National Library of Energy BETA

Sample records for zip code work

  1. Electric Utility Company Assigned to a Zip Code? | OpenEI Community

    Open Energy Info (EERE)

    Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers...

  2. Link to the Utilities by Zip Code File | OpenEI Community

    Open Energy Info (EERE)

    Link to the Utilities by Zip Code File Home > Groups > Utility Rate I am trying to access the link to the utility by zip code csv file from the following side bar on the utility...

  3. Do we get actual vendor name while we searched with zip code...

    Open Energy Info (EERE)

    let me know? Submitted by SUTHARI on 29 September, 2014 - 08:02 1 answer Points: 0 Hi SUTHARI, we had a bug in the U.S. Utility Rate Database affecting zip codes with leading...

  4. Looking for a way to find utilites per zip code (a list?) | OpenEI...

    Open Energy Info (EERE)

    you head of time. Submitted by Caniemeyer on 1 July, 2013 - 13:55 1 answer Points: 0 Hello- Yes, there is indeed a dataset that lists utilities by zip-code. It can be found on...

  5. Cost Codes and the Work Breakdown Structure

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The chapter discusses the purpose of the work breakdown structure (WBS) and code of account (COA) cost code system, shows the purpose and fundamental structure of both the WBS and the cost code system, and explains the interface between the two systems.

  6. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

  7. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

  8. Working Group Reports Calibration of Radiation Codes Used in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Reports Calibration of Radiation Codes Used in Climate Models: Comparison of Clear-Sky Calculations with Observations from the Spectral Radiation Experiment and the...

  9. Final Report. An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group

    SciTech Connect (OSTI)

    Rosenthal, Andrew

    2013-12-30

    The DOE grant, “An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group,” to New Mexico State University created the Solar America Board for Codes and Standards (Solar ABCs). From 2007 – 2013 with funding from this grant, Solar ABCs identified current issues, established a dialogue among key stakeholders, and catalyzed appropriate activities to support the development of codes and standards that facilitated the installation of high quality, safe photovoltaic systems. Solar ABCs brought the following resources to the PV stakeholder community; Formal coordination in the planning or revision of interrelated codes and standards removing “stove pipes” that have only roofing experts working on roofing codes, PV experts on PV codes, fire enforcement experts working on fire codes, etc.; A conduit through which all interested stakeholders were able to see the steps being taken in the development or modification of codes and standards and participate directly in the processes; A central clearing house for new documents, standards, proposed standards, analytical studies, and recommendations of best practices available to the PV community; A forum of experts that invites and welcomes all interested parties into the process of performing studies, evaluating results, and building consensus on standards and code-related topics that affect all aspects of the market; and A biennial gap analysis to formally survey the PV community to identify needs that are unmet and inhibiting the market and necessary technical developments.

  10. SUMMARY OF GENERAL WORKING GROUP A+B+D: CODES BENCHMARKING.

    SciTech Connect (OSTI)

    WEI, J.; SHAPOSHNIKOVA, E.; ZIMMERMANN, F.; HOFMANN, I.

    2006-05-29

    Computer simulation is an indispensable tool in assisting the design, construction, and operation of accelerators. In particular, computer simulation complements analytical theories and experimental observations in understanding beam dynamics in accelerators. The ultimate function of computer simulation is to study mechanisms that limit the performance of frontier accelerators. There are four goals for the benchmarking of computer simulation codes, namely debugging, validation, comparison and verification: (1) Debugging--codes should calculate what they are supposed to calculate; (2) Validation--results generated by the codes should agree with established analytical results for specific cases; (3) Comparison--results from two sets of codes should agree with each other if the models used are the same; and (4) Verification--results from the codes should agree with experimental measurements. This is the summary of the joint session among working groups A, B, and D of the HI32006 Workshop on computer codes benchmarking.

  11. Panasonic Electric Works Ltd formerly Matsushita Electric Works...

    Open Energy Info (EERE)

    Electric Works Ltd (formerly Matsushita Electric Works) Place: Kadoma-shi, Osaka, Japan Zip: 571-8686 Product: Japanese manufacturer of mainly electric appliances including...

  12. ACME solar works | Open Energy Information

    Open Energy Info (EERE)

    ACME solar works Jump to: navigation, search Logo: ACME solar works Name: ACME solar works Address: 20738 Brown Lane Place: Summerdale, Alabama Zip: 36580 Sector: Solar Product:...

  13. Consortium on Digital Energy CoDE | Open Energy Information

    Open Energy Info (EERE)

    on Digital Energy CoDE Jump to: navigation, search Name: Consortium on Digital Energy (CoDE) Place: London, England, United Kingdom Zip: EC2A 1QP Product: London-based consortium...

  14. Brad Foote Gear Works | Open Energy Information

    Open Energy Info (EERE)

    Brad Foote Gear Works Jump to: navigation, search Name: Brad Foote Gear Works Place: Cicero, Illinois Zip: 60804-1404 Sector: Wind energy Product: Gearing systems manufacturer...

  15. Dongfang Steam Turbine Works DFSTW | Open Energy Information

    Open Energy Info (EERE)

    Turbine Works DFSTW Jump to: navigation, search Name: Dongfang Steam Turbine Works (DFSTW) Place: Deyang, Sichuan Province, China Zip: 618000 Sector: Wind energy Product:...

  16. T ID CODE I

    National Nuclear Security Administration (NNSA)

    T ID CODE I DE- , I AC52- AMENDMENT OF SOLICITATION/MODIFICATlON OF CONTRACT I. CONTRAC I 06NA25396 I Los Alamos National Security, LLC 4200 West Jernez Road Suite 400 Los Alamos, NM 87544 PAGE 1 OF 1 PAGES 2. AMENDMENTIMODIFICATION NO. A029 U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 528 3sth Street Los Alamos, NM 87544 I 9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 10A. MODIFICATION OF

  17. Photo of the Week: Power Up! Twenty Steps to Zip a Zipper | Department of

    Energy Savers [EERE]

    Energy Power Up! Twenty Steps to Zip a Zipper Photo of the Week: Power Up! Twenty Steps to Zip a Zipper April 4, 2014 - 10:30am Addthis On Feb. 18, 2014, Argonne hosted its 19th annual regional Rube Goldberg Machine Contest at the Chicago Children's Museum. This year, the competition called on teams to build a complex machine that took at least 20 steps to zip a zipper. Pictured here are students from Reavis High School of Burbank, Illinois, who defeated nine other teams in the contest with

  18. SpringWorks | Open Energy Information

    Open Energy Info (EERE)

    SpringWorks Jump to: navigation, search Name: SpringWorks Place: Minnetonka, Minnesota Zip: 55343-8684 Product: SpringWorks was created to discover and nurture incubation companies...

  19. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat...

  20. Zip is not in file but shows on EUR | OpenEI Community

    Open Energy Info (EERE)

    Zip is not in file but shows on EUR Home > Groups > Utility Rate Hello, I was looking up electricity providers for the zipcode 90050. While it shows a result using the tool at...

  1. EnerWorks Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Ontario, Canada Zip: NOL 1GO Sector: Solar Product: Ontario-based solar water heating system manufacturer and installer. References: EnerWorks Inc1 This article...

  2. SolarFrameWorks Co | Open Energy Information

    Open Energy Info (EERE)

    SolarFrameWorks Co Place: Denver, Colorado Zip: 80202 Product: This company provides framing and mounting systems to the PV industry. References: SolarFrameWorks Co1 This...

  3. Code of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Leadership, Governance » Ethics, Accountability, Contract » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Ethics and Compliance Group (505) 667-7506 Email Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our

  4. AMENDMENT OF SOUCITATIONIMODIFICATION OF CONTRACT r' CONTRACTIO CODE I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOUCITATIONIMODIFICATION OF CONTRACT r' CONTRACTIO CODE I PAGE OF PAGES 1 I 2 2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REOUISITIONIPURCHASE REO. NO. r' PROJECT NO. (If appkcable) 062 See Block 16C 09SCOO1707 6 ISSUED BY CODE 00518 7. ADMINISTERED BY (lfO/her/han Ilem 6) CODE 100518 Oak Ridge Oak Ridge U.S. Department of Energy U.S. Department of Energy P.O. Box 2001 P.O. Box 2001 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No .* - . COUtlIy. SIDle and ZIP

  5. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically provide the necessary MPI include files and libraries. For Fortran source code use mpif90: % mpif90 -o example.x example.f90 For C source code use...

  6. Codes and Standards Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Activities » Codes and Standards Activities Codes and Standards Activities The Fuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards that cover emerging hydrogen technologies for consideration by the various code enforcing jurisdictions. DOE's codes and standards activities are focused on: Developing training programs for state and local officials that

  7. AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I '. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    SOLICITATIONIMODIFICATION OF CONTRACT I '. CONTRACT ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 PAGE I OF 12 PAGES Albuquerque, NM 871 85-5400 I Amarillo, TX 79120 I I 90. DATED (SEE ITEM 1 1 ) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) I 10A. MODIFICATION OF CONTRACTIORDER NO. 2. AMENDMENT/MODIFICATION NO. MI67 9A. AMENDMENT OF SOLICITATION NO. I 1 DE-AC04-00AL66620 100. DATED (SEE ITEM 13) 3. EFFECTIVE DATE See Block 16C Offers must

  8. AMEN DMENT OF SOLICITATION/MODIFICATION OF CONTRACT r* CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMEN DMENT OF SOLICITATION/MODIFICATION OF CONTRACT r* CONTRACT ID CODE I PAGE OF PAGES 1 I 1 2. AMENDMENT/MODIFICATION NO. 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REQ. NO. ,5. PROJECT NO. (If applicable) 0234 10/08/2013 6.1SSUED BY CODE 00603 7. ADMINISTERED BY (If other than Item 6) CODE I00603 Office of River Protection u.s. Department of Energy Office of River Protection P.O. Box 450 Richland WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state and ZIP Code) ASHINGTON

  9. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT \1. CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID CODE I PAGE OF PAGES 1 I 2 2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REOUISITIONIPURCHASE REO. NO. r' PROJECT NO. (If applicable) 356 See Block 16C 12SC001876 Item 7 6. ISSUED BY CODE 00518 7. ADMINISTERED BY (If other than Item 6) CODE \00518 Oak Ridge Oak Ridge U.S. Department of Energy U.S. Department of Energy P.O. Box 2001 P.O. Box 2001 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., stroot, county, State and ZIP Code) J1 SA. AMENDMENT OF

  10. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview There are three compiler suites available on Carver: Portland Group (PGI), Intel, and GCC. The PGI compilers are the default, to provide compatibility with other NERSC platforms. Compiler bugs affecting NERSC users are listed at PGI compiler bugs. Because Carver uses Intel processors, many benchmarks have shown significantly better performance when compiled with the Intel compilers. Compiler bugs affecting NERSC users are listed at Intel bugs. The GCC

  11. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  12. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High Performance Computing. The default compiler suite is from the Portland Group which is loaded by default at login, along with the PGI compiled Open MPI environment. % module list Currently Loaded Modulefiles: 1) pgi/10.8 2) openmpi/1.4.2 Basic Example Open MPI provides a convenient set of wrapper commands which you should use in

  13. 1. CONTRACT ID CODE PAGE OF PAGES AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT I11 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLICITATIONIMODIFICATION OF CONTRACT I11 5 2 AMENDMENT/MODIFICATION NO 3. EFFECTIVE DATE (MD Y) 4. REQUISITION/PURCHASE REQ. NO SPROJECT NO. (If applicable) 273 See Block 16C 6 ISSUED BY CODE 7 ADMINISTERED BY (If olher than Item 6,, CODE U.S. Department of Energy Office of River Protection P. 0. Box 450, MIS 116-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, Stale and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. ED Bechtel National, Inc. 9B. DATED (SEE ITEM I])

  14. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I PAGE OF PAGES 1 1 2 2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REaUISITIONIPURCHASE REa. NO. 15. PROJECT NO. (If applicable) 335 See Block 16C 12SCOO0484 Item 7 6. ISSUED BY CODE 00518 7. ADMINISTERED 8Y (If other than Item 6) CODE 100518 Oak Ridge Oak Ridge U.S. Department of Energy U.S. Department of Energy P.O. Box 2001 P.O. Box 2001 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No .* stroot. COlUlty. Stato and ZIP Code) (x) 9A. AMENDMENT OF SOLICITATION

  15. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT r' CONTRACT 10 CODE I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REO. NO. \5. PROJECT NO. (II applicable) 328 See Block 16C 11SC007443 Item 9 6. ISSUED BY CODE 00518 7. ADMINISTERED BY (II other than Item 6) CODE 100518 Oak Ridge Oak Ridge U.S. Department of Energy U.S. Department of Energy P.O. Box 2001 P.O. Box 2001 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No .* street. county. Stato and ZIP Code} ~ 9A. AMENDMENT OF SOLICITATION NO. OAK RIDGE ASSOCIATED

  16. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    l PAGE 1 OF 3PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REQ. NO. I 5. PROJECT NO. (If applicable) 180 See Block 16 C 6.1SSUEDBY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 3747 West Jemez Road Los Alamos, NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 9A. AMENDMENT OF SOLICITATION NO. Los Alamos National Security, LLC

  17. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    I PAGE 1 OF 1 PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REO. NO. I 5. PROJECT NO. (If applicable) 212 See Block 16 C 6.1SSUEDBY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 3747 West Jemez Road Los Alamos, NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county. state, ZIP Code} 9A. AMENDMENT OF SOLICITATION NO. Los Alamos National Security, LLC

  18. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    l PAGE OF PAGES 1 I 3 2. AMENDMENT/MODIFICATION NO. See Block 16C 4. REQUISITION/PURCHASE REQ. NO. 15. PROJECT NO. (If applicable) 3. EFFECTIVE DA TE 0264 6. ISSUED BY CODE 05003 NNSA/Los Alamos Site Office U.S. Department of Energy NNSA/Los Alamos Site Office 3747 West Jemez Road Los Alamos NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP Code) LOS ALAMOS NATIONAL SECURITY, LLC Attn: STEVE K. SHOOK P.O. BOX 1663, MS P222 LOS ALAMOS NM 875450001 CODE 175252894

  19. AMENDMENT OF SOLICITATIONIMODIFICATlON OF CONTRACT ( I- CONTRACT ID CODE PAGE I OF 2

    National Nuclear Security Administration (NNSA)

    ( I- CONTRACT ID CODE PAGE I OF 2 PAGES I . . Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 2. AMENDMENTIMODIFICATION NO. M I 51 Albuquerque, NM 87185-5400 I Amarillo, TX 79120 90. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 3. EFFECTIVE DATE See Block 16C 9A. AMENDMENT OF SOLICITATION NO. extended. 6 . ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property

  20. AMENDMENT OF SOlLICITATION/MODIFICATlON OF CONTRACT I I. CONTRACr ID CODE

    National Nuclear Security Administration (NNSA)

    SOlLICITATION/MODIFICATlON OF CONTRACT I I. CONTRACr ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 PAGE I OF 2 PAGES Albuquerque, NM 871 85-5400 I Amarillo, TX 79120 9B. DATED (SEE ITEM 1 1 ) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) DE-AC04-00AL66620 I I IOB. DATED (SEE ITEM 13) 2. AMENDMENTIMODIFICATION NO. MI41 9A. AMENDMENT OF Sol-ICITATION NO. CODE I ~ H L I L I I Y L U U ~ I I - 11. THlS ITEM ONLY APPLIES TO AMENDMENTS OF

  1. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    CONTRACT ID CODE Babcock & Wilcox Technical Services Pantex, LLC 9B. DATED (SEE ITEM 11) PO Box 30020 Amarillo, T X 79120 PAGE 1 OF 2 PAGES Albuquerque, NM 87185-5400 I Amarillo, TX 79120 I I DE-AC04-00AL66620 10B. DATED (SEE ITEM 13) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 2. AMENDMENTIMODIFICATION NO. MI74 9A. AMENDMENT OF SOLICITATION NO. extended. CODE I FACILITY CODE Offers must acknowledge receipt of this amendment prior to the hour and date specified

  2. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I I, CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    I, CONTRACT ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V A 24506 PAGE I OF 2 PAGES Albuquerque, NM 87185-5400 I Amarillo, TX 79120 9B. DATED (SEE ITEM I I ) 8. NAME AND ADDRESS OF CONTRACTOR (No.. street, county, state, ZIP Code) I ( DE-AC04-00AL66620 10B. DATED (SEE ITEM 13) 2. AMENDMENTIMODIFICATION NO. M I 3 8 9A. AMENDMENT OF SOLICITATION NO. extended. 3. EFFECTIVE DATE See Block 16C CODE I FACILITY CODE Offers must acknowledge receipt of this amendment prior to the hour

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: On March 9, 2016, the State Fire Prevention and Building Code Council adopted major updates to the State Uniform Code and the State Energy Code. The State Energy Code has been updated to 2015...

  6. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 11. CONTRACT ID CODE 1 PAGE OF PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 PAGE OF PAGES 1 I 2 2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REQUISITIONIPURCHASE REO. NO. 15. PROJECT NO. (If applicable) 352 See Block 16C 12SC001876 Item 3 6. ISSUED BY CODE 00518 7. ADMINISTERED BY (If other than Item 6) CODE 100518 Oak Ridge Oak Ridge U.S. Department of Energy U.S. Department of Energy P.O. Box 2001 P.O. Box 2001 Oak Ridge TN 37831 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No .* stteet. county. Stete and ZIP Coda) (X) 9A. AMENDMENT OF SOLICITATION

  7. 1. CONTRACT ID CODE PAGE of: PAGES AMENDM ENT OF SOLICITATION/MODIFICATION OF CONTRACT I -1 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of: PAGES AMENDM ENT OF SOLICITATION/MODIFICATION OF CONTRACT I -1 5 2. AMENDMENT/MODIFICATION NO. 3. EFFECTIVE DATE (0/1T 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 286 See Block 16C 12EM0014771 6. ISSUED BY CODE 7. AD)MINISTERED BY (If otherrtianItm 6) CODE U.S. Department of Energy Office of River Protection P. 0. Box 450, MIS 116-60 Richland, WA 99352 8. NAME AND ADDRESS OF CONTRACTOR (No., street. county.. State and ZIP code) 9A. AMENDMENT OF SOLICITATION NO. Bechtel

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Tennessee is a "home rule" state which leaves adoption of codes up to the local codes jurisdictions. State energy codes are passed through the legislature, apply to all construction and must be...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became...

  16. It worked

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yes, it worked

  17. Validation issues for SSI codes

    SciTech Connect (OSTI)

    Philippacopoulos, A.J.

    1995-02-01

    The paper describes the results of a recent work which was performed to verify computer code predictions in the SSI area. The first part of the paper is concerned with analytic solutions of the system response. The mathematical derivations are reasonably reduced by the use of relatively simple models which capture fundamental ingredients of the physics of the system motion while allowing for the response to be obtained analytically. Having established explicit forms of the system response, numerical solutions from three computer codes are presented in comparative format.

  18. Perma Works | Open Energy Information

    Open Energy Info (EERE)

    Mexico Zip: 87123 Sector: Geothermal energy Product: A company that focuses on producing enhanced geothermal systems through providing electronics and software. Coordinates:...

  19. AMENDMENT OF SOLlClTATlONlMODlFlCATION OF CONTRACT 1 I . CONTR"CT ID CODE

    National Nuclear Security Administration (NNSA)

    SOLlClTATlONlMODlFlCATION OF CONTRACT 1 I . CONTR"CT ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, VA 24506 PAGE 1 OF 2 PAGES Albuquerque, NM 8718Ii4400 I Amarillo, TX 79120 9B. DATED (SEE m M 11) 10A. MODIFICATION OF CONTRACTIORDER NO. 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, &ate, ZIP Code) I ( DE-ACOCOOAL66620 10B. DATED (SEE / E M 13) 2. AMENDMENT/MODIFICATION NO. M097 9A. AMENDMENT OF SOLICITATION NO. Offera must a d t n d e d p rsceipt of this m e n

  20. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I I. CONT" ID CODE

    National Nuclear Security Administration (NNSA)

    CONT" ID CODE Babcock & Wilcox Technical Services Pantex, LLC I 1 98. DATED (SEE ITEM 11) PAGE I OF 2 PAGES Albuquerque, NM 87185-5400 I Amarillo, TX 79120 PO Box 30020 Amarillo, TX 79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 10A. MODIFICATION OF CONTRACTIORDER NO. 2. AMENDMENTIMODIFICATION NO. MI64 9A. AMENDMENT OF SOLICITATION NO. DE-AC04-00AL66620 1 I IOB. DATED (SEE ITEM 13) 3. EFFECTIVE DATE See Block 16C Offers must acknowledge receipt of this

  1. AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT I I. CONTRA'T ID CODE

    National Nuclear Security Administration (NNSA)

    CONTRA'T ID CODE BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V A 24506 PAGE I OF 2 PAGES Albuquerque, NM 871 85-5400 / Amarillo, TX 79120 I I 9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) I 10A. MODIFICATION OF CONTRACTIORDER NO. 2. AMENDMENTIMODIFICATION NO. M I 0 8 9A. AMENDMENT OF SOLICITATION NO. DE-AC04-00AL66620 1 1 108. DATED (SEE ITEM 13) 3. EFFECTIVE DATE See Block 16C Offers must acknowledge receipt of this amendment prior to

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    In November of 2015, the Commission adopted the 2015 International Building Code (IBC) with amendments. The Commission did not adopt the 2012 International Energy Conservation Code (IECC) as part...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  6. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards. As with the previous 2003 IECC standards, which had been in...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further considera...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. S.B. 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In Dece...

  20. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. In 2015, the AER...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  5. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Cohan Program Manager Building Energy Codes April 22, 2014 Presentation Outline * Mission * Goals * Program Organization * Strategies/Roles * Near-Term Focus * Measuring Progress/Outcomes/Impacts * Priorities for FY15 and Beyond 2 Building Energy Codes - Mission Support the building energy code and standard development, adoption, implementation and enforcement processes to achieve the maximum practicable improvements in building energy efficiency 3 Building Energy Codes Program - Goals

  6. Generating code adapted for interlinking legacy scalar code and extended

    Office of Scientific and Technical Information (OSTI)

    vector code (Patent) | SciTech Connect Generating code adapted for interlinking legacy scalar code and extended vector code Citation Details In-Document Search Title: Generating code adapted for interlinking legacy scalar code and extended vector code Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled

  7. XSOR codes users manual

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  8. DLLExternalCode

    Energy Science and Technology Software Center (OSTI)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read frommorefiles created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.less

  9. New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in Energy Innovations

    Energy Savers [EERE]

    New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in Energy Innovations Pam Cole Pacific Northwest National Laboratory February 24, 2016 PNNL-SA-116487 2 | Building America eere.energy.gov Relevant to BTO Objectives The Building America Program is designed to compliment and support the work done by other Building Technologies Office (BTO) programs. It supports codes and standards by identifying and filling gaps in building science and system knowledge that may limit

  10. Generating code adapted for interlinking legacy scalar code and...

    Office of Scientific and Technical Information (OSTI)

    code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a...

  11. Spent fuel pool analysis using TRACE code

    SciTech Connect (OSTI)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S.

    2012-07-01

    The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

  12. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  13. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  14. Compiling Codes on Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes on Cori Compiling Codes on Cori Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the Hopper compute node processors. NOTE: The

  15. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention

  16. Application of coupled codes for safety analysis and licensing issues

    SciTech Connect (OSTI)

    Langenbuch, S.; Velkov, K.

    2006-07-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  17. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  18. Codes and Standards

    Broader source: Energy.gov [DOE]

    Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Office of the State Fire Marshal is granted the authority to promulgate amendments, revisions, and alternative compliance methods for the code.

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  4. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Related Products Manufacturing for Measuring, Displaying, Top Ten NAICS Codes Dollar Value 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing...

  5. Improving Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code Collaborative American Institute of ... Studios 3. Education, Health Care (outpatient), Public Order and Safety, ... elements to the Journal of the American ...

  6. Overview of the BISON Multidimensional Fuel Performance Code

    SciTech Connect (OSTI)

    R. L. Williamson; J. D. Hales; S. R. Novascone; B. W. Spencer; D. M. Perez; G. Pastore; R. C. Martineau

    2013-10-01

    BISON is a modern multidimensional multiphysics finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. A brief background is provided on the codes computational framework (MOOSE), governing equations, and material and behavioral models. Ongoing code verification and validation work is outlined, and comparative results are provided for select validation cases. Recent applications are discussed, including specific description of two applications where 3D treatment is important. A summary of future code development and validation activities is given. Numerous references to published work are provided where interested readers can find more complete information.

  7. Lichenase and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang (Athens, GA); Ljungdahl, Lars G. (Athens, GA); Chen, Huizhong (Lawrenceville, GA)

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  8. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  9. In-facility transport code review

    SciTech Connect (OSTI)

    Spore, J.W.; Boyack, B.E.; Bohl, W.R.

    1996-07-01

    The following computer codes were reviewed by the In-Facility Transport Working Group for application to the in-facility transport of radioactive aerosols, flammable gases, and/or toxic gases: (1) CONTAIN, (2) FIRAC, (3) GASFLOW, (4) KBERT, and (5) MELCOR. Based on the review criteria as described in this report and the versions of each code available at the time of the review, MELCOR is the best code for the analysis of in-facility transport when multidimensional effects are not significant. When multi-dimensional effects are significant, GASFLOW should be used.

  10. Safety, Codes, and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes, and Standards Safety, Codes, and Standards Hydrogen, in vast quantities, has been used safely for many years in chemical and metallurgical applications, the food industry, and the space program. As hydrogen and fuel cells begin to play a greater role in meeting the energy needs of our nation and the world, minimizing the safety hazards related to the use of hydrogen as a fuel is essential. DOE is working to develop and implement practices and procedures that will ensure safety in

  11. NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Codes, and Standards Photo of person working with scientific equipment in a laboratory setting. NREL researcher works on sensor testing apparatus in the Safety Sensor Testing Laboratory. Photo by Dennis Schroeder, NREL NREL's hydrogen safety, codes, and standards projects focus on ensuring safe operation, handling, and use of hydrogen and hydrogen systems through safety sensors and codes and standards for buildings and equipment. Safety Sensors To facilitate hydrogen safety, NREL is

  12. Hour of Code sparks interest in computer science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM skills Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Hour of Code sparks interest in computer science Taking the mystery out of programming February 1, 2016 Hour of Code participants work their way through fun computer programming tutorials. Hour of Code participants work their way through fun computer programming tutorials. Contacts Community Programs Director Kathy Keith Email Editor

  13. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  18. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example.x example.c For C++ source code use CC % CC -fast -o example.x example.C All compilers on Hopper, PGI, Pathscale, Cray, GNU, and Intel, are provided via five programming...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  20. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    % ftn -O0 -Kieee MyCode.F90 Documentation For the full list of compiler options type man pgf90, man pgf95,man pgcc or man pgCC. However, remember always to use the Cray...

  1. National Energy Codes Conference

    Broader source: Energy.gov [DOE]

    Join us in Nashville, TN March 23-26, 2015 for the National Energy Codes Conference! Additional details, including registration information, a preliminary agenda, the application for the Jeffrey A...

  2. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    On May 2014, Delaware updated its energy code to 2012 IECC with amendments for residential sector and ASHRAE 90.1-2010 with amendments for the commercial sector. The Delaware specific amendments to...

  4. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work Plan NSSAB Members Vote on Work Plan Tasks; The Nevada Site Specific Advisory Board operates on a fiscal year basis and conducts work according to a NSSAB generated and U.S....

  5. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  6. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  7. ORISE: Work Smart Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Code Ann. 68-21-101 et seq. Tennessee Boiler Inspection Act, Tenn. Code Ann 68 ... Publications - Section VIII Pressure Vessel Code City of Oak Ridge Code of Ordinances, ...

  8. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security

  9. Building Energy Codes: State and Local Code Implementation Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Lessans Fellow Building Energy Codes: State and Local Code Implementation Overview April 22, 2014 Building Energy Codes Program - Structure Building Energy Codes Program Development Regulatory Technical Assistance Rulemaking (Determinations vs. all others) Adoption Compliance Statutory Requirements 2 Relevant Statutory Guidance Residential Adoption (42 U.S.C. 6833(a)(5)(B)) Each State is required to certify that it has compared its residential building code regarding energy efficiency to

  10. NREL: Distributed Grid Integration - Codes and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes and Standards NREL works with the Institute of Electrical and Electronics Engineers (IEEE) to create consensus standards with participation from industry, utilities, government, and others. These standards guide the integration of renewable and other small electricity generation and storage sources (or "distributed resources," a key aspect of the Smart Grid) into the electric power system. There are two main groups, or families, of standards that NREL works with: IEEE 1547 Family

  11. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  12. Public Comments Received on the Draft Voluntary Code of Conduct |

    Energy Savers [EERE]

    Department of Energy Received on the Draft Voluntary Code of Conduct Public Comments Received on the Draft Voluntary Code of Conduct OE and the Federal Smart Grid Task Force facilitated a multi-stakeholder process to develop a Voluntary Code of Conduct (VCC) for utilities and third parties providing consumer energy use services that will address privacy related to data enabled by smart grid technologies. Industry stakeholders attended open meetings and participated in work group activities

  13. Compliance Verification Paths for Residential and Commercial Energy Codes

    SciTech Connect (OSTI)

    Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.

    2011-10-10

    This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

  14. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore »of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  15. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  16. Coding Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coding What Certificates Should My Microsoft Exchange Server Have? Much like any other network application, in order to secure the functionality and safety of Microsoft Exchange Servers, it's essential to adopt specific certificates. Due to the literally thousands, if not millions, of security threats bombarding your Exchange Server every day, these certificates ensure users have a safe messaging experience while simultaneously safeguarding your data and sensitive information from being

  17. THREAT OF MALICIOUS CODE

    Energy Savers [EERE]

    THREAT OF MALICIOUS CODE The Department of Energy (DOE) is strongly committed to the protection of all DOE assets from cyber attack and malicious exploitation. This includes information, networks, hardware, software, and mobile devices. DOE's continued diligence in this arena is critical in today's constantly-evolving cyber threat landscape. A recently cited incident involved senior officials receiving unsolicited free phone chargers. Luckily, the source was legitimate and did not result in a

  18. GENII Code Guidance

    National Nuclear Security Administration (NNSA)

    EH-4.2.1.4-Interim-GENII Rev. 1 GENII Computer Code Application Guidance for Documented Safety Analysis Interim Report U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 September 2003 GENII Guidance Report September 2003 Interim Report for Review INTENTIONALLY BLANK GENII Guidance Report September 2003 Interim Report for Review FOREWORD This document provides guidance to Department of Energy (DOE) facility analysts in the

  19. Bar coded retroreflective target

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  20. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services PDF icon NAICS Codes @ Headquarters.pdf More Documents & Publications Product Service Codes @ Headquarters Historical Procurement Information Historical Procurement Information - by Location

  1. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Code Citation Idaho Code (2014). Retrieved from "http:en.openei.org...

  2. UNSAT-H, an unsaturated soil water flow code for use at the Hanford site: code documentation

    SciTech Connect (OSTI)

    Fayer, M.J.; Gee, G.W.

    1985-10-01

    The unsaturated soil moisture flow code, UNSAT-H, which was developed at Pacific Northwest Laboratory for assessing water movement at waste sites on the Hanford site, is documented in this report. This code is used in simulating the water dynamics of arid sites under consideration for waste disposal. The results of an example simulation of constant infiltration show excellent agreement with an analytical solution and another numerical solution, thus providing some verification of the UNSAT-H code. Areas of the code are identified for future work and include runoff, snowmelt, long-term climate and plant models, and parameter measurement. 29 refs., 7 figs., 2 tabs.

  3. Validation of the G-PASS code : status report.

    SciTech Connect (OSTI)

    Vilim, R. B.; Nuclear Engineering Division

    2009-03-12

    Validation is the process of determining whether the models in a computer code can describe the important phenomena in applications of interest. This report describes past work and proposed future work for validating the Gas Plant Analyzer and System Simulator (G-PASS) code. The G-PASS code was developed for simulating gas reactor and chemical plant system behavior during operational transients and upset events. Results are presented comparing code properties, individual component models, and integrated system behavior against results from four other computer codes. Also identified are two experiment facilities nearing completion that will provide additional data for individual component and integrated system model validation. The main goal of the validation exercise is to ready a version of G-PASS for use as a tool in evaluating vendor designs and providing guidance to vendors on design directions in nuclear-hydrogen applications.

  4. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore »a single database which makes it easier to postprocess the results data.« less

  5. JOY computer code

    SciTech Connect (OSTI)

    Couch, R.G.; Albright, E.L.; Alexander, N.B.

    1983-01-01

    JOY is a 3-dimensional multifluid Eulerian hydrocode in Cartesian coordinates. It contains an elastic-plastic treatment and a shock-initiation model for high explosives (HE). Development of JOY was funded by the Ballistic Missile Defense Advanced Technology Center (BMDATC). The intended use of the code was for the study of hypervelocity impacts. The ultimate goal was to perform a structural analysis of objects subject to such impacts. JOY was designed to treat the early-impact phases where material motion is complicated, and then transfer information to DYNA3D for the longer-timescale analysis.

  6. Tribal Green Building Codes

    Energy Savers [EERE]

    with even amount of white space between photos and header Tribal Green Building Codes Chelsea Chee November 1 3, 2012 SAND# 2012---9858C Photos placed in horizontal position with even amount of white space between photos and header Source: http://www.galavantier.com/sites/default/files/imagecache/exp-itinerary-main/Pink Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia %20Jeep%20Tours%20-%20Grand%20Canyon%20-Hualapai%20Indian%20Village-High-Res---

  7. The OPAL opacity code: New results

    SciTech Connect (OSTI)

    Rogers, F.J.; Iglesias, C.A.

    1994-12-31

    The OPAL code was developed to calculate the wide range of frequency-dependent and mean opacity data needed to model laboratory experiments and stellar interiors. We use parametric potentials to generate vastly more atomic data than used in earlier opacity work for all elements with atomic number less than 35. We have also developed an improved equation of state based on an activity expansion of the grand canonical partition function. We give herein a brief description of the OPAL code and present new results that include the effect of additional heavy elements compared to our earlier carbons. The importance of very heavy elements having atomic number greater than 30 is also discussed. We present some comparisons with recent results from the Opacity Project and some directions for future work.

  8. Integrated Codes | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Codes | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  9. Code Tables | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Code Tables | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  10. Action Codes Table | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Action Codes Table | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  11. Cal. Wat. Code 13376 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code...

  12. Cal. Wat. Code 13320 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13320Legal Abstract Cal. Wat. Code 13320, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  13. Cal. Wat. Code 13369 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13369Legal Abstract Cal. Wat. Code 13369, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  14. Cal. Wat. Code 13373 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13373Legal Abstract Cal. Wat. Code 13373, current through August 14, 2014. Published NA Year Signed or Took Effect 1987 Legal Citation Cal. Wat. Code...

  15. Cal. Wat. Code 13160 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13160Legal Abstract Cal. Wat. Code 13160, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  16. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  17. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 ...

  18. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  19. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code also allows for preservation plans in historic districts to incorporate sustainability measures such as solar technologies and other energy generation and efficiency measures.

  20. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  1. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  2. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    99-3119 Compliance Monitoring Implementation Plan for 40 CFR §191.14(b), Assurance Requirement U. S. Department of Energy Revision 8 October 2014 This document supersedes Revision 7 of DOE/WIPP-99-3119. Working Copy Compliance Monitoring Implementation Plan DOE/WIPP-99-3119, Rev. 8 2 This document has been submitted as required to: U.S. Department of Energy Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 (865) 576-8401 Additional information about this document may

  3. Microsoft Word - Current Contact Information2.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information: Name: Date: Z Number: Home Phone: ( ) Cell Phone: ( ) Work Phone: ( ) Mailing Address: Street or PO Box_____________________________________________ Apt #____________ City___________________________ State_________________________ Zip Code_____________ Personal e-mail: Work e-mail:

  4. Telescope Adaptive Optics Code

    Energy Science and Technology Software Center (OSTI)

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  5. Massively parallel mesh generation for physics codes

    SciTech Connect (OSTI)

    Hardin, D.D.

    1996-06-01

    Massively parallel processors (MPPs) will soon enable realistic 3-D physical modeling of complex objects and systems. Work is planned or presently underway to port many of LLNL`s physical modeling codes to MPPs. LLNL`s DSI3D electromagnetics code already can solve 40+ million zone problems on the 256 processor Meiko. However, the author lacks the software necessary to generate and manipulate the large meshes needed to model many complicated 3-D geometries. State-of-the-art commercial mesh generators run on workstations and have a practical limit of several hundred thousand elements. In the foreseeable future MPPs will solve problems with a billion mesh elements. The objective of the Parallel Mesh Generation (PMESH) Project is to develop a unique mesh generation system that can construct large 3-D meshes (up to a billion elements) on MPPs. Such a capability will remove a critical roadblock to unleashing the power of MPPs for physical analysis and will put LLNL at the forefront of mesh generation technology. PMESH will ``front-end`` a variety of LLNL 3-D physics codes, including those in the areas of electromagnetics, structural mechanics, thermal analysis, and hydrodynamics. The DSI3D and DYNA3D codes are already running on MPPs. The primary goal of the PMESH project is to provide the robust generation of large meshes for complicated 3-D geometries through the appropriate distribution of the generation task between the user`s workstation and the MPP. Secondary goals are to support the unique features of LLNL physics codes (e.g., unusual elements) and to minimize the user effort required to generate different meshes for the same geometry. PMESH`s capabilities are essential because mesh generation is presently a major limiting factor in simulating larger and more complex 3-D geometries. PMESH will significantly enhance LLNL`s capabilities in physical simulation by advancing the state-of-the-art in large mesh generation by 2 to 3 orders of magnitude.

  6. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  7. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  8. Portable code development in C

    SciTech Connect (OSTI)

    Brown, S.A.

    1990-11-06

    With a new generation of high performance computers appearing around us on a time scale of months, a new challenge for developers of simulation codes is to write and maintain production codes that are both highly portable and maximally efficient. My contention is that C is the language that is both best suited to that goal and is widely available today. GLF is a new code written mainly in C which is intended to have all of the XRASER physics and run on any platform of interest. It demonstrates the power of the C paradigm for code developers and flexibility and ease of use for the users. Three fundamental problems are discussed: the C/UNIX development environment; the supporting tools and libraries which handle data and graphics portability issues; and the advantages of C in numerical simulation code development.

  9. Building Codes Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes Resources Building Codes Resources Some commercial and/or residential construction codes mandate certain energy performance requirements for the design, materials, and equipment used in new construction and renovations. State-wide minimum codes may be amended by local jurisdictions to be more stringent if energy performance requirements are lacking or liberal. Find building codes resources below. DOE Resources Building Energy Codes Program: Resource Center Building Energy Codes Program:

  10. Gyrokinetic Toroidal Code: a 3D Parallel Particle-in-Cell Code to Study Microturbulence in Magnetized Plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    benchmarking and optimizing GTC on High Performance Computers Stéphane Ethier Princeton Plasma Physics Laboratory NERSC Users' Group meeting June 2006 Work Supported by DOE Contract No.DE-AC02-76CH03073 and by the DOE SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. The Gyrokinetic Toroidal Code * 3D particle-in-cell code to study microturbulence in magnetically confined fusion plasmas. * Solves the gyro-averaged Vlasov equation. * Gyrokinetic Poisson

  11. ETR/ITER systems code

    SciTech Connect (OSTI)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  12. New Code Compliance Briefs Assist in Resolving Codes and Standards...

    Energy Savers [EERE]

    Codes and Standards Concerns in Energy Innovations February 24, 2016 3:00PM to 4:30PM EST The Building America Program is hosting a free webinar that will provide an overview ...

  13. Building Energy Codes Program (BECP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program (BECP) 2015 Building Technologies Office Peer Review David Cohan, david.cohan@ee.doe.gov U.S. Department of Energy BECP Structure Building Energy Codes Program Development Regulatory Technical Assistance Rulemaking Adoption Compliance Statutory Requirements 2 BECP Budget FY 2015 $5.59M + FOA budget ≈$2M/yr 3 $800,000 $825,000 $5,607,000 Development Adoption Compliance Goal Reduce energy use in buildings subject to energy codes. Impacts: * Mid-term: By 2020,

  14. II.CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 II.CONTRACT ID CODE ~AGE 1 of AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT PAGES AC 5. PROJECT NO. (If applicable) 3. EFFECTNE DATE 2. AMENDMENTfMODIFICA TION NO. 4. REQUISITIONIPURCHASE REQ. NO. See Block 16c. NOPR 7. ADMINISTERED BY (If other than Item 6) CODE 05008 6. ISSUED BY CODE 05008 U.S. Department of Energy National Nuclear Security Administration U.S. Department of Energy National Nuclear Security Administration P.O. Box 2050 Oak Ridge, TN 37831 P.O. Box 2050 Oak Ridge, TN

  15. Stretch/Reach Codes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stretch/Reach Codes Stretch/Reach Codes This webinar covered stretch codes, particularly some that are coming in the form of green codes. Transcript PDF icon Presentation More Documents & Publications Green Codes and Programs Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Effective O&M Policy in Public Buildings

  16. Product Service Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Service Codes @ Headquarters Product Service Codes @ Headquarters A listing of Product Service Codes used at Headquarters Procurement Services PDF icon Produce Service Codes @ Headquarters.pdf More Documents & Publications NAICS Codes @ Headquarters Federal Reporting Recipient Information Federal Reporting Recipient Information

  17. code | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 14 April, 2014 - 09:48 National Day of Civic Hacking code community data Event hacking international national OpenEI The National Day of...

  18. Stone's code reveals Earth's processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stone's code reveals Earth's processes Stone's code reveals Earth's processes The returning student researches carbon sequestration to determine the best methods to capture the greenhouse gas that increases global warming. August 27, 2013 Ian Stone At the Lab's Earth and Environmental Sciences (EES) Division, Stone helps monitor movement of Earth's crust while predicting the effects of these events on the environment. He uses his photographic lens to record the effects of a more personal

  19. Edge equilibrium code for tokamaks

    SciTech Connect (OSTI)

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  20. The Integrated TIGER Series Codes

    Energy Science and Technology Software Center (OSTI)

    2006-01-15

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with anmore » input scheme based on order-independent descriptive keywords that makes maximum use of defaults and intemal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  1. Appliance Standards and Building Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Manager Presentation Appliance Standards and Building Codes John Cymbalsky U.S Department of Energy - Building Technologies Office john.cymbalsky@ee.doe.gov 202.287.1692 2 | Building Technologies Office eere.energy.gov Appliance Standards and Building Codes Program Goals Appliance Standards Program Goals Provide cost-effective energy savings through national appliance and equipment standards: Issue 23 final rules by end of FY2015 Deliver at least 1 qBtu of savings annually by 2030

  2. electromagnetics, eddy current, computer codes

    Energy Science and Technology Software Center (OSTI)

    2002-03-12

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  3. NEEP Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEEP Building Energy Codes Project 2014 Building Technologies Office Peer Review MISSION Accelerate the efficient use of energy in the Northeast and Mid-Atlantic Regions Carolyn Sarno, csarno@neep.org Northeast Energy Efficiency Partnerships (NEEP) Project Summary Timeline: Start date: September 1, 2012 Planned end date: August 31, 2015 Key Milestones 1. Rhode Island Code Compliance Initiative, December 2012 2. Massachusetts 2012 IECC Adoption (July 1, 2013) Budget: Total DOE $ to date: $216,500

  4. Example of Environmental Restoration Code of Accounts

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

  5. Nevada Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Nevada Administrative Code Citation Nevada Administrative Code (2014)....

  6. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  7. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  8. Laboratory Equipment Donation Program - LEDP Widget Code

    Office of Scientific and Technical Information (OSTI)

    Widget Inclusion Code Copy the code below and paste it to your website or blog: