pd, Cu) preferably occupy the 6d site in random mixtures. No defects were observed for the 6d site. Site preference of Ge and Si in Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y} has been elucidated from X-ray refinement: Ge atoms linearly substitute Si in the 24k site whilst a significant deviation from linearity is observed for occupation of the 16i site. A connectivity scheme for the phase equilibria in the 'Ba{sub 8}Ge{sub 46}' corner at 800 {sup o}C has been derived and a three-dimensional isothermal section at 800 {sup o}C is presented for the Ba-Pd-Zn-Ge system. Studies of transport properties carried out for Ba{sub 8{l_brace}}Cu,Pd,Zn{r_brace}{sub x}Ge{sub 46-x} and Ba{sub 8}Zn{sub x}Si{sub y}Ge{sub 46-x-y} evidenced predominantly electrons as charge carriers and the closeness of the systems to a metal-to-insulator transition, fine-tuned by substitution and mechanical processing of starting material Ba{sub 8}Ge{sub 43}. A promising figure of merit, ZT {approx}0.45 at 750 K, has been derived for Ba{sub 8}Zn{sub 7.4}Ge{sub 19.8}Si{sub 18.8}, where pricey germanium is exchanged by reasonably cheap silicon. - Graphical abstract: Quaternary phase diagram of Ba-Pd-Zn-Ge system at 800 {sup o}C.

  15. ß-delayed ?-proton decay in ??Zn: Analysis of the charged-particle spectrum

    SciTech Connect (OSTI)

    Orrigo, S. E.A.; Rubio, B.; Fujita, Y.; Blank, B.; Agramunt, J.; Algora, A.; Ascher, P.; Cáceres, L.; Cakirli, R. B.; Fujita, H.; Ganio?lu, E.; Gerbaux, M.; Kozer, H. C.; Kucuk, L.; Kurtukian-Nieto, T.; Popescu, L.; Rogers, A. M.; Susoy, G.; Stodel, C.; Suzuki, T.; Tamii, A.; Thomas, J. C.

    2015-01-01

    A study of the ? decay of the proton-rich Tz = –2 nucleus ??Zn has been reported in a recent publication. A rare and exotic decay mode, ?-de-layed ?-proton decay, has been observed there for the first time in the fp shell. Here, we expand on some of the details of the data analysis, focusing on the charged particle spectrum.

  16. New acceptor centers of the background impurities in p-CdZnTe

    SciTech Connect (OSTI)

    Plyatsko, S. V. Rashkovetskyi, L. V.

    2013-07-15

    Low-temperature photoluminescence data are used to study the redistribution of the background impurities and host components of p-CdZnTe single crystals with a resistivity of 1-50 {Omega} cm upon their interaction with infrared laser radiation. The effect of widening of the band gap and the formation of new acceptor centers in response to laser-stimulated changes in the system of intrinsic defects are established. The activation energy of the new acceptor centers is determined.

  17. The behavior of Cu, Zn and Pb during magmatichydrothermal activity at Merapi volcano, Indonesia

    E-Print Network [OSTI]

    Long, Bernard

    Gill University, 3450 University St., Montreal, Quebec, Canada H3A 2A7 a b s t r a c ta r t i c l e i n f o Article history: Received 20 April 2012 Received in revised form 18 January 2013 Accepted 22 January 2013 factor in deter- mining the level of enrichment of Cu, Zn and Pb in the MVP. The properties of sulfide

  18. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn

    SciTech Connect (OSTI)

    Gineys, N.; Aouad, G.; Sorrentino, F.; Damidot, D.

    2011-11-15

    This paper aims at defining precisely, the threshold limits for several trace elements (Cu, Ni, Sn or Zn) which correspond to the maximum amount that could be incorporated into a standard clinker whilst reaching the limit of solid solution of its four major phases (C{sub 3}S, C{sub 2}S, C{sub 3}A and C{sub 4}AF). These threshold limits were investigated through laboratory synthesised clinkers that were mainly studied by X-ray Diffraction and Scanning Electron Microscopy. The reference clinker was close to a typical Portland clinker (65% C{sub 3}S, 18% C{sub 2}S, 8% C{sub 3}A and 8% C{sub 4}AF). The threshold limits for Cu, Ni, Zn and Sn are quite high with respect to the current contents in clinker and were respectively equal to 0.35, 0.5, 0.7 and 1 wt.%. It appeared that beyond the defined threshold limits, trace elements had different behaviours. Ni was associated with Mg as a magnesium nickel oxide (MgNiO{sub 2}) and Sn reacted with lime to form a calcium stannate (Ca{sub 2}SnO{sub 4}). Cu changed the crystallisation process and affected therefore the formation of C{sub 3}S. Indeed a high content of Cu in clinker led to the decomposition of C{sub 3}S into C{sub 2}S and of free lime. Zn, in turn, affected the formation of C{sub 3}A. Ca{sub 6}Zn{sub 3}Al{sub 4}O{sub 15} was formed whilst a tremendous reduction of C{sub 3}A content was identified. The reactivity of cements made with the clinkers at the threshold limits was followed by calorimetry and compressive strength measurements on cement paste. The results revealed that the doped cements were at least as reactive as the reference cement.

  19. Influence of valence electron concentration on Laves phases: Structures and phase stability of pseudo-binary MgZn2-xPdx

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thimmaiah, Srinivasa; Miller, Gordon J.

    2015-06-03

    A series of pseudo-binary compounds MgZn2-xPdx (0.15 ? x ? 1.0) were synthesized and structurally characterized to understand the role of valence electron concentration (vec) on the prototype Laves phase MgZn2 with Pd-substitution. Three distinctive phase regions were observed with respect to Pd content, all exhibiting fundamental Laves phase structures: 0.1 ? x ? 0.3 (MgNi2-type, hP24; MgZn1.80Pd0.20(2)), 0.4 ? x ? 0.6 (MgCu2-type, cF24; MgZn1.59Pd0.41(2)), and 0.62 ? x ? 0.8 (MgZn2-type, hP12: MgZn1.37Pd0.63(2)). Refinements from single-crystal X-ray diffraction indicated nearly statistical distributions of Pd and Zn atoms among the majority atom sites in these structures. Interestingly, the MgZn2-typemore »structure re-emerges in MgZn2–xPdx at x ? 0.7 with the refined composition MgZn1.37(2)Pd0.63 and a c/a ratio of 1.59 compared to 1.64 for binary MgZn2. Electronic structure calculations on a model “MgZn1.25Pd0.75” yielded a density of states (DOS) curve showing enhancement of a pseudogap at the Fermi level as a result of electronic stabilization due to the Pd addition. Moreover, integrated crystal orbital Hamilton population values show significant increases of orbital interactions for (Zn,Pd)–(Zn,Pd) atom pairs within the majority atom substructure, i.e., within the Kagomé nets as well as between a Kagomé net and an apical site, from binary MgZn2 to the ternary “MgZn1.25Pd0.75”. Multi-centered bonding is evident from electron localization function plots for “MgZn1.25Pd0.75”, an outcome which is in accordance with analysis of other Laves phases.« less

  20. High-performance deep ultraviolet photodetectors based on ZnO quantum dot assemblies

    SciTech Connect (OSTI)

    Xu, Xiaoyong; Xu, Chunxiang E-mail: jghu@yzu.edu.cn; Hu, Jingguo E-mail: jghu@yzu.edu.cn

    2014-09-14

    A high-performance ZnO quantum dots (QDs)-based ultraviolet (UV) photodetector has been successfully fabricated via the self-assembly of QDs on the Au interdigital electrode. The broadened band gap in ZnO QDs makes the device has the highly selective response for the deep UV detection. The unique QD-QD junction barriers similar to back-to-back Schottky barriers dominate the conductance of the QD network and the UV light-induced barrier-height modulation plays a crucial role in enhancing the photoresponsivity and the response speed. Typically, the as-fabricated device exhibits the fast response and recovery times of within 1 s, the deep UV selectivity of less than 340 nm, and the stable repeatability with on/off current ratio over 10³, photoresponsivity of 5.04×10²A/W, and photocurrent gain of 1.9×10³, demonstrating that the ZnO QD network is a superior building block for deep UV photodetectors.

  1. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    SciTech Connect (OSTI)

    Xia, Minggang, E-mail: xiamg@mail.xjtu.edu.cn [Laboratory of Nanostructure and its Physics Properties, Department of Optical Information Science and Technology, Department of Applied Physics, and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, 710049 China (China); Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Cheng, Zhaofang; Han, Jinyun; Zhang, Shengli [Laboratory of Nanostructure and its Physics Properties, Department of Optical Information Science and Technology, Department of Applied Physics, and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, 710049 China (China); Zheng, Minrui [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Sow, Chorng-Haur [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); National University of Singapore Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117542 (Singapore); Thong, John T. L. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Li, Baowen [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); National University of Singapore Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117542 (Singapore); Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-05-15

    The electrical and thermal conductivities are measured for individual zinc oxide (ZnO) nanowires with and without gallium ion (Ga{sup +}) implantation at room temperature. Our results show that Ga{sup +} implantation enhances electrical conductivity by one order of magnitude from 1.01 × 10{sup 3} ?{sup ?1}m{sup ?1} to 1.46 × 10{sup 4} ?{sup ?1}m{sup ?1} and reduces its thermal conductivity by one order of magnitude from 12.7 Wm{sup ?1}K{sup ?1} to 1.22 Wm{sup ?1}K{sup ?1} for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga{sup +} implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga{sup +} point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga{sup +}-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  2. Oxidation of palladium on Au(111) and ZnO(0001) supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lallo, J.; Tenney, S. A.; Kramer, A.; Sutter, P.; Batzill, M.

    2014-10-21

    The oxidation of supported Pd-deposits on Au(111) and ZnO(0001) single crystals has been studied by x- ray photoemission spectroscopy (XPS). Oxidation has been carried out ex-situ in a high-pressure cell with subsequent vacuum-transfer and characterization by XPS in ultrahigh vacuum (UHV), as well as using in-situ characterization by synchrotron based near-ambient pressure XPS. On Au(111) alloying of Pd with the substrate competes with oxidation and only sufficiently thick Pd films have been found to oxidize. For Pd on ZnO the oxidation conditions depend on the amount of deposited Pd. Thicker Pd deposits behave similar to bulk Pd, while thinner filmsmore »oxidize already at lower temperatures. Interestingly, for very small amounts of Pd, in-situ XPS shows full oxidation at room temperature and at less than 0.6 mbar O? pressure. This indicates a lowering of the kinetic barriers for oxidation of very small supported Pd-clusters. The formed oxide is, however, not stable in UHV and a slow reduction is observed. The instability of this oxide indicates that the Pd-oxide formed at the interface to ZnO may have different chemical properties compared to bulk PdO or surface oxides on Pd.« less

  3. Oxidation of palladium on Au(111) and ZnO(0001) supports

    SciTech Connect (OSTI)

    Lallo, J.; Tenney, S. A.; Kramer, A.; Sutter, P.; Batzill, M.

    2014-10-21

    The oxidation of supported Pd-deposits on Au(111) and ZnO(0001) single crystals has been studied by x- ray photoemission spectroscopy (XPS). Oxidation has been carried out ex-situ in a high-pressure cell with subsequent vacuum-transfer and characterization by XPS in ultrahigh vacuum (UHV), as well as using in-situ characterization by synchrotron based near-ambient pressure XPS. On Au(111) alloying of Pd with the substrate competes with oxidation and only sufficiently thick Pd films have been found to oxidize. For Pd on ZnO the oxidation conditions depend on the amount of deposited Pd. Thicker Pd deposits behave similar to bulk Pd, while thinner films oxidize already at lower temperatures. Interestingly, for very small amounts of Pd, in-situ XPS shows full oxidation at room temperature and at less than 0.6 mbar O? pressure. This indicates a lowering of the kinetic barriers for oxidation of very small supported Pd-clusters. The formed oxide is, however, not stable in UHV and a slow reduction is observed. The instability of this oxide indicates that the Pd-oxide formed at the interface to ZnO may have different chemical properties compared to bulk PdO or surface oxides on Pd.

  4. Enhanced memory effect with embedded graphene nanoplatelets in ZnO charge trapping layer

    SciTech Connect (OSTI)

    El-Atab, Nazek; Nayfeh, Ammar; Cimen, Furkan; Alkis, Sabri; Okyay, Ali K.

    2014-07-21

    A charge trapping memory with graphene nanoplatelets embedded in atomic layer deposited ZnO (GNIZ) is demonstrated. The memory shows a large threshold voltage V{sub t} shift (4?V) at low operating voltage (6/?6?V), good retention (>10 yr), and good endurance characteristic (>10{sup 4} cycles). This memory performance is compared to control devices with graphene nanoplatelets (or ZnO) and a thicker tunnel oxide. These structures showed a reduced V{sub t} shift and retention characteristic. The GNIZ structure allows for scaling down the tunnel oxide thickness along with improving the memory window and retention of data. The larger V{sub t} shift indicates that the ZnO adds available trap states and enhances the emission and retention of charges. The charge emission mechanism in the memory structures with graphene nanoplatelets at an electric field E???5.57 MV/cm is found to be based on Fowler-Nordheim tunneling. The fabrication of this memory device is compatible with current semiconductor processing, therefore, has great potential in low-cost nano-memory applications.

  5. Oxidation of palladium on Au(111) and ZnO(0001) supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Batzill, M. [Univ. of South Florida, Tampa, FL (United States); Sutter, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lallo, J. [Univ. of South Florida, Tampa, FL (United States); Tenney, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-10-21

    The oxidation of supported Pd-deposits on Au(111) and ZnO(0001) single crystals has been studied by x- ray photoemission spectroscopy (XPS). Oxidation has been carried out ex-situ in a high-pressure cell with subsequent vacuum-transfer and characterization by XPS in ultrahigh vacuum (UHV), as well as using in-situ characterization by synchrotron based near-ambient pressure XPS. On Au(111) alloying of Pd with the substrate competes with oxidation and only sufficiently thick Pd films have been found to oxidize. For Pd on ZnO the oxidation conditions depend on the amount of deposited Pd. Thicker Pd deposits behave similar to bulk Pd, while thinner films oxidize already at lower temperatures. Interestingly, for very small amounts of Pd, in-situ XPS shows full oxidation at room temperature and at less than 0.6 mbar O? pressure. This indicates a lowering of the kinetic barriers for oxidation of very small supported Pd-clusters. The formed oxide is, however, not stable in UHV and a slow reduction is observed. The instability of this oxide indicates that the Pd-oxide formed at the interface to ZnO may have different chemical properties compared to bulk PdO or surface oxides on Pd.

  6. Characterization of ZnO-degraded varistors used in high-tension devices

    SciTech Connect (OSTI)

    Ramirez, M.A.; Maniette, Y.

    2007-06-05

    The effects of the degradation process on the structural, microstructural and electrical properties of ZnO-based varistors were analyzed. Rietveld refinement showed that the BiO{sub 2-x} phase is affected by the degradation process. Besides the changes in the spinel phase, the degradation process also affects the lattice microstrain in the ZnO phase. Scanning electron microscopy analysis showed electrode-melting failure, while wavelength dispersive X-ray spectroscopy qualitative analysis showed deficiency of oxygen species at the grain boundaries in the degraded samples. Atomic force microscopy using electrostatic mode force illustrated a decrease in the charge density at the grain boundaries of the degraded sample. Transmission electron microscopy showed submicrometric spinel grains embedded in a ZnO matrix, but their average grain size is smaller in the degraded sample than in the standard one. Long pulses appeared to be more harmful for the varistors' properties than short ones, causing higher leakage current values. The electrical characteristics of the degraded sample are partially restored after heat treatment in an oxygen-rich atmosphere.

  7. ZnMoO4: a promising bolometer for neutrinoless double beta decay searches

    E-Print Network [OSTI]

    J. W. Beeman; F. Bellini; S. Capelli; L. Cardani; N. Casali; I. Dafinei; S. Di Domizio; F. Ferroni; E. N. Galashov; L. Gironi; F. Orio; L. Pattavina; G. Pessina; G. Piperno; S. Pirro; V. N. Shlegel; Ya. V. Vasilyev; C. Tomei; M. Vignati

    2012-02-01

    We investigate the performances of two ZnMoO4 scintillating crystals operated as bolometers, in view of a next generation experiment to search the neutrinoless double beta decay of Mo-100. We present the results of the alpha vs beta/gamma discrimination, obtained through the scintillation light as well as through the study of the shape of the thermal signal alone. The discrimination capability obtained at the 2615 keV line of Tl-208 is 8 sigma, using the heat-light scatter plot, while it exceeds 20 sigma using the shape of the thermal pulse alone. The achieved FWHM energy resolution ranges from 2.4 keV (at 238 keV) to 5.7 keV (at 2615 keV). The internal radioactive contaminations of the ZnMoO4 crystals were evaluated through a 407 hours background measurement. The obtained limit is < 32 microBq/kg for Th-228 and Ra-226. These values were used for a Monte Carlo simulation aimed at evaluating the achievable background level of a possible, future array of enriched ZnMoO4 crystals.

  8. Enhanced T-lymphocyte blastogenic response to tuberculin (PPD) in children of northeast (NE) Thailand supplemented with vitamin A (VA) and zinc (Zn)

    SciTech Connect (OSTI)

    Kramer, T.R.; Udomkesmalee, E.; Dhanamitta, S.; Sirisinha, S.; Charoenkiatkul, S.; Tantipopipat, S.; Banjong, O.; Rojroongwasinkul, N.; Smith, J.C. Jr. Mahidol Univ., Nakhon Pathom )

    1991-03-15

    Beneficial effects of Va and/or Zn supplementation of children in NE Thailand are described in a companion abstract. In the same study, blastogenic response (BR) of T-lymphocytes to concanavalin-A (ConA) and PPD were assayed in cultures containing mononuclear cells (MNC) or whole blood (WB). Methods were previously described. Children were previously vaccinated with BCG. BR to ConA of MNC or WB from children supplemented with VA, Zn, VA + Zn or placebo were similar. BR to PPD of MNC was higher in children receiving VA + Zn than placebo, but not in children supplemented with VA or Zn alone. Data indicate that children with suboptimal VA and Zn nutriture supplemented with < 2 times RDA of these nutrients showed enhanced cellular immunity to PPD. This observation is relevant to BCG immunization program and thus may benefit public health.

  9. The new barium zinc mercurides Ba{sub 3}ZnHg{sub 10} and BaZn{sub 0.6}Hg{sub 3.4} - Synthesis, crystal and electronic structure

    SciTech Connect (OSTI)

    Schwarz, Michael; Wendorff, Marco; Roehr, Caroline

    2012-12-15

    The title compounds Ba{sub 3}ZnHg{sub 10} and BaZn{sub 0.6}Hg{sub 3.4} were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba{sub 3}ZnHg{sub 10} (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 4{sup 4} Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl{sub 4}. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn{sub 0.6}Hg{sub 3.4} (cubic, cI320, space group I4{sup Macron }3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba{sub 3}ZnHg{sub 10}, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4 Multiplication-Sign 4 Multiplication-Sign 4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6){sub 4} with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4){sub 2} dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb{sub 3}Hg{sub 20} applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations relate the two title compounds. - Graphical abstract: Six of the 64 small sub-cubes of three types (A, B, C) forming the unit cell of the Hg-rich mercuride BaZn{sub 0.6}Hg{sub 3.4}. Highlights: Black-Right-Pointing-Pointer Two new Hg-rich Ba mercurides, both synthesized from the elements in pure phase. Black-Right-Pointing-Pointer BaZn{sub 0.6}HgG{sub 3.4} and Ba{sub 3}ZnHg{sub 10} with new complex structure types. Black-Right-Pointing-Pointer Structure relation to other complex cubic intermetallics. Black-Right-Pointing-Pointer Discussion of covalent and metallic bonding aspects, as found by the structure features and band structure calculations.

  10. Synthesis of Methanol and Dimethyl Ether from Syngas over Pd/ZnO/Al2O3 Catalysts

    SciTech Connect (OSTI)

    Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Lizarazo Adarme, Jair A.; King, David L.; Palo, Daniel R.

    2012-10-01

    A Pd/ZnO/Al2O3 catalyst was developed for the synthesis of methanol and dimethyl ether (DME) from syngas. Studied were temperatures of operation ranging from 250°C to 380°C. High temperatures (e.g. 380°C) are necessary when combining methanol and DME synthesis with a methanol to gasoline (MTG) process in a single reactor bed. A commercial Cu/ZnO/Al2O3 catalyst, utilized industrially for the synthesis of methanol at 220-280°C, suffers from a rapid deactivation when the reaction is conducted at high temperature (>320°C). On the contrary, a Pd/ZnO/Al2O3 catalyst was found to be highly stable for methanol and DME synthesis at 380°C. The Pd/ZnO/Al2O3 catalyst was thus further investigated for methanol and DME synthesis at P=34-69 bars, T= 250-380°C, GHSV= 5 000-18 000 h-1, and molar feeds H2/CO= 1, 2, and 3. Selectivity to DME increased with decreasing operating temperature, and increasing operating pressure. Increased GHSV’s and H2/CO syngas feed ratios also enhanced DME selectivity. Undesirable CH4 formation was observed, however, can be minimized through choice of process conditions and by catalyst design. By studying the effect of the Pd loading and the Pd:Zn molar ratio the formulation of the Pd/ZnO/Al2O3 catalyst was optimized. A catalyst with 5% Pd and a Pd:Zn molar ratio of 0.25:1 has been identified as the preferred catalyst. Results indicate that PdZn particles are more active than Pdº particles for the synthesis of methanol and less active for CH4 formation. A correlation between DME selectivity and the concentration of acid sites of the catalysts has been established. Hence, two types of sites are required for the direct conversion of syngas to DME: 1) PdZn particles are active for the synthesis of methanol from syngas, and 2) acid sites which are active for the conversion of methanol to DME. Additionally, CO2 formation was problematic as PdZn was found to be active for the water-gas-shift (WGS) reaction, under all the conditions evaluated.

  11. Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations

    SciTech Connect (OSTI)

    Schleife, A; Bechstedt, F

    2012-02-15

    Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparent conducting oxides in good agreement with experiment.

  12. The effect of Cu/Zn molar ratio on CO{sub 2} hydrogenation over Cu/ZnO/ZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    SciTech Connect (OSTI)

    Shaharun, Salina, E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Taha, Mohd F., E-mail: faisalt@petronas.com.my [Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Mohamad, Dasmawati, E-mail: dasmawati@kck.usm.my [School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-10-24

    Catalytic hydrogenation of carbon dioxide (CO{sub 2}) to methanol is an attractive way to recycle and utilize CO{sub 2}. A series of Cu/ZnO/Al{sub 2}O{sub 3}/ZrO{sub 2} catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N{sub 2} adsorption-desorption. Higher surface area, SA{sub BET} values (42.6–59.9 m{sup 2}/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m{sup 2}/g found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.

  13. Investigation of the Effect of I-ZnO Window Layer on the Device Performance of the Cd-Free CIGS Based Solar Cells: Preprint

    SciTech Connect (OSTI)

    Hasoon, F. S.; Al-Thani, H. A.; Li, X.; Kanevce, A.; Perkins, C.; Asher, S.

    2008-05-01

    This paper focuses on preparing Cd-free, CIGS-based solar cells with intrinsic high resistivity ZnO (I-ZnO) films deposited by metal-organic chemical vapor deposition (MOCVD) technique at different deposition substrate temperature and I-ZnO film thickness, and the effect of the prior treatment of CIGS films by ammonium hydroxide (NH4OH) diluted solution on the device performance.

  14. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    SciTech Connect (OSTI)

    Tan, Wai Kian; Abdul Razak, Khairunisak; Lockman, Zainovia; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ?40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible-light irradiation.

  15. Dual nature of 3 d electrons in YbT 2 Zn 20 (T = Co; Fe) evidenced by electron spin resonance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ivanshin, V. A.; Litvinova, T. O.; Gimranova, K.; Sukhanov, A. A.; Jia, S.; Bud'ko, S. L.; Canfield, P. C.

    2015-03-18

    The electron spin resonance experiments were carried out in the single crystals YbFe2Zn20. The observed spin dynamics is compared with that in YbCo2Zn20 and Yb2Co12P7 as well as with the data of inelastic neutron scattering and electronic band structure calculations. Our results provide direct evidence that 3d electrons are itinerant in YbFe2Zn20 and localized in YbCo2Zn20. Possible connection between spin paramagnetism of dense heavy fermion systems, quantum criticality effects, and ESR spectra is discussed.

  16. Effect of annealing treatment on the electrical characteristics of Pt/Cr-embedded ZnO/Pt resistance random access memory devices

    SciTech Connect (OSTI)

    Chang, Li-Chun; Kao, Hsuan-Ling; Liu, Keng-Hao

    2014-03-15

    ZnO/Cr/ZnO trilayer films sandwiched with Pt electrodes were prepared for nonvolatile resistive memory applications. The threshold voltage of a ZnO device embedded with a 3-nm Cr interlayer was approximately 50% lower than that of a ZnO monolayer device. This study investigated threshold voltage as a function of Cr thickness. Both the ZnO monolayer device and the Cr-embedded ZnO device structures exhibited resistance switching under electrical bias both before and after rapid thermal annealing (RTA) treatment, but resistive switching effects in the two cases exhibited distinct characteristics. Compared with the as-fabricated device, the memory cell after RTA demonstrated remarkable device parameter improvements, including a lower threshold voltage, a lower write current, and a higher R{sub off}/R{sub on} ratio. Both transmission electron microscope observations and Auger electron spectroscopy revealed that the Cr charge trapping layer in Cr-embedded ZnO dispersed uniformly into the storage medium after RTA, and x-ray diffraction and x-ray photoelectron spectroscopy analyses demonstrated that the Cr atoms lost electrons to become Cr{sup 3+} ions after dispersion. These results indicated that the altered status of Cr in ZnO/Cr/ZnO trilayer films during RTA treatment was responsible for the switching mechanism transition.

  17. Hydrogen induced electric conduction in undoped ZnO and Ga-doped ZnO thin films: Creating native donors via reduction, hydrogen donors, and reactivating extrinsic donors

    SciTech Connect (OSTI)

    Akazawa, Housei

    2014-09-01

    The manner in which hydrogen atoms contribute to the electric conduction of undoped ZnO and Ga-doped ZnO (GZO) films was investigated. Hydrogen atoms were permeated into these films through annealing in an atmospheric H{sub 2} ambient. Because the creation of hydrogen donors competes with the thermal annihilation of native donors at elevated temperatures, improvements to electric conduction from the initial state can be observed when insulating ZnO films are used as samples. While the resistivity of conductive ZnO films increases when annealing them in a vacuum, the degree of increase is mitigated when they are annealed in H{sub 2}. Hydrogenation of ZnO crystals was evidenced by the appearance of OH absorption signals around a wavelength of 2700?nm in the optical transmittance spectra. The lowest resistivity that was achieved by H{sub 2} annealing was limited to 1–2?×?10{sup ?2} ? cm, which is one order of magnitude higher than that by native donors (2–3?×?10{sup ?3} ? cm). Hence, all native donors are converted to hydrogen donors. In contrast, GZO films that have resistivities yet to be improved become more conductive after annealing in H{sub 2} ambient, which is in the opposite direction of GZO films that become more resistive after vacuum annealing. Hydrogen atoms incorporated into GZO crystals should assist in reactivating Ga{sup 3+} donors.

  18. Deep-level emission in ZnO nanowires and bulk crystals: Excitation-intensity dependence versus crystalline quality

    SciTech Connect (OSTI)

    Hou, Dongchao; Voss, Tobias; Ronning, Carsten; Menzel, Andreas; Zacharias, Margit

    2014-06-21

    The excitation-intensity dependence of the excitonic near-band-edge emission (NBE) and deep-level related emission (DLE) bands in ZnO nanowires and bulk crystals is studied, which show distinctly different power laws. The behavior can be well explained with a rate-equation model taking into account deep donor and acceptor levels with certain capture cross sections for electrons from the conduction band and different radiative lifetimes. In addition, a further crucial ingredient of this model is the background n-type doping concentration inherent in almost all ZnO single crystals. The interplay of the deep defects and the background free-electron concentration in the conduction band at room temperature reproduces the experimental results well over a wide range of excitation intensities (almost five orders of magnitude). The results demonstrate that for many ZnO bulk samples and nanostructures, the relative intensity R?=?I{sub NBE}/I{sub DLE} can be adjusted over a wide range by varying the excitation intensity, thus, showing that R should not be taken as an indicator for the crystalline quality of ZnO samples unless absolute photoluminescence intensities under calibrated excitation conditions are compared. On the other hand, the results establish an all-optical technique to determine the relative doping levels in different ZnO samples by measuring the excitation-intensity dependence of the UV and visible luminescence bands.

  19. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect (OSTI)

    Liu Fei; Zhang Zhaodong; Liu Liming, E-mail: liulm@dlut.edu.cn

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  20. Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films

    SciTech Connect (OSTI)

    Ceylan, Abdullah Ozcan, Sadan; Rumaiz, Abdul K.; Caliskan, Deniz; Ozbay, Ekmel; Woicik, J. C.

    2015-03-14

    We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600?°C for 30, 60, and 90?s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27?nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA.

  1. Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation

    SciTech Connect (OSTI)

    Azarang, Majid, E-mail: azarangmajid@gmail.com, E-mail: azarang@phys.usb.ac.ir [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, University of Sistan and Baluchestan, 98135-674 Zahedan (Iran, Islamic Republic of); Shuhaimi, Ahmad; Sookhakian, M. [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yousefi, Ramin, E-mail: Yousefi.ramin@gmail.com, E-mail: raminyousefi@iaumis.ac.ir [Department of Physics, Masjed-Soleiman Branch, Islamic Azad University (I.A.U), Masjed-Soleiman (Iran, Islamic Republic of)

    2014-08-28

    The effects of different concentrations of graphene oxide (GO) on the structure and optical properties of ZnO nanoparticles (NPs) were investigated. The nanocomposites were synthesized via the sol-gel method in a gelatin medium. X-ray diffraction patterns (XRD) and Fourier transform infrared spectroscopy indicated that the GO sheets were reduced and changed to reduced GO (RGO) during the calcination of the nanocomposites at 400?°C. In addition, the XRD patterns of the NPs indicated a hexagonal (wurtzite) structure for all the products. Microscopic studies showed that the NPs were decorated and dispersed on the RGO sheets very well. However, these studies revealed that the RGO concentration had an effect on the crystal growth process for the ZnO NPs. Furthermore, these studies showed that the NPs could be grown with a single crystal quality in an optimum RGO concentration. According to the XRD results that were obtained from pure ZnO NPs, the calcinations temperature was decreased by the RGO. UV–vis and room temperature photoluminescence studies showed that the optical properties of the ZnO/RGO nanocomposite were affected by the RGO concentration. Finally, the obtained ZnO/RGO nanocomposite was used to generate a photocurrent. Observations showed that the photocurrent intensity of the nanocomposite was significantly increased by increasing the RGO, with an optimum RGO concentration.

  2. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO{sub 2}

    SciTech Connect (OSTI)

    Wang, Congjun; Ranasingha, Oshadha; Natesakhawat, Sittichai; Ohodnicki, Paul R.; Ohodnicki, Andio, Mark; Lewis, James; P Matranga, Christopher

    2013-05-01

    Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO{sub 2} and H{sub 2} reactants to CH{sub 4} and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat Au–ZnO from 30 to #1;~600 {degrees}#3;C and simultaneously tune the CH{sub 4} : CO product ratio. The laser induced heating and resulting CH{sub 4} : CO product distribution agrees well with predictions from thermodynamic models and temperatureprogrammed reaction experiments indicating that the reaction is a thermally driven process resulting from the plasmonic heating of the Au–ZnO. The apparent quantum yield for CO{sub 2} conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The Au–ZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO{sub 2} reduction is low (#1;~2.5 x#4; 10{sup 5} W m{sup #5;-2}) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO{sub 2} utilization and other practical thermal catalytic applications.

  3. MoS{sub 2}@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties

    SciTech Connect (OSTI)

    Tan, Ying-Hua; Yu, Ke Li, Jin-Zhu; Fu, Hao; Zhu, Zi-Qiang

    2014-08-14

    The molybdenum disulfide (MoS{sub 2})@ZnO nano-heterojunctions were successfully fabricated through a facile three-step synthetic process: prefabrication of the ZnO nanoparticles, the synthesis of MoS{sub 2} nanoflowers, and the fabrication of MoS{sub 2}@ZnO heterojunctions, in which ZnO nanoparticles were uniformly self-assembled on the MoS{sub 2} nanoflowers by utilizing polyethyleneimine as a binding agent. The photocatalytic activities of the composite samples were evaluated by monitoring the photodegradation of methylene blue (MB). Compared with pure MoS{sub 2} nanoflowers, the composites show higher adsorption capability in dark and better photocatalytic efficiency due to the increased specific surface area and improved electron-hole pair separation. After irradiation for 100?min, the remaining MB in solution is about 7.3%. Moreover, the MoS{sub 2}@ZnO heterojunctions possess enhanced field emission properties with lower turn-on field of 3.08?V ?m{sup ?1}and lower threshold field of 6.9?V ?m{sup ?1} relative to pure MoS{sub 2} with turn-on field of 3.65?V ?m{sup ?1} and threshold field of 9.03?V ?m{sup ?1}.

  4. Zinc vacancy and erbium cluster jointly promote ferromagnetism in erbium-doped ZnO thin film

    SciTech Connect (OSTI)

    Chen, Hong-Ming; Zhou, Ren-Wei; Li, Fei; University of Chinese Academy of Sciences, Beijing 100049 ; Liu, Xue-Chao Zhuo, Shi-Yi; Shi, Er-Wei; Xiong, Ze

    2014-04-15

    Zn{sub 1-x}Er{sub x}O (0.005 ? x ? 0.04) thin films have been prepared by inductively coupled plasma enhanced physical vapor deposition method. Ferromagnetism, crystal structure, microstructure and photoluminescence properties of the films were characterized. It is found that the chemical valence state of Er is trivalent, and the Er{sup 3+} cations play an important role in ferromagnetism. Both saturated magnetization (M{sub s}) and zinc vacancy (V{sub Zn}) are decreased with the increase of x from 0.005 to 0.03. However, further increasing x to 0.04, the M{sub s} is quenched due to the generation of Er clusters. It reveals that the intensity of M{sub s} is not only associated with the V{sub Zn} concentration, but also related to the Er clusters. The V{sub Zn} concentration and the Er clusters can jointly boost the ferromagnetism in the Zn{sub 1-x}Er{sub x}O thin films.

  5. Comparative Study of the Defect Point Physics and Luminescence of the Kesterites Cu2ZnSnS4 and Cu2ZnSnSe4 and Chalcopyrite Cu(In,Ga)Se2: Preprint

    SciTech Connect (OSTI)

    Romero, M. J.; Repins, I.; Teeter, G.; Contreras, M.; Al-Jassim, M.; Noufi, R.

    2012-08-01

    In this contribution, we present a comparative study of the luminescence of the kesterites Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) and their related chalcopyrite Cu(In,Ga)Se2 (CIGSe). Luminescence spectroscopy suggests that the electronic properties of Zn-rich, Cu-poor kesterites (both CZTS and CZTSe) and Cu-poor CIGSe are dictated by fluctuations of the electrostatic and chemical potentials. The large redshift in the luminescence of grain boundaries in CIGSe, associated with the formation of a neutral barrier is clearly observed in CZTSe, and, to some extent, in CZTS. Kesterites can therefore replicate the fundamental electronic properties of CIGSe.

  6. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    SciTech Connect (OSTI)

    Johnson, Raegan Lynn

    2005-08-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  7. Coulomb Oscillations of Indium-doped ZnO Nanowire Transistors in a Magnetic Field

    E-Print Network [OSTI]

    Xiulai Xu; Andrew C. Irvine; Yang Yang; Xitian Zhang; David A. Williams

    2010-11-05

    We report on the observation of Coulomb oscillations from localized quantum dots superimposed on the normal hopping current in ZnO nanowire transistors. The Coulomb oscillations can be resolved up to 20 K. Positive anisotropic magnetoresistance has been observed due to the Lorentz force on the carrier motion. Magnetic field-induced tunneling barrier transparency results in an increase of oscillation amplitude with increasing magnetic field. The energy shift as a function of magnetic field indicates electron wavefunction modification in the quantum dots.

  8. Characterization of ZnSe scintillating bolometers for Double Beta Decay

    E-Print Network [OSTI]

    C. Arnaboldi; S. Capelli; O. Cremonesi; L. Gironi; M. Pavan; G. Pessina; S. Pirro

    2010-06-30

    ZnSe scintillating bolometers are good candidates for future Double Beta Decay searches, because of the 82Se high Q-value and thanks to the possibility of alpha background rejection on the basis of the scintillation signal. In this paper we report the characteristics and the anomalies observed in an extensive study of these devices. Among them, an unexpected high emission from alpha particles, accompanied with an unusual pattern of the light vs. heat scatter plot. The perspectives for the application of this kind of detectors to search for the Neutrinoless Double Beta Decay of 82Se are presented.

  9. Ab initio study of the structural, electronic and optical properties of ZnTe compound

    SciTech Connect (OSTI)

    Bahloul, B.; Deghfel, B.; Amirouche, L.; Bounab, S.; Bentabet, A.; Bouhadda, Y.; Fenineche, N.

    2015-03-30

    Structural, electronic and optical properties of ZnTe compound were calculated using Density Functional Theory (DFT) based on the pseudopotentials and planewaves (PP-PW) method as implemented in the ABINIT computer code, where the exchange–correlation functional is approximated using the local density approximation (LDA) and the generalized gradient approximation (GGA). The obtained results from either LDA or GGa calculation for lattice parameter, energy band gap and optical parameters, such as the fundamental absorption edge, the peaks observed in the imaginary part of the dielectric function, the macroscopic dielectric constants and the optical dielectric constant, are compared with the available theoretical results and experimental data.

  10. Microwave properties of RF- sputtered ZnFe{sub 2}O{sub 4} thin films

    SciTech Connect (OSTI)

    Garg, T. Kulkarni, A. R.; Venkataramani, N.; Sahu, B. N.; Prasad, Shiva

    2014-04-24

    In this work, RF- magnetron sputtering technique has been employed to deposit nanocrystalline ZnFe{sub 2}O{sub 4} thin films at room temperature. The as grown films were ex-situ annealed in air for 2 h at temperatures from 150°C to 650°C. X-ray diffraction, vibrating sample magnetometer and ferromagnetic resonance were used to analyze the phase formation, magnetic properties and microwave properties respectively. From the hysteresis loops and ferromagnetic resonance spectra taken at room temperature, a systematic study on the effect of O{sub 2} plasma on microwave properties with respect to processing temperature has been carried out.

  11. Photoluminescence due to inelastic exciton-exciton scattering in ZnMgO-alloy thin film

    SciTech Connect (OSTI)

    Chia, C. H.; Chen, J. N.; Hu, Y. M. [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 81148, Taiwan (China)

    2011-09-26

    We studied the photoluminescence of ZnMgO thin film, grown by the radiofrequency sputtering method, as a function of excitation intensity and temperature. As the excitation intensity increases, a nonlinear emission band caused by the radiative recombination of the inelastic exciton-exciton scattering was detected at low temperature. We found that the inelastic exciton-exciton scattering process can only persist up to T {approx} 260 K. The nonlinear emission band observed at room temperature is due to the radiative recombination of the electron-hole plasma.

  12. Light induced instability mechanism in amorphous InGaZn oxide semiconductors

    SciTech Connect (OSTI)

    Robertson, John; Guo, Yuzheng

    2014-04-21

    A model of the negative bias illumination stress instability in InGaZn oxide is presented, based on the photo-excitation of electrons from oxygen interstitials. The O interstitials are present to compensate hydrogen donors. The O interstitials are found to spontaneously form in O-rich conditions for Fermi energies at the conduction band edge, much more easily that in related oxides. The excited electrons give rise to a persistent photoconductivity due to an energy barrier to recombination. The formation energy of the O interstitials varies with their separation from the H donors, which leads to a voltage stress dependence on the compensation.

  13. Surface relief produced by diffusion induced boundary migration in Cu-Zn

    SciTech Connect (OSTI)

    Tsai, Y.S.; Meyrick, G.; Shewmon, P.G.

    1984-03-01

    Experimental observations are presented that demonstrate that diffusion induced grain boundary migration in copper foils exposed to zinc vapor, from a Cu-15 pct Zn alloy, can be studied directl after treatment without etching. The general characteristics of migration are in accord with previous investigations, but novel changes in the surface topography are described. Pits were formed on the surface of areas swept by boundary migration; also, the surface was often converted into a series of corrugations. The formation of pits suggests that the grain boundary diffusivity of zinc exceeds that of copper. The corrugations are believed to indicate that boundaries sometimes move in an intermittent manner.

  14. Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells

    SciTech Connect (OSTI)

    Williams, B. L.; Phillips, L.; Major, J. D.; Durose, K.; Taylor, A. A.; Mendis, B. G.; Bowen, L.

    2014-02-03

    Radial p-n junction nanowire (NW) solar cells with high densities of CdTe NWs coated with indium tin oxide (ITO)/ZnO/CdS triple shells were grown with excellent heterointerfaces. The optical reflectance of the devices was lower than for equivalent planar films by a factor of 100. The best efficiency for the NW solar cells was ??=?2.49%, with current transport being dominated by recombination, and the conversion efficiencies being limited by a back contact barrier (?{sub B}?=?0.52?eV) and low shunt resistances (R{sub SH}?

  15. Experimental study of 113Cd beta decay using CdZnTe detectors

    E-Print Network [OSTI]

    C. Goessling; M. Junker; H. Kiel; D. Muenstermann; S. Oehl; K. Zuber

    2005-08-12

    A search for the 4-fold forbidden beta decay of \\iso{Cd}{113} has been performed with CdZnTe semiconductors. With 0.86 kg $\\cdot$ days of statistics a half-life for the decay of $T_{1/2} = (8.2 \\pm 0.2 (stat.) ^{+0.2}_{-1.0} (sys.)) \\cdot 10^{15}$yrs has been obtained. This is in good agreement with published values. A comparison of the spectral shape with the one given on the Table of Isotopes Web-page shows a severe deviation.

  16. Conductive atomic force microscopy study of local electronic transport in ZnTe thin films

    SciTech Connect (OSTI)

    Kshirsagar, Sachin D.; Krishna, M. Ghanashyam; Tewari, Surya P.

    2013-02-05

    ZnTe thin films obtained by the electron beam evaporation technique were subjected to thermal annealing at 500 Degree-Sign C for 2 hours. The as deposited films were amorphous but transformed to the crystalline state under influence of the thermal treatment. There is increase in optical absorption due to the heat treatment caused by increase in free carrier concentration. Conductive atomic force microscopy shows the presence of electronic inhomogeneities in the films. This is attributed to local compositional variations in the films. I-V analysis in these systems indicates formation of Schottky junction at the metal semiconductor (M-S) interface.

  17. Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In

    SciTech Connect (OSTI)

    Xu, Lingyan; Jie, Wanqi, E-mail: jwq@nwpu.edu.cn; Zha, Gangqiang, E-mail: zha-gq@hotmail.com; Feng, Tao; Wang, Ning; Xi, Shouzhi; Fu, Xu; Zhang, Wenlong; Xu, Yadong; Wang, Tao [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072 (China)

    2014-06-09

    The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminated crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.

  18. Plasmonic materials based on ZnO films and their potential for developing broadband middle-infrared absorbers

    SciTech Connect (OSTI)

    Kesim, Yunus E. Battal, Enes; Okyay, Ali K.

    2014-07-15

    Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 ?m) infrared absorber.

  19. Performance of ZnMoO4 crystal as cryogenic scintillating bolometer to search for double beta decay of molybdenum

    E-Print Network [OSTI]

    L. Gironi; C. Arnaboldi; J. W. Beeman; O. Cremonesi; F. A. Danevich; V. Ya. Degoda; L. I. Ivleva; L. L. Nagornaya; M. Pavan; G. Pessina; S. Pirro; V. I. Tretyak; I. A. Tupitsyna

    2010-10-01

    Zinc molybdate (ZnMoO4) single crystals were grown for the first time by the Czochralski method and their luminescence was measured under X ray excitation in the temperature range 85-400 K. Properties of ZnMoO4 crystal as cryogenic low temperature scintillator were checked for the first time. Radioactive contamination of the ZnMoO4 crystal was estimated as <0.3 mBq/kg (228-Th) and 8 mBq/kg (226-Ra). Thanks to the simultaneous measurement of the scintillation light and the phonon signal, the alpha particles can be discriminated from the gamma/beta interactions, making this compound extremely promising for the search of neutrinoless Double Beta Decay of 100-Mo. We also report on the ability to discriminate the alpha-induced background without the light measurement, thanks to a different shape of the thermal signal that characterizes gamma/beta and alpha particle interactions.

  20. Influence of solvent on the morphology and photocatalytic properties of ZnS decorated CeO{sub 2} nanoparticles

    SciTech Connect (OSTI)

    Raubach, Cristiane W. Polastro, Lisânias; Ferrer, Mateus M.; Perrin, Andre; Perrin, Christiane; Albuquerque, Anderson R.; Buzolin, Prescila G. C.; Sambrano, Julio R.; Santana, Yuri B. V. de; Varela, José A.; Longo, Elson

    2014-06-07

    Herein, we report a theoretical and experimental study on the photocatalytic activity of CeO{sub 2} ZnS, and ZnS decorated CeO{sub 2} nanoparticles prepared by a microwave-assisted solvothermal method. Theoretical models were established to analyze electron transitions primarily at the interface between CeO{sub 2} and ZnS. As observed, the particle morphology strongly influenced the photocatalytic degradation of organic dye Rhodamine B. A model was proposed to rationalize the photocatalytic behavior of the prepared decorated systems taking into account different extrinsic and intrinsic defect distributions, including order-disorder effects at interfacial and intra-facial regions, and vacancy concentration.

  1. Reduction of surface leakage current by surface passivation of CdZn Te and other materials using hyperthermal oxygen atoms

    DOE Patents [OSTI]

    Hoffbauer, Mark A. (Los Alamos, NM); Prettyman, Thomas H. (Los Alamos, NM)

    2001-01-01

    Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.

  2. Optical channel waveguides written by high repetition rate femtosecond laser irradiation in Li-Zn fluoroborate glass

    E-Print Network [OSTI]

    Thomas, Sunil; Solis, Javier; Biju, P R; Unnikrishnan, N V

    2015-01-01

    Low loss, optical channel waveguides have been successfully produced by high repetition rate, femtosecond laser inscription in a Li-Zn fluoroborate glass (64.9B2O3 + 25Li2O + 10ZnF2 + 0.1Er2O3). High quality waveguides were produced at 500 kHz, 1 MHz and 2 MHz laser repetition rates, showing a refractive index contrast in the range of 3-6 x 10-3 depending on various fluences. Dependence of experimental parameters such as average laser power, pulse repetition rate and writing speed on the properties of fabricated waveguides has been discussed. The comparison of optical and compositional characterization techniques evidences an enrichment of B and Zn in the guiding region, while F migrates to the heat diffused region of the written structure.

  3. Transient and temperature-dependent phenomena in Ge:Be and Ge:Zn far infrared photoconductors

    SciTech Connect (OSTI)

    Haegel, N.M.

    1985-11-01

    An experimental study of the transient and temperature-dependent behavior of Ge:Be and Ge:Zn photoconductors has been performed under the low background photon flux conditions (p dot approx. = 10/sup 8/ photons/second) typical of astronomy and astrophysics applications. The responsivity of Ge:Be and Ge:Zn detectors is strongly temperature-dependent in closely compensated material, and the effect of compensation on free carrier lifetime in Ge:Be has been measured using the photo-Hall effect technique. Closely compensated material has been obtained by controlling the concentration of novel hydrogen-related shallow acceptor complexes, A(Be,H) and A(Zn,H), which exist in doped crystals grown under a H/sub 2/ atmosphere. A review of selection criteria for multilevel materials for optimum photoconductor performance is included. 55 refs., 47 figs.

  4. Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells

    SciTech Connect (OSTI)

    Tajima, S. Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K.; Isheim, D.; Seidman, D. N.

    2014-09-01

    The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573?K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

  5. HAND-HELD GAMMA-RAY SPECTROMETER BASED ON HIGH-EFFICIENCY FRISCH-RING CdZnTe DETECTORS.

    SciTech Connect (OSTI)

    CUI,Y.

    2007-05-01

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution, el% FWHM at 662 keV, and good efficiency for detecting gamma rays. This technique facilitates the application of CdZnTe materials for high efficiency gamma-ray detection. A hand-held gamma-ray spectrometer based on Frisch-ring detectors is being designed at Brookhaven National Laboratory. It employs an 8x8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so that detection efficiency is significantly improved. By using the front-end ASICs developed at BNL, this spectrometer has a small profile and high energy resolution. The spectrometer includes signal processing circuit, digitization and storage circuit, high-voltage module, and USB interface. In this paper, we introduce the details of the system structure and report our test results with it.

  6. Interaction between O{sub 2} and ZnO films probed by time-dependent second-harmonic generation

    SciTech Connect (OSTI)

    Andersen, S. V., E-mail: sva@nano.aau.dk [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark); Vandalon, V.; Bosch, R. H. E. C.; Loo, B. W. H. van de; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

    2014-02-03

    The interaction between O{sub 2} and ZnO thin films prepared by atomic layer deposition has been investigated by time-dependent second-harmonic generation, by probing the electric field induced by adsorbed oxygen molecules on the surface. The second-harmonic generated signal decays upon laser exposure due to two-photon assisted desorption of O{sub 2}. Blocking and unblocking the laser beam for different time intervals reveals the adsorption rate of O{sub 2} onto ZnO. The results demonstrate that electric field induced second-harmonic generation provides a versatile non-contact probe of the adsorption kinetics of molecules on ZnO thin films.

  7. Effects of Dye Loading Conditions on the Energy Conversion Efficiency of ZnO and TiO2 Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    Cao, Guozhong

    light conversion efficiency of zinc oxide (ZnO) film electrodes in dye-sensitized solar cellsEffects of Dye Loading Conditions on the Energy Conversion Efficiency of ZnO and TiO2 Dye-Sensitized Solar Cells Tammy P. Chou, Qifeng Zhang, and Guozhong Cao* Materials Science and Engineering, Uni

  8. Improved heterojunction quality in Cu2O-based solar cells through the optimization of atmospheric pressure spatial atomic layer deposited Zn1-xMgxO

    E-Print Network [OSTI]

    Ievskaya, Yulia; Hoye, Robert L. Z.; Sadhanala, Aditya; Musselman, Kevin P.; MacManus-Driscoll, Judith L.

    2015-01-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices...

  9. Zn1-xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2Production Activity

    E-Print Network [OSTI]

    Gong, Jian Ru

    . KEYWORDS: Zn1-xCdxS solid solution, thermolysis, theory calculation, visible light, hydrogen production 1Zn1-xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2, * State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University

  10. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-11-17

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn a-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1,6 and [Zn-Cu12](Zn,Cu)6, which explain the a-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and eachmore »cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, therefore offering a fundamental and practical method towards composition interpretations of all kinds of alloys.« less

  11. Morphology and structure features of ZnAl{sub 2}O{sub 4} spinel nanoparticles prepared by matrix-isolation-assisted calcination

    SciTech Connect (OSTI)

    Du, Xuelian; Li, Liqiang; Zhang, Wenxing; Chen, Wencong; Cui, Yuting

    2015-01-15

    Graphical abstract: The substrate ZnO as the isolation medium is effective in preventing the sintering and agglomeration of ZnAl{sub 2}O{sub 4} nanoparticles, and it also prevents their contamination. High purity, well-dispersed, and single-crystal ZnAl{sub 2}O{sub 4} nanoparticles with 3.72 eV band gap were obtained. - Abstract: Well-dispersed ZnAl{sub 2}O{sub 4} spinel nanoparticles with an average crystalline size of 25.7 nm were synthesized successfully and easily by polymer-network and matrix-isolation-assisted calcination. The product microstructure and features were investigated by X-ray diffractometry, thermogravimetric and differential thermal analysis, Fourier transform-infrared spectroscopy, N{sub 2} adsorption–desorption isotherms, and energy dispersive X-ray spectra. The morphology and optical performance of the as-prepared ZnAl{sub 2}O{sub 4} nanoparticles were characterized by scanning electron microscope, transmission electron microscopy, and photoluminescence spectrometer. Experimental results indicate that excess ZnO acted as the isolation medium is effective in preventing the sintering and agglomeration of ZnAl{sub 2}O{sub 4} nanoparticles, and it also prevents their contamination. Then, high purity and well-dispersed ZnAl{sub 2}O{sub 4} nanoparticles with single-crystal structure were obtained.

  12. Partially Crystalline Zn2GeO4 Nanorod/Graphene Composites as Anode Materials for High Performance Lithium Ion Batteries

    E-Print Network [OSTI]

    Lin, Zhiqun

    Partially Crystalline Zn2GeO4 Nanorod/Graphene Composites as Anode Materials for High Performance-step hydrothermal processing. Crystalline and amorphous regions were found to coexist in a single Zn2GeO4 nanorod then utilized as anodes for lithium ion batteries (LIBs). Intriguingly, partially crystalline ZGC containing 10

  13. Hydrogen Donors in ZnO M.D. McCluskey, S.J. Jokela, and W.M. Hlaing Oo

    E-Print Network [OSTI]

    McCluskey, Matthew

    Hydrogen Donors in ZnO M.D. McCluskey, S.J. Jokela, and W.M. Hlaing Oo Department of Physics first-principles calculations and experimental studies have shown that hydrogen acts as a shallow donor in ZnO, in contrast to hydrogen's usual role as a passivating impurity. Given the omnipresence

  14. MG DOPING AND ALLOYING IN ZN3P2 HETEROJUNCTION SOLAR CELLS Gregory M. Kimball, Nathan S. Lewis, Harry A. Atwater

    E-Print Network [OSTI]

    Kimball, Gregory

    . In this manuscript, the electronic and material properties of Mg impurities in Zn3P2 are studied by the Hall effect phosphide (Zn3P2) is a promising and earth-abundant alternative to traditional materials (e.g. CdTe, CIGS, a have therefore been constructed from Schottky contacts, p-n semiconductor heterojunctions [4

  15. Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1 exposed the considerable potential for cryogenic hydrogen storage in microporous metal- organic frameworks gravimetric and volumetric loadings yet reported for a cryogenic hydrogen storage material. The compound Zn4O

  16. Effect of Synthesis Condition and Annealing on the Sensitivity and Stability of Gas Sensors Made of Zn-Doped y-Fe2O3 Particles 

    E-Print Network [OSTI]

    Kim, Taeyang

    2010-10-12

    In this study, the effect of synthesis conditions and annealing process on the sensitivity and stability of gas sensors made of flame-synthesized Zn-doped ?-Fe2O3 particles was investigated. Zn-doped ?-Fe2O3 particles were synthesized by flame...

  17. The 3-stage evolution of the Angouran Zn "oxide"-sulfide deposit, Iran Fakultt Chemie, Technische Universitt Mnchen, Germany albert.gilg@geo.tum.de

    E-Print Network [OSTI]

    Boni, Maria

    The 3-stage evolution of the Angouran Zn "oxide"-sulfide deposit, Iran H.A. Gilg Fakultät Chemie@unina.it F. Moore Geological Department, University Shiraz, Iran moor@geology.susc.ac.ir Keywords: Angouran, Iran, sulfide, MVT, smithsonite, hypogene, supergene ABSTRACT: The giant Angouran Zn-Pb deposit (Zanjan

  18. A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol

    E-Print Network [OSTI]

    Mukasyan, Alexander

    , selectively forming hydrogen and carbon mon- oxide [5­8]. However, when palladium is prepared with ZnO or ZrO2A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Abstract Complex catalysts containing combinations of copper, zinc, zirconium, and palladium oxides were

  19. Impact of annealing on the chemical structure and morphology of the thin-film CdTe/ZnO interface

    SciTech Connect (OSTI)

    Horsley, K. Hanks, D. A.; Weir, M. G.; Beal, R. J.; Wilks, R. G.; Blum, M.; Häming, M.; Hofmann, T.; Weinhardt, L.; and others

    2014-07-14

    To enable an understanding and optimization of the optoelectronic behavior of CdTe-ZnO nanocomposites, the morphological and chemical properties of annealed CdTe/ZnO interface structures were studied. For that purpose, CdTe layers of varying thickness (4–24?nm) were sputter-deposited on 100?nm-thick ZnO films on surface-oxidized Si(100) substrates. The morphological and chemical effects of annealing at 525?°C were investigated using X-ray Photoelectron Spectroscopy (XPS), X-ray-excited Auger electron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy. We find a decrease of the Cd and Te surface concentration after annealing, parallel to an increase in Zn and O signals. While the as-deposited film surfaces show small grains (100?nm diameter) of CdTe on the ZnO surface, annealing induces a significant growth of these grains and separation into islands (with diameters as large as 1??m). The compositional change at the surface is more pronounced for Cd than for Te, as evidenced using component peak fitting of the Cd and Te 3d XPS peaks. The modified Auger parameters of Cd and Te are also calculated to further elucidate the local chemical environment before and after annealing. Together, these results suggest the formation of tellurium and cadmium oxide species at the CdTe/ZnO interface upon annealing, which can create a barrier for charge carrier transport, and might allow for a deliberate modification of interface properties with suitably chosen thermal treatment parameters.

  20. Carbonaceous spheres—an unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres

    SciTech Connect (OSTI)

    Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C. [Illie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Birjega, Ruxandra [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box Mg—27, Magurele, Bucharest (Romania); Ene, Ramona [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Carp, Oana, E-mail: ocarp@icf.ro [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania)

    2013-06-15

    A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N{sub 2} adsorption–desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization. - Graphical abstract: A novel and eco-friendly methodology for the synthesis of mesoscale solid ZnO spheres was developed. The protocol involves a double coating of the starch-derived carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. - Highlights: • ZnO solid spheres are obtained via a template route using carbonaceous spheres. • Two-step coatings of interchangeable order are used as deposition procedure. • The coating procedure influences the porosity and surface area. • ZnO spheres exhibited interesting visible photoluminescence properties. • Solid spheres showed photocatalytical activity in degradation of phenol.

  1. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pilania, G.; Uberuaga, B. P.

    2015-03-19

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl3 and RbZnCl3) forming the double perovskite exhibit a stark contrast. While CsCaCl3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We show that combining the two compositionsmore »in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. As a result, the computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.« less

  2. Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

    SciTech Connect (OSTI)

    Pandey, Sushil Kumar; Kumar Pandey, Saurabh; Awasthi, Vishnu; Mukherjee, Shaibal; Gupta, M.; Deshpande, U. P.

    2013-08-12

    Sb-doped ZnO (SZO) films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system and subsequently annealed in-situ in vacuum and in various proportions of O{sub 2}/(O{sub 2} + N{sub 2})% from 0% (N{sub 2}) to 100% (O{sub 2}). Hall measurements established all SZO films were p-type, as was also confirmed by typical diode-like rectifying current-voltage characteristics from p-ZnO/n-ZnO homojunction. SZO films annealed in O{sub 2} ambient exhibited higher hole concentration as compared with films annealed in vacuum or N{sub 2} ambient. X-ray photoelectron spectroscopic analysis confirmed that Sb{sup 5+} states were more preferable in comparison to Sb{sup 3+} states for acceptor-like Sb{sub Zn}-2V{sub Zn} complex formation in SZO films.

  3. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence

    SciTech Connect (OSTI)

    Yang, Shize; Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi E-mail: xdbai@iphy.ac.cn Wang, Wenlong; Zhao, Jimin; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge E-mail: xdbai@iphy.ac.cn

    2014-08-18

    The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.

  4. Enhancement of surface phonon modes in the Raman spectrum of ZnSe nanoparticles on adsorption of 4-mercaptopyridine

    SciTech Connect (OSTI)

    Islam, Syed K.; Lombardi, John R.

    2014-02-21

    By chemically etching a thin film of crystalline ZnSe with acid, we observe a strong Raman enhancement of the surface phonon modes of ZnSe on adsorption of a molecule (4-mercaptopyridine). The surface is composed of oblate hemi-ellipsoids, which has a large surface-to-bulk ratio. The assignment of the observed modes (at 248 and 492 cm{sup ?1}) to a fundamental and first overtone of the surface optical mode is consistent with observations from high-resolution electron energy loss spectroscopy as well as calculations.

  5. Pyroelectric-field driven defects diffusion along c-axis in ZnO nanobelts under high-energy electron beam irradiation

    SciTech Connect (OSTI)

    Ding, Yong, E-mail: yong.ding@mse.gatech.edu; Liu, Ying; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

    2014-10-21

    When ZnO nanobelts are exposed to a high-dose electron probe of several nanometers to hundred nanometers in diameter inside a transmission electron microscope, due to the radiolysis effect, part of oxygen atoms will be ejected into the vacuum and leaving a Zn-ion rich surface with a pit appearance at both the electron-entrance and electron-exit surfaces. At the same time, a temperature distribution is created around the electron probe due to local beam heating effect, which generates a unidirectional pyroelectric field. This pyroelectric field is strong enough to drive Zn ions moving along its positive c-axis direction as interstitial ions. In the first case, for the ZnO nanobelts with c-axis lie in their large surfaces, defects due to the aggregation of Zn interstitial ions will be formed at some distances of 30–50 nm approximately along the c-axis direction from the electron beam illuminated area. Alternatively, for the ZnO nanobelts with ±(0001) planes as their large surfaces, the incident electron beam is along its c-axis and the generated pyroelectric field will drive the interstitial Zn-ions to aggregate at the Zn terminated (0001) surface where the local electrical potential is the lowest. Such electron beam induced damage in ZnO nanostructures is suggested as a result of Zn ion diffusion driven by the temperature gradient induced pyroelectric field along c-axis. Our study shows a radiation damage caused by electron beam in transmission electron microscopy, especially when the electron energy is high.

  6. Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation

    SciTech Connect (OSTI)

    Miyata, Toshihiro; Honma, Yasunori; Minami, Tadatsugu

    2007-07-15

    Highly transparent and conductive B-doped ZnO (BZO) thin films have been prepared by a newly developed vacuum arc plasma evaporation method that provided high-rate film depositions using sintered BZO pellets and fragments. The obtained electrical and optical properties of the deposited BZO thin films were considerably affected by the deposition conditions as well as the preparation method of the BZO pellets and fragments used. The lowest thin film resistivity was obtained with a B doping content [B/(B+Zn) atomic ratio] of approximately 1 at. %. A resistivity as low as 5x10{sup -4} {omega} cm and an average transmittance above about 80% in the wavelength range of 400-1300 nm were obtained in BZO films prepared with a thickness above approximately 400 nm at a substrate temperature of 200 deg. C. In addition, a low resistivity of 7.97x10{sup -4} {omega} cm and average transmittances above about 80% in the visible wavelength range were obtained in a BZO film prepared at a substrate temperature of 100 deg. C and an O{sub 2} gas flow rate of 10 SCCM (SCCM denotes cubic centimeter per minute at STP). The deposition rate of BZO films was typically 170 nm/min with a cathode plasma power of 4.5 kW.

  7. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    SciTech Connect (OSTI)

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L.

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  8. A single-molecule approach to ZnO defect studies: Single photons and single defects

    SciTech Connect (OSTI)

    Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D.

    2014-07-28

    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ?560–720?nm and typically exhibits two broad spectral peaks separated by ?150?meV. The excited state lifetimes range from 1 to 13?ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

  9. Kinetics of Water Adsorption-Driven Structural Transformation of ZnS Nanoparticles

    SciTech Connect (OSTI)

    Goodell, Carmen M.; Gilbert, Benjamin; Weigand, Steven J.; Banfield, Jillian F. (UCB); (NWU); (LBNL)

    2008-10-16

    Nanoparticles of certain materials can respond structurally to changes in their surface environments. We have previously shown that methanol, water adsorption, and aggregation?disaggregation can change the structure of 3 nm diameter zinc sulfide (ZnS). However, in prior observations of water-driven structure change, aggregation also may have taken place. Therefore, we investigated the structural consequences of water adsorption alone on anhydrous nanoparticles that were dried to minimize changes in aggregation. Using simultaneously collected small- and wide-angle X-ray scattering (SAXS and WAXS) data, we showed that water vapor adsorption alone drives a structural transformation in ZnS nanoparticles in the temperature range of 22--40 C. The transition kinetics is strongly temperature dependent, with an activation energy of 55 {+-} 10 kJ/mol, consistent with atom displacement rather than bond breaking. At 50 C, aggregate restructuring occurred, increasing the transition kinetics beyond the rate expected for water adsorption alone. The observation of isosbestic points in the WAXS data suggests that the particles do not transform continuously between the initial and the final structural state but rather undergo an abrupt change from a less ordered to a more ordered state.

  10. A Tb–Zn tetra(4-sulfonatophenyl)porphyrin hybrid: Preparation, structure, photophysical and electrochemical properties

    SciTech Connect (OSTI)

    Chen, Wen-Tong; Hu, Rong-Hua; Wang, Yin-Feng; Zhang, Xian; Liu, Juan

    2014-05-01

    A terbium-zinc porphyrin, i.e. [TbZn(TPPS)H{sub 3}O]{sub n} (1) (TPPS=tetra(4-sulfonatophenyl)porphyrin), has been obtained from a solvothermal reaction and structurally analyzed by single-crystal X-ray diffraction. Compound 1 is characteristic of a condensed three-dimensional (3-D) porous open framework with two types of infinite one-dimensional (1-D) chain-like structure. Compound 1 exhibits a void space of 215 ?{sup 3}, which is 9.2% of the unit-cell volume. TG/DTA measurement reveals that the framework of compound 1 is thermally stable up to 336 °C. In order to reveal its photophysical and electrochemical properties, we investigated compound 1 in detail with UV–vis spectra, fluorescence, quantum yield, luminescence lifetime, and CV/DPV. - Graphical abstract: A terbium–zinc porphyrin [TbZn(TPPS)H{sub 3}O]{sub n} has been obtained from a solvothermal reaction. It features a condensed 3-D porous open framework. It shows good thermal stability. - Highlights: • This paper reports a novel terbium–zinc porphyrin. • It features a novel condensed three-dimensional porous open framework. • The title compound is thermally stable up to 336 °C. • It is studied by UV–vis, fluorescence, quantum yield, lifetime, and CV/DPV.

  11. Synthesis of Zn/Co/Fe-layered double hydroxide nanowires with controllable morphology in a water-in-oil microemulsion

    SciTech Connect (OSTI)

    Wu Hongyu; Jiao Qingze; Zhao Yun; Huang Silu; Li Xuefei; Liu Hongbo; Zhou Mingji

    2010-02-15

    The Zn/Co/Fe-layered double hydroxide nanowires were synthesized via a reverse microemulsion method by using cetyltrimethyl ammonium bromide (CTAB) /n-hexane/n-hexanol/water as Soft-Template. ZnSO{sub 4}, CoSO{sub 4}, Fe{sub 2}(SO{sub 4}){sub 3} and urea were used as raw materials. The influence of reaction temperature, time, urea concentration and Cn (molar ratio of cetyltrimethyl ammonium bromide to water) on the structure and morphology of Zn/Co/Fe-layered double hydroxides was investigated. The samples were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), X-ray Diffraction (XRD) and Infrared Absorption Spectrum (IR). The results indicate that higher temperature is beneficial to the formation of layered double hydroxides, but particles apart from nanowires could be produced if temperature is up to 120 deg. C. By varying the temperature, reaction time, urea concentration and Cn, we got the optimum conditions of synthesizing uniform Zn/Co/Fe-layered double hydroxide nanowires: 100 deg. C, more than 12 h, Cn: 30-33, urea concentration: 0.3 M.

  12. A density functional theory study of the correlation between analyte basicity, ZnPc adsorption strength, and sensor response

    E-Print Network [OSTI]

    Kummel, Andrew C.

    A density functional theory study of the correlation between analyte basicity, ZnPc adsorption Received 4 January 2009; accepted 27 April 2009; published online 28 May 2009 Density functional theory DFT of their electron donating ability or Lewis basicity. With the exception of the most basic analyte investigated

  13. Influence of temperature and photoexcitation density on the quantum efficiency of defect emission in ZnO powders

    E-Print Network [OSTI]

    Liu, Jie

    excitation power density on the efficiency of intrinsic defect emission in ZnO powders was characterized. This material system is potentially useful as an ultraviolet-photoexcited, white light phosphor under low-power.1063/1.2753540 Since the introduction of nitride-based white light emit- ting diodes LEDs in the mid-1990s, much

  14. Journal of Crystal Growth 308 (2007) 105109 The effect of growth time on the morphology of ZnO structures

    E-Print Network [OSTI]

    2007-01-01

    Journal of Crystal Growth 308 (2007) 105­109 The effect of growth time on the morphology of ZnO structures deposited on Si (1 0 0) by the aqueous chemical growth technique D. Vernardoua,b,c,Ã, G. Katsarakisa,b,i a Center of Materials Technology and Laser, School of Applied Technology, Technological

  15. Photoluminescence study of ZnO structures grown by aqueous chemical growth G. Kenanakis a,b,c

    E-Print Network [OSTI]

    Photoluminescence study of ZnO structures grown by aqueous chemical growth G. Kenanakis a,b,c , M. Androulidaki c , D. Vernardou a,d,e , N. Katsarakis a,c,d , E. Koudoumas a,f, a Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion

  16. Measuring charge trap occupation and energy level in CdSe/ZnS quantum dots using a scanning tunneling microscope

    E-Print Network [OSTI]

    Hummon, M. R.

    We use a scanning tunneling microscope to probe single-electron charging phenomena in individual CdSe/ZnS (core/shell) quantum dots (QDs) at room temperature. The QDs are deposited on top of a bare Au thin film and form a ...

  17. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas

    E-Print Network [OSTI]

    Silver, Whendee

    Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties elements bioavailability and biological (dehydrogenase activity) and physico-chemical properties of mine areas affected by hard coal, sand, lignite and sulphur mining, there is no risk of trace element

  18. ZnO quantum dots synthesized by a vapor phase transport process J. G. Lu, Z. Z. Ye,a

    E-Print Network [OSTI]

    Wang, Zhong L.

    fabrication of ZnO QDs was conducted in a hori- zontal tube furnace. The system is shown in Fig. 1. Zinc the water of crystal- lization. Si 111 wafers were used as the substrates. The furnace temperature was set of the furnace, and the temperature gradient at the location between the center and the end of the furnace

  19. Influence of free-carrier absorption on terahertz generation from ZnTe,,110... Shayne M. Harrel,a

    E-Print Network [OSTI]

    for bright sources of tera- hertz radiation.6 Thus, maximizing the efficiency of terahertz emission from ZnTe 110 has received much attention. For example, Xu and Zhang7 conducted studies of optical recti papers which analyze these processes have been published, the available literature is often incom- plete

  20. Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices

    E-Print Network [OSTI]

    Atwater, Harry

    Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices Jeffrey and AZO transparent conductive oxides did not. Applications to novel PV devices incorporating low electron-ray diffraction, zinc compounds. I. INTRODUCTION The growing interest in scalable, thin-film photovoltaics (PV

  1. Observation of the Dynamical Change in a Water Monolayer Adsorbed on a ZnO Surface Olga Dulub,1

    E-Print Network [OSTI]

    Diebold, Ulrike

    a wide temperature range from below 200 K up to the boiling point of water [12]. Scanning tunneling-dissociated water structure [see Fig. 1(a) and top left inset, labeled with ``HD'']. A part of the surfaceObservation of the Dynamical Change in a Water Monolayer Adsorbed on a ZnO Surface Olga Dulub,1

  2. High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films

    SciTech Connect (OSTI)

    Lee, Eunju; Park, Jaedon; Yim, Munhyuk; Jeong, Sangbeom; Yoon, Giwan, E-mail: gwyoon@kaist.ac.kr [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-05-26

    The free-carrier-modulated ZnO:N thin film-based flexible nanogenerators (NZTF-FNGs) are proposed and experimentally demonstrated. The suggested flexible nanogenerators (FNGs) are fabricated using N-doped ZnO thin films (NZTFs) as their piezoelectric active elements, which are deposited by a radio frequency magnetron sputtering technique with an N{sub 2}O reactive gas as an in situ dopant source. Considerable numbers of N atoms are uniformly incorporated into NZTFs overall during their growth, which would enable them to significantly compensate the unintentional background free electron carriers both in the bulk and at the surface of ZnO thin films (ZTFs). This N-doping approach is found to remarkably enhance the performance of NZTF-FNGs, which shows output voltages that are almost two orders of magnitude higher than those of the conventionally grown ZnO thin film-based FNGs. This is believed to be a result of both substantial screening effect suppression in the ZTF bulk and more reliable Schottky barrier formation at the ZTF interfaces, which is all mainly caused by the N-compensatory doping process. Furthermore, the NZTF-FNGs fabricated are verified via charging tests to be suitable for micro-energy harvesting devices.

  3. SYNTHESIS AND SURFACE CHEMISTRY OF ZN3P2 Gregory M. Kimball, Nathan S. Lewis, Harry A. Atwater

    E-Print Network [OSTI]

    Kimball, Gregory

    alternative to traditional materials (e.g. CIGS, CdTe, a-Si) for thin film photovoltaics. Open circuit voltage in Zn3P2 cells has been limited by Fermi-level pinning due to surfaces states and heterojunction promise for solar energy conversion but has not been investigated as thoroughly as other thin film

  4. DISTORTIONS TO CURRENT-VOLTAGE CURVES OF CIGS CELLS WITH SPUTTERED Zn(O,S) BUFFER LAYERS

    E-Print Network [OSTI]

    Sites, James R.

    alternative to CdS for (CIGS) thin-film solar cells' buffer layer. It has a higher band gap and thus allows to current- voltage (J-V) curves of sputtered-Zn(O,S)/CIGS solar cells. A straightforward photodiode model partner in the CIGS team, and Russell for showing me the solar cells characterization, and John, Jen

  5. Infrared Spectroscopy of Impurities in ZnO Nanoparticles W. M. Hlaing Oo and M. D. McCluskey

    E-Print Network [OSTI]

    McCluskey, Matthew

    considerable attention because of its potential applications such as varistors, piezoelectric transducers nanoparticles have a range of potential applications in electronic, optoelectronic and spintronic devices. Zinc oxide (ZnO), a wide-bandgap semiconductor, has emerged as an important material for such applications

  6. Interaction of light with the ZnO surface: Photon induced oxygen "breathing," oxygen vacancies, persistent photoconductivity,

    E-Print Network [OSTI]

    Shalish, Ilan

    , which energy position coincides with the position of the so called "green luminescence" in Zn on the energy required for decomposition and for the observed emission of lattice oxygen in the form of CO2 of the energy bands. Using surface photovoltage spectroscopy in ultra high vacuum, we monitored changes

  7. CHOPPING VERSUS GRINDING AND PELLETING OF HAY : EFFECT ON AVAILABILITY OF TRACE ELEMENTS (Cu, Zn and Mn)

    E-Print Network [OSTI]

    Boyer, Edmond

    CHOPPING VERSUS GRINDING AND PELLETING OF HAY : EFFECT ON AVAILABILITY OF TRACE ELEMENTS (Cu, Zn often receive ground diets that may or may not be pelleted. We intended to examine the effect of transit) chopped into pieces 3 cm long, or ground in a grinder equipped with a 0.6 mm sieve and pelleted in 6 mm

  8. Photoluminescence Enhancement in CdSe/ZnS–DNA linked–Au Nanoparticle Heterodimers Probed by Single Molecule Spectroscopy

    SciTech Connect (OSTI)

    Cotlet, M.; Maye, M.M.; Gang, O.

    2010-07-26

    Photoluminescence enhancement of up to 20 fold is demonstrated at the single molecule level for heterodimers composed of a core/shell CdSe/ZnS semiconductive quantum dot and a gold nanoparticle of 60 nm size separated by a 32 nm-long dsDNA linker when employing optical excitation at wavelengths near the surface plasmon resonance of the gold nanoparticle.

  9. Structural characterization of ZnO films grown by molecular beam epitaxy on sapphire with MgO buffer

    SciTech Connect (OSTI)

    Pecz, B.; El-Shaer, A.; Bakin, A.; Mofor, A.-C.; Waag, A.; Stoemenos, J. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany); Physics Department, Aristotle University, University Campus, 54006 Thessaloniki (Greece)

    2006-11-15

    The structural characteristics of the ZnO film grown on sapphire substrate using a thin MgO buffer layer were studied using transmission electron microscopy and high-resolution x-ray diffraction. The growth was carried out in a modified plasma-molecular beam epitaxy system. The observed misfit dislocations were well confined at the sapphire overgrown interface exhibiting domain matching epitaxy, where the integral multiples of lattice constants match across the interface. The main extended defects in the ZnO film were the threading dislocations having a mean density of 4x10{sup 9} cm{sup -2}. The formation of the MgO buffer layer as well as the ZnO growth were monitored in situ by reflection high-energy electron diffraction. The very thin {approx}1 nm, MgO buffer layer can partially interdiffuse with the ZnO as well as react with the Al{sub 2}O{sub 3} substrate forming an intermediate epitaxial layer having the spinel (MgO/Al{sub 2}O{sub 3}) structure.

  10. Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystalsw Shailendra Singh,ab

    E-Print Network [OSTI]

    Chen, Wilfred

    not only directs the nucleation of inorganic materials, but also controls the crystal structure and sizeBiologically programmed synthesis of core-shell CdSe/ZnS nanocrystalsw Shailendra Singh report of core-shell semiconductor nanocrystal synthesis using a peptide template. Type II

  11. Magnetization dependence on electron density in epitaxial ZnO thin films codoped with Mn and Sn

    E-Print Network [OSTI]

    Hebard, Arthur F.

    technology. Moreover, this material is useful in delineating the origin of ferromagnetism in a semiconductor. Ivill, S. J. Pearton, and D. P. Nortona Department of Materials Science and Engineering, University online 11 February 2005 The magnetic and transport properties of Mn-doped ZnO thin films codoped with Sn

  12. Transitions of bandgap and built-in stress for sputtered HfZnO thin films after thermal treatments

    SciTech Connect (OSTI)

    Li, Chih-Hung; Chen, Jian-Zhang [Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan (China)] [Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan (China); Cheng, I-Chun [Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei City 10617, Taiwan (China)] [Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei City 10617, Taiwan (China)

    2013-08-28

    HfZnO thin films with various Hf contents are sputter-deposited on glass substrates from Hf{sub x}Zn{sub 1?x}O (x = 0, 2.5, 5, 7.5, and 10 at. %) targets at room temperature. The incorporation of Hf in the ZnO film leads to the amorphorization of the materials. The amorphous structures of high-Hf-content films remain after annealing at 600 °C for 30 min. The built-in stresses of as-deposited films are compressive. As the annealing temperature increases, the stresses are relaxed and even become tensile. The films exhibit a high transmission of 80% in the visible region. The optical bandgap increases with the Hf content, but it decreases with the annealing temperature. This can be attributed to the alteration of strain (stress) status in the films and atomic substitution. The reduction of bandgap partly results from the grain growth, which is due to the quantum confinement effect of the small grains. Hf doping increases the resistivity of ZnO owing to the disorder of the material structure and the higher bandgap, which result in more carrier traps and less thermally excited carriers in the conduction bands.

  13. InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared

    E-Print Network [OSTI]

    Allen, Peter M.

    We present the synthesis of InAs quantum dots (QDs) with a ZnCdS shell with bright and stable emission in the near-infrared (NIR, 700?900 nm) region for biological imaging applications. We demonstrate how NIR QDs can image ...

  14. Fermi level stabilization and band edge energies in Cd{sub x}Zn{sub 1?x}O alloys

    SciTech Connect (OSTI)

    Detert, Douglas M.; Tom, Kyle B.; Dubon, Oscar D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Battaglia, Corsin; Javey, Ali [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Denlinger, Jonathan D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lim, Sunnie H. N. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Anders, André [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yu, Kin M.; Walukiewicz, Wladek [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-06-21

    We have measured the band edge energies of Cd{sub x}Zn{sub 1?x}O thin films as a function of composition by three independent techniques: we determine the Fermi level stabilization energy by pinning the Fermi level with ion irradiation, measure the binding energy of valence band states and core levels by X-ray photoelectron spectroscopy, and probe shifts in the conduction band and valence band density of states using soft X-ray absorption and emission spectroscopy, respectively. The three techniques find consensus in explaining the origin of compositional trends in the optical-bandgap narrowing upon Cd incorporation in wurtzite ZnO and widening upon Zn incorporation in rocksalt CdO. The conduction band minimum is found to be stationary for both wurtzite and rocksalt alloys, and a significant upward rise of the valence band maximum accounts for the majority of these observed bandgap changes. Given these band alignments, alloy disorder scattering is found to play a negligible role in decreasing the electron mobility for all alloys. These band alignment details, combined with the unique optical and electrical properties of the two phase regimes, make CdZnO alloys attractive candidates for photoelectrochemical water splitting applications.

  15. Synthesis of Mixed Ceramic MgxZn1-xO Nanofibers via Mg2+ Using Sol-Gel Electrospinning

    E-Print Network [OSTI]

    Khan, Saad A.

    Synthesis of Mixed Ceramic MgxZn1-xO Nanofibers via Mg2+ Doping Using Sol-Gel Electrospinning Yakup the fibers and conversion of ceramic precursors into ceramic nanofibers, and the appearance of a range property, morphology, and porosity of the resulting nonwoven mat. Ceramic electrospun nanofibers

  16. Mechanochemical synthesis of tungsten carbide nano particles by using WO{sub 3}/Zn/C powder mixture

    SciTech Connect (OSTI)

    Hoseinpur, Arman; Vahdati Khaki, Jalil; Marashi, Maryam Sadat

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? Nano particles of WC are synthesized by mechanochemical process. ? Zn was used to reduce WO{sub 3}. ? By removing ZnO from the milling products with an acid leaching, WC will be the final products. ? XRD results showed that the reduction reactions were completed after 36 h. ? TEM and SEM images showed that the morphology of produced powder is nearly spherical like. -- Abstract: In this research we introduce a new, facile, and economical system for fabrication of tungsten carbide (WC) nano particle powder. In this system WO{sub 3}, Zn, and C have been ball-milled for several hours, which led to the synthesis of tungsten carbide nano particles. The synthesized WC can successfully be separated from the ball-milled product by subjecting the product powder to diluted HCl for removing ZnO and obtaining WC. X-ray diffraction (XRD) analysis indicates that the reduction of WO{sub 3} will be completed gradually by increasing milling time up to 36 h. Scanning electron microscope (SEM), and transmission electron microscope (TEM) images show that after 36 h of milling the particle size of the fabricated powder is nano metric (about 20 nm). Results have shown that this system can surmount some main problems occurred in previous similar WC synthesizing systems. For example carbothermic reduction reactions, which lead to the synthesis of W{sub 2}C instead of WC, would not be activated because in this system reactions take place gradually.

  17. Emergent Honeycomb Lattice in LiZn[subscript 2]Mo[subscript 3]O[subscript 8

    E-Print Network [OSTI]

    Flint, Rebecca

    We introduce the idea of emergent lattices, where a simple lattice decouples into two weakly coupled lattices as a way to stabilize spin liquids. In LiZn[subscript 2]Mo[subscript 3]O[subscript 8], the disappearance of 2/3 ...

  18. Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction

    E-Print Network [OSTI]

    Yaghi, Omar M.

    in the form of fuel cells to convert stored chemical energy, in the form of hydrogen gas, directly within hydrogen-loaded Zn4O(1,4-benzenedicarboxylate) have been located. The technology already exists into electrical energy with high efficiency.1 The crucial factor that is hindering progress towards the commercial

  19. Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal

    E-Print Network [OSTI]

    Cao, Hui

    O inverse opal Heeso Noh, Michael Scharrer, Mark A. Anderson, Robert P. H. Chang, and Hui Cao Materials- and polarization-resolved reflection and photoluminescence spectra of ZnO inverse opals. Significant enhancement widely used for fabrication of face-centered-cubic fcc structures such as opals or inverse opals. An opal

  20. Co-assembly of Zn(SPh){sub 2} and organic linkers into helical and zig-zag polymer chains

    SciTech Connect (OSTI)

    Liu Yi; Yu Lingmin; Loo, Say Chye Joachim; Blair, Richard G.; Zhang Qichun

    2012-07-15

    Two novel one-dimensional coordination polymers, single helicate [Zn(SPh){sub 2}(TPyTA)(EG)]{sub n} (EG=ethylene glycol) (1) and zig-zag structure [Zn(SPh){sub 2}(BPyVB)]{sub n} (2), were synthesized under solvothermal conditions at 150 Degree-Sign C or room temperature by the co-assembly of Zn(SPh){sub 2} and organic linkers such as 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPyTA) and 1,3-bis(trans-4-pyridylvinyl)benzene (BPyVB). X-ray crystallography study reveals that both polymers 1 and 2 crystallize in space group P2{sub 1}/c of the monoclinic system. The solid-state UV-vis absorption spectra show that 1 and 2 have maxium absorption onsets at 400 nm and 420 nm, respectively. TGA analysis indicates that 1 and 2 are stable up to 110 Degree-Sign C and 210 Degree-Sign C. - Graphical abstract: Two novel one-dimensional coordination polymers, single helicate [Zn(SPh){sub 2}(TPyTA)(EG)]{sub n} (1) and zig-zag structure [Zn(SPh){sub 2}(BPyVB)]{sub n} (2), were synthesized. Solid-state UV-vis absorptions show that 1 and 2 have maxium absorption onsets at 400 nm and 420 nm, respectively. TGA analysis indicates that 1 and 2 are stable up to 110 Degree-Sign C and 210 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Two novel one-dimensional coordination polymers have been synthesized. Black-Right-Pointing-Pointer TPyTA results in helical structures in 1 while BPyVB leads to zig-zag chains in 2. Black-Right-Pointing-Pointer Solid-state UV-vis absorption spectra and TGA analysis of the title polymers were studied.

  1. Surface strain engineering through Tb doping to study the pressure dependence of exciton-phonon coupling in ZnO nanoparticles

    SciTech Connect (OSTI)

    Sharma, A.; Dhar, S. Singh, B. P.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.

    2013-12-07

    A compressive hydrostatic strain has been found to develop in the ZnO lattice as a result of accumulation of Tb ions on the surface of the nanoparticles for Tb mole-fraction less than 0.04. This hydrostatic strain can be controlled up to ?14?GPa by varying the Tb mole-fraction. Here, we have utilized this novel technique of surface strain engineering through Tb doping for introducing hydrostatic compressive strain in the lattice to study the pressure dependent electronic and vibrational properties of ZnO nanoparticles. Our study reveals that when subjected to pressure, nanoparticles of ZnO behave quite differently than bulk in many aspects. Unlike bulk ZnO, which is reported to go through a wurtzite to rock-salt structural phase transition at ?8?GPa, ZnO nanoparticles do not show such transition and remain in wurtzite phase even at 14?GPa of pressure. Furthermore, the Grüneisen parameters for the optical phonon modes are found to be order of magnitude smaller in ZnO nanoparticles as compared to bulk. Our study also suggests an increase of the dielectric constant with pressure, which is opposite to what has been reported for bulk ZnO. Interestingly, it has also been found that the exciton-phonon interaction depends strongly upon pressure in this system. The exciton-phonon coupling has been found to decrease as pressure increases. A variational technique has been adopted to theoretically calculate the exciton-LO phonon coupling coefficient in ZnO nanoparticles as a function of pressure, which shows a good agreement with the experimental results. These findings imply that surface engineering of ZnO nanoparticles with Tb could indeed be an efficient tool to enhance and control the optical performance of this material.

  2. The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites

    SciTech Connect (OSTI)

    Abdolmaleki, Amir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran ; Mallakpour, Shadpour; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran ; Borandeh, Sedigheh

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR, specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.

  3. Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane

    SciTech Connect (OSTI)

    Taheri, A., E-mail: at1361@aut.ac.ir; Saramad, S.; Ghalenoei, S.; Setayeshi, S. [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)] [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)

    2014-01-15

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 ?m, respectively.

  4. TiO2 Nanotubes with a ZnO Thin Energy Barrier for Improved Current Efficiency of CdSe Quantum-Dot-Sensitized Solar Cells

    SciTech Connect (OSTI)

    Lee, W.; Kang, S. H.; Kim, J. Y.; Kolekar, G. B.; Sung, Y. E.; Han, S. H.

    2009-01-01

    This paper reports the formation of a thin ZnO energy barrier between a CdSe quantum dot (Q dots) sensitizer and TiO{sub 2} nanotubes (TONTs) for improved current efficiency of Q dot-sensitized solar cells. The formation of a ZnO barrier between TONTs and the Q dot sensitizer increased the short-circuit current under illumination and also reduced the dark current in a dark environment. The power conversion efficiency of Q dot-sensitized TONT solar cells increased by 25.9% in the presence of the ZnO thin layer due to improved charge-collecting efficiency and reduced recombination.

  5. Crystal structure and magnetic properties and Zn substitution effects on the spin-chain compound Sr{sub 3}Co{sub 2}O{sub 6}

    SciTech Connect (OSTI)

    Wang, Xia [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba Ibaraki 305-0044 (Japan); Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Guo, Yanfeng, E-mail: Yangfeng.Guo@physics.ox.ac.uk [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba Ibaraki 305-0044 (Japan); Sun, Ying [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba Ibaraki 305-0044 (Japan); Tsujimoto, Yoshihiro [Materials Processing Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba Ibaraki 305-0047 (Japan); Matsushita, Yoshitaka [Materials Analysis Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba Ibaraki 305-0047 (Japan); Yamaura, Kazunari, E-mail: yamaura.kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba Ibaraki 305-0044 (Japan); Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan)

    2013-08-15

    The effects of substituting Co on the spin-chain compound Sr{sub 3}Co{sub 2}O{sub 6} with Zn were investigated by synchrotron X-ray diffraction, magnetic susceptibility, isothermal magnetization, and specific heat measurements. To the best of our knowledge, this is the first report to describe the successful substitution of Co in Sr{sub 3}Co{sub 2}O{sub 6} with Zn. The substitution was carried out by a method involving high pressures and temperatures to obtain Sr{sub 3}CoZnO{sub 6}, which crystalized into a K{sub 4}CdCl{sub 6}-derived rhombohedral structure with a space group of R-3c, similar to the host compound. With the Zn substitution, the Ising-type magnetic anisotropy of the host compound remarkably reduced; the newly formed Sr{sub 3}CoZnO{sub 6} became magnetically isotropic with Heisenberg-type characteristics. This could probably be ascribed to the establishment of a different interaction pathway, –Co{sup 4+}(S=1/2)–O–Zn{sup 2+}(S=0)–O–Co{sup 4+}(S=1/2)–. Details of the magnetic properties of Zn substituted Sr{sub 3}Co{sub 2}O{sub 6} were reported. - Graphical abstract: Crystal structure of the spin-chain compound Sr{sub 3}CoZnO{sub 6} synthesized at 6 GPa. Zn atoms preferably occupy the trigonal prism sites rather than the octahedral sites. As a result, the compound is much magnetically isotropic. Highlights: • Effects of substituting Co with Zn on spin-chain magnetism of Sr{sub 3}Co{sub 2}O{sub 6} were studied. • High-pressure synthesis resulted in a solid solution of Sr{sub 3}CoZnO{sub 6}. • Sr{sub 3}CoZnO{sub 6} showed more isotropic magnetism than the host Sr{sub 3}Co{sub 2}O{sub 6}.

  6. Co-Evaporated Cu2ZnSnSe4 Films and Devices

    SciTech Connect (OSTI)

    Repins, I.; Beall, C.; Vora, N.; DeHart, C.; Kuciauskas, D.; Dippo, P.; To, B.; Mann, J.; Hsu, W. C.; Goodrich, A.; Noufi, R.

    2012-06-01

    The use of vacuum co-evaporation to produce Cu2ZnSnSe4 photovoltaic devices with 9.15% total-area efficiency is described. These new results suggest that the early success of the atmospheric techniques for kesterite photovoltaics may be related to the ease with which one can control film composition and volatile phases, rather than a fundamental benefit of atmospheric conditions for film properties. The co-evaporation growth recipe is documented, as is the motivation for various features of the recipe. Characteristics of the resulting kesterite films and devices are shown in scanning electron micrographs, including photoluminescence, current-voltage, and quantum efficiency. Current-voltage curves demonstrate low series resistance without the light-dark cross-over seen in many devices in the literature. Band gap indicated by quantum efficiency and photoluminescence is roughly consistent with that expected from first principles calculation.

  7. Electric field-induced magnetic switching in Mn:ZnO film

    SciTech Connect (OSTI)

    Ren, S. X.; Sun, G. W.; Zhao, J.; Dong, J. Y.; Zhao, X.; Chen, W.; Wei, Y.; Ma, Z. C.

    2014-06-09

    A large magnetic modulation, accompanied by stable bipolar resistive switching (RS) behavior, was observed in a Mn:ZnO film by applying a reversible electric field. A significant enhancement of the ferromagnetism of the film, to about five times larger than that in the initial (as-grown) state (IS), was obtained by switching the film into the low resistance state. X-ray photoelectron spectroscopy demonstrated the existence of abundant oxygen vacancies in the IS of the film. We suggest that this electric field-induced magnetic switching effect originates with the migration and redistribution of oxygen vacancies during RS. Our work indicates that electric switching is an effective and simple method to increase the ferromagnetism of diluted magnetic oxide films. This provides a promising direction for research in spintronic devices.

  8. Temperature dependence of the spin relaxation in highly degenerate ZnO thin films

    SciTech Connect (OSTI)

    Prestgard, M. C.; Siegel, G.; Tiwari, A.; Roundy, R.; Raikh, M.

    2015-02-28

    Zinc oxide is considered a potential candidate for fabricating next-generation transparent spintronic devices. However, before this can be achieved, a thorough scientific understanding of the various spin transport and relaxation processes undergone in this material is essential. In the present paper, we are reporting our investigations into these processes via temperature dependent Hanle experiments. ZnO thin films were deposited on c-axis sapphire substrates using a pulsed laser deposition technique. Careful structural, optical, and electrical characterizations of the films were performed. Temperature dependent non-local Hanle measurements were carried out using an all-electrical scheme for spin injection and detection over the temperature range of 20–300?K. From the Hanle data, spin relaxation time in the films was determined at different temperatures. A detailed analysis of the data showed that the temperature dependence of spin relaxation time follows the linear-in-momentum Dyakonov-Perel mechanism.

  9. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    SciTech Connect (OSTI)

    Hanyu, Yuichiro, E-mail: y-hanyu@lucid.msl.titech.ac.jp; Domen, Kay [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan)] [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Nomura, Kenji [Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan)] [Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Hiramatsu, Hidenori; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan) [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Kumomi, Hideya [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan)] [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan) [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan)

    2013-11-11

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300?°C exhibit good operation characteristics; while those annealed at ?400?°C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430?°C. A plausible structural model is suggested.

  10. Photo-instability of CdSe/ZnS quantum dots in poly(methylmethacrylate) film

    SciTech Connect (OSTI)

    Zhang, Hongyi; Liu, Yu; Ye, Xiaoling; Chen, Yonghai

    2013-12-28

    The photo-instability of CdSe/ZnS quantum dots (QDs) has been studied under varied conditions. We discussed the main features of the evolution of photoluminescence (PL) intensity and energy at different laser powers, which showed critical dependences on the environment. The PL red shift in a vacuum showed strong temperature dependence, from which we concluded that the thermal activation energy for trapping states of the charge carriers was about 14.7 meV. Furthermore, the PL spectra showed asymmetric evolution during the laser irradiation, for which two possible explanations were discussed. Those results provided a comprehensive picture for the photo-instability of the colloidal QDs under different conditions.

  11. A process for the chemical preparation of high-field ZnO varistors

    DOE Patents [OSTI]

    Brooks, R.A.; Dosch, R.G.; Tuttle, B.A.

    1986-02-19

    Chemical preparation techniques involving co-precipitation of metals are used to provide microstructural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E/sub B/, in the 10 to 100 kV/cm range, ..cap alpha.. > 30 and densities in the range of 65 to 99% of theoretical, depending on both composition and sintering temperature.

  12. Role of sonic energy on growth morphology and optical properties of ZnO:S nanostructures

    SciTech Connect (OSTI)

    Panda, Nihar Ranjan, E-mail: niharphysics@yahoo.co.in; Nayak, Pratibindhya [School of Physics, Sambalpur University, Jyoti Vihar, Burla-768019, Odisha (India); Acharya, Bhabani Shankar [C.V. Raman College of Engineering, Bhubaneswar-752054, Odisha (India)

    2014-04-24

    ZnO nanopowders doped with sulphur were prepared by sonochemical method. The input power of ultrasound was varied as 40%, 50% and 60% of the maximum power (375 W) in both continuous and pulsed mode. XRD results show the average size of the nanoparticles is the least for those prepared with 50% input power as well as the micro-strain. FESEM studies showed the formation of nanorods clubbed together to form flower like structure for these samples. In rest of the cases, no definite morphology was obtained. High resolution transmission electron microscopy (HRTEM) reveals the formation of nanorods oriented along c-axis for those samples prepared with 50% input power. No cavitation at 40% and excessive dissolution at 60% may lead to this type of morphology. Absorption studies showed high absorbance for sulphur doped samples but this was highest for the samples prepared with 60% input power.

  13. Experimental and Theoretical Pursuit of the Ultimate Conductivity in ZnO

    SciTech Connect (OSTI)

    Look, David C

    2014-12-22

    In this program, we and our colleagues at the Pacific Northwest National Laboratory (PNNL) had proposed nine areas of research. In most of these we made significant progress, as outlined below. Many of the results were published as listed at the end of the report. 1. Optimized growth of GZO in H2 2. Optimized growth of GZO in forming gas 3. Optimized growth of GZO in Ar with a subsequent anneal in H2 or forming gas 4. Optimized growth of GZO in Ar with a subsequent anneal in Zn vapor 5. Modeling of thickness effects and experimental verification 6. Measurements of thickness and “optical mobility” by ellipsometry 7. Low-temperature photoluminescence measurements and analysis 8. Transmission and reflectance measurements 9. Measurements of stability 10. Discussion: electrical characterization

  14. Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO{sub 4}

    SciTech Connect (OSTI)

    Lynch, David M.; Zhu, Bin; Ast, Dieter G.; Thompson, Michael O.; Levin, Barnaby D. A.; Muller, David A.; Greene, Raymond G.

    2014-12-29

    Crystallinity and texturing of RF sputtered c-axis aligned crystal InGaZnO{sub 4} (CAAC IGZO) thin films were quantified using X-ray diffraction techniques. Above 190?°C, nanocrystalline films with an X-ray peak at 2??=?30° (009 planes) developed with increasing c-axis normal texturing up to 310?°C. Under optimal conditions (310?°C, 10% O{sub 2}), films exhibited a c-axis texture full-width half-maximum of 20°. Cross-sectional high-resolution transmission electron microscopy confirmed these results, showing alignment variation of ±9° over a 15 × 15?nm field of view and indicating formation of much larger aligned domains than previously reported. At higher deposition temperatures, c-axis alignment was gradually lost as polycrystalline films developed.

  15. Photoluminescence of ZnO infiltrated into a three-dimensional photonic crystal

    SciTech Connect (OSTI)

    Gruzintsev, A. N. Emelchenko, G. A.; Masalov, V. M.

    2009-08-15

    The effect of the photonic band gap (stopband) of the photonic crystal, the synthesized SiO{sub 2} opal with embedded zinc oxide, on its luminescence in the violet spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra of the infiltrated opal depends on the diameter of the constituent nanoglobules, the volume fraction of zinc oxide, and on the signal's acceptance angle. It is found that, for the ZnO-opal nanocomposites, the emission intensity is decreased and the luminescence decay time is increased in the spatial directions, in which the photonic band gap coincides in spectral position with the luminescence peak of zinc oxide. The change in the decay time can be attributed to the change in the local density of photonic states in the photonic band gap.

  16. Factors affecting initial permeability of Co-substituted Ni-Zn-Cu ferrites

    SciTech Connect (OSTI)

    Byun, T.Y.; Byeon, S.C.; Hong, K.S.; Kim, C.K.

    1999-09-01

    Iron deficient compositions of (Ni{sub 0.2}Cu{sub 0.2}Zn{sub 0.6}){sub 1.02{minus}x}Co{sub x}Fe{sub 1.98}O{sub 4} (0 {le} x {le} 0.05) were prepared to investigate their initial permeability dependence on cobalt contents. Extrinsic factors such as grain size and sintered density change little in samples sintered at 900 C, so their effects on permeability can be neglected. Intrinsic factors such as saturation magnetization, magnetocrystalline anisotropy (K{sub 1}) and magnetoelastic anisotropy (K{sub {sigma}}) can not account for the variation of initial permeability with Co content. Measurement of thermoelectric power shows that the concentration of cation vacancies increases with Co content. Therefore, the local induced anisotropy increases by the ordering of Co ions cia increased cation vacancy concentration. This increase in induced anisotropy results in the decrease of initial permeability.

  17. Process for the chemical preparation of high-field ZnO varistors

    DOE Patents [OSTI]

    Brooks, Robert A. (Tijeras, NM); Dosch, Robert G. (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM)

    1987-01-01

    Chemical preparation techniques involving co-precipitation of metals are used to provide micro-structural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E.sub.B, in the 10-100 kV/cm range, .alpha.>30 and densities in the range of 65-99% of theoretical, depending on both composition and sintering temperature.

  18. Methanol synthesis on ZnO(0001{sup ¯}). IV. Reaction mechanisms and electronic structure

    SciTech Connect (OSTI)

    Frenzel, Johannes, E-mail: johannes.frenzel@theochem.rub.de; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)

    2014-09-28

    Methanol synthesis from CO and H{sub 2} over ZnO, which requires high temperatures and high pressures giving rise to a complex interplay of physical and chemical processes over this heterogeneous catalyst surface, is investigated using ab initio simulations. The redox properties of the surrounding gas phase are known to directly impact on the catalyst properties and thus, set the overall catalytic reactivity of this easily reducible oxide material. In Paper III of our series [J. Kiss, J. Frenzel, N. N. Nair, B. Meyer, and D. Marx, J. Chem. Phys. 134, 064710 (2011)] we have qualitatively shown that for the partially hydroxylated and defective ZnO(0001{sup ¯}) surface there exists an intricate network of surface chemical reactions. In the present study, we employ advanced molecular dynamics techniques to resolve in detail this reaction network in terms of elementary steps on the defective surface, which is in stepwise equilibrium with the gas phase. The two individual reduction steps were investigated by ab initio metadynamics sampling of free energy landscapes in three-dimensional reaction subspaces. By also sampling adsorption and desorption processes and thus molecular species that are in the gas phase but close to the surface, our approach successfully generated several alternative pathways of methanol synthesis. The obtained results suggest an Eley-Rideal mechanism for both reduction steps, thus involving “near-surface” molecules from the gas phase, to give methanol preferentially over a strongly reduced catalyst surface, while important side reactions are of Langmuir-Hinshelwood type. Catalyst re-reduction by H{sub 2} stemming from the gas phase is a crucial process after each reduction step in order to maintain the catalyst's activity toward methanol formation and to close the catalytic cycle in some reaction channels. Furthermore, the role of oxygen vacancies, side reactions, and spectator species is investigated and mechanistic details are discussed based on extensive electronic structure analysis.

  19. Influence of Gas Flow Rate for Formation of Aligned Nanorods in ZnO Thin Films for Solar-Driven Hydrogen Production

    SciTech Connect (OSTI)

    Shet, S.; Chen, L.; Tang, H.; Nuggehalli, R.; Wang, H.; Yan, Y.; Turner, J.; Al-Jassim, M.

    2012-04-01

    ZnO thin films have been deposited in mixed Ar/N{sub 2} gas ambient at substrate temperature of 500 C by radiofrequency sputtering of ZnO targets. We find that an optimum N{sub 2}-to-Ar ratio in the deposition ambient promotes the formation of well-aligned nanorods. ZnO thin films grown in ambient with 25% N{sub 2} gas flow rate promoted nanorods aligned along c-axis and exhibit significantly enhanced photoelectrochemical (PEC) response, compared with ZnO thin films grown in an ambient with different N{sub 2}-to-Ar gas flow ratios. Our results suggest that chamber ambient is critical for the formation of aligned nanostructures, which offer potential advantages for improving the efficiency of PEC water splitting for H{sub 2} production.

  20. Bicolor Mn-doped CuInS{sub 2}/ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index

    SciTech Connect (OSTI)

    Huang, Bo; Dai, Qian; Zhang, Huichao; Liao, Chen; Cui, Yiping; Zhang, Jiayu, E-mail: jyzhang@seu.edu.cn [Advanced Photonic Center, Southeast University, Nanjing 210096 (China); Zhuo, Ningze; Jiang, Qingsong; Shi, Fenghua; Wang, Haibo [Research Institute of Electric Light Source Materials, Nanjing University of Technology, Nanjing 210015 (China)

    2014-09-07

    We synthesized bicolor Mn-doped CuInS{sub 2} (CIS)/ZnS core/shell nanocrystals (NCs), in which Mn{sup 2+} ions and the CIS core were separated with a ZnS layer, and both Mn{sup 2+} ions and CIS cores could emit simultaneously. Transmission electron microscopy and powder X-ray diffraction measurements indicated the epitaxial growth of ZnS shell on the CuInS{sub 2} core, and electron paramagnetic resonance spectrum indicated that Mn{sup 2+} ions were on the lattice points of ZnS shell. By integrating these bicolor NCs with commercial InGaN-based blue-emitting diodes, tricolor white light-emitting diodes with color rendering index of 83 were obtained.

  1. Optical Properties of Zn(O,S) Thin Films Deposited by RF Sputtering, Atomic Layer Deposition, and Chemical Bath Deposition: Preprint

    SciTech Connect (OSTI)

    Li, J.; Glynn, S.; Christensen, S.; Mann, J.; To, B.; Ramanathan, K.; Noufi, R.; Furtak, T. E.; Levi, D.

    2012-06-01

    Zn(O,S) thin films 27 - 100 nm thick were deposited on glass or Cu(InxGa1-x)Se2/Molybdenum/glass with RF sputtering, atomic layer deposition, and chemical bath deposition.

  2. Structure and magnetic properties of three-dimensional (La,Sr)MnO{sub 3} nanofilms on ZnO nanorod arrays

    SciTech Connect (OSTI)

    Gao Haiyong; Gao Puxian; Shimpi, Paresh; Guo Yanbing; Cai Wenjie; Lin Huijan; Staruch, M.; Jain, Menka

    2011-03-21

    Three-dimensional (3D) cubic perovskite (La,Sr)MnO{sub 3} (LSMO) nanofilms have been deposited on ZnO nanorod arrays with controlled dimensionality and crystallinity by radio frequency (rf) magnetron sputtering and post thermal annealing. Compared to the two-dimensional (2D) LSMO nanofilm on flat Si, the structure and magnetic properties of 3D LSMO nanofilms on ZnO nanorod arrays have a strong anisotropic morphology and thickness dependence. Ferromagnetic property has been observed in both 2D and 3D LSMO nanofilms while a ferromagnetic-superparamagnetic transition was revaled in 3D LSMO nanofilms on ZnO nanorod array with decreasing nanofilm thickness, due to a large surface dispersion effect. The LSMO/ZnO nanofilm/nanorod structures could open up new avenues for intriguing magnetic properties studies and applications of nanoscale perovskites.

  3. Determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer quantum dots via spectral analysis of optical signature of the Aharanov-Bohm excitons

    SciTech Connect (OSTI)

    Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha; Kuskovsky, Igor L.; Shuvayev, Vladimir; Deligiannakis, Vasilios; Tamargo, Maria C.; Ludwig, Jonathan; Smirnov, Dmitry; Wang, Alice

    2014-10-28

    For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, even though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.

  4. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys

    SciTech Connect (OSTI)

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-11-17

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn a-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1,6 and [Zn-Cu12](Zn,Cu)6, which explain the a-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, therefore offering a fundamental and practical method towards composition interpretations of all kinds of alloys.

  5. Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells

    E-Print Network [OSTI]

    Sites, James R.

    1 Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells, Setagaya-ku, Tokyo 157-8572, Japan (Received ) KEYWORDS: ZnS buffer, Cu(In,Ga)Se2, thin-film solar cells alternative to CdS in polycrystalline thin-film Cu(In1-xGax)Se2 (CIGS) solar cells. Cells with efficiency

  6. Structural and magnetic properties of triethylene glycol stabilized Zn{sub x}Co{sub 1?x}Fe{sub 2}O{sub 4} nanoparticles

    SciTech Connect (OSTI)

    Sozeri, H.; Durmus, Z.; Baykal, A.

    2012-09-15

    Highlights: ? Monodispersed TREG stabilized Zn{sub x}Co{sub 1?x}Fe{sub 2}O{sub 4} NP's were prepared via hydrothermal method. ? Zn{sub x0.6}Co{sub 0.4}Fe{sub 2}O{sub 4} NP's has superparamagnetic behavior like absence of saturation at high fields. ? The lattice parameter (a{sub o}) increases linearly with the addition of Zn and follows Vegard's law. -- Abstract: Zn substituted cobalt ferrite nanoparticles having formula of Zn{sub x}Co{sub 1?x}Fe{sub 2}O{sub 4} (x = 0.0–1.0) were prepared by hydrothermal technique. In this process, triethylene glycol was used as a solvent and surfactant, anhydrous sodium hydroxide was used as an alkalinity additive. Investigation of the structural, morphological and thermal properties were carried out using X-ray diffraction (XRD), infrared spectroscopy (FT-IR), transmission electron spectroscopy (TEM) and thermal analysis (TGA) respectively. The X-ray diffraction study reveals that the lattice constant of cobalt ferrite increases with the increase of Zn content. Magnetization measurements showed that as zinc concentration increases saturation magnetization initially stays constant and then decreases monotically. Samples having high zinc concentration (x ? 0.6) have superparamagnetic behavior like absence of saturation at high fields, low saturation magnetization values and immeasurable coercivity. These features were explained by surface spin disorder and canted spins.

  7. Structure and red shift of optical band gap in CdO–ZnO nanocomposite synthesized by the sol gel method

    SciTech Connect (OSTI)

    Mosquera, Edgar, E-mail: edemova@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile); Pozo, Ignacio del, E-mail: ignacio.dpf@gmail.com [Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago (Chile); Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile)

    2013-10-15

    The structure and the optical band gap of CdO–ZnO nanocomposites were studied. Characterization using X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS) analysis confirms that CdO phase is present in the nanocomposites. TEM analysis confirms the formation of spheroidal nanoparticles and nanorods. The particle size was calculated from Debey–Sherrer?s formula and corroborated by TEM images. FTIR spectroscopy shows residual organic materials (aromatic/Olefinic carbon) from nanocomposites surface. CdO content was modified in the nanocomposites in function of polyvinylalcohol (PVA) added. The optical band gap is found to be red shift from 3.21 eV to 3.11 eV with the increase of CdO content. Photoluminescence (PL) measurements reveal the existence of defects in the synthesized CdO–ZnO nanocomposites. - Graphical abstract: Optical properties of ZnO, CdO and ZnO/CdO nanoparticles. Display Omitted - Highlights: • TEM analysis confirms the presence of spherical nanoparticles and nanorods. • The CdO phase is present in the nanocomposites. • The band gap of the CdO–ZnO nanocomposites is slightly red shift with CdO content. • PL emission of CdO–ZnO nanocomposite are associated to structural defects.

  8. ZnO/a-Si Distributed Bragg Reflectors for Light Trapping in Thin Film Solar Cells from Visible to Infrared Range

    E-Print Network [OSTI]

    Chen, Aqing; Zhu, Kaigui

    2015-01-01

    Distributed bragg reflectors (DBRs) consisting of ZnO and amorphous silicon (a-Si) were prepared by magnetron sputtering method for selective light trapping. The quarter-wavelength ZnO/a-Si DBRs with only 6 periods exhibit a peak reflectance of above 99% and have a full width at half maximum that is greater than 347 nm in the range of visible to infrared. The 6-pair reversed quarter-wavelength ZnO/a-Si DBRs also have a peak reflectance of 98%. Combination of the two ZnO/a-Si DBRs leads to a broader stopband from 686 nm to 1354 nm. Using the ZnO/a-Si DBRs as the rear reflector of a-Si thin film solar cells significantly increases the photocurrent in the spectrum range of 400 nm to 1000 nm, in comparison with that of the cells with Al reflector. The obtained results suggest that ZnO/a-Si DBRs are promising reflectors of a-Si thin-film solar cells for light trapping.

  9. Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals

    SciTech Connect (OSTI)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K. [College of Engineering and Research Center of Ion Beam Technology, Hosei University Koganei, Tokyo 184-8584 (Japan); Kushida, K. [Departments of Arts and Sciences, Osaka Kyoiku University Kashiwara, Osaka 582-8582 (Japan)

    2013-12-04

    The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ?10{sup 3} ?cm for un-implanted samples to ?10{sup ?2} ?cm for as-implanted ones are observed. The resistivity is further decreased to ?10{sup ?3} ?cm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zn{sub i}) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33 eV) related to the Ge donor is observed in 1000 °C annealed samples.

  10. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping

    SciTech Connect (OSTI)

    Lee, J. J.; Xing, G. Z. Yi, J. B.; Li, S.; Chen, T.; Ionescu, M.

    2014-01-06

    Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200?Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

  11. Near-resonant second-order nonlinear susceptibility in c-axis oriented ZnO nanorods

    SciTech Connect (OSTI)

    Liu, Weiwei; Wang, Kai; Long, Hua; Wang, Bing Lu, Peixiang; Chu, Sheng

    2014-08-18

    Near-resonant second-harmonic generation (SHG) in c-axis oriented ZnO nanorods is studied under the femtosecond laser with wavelength from 780?nm to 810?nm. A highly efficient SHG is obtained, which is attributed to the d{sub 131} component of the second-order nonlinear susceptibility. The largest d{sub 131} value is estimated to be 10.2?pm/V at the pumping wavelength of 800?nm, which indicates a large SHG response of the c-axis oriented ZnO nanorods in the near-resonant region. Theoretical calculation based on finite-difference time-domain simulation suggests a four-fold local-field enhancement of the SHG.

  12. Indication of Te segregation in laser-irradiated ZnTe observed by in situ coherent-phonon spectroscopy

    SciTech Connect (OSTI)

    Shimada, Toru [Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Hirosaki University, 1 Bunkyo-cho, Hirosaki, Aomori 036-8152 (Japan); Kamaraju, N., E-mail: nkamaraju@lanl.gov [Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Los Alamos, New Mexico 87545 (United States); Frischkorn, Christian [Department of Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin (Germany); Wolf, Martin; Kampfrath, Tobias [Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2014-09-15

    We irradiate a ZnTe single crystal with 10-fs laser pulses at a repetition rate of 80?MHz and investigate its resulting gradual modification by means of coherent-phonon spectroscopy. We observe the emergence of a phonon mode at about 3.6?THz whose amplitude and lifetime grow monotonously with irradiation time. The speed of this process depends sensitively on the pump-pulse duration. Our observations strongly indicate that the emerging phonon mode arises from a Te phase induced by multiphoton absorption of incident laser pulses. A potential application of our findings is laser-machining of microstructures in the bulk of a ZnTe crystal, a highly relevant electrooptic material.

  13. CdSe self-assembled quantum dots with ZnCdMgSe barriers emitting throughout the visible spectrum

    SciTech Connect (OSTI)

    Perez-Paz, M. Noemi; Zhou Xuecong; Munoz, Martin; Lu Hong; Sohel, Mohammad; Tamargo, Maria C.; Jean-Mary, Fleumingue; Akins, Daniel L.

    2004-12-27

    Self-assembled quantum dots of CdSe with ZnCdMgSe barriers have been grown by molecular beam epitaxy on InP substrates. The optical and microstructural properties were investigated using photoluminescence (PL) and atomic force microscopy (AFM) measurements. Control and reproducibility of the quantum dot (QD) size leading to light emission throughout the entire visible spectrum range has been obtained by varying the CdSe deposition time. Longer CdSe deposition times result in a redshift of the PL peaks as a consequence of an increase of QD size. AFM studies demonstrate the presence of QDs in uncapped structures. A comparison of this QD system with CdSe/ZnSe shows that not only the strain but also the chemical properties of the system play an important role in QD formation.

  14. Methanol Synthesis over Cu/ZnO/Al2O3: The Active Site in Industrial Catalysis

    SciTech Connect (OSTI)

    Behrens, Malte

    2012-03-28

    Unlike homogeneous catalysts, heterogeneous catalysts that have been optimized through decades are typically so complex and hard to characterize that the nature of the catalytically active site is not known. This is one of the main stumbling blocks in developing rational catalyst design strategies in heterogeneous catalysis. We show here how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. Using a combination of experimental evidence from bulk-, surface-sensitive and imaging methods collected on real high-performance catalytic systems in combination with DFT calculations. We show that the active site consists of Cu steps peppered with Zn atoms, all stabilized by a series of well defined bulk defects and surface species that need jointly to be present for the system to work.

  15. Schottky barrier source-gated ZnO thin film transistors by low temperature atomic layer deposition

    SciTech Connect (OSTI)

    Ma, Alex M.; Gupta, Manisha; Shoute, Gem; Tsui, Ying Y.; Barlage, Douglas W., E-mail: barlage@ualberta.ca [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Afshar, Amir; Cadien, Kenneth C. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)] [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

    2013-12-16

    We have fabricated ZnO source-gated thin film transistors (SGTFTs) with a buried TiW source Schottky barrier and a top gate contact. The ZnO active channel and thin high-? HfO{sub 2} dielectric utilized are both grown by atomic layer deposition at temperatures less than 130?°C, and their material and electronic properties are characterized. These SGTFTs demonstrate enhancement-mode operation with a threshold voltage of 0.91?V, electron mobility of 3.9 cm{sup 2} V{sup ?1} s{sup ?1}, and low subthreshold swing of 192?mV/decade. The devices also exhibit a unique combination of high breakdown voltages (>20?V) with low output conductances.

  16. Growth optimization and structural analysis for ferromagnetic Mn-doped ZnO layers deposited by radio frequency magnetron sputtering

    SciTech Connect (OSTI)

    Abouzaid, M.; Ruterana, P.; Liu, C.; Morkoc, H. [SIFCOM UMR 6176 CNRS-ENSICAEN, 6 Boulevard du Marechal Juin, 14050 Caen Cedex (France); Department of Electrical Engineering, Virginia Commonwealth University, Richmond Virginia 23284 (United States)

    2006-06-01

    The effect of the deposition temperature on the crystalline quality of (Zn,Mn)O is investigated in thin films prepared by radio frequency magnetron sputtering on c-plane sapphire and GaN substrates. The layers are made of a 0.5 {mu}m Mn-doped layer towards the surface on top of a 150 nm pure ZnO buffer. Depending on the deposition temperature, the layers can exhibit a columnar structure; the adjacent domains are rotated from one another by 90 deg. , putting [1010] and [1120] directions face to face. At high Mn concentration the columnar structure is blurred by the formation of Mn rich precipitates. Only one variety of domains is observed at an optimal deposition temperature of 500 deg. C: they are slightly rotated around the [0001] axis (mosaic growth) and bounded by threading dislocations.

  17. Fusion Cross Section in the {sup 4,6}He+{sup 64}Zn Collisions Around the Coulomb Barrier

    SciTech Connect (OSTI)

    Fisichella, M.; Di Pietro, A.; Figuera, P.; Marchetta, C.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Scuderi, V.; Strano, E.; Torresi, D.; Milin, M.; Skukan, N.; Zadro, M.

    2011-10-28

    New fusion data for the {sup 4}He+{sup 64}Zn system at sub-barrier energies are measured to cover the same energy region of previous measurements for {sup 6}He+{sup 64}Zn. Aim of the experiment was to compare the fusion excitation functions for the two system to investigate on the effects of the {sup 6}He neutron-halo structure on the fusion reaction mechanism at energies around the Coulomb barrier. The fusion cross section was measured by using an activation technique. Comparing the two systems, we observe an enhancement of the fusion cross section in the reaction induced by {sup 6}He, at and below the Coulomb barrier.

  18. Improvement of the photoluminescent intensity of ZnTa{sub 2}O{sub 6}:Pr{sup 3+} phosphor

    SciTech Connect (OSTI)

    Noto, L.L. Ntwaeaborwa, O.M.; Yagoub, M.Y.A.; Swart, H.C.

    2014-07-01

    Highlights: • The optimal luminescence intensity was obtained for 0.4 mol% Pr{sup 3+} doped ZnTa{sub 2}O{sub 6}. • The ZnTa{sub 2}O{sub 6}:Pr{sup 3+} has a colour index matching an ideal red emission. • The cross relaxation process led to a decrease in red emission at higher Pr{sup 3+} concentrations. • The blue emission continues to increase at higher Pr{sup 3+} concentrations. • The persistent luminescent increases with an increase in Pr{sup 3+} concentration. - Abstract: A red emitting ZnTa{sub 2}O{sub 6}:Pr{sup 3+} phosphor with Commission Internationale de l‘Eclairage coordinates that match those of an ideal red emission was prepared by solid state chemical reaction. X-ray diffraction confirmed that a pure orthorhombic phase of ZnTa{sub 2}O{sub 6} was crystallized. A homogeneous distribution of the Pr{sup 3+} ions was confirmed from the analysis of the time of flight secondary ion mass spectroscopy overlay images. In addition to the reflectance at 259 nm associated with band-to-band absorption, minor reflectance peaks associated with f-f transitions of Pr{sup 3+} were observed at 420–500 nm. The main red emission peak was split into minor peaks located at 608, 619 and 639 nm that were assigned to {sup 1}D{sub 2} ? {sup 3}H{sub 4}, {sup 3}P{sub 0} ? {sup 3}H{sub 6} and {sup 3}P{sub 0} ? {sup 3}F{sub 2} transitions of Pr{sup 3+}, respectively. With increasing concentration of Pr{sup 3+}, a relatively weak blue emission was observed at 488 nm and this phenomenon maybe attributed to virtual charge transfer or/and inter cross relaxation effects. The decay characteristics of the persistent emission were also calculated.

  19. Photoreactivity of ZnO nanoparticles in visible light: Effect of surface states on electron transfer reaction

    SciTech Connect (OSTI)

    Baruah, Sunandan; Dutta, Joydeep; Sinha, Sudarson Sekhar; Ghosh, Barnali; Pal, Samir Kumar; Raychaudhuri, A. K.

    2009-04-01

    Wide band gap metal oxide semiconductors such as zinc oxide (ZnO) show visible band photolysis that has been employed, among others, to degrade harmful organic contaminants into harmless mineral acids. Metal oxides show enhanced photocatalytic activity with the increase in electronic defects in the crystallites. By introducing defects into the crystal lattice of ZnO nanoparticles, we observe a redshift in the optical absorption shifting from the ultraviolet region to the visible region (400-700 nm), which is due to the creation of intermediate defect states that inhibit the electron hole recombination process. The defects were introduced by fast nucleation and growth of the nanoparticles by rapid heating using microwave irradiation and subsequent quenching during the precipitation reaction. To elucidate the nature of the photodegradation process, picosecond resolved time correlated single photon count (TCSPC) spectroscopy was carried out to record the electronic transitions resulting from the de-excitation of the electrons to their stable states. Photodegradation and TCSPC studies showed that defect engineered ZnO nanoparticles obtained through fast crystallization during growth lead to a faster initial degradation rate of methylene blue as compared to the conventionally synthesized nanoparticles.

  20. Studies on the double-{beta} decay nucleus {sup 64}Zn using the (d,{sup 2}He) reaction

    SciTech Connect (OSTI)

    Grewe, E.-W.; Baeumer, C.; Dohmann, H.; Frekers, D.; Hollstein, S.; Rakers, S.; Thies, J. H. [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany); Harakeh, M. N.; Berg, A. M. van den; Woertche, H. J. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747 AA Groningen (Netherlands); Johansson, H.; Martinez-Pinedo, G.; Petermann, I.; Sieja, K.; Simon, H. [Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Langanke, K. [Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Nowacki, F. [Institut de Recherches Subatomiques, Universite Louis Pasteur, F-67037 Strasbourg (France); Popescu, L. [Vakgroep Subatomaire en Stralingsfysica, Universiteit Gent, B-9000 Gent (Belgium); Savran, D. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747 AA Groningen (Netherlands); Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Zilges, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2008-06-15

    The (d,{sup 2}He) charge-exchange reaction on the double-{beta} decay ({beta}{beta}) nucleus {sup 64}Zn has been studied at an incident energy of 183 MeV. The two protons in the {sup 1}S{sub 0} state (indicated as {sup 2}He) were both momentum analyzed and detected simultaneously by the BBS magnetic spectrometer and its position-sensitive detector. {sup 2}He spectra with a resolution of about 115 keV (FWHM) have been obtained allowing identification of many levels in the residual nucleus {sup 64}Cu with high precision. {sup 64}Zn is one of the rare cases undergoing a {beta}{beta} decay in {beta}{sup +} direction. In the experiment presented here, Gamow-Teller (GT{sup +}) transition strengths have been extracted. Together with the GT{sup -} transition strengths from {sup 64}Ni({sup 3}He,t) data to the same intermediate nucleus {sup 64}Cu, the nuclear matrix elements of the {beta}{beta} decay of {sup 64}Zn have been evaluated. Finally, the GT{sup {+-}} distributions are compared with shell-model calculations and a critical assessment is given of the various residual interactions presently employed for the pf shell.

  1. Magnetic resonance investigation of Zn{sub 1?x}Fe{sub x}O properties influenced by annealing atmosphere

    SciTech Connect (OSTI)

    Raita, O.; Popa, A.; Toloman, D.; Stan, M.; Giurgiu, L. M.

    2013-11-13

    ZnO is an attractive system for a wide variety of practical applications, being a chemically stable oxide semiconductor. It has been shown that Fe doping produces ferromagnetic semiconductor at room temperature. This material, therefore, has the potential for use in spintronic devices such as spin transistors, spin light emitting diodes, very high density nonvolatile semiconductor memory and optical emitters. It is believed that oxygen vacancies and substitutional incorporation are important to produce ferromagnetism in semiconductor oxide doped with transition metal ions. The present paper reports detailed electron paramagnetic resonance investigations (EPR) of the samples in order to investigate how annealing atmosphere (Air and Argon) influenced the magnetic behavior of the samples. X-band electron paramagnetic resonance (EPR) studies of Fe{sup 3+} ions in Zn{sub 1?x}Fe{sub x}O powders with x = 1%, 3% is reported. These samples are interesting to investigate as Fe doping produce ferromagnetism in ZnO, making a promising ferromagnetic semiconductor at room temperature.

  2. Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface

    SciTech Connect (OSTI)

    Liu, Xiang; Yang, Xiaoxia; Liu, Mingju; Tao, Zhi; Wei, Lei Li, Chi Zhang, Xiaobing; Wang, Baoping; Dai, Qing; Nathan, Arokia

    2014-03-17

    The temporal development of next-generation photo-induced transistor across semiconductor quantum dots and Zn-related oxide thin film is reported in this paper. Through the dynamic charge transfer in the interface between these two key components, the responsibility of photocurrent can be amplified for scales of times (?10{sup 4}?A/W 450?nm) by the electron injection from excited quantum dots to InGaZnO thin film. And this photo-transistor has a broader waveband (from ultraviolet to visible light) optical sensitivity compared with other Zn-related oxide photoelectric device. Moreover, persistent photoconductivity effect can be diminished in visible waveband which lead to a significant improvement in the device's relaxation time from visible illuminated to dark state due to the ultrafast quenching of quantum dots. With other inherent properties such as integrated circuit compatible, low off-state current and high external quantum efficiency resolution, it has a great potential in the photoelectric device application, such as photodetector, phototransistor, and sensor array.

  3. Structural, optical, and magnetic properties of (Co, Cu)-codoped ZnO films with different Co concentrations

    SciTech Connect (OSTI)

    Xu, M., E-mail: hsuming-2001@aliyun.com; Yuan, H., E-mail: yuanhuanwilltodd@gmail.com; Zhou, P. F.; Dong, C. J. [Key Lab of Information Materials of Sichuan Province and School of Electrical and Information Engineering, Southwest University for Nationalities, Chengdu 610041 (China); You, B. [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Duan, M. Y. [Institute of Solid State Physics, Sichuan Normal University, Chengdu 610068 (China)

    2014-03-07

    Zn{sub 0.99-x}Co{sub x}Cu{sub 0.01}O films with different Co concentrations from 0% to 20% were fabricated by a sol-gel method. Moderate Co doping is found to improve the surface uniformity and crystal quality of the films, and causes a redshift of the band edge of Zn(Co,Cu) films. X-ray photoelectron spectroscopy reveals that the introduction of Co ions causes the valence state of Cu to change from +2 to +1; while at Co concentrations lower than 10%, the Co exists in the +2 valence state. Strong blue emission at ?420 and 440?nm are observed, decreasing with increasing Co concentration, but becoming strong again as the concentration is increased to 20%. Enhanced room-temperature ferromagnetism is observed for the (Co, Cu)-codoped ZnO films at Co concentrations lower than 10%. These interesting magnetic properties are explained based on charge transfer, together with the defect-related model for ferromagnetism.

  4. Free-standing ZnOCuO composite nanowire array films and their gas sensing properties This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Free-standing ZnO­CuO composite nanowire array films and their gas sensing properties This article.1088/0957-4484/22/32/325704 Free-standing ZnO­CuO composite nanowire array films and their gas sensing properties J X Wang1 , X W. A free-standing film made of ZnO­CuO nanostructures was assembled on the surface of the hydrothermal

  5. Acceptor levels in ZnMgO:N probed by deep level optical spectroscopy

    SciTech Connect (OSTI)

    Kurtz, A.; Hierro, A. Muñoz, E.

    2014-02-24

    A combination of deep level optical spectroscopy and lighted capacitance voltage profiling has been used to analyze the effect of N into the energy levels close to the valence band of Zn{sub 0.9}Mg{sub 0.1}O. Three energy levels at E{sub V}?+?0.47?eV, E{sub V}?+?0.35?eV, and E{sub V}?+?0.16?eV are observed in all films with concentrations in the range of 10{sup 15}–10{sup 18}?cm{sup ?3}. The two shallowest traps at E{sub V}?+?0.35?eV and E{sub V}?+?0.16?eV have very large concentrations that scale with the N exposure and are thus potential acceptor levels. In order to correctly quantify the deep level concentrations, a metal-insulator-semiconductor model has been invoked, explaining well the resulting capacitance-voltage curves.

  6. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    SciTech Connect (OSTI)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi; Yamauchi, Jun

    2014-04-28

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g?=?2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g?=?1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.

  7. High Rate Deposition of High Quality ZnO:Al by Filtered Cathodic Arc

    SciTech Connect (OSTI)

    Mendelsberg, Rueben J.; Lim, S.H.N.; Milliron, D.J.; Anders, Andre

    2010-11-18

    High quality ZnO:Al (AZO) thin films were prepared on glass substrates by direct current filtered cathodic arc deposition. Substrate temperature was varied from room temperature to 425oC, and samples were grown with and without the assistance of low power oxygen plasma (75W). For each growth condition, at least 3 samples were grown to give a statistical look at the effect of the growth environment on the film properties and to explore the reproducibility of the technique. Growth rate was in the 100-400 nm/min range but was apparently random and could not be easily traced to the growth conditions explored. For optimized growth conditions, 300-600 nm AZO films had resistivities of 3-6 x 10-4 ?Omega cm, carrier concentrations in the range of 2-4 x 1020 cm3, Hall mobility as high as 55 cm2/Vs, and optical transmittance greater than 90percent. These films are also highly oriented with the c-axis perpendicular to the substrate and a surface roughness of 2-4 nm.

  8. A strategy to stabilise the local structure of Ti{sup 4+} and Zn{sup 2+} species against aging in TiO{sub 2}/aluminium-doped ZnO bi-layers for applications in hybrid solar cells

    SciTech Connect (OSTI)

    Pellegrino, Giovanna; La Magna, Antonino; Bongiorno, Corrado; Smecca, Emanuele; Alberti, Alessandra, E-mail: alessandra.alberti@imm.cnr.it [CNR-IMM Zona Industriale VIII Strada 5, 95121 Catania (Italy); Condorelli, Guglielmo G. [Università degli studi di Catania and INSTM UdR Catania V.le A. Doria 6, Catania (Italy); Mocuta, Cristian [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192, Gif-sur-Yvette Cedex (France)

    2014-08-07

    We explore a strategy to counteract aging issues in TiO{sub 2}/aluminium-doped ZnO bi-layers used in hybrid solar cells photo-anodes, mainly related to Zn diffusion in the TiO{sub 2} matrix. Different Ti{sup 4+} and Zn{sup 2+} local structures within the anatase grains and along the film thickness were found as a function of post-deposition annealing treatments in the range between 200?°C and 500?°C by synchrotron radiation extended x-ray absorption fine structure analyses. In particular, in the 500?°C-treated sample, diffusion of zinc species along the TiO{sub 2} grain-boundaries has been observed with aging (3?years). In contrast, a mild thermal budget at 200?°C favours a proper atomic arrangement of the zinc-containing anatase lattice which reduces Zn diffusion, thus guaranteeing a good stability with aging.

  9. Rapid microwave hydrothermal synthesis of ZnGa{sub 2}O{sub 4} with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water

    SciTech Connect (OSTI)

    Sun Meng; Li Danzhen; Zhang Wenjuan; Chen Zhixin; Huang Hanjie; Li Wenjuan; He Yunhui; Fu Xianzhi

    2012-06-15

    ZnGa{sub 2}O{sub 4} was synthesized from Ga(NO{sub 3}){sub 3} and ZnCl{sub 2} via a rapid and facile microwave-assisted hydrothermal method. The photocatalytic properties of the as-prepared ZnGa{sub 2}O{sub 4} were evaluated by the degradation of pollutants in air and aqueous solution under ultraviolet (UV) light illumination. The results demonstrated that ZnGa{sub 2}O{sub 4} had exhibited efficient photocatalytic activities higher than that of commercial P25 (Degussa Co.) in the degradation of benzene, toluene, and ethylbenzene, respectively. In the liquid phase degradation of dyes (methyl orange, Rhodamine B, and methylene blue), ZnGa{sub 2}O{sub 4} has also exhibited remarkable activities higher than that of P25. After 32 min of UV light irradiation, the decomposition ratio of methyl orange (10 ppm, 150 mL) over ZnGa{sub 2}O{sub 4} (0.06 g) was up to 99%. The TOC tests revealed that the mineralization ratio of MO (10 ppm, 150 mL) was 88.1% after 90 min of reaction. A possible mechanism of the photocatalysis over ZnGa{sub 2}O{sub 4} was also proposed. - Graphical abstract: In the degradation of RhB under UV light irradiation, ZnGa{sub 2}O{sub 4} had exhibited efficient photo-activity, and after only 24 min of irradiation the decomposition ratio was up to 99.8%. Highlights: Black-Right-Pointing-Pointer A rapid and facile M-H method to synthesize ZnGa{sub 2}O{sub 4} photocatalyst. Black-Right-Pointing-Pointer The photocatalyst exhibits high activity toward benzene and dyes. Black-Right-Pointing-Pointer The catalyst possesses more surface hydroxyl sites than TiO{sub 2} (P25). Black-Right-Pointing-Pointer Deep oxidation of different aromatic compounds and dyes over catalyst.

  10. Study of asymmetries of Cd(Zn)Te devices investigated using photo-induced current transient spectroscopy, Rutherford backscattering, surface photo-voltage spectroscopy, and gamma ray spectroscopies

    SciTech Connect (OSTI)

    Crocco, J.; Bensalah, H.; Zheng, Q.; Dieguez, E.; Corregidor, V.; Avles, E.; Castaldini, A.; Fraboni, B.; Cavalcoli, D.; Cavallini, A.; Vela, O.

    2012-10-01

    Despite these recent advancements in preparing the surface of Cd(Zn)Te devices for detector applications, large asymmetries in the electronic properties of planar Cd(Zn)Te detectors are common. Furthermore, for the development of patterned electrode geometries, selection of each electrode surface is crucial for minimizing dark current in the device. This investigation presented here has been carried out with three objectives. Each objective is oriented towards establishing reliable methods for the selection of the anode and cathode surfaces independent of the crystallographic orientation. The objectives of this study are (i) investigate how the asymmetry in I-V characteristics of Cd(Zn)Te devices may be associated with the TeO2 interfacial layer using Rutherford backscattering to study the structure at the Au-Cd(Zn)Te interface, (ii) develop an understanding of how the concentration of the active traps in Cd(Zn)Te varies with the external bias, and (iii) propose non-destructive methods for selection of the anode and cathode which are independent of crystallographic orientation. The spectroscopic methods employed in this investigation include Rutherford backscattering spectroscopy, photo-induced current transient spectroscopy, and surface photo-voltage spectroscopy, as well as gamma ray spectroscopy to demonstrate the influence on detector properties.

  11. p-type conduction from Sb-doped ZnO thin films grown by dual ion beam sputtering in the absence of oxygen ambient

    SciTech Connect (OSTI)

    Kumar Pandey, Sushil; Kumar Pandey, Saurabh; Awasthi, Vishnu; Kumar, Ashish; Mukherjee, Shaibal; Deshpande, Uday P.; Gupta, Mukul

    2013-10-28

    Sb-doped ZnO (SZO) thin films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system in the absence of oxygen ambient. The electrical, structural, morphological, and elemental properties of SZO thin films were studied for films grown at different substrate temperatures ranging from 200 °C to 600 °C and then annealed in situ at 800 °C under vacuum (pressure ?5 × 10{sup ?8} mbar). Films grown for temperature range of 200–500 °C showed p-type conduction with hole concentration of 1.374 × 10{sup 16} to 5.538 × 10{sup 16} cm{sup ?3}, resistivity of 66.733–12.758 ? cm, and carrier mobility of 4.964–8.846 cm{sup 2} V{sup ?1} s{sup ?1} at room temperature. However, the film grown at 600 °C showed n-type behavior. Additionally, current-voltage (I–V) characteristic of p-ZnO/n-Si heterojunction showed a diode-like behavior, and that further confirmed the p-type conduction in ZnO by Sb doping. X-ray diffraction measurements showed that all SZO films had (002) preferred crystal orientation. X-ray photoelectron spectroscopy analysis confirmed the formation of Sb{sub Zn}–2V{sub Zn} complex caused acceptor-like behavior in SZO films.

  12. Electrical and photovoltaic properties of CdTe/ZnTe n-i-p junctions grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Zielony, E., E-mail: eunika.zielony@pwr.edu.pl; P?aczek-Popko, E.; Racino, A.; Gumienny, Z. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Olender, K.; Wosi?ski, T.; Karczewski, G.; Chusnutdinow, S. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2014-06-28

    Preliminary studies have been performed on photoelectrical properties of CdTe/ZnTe n-i-p junctions grown using the molecular beam epitaxy technique. Photovoltaic properties of the cells have been investigated by the measurements of current-voltage (I-V) characteristics under 1-sun illumination. I-V characteristics yield efficiencies of the cells varying from 3.4% to 4.9%. The low efficiency can be due to the presence of electrically active defects. In order to study the origin of defects in CdTe/ZnTe photovoltaic junctions, space charge techniques (C-V and deep level transient spectroscopy (DLTS)) have been applied. From the C-V measurements, a doping profile was calculated confirming charge accumulation in the i-CdTe layer. The results of the DLTS studies revealed the presence of four traps within a temperature range from 77–420?K. Three of them with activation energies equal to 0.22 eV, 0.45?eV, and 0.78?eV have been ascribed to the hole traps present in the i-CdTe material and their possible origin has been discussed. The fourth, high-temperature DLTS peak observed at ?350?K has been attributed to extended defects as its amplitude and temperature position depends on the value of the filling pulse width. It is assumed that the defects related to the trap are either located in the i-CdTe layer or at the i-CdTe/ZnTe interface. However, it was found that the trap exhibits twofold nature: it behaves as a majority or as a minority trap, depending on the filling pulse height, which is a characteristic feature of recombination centers. This trap is presumably responsible for the low efficiency of the cells.

  13. Prediction of subgap states in Zn- and Sn-based oxides using various exchange-correlation functionals

    E-Print Network [OSTI]

    Körner, Wolfgang; Urban, Daniel F.; Ramo, David Muñoz; Bristowe, Paul D.; Elsässer, Christian

    2014-11-21

    for larger predicted band gaps (Egap(PBE0) = 3.43 eV; Egap(HSE06) = 2.66 eV). For a zinc vacancy in ZnO the situation is very similar. In the charge neutral state we obtain a result like Fig. 3 in which the hybrid functionals predict unoccupied defect levels... spread over the band gap. Adding electrons leads to occupied defect levels just above the VB edge. The SIC approach predicts unoccupied levels directly above the VB for the charge neutral defect which are filled and extend up to 1.3 eV for charge state q...

  14. Comprehensive {gamma}-ray spectroscopy of rotational bands in the N=Z+1 nucleus {sup 61}Zn

    SciTech Connect (OSTI)

    Andersson, L.-L.; Rudolph, D.; Johansson, E. K.; Andreoiu, C.; Ekman, J.; Fahlander, C.; Rietz, R. du; Ragnarsson, I.; Torres, D. A.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Charity, R. J.; Chiara, C. J.; Hoel, C.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Pechenaya, O. L.

    2009-02-15

    The {sub 30}{sup 61}Zn{sub 31} nucleus has been studied via the combined data of two fusion-evaporation reaction experiments using a {sup 36}Ar beam and a {sup 28}Si target foil. The experimental setups involved the Ge array GAMMASPHERE and neutron and charged particle detectors placed around the target position. The resulting level scheme comprises about 120 excited states connected via some 180 {gamma}-ray transitions. In total, seven rotational structures were identified up to I{approx}25 or higher and compared with predictions from cranked Nilsson-Strutinsky calculations.

  15. Pulse-shape discrimination of surface events in CdZnTe detectors for the COBRA experiment

    E-Print Network [OSTI]

    Matthew Fritts; Jan Tebrügge; Jürgen Durst; Joachim Ebert; Claus Gößling; Thomas Göpfert; Daniel Gehre; Caren Hagner; Nadine Heidrich; Michael Homann; Tobias Köttig; Till Neddermann; Christian Oldorf; Thomas Quante; Silke Rajek; Oscar Reinecke; Oliver Schulz; Jan Timm; Björn Wonsak; Kai Zuber

    2014-01-23

    Events near the cathode and anode surfaces of a coplanar grid CdZnTe detector are identifiable by means of the interaction depth information encoded in the signal amplitudes. However, the amplitudes cannot be used to identify events near the lateral surfaces. In this paper a method is described to identify lateral surface events by means of their pulse shapes. Such identification allows for discrimination of surface alpha particle interactions from more penetrating forms of radiation, which is particularly important for rare event searches. The effectiveness of the presented technique in suppressing backgrounds due to alpha contamination in the search for neutrinoless double beta decay with the COBRA experiment is demonstrated.

  16. Influence of the thickness of a crystal on the electrical characteristics of Cd(Zn)Te detectors

    SciTech Connect (OSTI)

    Sklyarchuk, V.; Fochuk, p.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O. F.; Bolotnikov, A. E.; James, R. B.

    2015-08-01

    We studied the electrical characteristics of Cd(Zn)Te detectors with rectifying contacts and varying thicknesses, and established that their geometrical dimensions affect the measured electrical properties. We found that the maximum value of the operating-bias voltage and the electric field in the detector for acceptable values of the dark current can be achieved when the crystal has an optimum thickness. This finding is due to the combined effect of generation-recombination in the space-charge region and space-charge limited currents (SCLC).

  17. Synthesis and properties of ZnTe and Eu{sup 3+} ion co-doped glass nanocomposites

    SciTech Connect (OSTI)

    Rahaman Molla, Atiar; Tarafder, Anal; Dey, Chirantan; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Glass Science and Technology Section, Glass Division, CSIR-Central Glass and Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032 (India)

    2014-10-28

    In this study, ZnTe (II-VI) semiconductor and Eu{sup +3}-ion co-doped borosilicate glass has been prepared in the SiO{sub 2}-K{sub 2}O-CaO-BaO-B{sub 2}O{sub 3} glass system followed by controlled heat-treatment to produce glass nanocomposites. Glass transition temperature and crystallization peak temperature have been evaluated using DSC analysis. Dilatometric studies were carried out to evaluate thermal expansion co-efficient, glass transition temperature, and dilatometric softening temperature and found to be 10.7 × 10{sup ?6}/K, 580°?C and 628°?C, respectively. TEM micrographs demonstrate formation of nano sized crystallites of less than 50?nm. The ZnTe crystal formation also established through selected area electron diffraction (SAED) analysis and high resolution images obtained through TEM studies. With increasing heat treatment time, optical transmission cut-off wavelength (?{sub cut-off}) shifted towards higher wavelength. Excitation spectra were recorded by monitoring emission at 613?nm corresponding to the {sup 5}D{sub 0} ? {sup 7}F{sub 2} transition. An intense 394?nm excitation band corresponding to the {sup 7}F{sub 0} ? {sup 5}L{sub 6} transition was observed. Emission spectra were then recorded by exciting the glass samples at 394?nm. When the glass is heat-treated for 30 min at 610°?C, a 6-fold increase in the intensity of the red emission at 612?nm has been observed, which is attributed to the segregation of Eu{sup 3+} ions into the low phonon energy ZnTe crystallites and as the size of the nanocrystals is smaller than the size of the exciton, quantum confinement effect is visible. Further increase in heat-treatment duration led to decrease in luminescence intensity due to the growth of larger size crystals. {sup 5}D{sub 1} ? {sup 7}F{sub 0} transition is visible only in the samples heat-treated for 30 min and 1 h, which is a characteristic of presence of Eu{sup 3+} ions in the low phonon energy ZnTe crystal sites. The micro hardness of the precursor glass and glass nanocomposites was evaluated; base glass shows hardness of 6.7 GPa and hardness of heat-treated glass nanocomposites has been found to decrease with increase in heat-treatment duration (5.5-5.3 GPa). However, mechanical properties are found to be suitable for device applications.

  18. Linear and nonlinear transmission of Fe{sup 2+}-doped ZnSe crystals at a wavelength of 2940 nm in the temperature range 20–220 °C

    SciTech Connect (OSTI)

    Il'ichev, N N; Pashinin, P P; Gulyamova, E S; Bufetova, G A; Shapkin, P V; Nasibov, A S

    2014-03-28

    The linear and nonlinear transmission of Fe{sup 2+}:ZnSe crystals is measured at a wavelength of 2940 nm in the temperature range 20 – 220 °C. It is found that, with increasing temperature from 20 °C to 150 – 220 °C, the transmission of Fe{sup 2+}:ZnSe crystals decreases in the case of incident radiation with an intensity of ?5.5 MW cm{sup -2} and increases in the case of radiation with an intensity of 28 kW cm{sup -2}. At a temperature of 220 °C, the linear transmission almost coincides with the nonlinear transmission. The transmission spectra of Fe{sup 2+}:ZnSe crystals at temperatures of 22 and 220 °C in the wavelength range 500 – 7000 nm are presented. (active media)

  19. Photochemical reduction of carbon dioxide to methanol using ZnS microcrystallite as a photocatalyst in the presence of methanol dehydrogenase

    SciTech Connect (OSTI)

    Kuwabata, Susumu; Nishida, Kazufumi; Tsuda, Ryo; Inoue, Hiroshi; Yoneyama, Hiroshi (Osaka Univ. (Japan). Dept. of Applied Chemistry)

    1994-06-01

    Photoinduced reduction of formate to methanol has been achieved using ZnS microcrystalline colloid which contained formate, methanol dehydrogenase (MDH), pyrroloquinoline quinone (PQQ) as an electron mediator for MDH, and 2-propanol. This reaction was combined with photoreduction of carbon dioxide to formate on the ZnS microcrystallite which had already been reported to provide a new photosynthetic route for production of methanol from carbon dioxide. The production of methanol showed a saturation tendency when it was accumulated to 0.25 mmol dm[sup [minus]3], probably due to oxidation of the produced methanol at MDH or on the ZnS photocatalyst or both. The concentration of PQQ influenced the amount of formate production but not the methanol production. The quantum efficiency obtained at 280 nm for the reduction of carbon dioxide to methanol was 5.9%, which is the highest value that has ever been reported for the photochemical reduction of carbon dioxide to methanol.

  20. Mg{sub x}Zn{sub 1-x}O (x = 0-1) films fabricated by sol-gel spin coating

    SciTech Connect (OSTI)

    Caglar, Mujdat [Department of Physics, Faculty of Science, Anadolu University, 26470 Eskisehir (Turkey)] [Department of Physics, Faculty of Science, Anadolu University, 26470 Eskisehir (Turkey); Wu, Junshu; Li, Keyan [Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)] [Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China); Caglar, Yasemin; Ilican, Saliha [Department of Physics, Faculty of Science, Anadolu University, 26470 Eskisehir (Turkey)] [Department of Physics, Faculty of Science, Anadolu University, 26470 Eskisehir (Turkey); Xue, Dongfeng, E-mail: dfxue@chem.dlut.edu.cn [Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)] [Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)

    2010-03-15

    Mg{sub x}Zn{sub 1-x}O films were deposited onto the glass substrate by a sol-gel spin coating method. The drying and annealing temperatures were 300 and 500 {sup o}C in air. As x varies from 0 to 1, it was observed that the crystal structure is changed from wurtzite ZnO to cubic MgO. The morphology characterizations of these films were observed by scanning electron microscope. The randomly oriented hexagonal nanorods were gown on the glass surface when x = 0 and 0.25, which became disappeared with increasing Mg contents. The optical properties of these films were investigated by room-temperature photoluminescence (PL) and UV-vis absorption spectra, which show that the optical band gap and photoluminescence in the visible and UV regions can be ideally tuned by varying the Mg contents in the Mg{sub x}Zn{sub 1-x}O alloy films.

  1. Measurement of the valence band-offset in a PbSe/ZnO heterojunction by x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Li Lin; Qiu Jijun; Weng Binbin; Yuan Zijian; Shi Zhisheng [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Li Xiaomin; Gan Xiaoyan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Sellers, Ian R. [Deparment of Physics, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2012-12-24

    A heterojunction of PbSe/ZnO has been grown by molecular beam epitaxy. X-ray photoelectron spectroscopy was used to directly measure the valence-band offset (VBO) of the heterojunction. The VBO, {Delta}E{sub V}, was determined as 2.51 {+-} 0.05 eV using the Pb 4p{sup 3/2} and Zn 2p{sup 3/2} core levels as a reference. The conduction-band offset, {Delta}E{sub C}, was, therefore, determined to be 0.59 {+-} 0.05 eV based on the above {Delta}E{sub V} value. This analysis indicates that the PbSe/ZnO heterojunction forms a type I (Straddling Gap) heterostructure.

  2. Ellipsometry characterization of polycrystalline ZnO layers with the modeling of carrier concentration gradient: Effects of grain boundary, humidity, and surface texture

    SciTech Connect (OSTI)

    Sago, Keisuke; Fujiwara, Hiroyuki; Kuramochi, Hideto; Iigusa, Hitoshi; Utsumi, Kentaro

    2014-04-07

    Spectroscopic ellipsometry (SE) has been applied to study the effects of grain boundary, humidity, and surface texture on the carrier transport properties of Al-doped ZnO layers fabricated by dc and rf magnetron sputtering. In the SE analysis, the variation in the free carrier absorption toward the growth direction, induced by the ZnO grain growth on foreign substrates, has been modeled explicitly by adopting a multilayer model in which the optical carrier concentration (N{sub opt}) varies continuously with a constant optical mobility (?{sub opt}). The effect of the grain boundary has been studied by comparing ?{sub opt} with Hall mobility (?{sub Hall}). The change in ?{sub Hall}/?{sub opt} indicates a sharp structural transition of the ZnO polycrystalline layer at a thickness of d???500?nm, which correlates very well with the structure confirmed by transmission electron microscopy. In particular, below the transition thickness, the formation of the high density grain boundary leads to the reduction in the ?{sub Hall}/?{sub opt} ratio as well as N{sub opt}. As a result, we find that the thickness dependence of the carrier transport properties is almost completely governed by the grain boundary formation. On the other hand, when the ZnO layer is exposed to wet air at 85?°C, ?{sub Hall} reduces drastically with a minor variation of ?{sub opt} due to the enhanced grain boundary scattering. We have also characterized textured ZnO:Al layers prepared by HCl wet etching by SE. The analysis revealed that the near-surface carrier concentration increases slightly after the etching. We demonstrate that the SE technique can be applied to distinguish various rough textured structures (size???1??m) of the ZnO layers prepared by the HCl etching.

  3. Flower-like nanostructure MNb{sub 2}O{sub 6} (M = Mn, Zn) with high surface area: Hydrothermal synthesis and enhanced photocatalytic performance

    SciTech Connect (OSTI)

    Huang, Xue; Jing, Yan; Yang, Jia [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Ju, Jing [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Cong, Rihong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Gao, Wenliang, E-mail: gaowl@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Yang, Tao, E-mail: taoyang@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2014-03-01

    Graphical abstract: - Highlights: • MNb{sub 2}O{sub 6} was prepared by a mild two-step hydrothermal method. • Their flower-like nanostructure morphology was studied by SEM and TEM. • High BET surface areas for MnNb{sub 2}O{sub 6} (?50 m{sup 2}/g) and ZnNb{sub 2}O{sub 6} (?100 m{sup 2}/g). • Band gap energies were estimated by UV–vis diffuse reflectance spectra. • Photocatalytic activities were evaluated under UV-light irradiation. - Abstract: Nano-scaled MNb{sub 2}O{sub 6} (M = Mn, Zn) was successfully synthesized via a two-step hydrothermal method. It is important to control the exact pH of the reaction solution in order to obtain pure products. The as-prepared samples both crystallize in the columbite structure. Interestingly, the products possess a flower-like morphology in a pseudo-six-fold symmetry, which is in fact arrayed by two-dimensional nanosheets. Their surface areas (51 m{sup 2}/g for MnNb{sub 2}O{sub 6} and 103 m{sup 2}/g for ZnNb{sub 2}O{sub 6}) are about 25–50 times of those prepared by solid state reaction. UV–vis diffuse reflectance spectra show the nano-scaled sample has a stronger absorption and a narrower band gap than its bulk form. The estimated band gap energies are 2.70 eV (MnNb{sub 2}O{sub 6}) and 3.77 eV (ZnNb{sub 2}O{sub 6}), respectively. The nano-scaled ZnNb{sub 2}O{sub 6} exhibits a double enhancement of photocatalytic activity in the decolorization of methylene blue than bulk ZnNb{sub 2}O{sub 6}.

  4. Structure and mechanical properties of 3dTM ion doped RF sputtered ZnO thin films on Si (100)

    SciTech Connect (OSTI)

    Venkaiah, M., E-mail: rssp@uohyd.ernet.in; Singh, R., E-mail: rssp@uohyd.ernet.in [School of Physics, University of Hyderabad, Central University P.O, Hyderabad-500046 (India)

    2014-04-24

    Mn, Fe and Mn-Fe doped ZnO thin films were deposited on Si (100) substrates by rf- magnetron sputtering using ceramic target in pure oxygen gas environment. The X-ray diffraction shows the polycrystalline wurtzite structure films. The average grain size varies from 32-50 nm, with lower grain size for Fe doped ZnO films. The room temperature loading and unloading curve are continuous without any pop-in. The Young's modulus and hardness are in the range 156-178 GPa and 14-15.5 GPa respectively.

  5. Intensive two-photon absorption induced decay pathway in a ZnO crystal: Impact of light-induced defect state

    SciTech Connect (OSTI)

    Li, Zhong-guo; Wei, Tai-Huei; Yang, Jun-yi; Song, Ying-lin; School of Physical Science and Technology, Soochow University, Suzhou 215006

    2013-12-16

    Using the pump-probe with phase object technique with 20 ps laser pulses at 532?nm, we investigated the carrier relaxation process subsequent to two-photon absorption (TPA) in ZnO. As a result, we found that an additional subnanosecond decay pathway is activated when the pump beam intensity surpasses 0.4?GW/cm{sup 2}. We attributed this intensity-dependent pathway to a TPA induced bulk defect state and our results demonstrate that this photo induced defect state has potential applications in ZnO based optoelectronic and spintronic devices.

  6. Mechanism of power consumption inhibitive multi-layer Zn:SiO{sub 2}/SiO{sub 2} structure resistance random access memory

    SciTech Connect (OSTI)

    Zhang, Rui; Lou, Jen-Chung [School of Software and Microelectronics, Peking University, Beijing 100871 (China); Tsai, Tsung-Ming, E-mail: tmtsai@faculty.nsysu.edu.tw, E-mail: tcchang@mail.phys.nsysu.edu.tw; Chang, Kuan-Chang; Huang, Syuan-Yong; Shih, Chih-Cheng; Pan, Jhih-Hong; Tung, Cheng-Wei [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Chang, Ting-Chang, E-mail: tmtsai@faculty.nsysu.edu.tw, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan 700, Taiwan (China); Chen, Kai-Huang [Department of Electronics Engineering and Computer Science, Tung-Fang Design Institute, Kaohsiung, Taiwan (China); Young, Tai-Fa; Chen, Hsin-Lu [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Jung-Hui [Department of Chemistry, National Kaohsiung Normal University, Kaohsiung, Taiwan (China); Chen, Min-Chen; Syu, Yong-En [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Sze, Simon M. [Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2013-12-21

    In this paper, multi-layer Zn:SiO{sub 2}/SiO{sub 2} structure is introduced to reduce the operation power consumption of resistive random access memory (RRAM) device by modifying the filament formation process. And the configuration of multi-layer Zn:SiO{sub 2}/SiO{sub 2} structure is confirmed and demonstrated by auger electron spectrum. Material analysis together with conduction current fitting is applied to qualitatively evaluate the carrier conduction mechanism on both low resistance state and high resistance state. Finally, single layer and multilayer conduction models are proposed, respectively, to clarify the corresponding conduction characteristics of two types of RRAM devices.

  7. A kinetic study of methanol synthesis in a slurry reactor using a CuO/ZnO/Al2O3 catalyst 

    E-Print Network [OSTI]

    Al-Adwani, Hamad Abdulwahab

    1992-01-01

    solvents. Worldwide, most methanol is pmduced diixectly from synthesis gas, a mixture of H2, CO, and CO2, in a gas phase fixed bed reactor over a CuO/ZnO/AI2O3 catalyst. Being the only oxygenate pmduced directly from synthesis gas in high selectivity... process in which a purified synthesis gas with the H2/CO ratio of 5 to 8 is passed through a fixed bed reactor over a Cu/ZnO catalyst at pressures and temperatures ranging from 5 to 10 Mpa and 500 to 575 K. Methanol is then collected by condensation...

  8. MgSe/ZnSe/CdSe coupled quantum wells grown on InP substrate with intersubband absorption covering 1.55??m

    SciTech Connect (OSTI)

    Chen, Guopeng; Shen, Aidong; De Jesus, Joel; Tamargo, Maria C.

    2014-12-08

    The authors report the observation of intersubband (ISB) transitions in the optical communication wavelength region in MgSe/ZnSe/CdSe coupled quantum wells (QWs). The coupled QWs were grown on InP substrates by molecular beam epitaxy. By inserting ZnSe layers to compensate the strain, samples with high structural quality were obtained, as indicated by well resolved satellite peaks in high-resolution x-ray diffraction. The observed ISB transition energies agree well with the calculated values.

  9. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    SciTech Connect (OSTI)

    Natesakhawat, Sittichai; Ohodnicki, Paul R., Jr.; Howard, Bret H.; Lekse, Jonathan W.; Baltrus, John P.; Matranga, Christopher

    2013-12-01

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO{sub 2} hydrogenation. The addition of Ga{sub 2}O{sub 3} and Y{sub 2}O{sub 3} promoters is shown to increase the Cu surface area and CO{sub 2}/H{sub 2} adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO{sub 2} adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N{sub 2}O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  10. Rev. BioI. Trop., 48(1): 109-120,2000 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu

    E-Print Network [OSTI]

    Loughry, Jim

    characteristics and habitat associations of armadillos in Brazil and the United States of America Colleen M. Mc were not influenced by prey availability. Key words: Dasypus, armadillos, Brazil, United States in the Atlantic coastal rainforest of Brazil. The nine-banded armadillo (Dasypus novemcinctus) was the only

  11. Rev. BioI. Trop. 46(4): 1173-1183,1998 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu

    E-Print Network [OSTI]

    Loughry, Jim

    between nine-banded armadillo (Dasypus novemcinctus) populations in Brazil and the United States W. J that armadillos are hunted extensively in Brazil but not in the United States. Key words: Dasypus novemcinctus, armadillos, Brazil, United States, population differences. Many charactersitics of animal populations vary

  12. A Real-Time Rodent Tracking System for Both Light and Dark Cycle Behavior Analysis

    E-Print Network [OSTI]

    Motai, Yuichi

    monitoring of rodent behavior in a home cage environment, either in a daylight condition (light-cycle) usingA Real-Time Rodent Tracking System for Both Light and Dark Cycle Behavior Analysis Jane Brooks Zurn-field locomotor activity under 880 nm and 940 nm wavelengths of NIR, as well as visible white light and a "dark

  13. BaZn{sub 2}Si{sub 2}O{sub 7} and the solid solution series BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0

    SciTech Connect (OSTI)

    Kerstan, Marita; Thieme, Christian; Grosch, Matthias; Müller, Matthias; Rüssel, Christian, E-mail: ccr@rz.uni-jena.de

    2013-11-15

    For sealing of solid oxide fuel cells, glasses from which crystalline phases with high coefficient of thermal expansion (CTE) can be crystallized are required. In this paper, a new solid solution series BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0Zn{sub 2}Si{sub 2}O{sub 7}). Sintered specimens were characterized by dilatometry. The introduction of Co{sup 2+} does not lead to a change in the space group. All compounds show a transition of a low to a high temperature modification. The attributed temperature increases from 300 °C for BaZn{sub 2}Si{sub 2}O{sub 7} to 850 °C for BaCo{sub 2}Si{sub 2}O{sub 7}. The volume expansion which runs parallel to the phase transition decreases with increasing cobalt concentration. The phase BaZn{sub 2}Si{sub 2}O{sub 7} shows the largest CTE and a steep volume effect during phase transition. For the compound BaZn{sub 0.25}Co{sub 1.75}Si{sub 2}O{sub 7} the CTE is minimum (8.6×10{sup ?6} K{sup ?1} (50–900 °C)) and increases again until for the compound BaCo{sub 2}Si{sub 2}O{sub 7} a CTE of 16.6×10{sup ?6} K{sup ?1} (50–900 °C) is reached. In the cobalt rich composition range, the CTEs are in the right range for high temperature fuel cells and can be adjusted by the composition. - Graphical abstract: The composition of the solid solution BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} strongly affects the thermal expansion. Display Omitted - Highlights: • We examined the thermal expansion of solid solutions BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0Zn{sub 2}Si{sub 2}O{sub 7} exhibits the highest thermal expansion due to a phase transition. • Substitution of small amounts of Zn{sup 2+} against Co{sup 2+} lead to decreasing thermal expansion. • The thermal expansions re-increased with further increasing Co{sup 2+} concentrations. • Seals based on these solid solutions should be suitable for solid oxide fuel cells.

  14. Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma Rui Huang, Shuigang Xu, Wenhao Guo, Lin Wang, Jie Song et al.

    E-Print Network [OSTI]

    Du, Shengwang

    and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 2 Department of Physics and Electronic EngineeringNitrogen deep accepters in ZnO nanowires induced by ammonia plasma Rui Huang, Shuigang Xu, Wenhao subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions #12;Nitrogen deep

  15. CHIN. PHYS. LETT. Vol. 27, No. 2 (2010) 027302 Low-Cost UV-IR Dual Band Detector Using Nonporous ZnO Film Sensitized by

    E-Print Network [OSTI]

    Perera, A. G. Unil

    2010-01-01

    tech- niques including molecular beam epitaxy and metal- organic chemical vapour deposition-gap semiconductors has been intensively investi- gated with organic dyes specially for visible region of the spectrumO paste was coated by screen paint- ing on top of the etched area (1 × 1 cm2 ) as shown in Fig. 1(a). Zn

  16. Growth direction and morphology of ZnO nanobelts revealed by combining in situ atomic force microscopy and polarized Raman spectroscopy

    E-Print Network [OSTI]

    Wang, Zhong L.

    Growth direction and morphology of ZnO nanobelts revealed by combining in situ atomic force of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA 2 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA Received 26 June 2009; revised

  17. Growth of c-axis oriented ZnO nanowires from aqueous solution: The decisive role of a seed layer for controlling the wires' diameter

    E-Print Network [OSTI]

    Growth of c-axis oriented ZnO nanowires from aqueous solution: The decisive role of a seed layer,c,d,Ã a Center of Materials Technology and Laser, School of Applied Technology, Technological Educational Heraklion, Crete, Greece c Institute of Electronic Structure and Laser, Foundation for Research & Technology

  18. Effect of Zn doping on the magneto-caloric effect and critical constants of Mott insulator MnV{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Shahi, Prashant; Kumar, A.; Shukla, K. K.; Chatterjee, Sandip; Singh, Harishchandra; Ghosh, A. K.; Yadav, A. K.; Nigam, A. K.

    2014-09-15

    X-ray absorption near edge spectra (XANES) and magnetization of Zn doped MnV{sub 2}O{sub 4} have been measured and from the magnetic measurement the critical exponents and magnetocaloric effect have been estimated. The XANES study indicates that Zn doping does not change the valence states in Mn and V. It has been shown that the obtained values of critical exponents ?, ? and ? do not belong to universal class and the values are in between the 3D Heisenberg model and the mean field interaction model. The magnetization data follow the scaling equation and collapse into two branches indicating that the calculated critical exponents and critical temperature are unambiguous and intrinsic to the system. All the samples show large magneto-caloric effect. The second peak in magneto-caloric curve of Mn{sub 0.95}Zn{sub 0.05}V{sub 2}O{sub 4} is due to the strong coupling between orbital and spin degrees of freedom. But 10% Zn doping reduces the residual spins on the V-V pairs resulting the decrease of coupling between orbital and spin degrees of freedom.

  19. Comparison of Pb, Zn, Cd, As, Cr, Mo and Sb Adsorption onto Natural Surface Coatings in a Stream Draining Natural As

    E-Print Network [OSTI]

    Comparison of Pb, Zn, Cd, As, Cr, Mo and Sb Adsorption onto Natural Surface Coatings in a Stream Science+Business Media New York 2014 Abstract Natural surface coatings (biofilms) were col- lected elements Á Distribution coefficient Á Biogenic Mn oxide Natural surface coatings are ubiquitous

  20. FLEXIBLE CdTe SOLAR CELLS BY A LOW TEMPERATURE PROCESS ON ITO/ZnO COATED A. Salavei, I. Rimmaudo, F. Piccinelli1

    E-Print Network [OSTI]

    Romeo, Alessandro

    FLEXIBLE CdTe SOLAR CELLS BY A LOW TEMPERATURE PROCESS ON ITO/ZnO COATED POLYMERS A. Salavei, I will be discussed. Keywords: Flexible Substrate, CdTe, ITO, Laser Processing, Thin Film Solar Cell 1 INTRODUCTION Thin film solar cells deposited on a flexible substrate are easier to integrate in buildings; they also

  1. Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III-V semiconductor

    E-Print Network [OSTI]

    Ham, Donhee

    Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron demonstrate 1.6 GHz surface acoustic wave SAW generation using interdigital transducers patterned by e-8601, Japan Received 10 July 2008; accepted 8 September 2008; published 3 November 2008 The authors

  2. Facile synthesis and characterization of ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres

    SciTech Connect (OSTI)

    Shen, Yu [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China) [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China) [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Zhao, Qidong; Hou, Yang [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Tade, Moses [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Liu, Shaomin, E-mail: Shaomin.Liu@curtin.edu.au [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres were successfully synthesized via a facile method. Black-Right-Pointing-Pointer Detailed structural, morphology and the phase composition were studied. Black-Right-Pointing-Pointer The incorporation of ZnFe{sub 2}O{sub 4} and {alpha}-Fe{sub 2}O{sub 3} gives an appropriate band gap value to utilize solar energy. -- Abstract: ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres were successfully fabricated via a facile one-pot solvothermal method, utilizing polyethylene glycol as soft template. X-ray diffraction and scanning electron microscopy analysis revealed that the prepared nanospheres with cubic spinel and rhombohedra composite structure had a uniform diameter of about 370 nm, and the hollow structure could be further confirmed by transmission electron microscopy. Energy dispersive X-ray, X-ray photoelectron spectroscopy and Fourier transform infrared techniques were also applied to characterize the elemental composition and chemical bonds in the hollow nanospheres. The ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres show attractive light absorption property for potential applications in electronics, optics, and catalysis.

  3. Production of ?¹Cu by the natZn(p,?) reaction: Improved separation and specific activity determination by titration with three chelators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Asad, Ali H.; Smith, Suzanne V.; Morandeau, Laurence M.; Chan, Sun; Jeffery, Charmaine M.; Price, Roger I.

    2015-09-01

    In this study, the cyclotron-based production of position-emitting ?¹Cu using the (p,?) reaction at 11.7 MeV was investigated starting from natural-zinc (natZn) and enriched ??Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate ?¹Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified ?¹Cu determined using ICP-MS analysis ranged from 143.3±14.3(SD) to 506.2±50.6 MBq/?g while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7±0.2 to 412.5±15.3 MBq/?g), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods aremore »significantly affected by the presence of trace-metal contaminants.« less

  4. Seedless synthesis of patterned ZnO nanowire arrays on metal thin films (Au, Ag, Cu, Sn) and their application for flexible electromechanical sensing

    E-Print Network [OSTI]

    Wang, Zhong L.

    ) and their application for flexible electromechanical sensing Xiaonan Wen, Wenzhuo Wu, Yong Ding and Zhong Lin Wang on flexible substrates as an electromechanical switch in response to externally applied strain exhibits-fabricated ZnO NW arrays on underlying flexible polyethylene terephthalate (PET) substrates as electromechanical

  5. Efficient Forster Resonance Energy Transfer in 1,2,3-Triazole Linked BODIPY-Zn(II) Meso-tetraphenylporphyrin Donor-Acceptor Arrays

    E-Print Network [OSTI]

    Dinolfo, Peter H.

    Efficient Forster Resonance Energy Transfer in 1,2,3-Triazole Linked BODIPY-Zn(II) MesoAAC) reactivity was successfully employed to synthesize three donor-acceptor energy transfer (EnT) arrays quenched in all three arrays, consistent with EnT to the porphyrin core, with efficiencies of 95.8, 97

  6. Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides Justin C. Johnson, Haoquan Yan,, Peidong Yang,*,, and Richard J. Saykally*,

    E-Print Network [OSTI]

    Cohen, Ronald C.

    fluence, with consideration of ZnO material properties and ultrafast excitation dynamics, demonstrates, California 94720-1460, and Materials Science DiVision, Lawrence Berkeley National Laboratory, Berkeley, California ReceiVed: February 25, 2003; In Final Form: April 25, 2003 Wide band gap semiconductor

  7. Microstructure and Light-Scattering Properties of ZnO:Al Films Prepared Using a Two-Step Process through the Control of Oxygen Pressure

    E-Print Network [OSTI]

    Park, Byungwoo

    in a variety of optoelectric devices, such as flat panel displays and thin-film solar cells.1­3) Among the various TCOs, ZnO:Al has been the object of significant research activities for Si thin-film solar cell maintaining efficiency, thus leading to decreased production costs.2) And, the large feature size

  8. Effects of Cu Diffusion from ZnTe:Cu/Ti Contacts on Carrier Lifetime of CdS/CdTe Thin Film Solar Cells: Preprint

    SciTech Connect (OSTI)

    Gessert, T. A.; Metzger, W. K.; Asher, S. E.; Young, M. R.; Johnston, S.; Dhere, R. G.; Duda, A.

    2008-05-01

    We study the performance of CdS/CdTe thin film PV devices processed with a ZnTe:Cu/Ti contact to investigate how carrier lifetime in the CdTe layer is affected by Cu diffusion from the contact.

  9. Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar

    E-Print Network [OSTI]

    Steiner, Ullrich

    Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar of photogenerated charge carriers limits the performance of photoelectrodes for solar water splitting. To reduce serves as an electron collector for the BiVO4 film, which suffers from poor electron transport

  10. The pure rotational spectrum of ZnO in the X1 L.N. Zack, R.L. Pulliam, L.M. Ziurys *

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    zinc vapor, generated in a Broida-type oven, with N2O under DC discharge conditions. In the X1 R+ state, semiconductors, thin films, and solar cells [13­17]. Studying the fundamental properties of ZnO by spec- troscopy

  11. Bandgap-Graded Cu2Zn(Sn1-xGex)S4 Thin-Film Solar Cells Derived from Metal Chalcogenide Complex Ligand Capped Nanocrystals

    E-Print Network [OSTI]

    Cao, Guozhong

    Bandgap-Graded Cu2Zn(Sn1-xGex)S4 Thin-Film Solar Cells Derived from Metal Chalcogenide ComplexS) thin-film solar cells based on metal chalcogenide complex (MCC) ligand capped nanocrystals (NCs attention as a promising absorber material in thin film-solar cells due to its abundance and nontoxicity

  12. Observation of the inverse spin Hall effect in ZnO thin films: An all-electrical approach to spin injection and detection

    SciTech Connect (OSTI)

    Prestgard, Megan C.; Tiwari, Ashutosh

    2014-03-24

    The inverse spin Hall effect (ISHE) is a newly discovered, quantum mechanical phenomenon where an applied spin current results in the generation of an electrical voltage in the transverse direction. It is anticipated that the ISHE can provide a more simple way of measuring spin currents in spintronic devices. The ISHE was first observed in noble metals that exhibit strong spin-orbit coupling. However, recently, the ISHE has been detected in conventional semiconductors (such as Si and Ge), which possess weak spin-orbit coupling. This suggests that large-spin orbit coupling is not a requirement for observing the ISHE. In this paper, we are reporting the observation of the ISHE in an alternative semiconductor material, zinc oxide (ZnO) using all-electrical means. In our study, we found that when a spin-polarized current is injected into the ZnO film from a NiFe ferromagnetic injector via an MgO tunnel barrier layer, a voltage transverse to both the direction of the current as well as its spin-polarization is generated in the ZnO layer. The polarity of this voltage signal was found to flip on reversing the direction of the injected current as well as on reversing the polarization of the current, consistent with the predictions of the ISHE process. Through careful analysis of the ISHE data, we determined a spin-Hall angle of approximately 1.651 × 10{sup ?2} for ZnO, which is two orders of magnitude higher than that of silicon. Observation of a detectable room-temperature ISHE signal in ZnO via electrical injection and detection is a groundbreaking step that opens a path towards achieving transparent spin detectors for next-generation spintronic device technology.

  13. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical Helen Hejin Park, Ashwin Jayaraman, Rachel Heasley, Chuanxi Yang, Lauren Hartle, Ravin Mankad, Richard

    E-Print Network [OSTI]

    absorber materials, such as Cu(In,Ga)(S,Se)2 (CIGS),1,2 Cu2ZnSn(Se,S)4 (CZTS),3­5 and SnS.6­9 Compared for SnS/Zn(O,S) heterojunc- tions in Fig. S1 (see Ref. 14). If the conduction band energy of the buffer deposition of Al-doped ZnO thin films J. Vac. Sci. Technol. A 31, 01A109 (2013); 10.1116/1.4757764 Low

  14. Bio-compatibility, surface and chemical characterization of glow discharge plasma modified ZnO nanocomposite polycarbonate

    SciTech Connect (OSTI)

    Bagra, Bhawna, E-mail: bhawnacct@gmail.com; Pimpliskar, Prashant, E-mail: bhawnacct@gmail.com [Centre for Converging Technologies, University of Rajasthan, Jaipur-302004 (India); Agrawal, Narendra Kumar [Department of Physics, Malaviya National Institute of Technology, Jaipur-302004 (India)

    2014-04-24

    Bio compatibility is an important issue for synthesis of biomedical devices, which can be tested by bioadoptability and creations of active site to enhance the bacterial/cell growth in biomedical devices. Hence a systematic study was carried out to characterize the effects of Nitrogen ion plasma for creations of active site in nano composite polymer membrane. Nano particles of ZnO are synthesized by chemical root, using solution casting nano composite polymeric membranes were prepared and treated with Nitrogen ion plasma. These membranes were characterized by different technique such as optical microscopy, SEM- Scanning electron microscope, optical transmittance, Fourier transform infrared spectroscopy. Then biocompatibility for membranes was tested by testing of bio-adoptability of membrane.

  15. Use of high-granularity position sensing to correct response non-uniformities of CdZnTe detectors

    SciTech Connect (OSTI)

    Bolotnikov, A. E. Camarda, G. S.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Marshall, M.; Roy, U.; Vernon, E.; Yang, G.; James, R. B.; Lee, K.; Petryk, M.

    2014-06-30

    CdZnTe (CZT) is a promising medium for room-temperature gamma-ray detectors. However, the low production yield of acceptable quality crystals hampers the use of CZT detectors for gamma-ray spectroscopy. Significant efforts have been directed towards improving quality of CZT crystals to make them generally available for radiation detectors. Another way to address this problem is to implement detector designs that would allow for more accurate and predictable correction of the charge loss associated with crystal defects. In this work, we demonstrate that high-granularity position-sensitive detectors can significantly improve the performance of CZT detectors fabricated from CZT crystals with wider acceptance boundaries, leading to an increase of their availability and expected decrease in cost.

  16. Polarity characterization by anomalous x-ray dispersion of ZnO films and GaN lateral polar structures

    SciTech Connect (OSTI)

    Shelton, Christopher T.; Sachet, Edward; Paisley, Elizabeth A.; Hoffmann, Marc P.; Rajan, Joseph; Collazo, Ramón; Sitar, Zlatko; Maria, Jon-Paul

    2014-01-28

    We demonstrate the use of anomalous x-ray scattering of constituent cations at their absorption edge, in a conventional Bragg-Brentano diffractometer, to measure absolutely and quantitatively the polar orientation and polarity fraction of unipolar and mixed polar wurtzitic crystals. In one set of experiments, the gradual transition between c+ and c? polarity of epitaxial ZnO films on sapphire as a function of MgO buffer layer thickness is monitored quantitatively, while in a second experiment, we map the polarity of a lateral polar homojunction in GaN. The dispersion measurements are compared with piezoforce microscopy images, and we demonstrate how x-ray dispersion and scanning probe methods can provide complementary information that can discriminate between polarity fractions at a material surface and polarity fractions averaged over the film bulk.

  17. Effect of annealing on the properties of Sb doped ZnO thin films prepared by spray pyrolysis technique

    SciTech Connect (OSTI)

    Kumar, N. Sadananda; Bangera, Kasturi V.; Shivakumar, G. K. [Thin Films Laboratory, Department of Physics, National Institute of Technology Karnataka,Surathkal - 575025, Mangalore (India)

    2014-01-28

    Sb doped ZnO thin films have been deposited on glass substrate at 450°C using spray pyrolysis technique. The X-ray diffraction studies revealed that the as deposited films are polycrystalline in nature with (100) preferred orientation. Whereas the films annealed at 450° C for 6h show a preferential orientation along (101) direction. Crystallites size varies from 15.7 nm to 34.95 nm with annealing duration. The Scanning electron microscopic analysis shows the plane and smooth surface of the films. The optical properties of annealed films have shown a variation in the band gap between 3.37 eV and 3.19 eV. Transparency of as grown and annealed films decreases from 78 % to 65% respectively in the visible region. The electrical conductivity of the as grown film shows an increase in the electrical conductivity by one order of magnitude with increase in the annealing duration.

  18. High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition

    SciTech Connect (OSTI)

    Anders, Andre; Lim, Sunnie H.N.; Yu, Kin Man; Andersson, Joakim; Rosen, Johanna; McFarland, Mike; Brown, Jeff

    2009-04-24

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide (ITO). In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on the growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200?C, have resistivities in the low to mid 10-4 Omega cm range with a transmittance better than 85percent in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  19. An effect of the networks of the subgrain boundaries on spectral responses of thick CdZnTe detectors

    SciTech Connect (OSTI)

    Bolotnikov, A.; Butcher, J.; Camarda, G.; Cui, Y.; Egarievwe, S.; Fochuk, P.; Gul,R.; Hamade, M.; Hossain, A.; Kim, K.; Kopach,O.; Petryk, M.; Raghothamachar, B.; Yang, G.; and James, R.B.

    2011-08-12

    CdZnTe (CZT) crystals used for nuclear-radiation detectors often contain high concentrations of subgrain boundaries and networks of poligonized dislocations that can significantly degrade the performance of semiconductor devices. These defects exist in all commercial CZT materials, regardless of their growth techniques and their vendor. We describe our new results from examining such detectors using IR transmission microscopy and white X-ray beam diffraction topography. We emphasize the roles on the devices performances of networks of subgrain boundaries with low dislocation densities, such as poligonized dislocations and mosaic structures. Specifically, we evaluated their effects on the gamma-ray responses of thick, >10 mm, CZT detectors. Our findings set the lower limit on the energy resolution of CZT detectors containing dense networks of subgrain boundaries, and walls of dislocations.

  20. Recombination dynamics of a localized exciton bound at basal stacking faults within the m-plane ZnO film

    SciTech Connect (OSTI)

    Yang, S.; Liu, W.-R. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Hsu, H. C., E-mail: hsuhc@mail.ncku.edu.tw, E-mail: wfhsieh@mail.nctu.edu.tw [Department of Photonics and Advanced Optoelectronic Technology Center, National Cheng Kung University, 701 Tainan, Taiwan (China); Lin, B. H.; Hsu, C.-H. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Kuo, C. C.; Hsieh, W. F., E-mail: hsuhc@mail.ncku.edu.tw, E-mail: wfhsieh@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Eriksson, M. O.; Holtz, P. O. [Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping (Sweden)

    2014-07-07

    We investigated the carrier dynamics near basal stacking faults (BSFs) in m-plane ZnO epitaxial film. The behaviors of the type-II quantum wells related to the BSFs are verified through time-resolved and time-integrated photoluminescence. The decay time of the emission of BSFs is observed to have a higher power law value and longer decay time than the emission of the donor-bound excitons. The spectral-dependent decay times reveal a phenomenon of carriers migrating among band tail states, which are related to the spatial distribution of the type-II quantum wells formed by the BSFs. A high density of excited carriers leads to a band bending effect, which in turn causes a blue-shift of the emission peak of BSFs with a broadened distribution of band tail states.