Sample records for zhou china energy

  1. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

  2. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

  3. BULLETIN OF SCIENCE, TECHNOLOGY & SOCIETY / April 2002Zhou, Byrne / RURAL SUSTAINABILITY Renewable Energy for Rural

    E-Print Network [OSTI]

    Delaware, University of

    electrification is now and will remain an essential element for rural development in China and other developingBULLETIN OF SCIENCE, TECHNOLOGY & SOCIETY / April 2002Zhou, Byrne / RURAL SUSTAINABILITY Renewable Energy for Rural Sustainability: Lessons From China Aiming Zhou John Byrne University of Delaware Rural

  4. NREL: Energy Analysis - Ella Zhou

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-Giles PhotoElla Zhou Photo

  5. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China Nan Zhou,Commercial Building Energy Consumption in China* Nan Zhou, 1whether and how the energy consumption trend can be changed

  6. Wanfang Zhou | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-IndiaVALUE STUDY4, 2009Department of, 2003

  7. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    China. ” Energy& Buildings 40 (12): 2121-2127. Zhou N. ,Scenarios of Commercial Building Energy Consumption inbuilding energy retrofits, and building energy control

  8. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    China. ” Energy& Buildings 40 (12): 2121-2127. Zhou N. ,Scenarios of Commercial Building Energy Consumption inbuilding energy retrofits, and building energy control

  9. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Nuclear Safety Administration (NNSA) (Zhou et al. , Anothernuclear companies as China’s NNSA lacks independence andAs mentioned previously, the NNSA has limited staffing

  10. Free Energy Guided Sampling Ting Zhou and Amedeo Caflisch*

    E-Print Network [OSTI]

    Caflisch, Amedeo

    Free Energy Guided Sampling Ting Zhou and Amedeo Caflisch* Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland *S Supporting Information ABSTRACT: A free energy-guided sampling dynamics. Using the cut-based free energy profile and Markov state models, FEGS speeds up sampling

  11. Downlink Base Station Cooperation with Energy Jie Gong, Sheng Zhou, Zhenyu Zhou, Zhisheng Niu

    E-Print Network [OSTI]

    energy source, and the flexibility of network deployment without power line, which also reduces the cost System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China are of different energy arrival rates, in each transmission block, the time is divided into to fractions, i.e., one

  12. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    refer to IEA (2007), World Energy Outlook 2007: China andIEA (2007), World Energy Outlook 2007: China and India

  13. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Energy Regulation ..power reactor (AP-1000) 2. Energy Regulation China’s energys Renewable Energy Law and Regulations, Center for Renewable

  14. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    s Energy Administration .30same time, the National Energy Administration has agreed toRegulation China’s energy administration has operated in a

  15. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    2-1). In addition to attaining oil resources, China’s energyWith limited domestic oil resources, China’s major oilgrowth, limited crude oil resources and the late development

  16. China Energy Efficiency Round Robin Testing Results for Room

    E-Print Network [OSTI]

    LBNL-3502E China Energy Efficiency Round Robin Testing Results for Room Air Conditioners Nan Zhou Berkeley National Laboratory is an equal opportunity employer. #12;i Table of Contents I. Air Conditioner.......................................................................................................................... 6 I.2.1 Necessity for Air Conditioner Round Robin Testing

  17. China Energy Primer

    SciTech Connect (OSTI)

    Ni, Chun Chun

    2009-11-16T23:59:59.000Z

    Based on extensive analysis of the 'China Energy Databook Version 7' (October 2008) this Primer for China's Energy Industry draws a broad picture of China's energy industry with the two goals of helping users read and interpret the data presented in the 'China Energy Databook' and understand the historical evolution of China's energy inustry. Primer provides comprehensive historical reviews of China's energy industry including its supply and demand, exports and imports, investments, environment, and most importantly, its complicated pricing system, a key element in the analysis of China's energy sector.

  18. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Commission (NDRC), China, http://zhangguobao.ndrc.gov.cn/of Land and Resources, China, January 19, 2009, http://NewsShow.asp? NewsID=10650. 6 China Energy Group (October

  19. A Low Carbon Development Guide for Local Government Actions in China

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Development Guide for Local Government Actions in China Nina Zheng, Nan Zhou, Lynn Price and Stephanie Ohshita China EnergyDevelopment Guide for Local Government Actions in China Nina Zheng, Nan Zhou, Lynn Price and Stephanie Ohshita China Energydevelopment for two main reasons. The first is that local food production can lower energy

  20. Theory of Free Energy and Entropy in Noncovalent Binding Huan-Xiang Zhou*,

    E-Print Network [OSTI]

    Weston, Ken

    Theory of Free Energy and Entropy in Noncovalent Binding Huan-Xiang Zhou*, and Michael K. Gilson, Rockville, Maryland 20850 Received December 23, 2008 Contents 1. Introduction 4092 2. Free Energy, Partition.4. Solvation and a Temperature-Dependent Energy Function 4096 3. Binding Free Energy and Binding Constant 4096

  1. Total energy evaluation in the Strutinsky shell correction method Baojing Zhou and Yan Alexander Wanga

    E-Print Network [OSTI]

    Wang, Yan Alexander

    Total energy evaluation in the Strutinsky shell correction method Baojing Zhou and Yan Alexander February 2007; accepted 12 June 2007; published online 10 August 2007 We analyze the total energy evaluation in the Strutinsky shell correction method SCM of Ullmo et al. Phys. Rev. B 63, 125339 2001 , where

  2. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    Petroleum, 1995. China's biomass, solar, wind, tidal, anda focus of China's rural power development, with solar waterPassive solar design has been incor- II-6 China Energy

  3. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    energy in China’s overall energy mix, in February 2005 thehalf of the nation’s energy mix (Figure 2-3). Figure 2-3energy conversion has only slightly increased since 1980 with an increase of only 2.6 Mt, after overall fuel mix

  4. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    Growth of China's Total Primary Energy Production (TPE) byFuel (Mtce) Primary Energy Production (Mtce) AAGR Coal Rawof China's Total Primary Energy Production (Mtce) AAGR Total

  5. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    The Petroleum Resources of China. Washington D.C. , U.S.U.S. Department of Energy. A-4 China Energy Databook EnergyImproved Biomass Stoves in China: How Was It Done? E W C / E

  6. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    The benefits and costs of China’s hydropower: Development orpower in China: A case study of nonrenewable energy cost andCost of rapeseed-based biodiesel as alternative energy in China. ”

  7. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [Energy Research Inst., Beijing, BJ (China)

    1992-12-31T23:59:59.000Z

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises` investment funds is directed towards providing housing and social services for workers and their families.

  8. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    includes natural crude and shale oil. Source: China Energyincludes natural crude and shale oil. U Converted based onincludes natural crude and shale oil. Source: China Energy

  9. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. (eds.) (Lawrence Berkeley Lab., CA (United States)); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi (eds.) (Energy Research Inst., Beijing, BJ (China))

    1992-11-01T23:59:59.000Z

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  10. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    Commercial Energy Consumption China TX-12 India Japan USAEnergy Consumption by Source, 1992 I.Mtce Country China India Japan USAEnergy Consumption by Source, 1992 I.Mtce Country Coal Liquid Gas China India* Japan USA

  11. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    containing monthly energy production statistics] ChinaReserves Chapter IL Energy Production Chapter III. EnergyCountries CHAPTER II. ENERGY PRODUCTION 1. Primary Energy

  12. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. (eds.) (Lawrence Berkeley Lab., CA (United States)); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi (eds.) (Energy Research Inst., Beijing, BJ (China))

    1992-01-01T23:59:59.000Z

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises' investment funds is directed towards providing housing and social services for workers and their families.

  13. Theory of Free Energy and Entropy in Noncovalent Binding HUAN-XIANG ZHOU AND MICHAEL K. GILSON

    E-Print Network [OSTI]

    Weston, Ken

    S1 Theory of Free Energy and Entropy in Noncovalent Binding HUAN-XIANG ZHOU AND MICHAEL K. GILSON 1 in a form that supports the present formulation of the theory of noncovalent binding. The free energy, F, provides a measure of the stability of a system at thermal equilibrium: the lower the free energy

  14. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    and subsidies initiated in the last few years, China’s solarChina has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar,

  15. Hybrid Energy Storage System Integration For Vehicles , Hai Zhou

    E-Print Network [OSTI]

    Zhou, Hai

    . Existing in-vehicle Lithium-ion battery systems are bulky, expensive, and unre- liable. Energy storage- plementary energy storage technologies, e.g., Lithium-ion batteries and ultracapacitors. Using physical- sign General Terms Algorithms, Design, Experimentation Keywords Energy Storage System, Battery

  16. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    4. Solar PV Cell Production and Installed Capacity, 2000-23 Figure 12. China's Hydropower Installed Capacity, 1980-4 Table 2. China Installed Capacity for Alternative Energy

  17. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    2008) 5 Figure 1-6 China’s SolarFigure 1-6). Figure 1-6 China’s Solar Resources 3,200hs andin rural areas. China has abundant solar resources that can

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    energy in China. ” Renewable Energy 36 (5): 1374-1378. Chen,GoC/World Bank/GEF China Renewable Energy Scale-up Programwind power systems. ” Renewable Energy 35: 218-225. Lechon

  19. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    Research Institute, 1994; LDC Energy Database, Internationalof China 1994; India — LDC Energy Database, InternationalNational Laboratory (1995). LDC Energy Database. JIA

  20. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    of China's Total Primary Energy Production by Source (1950-AAGR EJ Primary Energy Production (Mtce) Coal Oil NaturalRenewables Total Primary Energy Production by Source Shares*

  1. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    scrap metal processors. On the other hand, China still uses considerably more energy than the steel industries

  2. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Fridley, D.G.; Levine, M.D. [eds.

    1996-06-01T23:59:59.000Z

    The response to the first edition of the China Energy Databook was overwhelmingly positive, and has encouraged us to issue this revised, updated, and expanded edition. It has been a natural counterpart to the Energy Analysis Program`s continuing program of collaborative research with the Energy Research Institute. No other current reference volume dedicated to China`s energy system contains a similar variety and quality of material. We have revised some of the categories and data that appeared in the old volume. The adjustment for energy consumption in the transportation sector, for instance, has been slightly changed to include some fuel use in the commercial sector, which was previously left out. As another example, natural gas consumption statistics in the first edition greatly overstated electric utility use; we have rectified that error. Some tables have changed as statistical collection and reporting practices change in China. Figures on gross output value by sector stop with 1992, and economic output in subsequent years is covered by various measures of value-added, such as national income and gross domestic product.

  3. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    energy use. China’s Sustainable Energy Future Summary next31 -ii- China’s Sustainable Energy Future Executive Summarystudy, entitled China’s Sustainable Energy Future: Scenarios

  4. Congrs SHF : Energies Marines Renouvelables 2013, Brest, 09-10 octobre 2013 Zhibin Zhou LISSAGE SUPERCAPACITIF DE LA PUISSANCE PRODUITE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Control of a Grid-Connected Marine Current Turbine System Using Supercapacitors Zhibin Zhou1,2 , Franck, the power limitation control will be applied. In the second step, Supercapacitor (SC) Energy Storage System, supercapacitor. I. INTRODUCTION During short-time period, swell waves are the main cause for variations

  5. China's Pathways to Energy Security

    E-Print Network [OSTI]

    Beard, Steven; Caruana, Craig; Coats, Charles; Haguewood, Robert; Lee, Jong-Hwan; Morgan, Broderick; Murray, Joshua; Riedell, Michael

    2010-01-01T23:59:59.000Z

    Chinese Bilateral Investment/Projects Involved Countries Projects Year China-Kazakhstan Oil pipeline (Atasu-Alashankou ) Gas pipeline China offers $10 bln loan Will complete in 2011 Completed in 2009 For future oil supply China-Turkmenistan Gas pipeline... that China can directly import energy from, bypassing Russia Chinese ventures in Cen. Asia: Kazakh-China oil pipeline (finished Dec. 2009) (Garrison 47) Could increase Chinese imports from this country from their current 1% of total imports to around 15...

  6. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    problems; the China Sustainable Energy Program (funded byFoundation's China Sustainable Energy Program commissionedFoundation (China Sustainable Energy Program) became major

  7. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Will Start Its State Oil Reserve, JOGMEC, February 4, 2005.s Proved Oil Reserves (2008) . 215 Table 2-3 China’s Current Strategic Oil Reserve

  8. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    continued growth of its coal- dominated energy system, Chinasectoral end use from coal China Energy Databook IX-3 (TableAND EXPORTS Net Energy Exports Coal Imports and Exports by

  9. China Energy Databook. Revision 4

    SciTech Connect (OSTI)

    Sinton, J. E.; Fridley, D. G.; Levine, M. D.; Yang, F.; Zhenping, J.; Xing, Z.; Kejun, J.; Xiaofeng, L.

    1996-09-01T23:59:59.000Z

    The Energy Analysis Program at LBL first became involved in Chinese energy issues through a joint China-US symposium on markets and energy demand held in Nanjing Nov. 1988. EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. It was decided to compile, assess, and organize Chinese energy data. Primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system; thus the primary criterion was to relate the data to the structure of energy supply and demand in the past and to indicate probable developments (eg, as indicated by patterns of investment). Caveats are included in forewords to both the 1992 and 1996 editions. A chapter on energy prices is included in the 1996 edition. 1993 energy consumption data are not included since there was a major disruption in energy statistical collection in China that year.

  10. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    Total Crude Oil Imports: 239 Mt World's Oil Consumption (consumption - Urban Statistical Difference Appendix 3: Energy Balance/China 2010 (cont’d) Mtce Crude Oilconsumption - Urban Other Statistical Difference Appendix 3: Energy Balance/China 2010 (cont’d) Physical Quantity Crude Oil

  11. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Chun (2008), China’s Wind-Power Generation Policy and Market67 Figure 2-29 Wind Power Generation Capacity by Province (By 2010, on-grid wind power generation capacity will reach 5

  12. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    42 Figure 2-11 Crude Oil Production by Oilfield (1980-Stabilize the increase in crude oil production and implementSinopec CNOOC China’s crude oil production increased from

  13. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    7 Table 1-3 China’s Exploitable HydropowerGW of technically exploitable hydropower reserves capable ofTable 1-3). The major hydropower resources are in Southwest

  14. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    42 Figure 2-11 Crude Oil Production by Oilfield (1980-for 44.8% of China’s total oil production in 2006, a drop ofgas, a by-product of oil production, has been used primarily

  15. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Strategic Research Center of Oil and Gas Resources, Ministryand Myanmar Signed on Construction of Oil and Gas PipelineAgreements”, China Oil and Gas Weekly News, China5E

  16. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    full end-use model of China’s energy economy for 2020.Assessed ways for China to meet its goal of reducing energyCenter (BSDC) Beijing University China Academy of Building

  17. The Second US-China Energy Efficiency Forum: Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Second US-China Energy Efficiency Forum: Energy Management Standards and Implementation The Second US-China Energy Efficiency Forum: Energy Management Standards and...

  18. China's fuel gas sector: History, current status, and future prospects Chi-Jen Yang a,c,*, Yipei Zhou b

    E-Print Network [OSTI]

    Jackson, Robert B.

    in cylinders and can- isters in rural areas. Natural gas consumption is increasing throughout China, particularly as a cooking fuel. Expanding the production and supply of natural gas in China faces many challenges. In particular, China's controls on natural gas prices have deterred investment in exploration

  19. China energy databook. 1992 Edition

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [Energy Research Inst., Beijing, BJ (China)

    1992-11-01T23:59:59.000Z

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  20. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Technology. ” London: Renewable UK. Available at: http://tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi." Renewable and Sustainable Energy

  1. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    renewable energy such as solar and wind, policy support forWind Energy Development In spite of the recent boom of China’s wind industry following various supporting policiesWind Energy Development . 27 3.5.1 Grid Connection and Integration Challenges .. 28 3.5.2 Technical Challenges to Wind Development 28 3.5.3 Policy

  2. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    India i Japan Electricity Q i USA G a s China EnergyIndia Japan USA FSUf 3S4.8 Liquid Gas Electricity Heat fiIndia Japan USA FSU World f H Hydro- electricity Uranium §

  3. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15T23:59:59.000Z

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  4. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    anthracite, and lignite and brown coal make up the remainingCoal Anthracite Lignite and Brown Coal Source: China Energyof Coal in 2006 Lignite and Brown Coal Anthracite Bituminous

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    wind power in China: A case study of nonrenewable energy costand cost- sharing arrangement mandated in the Renewable Energy Law and its impact on grid connections for new wind

  6. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    its remaining potential as a renewable energy source and itsrenewable energy source and with abundant solar resources in China, particularly in the western regions, solar power generation has very high growth potential

  7. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    6 6. Renewable Energy132 5. Renewable EnergyUnited States National Renewable Energy Laboratory, http://

  8. Sustainable Energy Future in China's Building Sector 

    E-Print Network [OSTI]

    Li, J.

    2007-01-01T23:59:59.000Z

    policies; this will generate significantly benefits given the fast- growing urbanization process and the number of buildings that will be constructed in the next 20 years in Chinese cities. ENERGY USE HISTORY AND OUTLOOK IN CHINA China...://www.energy.gov/ EIA. International Energy Outlook.2006. DOE, Washington. 2006. ERI. 2003. China’s Sustainable Energy Future. European Commission Directorate General for Energy and Transport. 2001. Information and Communication. Fisher-Vanden et al...

  9. Recent changes in the summer precipitation pattern in East China and the background circulation

    E-Print Network [OSTI]

    for seasonal forecasting. A prominent interdecadal shift in the East China rainfall pattern happened of Sciences, Beijing 100029, China e-mail: zhuyl@mail.iap.ac.cn W. Zhou School of Energy and Environment, CityRecent changes in the summer precipitation pattern in East China and the background circulation

  10. U.S.-China Energy Efficiency Forum

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Second U.S.-China Energy Efficiency Forum, held May 5-6, 2011 in the U.S. at Lawrence Berkeley National Laboratory in Berkeley, California, highlighted U.S.-China cooperation on energy...

  11. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    international cooperation in energy use related projects. 3) Establishing Energy Conservation Design Codes

  12. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

  13. Urban land-use effects on groundwater phosphate distribution in a shallow aquifer, Nanfei River basin, China

    E-Print Network [OSTI]

    Zhan, Hongbin

    basin, China Jiazhong Qian & Lulu Wang & Hongbin Zhan & Zhou Chen Abstract Groundwater, surface water

  14. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    and costs in China's electricity sector,” Energy Policy 38 (62 5.1 Electricity SectorSector Analysis 5.1 Electricity Sector Introduction China’s

  15. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    Tidal power stations 8.5 MWe Small-scale hydropower stations 14.41 G W Source: China Energytidal power have already been exploited on a small scale, but the capital- intensive nature of technologies for harnessing renew- able energy

  16. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    Advertising Co. China Automotive Industry Corporation andQiche Gongye Nianjian (China Automotive Industry Yearbook).Board of the China Automotive Industry Yearbook. Editorial

  17. China Renewable Energy College | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New Energy Ltd CNEChina

  18. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    renewable energy for use in off-grid rural and remote areassurcharge also subsidizes off-grid public renewable energy14.14 GW of capacity, 5 off-grid public renewable energy

  19. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Resources Chapter 1 1. Coal Energy Reserves and ResourcesProduction Policy 1.1. Coal Energy Production Coal is a100 million tons of coal equivalent energy by 2010. The

  20. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    of wind energy, in July 2009, the NDRC set benchmark pricesWind Power Price Benchmarks (August 1, 2009 onward) 148 CHAPTER 6 ENERGY5 Energy Prices Table 5-18 Successful Bid Prices for Wind

  1. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Wind Power Industry Dec. 2006 Provisional Regulation on Renewable Energy Surcharge Feb.2007 Balancing

  2. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    and Energy Efficiency for Heavy Industry in China, 1996-and energy efficiency for heavy industry (defined as ferrousand Energy Efficiency for Heavy Industry in China, 1996-2007

  3. GuangZhou ZhongKe HengYuan Energy Tenchnology Co Ltd ZKenergy | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUKHydrogen CompanyGroSolarSamca Jump

  4. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Biogas (Gm3) PV (MW) Solar water heater (Mm2) Bio-ethanol (through the use of solar water heaters. Photovoltaic (PV)2 Energy Production solar water heaters and solar heated

  5. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Primary Energy Consumption (Shares) Coal Crude Oil Naturalconsumption doubled from 5.1 to 10.53 Mtce , while both crude oilfuel consumption in 2006. The sector’s use of crude oil

  6. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    122 Figure 5-6 Retail Gasoline Prices in SelectedEnergy Prices Figure 5-6 Retail Gasoline Prices in Selectedwholesale and retail power prices Price cut for gasoline,

  7. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    7 Figure 3. Map of China's Solar Resourceand Wang Sicheng, 2007, “China Solar PV Report. ” Beijing:tower. Figure 3. Map of China's Solar Resource Distribution

  8. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    31. China's Electricity Generation Output by Fuel under33. China's Electricity Generation Output by Fuel under31. China's Electricity Generation Output by Fuel under

  9. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    and Runqing Hu, 2005, “Solar thermal in China: Overview andperspectives of the Chinese solar thermal market. ” RefocusProspectives for China’s solar thermal power technology

  10. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    32 Table 13. Total Resource Requirements for Hydropower23 Figure 12. China's Hydropower Installed Capacity, 1980-and costs of China’s hydropower: Development or slowdown? ”

  11. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    China demonstration energy- efficient commercial building”,China Demonstration Energy Efficient Office Building insideUS-China demonstration energy-efficient office building Peng

  12. Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative...

    Open Energy Info (EERE)

    Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name: Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China...

  13. China Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I E X U C H A I

  14. Energy Conservation in China North Industries Corporation

    E-Print Network [OSTI]

    You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

    . In some plants which have stable steam consumption we have established small scale power and steam cogeneration. This has improved boilers' efficiencies and utilization of energy. For further reduction oil firing, we have been studying on alternative... ENERGY CONSERVATION IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy...

  15. China energy issues : energy intensity, coal liquefaction, and carbon pricing

    E-Print Network [OSTI]

    Wu, Ning, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    In my dissertation I explore three independent, but related, topics on China's energy issues. First, I examine the drivers for provincial energy-intensity trends in China, and finds that technology innovation is the key ...

  16. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    Monitoring of Direct Energy Consumption in Long-Term2007. “Constraining Energy Consumption of China’s LargestProgram: Reducing Energy Consumption of the 1000 Largest

  17. Potential of geothermal energy in China

    E-Print Network [OSTI]

    Sung, Peter On

    2010-01-01T23:59:59.000Z

    This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

  18. A review of China`s energy policy

    SciTech Connect (OSTI)

    Yang, F. [Lawrence Berkeley Lab., CA (United States); Duan, N. [Environment Management Institute, Beijing (China); Zhijie, H. [Energy Research Institute, Beijing (China)

    1994-12-01T23:59:59.000Z

    In 1992 China`s primary energy production reached 1075 million tons of coal equivalent by far the largest in the developing world. Because coal is the primary commercial fuel, rapid growth of carbon dioxide emissions is certain. Thus the attitude of the Chinese government toward energy and environmental issues becomes increasingly important to those involved in the study and analysis of global climate change and energy issues. This report is intended to provide a basic understanding of the development of China`s energy policymaking over the past four decades. The paper first reviews institutional development and policymaking and then describes the transition to the market-oriented system. While energy has consistently received a great deal of attention from the central government, the institutional basis for setting and implementing policies has shifted often. Reforms during the past 15 years have been incremental, piecemeal, and occasionally contradictory, but overall have freed a large portion of the energy industry from the strictures of a planned economy and laid the basis for broad price liberalization. Responsibility for energy planning is now dispersed among a number of organizations, rendering coordination of energy development difficult. Economic reform has rendered obsolete most of the policy-implementation means of the planning era. Although the new tools of central control are not fully effective, the trend toward decentralized decisionmaking has been strengthened. The report ends with a summary of energy forecasts used by Chinese policymakers, highlighting current policy goals and the issues that will shape future policy.

  19. Children on the Margins: The Global Politics of Orphanage Care in Contemporary China

    E-Print Network [OSTI]

    Wang, Leslie Kim

    2010-01-01T23:59:59.000Z

    Adoption of Female Children in Contemporary Rural China."The China Journal 56: 63-82. -----.in Contemporary Rural China." Journal of Family Issues Zhou,

  20. Wuxi, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin:WorldWorldIowa:Wuxi, China: Energy

  1. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroup Name China Energy

  2. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroup Name China EnergyLBNL

  3. China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country ChileDialogue,China: Energy

  4. Guangzhou, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou, China: Energy Resources Jump to:

  5. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    TSINGHUA - MIT China Energy & Climate Project An Integrated Assessment of China's Wind Energy to: discover new interactions among natural and human climate system components; objectively assess future; and improve methods to model, monitor and verify greenhouse gas emissions and climatic impacts

  6. China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...

    Open Energy Info (EERE)

    China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing...

  7. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    239 Mt World's Oil Consumption (2010) US China Japan IndiaKorea Canada Other Total World Oil Consumption: 4,028 MtTotal China Oil Consumption: 445 Mt Natural Gas Production

  8. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    China Oil Use Refinery Loss/Self Use Residential Power Generation/Heat Commerce, Const. , Agriculture, Gov.

  9. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    China Oil Use Refinery Loss/Self Use Residential Power Generation/Heat Commerce, Const. , Agriculture, Gov.

  10. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01T23:59:59.000Z

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  11. Beijing, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County,NewPowerSunpuBeijing, China:

  12. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    factors for China’s coal generation results largely from therelative share of coal generation decreases significantlycompetitive with coal-fired generation (Wang, 2010).

  13. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    China Energy and CO2 Emissions Report (CEACER). Beijing:Oil consumption and CO2 emissions in China’s road transport:Growth, Oil Demand and CO2 Emissions through 2050. Report

  14. China Photoelectricity Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New Energy Ltd CNE JumpChina

  15. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    TSINGHUA - MIT China Energy & Climate Project Will economic restructuring in China reduce trade to: discover new interactions among natural and human climate system components; objectively assess future; and improve methods to model, monitor and verify greenhouse gas emissions and climatic impacts

  16. China National CDM Board | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChinaChina

  17. China Zhaodong Jianye Fuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnitedChina Zhaodong

  18. China s Green Beat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnitedChinaPVChina s Green

  19. Energy for 500 million Homes: Drivers and Outlook for

    E-Print Network [OSTI]

    -up analysis of residential building energy consumption in China using data from a wide variety of sourcesLBNL-2417E Energy for 500 million Homes: Drivers and Outlook for Residential Energy Consumption and Outlook for Residential Energy Consumption in China Nan Zhou*, Michael A. McNeil, Mark Levine Keywords

  20. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    from geothermal and wind generators is negligible in thebeen so designated. Wind generators have also been used toand total capacity of all wind generator systems in China is

  1. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    the China National Petrochemical Corporation, or Sinopec)for fertilizers and petrochemical products, feedstock usesrapid con- struction of petrochemical processing facilities

  2. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    Heating Supply Coal Washing Coking Petroleum Refineries GasHeating Supply Coal Washing Coking Petroleum Refineries GasRefueling in China Coal Washing Coking Petroleum Refineries

  3. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    Xinjiang Liaoning Inner Mongolia Gansu Hebei Beijing Qinghaiin China (2010) Inner Mongolia Shanxi Shaanxi Henan GuizhouIndonesia Australia Vietnam Mongolia Russia South Africa

  4. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    GOV 80% _t 160%-J A .E V) Transport P7| Construction f~] Commerce |f | Industry Agriculture X-J6 I960 China

  5. Elmore Model for Energy Estimation in RC Trees Quming Zhou and Kartik Mohanram

    E-Print Network [OSTI]

    Mohanram, Kartik

    are used to reduce noise and delay, self-heating (Joule- heating) energy dissipation along the interconnect that as sources switch faster, the interconnect consumes more energy and this can impact interconnect self-heating

  6. The China-in-Global Energy Model

    E-Print Network [OSTI]

    Qi, T.

    The China-in-Global Energy Model (C-GEM) is a global Computable General Equilibrium (CGE) model that captures the interaction of production, consumption and trade among multiple global regions and sectors – including five ...

  7. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    Regulation of T&D Costs in China [????? ????????]. Moderninstance 23 — in China investment costs for advanced coalassesses the benefits and costs of China’s proposed energy

  8. Hong-Cai (Joe) Zhou | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of

  9. Supercomputing and Energy in China: How Investment in HPC Affects Oil Security

    E-Print Network [OSTI]

    WILSON, Jordan

    2014-01-01T23:59:59.000Z

    relevant to China’s energy security challenge and thusTo state China’s energy security challenge briefly, an oilChina’s Quest for Energy Security (Santa Monica, CA: RAND

  10. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    2050 China Energy and CO2 Emissions Report. Science Press,Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cement

  11. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    potential of different solar PV technologies, including both2007, p. 28. Status of Solar PV Technology China has been anResearch, 2010. Solar PV technology applications in China

  12. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    been revised over time and small hydro currently is definedChina. Prior to 1990, small hydro in China was defined hydroand does not include small hydro, which are often not grid-

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    China. Prior to 1990, small hydro in China was defined hydrorevised over time and small hydro currently is defined asand does not include small hydro, which are often not grid-

  14. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    An evaluation of biomass co-firing in Europe. ” Biomass andprimarily in Europe. China have also developed small biomass

  15. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    Serbia and Montenegro Source: China Customs Bureau, 2002 Chapter 7, Imports and Exports China Energy

  16. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    South Korea Other Crude Oil Production by Region (1985-2010)North West Chinese Crude Oil Production by Regional SharesHenan Other Total Crude Oil Production: 209 Mt China's Crude

  17. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    South Korea Other Crude Oil Production by Region (1985-2010)West Chinese Crude Oil Production by Regional Shares EastHenan Other Total Crude Oil Production: 209 Mt China's Crude

  18. China energy databook. Revision 2, 1992 edition

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Liu, Feng; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

    1993-06-01T23:59:59.000Z

    The Energy Analysis Program at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues, we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US. In order to select appropriate data from what was available we established several criteria. Our primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system. A primary criterion was thus that the data relate to the structure of energy supply and demand in the past and indicate probable developments (e.g., as indicated by patterns of investment). Other standards were accuracy, consistency with other information, and completeness of coverage. This is not to say that all the data presented herein are accurate, consistent, and complete, but where discrepancies and omissions do occur we have tried to note them.

  19. China Power Equipment Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New Energy Ltd CNE

  20. China Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New Energy Ltd CNEChina Power

  1. China Shoto Plc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New Energy

  2. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andcan be measured using energy consumption per capita values.

  3. China's energy intensity and its determinants at the provincial level

    E-Print Network [OSTI]

    Zhang, Xin, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Energy intensity is defined as the amount of energy consumed per dollar of GDP (Gross Domestic Product). The People's Republic of China's (China's) energy intensity has been declining significantly since the late 1970s. ...

  4. China energy, environment, and climate study: Background issues paper

    E-Print Network [OSTI]

    Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

    2000-01-01T23:59:59.000Z

    Amoco Statistical Review of World Energy 1999. Available atI. Environmental Impacts of Energy Caprino, Luciano andas a result of changes in energy use in China’s Jiangsu

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    s reliance on grain-based fuel ethanol and its competitionanalysis of cassava-based fuel ethanol in China. ” Journalscale application of fuel ethanol in 1999 and continued

  6. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Trough Concentrating Solar Power Plant and Impacts of Keyof a 1.5 MW solar power tower plant in China. ” Renewablelarger commercial solar power tower plants in Northwestern

  7. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    curtail-chinas-coal- gasification-for-fuel-yet-conversion-Biogas and Biomass Gasification Liquid Biofuels Bioethanolcombustion, biomass gasification and biomass co-fired coal

  8. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    curtail-chinas-coal- gasification-for-fuel-yet-conversion-coal as a feedstock, coal gasification produces syngas whichCoal to Methanol Gasification Coal to Synthetic Methanol

  9. China BAK Battery Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050 PathwaysChina

  10. China City Investment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050OpenChina City

  11. China Enfi Enginnering Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China Electronic EngineeringChina Enfi

  12. China Gengsheng Minerals Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China Electronic EngineeringChina

  13. China Hydroelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChina Huadian New

  14. China-GHG Monitoring | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChinaInformation

  15. China-GHG Monitoring | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChinaInformationMonitoring

  16. Sandia National Laboratories: U.S.-China Clean Energy Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -China Clean Energy Research Center-Clean Vehicles Consortium Sandia Participated in the 3rd Annual Technology Forum of the U.S.-China Clean Energy Research Center - Clean Vehicles...

  17. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    forecast of energy demand underlying both scenarios does not take into consideration resource constraints which, in the case of ChinaChina’s oil reserve forecast and analysis based on peak oil models”, Energy

  18. Development of the Geothermal Heat Pump Market in China; Renewable Energy in China

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This case study is one in a series of Success Stories on developing renewable energy technologies in China for a business audience. It focuses on the development of the geothermal heat pump market in China.

  19. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    patterns of energy consumption, trends in saturation andand how the energy consumption trend could be changed in athe sectoral energy consumption trends in China in detail,

  20. Progress and Effect of Energy-Saving Standards in China

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the development of energy-saving standards in China, results of standards, and work highlights.

  1. China National Renewable Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChinaChinaOpenNational

  2. China Xining New Energy Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnited CleaningWindChina

  3. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    into three main categories: off-grid remote solar PV and PV-of the investment for off-grid remote PV projects subsidizedused in China for rural, off-grid electricity generation

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    51 Table 23. Biodiesel Producers by Productionexempt consumption tax on biodiesel. ” Reuters, 27 Decemberarticle/2010/12/27/us- china-biodiesel-idUSTRE6BQ2EM20101227

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    dish stirling technology with a parabolic reflector, China has only recently started exploring small-scale solardish/stirling engines and line- focusing Fresnel reflect systems (Wang, 2010). 2.5 Remaining Challenges to Solar

  6. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    estimating total offshore wind potential of 200 GW (Cheung,most of this offshore wind potential is located off China’sConstraints A potential resource constrain for wind power is

  7. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    2 Emissions per Total Primary Energy Supply (2008) tonne COStock Changes Total Primary Energy Supply Transfer The eastlarge consumers. Total primary energy supply equals to the

  8. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    2 Emissions per Total Primary Energy Supply (2009) tonnes COStock Changes Total Primary Energy Supply Transfer The eastlarge consumers. Total primary energy supply equals to the

  9. Industrial energy efficiency policy in China

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-05-01T23:59:59.000Z

    Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

  10. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    Intensity Trends: Primary Commercial Energy Consumption perEnergy Consumption Coal Consumption Shares, Selected Countries Energy Intensity Trends,energy consumption per unit of gross domestic product) of different national economies are problematic, intensity trends

  11. What can be learned from sequential multi-well pumping tests in fracture-karst media? A case study in Zhangji, China

    E-Print Network [OSTI]

    Zhan, Hongbin

    in Zhangji, China Jiazhong Qian & Hongbin Zhan & Jianfeng Wu & Zhou Chen Abstract A fracture-karst aquifer

  12. US-China Energy Efficiency Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartmentIndia Joint CenterUS-ChinaChina

  13. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    1989-1992 2. World Primary Commercial Energy Consumption, byLX-2. World Primary Commercial Energy Consumption by RegionLX-2. World Primary Commercial Energy Consumption by Region

  14. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    AAGR Total Primary Energy (Mtce) Coal Production (1985-2009)Physical Unit to Coal Equivalent For this energy form 1Total Primary Energy Supply Coke Coal Gas not Coke Other

  15. Key China Energy Statistics 2012

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    AAGR EJ Total Primary Energy (Mtce) Coal Production (1985-AAGR EJ Primary Energy Production (Mtce) Coal Oil Naturalby Fuel Shares Coal Oil Natural Gas Energy-Related CO 2

  16. An Anatomy of China's Energy Insecurity and Its Strategies

    SciTech Connect (OSTI)

    Kong, Bo

    2005-12-06T23:59:59.000Z

    China’s energy insecurity largely originates from its constrained availability, questionable reliability, and uncertain affordability of its oil supplies. The country’s fast industrialization and urbanization, together with demand for infrastructure and increasing popularity of automobiles, requires a lot of energy, but it consumes energy both intensively and inefficiently, threatening the environmental well-being of China and its neighbors. China’s risk aversion and poor energy policy making system further magnifies its perceptions of the low availability, reliability and affordability of oil imports, which further compounds its sense of energy insecurity. Distrustful of the market, and suspicious of other major energy players in the international market, the Chinese leadership relies on the state-centered approach, or economic nationalism, rather than a market approach to enhance its energy security. However, the country lacks not only an energy policy making system that can make and implement sound energy policies but also an energy market that relies on market prices to allocate energy resources efficiently. As a result of this domestic failure, China has pushed its national flagship companies to undertake a global scavenger hunt for energy while muddling along a messy road of energy reform at home. Setbacks in acquiring new sources of oil have validated the Chinese leadership’s belief that the international oil market is not free and China’s access to international oil is not guaranteed through the market. China’s problems in the international energy market are also perceived as evidence of attempts to prevent China from exerting international influence. China’s leadership is convinced that China should focus on areas where western capital is not heavily concentrated or where western influences are weak. With the recent revaluation of Chinese currency and growing economy, China has both the wherewithal and appetite to acquire more oil assets abroad. Both China and the United States stand at a critical juncture of history where China’s rise depends on reliable energy supplies which it increasingly imports from abroad and where the growing wealth of the United States is increasingly dependent upon China’s success. If China does not have energy security it’s 1.3 billion fuel-starved people will prevent the rest of the world from achieving energy security.

  17. China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    China’s Industrial Energy Consumption Trends and Impacts ofChina’s Industrial Energy Consumption Trends and Impacts ofs industrial energy consumption trends from 1996 to 2010

  18. China's Energy Management System Program for Industry

    E-Print Network [OSTI]

    Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

    2014-01-01T23:59:59.000Z

    En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 4 * Includes fuel for electricity generation and T&D losses ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... y En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 Total Non-OECD Total OECD China U.S. India 5 ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May...

  19. China's Energy Management System Program for Industry 

    E-Print Network [OSTI]

    Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

    2014-01-01T23:59:59.000Z

    En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 4 * Includes fuel for electricity generation and T&D losses ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... y En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 Total Non-OECD Total OECD China U.S. India 5 ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May...

  20. U.S.-China Clean Energy Cooperation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&DepartmentFurther the,EnergyChina

  1. Clean coal. U.S.-China cooperation in energy security

    SciTech Connect (OSTI)

    Wendt, D.

    2008-05-15T23:59:59.000Z

    This work discusses how coal fits into the strategies of the USA and China to attain energy security while avoiding adverse environmental impacts. It begins by describing China's policy choices for clean coal, before discussing the implications of a clean coal strategy for China. The U.S. choices in a coal-based strategy of energy security is then covered. Finally, a joint US-China clean coal strategy, including the technology sharing option, is discussed.

  2. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    2001. Zhongguo Qiche Gongye Nianjian (China Automotive Guideto the China Energy Databook, Distribution Version IndustryEditorial Board of the China Automotive Industry Yearbook.

  3. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    Board of the China Automotive Industry Yearbook. CCTV (Chinaof Energy. China Automotive Industry Corporation and theno. 2, 1994; China Automotive Industry Corporation, et

  4. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cementenergy savings and CO2 emission reduction potentials are

  5. China Huadian New Energy Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChina Huadian New Energy

  6. China New Energy Ltd CNE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New Energy Ltd CNE Jump to:

  7. China Stream Fund Solar Energy JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New EnergyEnergyor

  8. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    L ABORATORY China Energy Efficiency Round Robin TestingNeed to Improve the Energy Efficiency of Energy Consumingfor Implementing the China Energy Efficiency Label System (

  9. China Dialogue | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:

  10. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    1992 12. End Use Electricity Consumption by Sector, 1992 13.Sources) Per Capita Electricity Consumption, 1990 EnergyUrban Rural 2. Electricity Consumption Shares Year Urban TWh

  11. Key China Energy Statistics 2011

    E-Print Network [OSTI]

    Levine, Mark

    2013-01-01T23:59:59.000Z

    Others Total Total Crude Oil Production by Region (1985-North West Chinese Crude Oil Production by Regional SharesEnergy Production (Mtce) AAGR Coal Raw Crude Oil Primary

  12. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  13. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    Shares Country China India Japan USA Russian Federation Solid Chapter 9, International Comparisons Electricity Non-hydro renewable China Energy

  14. HydroChina Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei SungrowHelukabelHonitonHydroChina

  15. China 2050 Pathways Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050 Pathways

  16. China Carbon Finance | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050Open

  17. China-NREL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:InformationInformationLow CarbonNREL/China

  18. China Solar Tower Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolarCurtainChina Solar

  19. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    DER Technologies Cost Data in China (USD) Technologies Fixedin Northern China make the CHP system not cost-effective.for China -- a Regional Analysis of Building Energy Costs

  20. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    total primary energy will be supplied by alternative energy by 2030 with the 2030 electricity supply

  1. Taggart China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik IndustriesState

  2. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    Use in Electricity Generation Chapter IV, Energy ConsumptionIV-6 away from domestic use to fertilizer production and electricity generation.electricity generation for 1980-1984. Table IV-29. Total Oil

  3. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    Production, 1993 3. Crude Oil Production, 1993 4. Naturaland fall of Chinese oil production in the 1980s, in Energy1980-1992 13. Crude Oil Production by Oilfield, 1950-1994^

  4. China Clean Energy Resource Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050OpenChina

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Outer Continental Shelf Alternative Energy and Alternate Usealternative non-fossil and alternative energy technologiesbe effectively addressed and alternative energy development

  6. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Solar Water Heater Geothermal energy Biomass Pellets mil m2an increasingly important geothermal energy user in the lastin direct use of geothermal energy through ground source

  7. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    more expensive than coal and energy security concerns ofPetroleum Input Coal Input Total Energy Input EROEI Per MJOutput Efficiency Coal Electricity Total Energy Water (tons/

  8. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Solar collectors, tower receiver, energy storage systemCSP Solar Tower are distinguished as separate energy typesembodied energy and resource requirements for CSP tower to

  9. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    high average energy output to fossil fuel input ratio of 42analyze the life-cycle fossil fuel energy requirements andalternative energy source to fossil fuels. Since 2000,

  10. ECOtality China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europe GmbHEAECECOtality

  11. Natcore China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/AmesNSNanotectureNarayanpurNass

  12. Palcan China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    output by each alternative energy type from 2010 to 2030 isof each alternative energy technology type, an energy returntypes of PV power plants with CIS having the lowest water intensity of all alternative energy

  14. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  15. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Accessed 3 June 2011. Green Energy Information Network,Wheat Cassava Source: Green Energy Information Network 2011.

  16. ZBB China JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnan DiqingZ Group Steel HoldingZBB China

  17. China Export Partners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont:ChicotConsultants Place:China Export

  18. China Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont:ChicotConsultants Place:China Export

  19. China Innovation Investment Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont:ChicotConsultants Place:ChinaInvestment

  20. REpower North China Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,Jump to: navigation,REpower North China Ltd

  1. Environmental Stewardship: How Semiconductor Suppliers Help to Meet Energy-Efficiency Regulations and Voluntary Specifications in China

    E-Print Network [OSTI]

    Aizhen, Li; Fanara, Andrew; Fridley, David; Merriman, Louise; Ju, Jeff

    2008-01-01T23:59:59.000Z

    various years. Energy Information Administration. China:html. Energy Information Administration. Internationalchina.htm Energy Information Administration, China: Envi-

  2. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    and Projected Trends in Energy Consumption in China, 2000-Energy Consumption (Mtce) 2010 Baseline Target 2010 Current TrendsEnergy Consumption for the Top-1000 Energy-Consuming Enterprises Program Under Baseline, Target, and Current Trends

  3. Corporate Clean Energy Investment Trends in Brazil, China, India...

    Open Energy Info (EERE)

    Jump to: navigation, search Name Corporate Clean Energy Investment Trends in Brazil, China, India and South Africa AgencyCompany Organization Carbon Disclosure Project...

  4. China South Industries Group Corp CSG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New EnergyEnergyor ChinaChina

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    clean energy capacity with unprecedented investment in gridclean energy development. However, despite recent policies that have enabled extraordinary capacity and investment

  6. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    Kai. Motor System Energy Efficiency Practical Guide [M].products in ChinaEnergy efficiency standards and labelingWhite Paper – Energy Efficiency Status of Energy- Using

  7. An Anatomy of China's Energy Insecurity and Its Strategies

    E-Print Network [OSTI]

    PNNL-15529 An Anatomy of China's Energy Insecurity and Its Strategies December 2005 Bo Kong #12. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY and price shocks, and the lack of an energy policy making capacity constitute four dimensions of China

  8. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2012-01-01T23:59:59.000Z

    sources of total energy consumption data for China’s ironprovide national energy consumption data up to 2003. Thecollection after 2005 Energy consumption data by process in

  9. China Energy and Emissions Paths to 2030

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan; Ke, Jing; Hasanbeigi, Ali; Morrow, Bill; Price, Lynn

    2011-01-14T23:59:59.000Z

    After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech, though the 2020s is a likely turning point for both emission trajectories. Both emission pathways must meet all announced and planned policies, targets and non-fossil generation targets, or an even wider efficiency gap will exist. The savings potential under Max Tech varies by sector, but the industrial sector appears to hold the largest energy savings and emission reduction potential. The primary source of savings is from electricity rather than fuel, and electricity savings are magnified by power sector decarbonization through increasing renewable generation and coal generation efficiency improvement. In order to achieve the maximum energy savings and emission reduction potential, efficiency improvements and technology switching must be undertaken across demand sectors as well as in the growing power sector. From an economic perspective, the cost of conserved energy analysis indicates that nearly all measures for the iron and steel and cement industry are cost-effective. All 23 efficiency measures analyzed for the cement industry are cost-effective, with combined CO2 emission reduction potential of 448 Mt CO2. All of the electricity savings measures in the iron and steel industry are cost-effective, but the cost-effective savings potential for fuel savings measures is slightly lower than total technical savings potential. The total potential savings from these measures confirm the magnitude of savings in the scenario models, and illustrate the remaining efficiency gap in the cement and iron and steel industries.

  10. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    fall in China's coal use and energy intensity after 1995 wasLPG is a major energy source, while coal and electricity arewas the dominance of coal in the energy structure. From 51%

  11. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    Wind Energy Association (BWEA), 2005, “BWEA Briefing Sheet: Wind Turbineturbines with expected annual production capacity of 450 MW (Xinhua, 2011c). 3.5 Remaining Challenges for Wind Energy

  12. Country Report on Building Energy Codes in China

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar,

  14. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    development and transmission planning between the State Council, State Electricity Regulatory Council, grid companies, renewable energy developers and local

  15. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    CO2 Emissions Reduction from Energy Displaced by Additional Solar Water Heaters (Mt CO2) LPG Natural Gas Electricity

  16. China National BlueStar Group Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChinaChina MelamineChina

  17. China’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with China

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd

    2010-04-01T23:59:59.000Z

    This report includes an evaluation of China’s current activities and future direction in building energy efficiency R&D and its relevance to DOE’s R&D activities under the Building Technologies Program in the Office of Energy Efficiency and Renewable Energy. The researchers reviewed the major R&D programs in China including the so-called 973 Program, the 863 Program, and the Key Technology R&D Program1 as well as the research activities of major research institutes. The report also reviewed several relevant documents of the Chinese government, websites (including the International Energy Agency and national and local governments in China), newsletters, and financial information listed in the program documents and websites.

  18. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01T23:59:59.000Z

    China's 2008 Total CO 2 Emissions from Energy Consumption:10. China's 2008 Total CO 2 Emissions from Energy: Sectoral16 Table 11. China's 2008 CO 2 Emissions from Energy:

  19. Baoding, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagleyBangladesh: EnergyBanks,Baoding,

  20. The energy and CO2 emissions impact of renewable energy development in China*

    E-Print Network [OSTI]

    The energy and CO2 emissions impact of renewable energy development in China* Tianyu Qi, Xiliang: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;The energy and CO2 emissions impact of renewable February 2014 Keywords: China Renewable energy CO2 emissions CGE modeling a b s t r a c t China has adopted

  1. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    of thermosiphon solar water heaters. ” Solar Energy 83: 39-2011e, “Shoddy solar water heaters threaten reputation. ”54 Outlook of Solar Water Heaters in the Residential

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    findings from various nuclear plant construction lifecycle2011c, “New nuclear power plants ‘set to be approved. ’”energy implications of nuclear power plants but the results

  3. China Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind Energy Association Place: Beijing,

  4. National Energy Commission (China) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy Information Conference of StateCommission

  5. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    the total national electricity consumption in China reached1. The share of electricity consumption for China energy-in 2010 2 The electricity consumption of 21 energy-using

  6. US-China Renewable Energy Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartmentIndia Joint

  7. Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program

    E-Print Network [OSTI]

    Price, Lynn; Wang, Xuejun

    2007-01-01T23:59:59.000Z

    Industry Constraining Energy Consumption of China’s Largestone-to-one ratio of energy consumption to GDP – given China’goal of reducing energy consumption per unit of GDP by 20%

  8. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    Wind power in China: Policy and development challenges. Energy PolicyWind power in China: Policy and development challenges. Energy Policy

  9. Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

    E-Print Network [OSTI]

    Aden, Nathaniel

    2011-01-01T23:59:59.000Z

    China's building sector--A review of energy and climate models forecast,China's building sector--A review of energy and climate models forecast,

  10. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    An LANL report on China‘s energy forecast to 2015 predictedE.Iain McCreary, China‘s Energy A forecast to 2015, LANL,forecasts from the Chinese Energy Research Institute (ERI) and the Institute of Technical Information for the Building Materials Industry of China (

  11. Liaoning, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump

  12. Guangdong, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergy InformationGrupo Urbas JumpGuangdong,

  13. Beijing, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind LtdFengli Technology LtdGeoNames

  14. China Integrated Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country Chile SouthIntegrated Energy Jump

  15. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    2010. 16. Center for Industrial Energy Efficiency (CIEE).Report on Industrial Energy Efficiency in China: Achievementof Industrial Energy Efficiency in “11th Five- Year Plan”

  16. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    research and development of energy efficient technology haveactively encouraged, energy efficient products have beenas a whole and energy efficient technology in both China and

  17. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    analysis of building energy efficiency in China. Tsinghuaand energy efficiency potential in public buildings inraise the energy-efficiency awareness of building owners and

  18. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    2010. 16. Center for Industrial Energy Efficiency (CIEE).Report on Industrial Energy Efficiency in China: AchievementReview of Industrial Energy Efficiency in “11th Five- Year

  19. China energy, environment, and climate study: Background issues paper

    SciTech Connect (OSTI)

    Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

    2000-10-10T23:59:59.000Z

    The total costs and impacts of expanding energy use in China will depend, in part, on a number of important factors, an understanding of which is vital for China's policy-makers. These issues include the additional environmental and public health impacts associated with energy use, the economic costs of infrastructure expansion to meet growing energy needs, and the potential role that renewable energy technologies could play if pushed hard in China's energy future. This short report summarizes major trends and issues in each of these three areas.

  20. Shanghai, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:SevinShamilTL Chemical Company Jump

  1. Shenyang, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandong LusaShelby, Ohio:

  2. Jiangsu, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson, Iowa:JeromeDongshengShunfengSunshine

  3. Jiangsu, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind FarmJefferson

  4. Hebei, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegalHeardHebei Milestone Biomass

  5. Liaoning, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow(Redirected from Lewisburg,LiDAR(Redirected

  6. Tang Energy China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseekerTallahatchie Valley E P ATanfield Group

  7. Tianjin, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+TianjiaoTianjinTianjinTianjin,

  8. U.S. - China Energy Cooperation | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident at RatonU.S. - China Energy Cooperation U.S. -

  9. US-China clean energy report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter AccidentSeptember 2009JulyUS-China Clean Energy

  10. Center for Renewable Energy Development of Energy Research Institute China

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenter Ethanol| Open Energy

  11. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    and solar. Source: IEA, 2000. Chapter 9, International Comparisons ChinaChina Energy Databook 7.0 Table 2B.28. Renewable Energy Production Technology Solarsolar/wind. Source: IEA, 2007. Chapter 9, International Comparisons China

  12. 4th U.S.-China Energy Efficiency Forum

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy and China's National Development and Reform Commission held the annual U.S.-China Energy Efficiency Forum (EEF) this past September in Arlington, VA. The day-long event featured keynotes from DOE Office of Energy Efficiency and Renewable Energy Assistant Secretary Dr. David Danielson, U.S. Special Envoy for Climate Change Todd Stern, and NDRC Vice Chairman Xie Zhenhua.

  13. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    China Energy Efficiency Label System (CEELS) In order to improve the energy efficiency of main energy consuming products, the gov-

  14. China Baolv Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050

  15. China New Energy Chamber of Commerce CNECC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China

  16. Big China Solar Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind LtdFengliBenjaminBhorukaChina

  17. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01T23:59:59.000Z

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  18. China Datang Corporation Renewable Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050OpenChinaChina

  19. China Hyper Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChina Huadian NewChina

  20. China National Nuclear Corp CNNC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChinaChinaOpen

  1. China and India Industrial Efficiency NREL Partnership | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnitedChina

  2. China-2050 Wind Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnitedChinaPVChina s Green

  3. China-CCAP Developing Country Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnitedChinaPVChina

  4. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnitedChinaPVChinaCenter)

  5. China-Danish Government Baseline Workstream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChinaInformation China Eastern

  6. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    share of per capita plastics demand, and net imports. China’production = Per capita primary plastic demand = Totalpopulation = Primary plastic demand to ethylene demand ratio

  7. China's Energy and Carbon Emissions Outlook to 2050

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

    2011-02-15T23:59:59.000Z

    As a result of soaring energy demand from a staggering pace of economic expansion and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both a short-term energy intensity reduction goal for 2006 to 2010 as well as a long-term carbon intensity reduction goal for 2020. This study presents a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. Over the past few years, LBNL has established and significantly enhanced its China End-Use Energy Model which is based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. In addition, this analysis also evaluated China's long-term domestic energy supply in order to gauge the potential challenge China may face in meeting long-term demand for energy. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not necessarily be the case because saturation in ownership of appliances, construction of residential and commercial floor area, roadways, railways, fertilizer use, and urbanization will peak around 2030 with slowing population growth. The baseline and alternative scenarios also demonstrate that China's 2020 goals can be met and underscore the significant role that policy-driven energy efficiency improvements will play in carbon mitigation along with a decarbonized power supply through greater renewable and non-fossil fuel generation.

  8. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    Press 2011.2 16. Chen Zhimin. Efficient building lightingKai. Motor System Energy Efficiency Practical Guide [M].products in ChinaEnergy efficiency standards and labeling

  9. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    forecasts of operational energy till 2020 based on differing assumptions of technology penetration and efficiency. China

  10. Energy Landscape and Transition State of Protein-Protein Association Ramzi Alsallaq and Huan-Xiang Zhou

    E-Print Network [OSTI]

    Weston, Ken

    Energy Landscape and Transition State of Protein-Protein Association Ramzi Alsallaq and Huan as well as the transition state for association. The energy landscape is funnel-like, with the deep well and rotational freedom. Echoing the protein folding process, we have previously proposed a transition state

  11. Prediction of Protein Solubility from Calculation of Transfer Free Energy Harianto Tjong and Huan-Xiang Zhou

    E-Print Network [OSTI]

    Weston, Ken

    Prediction of Protein Solubility from Calculation of Transfer Free Energy Harianto Tjong and Huan transfer free energy from the condensed phase to the solution phase was found to predict reasonably well to develop theoretical methods for predicting protein relative and abso- lute solubility. Such methods may

  12. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Economic Output in Chinese Cement Kilns,” Proceedings of thereduction of China’s cement industry. Energy Policy 45 (751. Kong, Xiangzhong (China Cement Association, CCA), 2009.

  13. Evergreen China Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace Center (DLR)EuropeanEverbrightEvergreen China

  14. China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont:ChicotConsultants Place:China

  15. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    E-Print Network [OSTI]

    McNeil, Michael A.

    2012-01-01T23:59:59.000Z

    sites/china.lbl.gov/files/LBNL-3939E.pdf China Daily.2010. “China to subsidize 150m energy-efficient bulbs” JuneR. and Kang, A. , 2008. China's Booming Energy Efficiency

  16. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10T23:59:59.000Z

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  17. Interprovincial Migration and the Stringency of Energy Policy in China

    E-Print Network [OSTI]

    Luo, Xiaohu

    2014-12-02T23:59:59.000Z

    Interprovincial migration flows involve substantial relocation of people and productive activity, with implications for regional energy use and greenhouse gas emissions. In China, these flows are not explicitly considered ...

  18. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  19. The effects of energy policies in China on energy consumption and GDP1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    policies have significant impacts on diesel oil, gasoline and natural gas consumption. However, some energy The effects of energy policies in China on energy consumption and GDP1 Ming-Jie Lu, C.-Y. Cynthia Lin and Song Chen Abstract This paper examines the effects of energy policies in China on energy

  20. The effects of energy policies in China on energy consumption1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    1 The effects of energy policies in China on energy consumption1 Ming-Jie Lu, C.-Y. Cynthia Lin and Song Chen Abstract This paper examines the effects of energy policies in China on energy consumption of energy policies, including environmental protection policies, policies that promote technological

  1. Energy Efficiency of MIMO Transmission Strategies in Wireless Sensor Networks Huaiyu Dai, Liang Xiao, and Quan Zhou

    E-Print Network [OSTI]

    Dai, Huaiyu

    Energy Efficiency of MIMO Transmission Strategies in Wireless Sensor Networks Huaiyu Dai, Liang efficiency and spectral efficiency, further improvement due to the transmit diversity of space-time block especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis

  2. Energy Audit Practices in China: National and Local Experiences and Issues

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of Understanding about Energy Audit,” Energy Conservation2009. “China Enterprise Energy Audits: Current Status andReviewing Enterprise Energy Audit Report and Energy Saving

  3. Enforcing Building Energy Codes in China: Progress and Comparative Lessons

    SciTech Connect (OSTI)

    Evans, Meredydd; Shui, Bin; Halverson, Mark A.; Delgado, Alison

    2010-08-15T23:59:59.000Z

    From 1995 to 2005, building energy use in China increased more rapidly than the world average. China has been adding 0.4 to 1.6 billion square meters of floor space annually , making it the world’s largest market for new construction. In fact, by 2020, China is expected to comprise half of all new construction. In response to this, China has begun to make important steps towards achieving building energy efficiency, including the implementation of building energy standards that requires new buildings to be 65% more efficient than buildings from the early 1980s. Making progress on reducing building energy use requires both a comprehensive code and a robust enforcement system. The latter – the enforcement system – is a particularly critical component for assuring that a building code has an effect. China has dramatically enhanced its enforcement system in the past two years, with more detailed requirements for ensuring enforcement and new penalties for non-compliance. We believe that the U.S. and other developed countries could benefit from learning about the multiple checks and the documentation required in China. Similarly, some of the more user-friendly enforcement approaches developed in the U.S. and elsewhere may be useful for China as it strives to improve enforcement in rural and smaller communities. In this article, we provide context to China’s building codes enforcement system by comparing it to the U.S. Among some of the enforcement mechanisms we look at are testing and rating procedures, compliance software, and training and public information.

  4. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    update for 2004. Energy input tables for China are compiled every year for major energy consuming sectors

  5. Synthesis Report on the Implementation of Building Energy Codes in China

    SciTech Connect (OSTI)

    Shui, Bin; Haiyan, Lin; Congu, Yu; Halverson, Mark A.; Bo, Song; Jingru, Liu; Evans, Meredydd; Xiajiao, Zhu; Siwei, Lang

    2011-03-31T23:59:59.000Z

    China building energy code and details to help improve building energy efficiency at global, national and local levels

  6. US-China Clean Energy Cooperation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into Fuel for U.S.URTAC MeetingofUS DepartmentUS-China

  7. U.S.-China Clean Energy Announcements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTestFeedEnergy NavyDepartmentSpainActionU.S.-China Clean

  8. US-China Clean Energy Fora | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTestFeedEnergyUC DavisGrid Implementation InputUS-China

  9. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01T23:59:59.000Z

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  10. Research on Commercial Patterns of China Existing Building Energy Retrofit Based on Energy Management Contract 

    E-Print Network [OSTI]

    Han, Z.; Liu, C.; Sun, J.

    2006-01-01T23:59:59.000Z

    Existing building energy retrofit is one of the keys of building energy efficiency in China. According to experience in developed countries, implementation of energy management contract (EMC) is crucial to promote existing building energy retrofit...

  11. Research on Commercial Patterns of China Existing Building Energy Retrofit Based on Energy Management Contract

    E-Print Network [OSTI]

    Han, Z.; Liu, C.; Sun, J.

    2006-01-01T23:59:59.000Z

    Existing building energy retrofit is one of the keys of building energy efficiency in China. According to experience in developed countries, implementation of energy management contract (EMC) is crucial to promote existing building energy retrofit...

  12. The China Motor Systems Energy Conservation Program: A major national initiative to reduce motor system energy use in China

    SciTech Connect (OSTI)

    Nadel, Steven; Wang, Wanxing; Liu, Peter; McKane, Aimee T.

    2001-05-31T23:59:59.000Z

    Electric motor systems are widely used in China to power fans, pumps, blowers, air compressors, refrigeration compressors, conveyers, machinery, and many other types of equipment. Overall, electric motor systems consume more than 600 billion kWh annually, accounting for more than 50 percent of China's electricity use. There are large opportunities to improve the efficiency of motor systems. Electric motors in China are approximately 2-4 percent less efficient on average than motors in the U.S. and Canada. Fans and pumps in China are approximately 3-5 percent less efficient than in developed countries. Even more importantly, motors, fans, pumps, air compressors and other motor-driven equipment are frequently applied with little attention to system efficiency. More optimized design, including appropriate sizing and use of speed control strategies, can reduce energy use by 20 percent or more in many applications. Unfortunately, few Chinese enterprises use or even know about these energy-saving practices. Opportunities for motor system improvements are probably greater in China than in the U.S. In order to begin capturing these savings, China is establishing a China Motor Systems Energy Conservation Program. Elements of this program include work to develop minimum efficiency standards for motors, a voluntary ''green motor'' labeling program for high-efficiency motors, efforts to develop and promote motor system management guidelines, and a training, technical assistance and financing program to promote optimization of key motor systems.

  13. An Integrated Assessment of China’s Wind Energy Potential

    E-Print Network [OSTI]

    Zhang, D.

    Computable general equilibrium (CGE) models seeking to evaluate the impacts of electricity policy face difficulties incorporating detail on the variable nature of renewable energy resources. To improve the accuracy of ...

  14. Building Energy in China: Forward to Low-Carbon Economy

    E-Print Network [OSTI]

    Weiding, L.

    International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 - Interrlational Status and Trends of Building Energy in China Contents Status and Trends of GHG Mitigation in China On-going Projects for Low-Carbon Building..., Berlin, Germany, October 20-22, 2008 Growth of urbanization rate of China 3 50 45 40 35 30 25 27.628.1 28 26.4 20 90 91 92 93 94 95 96 97 98 99 2000 2001 2002 2003 2004 2005 2006 2007 ESL-IC-08-10-06 Proceedings of the Eighth International Conference...

  15. Modeling China's energy future Pat DeLaquil

    E-Print Network [OSTI]

    , renewables, and coal gasification-based energy supply technologies, can enable China to meet economic), and (3) coal gasification technolo- gies co-producing electricity and clean liquid and gaseous energy, policies, and programs for promoting an advanced energy-technology strategy in general and coal

  16. China Nuclear Engineering Construction Corporation CNEC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New Energy Ltd CNE Jump

  17. China Shandong Penglai Electric Power Equipment Manufacturing | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New Energy LtdInformation

  18. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    University Building Energy Efficiency Research Centre (Report on China Building Energy Efficiency. Beijing: Chinaand Practice on Building Energy Efficiency in China. ”

  19. The Greening of the Middle Kingdom: The Story of Energy Efficiency in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    Coal Raw Mtce FIGURE 1 Coal dominates energy consumption in=1 Mtce Total Energy Consumption Coal Consumption Constantthe dominant use of coal in China’s energy system from 1950

  20. Quantifying the potential impact of energy efficiency and low carbon policies for China

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01T23:59:59.000Z

    of China’s future energy demand and serves as the basis foraddresses end-use energy demand characteristics includingeconomic growth and energy demand. Because this model is an

  1. U.S.-China Clean Energy Research Center Issues Solicitation to...

    Energy Savers [EERE]

    U.S.-China Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus U.S.-China Clean Energy Research Center Issues Solicitation to Address the...

  2. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    72.4 EJ forecast of final energy consumption for China inforecast in 2002 that, by 2020, energy consumption in Chinaforecast of energy-related CO 2 emissions growth in China

  3. A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings

    E-Print Network [OSTI]

    Feng, Wei

    2014-01-01T23:59:59.000Z

    H. Gao. 2011. China Renewable Energy Industry DevelopmentGolden CO: National Renewable Energy Resource LaboratoryDOE), Energy Efficiency & Renewable Energy. 2012. Buildings

  4. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    construction,” Energy and Buildings 20: 205–217. Chau 2007.management in China,” Energy and Buildings (forthcoming).addition to operational energy, buildings embody the energy

  5. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    further passed the Energy Efficiency (Labeling of Products)L ABORATORY China Energy Efficiency Round Robin TestingNeed to Improve the Energy Efficiency of Energy Consuming

  6. China Lithium Energy Electric Vehicle Investment Group CLEEVIG | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChina Huadian

  7. China United Cleaning Technology Co Ltd Beijing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnited Cleaning Technology

  8. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnited Cleaning

  9. China Wind Systems formerly Green Power Malex | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnited CleaningWind

  10. China Xinjiang Sunoasis Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnited

  11. US China CERC Energy and Water - Funding Opportunity Announcement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartment of Energy US China CERC

  12. Energy use and conservation in China`s residential and commercial sectors: Patterns, problems, and prospects

    SciTech Connect (OSTI)

    Liu, F.

    1993-07-01T23:59:59.000Z

    This report discusses the determinants of residential and commercial energy demand, profiles the patterns and problems of energy consumption, and evaluates popular energy conservation measures of the People`s Republic of China. It also discusses technological and institutional opportunities for realizing greater energy conservation. General characteristics related to energy use include: population growth, economic growth, residential and commercial energy, and improved standards of living. Specific end-use areas that are examined in detail are space heating, cooking and water heating, and lighting and appliances.

  13. Energy prices and energy intensity in China : a structural decomposition analysis and econometrics study

    E-Print Network [OSTI]

    Shi, Xiaoyu

    2006-01-01T23:59:59.000Z

    Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., energy consumption per unit of Gross Domestic Product (GDP), has ...

  14. Energy prices and energy intensity in China : a structural decomposition analysis and econometric study

    E-Print Network [OSTI]

    Shi, Xiaoyu, M.C.P. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., physical energy consumption per unit of Gross Domestic Product ...

  15. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2012-01-01T23:59:59.000Z

    kg (30.451 MJ/kg) cleaned coal, energy consumption is 97.32As a result, the overall coal energy use in China is reducedAs a result, the overall coal energy use in China is reduced

  16. China's Energy Economy: A Survey of the Literature by Hengyun Ma and Les Oxley

    E-Print Network [OSTI]

    Hickman, Mark

    : i) the relationship between energy consumption and economic growth, ii) China's changing energy largest oil importer in the world. China's primary energy consumption reached 1863.4 million tonnes oil of Chinese yuan to US dollar is 6.9:1 on the 2006 price base. #12;4 China's global shares of primary energy

  17. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    Oliver, H.H. et. al. 2009. “China’s Fuel Economy Standardset. al. , 2009. Figure 30 China's Fuel Economy Standards forGermany. Bradsher, K. 2009. “China Vies to be World’s Leader

  18. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    CO2 mitigation potential and costs in China's electricityCO2 mitigation potential and costs in China's electricity

  19. Analyzing the Regional Impact of a Fossil Energy Cap in China

    E-Print Network [OSTI]

    Zhang, D.

    Decoupling fossil energy demand from economic growth is crucial to China’s sustainable development. In addition to energy and carbon intensity targets enacted under the Twelfth Five-Year Plan (2011–2015), a coal or fossil ...

  20. A joint U.S.-China demonstration energy efficient office building

    E-Print Network [OSTI]

    Zimmerman, Mary Beth; Huang, Yu JoeWatson, Rob; Shi, Han; Judkoff, Ron; She rman, Micah

    2000-01-01T23:59:59.000Z

    to promote building energy efficiency in a major foreignknown interest in building energy efficiency in China. InSummer Study on Energy Efficiency in Buildings, August 20-

  1. Energy Audit Practices in China: National and Local Experiences and Issues

    E-Print Network [OSTI]

    Shen, Bo

    2011-01-01T23:59:59.000Z

    forthcoming. Industrial Energy Audit Guidebook: Guidelines2009. “China Enterprise Energy Audits: Current Status andOverview of Enterprise Energy Audits, August 21, 2006.

  2. Sustainable energy in china: the closing window of opportunity

    SciTech Connect (OSTI)

    Fei Feng; Roland Priddle; Leiping Wang; Noureddine Berrah

    2007-03-15T23:59:59.000Z

    China's remarkable economic growth has been supported by a generally adequate and relatively low-cost supply of energy, creating the world's largest coal industry, its second-largest oil market, and an eclectic power business that is adding capacity at an unprecedented rate. If energy requirements continue to double every decade, China will not be able to meet the energy demands of the present without seriously compromising the ability of future generations to meet their own energy needs. This title uses historical data from 1980 and alternative scenarios through 2020 to assess China's future energy requirements and the resources to meet them. It calls for a high-level commitment to develop and implement an integrated, coordinated, and comprehensive energy policy. The authors recommend eight building blocks to reduce energy consumption growth well below the targeted rate of economic growth, to use national resources on an economically and environmentally sound basis, and to establish a robust energy system that can better ensure the security of a diverse supply of competitively priced energy forms. Sustainability calls for persistence of effort, greater reliance on advanced energy technologies, and better standards enforcement. Achieving these goals will require policy initiatives that restrict demand and create a 'resources-conscious society', reconcile energy needs with environmental imperatives, rationalize pricing, and tackle supply security. While the challenges are daunting, China has a unique opportunity to position itself as a world leader in the application of cutting-edge energy developments to create a sustainable energy sector effectively supporting a flourishing economy and society.

  3. Analyzing the Regional Impact of a Fossil Energy Cap in China

    E-Print Network [OSTI]

    economic growth is crucial to China's sustainable development. In addition to energy and carbon intensityAnalyzing the Regional Impact of a Fossil Energy Cap in China Da Zhang, Valerie Karplus, Sebastian Rausch and Xiliang Zhang Report No. 237 January 2013 China Energy & Climate Project TSINGHUA - MIT #12

  4. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    in EAF plants Energy monitoring and management systems insteel mills Energy monitoring and management systems in EAFsteps. Energy monitoring and management systems: This

  5. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    Tech Petroleum Natural Gas Coal Primary Energy Demand (Mtce)significant decline in coal primary energy demand under Maxone billion tonnes coal equivalent energy exists beyond the

  6. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    breakdown of electricity consumption for typical energy-total national electricity consumption in China was 4.6928year-on-year. The electricity consumption of the 22 energy-

  7. Does energy follow urban form? : an examination of neighborhoods and transport energy use in Jinan, China

    E-Print Network [OSTI]

    Jiang, Yang, M.C.P. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis explores the impacts of neighborhood form and location on household transportation energy use in the context of Jinan, China. From a theoretical perspective, energy use is a derived outcome of activities, and ...

  8. China To Build Its Own Fusion Reactor ENERGY TECH

    E-Print Network [OSTI]

    Thermonuclear Experimental Reactor project reached agreement in Moscow Tuesday to construct the first fusion devices in thermonuclear reaction," and that "Chinese scientists started to develop a fusion operationChina To Build Its Own Fusion Reactor ENERGY TECH by Edward Lanfranco Beijing (UPI) July 1, 2005

  9. Future Implications of China's Energy-Technology Choices

    E-Print Network [OSTI]

    .......................................................................................................................... 16 3.3.3 Natural GasFuture Implications of China's Energy-Technology Choices Electricity Technology Selections 0 500 1 Technologies TWh Solar & Geothermal Wind Biomass Hydro Nuclear Hydrogen FC N Gas FC N. Gas cogen N. Gas Oil

  10. Communication China's growing methanol economy and its implications for energy

    E-Print Network [OSTI]

    Jackson, Robert B.

    but scarce oil and natural gas. Adapting to such limitations, it has developed a chemical industry, with the rest coming from natural gas (Peng, 2011). Methanol is commonly used to produce formaldehyde, methylCommunication China's growing methanol economy and its implications for energy and the environment

  11. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01T23:59:59.000Z

    Implications for Chinese energy demand and imports in 2020.for China to reduce energy demand and emissions. Thisand physical drivers of energy demand and thereby help

  12. Industrial energy efficiency policy in China

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-01-01T23:59:59.000Z

    and Schaeffer, R. 1997. "Energy Intensity in the Iron andand Economic Indicators," Energy Policy 25(7'-9): 727-744. Xu , F. 2000. Overview of Energy Conservation for Chemical

  13. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    SciTech Connect (OSTI)

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    2010-07-01T23:59:59.000Z

    After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as carbon capture and sequestration (CCS) and integrated mine-mouth generation. The CIS and AIS results are also contextualized and compared to model scenarios in other published studies. The results of this study show that China's energy and CO{sub 2} emissions will not likely peak before 2030, although growth is expected to slow after 2020. Moreover, China will be able to meet its 2020 carbon intensity reduction target of 40 to 45% under both CIS and AIS, but only meet its 15% non-fossil fuel target by 2020 under AIS. Under both scenarios, efficiency remains a key resource and has the same, if not greater, mitigation potential as new technologies in transport and power sectors. In the transport sector, electrification will be closely linked the degree of decarbonization in the power sector and EV deployment has little or no impact on China's crude oil import demand. Rather, power generation improvements have the largest sector potential for overall emission mitigation while mine-mouth power generation and CCS have limited mitigation potential compared to fuel switching and efficiency improvements. Comparisons of this study's results with other published studies reveal that CIS and AIS are within the range of other national energy projections but alternative studies rely much more heavily on CCS for carbon reduction. The McKinsey study, in particular, has more optimistic assumptions for reductions in crude oil imports and coal demand in its abatement scenario and has much higher gasoline reduction potential for the same level of EV deployment. Despite these differences, this study's scenario analysis of both transport and power sectors illustrate the necessity for continued efficiency improvements and aggressive power sector decarbonization in flattening China's CO{sub 2} emissions.

  14. Energy Efficiency Business in China: A Roadmap For American Companies

    E-Print Network [OSTI]

    Hamburger, J.; Sinton, J.

    ENERGY EFFICIENCY BUSINESS IN CIDNA: A ROADMAP FOR AMERICAN COMPANIES Jessica Hamburger Research Scientist Battelle, Pacific Northwest National Laboratory Washington, DC ABSTRACT China represents an emerging market for American energy... deregulated in 1994 (3). The Jonathan Sinton Research Assistant Lawrence Berkeley National Laboratory Berkeley, CA government reported that many major coal mines began to make profits in 1995 (14). Oil price reform, on the other hand, has taken two...

  15. The Greening of the Middle Kingdom: The Story of Energy Efficiency in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    Energy Consumption FIGURE 2 Actual energy demand in China isvery much lower than energy demand at constant energyGDP Energy FIGURE 3a Energy demand grew twice as fast as GDP

  16. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    China CIS Electricity Generation Capacity, 2000-2030 Installed Capacity (GW) SolarRenew Solar Coal Total 2030 2010-2030 AAGR Table 30: ChinaChina AIS Power Generation Capacity, 2000-2030 Installed Capacity (GW) Solar

  17. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01T23:59:59.000Z

    National Greenhouse Gas Inventories Reference Manual (VolumeNational Greenhouse Gas Inventories: the Workbook (VolumeN ATIONAL L ABORATORY Inventory of China’s Energy-Related CO

  18. A portfolio approach to energy governance : state management of China's coal and electric power supply industries

    E-Print Network [OSTI]

    Cunningham, Edward A., IV (Edward Albert)

    2009-01-01T23:59:59.000Z

    This study addresses the extent to which China's central state devolved ownership and investment levels in its energy sector to other actors during the modern reform period (1978- 2008). The project focused on China's coal ...

  19. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    E-Print Network [OSTI]

    Zheng, Nina

    2010-01-01T23:59:59.000Z

    2050 China Energy and CO2 Emissions Report, McKinsey & Co'sChina’s cumulative CO2 emissions given the global cumulativeBaseline LBNL CIS Total CO2 Emissions (Mt CO2) LBNL CIS with

  20. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    Electricity Council. 2010. “Smart Grid Snapshot: China Topswww.zpryme.com/reports/smart_grid_snapshot_global_and_china%Figure 48 2010 Federal Stimulus Investments in Smart Grid by

  1. China Brazil Center on Climate Change and Energy Technology Innovation |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050Open Energy

  2. Lectures on Numerical Linear Algebra Yunkai Zhou

    E-Print Network [OSTI]

    Zhou, Yunkai

    University Dallas, Texas 75075 yzhou@smu.edu Spring, 2013 #12;Acknowledgements The lecture slides benefit. Y. Zhou Math-6316/CS-7366, SMU 2/210 #12;Basic Linear Algebra Spaces: Rn , Cn , Rn×n , Cn×n , Rm. Zhou Math-6316/CS-7366, SMU 3/210 #12;Basic Linear Algebra Spaces: Rn , Cn , Rn×n , Cn×n , Rm×n , Cm

  3. Lectures on Numerical Linear Algebra Yunkai Zhou

    E-Print Network [OSTI]

    Zhou, Yunkai

    University Dallas, Texas 75075 yzhou@smu.edu Spring, 2012 #12;Acknowledgements The lecture slides benefit. Y. Zhou Math-6316/CS-7366, SMU 2/213 #12;Basic Linear Algebra Spaces: Rn , Cn , Rn×n , Cn×n , Rm. Zhou Math-6316/CS-7366, SMU 3/213 #12;Basic Linear Algebra Spaces: Rn , Cn , Rn×n , Cn×n , Rm×n , Cm

  4. China Energy Conservation Solar Energy Technologies CECS | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont:ChicotConsultants Place:

  5. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    of electric and gas water heaters, both of which areMEPS revisions. For gas water heaters, the energy factor islevel. For electric water heaters, continued efficiency

  6. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    Commercial Primary Energy Use (Mtce) More gas boiler & heat pumps with greater efficiency 40% more efficient cooling technologies more efficient lighting more efficient water heaters

  7. U.S.-China Clean Energy Cooperation

    Broader source: Energy.gov (indexed) [DOE]

    Project-and Chinese policymakers have actively shared best practices for establishing demand-side energy efficiency programs, resulting in a recent Chinese policy in the power...

  8. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01T23:59:59.000Z

    Development Plan for Renewable Energy in China. Availabledevelopment-plan-for-renewable-energy.pdf Tu, J. , Jaccard,further expansion of renewable and nuclear power capacity.

  9. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    E-Print Network [OSTI]

    Mendes, Goncalo

    2014-01-01T23:59:59.000Z

    performance and cost parameters in China are similar tofor China - a Regional Analysis of Building Energy Costs andNorthern China uses district heating systems, as the cost of

  10. DOC-DOE Joint China Mission Statement | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAsAmandaRev.AFP 3I Office ofThis

  11. Pan China Puyang Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisades Park, NewPalomar VenturesGasChina Puyang

  12. PetroSun Biofuels China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources Jump to:PersonalPetroSun Biofuels China Jump to:

  13. Category:Solar Power in China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang Corporation Trina Solar JA Solar

  14. Category:Wind Power in China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang Corporation Trina Solar JAsourcePages in

  15. Chengda Engineering Corporation of China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformation ChangzhouJump to:ChartsChengda

  16. China Electronic Engineering Design Institute CEEDI | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China Electronic Engineering Design

  17. China Electronics Technology Group Corporation CETC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China Electronic Engineering

  18. China Guangdong Nuclear Power Holding Co Ltd CGNPC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China Electronic

  19. China-Partnership for Climate Action | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:InformationInformationLow CarbonNREL/ChinaAction

  20. China Longyuan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolar companyChina

  1. China Power International Shanghai Green CLP JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolar companyChinaCLP JV

  2. China SC Exact Equipment Co LTD | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolar companyChinaCLPSC

  3. China Technology Solar Power Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolarCurtainChina

  4. China Three Gorges Project Corporation CTGPC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolarCurtainChinaGorges

  5. Fujian China Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreight BestFuelFugong Xineng

  6. China Technology Development Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy Holding Ltd Place:Corporation

  7. GC China Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A S JumpWindfarmFundicion Nodular delSNCGAOHGC

  8. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    Final Energy Use (Mtce) Oil Products Solid Fuels 2010-30Electricity Heat Natural Gas Oil Products Solid Fuels UnlikeHeat Natural Gas Oil Products Coke Solid Fuels Efficiency

  9. China's Approaches to Financing Sustainable Development: Policies, Practices, and Issues

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    composition of China’s green energy investment portfolio.financing mechanisms for green energy development in China.Composition of China’s green energy investment portfolio •

  10. China's coal price disturbances: Observations, explanations, and implications for global energy economies

    E-Print Network [OSTI]

    Jackson, Robert B.

    China's coal price disturbances: Observations, explanations, and implications for global energy I G H T S c Since China decontrolled its coal prices, the price of coal has risen steadily in China, accompanied by unusual volatility. c Relatively high and volatile coal prices have triggered widespread power

  11. Chengdu China Photoelectric Apollo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County,Chenango County, New

  12. China Building Design Consultants | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont:ChicotConsultants Place: Beijing

  13. Solar Power In China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlas (PACADeckerNotionJump to:

  14. MOU-CHINA.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr. ErnestMID-CAREERof Energy MONDAY:

  15. Category:China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump Lease.UT"

  16. China Guodian Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country Chile South

  17. China Low Carbon Platform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country Chile SouthIntegrated

  18. China-NETL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country ChileDialogue,

  19. Wind Power in China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia Jump to:Wind PowerWind

  20. OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA

    E-Print Network [OSTI]

    Delaware, University of

    OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA by the Center for Energy and Environmental Policy of University of Delaware Sponsored by National Renewable Energy Laboratory and Ministry of Agriculture People's Republic of China June 2001 #12;i OFF-GRID RENEWABLE ENERGY

  1. Sustainable Energy Future in China's Building Sector

    E-Print Network [OSTI]

    Li, J.

    2007-01-01T23:59:59.000Z

    gases emission. Energy consumption in buildings could be reduced by 100-300 million tons of oil equivalent (mtoe) in 2030 compared to the business-as-usual (BAU) scenario, which means that 600-700 million metric tons of carbon dioxide (CO2) emissions...

  2. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    water heaters to heat pump water heaters with energy factorheat pumps with greater efficiency 40% more efficient cooling technologies more efficient lighting more efficient water heatersheat pumps, boilers 100% OLED TVs, 0.1W standby, more efficient AC, refrigerator, washers More efficient gas water heater

  3. DOC-DOE Joint China Mission Statement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartment of EnergyandJoint China Mission

  4. Category:Wind power in China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage? ForChina Pages in category

  5. North China Electric Power University Beijing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth America Drilling Fluids MarketNorthNorth China

  6. Vantage Point Venture Partners (China) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUserVHF TechnologiesVan NessChina) Jump to:

  7. China Renewable Energy Scale up Program CRESP GOC WB GEF | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New Energy Ltd

  8. Bilateral Agreements with China | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:WhetherNovember 13, 2009OakDepartment

  9. Energy Audit Practices in China: National and Local Experiences and Issues

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn; Lu, Hongyou

    2010-12-21T23:59:59.000Z

    China has set an ambitious goal of reducing its energy use per unit of GDP by 20% between 2006 and 2010. Since the industrial sector consumes about two-thirds of China's primary energy, many of the country's efforts are focused on improving the energy efficiency of this sector. Industrial energy audits have become an important part of China's efforts to improve its energy intensity. In China, industrial energy audits have been employed to help enterprises indentify energy-efficiency improvement opportunities for achieving the energy-saving targets. These audits also serve as a mean to collect critical energy-consuming information necessary for governments at different levels to supervise enterprises energy use and evaluate their energy performance. To better understand how energy audits are carried out in China as well as their impacts on achieving China's energy-saving target, researchers at the Lawrence Berkeley National Laboratory (LBNL) conducted an in-depth study that combines a review of China's national policies and guidelines on energy auditing and a series of discussions with a variety of Chinese institutions involved in energy audits. This report consists of four parts. First, it provides a historical overview of energy auditing in China over the past decades, describing how and why energy audits have been conducted during various periods. Next, the report reviews current energy auditing practices at both the national and regional levels. It then discusses some of the key issues related to energy audits conducted in China, which underscore the need for improvement. The report concludes with policy recommendations for China that draw upon international best practices and aim to remove barriers to maximizing the potential of energy audits.

  10. China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    Choices, and Energy Consumption. Praeger Publishers,The decomposition effect of energy consumption in China'sThe challenge of reducing energy consumption of the Top-1000

  11. Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises?

    ScienceCinema (OSTI)

    Mark Levine

    2010-01-08T23:59:59.000Z

    Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises? Berkeley Lab's Mark Levine discusses this topic in a January 10, 2009 Nano*High talk

  12. DOC-DOE Joint Trade Mission to China | Department of Energy

    Office of Environmental Management (EM)

    will help U.S. companies launch or increase their business in China in areas such as green buildings, building energy retrofitting, building management, green data centers,...

  13. Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises?

    SciTech Connect (OSTI)

    Mark Levine

    2009-02-24T23:59:59.000Z

    Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises? Berkeley Lab's Mark Levine discusses this topic in a January 10, 2009 Nano*High talk

  14. Developing Financial Intermediation Mechanisms for Energy Efficiency Investments in Brazil, China and India

    E-Print Network [OSTI]

    1 Developing Financial Intermediation Mechanisms for Energy Efficiency Investments in Brazil, China and India Brazil-China-India Workshop on Energy Efficiency Financing Cross country exchange, outreach and dissemination Juan Zak URC Brazil, May 2004 #12;2 What is URC ? · URC is the UNEP Risoe Centre on Energy

  15. APPLICATION OF A HYBRID MODEL TO EXPLORE ENERGY EMISSIONS ABATEMENT POLICIES IN CHINA

    E-Print Network [OSTI]

    APPLICATION OF A HYBRID MODEL TO EXPLORE ENERGY EMISSIONS ABATEMENT POLICIES IN CHINA by Jianjun Tu: Application of a Hybrid Model to Explore Energy Emissions Abatement Policies in China Project No. 360 control and energy security goals; 3) to use a hybrid model ­ CIMS, as this incorporates improvements

  16. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    energy efficiency measures in heavy industry in China, India, Brazil,and energy (including electricity) in 2003-2004 were about 0.65 t CO 2 /t of cement in Brazil,Brazil, 78% in Italy, 80% in Spain, 74% in China, and 91% in the United This article was originally published in “Energy

  17. A network-based modeling framework for stakeholder analysis of China's energy conservation campaign

    E-Print Network [OSTI]

    de Weck, Olivier L.

    A network-based modeling framework for stakeholder analysis of China's energy conservation campaign Available online 13 July 2011 Keywords: Energy conservation Policy-making Stakeholder analysis Network, the stakeholder analysis of China's energy conservation campaign still has been under-developed. This paper

  18. Understanding the China energy market: trends and opportunities 2006

    SciTech Connect (OSTI)

    Barbara Drazga

    2005-05-15T23:59:59.000Z

    The report is broken up into 4 Sections: Section I - Overview of China Energy Market (historical background, market value, consumption, production, reserves, export and import, market segmentation, market forecast); Section II - Market Analysis (PEST analysis, Porter's five forces analysis, socio-economic trends, consumption trends); Section III - Market Segments (electricity, oil, natural gas, liquefied natural gas, liquid petroleum gas, nuclear power, coal, renewables, photovoltaics, wind power, hydroelectric power. Each market segment details current and planned projects, and lists participants in that sector); and Section IV - Breaking Into the Market (regulatory framework, methods of market entry, foreign investment, challenges, government agencies).

  19. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Commission (BDRC) Beijing Energy Efficiency Center (BECon)of Construction Energy Efficiency Bureau Ministry ofNational Building Energy Efficiency Commission National

  20. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Center National Building Energy Efficiency CommissionNTAden@lbl.gov Building Energy Efficiency Joe Huang, Staffbuilding—developing organizations to promote energy efficiency

  1. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    International Energy Agency (IEA), China’s Worldwide QuestSecurity, (Paris: OCED/IEA, 2000), 74. Thomas Woodrow, “TheInternational Energy Agency (IEA), China’s Worldwide Quest

  2. Discussion of Problems in the Development of Building Energy Efficiency In China 

    E-Print Network [OSTI]

    Liu, Y.; Fu, X.; Luo, Q.

    2006-01-01T23:59:59.000Z

    In the context that Chinese energy shortage is beginning to emerge and China is constructing an economical society, much attention is paid to building energy consumption by the Chinese government and common people. Therefore, Building Energy...

  3. Energy Audit Practices in China: National and Local Experiences and Issues

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    pdf/eccj_2010_2011.pdf ESCO Committee of China EnergyEnergy Service Company (ESCO): a business that utilizesa design institute, or an ESCO – recommending energy-saving

  4. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    E-Print Network [OSTI]

    Zheng, Nina

    2010-01-01T23:59:59.000Z

    International Energy Agency (IEA). 2009. World EnergyChina-specific section of the IEA World Energy Outlook 2009.while LBNL, McKinsey and IEA all employed bottom-up modeling

  5. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    9B.2. World Total Primary Energy Supply/Primary Commercial9B.2. World Total Primary Energy Supply/Primary Commercialsubsections: Total Primary Energy Supply, Guide to the China

  6. Discussion of Problems in the Development of Building Energy Efficiency In China

    E-Print Network [OSTI]

    Liu, Y.; Fu, X.; Luo, Q.

    2006-01-01T23:59:59.000Z

    In the context that Chinese energy shortage is beginning to emerge and China is constructing an economical society, much attention is paid to building energy consumption by the Chinese government and common people. Therefore, Building Energy...

  7. Energy development and CO{sub 2} emissions in China

    SciTech Connect (OSTI)

    Xiaolin Xi [Carnegie-Mellon Univ., Pittsburgh, PA (United States)

    1993-03-01T23:59:59.000Z

    The objective of this research is to provide a better understanding of future Chinese energy development and CO{sub 2} emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO{sub 2} emissions from burning fossil fuels and projects future energy use and resulting CO{sub 2} emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO{sub 2} emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO{sub 2} emissions reduction in China during the 1985-2020 period are examined.

  8. China's Energy Situation and Its Implications in the New by Hengyun Ma, Les Oxley and John Gibson

    E-Print Network [OSTI]

    Hickman, Mark

    1 China's Energy Situation and Its Implications in the New Millennium by Hengyun Ma, Les Oxley both energy demand and supply to provide a complete picture of China's energy situation in the new No. 1/2009 China's Energy Situation and Its Implications in the New Millennium 1. Overview

  9. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    SciTech Connect (OSTI)

    Zheng, Nina; Zhou, Nan; Fridley, David

    2010-09-01T23:59:59.000Z

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

  10. US-China Clean Energy Research Center Announced | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartmentIndia Joint CenterUS-China

  11. Why did China's Energy Intensity Increase during 1998-2006: Decomposition and Policy Analysis

    E-Print Network [OSTI]

    Edwards, Paul N.

    takes up about 70 percent of the total energy consumption. Per capita oil, natural gas and coal deposits1 Why did China's Energy Intensity Increase during 1998-2006: Decomposition and Policy Analysis Xiaoli Zhaoa,b, , Chunbo Mac, a Business School, North China Electric Power University, Beijing, 102206

  12. Renewable Energy Policy in Remote Rural Areas of Western China: Implementation and Socio-economic Benefits

    E-Print Network [OSTI]

    Huber, Bernhard A.

    Renewable Energy Policy in Remote Rural Areas of Western China: Implementation and Socio a `centralized and closed top-down' approach within China's communist political framework conditions, which ultimately resulted in pursuing political leaders' conceptions instead of the energy needs of local people

  13. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    75 Figure 60 Planned HVDC Projects inmine-mouth generation with HVDC by 2062 Mtce 4393 Mt CO 2intermittency. Figure 60 Planned HVDC Projects in China

  14. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01T23:59:59.000Z

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  15. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    E-Print Network [OSTI]

    McNeil, Michael A.

    2012-01-01T23:59:59.000Z

    subsidize 150m energy-efficient bulbs” June 30, 2010 Cheung,China's Booming Energy Efficiency Industry. World Resourceschinas_booming_energy_efficiency_industry.pdf CNIS, 2010.

  16. Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan

    E-Print Network [OSTI]

    Levine, Mark D.

    2010-01-01T23:59:59.000Z

    May 6, 2009. China Building Energy Efficiency Net, 2008. AHao Bin, 2009. “Building Energy Efficiency Evaluation andWhy is the building energy efficiency retrofit difficult? ,

  17. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    E-Print Network [OSTI]

    McNeil, Michael A.

    2012-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Business Case for Energy Efficiency inof the China Business Case for Energy Efficiency, many ofconstruction, the Business Case implements energy efficiency

  18. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    total demand is used to extract primary fossil fuels such asdemand and non-fossil electricity supply. Fossil Fuel Powerenergy demand. Furthermore, China’s reliance on fossil fuel

  19. China's Building Energy Demand: Long-Term Implications from a Detailed Assessment

    SciTech Connect (OSTI)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-10-01T23:59:59.000Z

    We present here a detailed, service-based model of China’s building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China’s building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China’s building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China’s building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  20. RESEARCH SUMMARY BY QUANLIN ZHOU During my stay at LBNL from March 2001, I have been working on (1) geologic carbon sequestration

    E-Print Network [OSTI]

    Zhou, Quanlin

    1 RESEARCH SUMMARY BY QUANLIN ZHOU During my stay at LBNL from March 2001, I have been working funded by DOE, EPA, LBNL, and California Energy Commission (CEC), with a total fund of $10.0M

  1. Research on the Statistical Method of Energy Consumption for Public Buildings in China 

    E-Print Network [OSTI]

    Chen, S.; Li, N.

    2006-01-01T23:59:59.000Z

    The purpose of this research is to develop a national statistical system for energy consumption data for public buildings in China, in order to provide data support for building energy efficiency work. The framework for a national statistical system...

  2. Energy Audit Practices in China: National and Local Experiences and Issues

    E-Print Network [OSTI]

    Shen, Bo

    2011-01-01T23:59:59.000Z

    www.cnnlaw.com/show.asp? id=640 ESCO Committee of Chinaa design institute, or an ESCO – recommending energy-savingConservation Center of Japan ESCO Committee of China Energy

  3. Research on the Statistical Method of Energy Consumption for Public Buildings in China

    E-Print Network [OSTI]

    Chen, S.; Li, N.

    2006-01-01T23:59:59.000Z

    The purpose of this research is to develop a national statistical system for energy consumption data for public buildings in China, in order to provide data support for building energy efficiency work. The framework for a national statistical system...

  4. Household operational energy consumption in urban China : a multilevel analysis on Jinan

    E-Print Network [OSTI]

    Wang, Dong, M.C.P. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    With decades of economic growth and socio-economic transformation, China's residential sector has seen rapid expansion in energy consumption, and is now the second largest energy consuming sector in the country. Faced with ...

  5. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04T23:59:59.000Z

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  6. China's Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn; Wang, Xuejun; Yun, Jiang

    2008-06-02T23:59:59.000Z

    In 2005, the Chinese government announced an ambitious goal of reducing energy consumption per unit of GDP by 20% between 2005 and 2010. One of the key initiatives for realizing this goal is the Top-1000 Energy-Consuming Enterprises program. The energy consumption of these 1000 enterprises accounted for 33% of national and 47% of industrial energy usage in 2004. Under the Top-1000 program, 2010 energy consumption targets were determined for each enterprise. The objective of this paper is to evaluate the program design and initial results, given limited information and data, in order to understand the possible implications of its success in terms of energy and carbon dioxide emissions reductions and to recommend future program modifications based on international experience with similar target-setting agreement programs. Even though the Top-1000 Program was designed and implemented rapidly, it appears that--depending upon the GDP growth rate--it could contribute to somewhere between approximately 10% and 25% of the savings required to support China's efforts to meet a 20% reduction in energy use per unit of GDP by 2010.

  7. Special Section on Ground Water Research in China Featured in This Issue of Ground Water

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    of Ground Water by Xun Zhou1, Jiu J. Jiao2, and Mary P. Anderson3 Contained in this issue of Ground Water, Groundwater Resources and the Related Environ- Hydrogeologic Problems in China, Beijing: Seismological Press

  8. Reducing Energy Consumption of Disk Storage Using PowerAware Cache Qingbo Zhu, Francis M. David, Christo F. Devaraj, Zhenmin Li, Yuanyuan Zhou and Pei Cao*

    E-Print Network [OSTI]

    Zhou, Yuanyuan

    Reducing Energy Consumption of Disk Storage Using Power­Aware Cache Management Qingbo Zhu, Francis implications. Among various components of a data center, storage is one of the biggest consumers of energy. A recent indus­ try report [1] shows that storage devices account for almost 27% of the total energy

  9. Reducing Energy Consumption of Disk Storage Using Power-Aware Cache Qingbo Zhu, Francis M. David, Christo F. Devaraj, Zhenmin Li, Yuanyuan Zhou and Pei Cao*

    E-Print Network [OSTI]

    Zhou, Yuanyuan

    Reducing Energy Consumption of Disk Storage Using Power-Aware Cache Management Qingbo Zhu, Francis various components of a data center, storage is one of the biggest consumers of energy. A recent indus- try report [1] shows that storage devices account for almost 27% of the total energy consumed

  10. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    Results for Room Air Conditioners Nan Zhou David FridleyTable of Contents I. Air Conditioner Round Robin TestingAir Conditioners..

  11. U.S.-China Clean Energy Announcements | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident atConference |Energy|Energy

  12. China Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New EnergyEnergyorChina

  13. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    21, 2008. Ying, Wang. “ China, Venezuela firms to co-developoilfields. ” China Daily (27 August 2005) http://David and Bi Jianhai. “China’s Global Hunt for Energy. ”

  14. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Energy-efficient Public Sector (PePS) is a LBNL-55349 To begin: read the Readme file PC-compatible For update:

  15. China Titans Energy Technology Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy Holding LtdTitans Energy

  16. US-China_Fact_Sheet_Renewable_Energy.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery

  17. China Power International New Energy Holding Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy Holding Ltd Place: Shanghai

  18. Office of China Renewable Energy Development Project REDP | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPowerKaitian WindpowerNordwindNorwinInformation

  19. U.S.-China Clean Energy Fora | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&DepartmentFurther

  20. Xi'an, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State ParksWyrulec1991)XenesyXi

  1. China-GTZ Energy Programs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information

  2. China Shaanxi Yulin Huayang New Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolar

  3. China Solar Energy Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolarCurtain WallSolar

  4. Government policy and investment in clean energy (China) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas: Energy Resources

  5. China Lake Acres, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country Chile SouthIntegrated Energy

  6. China-Making Energy Efficiency Real (MEER) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country ChileDialogue, AdvisoryEnergy

  7. Beijing China Sciences General Energy Environment GEE | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPowerBean CommercialBeijingChangjiang

  8. China and India PV Reliability-NREL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnitedChinaPV

  9. China-Assessing Policy Options for Increasing the Use of Renewable Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnitedChinaPVChina s

  10. China-ClimateWorks Low Carbon Growth Planning Support | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChinaInformation China Eastern

  11. Europe China Clean Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace Center (DLR) SectorEurel Inzeniring

  12. China National Renewable Energy Centre (CNREC) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont:ChicotConsultantsRange

  13. Promotion of Rural Renewable Energy in Western China | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformationProject ManagementTexasCountries

  14. China Recycling Energy Corp CREG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country Chile SouthIntegratedCREG Jump

  15. China-Energy Intensity Reduction Strategy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country Chile

  16. Role of non-fossil energy in meeting China's energy and climate target for 2020

    SciTech Connect (OSTI)

    Zhou, Sheng; Tong, Qing; Yu, Sha; Wang, Yu; Chai, Qimin; Zhang, Xiliang

    2012-12-01T23:59:59.000Z

    China is the largest energy consumer and CO2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40-45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020 ; finally, conclusions and policy measures for non-fossil energy development are proposed.

  17. U.S.-China Clean Energy Research Center (CERC) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries | Department ofDepartmentChina Clean Energy

  18. US-China Clean Energy Research Center Announced | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter AccidentSeptember 2009JulyUS-China Clean Energy Research

  19. U.S.-China Clean Energy Research Center Webcast | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&DepartmentFurtherU.S.-China Clean Energy

  20. The Greening of the Middle Kingdom: The Story of Energy Efficiency in China

    SciTech Connect (OSTI)

    Levine, Mark D.; Zhou, Nan; Price, Lynn

    2009-05-01T23:59:59.000Z

    The dominant image of China's energy system is of billowing smokestacks from the combustion of coal. More heavily dependent on coal than any other major country, China uses it for about 70 percent of its energy (NBS, 2008). Furthermore, until recently, China had very few environmental controls on emissions from coal combustion; recent efforts to control sulfur dioxide (SO{sub 2}) emissions appear to be meeting with some success (Economy, 2007, 2009). Figure 1 shows the dominant use of coal in China's energy system from 1950 to 1980 (NBS, various years). However, this is just one side of China's energy story. Figure 2 illustrates the second part, and what may be the most important part of the story - China's energy system since 1980, shortly after Deng Xiaoping assumed full leadership. This figure compares the trends in energy consumption and gross domestic product (GDP) by indexing both values to 100 in 1980. The upper line shows what energy consumption in China would have been if it had grown at the same rate as GDP, since energy consumption usually increases in lockstep with GDP in an industrializing, developing country, at least until it reaches a high economic level. The lower line in Figure 2 shows China's actual energy consumption, also indexed to 1980. The striking difference between the lines shows that GDP in China grew much faster than energy demand from 1980 to 2002. As a result, by 2002 energy and energy-related carbon dioxide (CO{sub 2}) emissions were more than 40% percent of what they would have been if energy and GDP had grown in tandem. In the next chapter of China's energy history, from 2002 to 2005, the increase in energy demand outstripped a very rapidly growing economy, and because of the large size of the Chinese economy, the increase had substantial impacts. The construction of power plants increased to 100 gigawatts per year; over the three-year period newly constructed plants had a capacity of more than 30 percent of total electricity-generation capacity in the United States. At the same time, energy-related CO{sub 2} emissions in China increased dramatically. In the latest stage, another abrupt change, this time for the better in terms of energy efficiency, began late in 2005. As senior officials in the government turned their attention to the problem of growing energy demand, the government set a mandatory goal for 2010 of a 20 percent reduction in energy intensity (defined as energy use per unit of GDP) from 2005 levels. To meet this goal, China undertook significant legislative, regulatory, and organizational reforms at the national, provincial, and municipal levels to ensure that measures to reduce energy intensity would be implemented in all sectors and activities in China. At the time of this writing, it appears that China is on its way to meeting the 20 percent goal, thus reducing CO{sub 2} emissions by 1.5 billion tones, as compared with consumption at 2005 energy-intensity levels. In this paper, we describe and assess these three significant periods in China's energy story and provide a context by briefly reviewing the three decades prior to 1980.

  1. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07T23:59:59.000Z

    In recent years China's energy consumption has increased rapidly. The problem of high energy consumption intensity and low energy utilization efficiency is serious, and the contradiction between economic development and energy and environmental resources has become increasingly acute, making energy conservation and consumption reduction an important society-wide concern. At the same time, global climate change has and will continue to have profound impacts on human survival and development, and is another major challenge to all countries. In order to accelerate China's energy conservation and emission reduction work, the National Leading Group to Address Climate Change, Energy Conservation and Emission Reduction was founded with Premier Wen Jiabao as the head, and the 'Comprehensive Work Program of Energy Conservation and Emission Reduction' and 'China's National Program of Addressing Climate Change' were issued, under which China's energy conservation and emission reduction work has been fully deployed. Efforts to promote energy efficiency have been further strengthened in all levels of government, and various policies and measures have progressively been issued and implemented. In addition, based on China's experience with implementing energy-saving priority strategies over the past 20+ years, our government established a goal of a 20% decrease in energy consumption per unit GDP in the 'Eleventh Five-year Development Plan'. Furthermore, in November 2009, in order to support global greenhouse gas emission reduction activities and promote China's low carbon economic development, the government established a further 40-50% reduction in energy consumption per unit GDP by 2020 compared to the year 2005. Improving energy utilization efficiency by scientific and technological progress will undoubtedly play an important role in achieving the above stated objectives. The improvement of energy efficiency of energy consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy-consuming products has become an important determinant of achieving energy conservation and emission reduc

  2. Driving change : evaluating strategies to control automotive energy demand growth in China

    E-Print Network [OSTI]

    Bonde Ĺkerlind, Ingrid Gudrun

    2013-01-01T23:59:59.000Z

    As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

  3. Case-study of a coal gasification-based energy supply system for China

    E-Print Network [OSTI]

    Engineering, Tsinghua University, 100084 Beijing, China ``Syngas city'' (SC) is a concept for a coal. Introduction ``Syngas city'' (SC) is a concept for coal gasification- based energy supply systems that deploy

  4. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    Coal-Fired Electricity Generation Technology Shares and Efficiencies, 2005- Figure 54 China CIS Total and Power Sector Carbon Dioxide Emissions,coal capacity 100-200 MW power sector carbon dioxide emissionsemissions. Table 41 Comparison of CCS Assumptions in Different Studies % of Coal Power

  5. China Energy Databook -- User Guide and Documentation, Version 7.0

    SciTech Connect (OSTI)

    Fridley, Ed., David; Aden, Ed., Nathaniel; Lu, Ed., Hongyou; Zheng, Ed., Nina

    2008-10-01T23:59:59.000Z

    Since 2001, China's energy consumption has grown more quickly than expected by Chinese or international observers. This edition of the China Energy Databook traces the growth of the energy system through 2006. As with version six, the Databook covers a wide range of energy-related information, including resources and reserves, production, consumption, investment, equipment, prices, trade, environment, economy, and demographic data. These data provide an extensive quantitative foundation for understanding China's growing energy system. In addition to providing updated data through 2006, version seven includes revised energy and GDP data back to the 1990s. In the 2005 China Energy Statistical Yearbook, China's National Bureau of Statistics (NBS) published revised energy production, consumption, and usage data covering the years 1998 to 2003. Most of these revisions related to coal production and consumption, though natural gas data were also adjusted. In order to accommodate underestimated service sector growth, the NBS also released revised GDP data in 2005. Beyond the inclusion of historical revisions in the seventh edition, no attempt has been made to rectify known or suspected issues in the official data. The purpose of this volume is to provide a common basis for understanding China's energy system. In order to broaden understanding of China's energy system, the Databook includes information from industry yearbooks, periodicals, and government websites in addition to data published by NBS. Rather than discarding discontinued data series, information that is no longer possible to update has been placed in C section tables and figures in each chapter. As with previous versions, the data are presented in digital database and tabular formats. The compilation of updated data is the result of tireless work by Lu Hongyou and Nina Zheng.

  6. China Solar Clean Energy Solutions Inc formerly Deli Solar USA Inc | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina New EnergyEnergy

  7. Collaboration on Renewable Energy Standards, Testing, and Certification under the U.S. China Renewable Energy Partnership: Preprint

    SciTech Connect (OSTI)

    Wallace, W.; Kurtz, S.; Lin, W.

    2012-06-01T23:59:59.000Z

    During November 2009, the U.S. China Renewable Energy Partnership agreement was authorized in Beijing by Presidents Obama and Hu from the U.S. and China. One of the principle tasks under this new program is the collaboration of the U.S. and China on the topic of renewable energy standards, testing, and certification with an initial focus on solar PV and wind topics. This paper will describe and discuss the activities which have taken place under the bilateral collaboration to date.

  8. Inventory of China's Energy-Related CO2 Emissions in 2008

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Qin, Yining

    2011-03-31T23:59:59.000Z

    Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions. To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO{sub 2} emissions in 2008 to be 6666 Mt CO{sub 2}, including 234.6 Mt of non-fuel CO{sub 2} emissions and 154 Mt of sequestered CO{sub 2}. Bunker fuel emissions in 2008 totaled 15.9 Mt CO{sub 2}, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO{sub 2} emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO{sub 2}, respec

  9. Modeling Climate Feedbacks to Energy Demand: The Case of China

    E-Print Network [OSTI]

    Asadoorian, Malcolm O.

    This paper is an empirical investigation of the effects of climate on the use of electricity by consumers and producers in urban and rural areas within China. It takes advantage of an unusual combination of temporal and ...

  10. Films by Zhou Bing and on CCTV in China

    E-Print Network [OSTI]

    Bing, Zhou

    2009-07-03T23:59:59.000Z

    Day, 2000 Night has fallen upon the village. Nothing can be seen except several dots of lights flickering on the other side of the mountain. Nor is anything heard but the breeze and a cough bursting from the deep of the dark. The second son of the Li...

  11. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    compressors. China is the largest solar water heaterannual production of solar water heaters in China reached 49Solar Water Heating Systems (GB 26969-2011) will have significant effects in helping related industries in China

  12. The Energy and CO2 Emissions Impact of Renewable Energy Development in China

    E-Print Network [OSTI]

    Zhang, X.

    China’s recently-adopted targets for developing renewable electricity—wind, solar, and biomass—would require expansion on an unprecedented scale in China and relative to existing global installations. An important question ...

  13. 4th U.S.-China Energy Efficiency Forum Documents | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery5Dryers;under9DayaThe U.S.

  14. Neighborhood design and the energy efficiency of urban lifestyle in China : treating residence and mobility as lifestyle bundle

    E-Print Network [OSTI]

    Chen, Yang, Ph. D. Massachusetts Institute of Technology. Dept. of Urban Studies and Planning

    2012-01-01T23:59:59.000Z

    China and the rest of the world are facing the challenge of meeting energy demand sustainably. Household-level energy consumption is a large ultimate driving force of a nation's energy use. Realizing a sustainable energy ...

  15. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    International Energy Agency (IEA). 2009. World EnergyIEEJ: July 2007. OECD/IEA. 2010. Energy Balances of OECDParis: OECD Publishing. OECD/IEA. 2010. Energy Balances of

  16. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01T23:59:59.000Z

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  17. Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

  18. Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid

    E-Print Network [OSTI]

    Energy Demand in Urban China: Accounting for regional prices and rapid income change Article Type and changing demographics. We estimate income and price elasticities for these energy types using a two effects into account, we find that total energy is price-inelastic for all income groups. For individual

  19. The application of a hybrid energy-economy model to a key developing country China

    E-Print Network [OSTI]

    The application of a hybrid energy-economy model to a key developing country ­ China JianJun Tu, a hybrid (bottom-up/top-down) energy- economy model, to test how different policy packages could, Vancouver, V5A 1S6, Canada E-mail (Jaccard): Jaccard@sfu.ca Energy security, local air pollution and GHG

  20. Growth and structural change in China's energy economy Fredrich Kahrl a

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ,* a Energy and Resources Group, University of California, Berkeley, CA, USA b Department of Agricultural, accounting for more than one-quarter of net growth in global primary energy consumption from 1980 to 2005Growth and structural change in China's energy economy Fredrich Kahrl a , David Roland-Holst b