Powered by Deep Web Technologies
Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Injection of Zero Valent Iron into an Unconfined Aquifer Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection of Zero Valent Iron into an Unconfined Aquifer Using Shear-Thinning Fluids. Injection of Zero Valent Iron into an Unconfined Aquifer Using Shear-Thinning Fluids....

2

Demonstration of Combined Zero-Valent Iron and Electrical Resistance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation. Demonstration of Combined Zero-Valent Iron and Electrical...

3

Zero-valent iron nanoparticles preparation  

SciTech Connect (OSTI)

Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ? Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ? The conditions of reaction were at room temperature and a pressure of 3 atm. ? The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

Oropeza, S. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)] [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Corea, M., E-mail: mcoreat@yahoo.com.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Gómez-Yáñez, C. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)] [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Cruz-Rivera, J.J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra Leona 550, San Luis Potosí, C.P. 78210 (Mexico)] [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra Leona 550, San Luis Potosí, C.P. 78210 (Mexico); Navarro-Clemente, M.E., E-mail: mnavarroc@ipn.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)

2012-06-15T23:59:59.000Z

4

Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets  

E-Print Network [OSTI]

Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets Chromate transport through columns packed with zeolite/zero valent iron (Z/ZVI) pellets, either untreated originated from chromate sorption onto the HDTMA modified Z/ZVI pellets. Due to dual porosity, the presence

Li, Zhaohui

5

Degradation of Polymers Coating Nano-scale Zero Valent Iron Particles used in Groundwater Remediation  

E-Print Network [OSTI]

Degradation of Polymers Coating Nano-scale Zero Valent Iron Particles used in Groundwater chemicals (Zhang, 2003). Nano-scale zero valent iron (NZVI) can be injected into the soil to degrade centrifugation. UV spectrophotometer: The polymers could be quantified when dissolved in pure water or in mineral

Barthelat, Francois

6

Chemical Reduction of PCE by Zero Valent Iron Colloids Batch and Column Experiments  

E-Print Network [OSTI]

Chemical Reduction of PCE by Zero Valent Iron Colloids ­ Batch and Column Experiments Motivation nm NAPASAN Particle - nZVI / PCE-Solution 0 20 40 60 80 100 120 140 0 2 4 6 8 10 12 14 16 18 20 22 24H[-] PCE - Inflow PCE - Outflow TCE - Inflow TCE - Outflow Chloride - Outflow Blank Value Chloride pH Value

Cirpka, Olaf Arie

7

Zero Valent Iron: Impact of Anions Present during Synthesis on...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iron nanoparticles was quantified by monitoring the kinetics as well as products of carbon tetrachloride reduction, and significant differences in reactivity and chloroform...

8

Sulfur-Modified Zero-Valent Iron for Remediation Applications at DOE Sites - 13600  

SciTech Connect (OSTI)

Many DOE remediation sites have chemicals of concern that are compounds in higher oxidation states, which make them both more mobile and more toxic. The chemical reduction of these compounds both prevents the migration of these chemicals and in some cases reduces the toxicity. It has also been shown that zero-valent iron is a very effective substance to use in reducing oxygenated compounds in various treatment processes. These have included the treatment of halogenated hydrocarbons in the form volatile organic compounds used as solvents and pesticides. Zero-valent iron has also been used to reduce various oxidized metals such as chromium, arsenic, and mercury in order to immobilize them, decrease their toxicity, and prevent further transport. In addition, it has been used to immobilize or break down other non-metallic species such as selenium compounds and nitrates. Of particular interest at several DOE remediation sites is the fact that zero-valent iron is very effective in immobilizing several radioactive metals which are mobile in their oxidized states. These include both technetium and uranium. The main difficulty in using zero-valent iron has been its tendency to become inactive after relatively short periods of time. While it is advantageous to have the zero-valent iron particles as porous as possible in order to provide maximum surface area for reactions to take place, these pores can become clogged when the iron is oxidized. This is due to the fact that ferric oxide has a greater volume for a given mass than metallic iron. When the surfaces of the iron particles oxidize to ferric oxide, the pores become narrower and will eventually shut. In order to minimize the degradation of the chemical activity of the iron due to this process, a modification of zero-valent iron has been developed which prevents or slows this process, which decreases its effectiveness. It is called sulfur-modified iron, and it has been produced in high purity for applications in municipal water treatment applications. Sulfur-modified iron has been found to not only be an extremely economical treatment technology for municipal water supplies, where very large quantities of water must be treated economically, but it has also been demonstrated to immobilize technetium. It has the added benefit of eliminating several other harmful chemicals in water supplies. These include arsenic and selenium. In one large-scale evaluation study an integrated system implemented chemical reduction of nitrate with sulfur-modified iron followed by filtration for arsenic removal. The sulfur-modified iron that was used was an iron-based granular medium that has been commercially developed for the removal of nitrate, co-contaminants including uranium, vanadium and chromium, and other compounds from water. The independent study concluded that 'It is foreseen that the greatest benefit of this technology (sulfur-modified iron) is that it does not produce a costly brine stream as do the currently accepted nitrate removal technologies of ion exchange and reverse osmosis. This investigation confirmed that nitrate reduction via sulfur-modified iron is independent of the hydraulic loading rate. Future sulfur-modified iron treatment systems can be designed without restriction of the reactor vessel dimensions. Future vessels can be adapted to existing site constraints without being limited to height-to-width ratios that would exist if nitrate reduction were to depend on hydraulic loading rate'. Sulfur-modified iron was studied by the Pacific Northwest National Laboratory (PNNL) for its effectiveness in the reduction and permanent sequestration of technetium. The testing was done using Hanford Site groundwater together with sediment. The report stated, 'Under reducing conditions, TcO{sub 4} is readily reduced to TcIV, which forms highly insoluble oxides such at TcO{sub 2}.nH{sub 2}O. However, (re)oxidation of TcIV oxides can lead to remobilization. Under sulfidogenic conditions, most TcIV will be reduced and immobilized as Tc{sub 2}S{sub 7}, which is less readily re-mobilized, ev

Fogwell, Thomas W. [Fogwell Consulting, P.O. Box 20221, Piedmont, CA 94620 (United States)] [Fogwell Consulting, P.O. Box 20221, Piedmont, CA 94620 (United States); Santina, Pete [SMI-PS, Inc., 2073 Prado Vista, Lincoln, CA 95648 (United States)] [SMI-PS, Inc., 2073 Prado Vista, Lincoln, CA 95648 (United States)

2013-07-01T23:59:59.000Z

9

Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions  

SciTech Connect (OSTI)

Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO{sub 3} and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO{sub 3} as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO{sub 3} dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO{sub 3} forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO{sub 3} precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.

Wu, Yuxin; Versteeg, R.; Slater, L.; LaBrecque, D.

2009-06-01T23:59:59.000Z

10

Degradation of carbon tetrachloride in the presence of zero-valent iron.  

SciTech Connect (OSTI)

Efforts to achieve the decomposition of carbon tetrachloride through anaerobic and aerobic bioremediation and chemical transformation have met with limited success because of the conditions required and the formation of hazardous intermediates. Recently, particles of zero-valent iron (ZVI) have been used with limited success for in situ remediation of carbon tetrachloride. We studied a modified microparticulate product that combines controlled-release carbon with ZVI for stimulation of in situ chemical reduction of persistent organic compounds in groundwater. With this product, a number of physical, chemical, and microbiological processes were combined to create very strongly reducing conditions that stimulate rapid, complete dechlorination of organic solvents. In principle, the organic component of ZVI microparticles is nutrient rich and hydrophilic and has high surface area capable of supporting the growth of bacteria in the groundwater environment. In our experiments, we found that as the bacteria grew, oxygen was consumed, and the redox potential decreased to values reaching -600 mV. The small modified ZVI particles provide substantial reactive surface area that, in these conditions, directly stimulates chemical dechlorination and cleanup of the contaminated area without accumulation of undesirable breakdown products. The objective of this work was to evaluate the effectiveness of ZVI microparticles in reducing carbon tetrachloride under laboratory and field conditions. Changes in concentrations and in chemical and physical parameters were monitored to determine the role of the organic products in the reductive dechlorination reaction. Laboratory and field studies are presented.

Alvarado, J. S.; Rose, C.; LaFreniere, L.; Environmental Science Division

2010-01-01T23:59:59.000Z

11

Deployment of an innovative thermally enhanced soil mixing process augmented with zero-valent iron.  

SciTech Connect (OSTI)

An innovative in-situ soil treatment process, referred to as soil mixing/thermally enhanced soil vapor extraction (SM/TESVE), was used to remediate the 317 Area of Argonne National Laboratory-East (i.e., Argonne), which is contaminated with volatile organic compounds (VOCs). Following the initial soil treatment, polishing was required to reduce residual concentrations of contaminants. A study of polishing methods was conducted. It determined that injecting metallic iron particles into the soil, in conjunction with soil mixing, would reduce residual VOC concentrations more effectively than the original conventional soil ventilation approach. After the effectiveness of iron injection was verified, it replaced the soil ventilation step. The modified process involved mixing the soil while hot air and steam were injected into it. Off-gases were captured in a hood over the treatment area. During this process, an iron slurry, consisting of up to 50% iron particles in water with guar gum added as a thickening agent, was injected and mixed into the soil by the mixing equipment. Approximately 6,246 m{sup 3} (8, 170 yd{sup 3}) of soil was treated during this project. Confirmatory samples were then collected. In these samples, VOC concentrations were usually reduced by more than 80%.

Lynch, P. L.

1999-01-15T23:59:59.000Z

12

An Experimental Study of Micron-Size Zero-Valent Iron Emplacement in Permeable Porous Media Using Polymer-Enhanced Fluids  

SciTech Connect (OSTI)

At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. One possible cause for premature chromate breakthrough is associated with the presence of high-permeability zones in the aquifer. In these zones, groundwater moves relatively fast and is able to oxidize iron more rapidly. There is also a possibility that the high-permeability flow paths are deficient in reducing equivalents (e.g. reactive iron), required for barrier performance. One way enhancement of the current barrier reductive capacity can be achieved is by the addition of micron-scale zero-valent iron to the high-permeability zones within the aquifer. The potential emplacement of zero-valent iron (Fe0) into high-permeability Hanford sediments (Ringold Unit E gravels) using shear-thinning fluids containing polymers was investigated in three-dimensional wedge-shaped aquifer models. Polymers were used to create a suspension viscous enough to keep the Fe0 in solution for extended time periods to improve colloid movement into the porous media without causing a permanent detrimental decrease in hydraulic conductivity. Porous media were packed in the wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone in between two low-permeability zones or a high-permeability channel surrounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments.

Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

2005-12-22T23:59:59.000Z

13

Fundamental Studies of The Removal of Contaminants from Ground and Waste Waters Via Reduction By Zero-Valent metals  

SciTech Connect (OSTI)

Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites, and in other areas of the U.S.. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

Jory A. Yarmoff; Christopher Amrhein

2002-04-23T23:59:59.000Z

14

Degradation of organic and inorganic contaminants by zero valent iron  

E-Print Network [OSTI]

/Feo. The only product observed in the reduction of 2,4-DNT was 2,4-diaminotoluene (2,4-DAT). The 2,4-DAT produced accounted for 83-100% and only 42-54% of the initial mass of 2@4.DNT under anaerobic and aerobic conditions respectively. Since no degradation of 2...

Malla, Deepak Babu

1997-01-01T23:59:59.000Z

15

Electrochemical deposition of green rust on zero-valent iron  

E-Print Network [OSTI]

.............................................. 22 3 Analysis of green rust for content of Fe(II) and Fe(III) after extraction by 0.12 N HCl or Endox ................................................................................................................ 25 4... immersed in seawater and on the hulls of large ships (3). Green rusts are compounds with double-layers of mixed Fe(II)-Fe(III) hydroxides surrounding a layer of anions (A -n ). This structure can be represented by the general formula (Fe II ) 6-x (Fe...

Kulkarni, Dhananjay Vijay

2006-08-16T23:59:59.000Z

16

Demonstration of Combined Zero-Valent Iron and Electrical Resistance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemandEnergyandHeating for

17

Injection of Zero Valent Iron into an Unconfined Aquifer Using  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity in the VicinitySrTiO3(100).Initiatives

18

Perchlorate reduction using electrochemically induced pitting corrosion of zero-valent titanium  

E-Print Network [OSTI]

effective technologies, especially chemical treatments, to completely destroy trace levels of perchlorate present in drinking and groundwater. The research on perchlorate reduction by zero-valent titanium (Ti(0)) showed that perchlorate was effectively...

Lee, Chun Woo

2009-05-15T23:59:59.000Z

19

Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters via Reduction by Zero-Valent Metals  

SciTech Connect (OSTI)

Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

Yarmoff, Jory A.; Amrhein, Christopher

1999-06-01T23:59:59.000Z

20

Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions  

E-Print Network [OSTI]

of the electrical signatures from magnetite/fougerite vs.electrical properties of the different mineralogies: i.e. conductive and polarizable magnetite/fougerite vs.

Wu, Yuxin

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of  

E-Print Network [OSTI]

of oleaginous microalga, Chlorella sp. KR-1 Young-Chul Lee,ae Kyubock Lee,b Yuhoon Hwang,c Henrik Rasmus ). On the basis of these characteristics, oleaginous Chlorella sp. KR-1 was harvested within 3 min at a > 20 g LÃ?1

Mosegaard, Klaus

22

Dechlorination of PCE by mixtures of green rust and zero-valent iron  

E-Print Network [OSTI]

such as pH (8, 9, and 10), ZVI pretreatment, and preparation method of the mixtures (GR[S]?? synthesized in the presence of ZVI; GR[S]?? and ZVI mixed after preparation). For all the experimental conditions evaluated, the activities of these reductants...

Marchal, Fabienne

2002-01-01T23:59:59.000Z

23

Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPoweredEngine-Powered2 DOEDepartment

24

Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable Reactive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0 Alabama - NaturalHanford Tank

25

Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah,  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlanticDirect-Cooled PowerDishwasher: 1; Human:

26

Zero Valent Iron: Impact of Anions Present during Synthesis on Subsequent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss, Version 2.1.3

27

Conversion of Steel Mill's Surface Waste into Zero Valent Iron (ZVI) Nanoparticles for Hydrogen Generation for PEMFCs  

E-Print Network [OSTI]

. The currently pursued modes of hydrogen generation include autothermal and/ or steam reforming of fossil fuels

Azad, Abdul-Majeed

28

FY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9,ofAPPROPRIATIONPowerFY 2008 FOIA

29

NASA FY 2015 Budget Request FY 2014 FY 2015  

E-Print Network [OSTI]

NASA FY 2015 Budget Request Actuals FY 2013 Enacted FY 2014 FY 2015 Notional FY 2016 Notional FY's Fiscal Year 2015 budget supports investments that will ensure continued U.S. leadership in space, while 2017 Notional FY 2018 Notional FY 2019 $16.9B $17.6B $17.5B $17.6B $17.8B $18.0B $18.2B The President

30

Proposed State Budget FY09/FY10  

E-Print Network [OSTI]

#12;Proposed State Budget · FY09/FY10 o$33 billion budget established July 1, 2008 oFY10;Proposed State Budget Impact on NJIT · FY09 impact o $850,000 revenue reduction in salary program funds o in receiving 25% of computed salary program o Tentatively covered by budgeted reserve and FY09 vacancies · FY10

Bieber, Michael

31

FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings  

SciTech Connect (OSTI)

New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have no neutron absorber, and cannot be used for such functions. Borated stainless steel and G

Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

2007-09-20T23:59:59.000Z

32

FY 2015 Budget Request Webinar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

based on actual integrated biorefinery project plant performance data. eere.energy.gov 19 Bioenergy Technologies - FY 2015 Budget Request (Dollars in Thousands) FY 2013 Current FY...

33

Optimization of soil mixing technology through metallic iron addition.  

SciTech Connect (OSTI)

Enhanced soil mixing is a process used to remove volatile organic compounds (VOCs) from soil. In this process, also known as soil mixing with thermally enhanced soil vapor extraction, or SM/TESVE, a soil mixing apparatus breaks up and mixes a column of soil up to 9 m (30 ft) deep; simultaneously, hot air is blown through the soil. The hot air carries the VOCs to the surface where they are collected and safely disposed of. This technology is cost effective at high VOC concentrations, but it becomes cost prohibitive at low concentrations. Argonne National Laboratory-East conducted a project to evaluate ways of improving the effectiveness of this system. The project investigated the feasibility of integrating the SM/TESVE process with three soil treatment processes--soil vapor extraction, augmented indigenous biodegradation, and zero-valent iron addition. Each of these technologies was considered a polishing treatment designed to remove the contaminants left behind by enhanced soil mixing. The experiment was designed to determine if the overall VOC removal effectiveness and cost-effectiveness of the SM/TESVE process could be improved by integrating this approach with one of the polishing treatment systems.

Moos, L. P.

1999-01-15T23:59:59.000Z

34

FY 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SC

35

FY11  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of Energy6

36

FY13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of Energy6N m ^

37

FY13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of Energy6N m

38

FY13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of Energy6N

39

FY13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of Energy6N1901

40

FY13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FY13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of0030 Received:

42

FY14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of0030Document1 1

43

FY13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 Budget Justification FY 201563 FOIA

44

FY13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 Budget Justification FY 201563 FOIA4

45

FY13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 Budget Justification FY 201563

46

FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Reistance FY05 HPCRM Annual Report # Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program  

SciTech Connect (OSTI)

New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have no neutron absorber, and cannot be used for such functions. Borated stainless steel and G

Farmer, J C; Haslam, J J; Day, S D

2007-09-19T23:59:59.000Z

47

FY 2015 Financial Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget Current6FY4FY5

48

National Renewable Energy Laboratory 10 Year Site Plan FY 2007...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Renewable Energy Laboratory 10 Year Site Plan FY 2007 - FY 2018 National Renewable Energy Laboratory 10 Year Site Plan FY 2007 - FY 2018 National Renewable Energy...

49

Technology Innovation Program Programmatic Plan: FY 2011 FY 2014  

E-Print Network [OSTI]

Technology Innovation Program Programmatic Plan: FY 2011 ­ FY 2014 Critical National Need Area & intelligent automation (#3) Technologies to enable a smart grid (#4) Technologies for water availability (#6) Sustainability Technologies for personalized medicine (#5) Complex networks Manufacturing Advanced sensing

Magee, Joseph W.

50

Performance of a Permeable Reactive Barrier Using Granular Zero-Valent  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket | Department of Energy Reviews thePerformance

51

FY 2012 Appropriations for USGS Programs USGS FY12 Budget Request  

E-Print Network [OSTI]

FY 2012 Appropriations for USGS Programs USGS FY12 Budget Request (numbers are in millions) USGS FY $1.118 billion in the President's FY 2012 budget request, $6.0 million (0.5 percent) above the FY enterprise, the President's FY 2012 budget request would change the structure of the USGS budget, moving USGS

52

FY 2013 Financial Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget Hearing FY33 Sign

53

FY 2008 Volume 1  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 2007 FY61

54

FY 2008 Volume 2  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 2007 FY612

55

Field Projects: Monticello, Utah  

Broader source: Energy.gov [DOE]

A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of...

56

Field Projects: Cañon City, Colorado  

Broader source: Energy.gov [DOE]

In June 2000, Cotter Corporation installed a PRB at its uranium ore processing millsite in Cañon City, Colorado. The PRB contains zero-valent iron (ZVI) that treated molybdenum and uranium...

57

Tanks focus area multiyear program plan - FY96-FY98  

SciTech Connect (OSTI)

The Tanks Focus Area (TFA) Multiyear Program Plan (MYPP) presents the recommended TFA technical program. The recommendation covers a 3-year funding outlook (FY96-FY98), with an emphasis on FY96 and FY97. In addition to defining the recommended program, this document also describes the processes used to develop the program, the implementation strategy for the program, the references used to write this report, data on the U.S. Department of Energy (DOE) tank site baselines, details on baseline assumptions and the technical elements, and a glossary.

NONE

1995-07-01T23:59:59.000Z

58

Fuel Cell Technologies Program FY 2013 Budget Request Rollout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program FY 2013 Budget Request Rollout to Stakeholders Fuel Cell Technologies Program FY 2013 Budget Request Rollout to Stakeholders Presentation by Sunita Satyapal at the FY 2013...

59

FY 2014 Real Property Data Related to Operations and Maintenance...  

Office of Environmental Management (EM)

FY 2014 Real Property Data Related to Operations and Maintenance Guidance FY 2014 Real Property Data Related to Operations and Maintenance Guidance FY2014DataRelatedtoOperatio...

60

Guidance for FY2014 Facilities Information Management System...  

Office of Environmental Management (EM)

Guidance for FY2014 Facilities Information Management System Data Validations Guidance for FY2014 Facilities Information Management System Data Validations FY 2014 FIMS Data...

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FY 2013 Laboratory Table  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudgetLDRD Report FY8

62

FY 2013 Volume 2  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudgetLDRD Current FY2

63

FY 2013 Volume 3  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudgetLDRD Current FY23

64

FY 2013 Volume 4  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudgetLDRD Current FY234

65

FY 2013 Volume 5  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudgetLDRD Current FY234

66

FY-92 Report  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. . : '* FEB1f\l p :.; .FY-92 Report on

67

FY 2009 Financial Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 PerformanceBudget » FY 2009 BudgetEnergy09

68

FY 2009 Meetings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 PerformanceBudget » FY 2009NuclearFiscal Year

69

FY 2010 Financial Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 PerformanceBudget »WESTERN AREABudget » FY0

70

FY 2011 Financial Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 PerformanceBudgetNuclearNationalBudget » FY1

71

FY 2011 Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG Recovery Act Plan Overview

72

FY 2012 Financial Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG Recovery ActNational NuclearBudget2

73

FY 2014 Financial Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget Current6 Volume44

74

FY06 AR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of Energy6 Smallf

75

FY 2008 Volume 3  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 2007

76

FY 2008 Volume 4  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 20074

77

FY 2008 Volume 5  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 200745

78

FY 2008 Volume 6  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 2007456

79

FY 2008 Volume 7  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 20074567

80

FY 2009 Budget Highlights  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

FY 2009 Volume 1  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6State of7 FY71

82

FY 2010 State Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD program cost

83

FY 2010 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD program

84

FY 2010 Summary Report  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD programAgency

85

FY 2010 Volume 1  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD programAgency81

86

FY 2010 Volume 2  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD programAgency812

87

FY 2010 Volume 3  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD programAgency8123

88

FY 2010 Volume 4  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD

89

FY 2010 Volume 5  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD5 DOE/CF-039

90

FY 2010 Volume 6  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD5 DOE/CF-0396

91

FY 2010 Volume 7  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD5 DOE/CF-03967

92

FY 2011 Budget Highlights  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD5 DOE/CF-03967A A

93

FY 2011 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51The total

94

FY 2011 State Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51The total1State

95

FY 2011 Volume 1  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergyS S u

96

FY 2011 Volume 2  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergyS S u2

97

FY 2011 Volume 4  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergyS S u24

98

FY 2011 Volume 5  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergyS S

99

FY 2012 Budget Highlights  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergyS S4

100

FY 2012 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergyS5

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FY 2012 State Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of Energy

102

FY 2012 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of

103

FY 2012 Volume 1  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of657

104

FY 2012 Volume 2  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of6578

105

FY 2012 Volume 4  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of65780

106

FY 2012 Volume 5  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of657801

107

FY 2012 Volume 6  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of6578012

108

FY 2012 Volume 7  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of65780123

109

High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program  

SciTech Connect (OSTI)

The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

2007-09-19T23:59:59.000Z

110

FY 2008 E-Government Act Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 E-Government Act Report FY 2008 E-Government Act Report FY 2008 E-Government Act Report FY 2008 E-Government Act Report More Documents & Publications FY 2008 E-Government Act...

111

NREL Photovoltaic Program FY 1993  

SciTech Connect (OSTI)

This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

Not Available

1994-08-01T23:59:59.000Z

112

FY 2014 Budget Rollout Presentation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarchFY 2014 AnnualFY

113

Institutional Plan FY 2003 - 2007  

E-Print Network [OSTI]

BA) FY01 DOE Effort CRADA WFO Total Operating CapitalWork for Other than DOE CRADA TOTAL DIRECT TOTAL INDIRECTOthers--Non-DOE Direct FTE CRADA Direct FTE TOTAL LAB DIRECT

Chartock, Michael; Hansen, Todd

2002-01-01T23:59:59.000Z

114

The Economic University, FY2011  

E-Print Network [OSTI]

The Economic Impact of Binghamton University, FY2011 (July 1, 2010-June 30, 2011) Office....................................................................................................................2 ECONOMIC OUTPUT and Tioga counties) and the New York State economy in terms of economic output, jobs, and human capital

Suzuki, Masatsugu

115

FY 2011 Appropriations for USGS Programs USGS FY11 Budget Request  

E-Print Network [OSTI]

FY 2011 Appropriations for USGS Programs USGS FY11 Budget Request (numbers are in millions) USGS FY on the President's FY 2011 Budget Request for USGS (2-4-10): Climate Change Adaptation Initiative ­ The 2011 USGS budget expands climate change science activities with a program increase of $11.0 million over 2010

116

Operating plan FY 1998  

SciTech Connect (OSTI)

This document is the first edition of Argonne`s new Operating Plan. The Operating Plan complements the strategic planning in the Laboratory`s Institutional Plan by focusing on activities that are being pursued in the immediate fiscal year, FY 1998. It reflects planning that has been done to date, and it will serve in the future as a resource and a benchmark for understanding the Laboratory`s performance. The heart of the Institutional Plan is the set of major research initiatives that the Laboratory is proposing to implement in future years. In contrast, this Operating Plan focuses on Argonne`s ongoing R&D programs, along with cost-saving measures and other improvements being implemented in Laboratory support operations.

NONE

1997-10-01T23:59:59.000Z

117

Engineering (FY2011 and  

E-Print Network [OSTI]

MD 2,3 (FY2011 and beyond) MBA2 (first year) LAW 2 10% 4 * 1,914 2,040 2,198 2,682 2,268 15% 6 3 2,871,792 10,728 9,072 50% 20 8, 9, or 10 9,570 10,200 10,990 13,410 11,340 TGR 4-20 0-3 2,871 2,871 - 2,871 2,871,785 5,100 5,495 6,705 5,670 80% 32 4 3,828 4,080 4,396 5,364 4,536 85% 34 3 2,871 3,060 3,297 4,023 3

Kay, Mark A.

118

What Recession? Alaska's FY 2011 Budget  

E-Print Network [OSTI]

Recession? Alaska’s FY 2011 Budget Jerry McBeath Universityexplaining Alaska’s FY 2011 budget process and out- comes.It introduces the governor’s budget requests, legislative

McBeath, Jerry

2011-01-01T23:59:59.000Z

119

Photovoltaic Subcontract Program, FY 1990  

SciTech Connect (OSTI)

This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

Summers, K.A. (ed.)

1991-03-01T23:59:59.000Z

120

SWEIS Annual Review - FY2001  

SciTech Connect (OSTI)

The SNL/NM FY2001 SWEIS Annual Review discusses changes in facilities and facility operations that have occurred in selected and notable facilities since source data were collected for the SNL/NM SWEIS (DOE/EIS-0281). The following information is presented: (1) An updated overview of SNL/NM selected and notable facilities and infrastructure capabilities. (2) An overview of SNL/NM environment, safety, and health programs, including summaries of the purpose, operations, activities, hazards, and hazard controls at relevant facilities and risk management methods for SNL/NM. (3) Updated base year activities data, projections of FY2003 and FY2008 activities, together with related inventories, material consumption, emissions, waste, and resource consumption. (4) Appendices summarizing activities and related hazards at SNL/NM individual special, general, and highbay laboratories, and chemical purchases.

GUERRERO, JOSEPH V.; MARTOSCH, JAMES P.; BAYLISS, LINDA S.; CATECHIS, CHRISTOPHER S.; MONAGHAN, TERI D.; BAILEY-WHITE, BRENDA E.

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Texas Tech University Energy Savings Program FY 2014 Update  

E-Print Network [OSTI]

, we experienced a net increase in energy costs for FY14 of $93,300, even though total energy use has energy consumption for the prior fiscal year. Through FY14, the campus consumed 153.04 kbtu/ft2 `13 ­ August `14 FY13 Gallons Consumed FY14 Goal (5% Decline) FY14 Gallons Consumed Percent Change 1st

Zhuang, Yu

122

FY98 To Present Statistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2FY98 To Present Statistics

123

FY 2015 Budget Request Webinar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energyand6-OPAMElectricEnergy4FY 2014 Solid OxideFY 2015Reuben

124

Information Technology at Purdue (ITaP) Infrastructure FY2010 FY2011 FY2012 FY2013 Research FY2009-10 FY2010-11 FY2011-12 FY2012-13  

E-Print Network [OSTI]

HIGH PERFORMANCE COMPUTING USAGE FY2013 Electrical & Computer Engineering 17.2% Mechanical Engineering to students 278 274 271 265 Computing lab machines available to students 5,502 5,330 5,217 5,178 ITa,727 220,013 165,163 High Performance Computing (HPC) 3 2012-13 HPC Utilization Community Cluster Non

125

LDRD FY 2014 Program Plan  

SciTech Connect (OSTI)

As required by DOE Order 413.2B the FY 2014 Program Plan is written to communicate ares of investment and approximate amounts being requested for the upcoming fiscal year. The program plan also includes brief highlights of current or previous LDRD projects that have an opportunity to impact our Nation's current and future energy challenges.

Anita Gianotto; Dena Tomchak

2013-08-01T23:59:59.000Z

126

Office of Energy Efficiency and Renewable Energy FY 2015 Budget...  

Office of Environmental Management (EM)

About Us Budget Office of Energy Efficiency and Renewable Energy FY 2015 Budget Request Office of Energy Efficiency and Renewable Energy FY 2015 Budget Request U.S....

127

Project Impact Assessments: Building America FY14 Field Test...  

Energy Savers [EERE]

Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Project Impact Assessments: Building America FY14 Field Test Technical Support...

128

EERE FY 2015 Budget Request Webinar -- Renewable Power | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Power EERE FY 2015 Budget Request Webinar -- Renewable Power EERE FY 2015 Budget Request Webinar, featuring Steve Chalk, Deputy Assistant Secretary for Renewable Power,...

129

EERE FY 2015 Budget Request Webinar -- Energy Efficiency | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency EERE FY 2015 Budget Request Webinar -- Energy Efficiency EERE FY 2015 Budget Request Webinar, featuring Kathleen Hogan, Deputy Assistant Secretary for Energy...

130

Recommendation 224: Recommendations on the FY 2016 DOE Oak Ridge...  

Office of Environmental Management (EM)

Recommendation 224: Recommendations on the FY 2016 DOE Oak Ridge Environmental Management Budget Request Recommendation 224: Recommendations on the FY 2016 DOE Oak Ridge...

131

Electric Markets Technical Assistance Program: FY1999 Grant Descriptio...  

Broader source: Energy.gov (indexed) [DOE]

Markets Technical Assistance Program: FY1999 Grant Descriptions and Contact Information Electric Markets Technical Assistance Program: FY1999 Grant Descriptions and Contact...

132

Office of Electricity Delivery & Energy Reliability FY 2012 Budget...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office of Electricity Delivery & Energy Reliability FY 2012 Budget Request Presentation Office of Electricity Delivery & Energy Reliability FY 2012 Budget Request Presentation...

133

FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

134

Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout...  

Energy Savers [EERE]

FY 2014 Budget Request Rollout to Stakeholders Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to Stakeholders Presentation slides from the Hydrogen and Fuel...

135

Summary of FY13 Industry Interviews  

SciTech Connect (OSTI)

This white paper discusses the industry self-regulation project’s outreach interview activities for FY13 and summarizes conclusions.

Hund, Gretchen; Kurzrok, Andrew J.; Seward, Amy M.; Wyse, Evan T.; Gunawardena, Navindra H.

2013-09-01T23:59:59.000Z

136

Hydrogen Materials Compatibility - FY 2007 Final Report  

SciTech Connect (OSTI)

This report describes the work conducted in FY07 on the Hydrogen Materials Compatibility program that involves PNNL and ORNL researchers.

Holbery, Jim; Henager, Charles H.; Pitman, Stan G.; Ryan, Joseph V.

2007-10-01T23:59:59.000Z

137

NREL Photovoltaic Program FY 1994 bibliography  

SciTech Connect (OSTI)

This report lists all published documents of the Photovoltaic Program for FY 1994. Documents include conference papers, journal articles, book chapters, patents, etc.

none,

1994-12-01T23:59:59.000Z

138

NREL Photovoltaic Program FY 1993 bibliography  

SciTech Connect (OSTI)

This report lists all published documents of the Photovoltaic Program for FY 1993. Documents include conference papers, journal articles, book chapters, etc.

Pohle, L. [ed.

1994-01-01T23:59:59.000Z

139

Environmental Management FY 2006 Budget Request DRAFT  

Broader source: Energy.gov (indexed) [DOE]

for macro-encapsulation of higher activity MLLW from Idaho and Oak Ridge * Depleted Uranium hexafluoride conversion product (to begin in FY08) * Planning also underway for...

140

EERE FY 2016 Budget Overview -- Sustainable Transportation  

Broader source: Energy.gov (indexed) [DOE]

Reuben Sarkar, Deputy Assistant Secretary March, 2015 Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview 2 Major Administration Energy Goals * Reduce GHG...

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Photovoltaic Subcontract Program, FY 1991  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Not Available

1992-03-01T23:59:59.000Z

142

Ethanol annual report FY 1990  

SciTech Connect (OSTI)

This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

Texeira, R.H.; Goodman, B.J. (eds.)

1991-01-01T23:59:59.000Z

143

CAES Annual Report FY 2011  

SciTech Connect (OSTI)

The Center for Advanced Energy Studies was created to lead research programs important to the nation, attract students and faculty to the Idaho universities and act as a catalyst for technology-based economic development. CAES is striving to meet those goals by continuing to develop its infrastructure and equipment capabilities, expand its research portfolio and bolster Idaho's energy workforce. This Annual Report details the progress CAES made in FY 2011 toward fulfilling its research, education and economic development missions.

Kortny Rolston

2011-10-01T23:59:59.000Z

144

FY 2014 Budget Request for the Office of Electricity Delivery and Energy Reliability  

Broader source: Energy.gov [DOE]

Table showing the FY 2012 Current Appropriation, the FY 2013 Annualized Continuing Resolution, and the FY 2014 Congressional Request for the Office of Electricity Delivery and Energy Reliability.

145

FY 2009 Appropriations for the National Science Foundation (NSF) http://www.nsf.gov/about/budget/fy2009/toc.jsp  

E-Print Network [OSTI]

/25/09) Senate (Comm. Mark) Final % change FY08 vs. FY09 Research & Related Activities: Biological Sciences 612;Education and Human Resources: Program FY 2008 Estimate FY 2009 Request % change FY08 vs. FY09 Request Final. · The proposed CR will run through March 6 signaling that there will be no lame duck session after the election

146

Environmental Restoration Projects FY10 Performance  

E-Print Network [OSTI]

Pollution Prevention Safety Performance Looking forward: FY11 Goals and Objectives 2 #12;3 FY Planning Plan (Dec) #12;7 ERP Environmental Aspects Radioactive, Hazardous, Mixed & Regulated Industrial Waste or Radioactive Materials Historical/Cultural Resources #12;ERP Work Hazards: OSHA's "Top Ten" Construction Safety

Homes, Christopher C.

147

Accelerator/Experiment operations - FY 2004  

SciTech Connect (OSTI)

This Technical Memorandum (TM) summarizes the accelerator and experiment operations for FY 2004. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2004 Run II at the Tevatron Collider, the MiniBooNE neutrino experiment, and SY 120 activities.

Bromberg, C.; Conrad, J.; Denisov, D.; Holmes, S.; Louis, W.; Meyer, A.; Moore, Craig D.; Raja, R.; Ramberg, E.; Roser, R.; /Fermilab

2004-12-01T23:59:59.000Z

148

NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1999  

Broader source: Energy.gov (indexed) [DOE]

Updates ... 10 q Executive Order Issued on Invasive Species ... 11 q Documents Issued First Quarter FY...

149

Laboratory Directed Research and Development Program FY 2007  

SciTech Connect (OSTI)

Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

Hansen, Todd C; editor, Todd C Hansen,

2008-03-12T23:59:59.000Z

150

FY 1996 Congressional budget request: Budget highlights  

SciTech Connect (OSTI)

The FY 1996 budget presentation is organized by the Department`s major business lines. An accompanying chart displays the request for new budget authority. The report compares the budget request for FY 1996 with the appropriated FY 1995 funding levels displayed on a comparable basis. The FY 1996 budget represents the first year of a five year plan in which the Department will reduce its spending by $15.8 billion in budget authority and by $14.1 billion in outlays. FY 1996 is a transition year as the Department embarks on its multiyear effort to do more with less. The Budget Highlights are presented by business line; however, the fifth business line, Economic Productivity, which is described in the Policy Overview section, cuts across multiple organizational missions, funding levels and activities and is therefore included in the discussion of the other four business lines.

Not Available

1995-02-01T23:59:59.000Z

151

Transmission and distribution technologies: Program overview, FY 1993--FY 1994  

SciTech Connect (OSTI)

Electricity is the lifeblood of our Nation`s economy and a critical contributor to our standard of living. For decades, increases in the gross domestic product (GDP) have been accompanied by increases in electricity use. This overview provides the reader with an introduction to the US Department of Energy`s (DOE`s) T&D Technologies Program. It shows how the program is meeting the challenges being imposed on the T&D infrastructure by the changing electric power industry and how the Nation will benefit from its efforts. The overview describes the program`s ongoing projects and discusses the new projects being initiated in fiscal year (FY) 1995.

NONE

1995-06-01T23:59:59.000Z

152

FY 2012 Agency Financial Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to Congress Laboratory Directedin

153

FY11 OE public summary  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarchFYAOI6and Energy

154

FY2000 SSRLUO Executive Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudgetSSRL USERS'

155

FY2002 SSRLUO Executive Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudgetSSRL

156

FY2003 SSRLUO Executive Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudgetSSRL7/16/02 Run3

157

FY2005 SSRLUO Executive Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudgetSSRL7/16/02 Run35

158

FY2006 SSRLUO Executive Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudgetSSRL7/16/02 Run356

159

FY2007 SSRLUO Executive Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudgetSSRL7/16/02

160

FY2008 SSRLUO Executive Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudgetSSRL7/16/028

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

FY 2009 Annual Performance Report  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 20074567

162

FY 2011 Agency Performance Report  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD5 DOE/CF-03967A A

163

FY16 Events and Deadlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 Budget Justification FY

164

FY 2006 Appropriations for Science programs within the Department of Energy  

E-Print Network [OSTI]

of Science/BER Conference Lang. DOE FY 2005 Omnibus President's FY 2006 Req. % change FY05 vs FY06 Req. House.5 6.9 -18.8% Ecological Processes 18.7 18.7 flat Human Interactions 8.1 8.0 -0.9% Advanced Scientific 2006 Req. % change FY05 vs FY06 Req. House Senate Conf. % change FY05 vs. FY06 TOTAL, Office of Science

165

FY13 Budget Resources | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energyand6-OPAMElectricEnergy4FY 2014 Solid OxideFY5FY3 Budget

166

FY15 Integrated Training Management Process  

Broader source: Energy.gov (indexed) [DOE]

to LDTS Director and DOE's CLO July 18 Annual Training Plan For FY15 Complete By Send ATP template to TPOCs July 21 ATP completed and edited by organizationsTNA Team...

167

What Recession? Alaska's FY 2011 Budget  

E-Print Network [OSTI]

were uncertain. Yet high oil prices and cash reserves madethis reason we focus first upon oil prices and production.Oil Prices Unlike the radical price swings of FY 2009, when

McBeath, Jerry

2011-01-01T23:59:59.000Z

168

Accelerator/Experiment operations - FY 2006  

SciTech Connect (OSTI)

This Technical Memorandum (TM) summarizes the Fermilab accelerator and experiment operations for FY 2006. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2006 Run II at the Tevatron Collider, the MiniBooNE experiments running in the Booster Neutrino Beam in neutrino and antineutrino modes, MINOS using the Main Injector Neutrino Beam (NuMI), and SY 120 activities.

Brice, S.; Conrad, J.; Denisov, D.; Ginther, G.; Holmes, S.; James, C.; Lee, W.; Louis, W.; Moore, C.; Plunkett, R.; Raja, R.; /Fermilab

2006-10-01T23:59:59.000Z

169

Electron Microscopy Characterization of Tc-Bearing Metallic Waste Forms- Final Report FY10  

SciTech Connect (OSTI)

The DOE Fuel Cycle Research & Development (FCR&D) Program is developing aqueous and electrochemical approaches to the processing of used nuclear fuel that will generate technetium-bearing waste streams. This final report presents Pacific Northwest National Laboratory (PNNL) research in FY10 to evaluate an iron-based alloy waste form for Tc that provides high waste loading within waste form processing limitations, meets waste form performance requirements for durability and the long-term retention of radionuclides and can be produced with consistent physical, chemical, and radiological properties that meet regulatory acceptance requirements for disposal.

Buck, Edgar C.; Neiner, Doinita

2010-09-30T23:59:59.000Z

170

GEORGE MASON UNIVERSITY FY 2005-06 and FY 2010-11  

E-Print Network [OSTI]

GEORGE MASON UNIVERSITY Comparison FY 2005-06 and FY 2010-11 2005-06 2010-11 Students Enrollment 29 portfolio since the 2005-06 academic year: o Computer game design (BFA) o Global and environmental change 168 Since the 2005-06 academic year, Mason has opened nearly 30 new facilities. Below is a sample

171

Plasma Chamber and APEX Budget Plans for FY 2000 (and FY 2001)  

E-Print Network [OSTI]

Plasma Chamber and APEX Budget Plans for FY 2000 (and FY 2001) Spokesperson: Mohamed Abdou OFES: Plasma Chamber Spokesperson: M. Abdou Part I: VLT Director's Proposed Budget: $2200K Task Description Plans and Budgets Technology Area: APEX Spokesperson: M. Abdou Part I: VLT Director's Proposed Budget

Abdou, Mohamed

172

FY08 VPP Program Evaluation  

SciTech Connect (OSTI)

The Voluntary Protection Program (VPP) is a recognized third-party certification of worker safety and health program excellence, based on industry best practices that focus on management leadership and employee involvement, as well as other safety and health program elements. This Pacific Northwest National Laboratory (PNNL) VPP Program Evaluation is the FY-2008 report of the PNNL VPP Steering Committee regarding the status of VPP at PNNL. It is an update of the previous annual report dated January, 2007 and was completed in January 2008. An annual evaluation of the status of VPP is required of all sites that participate in the DOE-VPP. This report provides a detailed summary of the PNNL VPP Steering Committee’s evaluation of program performance and documents both strengths and improvement opportunities related to the various aspects of the VPP model.

Dossett, Sharon D.

2008-01-01T23:59:59.000Z

173

Geosciences projects FY 1985 listing  

SciTech Connect (OSTI)

This report, which updates the previous working group publication issued in February 1982, contains independent sections: (A) Summary Outline of DOE Geoscience and Related Studies, and (B) Crosscut of DOE Geoscience and Geoscience Related Studies. The FY 1985 funding levels for geoscience and related activities in each of the 11 programs within DOE are presented. The 11 programs fall under six DOE organizations: Energy Research Conservation and Renewable Energy; Fossil Energy; Defense Programs; Environmental, Safety, and Health; and Civilian radioactive Waste. From time to time, there is particular need for special interprogrammatic coordination within certain topical areas. section B of the report is intended to fill this need for a topical categorization of the Department's geoscience and related activities. These topical areas in Solid Earth Geosciences, Atmospheric Geosciences, Ocean Geosciences, Space and Solar/Terrestrial Geosciences, and Hydrological Geosciences are presented in this report.

Not Available

1986-05-01T23:59:59.000Z

174

FY 1996 annual work plan  

SciTech Connect (OSTI)

In April 1994, the Department of Energy (DOE) Strategic Plan was issued. This Plan presents the Department`s strategic outlook in response to a changing world. It discusses the Department`s unique capabilities; its mission, vision, and core values; and key customer and stakeholder considerations. The DOE Strategic Plan lists business strategies and critical success factors which are intended to aid the Department in accomplishing its mission and reaching its vision of itself in the future. The Office of Inspector General (OIG) has an important role in carrying out the goals and objectives of the Secretary`s Strategic Plan. The ultimate goal of the OIG is to facilitate positive change by assisting its customers, responsible Government officials, in taking actions to improve programs and operations. The Inspector General annually issues his own Strategic Plan that contains program guidance for the next fiscal year. As part of its responsibility in carrying out the OIG mission, the Office of the Deputy Inspector General for Audit Services (Office of Audit Services) publishes an Annual Work Plan that sets forth audits that are planned for the next fiscal year. Selection of these audits is based on the overall budget of the Department, analyses of trends in Departmental operations, guidance contained in the agency`s strategic plans, statutory requirements, and the expressed needs and audit suggestions of Departmental program managers and OIG managers and staff. This work plan includes audits that are carried over from FY 1995 and audits scheduled to start during FY 1996. Audits included in the plan will be performed by OIG staff.

NONE

1995-09-30T23:59:59.000Z

175

Iron and Prochlorococcus/  

E-Print Network [OSTI]

Iron availability and primary productivity in the oceans are intricately linked through photosynthesis. At the global scale we understand how iron addition induces phytoplankton blooms through meso-scale iron-addition ...

Thompson, Anne Williford

2009-01-01T23:59:59.000Z

176

Office of Energy Efficiency and Renewable Energy FY 2014 Budget...  

Energy Savers [EERE]

FY 2014 Budget Rollout Office of Energy Efficiency and Renewable Energy FY 2014 Budget Rollout U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy fiscal...

177

Page 1 of 1 PSD FY 2014 ESH IMPROVEMENT PLAN  

E-Print Network [OSTI]

Page 1 of 1 PSD FY 2014 ESH IMPROVEMENT PLAN PREPARED BY ANDREW ACKERMAN This document defines the actions planned for FY 2014 for improving the PSD ESH programs beyond the primary goal of controlling

Ohta, Shigemi

178

Planning Amid Abundance: Alaska’s FY 2013 Budget Process  

E-Print Network [OSTI]

2011) “The Outlier State: Alaska’s FY 2012 Budget,” AnnualWestern States Budget Review. New York Times, selectedAbundance: Alaska’s FY 2013 Budget Process Abstract: This

McBeath, Jerry

2013-01-01T23:59:59.000Z

179

EERE FY 2008-2012 Budget: Weatherization and Intergovernmental...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE FY 2008-2012 Budget: Weatherization and Intergovernmental Program EERE FY 2008-2012 Budget: Weatherization and Intergovernmental Program Proposed five-year plan for the U.S....

180

Sustainable NREL - Site Sustainability Plan FY 2015 (Management Publication)  

SciTech Connect (OSTI)

NREL's Site Sustainability Plan FY 2015 reports on sustainability plans for the lab for the year 2015 based on Executive Order Goals and provides the status on planned actions cited in the FY 2014 report.

Not Available

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Investigating Iron Ions | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigating Iron Ions Investigating Iron Ions Computer code provides detailed predictions of highly charged ions in water Using resources at EMSL, scientists obtained...

182

EMSL Quarterly Highlights Report: FY09, 3rd Quarter  

SciTech Connect (OSTI)

This report outlines the science and publications that occurred at EMSL during the 3rd quarter of FY09.

Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.; Wiley, Julie G.

2009-07-17T23:59:59.000Z

183

FY 2014 Annual Progress Report- Electric Drive Technologies Program  

Broader source: Energy.gov [DOE]

FY 2014 Annual Progress Report for the Electric Drive Technologies Program of the Vehicle Technologies Office, DOE/EE-1163

184

Tanks Focus Area Site Needs Assessment FY 2000  

SciTech Connect (OSTI)

This document summarizes the Tanks Focus Area (TFA's) process of collecting, analyzing, and responding to high-level radioactive tank waste science and technology needs developed from across the DOE complex in FY 2000. The document also summarizes each science and technology need, and provides an initial prioritization of TFA's projected work scope for FY 2001 and FY 2002.

Allen, Robert W.

2000-03-10T23:59:59.000Z

185

NREL Energy Storage Projects: FY2013 Annual Report  

SciTech Connect (OSTI)

In FY13, DOE funded NREL to make technical contributions to various R&D activities. This report summarizes NREL's R&D projects in FY13 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY13 projects under NREL's Energy Storage R&D program are discussed in depth in this report.

Pesaran, A.; Ban, C.; Brooker, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Long, D.; Neubauer, J.; Santhanagopalan, S.; Smith, K.; Tenent, R.; Wood, E.; Han, T.; Hartridge, S.; Shaffer, C. E.

2014-07-01T23:59:59.000Z

186

Gap Assessment (FY 13 Update)  

SciTech Connect (OSTI)

To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. The original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for each data category. The first file contains the grid and is in the SHP file format (shape file.) Each populated grid cell represents a 10k area within which data is known to exist. The second file is a CSV (comma separated value) file that contains all of the individual layers that intersected with the grid. This CSV can be joined with the map to retrieve a list of datasets that are available at any given site. The attributes in the CSV include: 1. grid_id : The id of the grid cell that the data intersects with 2. title: This represents the name of the WFS service that intersected with this grid cell 3. abstract: This represents the description of the WFS service that intersected with this grid cell 4. gap_type: This represents the category of data availability that these data fall within. As the current processing is pulling data from NGDS, this category universally represents data that are available in the NGDS and are ready for acquisition for analytic purposes. 5. proprietary_type: Whether the data are considered proprietary 6. service_type: The type of service 7. base_url: The service URL

Getman, Dan

2013-09-30T23:59:59.000Z

187

The PNNL Lab Homes Experimental Plan, FY12?FY15  

SciTech Connect (OSTI)

The PNNL lab homes (http://labhomes.pnnl.gov/ ) are two manufactured homes recently installed immediately south of the 6th Street Warehouse on the PNNL Richland, WA campus that will serve as a project test bed for DOE, PNNL and its research partners who aim to achieve highly energy efficient and grid-responsive homes. The PNNL Lab Homes project is the first of its kind in the Pacific Northwest region. The Energy & Environment Directorate at PNNL, working with multiple sponsors, will use the identical 1,500 square-foot homes for experiments focused on reducing energy use and peak demand. Research and demonstration primarily will focus on retrofit technologies, and the homes will offer a unique, side-by-side ability to test and compare new ideas and approaches that are applicable to site-built as well as manufactured homes. The test plan has the following objectives: • To define a retrofit solution packages for moderate to cold climates that can be cost effectively deployed in the Pacific NW to save 50% of the energy needs of a typical home while enhancing the comfort and indoor air quality. The retrofit strategies would also lower the peak demands on the grid. • To leverage the unique opportunity in the lab homes to reach out to researchers, industry, and other interested parties in the building science community to collaborate on new smart and efficient solutions for residential retrofits. • To increase PNNL’s visibility in the area of buildings energy efficiency based on the communication strategy and presentation of the unique and impactful data generated in the lab homes. This document describes the proposed test plan for the lab homes to achieve these goals, through FY15. The subsequent sections will provide a brief description of each proposed experiment, summarize the timing of the experiment (including any experiments that may be run in parallel, and propose potential contributors and collaborators. For those experiments with funding information available, it is provided.

Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.

2012-05-30T23:59:59.000Z

188

Policy Flashes FY 2013 | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic TheoryPlant 242-ZPolaron Behavior1-617ofTitlesFY 2012FY

189

FY 2007 Congressional Request | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollars in5 FebruaryFY 2007FY 2007

190

FY 2007 Control Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollars in5 FebruaryFY 2007FY

191

FY 2008 Summary Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 2007 FY

192

FY 2008 Summary Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6 FY 2007 FY6

193

FY 2010 Summary Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD programAgency8 FY

194

FY 2011 LDRD Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51The total FY

195

FY 2012 Control Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergyS FY

196

FY 2012 Control Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergyS FY2

197

Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135  

SciTech Connect (OSTI)

DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

Michalski, Casey C.; DiSalvo, Rick; Boylan, John [Stoller LMS Team, 11025 Dover Street, Suite 1000, Westminster, CO 80021 (United States)] [Stoller LMS Team, 11025 Dover Street, Suite 1000, Westminster, CO 80021 (United States)

2013-07-01T23:59:59.000Z

198

Acetylene Inhibition of Trichloroethene and Vinyl Chloride  

E-Print Network [OSTI]

and enhanced anaerobic remediation of chloroethenes at contaminated sites. The results also suggest that acetylene produced abiotically by reactions of chlorinated ethenes with zero-valent iron could inhibit water standard (2 µg/L) (3). A variety of biochemical tools have been used to probe the complexity

Semprini, Lewis

199

Bioremediation of Uranium Plumes with Nano-scale  

E-Print Network [OSTI]

(IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

Fay, Noah

200

Technical Assistance to Ohio Closure Sites Technologies to Address Excavated VOC Contaminated Soil  

E-Print Network [OSTI]

and available solar heat. This report focuses on design features and recommendations for implementing disposal, passive soil venting, enhanced soil venting, zero-valent iron, anaerobic bioremediation, aerobic and functional design requirements (equipment, flow rates, options, issues, cautions, etc.).The design

Hazen, Terry

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dispersion enhanced metal/zeolite catalysts  

DOE Patents [OSTI]

Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

1987-03-31T23:59:59.000Z

202

Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.; Lepry, William C.; Rodriguez, Carmen P.; Windisch, Charles F.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Olszta, Matthew J.; Pierce, David A.

2014-03-26T23:59:59.000Z

203

Twenty-Five Year Site Plan FY2013 - FY2037  

SciTech Connect (OSTI)

Los Alamos National Laboratory (the Laboratory) is the nation's premier national security science laboratory. Its mission is to develop and apply science and technology to ensure the safety, security, and reliability of the United States (U.S.) nuclear stockpile; reduce the threat of weapons of mass destruction, proliferation, and terrorism; and solve national problems in defense, energy, and the environment. The fiscal year (FY) 2013-2037 Twenty-Five Year Site Plan (TYSP) is a vital component for planning to meet the National Nuclear Security Administration (NNSA) commitment to ensure the U.S. has a safe, secure, and reliable nuclear deterrent. The Laboratory also uses the TYSP as an integrated planning tool to guide development of an efficient and responsive infrastructure that effectively supports the Laboratory's missions and workforce. Emphasizing the Laboratory's core capabilities, this TYSP reflects the Laboratory's role as a prominent contributor to NNSA missions through its programs and campaigns. The Laboratory is aligned with Nuclear Security Enterprise (NSE) modernization activities outlined in the NNSA Strategic Plan (May 2011) which include: (1) ensuring laboratory plutonium space effectively supports pit manufacturing and enterprise-wide special nuclear materials consolidation; (2) constructing the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRR-NF); (3) establishing shared user facilities to more cost effectively manage high-value, experimental, computational and production capabilities; and (4) modernizing enduring facilities while reducing the excess facility footprint. Th is TYSP is viewed by the Laboratory as a vital planning tool to develop an effi cient and responsive infrastructure. Long range facility and infrastructure development planning are critical to assure sustainment and modernization. Out-year re-investment is essential for sustaining existing facilities, and will be re-evaluated on an annual basis. At the same time, major modernization projects will require new line-item funding. This document is, in essence, a roadmap that defines a path forward for the Laboratory to modernize, streamline, consolidate, and sustain its infrastructure to meet its national security mission.

Jones, William H. [Los Alamos National Laboratory

2012-07-12T23:59:59.000Z

204

Transmutation Fuels Campaign FY-09 Accomplishments Report  

SciTech Connect (OSTI)

This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

Lori Braase

2009-09-01T23:59:59.000Z

205

Institutional research and development, FY 1987  

SciTech Connect (OSTI)

The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

1987-01-01T23:59:59.000Z

206

Energy Task Force FY11 Report  

E-Print Network [OSTI]

sulfur B20 (to date approximately 87% transition). In FY 11, these alternative fuel initiatives resulted inventory was updated with data from fiscal years 2008-2009. This continues a series of updates going back to 2001 (for continuous data back to 1990), allowing the University to monitor and assess

New Hampshire, University of

207

LANL FY11 activities(u)  

SciTech Connect (OSTI)

Briefings presenting W78 programmatic activities for FY11 and the status and plan for associated Hydro 3617, is included wherewith in support of the NNSA W78 Program Review Meetings scheduled for January 11 thru 13, 2011, at the Savannah River Plant, SC.

Aragon, Ezekiel D [Los Alamos National Laboratory

2011-01-06T23:59:59.000Z

208

Technology Transfer Office FY2011 Annual Report  

E-Print Network [OSTI]

Technology Transfer Office FY2011 Annual Report #12;TECHNOLOGY TRANSFER ADVISORY COMMITTEES The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the universityÃ? s technology transfer program. This standing committee is appointed by the chancellor

Hasty, Jeff

209

Mandatory Student Fees FY 2014 2015  

E-Print Network [OSTI]

Mandatory Student Fees FY 2014 ­ 2015 Mandatory Student Fees, as prescribed in UNM Policy 1310 to assess. The Board of Regents approves the final amount. Below is the annual budget detailing how these fees will be allocated. April 21, 2014 Budget (in dollars) STUDENT ACTIVITY FEES (assessed to all

Maccabe, Barney

210

Advanced Energy Projects: FY 1993, Research summaries  

SciTech Connect (OSTI)

AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

Not Available

1993-09-01T23:59:59.000Z

211

Dartmouth Biomedical Libraries FY06 Annual Report  

E-Print Network [OSTI]

Dartmouth Biomedical Libraries FY06 Annual Report September 24, 2006 Dartmouth Biomedical Libraries Usage · D: July 1, 2006, Organization Chart Introduction The mission of the Dartmouth Biomedical (DHMC), and Dartmouth College. There are two Biomedical Libraries: the Dana Biomedical Library

Myers, Lawrence C.

212

Microsoft Word - AL-Consolidated Approps FY 2008 as of feb 21...  

Office of Environmental Management (EM)

Consolidated Approps FY 2008 as of feb 21 2008 final.doc Microsoft Word - AL-Consolidated Approps FY 2008 as of feb 21 2008 final.doc Microsoft Word - AL-Consolidated Approps FY...

213

E-Print Network 3.0 - analysis center fy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fy Search Powered by Explorit Topic List Advanced Search Sample search results for: analysis center fy Page: << < 1 2 3 4 5 > >> 1 FY 2010 Informational Budget Meetings August 21,...

214

Institutional Plan FY 2003 - 2007  

SciTech Connect (OSTI)

The Fiscal Year (FY) 2003-2007 Institutional Plan describes the strategic directions and key issues that Lawrence Berkeley National Laboratory management must address with the Department of Energy (DOE) in charting its future as a multiprogram national laboratory. The Plan provides an overview of the Laboratory's mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Plan facilitates the Department of Energy's ongoing efforts to strengthen the Integrated Laboratory System. Preparation and review of the Institutional Plan is one element of the Department of Energy's strategic management planning activities, implemented through an annual planning process. The Plan supports the President's Management Agenda and the Government Performance and Results Act of 1993. The Plan complements the current performance-based contract between the Department of Energy and the Regents of the University of California, and summarizes Best Management Practices for a potential future results-based contract as a basis for achieving DOE goals and the Laboratory's scientific and operations objectives. It identifies technical and administrative directions in the context of national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Planning and Strategic Development Office from information contributed by Berkeley Lab's scientific and support divisions and DOE comments on prior years' plans. The Laboratory Mission section identifies the specific strengths of Berkeley Lab that contribute to the mission in general and the Integrated Laboratory System in particular. The Laboratory Strategic Plan section identifies the existing activities in support of DOE Office of Science and other sponsors; support for DOE goals; and the Laboratory Scientific Vision and operations goals. The Initiatives section describes some of the specific new research programs representing major long-term opportunities for the Department of Energy and Berkeley Lab. The Operations Strategic Planning section describes our strategic thinking in the areas of human resources; site and cyber security; workforce diversity; communications and trust; integrated safety management; and technology transfer activities. The Infrastructure Strategic Planning section describes Berkeley Lab's facilities planning process and our site and facility needs. The Summary of Major Issues section provides context for discussions at the Institutional Planning On-Site Review. The Resource Projections are estimates of required budgetary authority for Berkeley Lab's research programs.

Chartock, Michael; Hansen, Todd

2003-01-27T23:59:59.000Z

215

Federal Energy Management Program FY14 Budget At-a-Glance  

Energy Savers [EERE]

UESCs (utility energy service contracts)from the FY 20112012 baseline. Achieve lifecycle Btu Savings of 57 trillion Btu from FY 2014 program activities. The program's...

216

antimicrobials division fy2006: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: Library Facts FY 200607 http:library.boisestate.edu Collection Statistics Books 565,900 Bound, Computer Software, Browsing Books 11,000 Facilities Net...

217

Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative...  

Office of Environmental Management (EM)

will expand Americans' transportation options, minimize fuel costs, reduce carbon pollution, and increase the nation's energy security. FY14 Vehicles DE-FOA-0000951 Alternative...

218

FY 2009 Progress Report for Lightweighting Materials - 5. Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

9 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel FY 2009 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel The primary...

219

FY 2009 Progress Report for Lightweighting Materials - 3. Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

9 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast The primary...

220

Wind Powering America: FY09 Activities Summary (Book)  

SciTech Connect (OSTI)

The Wind Powering America FY09 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

Not Available

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

aquifer system fy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

funds. The 961 million in direct Van Volkenburgh, Elizabeth 288 FY 2009 Merit Review and Peer Evaluation Report EDUCATION; SAFETY, CODES AND STANDARDS; AND...

222

application tdea fy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

funds. The 961 million in direct Van Volkenburgh, Elizabeth 156 FY 2009 Merit Review and Peer Evaluation Report EDUCATION; SAFETY, CODES AND STANDARDS; AND TECHNOLOGY...

223

Fossil Energy FY 2014 Appropriations Hearing | Department of...  

Office of Environmental Management (EM)

FY 2014 Appropriations Hearing March 14, 2013 - 1:36pm Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy before the House Committee on...

224

Appliance Standards Program - The FY 2003 Priority Setting Report...  

Energy Savers [EERE]

energy savings potential warranting further analysis. It also describes the derivation of energy consumption and saving estimates for those products fy03prioritysettingappa.pdf...

225

Microsoft Word - FY 2015 SP Performance Appraisal System Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Resources Office of the Chief Human Capital Officer U.S. Department of Energy FY 2015 Senior Professional (SP) Performance Appraisal System Opening Guidance 2 Table of...

226

Microsoft Word - FY 2015 SES Performance Appraisal System Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Resources Office of the Chief Human Capital Officer U.S. Department of Energy FY 2015 Senior Executive Service (SES) Performance Appraisal System Opening Guidance 2 Table of...

227

Concurrence' Lawrence Livermore National Laboratory FY2015 Ten...  

National Nuclear Security Administration (NNSA)

manufacturing * Special nuclear materials-plutonium and tritium * High performance computing FY2015 Ten Year Site Plan Limited Report Page 3 of 6 Lawrence Livermore...

228

FY 2014 Scientific Infrastructure Support for Consolidated Innovative...  

Office of Environmental Management (EM)

4 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The...

229

annual assessment fy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by the Assistant Secretary for Fossil Energy, Deputy Assistant Secretary for Oil,Oil Shale Reserve Number 1," Energy and Environment Division Annual Report FY 1980, Lawrence...

230

FY 2012 Budget Request Advanced Research Projects Agency - Energy...  

Energy Savers [EERE]

April 10, 2013 FY 2014 Budget Request Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability 2 The Importance of a Modern Grid...

231

FY 2012 Budget Request Advanced Research Projects Agency - Energy  

Energy Savers [EERE]

March 4, 2014 FY 2015 Budget Request Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability 2 The Importance of a Modern Grid...

232

FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy...  

Broader source: Energy.gov (indexed) [DOE]

Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations FY 2013 Summary Report:...

233

FY06 DOE Energy Storage Program PEER Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage...

234

Wind Powering America FY08 Activities Summary (Book)  

SciTech Connect (OSTI)

The Wind Powering America FY08 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

Not Available

2009-02-01T23:59:59.000Z

235

The FY 2008 Budget Request - Twenty in Ten: Strengthening America...  

Office of Environmental Management (EM)

8 Budget Request - Twenty in Ten: Strengthening America's Energy Security The FY 2008 Budget Request - Twenty in Ten: Strengthening America's Energy Security DOE's Office of Energy...

236

EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings...  

Energy Savers [EERE]

Energy-Saving Homes, Buildings, and Manufacturing EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings, and Manufacturing Office of Energy Efficiency and Renewable Energy...

237

Highlights of the FY 2012 Congressional Budget Request for OE...  

Office of Environmental Management (EM)

aggressive approaches to next-generation grid technologies. It also supports a new Smart Grid Technologies and Systems Energy Innovation Hub. Highlights of the FY 2012...

238

FY 2012 Federal Real Property Reporting Requirement | Department...  

Broader source: Energy.gov (indexed) [DOE]

2012 final.pdf More Documents & Publications 2013 guidance fo real Property Inventory Reporting FY09FederalRealPropertyReportingRequirements.pdf FRPC User Guidance...

239

FY 2006 Executive Order 13101 Report: Department of Energy Affirmative...  

Broader source: Energy.gov (indexed) [DOE]

6 Executive Order 13101 Report: Department of Energy Affirmative Procurement and Recycling Fiscal Year 2006 Report, 31207 FY 2006 Executive Order 13101 Report: Department of...

240

EERE FY 2015 Budget Request Webinar -- Transportation | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinar -- Transportation EERE FY 2015 Budget Request Webinar, featuring Reuben Sarkar, Deputy Assistant Secretary for Transportation, Office of Energy Efficiency and...

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Annual Report: Photovoltaic Subcontract Program FY 1991  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Summers, K. A.

1992-03-01T23:59:59.000Z

242

NREL photovoltaic program FY 1997 annual report  

SciTech Connect (OSTI)

This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

McConnell, R.D.; Hansen, A.; Smoller, S.

1998-06-01T23:59:59.000Z

243

Photovoltaic Program Branch annual report, FY 1989  

SciTech Connect (OSTI)

This report summarizes the progress of the Photovoltaic (PV) Program Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. The branch is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year (FY) 1989, this included nearly 50 subcontracts, with a total annualized funding of approximately $13.1 million. Approximately two-thirds of the subcontracts were with universities, at a total funding of nearly $4 million. The six technical sections of the report cover the main areas of the subcontracted program: Amorphous Silicon Research, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, New Ideas, and University Participation. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1989, and future research directions. Each report will be cataloged individually.

Summers, K A [ed.

1990-03-01T23:59:59.000Z

244

Photovoltaic Subcontract Program. Annual report, FY 1992  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

Not Available

1993-03-01T23:59:59.000Z

245

FY2006SmallBusinessReport.doc  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to

246

NREL Photovoltaic Program FY 1996 Annual Report  

SciTech Connect (OSTI)

This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

Not Available

1997-08-01T23:59:59.000Z

247

Energy Smart Grocer Program Sign-up Form FY2014-FY2015 Customer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-up Form FY2014-FY2015 Customer

248

Project Title and Principal Investigators FY 2014 Federal  

E-Print Network [OSTI]

Sea Grant Program Project Title and Principal Investigators FY 2014 Federal Funding * FY 2014, NY, RI, WHOI Buy Out or Build Back? A Comparative Assessment of Approaches to Employing Public Stewards Academies in Maryland (Dana R. Fisher) $69,999 $35,007 MI Development of Stable Open Channel

249

April 9, 2014 FY 2015 Budget Request to Congress  

E-Print Network [OSTI]

as FY 2014. ATLAS operates at 95% of optimal. #12;7 Distribution of Users at the ~30 SC Facilities 2007. Validation and verification of materials codes will involve experiments using SC facilities to probe;6 Highlights of the FY 2015 SC Budget ­ Facility Ops Facility operations: Most of the scientific user

250

University of Massachusetts Economic Contribution Analysis FY 2013  

E-Print Network [OSTI]

University of Massachusetts Economic Contribution Analysis FY 2013 Prepared for the UMass President's Office Prepared by UMass Donahue Institute Economic and Public Policy Research May 2014 #12;University of Massachusetts Economic Contribution Analysis FY 2013 UMass Donahue Institute Economic and Public Policy Research

Massachusetts at Lowell, University of

251

Separations and Waste Forms Research and Development: FY 2012 Accomplishments Report  

SciTech Connect (OSTI)

This report contains FY 2012 accomplishments for the Separations and Waste Form Research and Development Project.

Not Listed

2013-02-01T23:59:59.000Z

252

NASA FY 2015 Budget Request for Science Actuals Enacted Notional Notional Notional Notional  

E-Print Network [OSTI]

NASA FY 2015 Budget Request for Science Actuals Enacted Notional Notional Notional Notional 1 FY,123M $5,174M The FY 2015 budget provides $4,972 million to the Science Mission Directorate. The budget accounts. 8-1 #12;NASA FY 2015 Budget Request for Aeronautics Research Actuals Enacted Notional Notional

Waliser, Duane E.

253

VLT Budget Information: FY2004/2005 Attachment 1 2 / 6 / 0 3 Page 1  

E-Print Network [OSTI]

Draft VLT Budget Information: FY2004/2005 Attachment 1 2 / 6 / 0 3 Page 1 · Program Element: Next of internal RWM coils · Physics Validation Review, respond to generic issues. #12;Draft VLT Budget Information: FY2004/2005 Attachment 1 2 / 6 / 0 3 Page 2 FY2004 · Reference Budget: (same as FY2003) 1901 k

254

SAVING MONEY & TIME (EFFICIENCY) UTILITY COST AVOIDANCE: From FY 2001 through FY2012, the UW Seattle campus has avoided  

E-Print Network [OSTI]

SAVING MONEY & TIME (EFFICIENCY) UTILITY COST AVOIDANCE: From FY 2001 through FY2012, the UW Seattle campus has avoided a cumulative $95.1 million in utility costs through its conservation efforts in disposal costs. These savings are calculated by subtracting the average cost per ton to recycle material

Van Volkenburgh, Elizabeth

255

Tokamak power systems studies, FY 1985  

SciTech Connect (OSTI)

The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

1985-12-01T23:59:59.000Z

256

Advanced energy projects; FY 1995 research summaries  

SciTech Connect (OSTI)

The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

NONE

1995-09-01T23:59:59.000Z

257

DOE FOIA FY 2013 Annual Report  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department of Energy 10/01/2011FY

258

FY 2008 Budget Justification | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- Enron DocumentsFY 2007AnnualBudget

259

FY 2011 Budget Justification | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudget » FY 2011 Budget

260

FY 2012 Budget Justification | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudget » FYBudget » FY

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FY 2013 LDRD Report | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudgetLDRD Report FY

262

FY 2013 Metric Summary | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudgetLDRD Report FY83

263

FY 2013 Summary Table by Organization  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudgetLDRD Current FY

264

FY 2014 LDRD Report | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudgetLDRDFYReports »FY

265

FY 2015 METRIC SUMMARY | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRIC SUMMARY FY 2015 METRIC

266

FY 2015 Statistical Table by Appropriation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRIC SUMMARY FY 2015

267

FY 2015 Statistical Table by Organization  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRIC SUMMARY FY 2015 of Energy

268

FY 2015 Summary Control Table by Appropriation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRIC SUMMARY FY 2015 of

269

FY 2015 Summary Control Table by Organization  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRIC SUMMARY FY 2015 of5 Summary

270

Policy Flashes FY 2012 | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic TheoryPlant 242-ZPolaron Behavior1-617ofTitlesFY 2012

271

President's Budget for FY2014 | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medicalSecurityPresident's Budget for FY2014 April 15,

272

FY 2011 LDRD Report to Congress  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to Congress Laboratory Directed

273

FY 10-11 ASC Utility Filings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9,ofAPPROPRIATIONPowerFY 2008

274

FY 12-13 ASC Utility Filings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9,ofAPPROPRIATIONPowerFY

275

FY11 LDRD Annual Report.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget of Energy6N m ^ M

276

FY2000 Run Schedule v6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget

277

FY2003 Run Sched.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudgetSSRL7/16/02 Run

278

FY 2007 Control Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollars in5 FebruaryFY

279

FY 2007 LDRD Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollars in5 FebruaryFYTotal FY

280

FY 2008 LDRD Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControl Table08Total FY

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FY 2009 Summary Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6State of7 FY

282

FY 2009 Summary Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6State of7 FY7

283

FY 2010 LDRD Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD program cost of

284

FY 2010 Service Contract Inventory Analysis  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD program cost of0

285

FY 2010 Summary Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD programAgency8

286

FY 2011 Control Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD5

287

FY 2011 Control Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51 Summary Control

288

FY 2011 Service Contract Inventory Analysis Plan  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51The total1

289

FY 2011 Statistical Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51The

290

FY 2011 Summary Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergy And

291

FY 2011 Summary Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010 LDRD51TheEnergy

292

FY 2012 Service Contract Inventory Analysis Plan  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 2010

293

FY 2012 Summary Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of6

294

FY 2012 Summary Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department of65

295

FY 2013 Budget Hearing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106 Department

296

FY 2005 Financial Awards | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energyand6-OPAMElectric Vehicle4 LDRD Report FY 2004 LDRD Report5

297

FY 2006 Financial Awards | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energyand6-OPAMElectric Vehicle4 LDRD Report FY6 Financial Awards

298

CONCUR: AWARD FEE PLAN - FY15  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden SaysEnergy Office FY144June 2012B-1Did y ouCONCUR:

299

Property:Geothermal/FY | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Jump to: navigation, search Property Name

300

Attachment FY2011-43 OPAM  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges toReport |2013-04 onAttachment FY2011-41 OPAM Attachment1)

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Attachment FY2011-55 OPAM  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges toReport |2013-04 onAttachment FY2011-411, Summary of Small

302

FY 2016 Budget Justification | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 Budget Justification FY 2015

303

Grow Iron, Slow Pollution | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grow Iron, Slow Pollution Grow Iron, Slow Pollution Scientists connect previous studies on electron transport in hematite Making a Deposit: Scanning electron micrographs of...

304

SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2  

SciTech Connect (OSTI)

This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

BARCOT, R.A.

2003-12-01T23:59:59.000Z

305

FY 2015 Argonne Site Sustainability Plan | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG(SC) 2 SCBudget Current6FY4FY

306

Advanced evaporator technology progress report FY 1992  

SciTech Connect (OSTI)

This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

1995-01-01T23:59:59.000Z

307

2nd Quarter Transportation Report FY 2014  

SciTech Connect (OSTI)

This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the second quarter of fiscal year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet (ft3) generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

Gregory, L.

2014-07-30T23:59:59.000Z

308

Geothermal Materials Development. Annual report FY 1991  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored ``full cost`` recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

309

Geothermal Materials Development, Annual Report FY 1991  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored full cost'' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

310

Uranium from seawater research : final progress report, FY 1982  

E-Print Network [OSTI]

During the FY '82 campaign 14 new ion exchange resin formulations, prepared by the Rohm & Haas Company, were tested by MIT at the Woods Hole Oceanographic Institution. The best of these chelating resins was again of the ...

Borzekowski, J.

1982-01-01T23:59:59.000Z

311

FY12 -NEW AWARDS BY INVESTIGATOR Name/Project  

E-Print Network [OSTI]

FY12 - NEW AWARDS BY INVESTIGATOR Name/Project Number Agency Name Project Title % Credit Project MEASUREMENTS OF RATE CONSTANTS AND PROJECT DISTRIBUTIONS FOR ION-MOLECULE REACTIONS AND ..R...... 100 105

Arnold, Jonathan

312

Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report  

SciTech Connect (OSTI)

FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

Paul M. Bertsch

2006-10-23T23:59:59.000Z

313

FY 2014 Solid Oxide Fuel Cell Project Selections  

Broader source: Energy.gov [DOE]

In FY 2014, nine research projects focused on advancing the reliability, robustness, and endurance of solid oxide fuel cells (SOFC) have been selected for funding by Office of Fossil Energy’s...

314

Petroleum Displacement Program Annual Report FY 2010-2011  

E-Print Network [OSTI]

efficiency 0.2% of displacement was lost through decreased use of CNG (natural gas) and LPG (propane..................................................................... 12 General Trends in FY10-11 PDP .............................................. 15 Fuel Pricing, Trends, and Cost Savings

315

DEPARTMENT OF ENERGY PROCUREMENT SYSTEM FY 2002 BALANCED SCORECARD...  

Office of Environmental Management (EM)

OF ENERGY PROCUREMENT SYSTEM FY 2002 BALANCED SCORECARD : More Documents & Publications PBA2007 Presentation-short-6-19-07DOE&0; module 4 BalancedScorecardPerfAndMeth.pdf...

316

Tanks Focus Area (TFA) Site Needs Assessment FY 1999  

SciTech Connect (OSTI)

This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). This is the fifth edition of the TFA site needs assessment. As with previous editions, this edition serves to provide the basis for accurately defining the TFA program for the upcoming fiscal year (FY), and adds definition to the program for up to 4 additional outyears. Therefore, this version distinctly defines the FY 2000 progrti and adds further definition to the FY 2001- FY 2004 program. Each year, the TFA reviews and amends its program in response to site users' science and technology needs.

RW Allen

1999-05-03T23:59:59.000Z

317

Enhanced surveillance program FY97 accomplishments. Progress report  

SciTech Connect (OSTI)

This annual report is one volume of the Enhanced Surveillance Program (ESP) FY97 Accomplishments. The complete accomplishments report consists of 11 volumes. Volume 1 includes an ESP overview and a summary of selected unclassified FY97 program highlights. Volume 1 specifically targets a general audience, reflecting about half of the tasks conducted in FY97 and emphasizing key program accomplishments and contributions. The remaining volumes of the accomplishments report are classified, organized by program focus area, and present in technical detail the progress achieved in each of the 104 FY97 program tasks. Focus areas are as follows: pits; high explosives; organics; dynamics; diagnostics; systems; secondaries; nonnuclear materials; nonnuclear components; and Surveillance Test Program upgrades.

Mauzy, A. [ed.; Laake, B. [comp.

1997-10-01T23:59:59.000Z

318

Hangman Restoration Project Year-End Report FY2008.  

SciTech Connect (OSTI)

This report covers the main goals of FY2008 from which the Work Elements were derived. The goals and products are listed by heading and the associated work elements are referenced in the text. A list of the FY2008 Work Elements is included as Appendix A. FY2008 witnessed the completion of the hntkwipn Management Plan and the first substantive efforts to restore the important habitats encompassed by the mitigation properties in the Upper Hangman Watershed. Native grasses were planted and germination was evaluated. Also, drain tiles that greatly altered the hydrologic function of the Sheep and Hangman Creek Flood Plains were removed and/or disrupted. Preparation for future restoration efforts were also made in FY2008. Designs were produced for the realignment of Sheep Creek and the decommissioning of seven drainage ditches within hntkwipn. A prioritization plan was drafted that greatly expands the area of focus for restoring native fish population in Hangman Creek.

Coeur d'Alene Tribe Department of Natural Resources.

2008-11-12T23:59:59.000Z

319

The Outlier State: Alaska’s FY 2012 Budget  

E-Print Network [OSTI]

State: Alaska’s FY 2012 Budget themselves Alaskans United toJ. (2011) “What Recession? Alaska’s 2011 Budget,” in AnnualWestern States Budget Review, and California Journal of

McBeath, Jerry; Corbin, Tanya Buhler

2012-01-01T23:59:59.000Z

320

FY 13 Award Fee Determination Scorecard Contractor: LATA Environmenta...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 13 Award Fee Determination Scorecard Contractor: LATA Environmental Services of Kentucky, LLC Contract: DE-AC30-10CC40020 Award Period: October 1, 2012 - September 30, 2013...

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FY 12 Award Fee Determination Scorecard Contractor: LATA Environmenta...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LATA Environmental Services of Kentucky, LLC Contract: DE-AC30-10CC40020 Award Period: October 1, 2011 - September 30, 2012 Basis of Evaluation: FY12 Performance and Evaluation...

322

Nuclear Fuel Cycle Reasoner: PNNL FY13 Report  

SciTech Connect (OSTI)

In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

Hohimer, Ryan E.; Strasburg, Jana D.

2013-09-30T23:59:59.000Z

323

DEPARTMENT OF ENERGY PROCUREMENT SYSTEM FY 2002 BALANCED SCORECARD : |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FY 2012 FY 2013

324

Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

325

Wind Powering America FY06 Activities Summary  

SciTech Connect (OSTI)

The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

Not Available

2007-02-01T23:59:59.000Z

326

Advanced Fuels Campaign FY 2011 Accomplishments Report  

SciTech Connect (OSTI)

One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

Not Listed

2011-11-01T23:59:59.000Z

327

Polycrystalline thin films FY 1992 project report  

SciTech Connect (OSTI)

This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

Zweibel, K. [ed.

1993-01-01T23:59:59.000Z

328

Institutional plan. FY 1997-2002  

SciTech Connect (OSTI)

The FY 1997-2002 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. Of particular significance this year is the role of computing sciences in supporting a broad range of research activities, at Berkeley Lab in particular and throughout the entire Department of Energy system in general. The Institutional Plan is a management report for integration with the Department of Energy`s mission and programs and is an element of Department of Energy`s strategic management planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives.

NONE

1996-06-01T23:59:59.000Z

329

2020 Vision Project Summary, FY98  

SciTech Connect (OSTI)

The 2020 Vision project began in 1996 with two participating teachers and four classes. It has since grown to comprise more than a dozen participating teachers and hundreds of students across the country. Much of this growth took place in FY98, thanks to the accomplishment of several major goals: implementation of a mentor program, enhanced teacher training, a mid-year conference for students, recruitment of distant schools, and the development of an interactive Web site. The first part of this report describes these accomplishments, as well as future directions for 2020 Vision. The second part summarized the scenarios students wrote during the 1997-98 school year. it identifies recurrent themes in the students' scenarios and compares/contrasts them with scenarios written in the first two years of the project.

A Munoz; J. C. Clausen; K. P. Scott; K. W. Gordon

1998-11-01T23:59:59.000Z

330

The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report  

SciTech Connect (OSTI)

At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 {degree}C, 30 {degree}C, 40 {degree}C, and 50 {degree}C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic salts, especially the succinate and caproate salts.

Barney, G.S.

1996-04-26T23:59:59.000Z

331

Microsoft Word - FY14 AF One-Page Score Card through Mod 133...  

Office of Environmental Management (EM)

Fluor-B&W Portsmouth, LLC. Contract: DE-AC30-10CC40017 Award Period: October 1, 2013 through September 30, 2014 (FY14) Basis of Evaluation: FY-14 Award Fee Plan for Fluor-B&W...

332

Microsoft Word - FY07AnnualReport.doc | Department of Energy  

Office of Environmental Management (EM)

Microsoft Word - FY07AnnualReport.doc More Documents & Publications Microsoft Word - FY08AnnualReport.doc Audit Report: IG-0857 Attachment 5 Volume II Pricing Matrix.xls&0;...

333

Righting the Canoe: the Slow Recovery and FY 2013 in Hawai‘i  

E-Print Network [OSTI]

story for FY 2013 involves the CIP budget, which swelled tos request. The additions to the CIP budget involved a goodstory for FY 2013 involves the CIP budget, which swelled to

Belt, Todd

2013-01-01T23:59:59.000Z

334

E-Print Network 3.0 - aerodynamic drag fy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fy Search Powered by Explorit Topic List Advanced Search Sample search results for: aerodynamic drag fy Page: << < 1 2 3 4 5 > >> 1 Aerodynamic-Structural Design Studies of...

335

FY 2013 Small Business Awards Bestowed on 12 Companies at DOE...  

Energy Savers [EERE]

FY 2013 Small Business Awards Bestowed on 12 Companies at DOE's 2014 Small Business Forum & Expo, Tampa FL, June 12, 2014 FY 2013 Small Business Awards Bestowed on 12 Companies at...

336

E-Print Network 3.0 - area project fy2005 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. Progress during FY 2005 This project was recently funded, and the University of Hawaii Committee on Human... JIMAR - PFRP ANNUAL REPORT FOR FY 2005 P.I.Sponsor Name: Edward W....

337

NREL - FY09 Lab Call: Supporting Research and Testing for MHK...  

Energy Savers [EERE]

- FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review NREL - FY09 Lab Call: Supporting Research and Testing for MHK...

338

FY 2013 Budget Request for the Office of Energy Efficiency and...  

Energy Savers [EERE]

3 Budget Request for the Office of Energy Efficiency and Renewable Energy FY 2013 Budget Request for the Office of Energy Efficiency and Renewable Energy The budget request for FY...

339

Next-Generation Thermionic Solar Energy Conversion - FY13 Q2...  

Broader source: Energy.gov (indexed) [DOE]

Next-Generation Thermionic Solar Energy Conversion - FY13 Q2 Next-Generation Thermionic Solar Energy Conversion - FY13 Q2 This document summarizes the progress of this Stanford...

340

SBIR/STTR FY15 Release 1 Awards Announced-Includes Fuel Cell...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FY15 Release 1 Awards Announced-Includes Fuel Cell Catalyst and Hydrogen Contamination Detection R&D SBIRSTTR FY15 Release 1 Awards Announced-Includes Fuel Cell Catalyst and...

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production  

E-Print Network [OSTI]

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells Photoelectrodes ." #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 2

342

NASA FY 2015 Budget Request for Science $4,782M $5,151M $4,972M $5,022M $5,072M $5,123M $5,174M  

E-Print Network [OSTI]

8-1 NASA FY 2015 Budget Request for Science Actuals FY 20131 Enacted FY 20142 FY 2015 Notional FY $5,174M The FY 2015 budget provides $4,972 million to the Science Mission Directorate. The budget construction remain in programmatic accounts. #12;8-3 NASA FY 2015 Budget Request for Aeronautics Research

343

NREL's FY09 CSP Resource Assessment Plans: Solar Resource Assessment Workshop  

SciTech Connect (OSTI)

Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008 presentation: NREL's FY09 CSP Resource Assessment Plans

Renne, D.

2008-10-29T23:59:59.000Z

344

Summary of FY-11 Krypton Capture Activities at the Idaho National Laboratory  

SciTech Connect (OSTI)

This report contains a description of FY-11 Krypton capture activities utilizing physisorption techniques performed at the INL.

Mitchell R. Greenhalgh; Troy G. Garn; Kristi M. Christensen; Veronica J. Rutledge; Jack D. Law

2011-08-01T23:59:59.000Z

345

Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs - FY 2007 Budget Request (GPRA 2007)  

SciTech Connect (OSTI)

This document summarizes the results of the benefits analysis of EERE's programs, as described in the FY 2007 Budget Request.

Sheehan, J.

2006-03-01T23:59:59.000Z

346

NATIONA L INSTITUTES OF HEA LTH FY 2001 Prcsidenl's Budget Request  

E-Print Network [OSTI]

,tual II FY 2006 Apllropriation II FY 1001 Estilllate II 1007 Est. +1 2005 A"ual 2001 ESI. +1 1006Sll0,700.000. 51OD comparahle for S41.021.000 from PHSSEF - FY 2005, and S49.500.000 from NIA ID f

Bandettini, Peter A.

347

National Aeronautics and Space Administration NASA's FY 2015 Management and Performance  

E-Print Network [OSTI]

TO PERFORMANCE MANAGEMENT conduct the Agency's day-to-day work. Figure 1 depicts NASA's organizational structure National Aeronautics and Space Administration NASA's FY 2015 Management and Performance Governance and Strategic Management Management Priorities and Challenges FY 2014 Performance Plan Update FY

Waliser, Duane E.

348

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

349

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

350

Environmental Management Richland Operations Office FY 2014 President's Budget FY 2015 Budget Request Regulator Briefing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: NetworkingEnvironment EnvironmentFIB/SEM Public Briefing FY 2013

351

FY 1999 annual work plan for infrastructure program WBS 6  

SciTech Connect (OSTI)

The Fiscal Year (FY) 1999 DynCorp Annual Work Plan (AWP) relates DOE-RL work breakdown structure (WBS) to Cost Accounts and to Organizational Structure. Each Cost Account includes a workscope narrative and justification performance and service standards, goals, and deliverables. Basis of estimates are included within each Cost Account to demonstrate the relationship of budget to defined workscope. The FY 1999 AWP reflects the planning assumptions and initiatives that are included in the PHMC Strategic Plan for Infrastructure Optimization which was established in FY 1998. Development of the FY 1999 AWP was in accordance with a sequential series of events and efforts described in the Infrastructure Annual Work Planning and Budget Cycle which was developed and established in conjunction with the Strategic Plan. The Strategic Plan covers a rolling five year span of time and is updated at the start of each fiscal year as the beginning of the annual work planning and budget cycle for the following fiscal year. Accordingly the planning for the FY 1999 AWP began in January 1998. Also included in the annual work planning and budget cycle, and the basis for the budget in this AWP, is the development of a requirements-based budget.

Donley, C.D.

1998-08-27T23:59:59.000Z

352

Environmental management compliance reengineering project, FY 1997 report  

SciTech Connect (OSTI)

Through an integrated reengineering effort, the Idaho National Engineering and Environmental Laboratory (INEEL) is successfully implementing process improvements that will permit safe and compliant operations to continue during the next 5 years, even though $80 million was removed from the Environmental Management (EM) program budget. A 2-year analysis, design, and implementation project will reengineer compliance-related activities and reduce operating costs by approximately $17 million per year from Fiscal Year (FY) 1998 through 2002, while continuing to meet the INEEL`s environment, safety, and health requirements and milestone commitments. Compliance reengineer`s focus is improving processes, not avoiding full compliance with environmental, safety, and health laws. In FY 1997, compliance reengineering used a three-phase approach to analyze, design, and implement the changes that would decrease operating costs. Implementation for seven specific improvement projects was completed in FY 1997, while five projects will complete implementation in FY 1998. During FY 1998, the three-phase process will be repeated to continue reengineering the INEEL.

VanVliet, J.A.; Davis, J.N.

1997-09-01T23:59:59.000Z

353

Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1  

SciTech Connect (OSTI)

This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

Valero, O.J.; Templeton, K.J.; Morgan, J.

1997-01-07T23:59:59.000Z

354

Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan  

SciTech Connect (OSTI)

Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

NONE

1998-03-01T23:59:59.000Z

355

WINCO Metal Recycle annual report, FY 1993  

SciTech Connect (OSTI)

This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

Bechtold, T.E. [ed.

1993-12-01T23:59:59.000Z

356

Laboratory Directed Research and Development FY 2000  

SciTech Connect (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

Hansen, Todd; Levy, Karin

2001-02-27T23:59:59.000Z

357

Advanced Fuels Campaign FY 2010 Accomplishments Report  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

Lori Braase

2010-12-01T23:59:59.000Z

358

Advanced energy projects FY 1997 research summaries  

SciTech Connect (OSTI)

The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

NONE

1997-09-01T23:59:59.000Z

359

Exploratory research and development FY90  

SciTech Connect (OSTI)

In general, the Exploratory Research and Development (ER D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER D projects are included in the Publications List at the back of this report.

Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G. (eds.)

1990-01-01T23:59:59.000Z

360

Buildings Energy Program annual report, FY 1991  

SciTech Connect (OSTI)

The Buildings Energy Program at PNL conducts research and development (R&D) for DOE`s Office of Building Technologies (OBT). The OBT`s mission is to lead a national program supporting private and federal sector efforts to improve the energy efficiency of the nation`s buildings and to increase the use of renewable energy sources. Under an arrangement with DOE, Battelle staff also conduct research and development projects for other federal agencies and private clients. This annual report contains an account of the buildings-related research projects conducted at PNL during fiscal year (FY) 1991. A major focus of PNL`s energy projects is to improve the energy efficiency of commercial and residential buildings. Researchers who are developing solutions to energy-use problems view a building as an energy-using system. From this perspective, a desirable solution is not only one that is cost-effective and responsive to the needs of the occupants, but also one that optimizes the interaction among the energy components and systems that compose the whole.

Secrest, T.J.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

FY 1987 current fiscal year work plan  

SciTech Connect (OSTI)

This Current Year Work Plan presents a detailed description of the activities to be performed by the Joint Integration Office during FY87. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance, task monitoring, information gathering and task reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of program status reports for DOE. Program Analysis is performed by the JIO to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. This work plan includes: system analyses, requirements analyses, interim and procedure development, legislative and regulatory analyses, dispatch and traffic analyses, and data bases.

Not Available

1986-12-01T23:59:59.000Z

362

Institutional Plan FY 2001-2005  

SciTech Connect (OSTI)

The FY 2001-2005 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

Chartock, Michael; Hansen, Todd, editors

2000-07-01T23:59:59.000Z

363

FY95 capital asset implementation plan  

SciTech Connect (OSTI)

The Waste Isolation Division (WID) is committed to providing good stewardship for the capital assets under its operational and physical control. To achieve this goal, the WID has developed the Capital Asset Implementation Plan (CAIP) to continue to implement for FY95 Department of Energy (DOE) Order 4320.2A, Capital Asset Management Process (CAMP). The Order provides policy and elements needed to establish a credible, consistent, auditable, and technically sound process for the DOE to forecast, plan, and budget for capital assets on a functional unit level. The objective of the WIPP CAMP program is to meet the goals of DOE Order 4320.2A in the most effective and efficient manner possible in support of the Waste Isolation Pilot Plant (WIPP) mission. As a result, this CAIP provides a way to implement the CAMP Program using a graded approach. Continued implementation will be accomplished by improving the existing process, and establishing future goals to promote growth for the CAMP Program. The CAIP is issued annually by the WID with quarterly progress reports submitted to the DOE. This document describes the current-year program staffing, roles, responsibilities, funding, and near-term milestones. In addition, the results of past goals are discussed.

Not Available

1994-12-01T23:59:59.000Z

364

Wind Powering America FY07 Activities Summary  

SciTech Connect (OSTI)

The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

Not Available

2008-02-01T23:59:59.000Z

365

FY08 Engineering Research and Technology Report  

SciTech Connect (OSTI)

This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

Minichino, C; McNichols, D

2009-02-24T23:59:59.000Z

366

Advanced energy projects FY 1994 research summaries  

SciTech Connect (OSTI)

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

Not Available

1994-09-01T23:59:59.000Z

367

FY04 SWIR CRDS Summary Report  

SciTech Connect (OSTI)

The principal goal of Pacific Northwest National Laboratory's (PNNL's) Infrared Technology for Advanced Sensors Project is to explore and develop the science and technology behind point and stand off infrared (IR) spectroscopic chemical sensors that are needed for detecting weapons proliferation activity. The primary use of the technology is to detect the chemical signatures associated with the production or use of chemical, biological, or nuclear weapons. In FY04 PNNL continued the development of a Shortwave Infrared (SWIR) point sensor based on optical Cavity Ringdown Spectroscopy (CRDS). During the year this instrument participated in 3 field tests, including the indoor UF6 release experiment which took place on the Hanford Site in Aug. 2004. The field tests demonstrated the robustness of CRDS as a fieldable technology for sensitive detection of airborne analytes. The instrument was altered from detecting ammonia with a detection limit of {approx} 1 ppmv to detect hydrogen fluoride with a detection limit of {approx} 3 ppbv. The differences in limits of detection between these two chemicals is accounted for by the relative differences in the absorption strength of the two molecules (with HF having a much larger absorption strength than ammonia). In addition to the field tests, the instrument underwent further refinement to improve long term stability. These enhancements resulted from improvements in both hardware and software. We outline all of these accomplishments in detail in the body of this report.

Williams, Richard M.; Thompson, Jason S.; Stewart, Timothy L.; Tweedy, Brianna J.

2004-10-01T23:59:59.000Z

368

The Seismic Category I Structures Program results for FY 1987  

SciTech Connect (OSTI)

The accomplishments of the Seismic Category I Structures Program for FY 1987 are summarized. These accomplishments include the quasi-static load cycle testing of large shear wall elements, an extensive analysis of previous data to determine if equivalent linear analytical models can predict the response of damaged shear wall structures, and code committee activities. In addition, previous testing and results that led to the FY 1987 program plan are discussed and all previous data relating to shear wall stiffness are summarized. Because separate reports have already summarized the experimental and analytical work in FY 1987, this report will briefly highlight this work and the appropriate reports will be references for a more detailed discussion. 12 refs., 23 figs., 18 tabs.

Farrar, C.R.; Bennett, J.G.; Dunwoody, W.E. (Los Alamos National Lab., NM (USA)); Baker, W.E. (New Mexico Univ., Albuquerque, NM (USA))

1990-10-01T23:59:59.000Z

369

High performance computing and communications: FY 1997 implementation plan  

SciTech Connect (OSTI)

The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

NONE

1996-12-01T23:59:59.000Z

370

EMERGENCY READINESS ASSURANCE PLAN (ERAP) FOR FISCAL YEAR (FY) 2014  

SciTech Connect (OSTI)

This Emergency Readiness Assurance Plan (ERAP) for Fiscal Year (FY) 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for FY-15. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.

Shane Bush

2014-09-01T23:59:59.000Z

371

The Sandia MEMS passive shock sensor : FY07 maturation activities.  

SciTech Connect (OSTI)

This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

2008-08-01T23:59:59.000Z

372

FY 2011 OIG Recovery Act Plan Overview | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudget » FY 2011FY 2011

373

FY 2011 Overall Contract and Project Management Improvement Performance  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudget » FY 2011FY

374

FY 2012 Budget Request Advanced Research Projects Agency - Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarch 4, 2014 FY 2015

375

FY 2012 Budget Request Advanced Research Projects Agency - Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarch 4, 2014 FY

376

FY 2014 Annual Progress Report - Electric Drive Technology Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarchFY 2014 Annual

377

FY 2014 SES Performance Appraisal System Guidance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarchFY 2014SES

378

FY 2014 Senior Executive Service (SES) and Senior Professional (SP)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarchFY

379

FY 2015 Budget Request Now Available | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarchFYAOI ApplicantFY

380

FY 2014 EM Budget Rollout Presentation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106Energy FY 2013NE4

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FY 2014 Excess Elimination Report FINAL | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106Energy FY

382

FY 2014 Q3 Metric Summary | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FY 20106EnergyFY 2014 Q3

383

Laboratory Directed Research and Development FY 1992  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

1992-12-31T23:59:59.000Z

384

Ferrocyanide Safety Project: FY 1991 annual report  

SciTech Connect (OSTI)

The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy`s Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

1992-06-01T23:59:59.000Z

385

Ferrocyanide Safety Project: FY 1991 annual report  

SciTech Connect (OSTI)

The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy's Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

1992-06-01T23:59:59.000Z

386

Federal Geothermal Research Program Update, FY 2000  

SciTech Connect (OSTI)

The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

Renner, Joel Lawrence

2001-08-01T23:59:59.000Z

387

FY-2010 Process Monitoring Technology Final Report  

SciTech Connect (OSTI)

During FY 2010, work under the Spectroscopy-Based Process Monitoring task included ordering and receiving four fluid flow meters and four flow visible-near infrared spectrometer cells to be instrumented within the centrifugal contactor system at Pacific Northwest National Laboratory (PNNL). Initial demonstrations of real-time spectroscopic measurements on cold-stream simulants were conducted using plutonium (Pu)/uranium (U) (PUREX) solvent extraction process conditions. The specific test case examined the extraction of neodymium nitrate (Nd(NO3)3) from an aqueous nitric acid (HNO3) feed into a tri-n-butyl phosphate (TBP)/ n-dodecane solvent. Demonstration testing of this system included diverting a sample from the aqueous feed meanwhile monitoring the process in every phase using the on-line spectroscopic process monitoring system. The purpose of this demonstration was to test whether spectroscopic monitoring is capable of determining the mass balance of metal nitrate species involved in a cross-current solvent extraction scheme while also diverting a sample from the system. The diversion scenario involved diverting a portion of the feed from a counter-current extraction system while a continuous extraction experiment was underway. A successful test would demonstrate the ability of the process monitoring system to detect and quantify the diversion of material from the system during a real-time continuous solvent extraction experiment. The system was designed to mimic a PUREX-type extraction process with a bank of four centrifugal contactors. The aqueous feed contained Nd(NO3)3 in HNO3, and the organic phase was composed of TBP/n-dodecane. The amount of sample observed to be diverted by on-line spectroscopic process monitoring was measured to be 3 mmol (3 x 10-3 mol) Nd3+. This value was in excellent agreement with the 2.9 mmol Nd3+ value based on the known mass of sample taken (i.e., diverted) directly from the system feed solution.

Orton, Christopher R.; Bryan, Samuel A.; Casella, Amanda J.; Hines, Wes; Levitskaia, Tatiana G.; henkell, J.; Schwantes, Jon M.; Jordan, Elizabeth A.; Lines, Amanda M.; Fraga, Carlos G.; Peterson, James M.; Verdugo, Dawn E.; Christensen, Ronald N.; Peper, Shane M.

2011-01-01T23:59:59.000Z

388

Synergy for a Strong Future FY 2008  

SciTech Connect (OSTI)

Lawrence Livermore National Security, LLC is committed to delivering the best combination of scientific research, technology development, business management, and safe, secure operations in support of Lawrence Livermore National Laboratory's critical national security mission. LLNS was formed specifically to manage LLNL for the Department of Energy's National Nuclear Security Administration. LLNS consists of a team of five organizations renowned for their expertise and accomplishments throughout the U.S. nuclear weapons complex and beyond - Bechtel National, University of California, Babcock & Wilcox, Washington Division of URS Corporation, and Battelle. Bechtel is the nation's largest engineering and construction firm and a leader in project management. The University of California is the world's largest public research institution. Babcock & Wilcox and the Washington Division of URS Corporation are top nuclear facilities contractors and between them manage four of DOE's five safest sites. Battelle is a global leader in science and technology development and commercialization. The LLNS Board of Governors provides oversight for the management of the Laboratory and holds the Director and LLNS President responsible for the Laboratory's performance. The Board has seven standing committees that assist in assessing Laboratory performance and monitoring risks and internal controls. Through the Board of Governors, the Laboratory can reach back to LLNS partner organizations to help ensure that it fulfills its national security mission with excellence in scientific research, technology development, business management, and safe, secure operations. LLNS assumed management of LLNL on October 1, 2007. This report highlights LLNS accomplishments in FY2008, its first year as the Laboratory's managing contractor. It is clear that LLNS and the Laboratory have exploited numerous synergies inherent in their relationship - for example, science and engineering, mission and operations, LLNS partners and LLNL directorates - to notable success.

Devore, L; Chrzanowski, P

2008-11-06T23:59:59.000Z

389

Iron pages of HTSC  

SciTech Connect (OSTI)

Experimental data are presented on the superconducting and electronic properties of iron-based high-temperature superconductors in the normal and superconducting states. The following topics are discussed: lattice structure; structure of magnetic vortices; magnetic penetration depth; Fermi surface; isotope effect; and critical magnetic fields both in oxide compounds of 1111 type and oxide-free compounds of 122, 111, and 011 types as a function of the doping level, temperature, and external pressure.

Gasparov, V. A., E-mail: vgasparo@issp.ac.r [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

2010-08-15T23:59:59.000Z

390

LANL C10.2 Projects in FY13  

SciTech Connect (OSTI)

LANL has two projects in C10.2: Defect-Induced Mix Experiment (DIME) (ongoing, several runs at Omega; NIF shots this summer); and Shock/Shear (tested at Omega for two years; NIF shots in second half of FY13). Each project is jointly funded by C10.2, other C10 MTEs, and Science Campaigns. DIME is investigating 4{pi} and feature-induced mix in spherically convergent ICF implosions by using imaging of the mix layer. DIME prepared for NIF by demonstrating its PDD mix platform on Omega including imaging mid-Z doped layers and defects. DIME in FY13 will focus on PDD symmetry-dependent mix and moving burn into the mix region for validation of mix/burn models. Re-Shock and Shear are two laser-driven experiments designed to study the turbulent mixing of materials. In FY-2012 43 shear and re-shock experimental shots were executed on the OMEGA laser and a complete time history obtained for both. The FY-2013 goal is to transition the experiment to NIF where the larger scale will provide a longer time period for mix layer growth.

Batha, Steven H. [Los Alamos National Laboratory; Fincke, James R. [Los Alamos National Laboratory; Schmitt, Mark J. [Los Alamos National Laboratory

2012-06-07T23:59:59.000Z

391

Facilities and Administrative Cost Recovery Annual Report FY 2009 2010  

E-Print Network [OSTI]

; 43,441; 1% Private; 245,344; 3% Sources of F&A Revenue FY 2010 Federal State Local Private #12,795 250,513 183,413 222,549 Energy (DOE) 8,555 21,391 25,5

Dodla, Ramana

392

Radiation chemistry in solvent etxraction: FY2011 research  

SciTech Connect (OSTI)

This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR&D) program in the area of radiation chemistry during FY 2011. The tasks assigned during FY 2011 included: (1) Continue measurements free radical reaction kinetics in the organic phase; (2) Continue development of an alpha-radiolysis program and compare alpha and gamma radiolysis for CMPO; (3) Initiate an effort to understand dose rate effects in radiation chemistry; and (4) Continued work to characterize TALSPEAK radiation chemistry, including the examination of metal complexed ligand kinetics. Progress made on each of these tasks is reported here. Briefly, the method developed to measure the kinetics of the reactions of the NO3 radical with solvent extraction ligands in organic solution during FY10 was extended here to a number of compounds to better understand the differences between radical reactions in the organic versus aqueous phases. The alpha-radiolysis program in FY11 included irradiations of CMPO solutions with 244Cm, 211At and the He ion beam, for comparison to gamma irradiations, and a comparison of the gamma irradiation results for CMPO at three different gamma dose rates. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the latest in an effort to understand how metal complexation to ligands affects their reaction kinetics with free radicals.

Bruce J. Mincher; Stephen P. Mezyk; Leigh R. Martin

2011-09-01T23:59:59.000Z

393

Laboratory Directed Research and Development Program FY 2005  

E-Print Network [OSTI]

Annual Report EETD-Newman LB05028 Analysis of High-temperature Polymer-electrolyte Fuel CellAnnual Report LB05028 Analysis of High-Temperature Polymer-Electrolyte Fuel-Cellfuel cells. 40 Environmental Energy Technologies Division LDRD FY2005 Annual Report

Hansen, Todd

2006-01-01T23:59:59.000Z

394

FY 1992 work plan and technical progress reports  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is a division of the University of Nevada System devoted to multidisciplinary scientific research. For more than 25 years, DRI has conducted research for the US Department of Energy`s Nevada Field Office (DOE/NV) in support of operations at the Nevada Test Site (NTS). During that time, the research program has grown from an early focus on hydrologic studies to include the areas of geology, archaeology, environmental compliance and monitoring, statistics, database management, public education, and community relations. The range of DRI`s activities has also expanded to include a considerable amount of management and administrative support in addition to scientific investigations. DRI`s work plan for FY 1992 reflects a changing emphasis in DOE/NV activities from nuclear weapons testing to environmental restoration and monitoring. Most of the environmental projects from FY 1991 are continuing, and several new projects have been added to the Environmental Compliance Program. The Office of Technology Development Program, created during FY 1991, also includes a number of environmental projects. This document contains the FY 1992 work plan and quarterly technical progress reports for each DRI project.

NONE

1992-11-01T23:59:59.000Z

395

FY04 Annual Report Integrated Ocean Drilling Program  

E-Print Network [OSTI]

#12;#12;FY04 Annual Report Integrated Ocean Drilling Program United States Implementing and the Science Community . . . . . . . . . . 34 RESEARCH TOWARD ENHANCED DRILLING CAPABILITY . . . 37 JOI of the goals of scientific ocean drilling for 8 years (ODP: 1997­2003; IODP: 2003­2005), making many invaluable

396

National Renewable Energy Laboratory Sustainability Report FY 2009  

E-Print Network [OSTI]

National Renewable Energy Laboratory Sustainability Report FY 2009 White Black NREL is a national by the Alliance for Sustainable Energy, LLC. #12;NOTICE: This report was prepared as an account of work sponsored. Design and planning for these highly energy-efficient buildings enable NREL to model sustainability

397

FY2011 Annual Report for NREL Energy Storage Projects  

SciTech Connect (OSTI)

This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

2012-04-01T23:59:59.000Z

398

FY10 LDRD Projects 2010 Projects Page 1  

E-Print Network [OSTI]

of Large Liquid Argon Time Projection Chambers (LArTPC) for Future Neutrino Experiments Lanni, F. Phys/510FY10 LDRD Projects 2010 Projects Page 1 LDRD Proj. No. Project Title P.I. Dept./Bldg. 07 Soils van der Lelie, D. BIO/463 10-001 Petascale Data Mining for BNL Data Intensive Sciences Yu, Dantong

Ohta, Shigemi

399

Albertsons Library Library Facts FY 2008/09  

E-Print Network [OSTI]

Albertsons Library Library Facts FY 2008/09 http://library.boisestate.edu/ Collection Statistics,536 Reserve Circulation 3714 Reference & Directional Questions 28,785 Library Tours 331 Interlibrary Loan Development should be addressed to Peggy Cooper, Association Dean, Library Collections 208

Barrash, Warren

400

Albertsons Library Library Facts FY 2007/08  

E-Print Network [OSTI]

Albertsons Library Library Facts FY 2007/08 http://library.boisestate.edu/ Collection Statistics,473 Library Tours 228 Interlibrary Loan Requests Processed 13,728 Number of Hours Open Per Week 98.5 Questions or comments regarding Collection Development should be addressed to Peggy Cooper, Association Dean, Library

Barrash, Warren

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Analytical Chemistry Laboratory progress report for FY 1999  

SciTech Connect (OSTI)

This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

2000-06-15T23:59:59.000Z

402

Analytical Chemistry Laboratory progress report for FY 1998.  

SciTech Connect (OSTI)

This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

1999-03-29T23:59:59.000Z

403

FY11 WDI PROJECT FUNDING CUNY Unit Project Name  

E-Print Network [OSTI]

of New York CUNY Building Performance Lab Intern Energy Program FY 2011 NYC Labor Market Information/BS Nursing Degree Program: The 1+2+1 Model at City Tech OMIG, Audits and Supervision: Management Skills in the Hotel Industry through Contextually Based and Customized ESL Training CUNY School of Law CLRN Incubator

Rosen, Jay

404

Electronics Engineering Department Thrust Area report FY'84  

SciTech Connect (OSTI)

This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided.

Minichino, C.; Phelps, P.L. (eds.)

1984-01-01T23:59:59.000Z

405

Integral Fast Reactor Program annual progress report, FY 1991  

SciTech Connect (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

Not Available

1992-06-01T23:59:59.000Z

406

Integral Fast Reactor Program annual progress report, FY 1991  

SciTech Connect (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R D.

Not Available

1992-06-01T23:59:59.000Z

407

Integral Fast Reactor Program annual progress report, FY 1994  

SciTech Connect (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R&D.

Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

1994-12-01T23:59:59.000Z

408

Integral Fast Reactor Program. Annual progress report, FY 1992  

SciTech Connect (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

1993-06-01T23:59:59.000Z

409

Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)  

SciTech Connect (OSTI)

The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford`s environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO{sub 3} plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996).

Higginson, M.C.

1994-10-01T23:59:59.000Z

410

Herbaceous Energy Corps Program: Annual progress report for FY 1986  

SciTech Connect (OSTI)

This report describes the activities and accomplishments of the Herbaceous Energy Crops Program (HECP) for the year ending September 30, 1986. HECP is devoted to research on the development of terrestrial, nonwoody plant species for use as energy feedstocks. HECP emphasizes lignocellulosic forage crops. In FY 1986 screening and selection trials continued on 25 species of perennial and annual grasses and legumes in five projects in the Southeast and the Midwest-Lake States regions. Research also continued on the development of winter rapeseed as a diesel-fuel substitute. Activities in FY 1986 included genetic crosses and selections to incorporate atrazine resistance, development of Canola-quality winter rapeseed for the Southeast, and development of dwarf varieties. Production practices for double-cropped winter rapeseed in the Southeast were also examined. Exploratory research efforts in FY 1986 included the physiology and biochemistry of hydrocarbon production in latex-bearing plants, the productivity of cattail stands under sustained harvesting, the development of tissue culture techniques for hard-to-culture sorghum genotypes, and the start of a study to measure sustained productivity of old-field successional vegetation. Environmental and economic analyses in FY 1986 included studies on the uses of wetlands and wet soils, the use of lignocellulosic crops as an alcohol feedstock, the potential of direct combustion of lignocellulosic crops, and existing oilseed extraction facilities. 6 refs., 12 figs., 15 tabs.

Cushman, J.H.; Turhollow, A.F.; Johnston, J.W.

1987-05-01T23:59:59.000Z

411

ADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT  

E-Print Network [OSTI]

....................................................................3 E4. Division participates in pollution prevention, energy conservation, recycling, and wasteADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT November 7, 2008 Prepared by to confined space, energized electrical work); waste management criteria (SAAs, waste sampling, NCARs

Knowles, David William

412

Tanks Focus Area Site Needs Assessment - FY 2001  

SciTech Connect (OSTI)

The TFA uses a systematic process for developing its annual program that draws from the tanks science and technology development needs expressed by the five DOE tank waste sites. TFA's annual program development process is iterative and involves the following steps: Collection of site needs; Needs analysis; Development of technical responses and initial prioritization; Refinement of the program for the next fiscal year; Formulation of the Corporate Review Budget (CRB); Preparation of Program Execution Guidance (PEG) for the next FY Revision of the Multiyear Program Plan (MYPP). This document describes the outcomes of the first phase of this process, from collection of site needs to the initial prioritization of technical activities. The TFA received site needs in October - December 2000. A total of 170 site needs were received, an increase of 30 over the previous year. The needs were analyzed and integrated, where appropriate. Sixty-six distinct technical responses were drafted and prioritized. In addition, seven strategic tasks were approved to compete for available funding in FY 2002 and FY 2003. Draft technical responses were prepared and provided to the TFA Site Representatives and the TFA User Steering Group (USG) for their review and comment. These responses were discussed at a March 15, 2001, meeting where the TFA Management Team established the priority listing in preparation for input to the DOE Office of Science and Technology (OST) budget process. At the time of publication of this document, the TFA continues to finalize technical responses as directed by the TFA Management Team and clarify the intended work scopes for FY 2002 and FY 2003.

Allen, Robert W.; Josephson, Gary B.; Westsik, Joseph H.; Nickola, Cheryl L.

2001-04-30T23:59:59.000Z

413

Microbial reduction of iron ore  

DOE Patents [OSTI]

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

Hoffmann, Michael R. (Pasadena, CA); Arnold, Robert G. (Pasadena, CA); Stephanopoulos, Gregory (Pasadena, CA)

1989-01-01T23:59:59.000Z

414

Microbial reduction of iron ore  

DOE Patents [OSTI]

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

1989-11-14T23:59:59.000Z

415

Report Title: The Economic Impact of U.S. Department of Energy Expenditures in New Mexico: FY 1993-FY2009  

E-Print Network [OSTI]

Report Title: The Economic Impact of U.S. Department of Energy Expenditures in New Mexico: FY 1993: Arrowhead Center New Mexico State University P. O. Box 30001/MSC 3CQ Las Cruces, NM 88003-8001 #12 of Department of Energy Impacts in New Mexico 9 Economic Impacts of DOE Expenditures in New Mexico 10 State

Johnson, Eric E.

416

Energy systems programs funded by the Assistant Secretary for Environment, Safety and Health: FY 1993--FY 1994  

SciTech Connect (OSTI)

This document presents an overview of work at Martin Marietta Energy Systems, Inc., (Energy Systems) during FY 1993--FY 1994 that was funded by the Department of Energy`s (DOE`s) Assistant Secretary for Environment, Safety and Health (ASEH). To illustrate the programmatic breadth of Energy Systems and to establish the context within which this work was accomplished, this document also includes representative descriptions of ASEH-related work at Energy Systems done for other sponsors. Activities for ASEH cover a wide variety of subjects that are geared towards the environmental, safety, and health aspects of DOE operations. Subjects include the following: environmental compliance, environmental guidance, environmental audits, NEPA oversight, epidemiology and health surveillance, transportation and packaging safety, safety and quality assurance; technical standards, performance indicators, occurrence reporting, health physics instrumentation, risk management, security evaluations, and medical programs. The technical support section describes work in progress for ASEH, including specific program accomplishments. The work for others section describes work for non-ASEH sponsors that reinforces and supplements the ASEH work. Appendix A includes a list of FY 1993--FY 1994 publications related to the ASEH work.

Buttram, A.W. [ed.

1994-12-31T23:59:59.000Z

417

FY 2011 Appropriations for Science programs within the Department of Energy DOE Office of Science FY 2011 Request  

E-Print Network [OSTI]

FY 2011 Appropriations for Science programs within the Department of Energy DOE Office of Science includes a renewed emphasis on job creation and economic growth, provides significant increases increases to support basic research. Energy Transformation Acceleration Fund The President would provide

418

Iron efficiency in sorghum  

E-Print Network [OSTI]

) James Craig Esty, B, S. , Panhandle State College Co-Chairmen of Advisory Committee: Dr. Arthur B. Onken Dr. Lloyd R. Hossner R tt *ht ' d f * ' g * gh L~Sh bicolor (L. ) Moenchj parental lines and Fl hybrids indicate varying degrees of iron (Fe...) utilization. Visual ratings after seven days of Fe stress indicated only one hybrid, ATx 378 x RTx 2536, to be green or Fe efficient. Hybrids or parental lines rated partially chlorotic were: ATx 378 x RTx 415 and RTx 2536. Those sorghums rated chlorotic...

Esty, James Craig

1979-01-01T23:59:59.000Z

419

U.S. Global Change Research Program FY 2013 Budget Request (in millions)  

E-Print Network [OSTI]

U.S. Global Change Research Program FY 2013 Budget Request (in millions) USGCRP FY 2012 Estimate FY.0% Agriculture 83 86 3.6% USGS 59 68 15.3% EPA 19 20 5.3% Smithsonian 8 8 flat NIH 4 4 flat DOT 1 3 200.0% Total USGCRP 2,427 2,563 5.6% The President's budget request includes $2.6 billion for the U.S. Global Change

420

Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report  

SciTech Connect (OSTI)

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

R. Johansen

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

House Appropriations Subcommittee on Energy and Water FY 2015 Budget Hearing, DOE Office of Science  

E-Print Network [OSTI]

House Appropriations Subcommittee on Energy and Water FY 2015 Budget Hearing that that is affirmed by the budget request which is lower for Fusion Energy Sciences

422

Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report  

SciTech Connect (OSTI)

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

R. Johansen

2012-09-01T23:59:59.000Z

423

E-Print Network 3.0 - area project fy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1% in FY13 Other... ,800 (through 123111) ... Source: Crone, Elizabeth - Department of Ecosystem and Conservation Sciences, University of Montana Collection: Environmental...

424

FY 2015 Ten Year Site Plan-Limited Update Los Alamos National...  

National Nuclear Security Administration (NNSA)

goals, the Laboratory will pursue a combination of additional investments in renewable energy, green construction practices, and operational improvements for energy FY 2015 Ten...

425

Microsoft Word - CX-DrainageUpgradesMultipleSubsFY13_WEB.docx  

Broader source: Energy.gov (indexed) [DOE]

3, 2012 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Brett Sherer Project Manager - KEP-4 Proposed Action: FY13 Environmental Drainage Upgrades at Bonneville...

426

100-D Area In Situ Redox Treatability Test for Chromate-Contaminated Groundwater: FY 1998 Year-End Report  

SciTech Connect (OSTI)

A treatability test was conducted for the In Situ Redox Manipulation (ISRM) technology at the US Department of Energy's Hanford, Washington 100D Area. The target contaminant was dissolved chromate [Cr(VI)] in groundwater. The ISRM technology involves creating a permeable subsurface treatment zone to reduce mobile chromate in groundwater to an insoluble form. The ISRM permeable treatment zone is created by reducing ferric iron [Fe(III)] to ferrous iron [Fe(II)] within the aquifer sediments. This is accomplished by injecting aqueous sodium dithionite into the aquifer and withdrawing the reaction products. The goal of the treatability test was to create a linear ISRM barrier by injecting sodium dithionite into five wells. Well installation and site characterization activities began in the spring of 1997. The first dithionite injection took place in September 1997. The results of this first injection were monitored through the spring of 1998; the remaining four dithionite injections were carried out in May through July of 1998. These five injections created a reduced zone in the Hanford unconfined aquifer 150 feet in length (perpendicular to groundwater flow) by 50 feet wide. The reduced zone extended over the thickness of the unconfined zone, which is approximately 15 feet. Analysis of recent groundwater sampling events shows that the concentrations of chromate [Cr(VI)] in groundwater in the reduced zone have been decreased from starting concentrations of approximately 900 ppb to below analytical detection limits (<7 ppb). Chromate concentrations are also declining in some downgradient monitoring wells. Laboratory analysis of iron in the soil indicates that the barrier should remain in place for approximately 20 to 25 years. These measurements will be confirmed by analysis of sediment cores in FY 1999.

Williams, M.D.; Vermeul, V.R.; Szecsody, J.E.; Fruchter, J.S.; Cole, C.R.

1999-04-15T23:59:59.000Z

427

Electron Correlation in Iron-Based Superconductors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two...

428

Eosinophilic fasciitis secondary to intravenous iron infusions  

E-Print Network [OSTI]

secondary to intravenous iron infusions Bahar F Firoz MD MPHfour weeks after receiving intravenous iron infusions atmultiple infusion sites along the right proximal forearm.

Firoz, Bahar F; Goldberg, Leonard H; Landau, Jennifer; Kaye, Valda; Berman, Louis

2010-01-01T23:59:59.000Z

429

Transcriptional and translational regulatory responses to iron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. MethodologyPrincipal Findings:...

430

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009  

SciTech Connect (OSTI)

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

Brenda R. Pace; Julie B. Braun

2009-10-01T23:59:59.000Z

431

Laboratory Directed Research and Development FY 2000 Annual Progress Report  

SciTech Connect (OSTI)

This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

Los Alamos National Laboratory

2001-05-01T23:59:59.000Z

432

High performance computing and communications: FY 1996 implementation plan  

SciTech Connect (OSTI)

The High Performance Computing and Communications (HPCC) Program was formally authorized by passage of the High Performance Computing Act of 1991, signed on December 9, 1991. Twelve federal agencies, in collaboration with scientists and managers from US industry, universities, and research laboratories, have developed the Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1995 and FY 1996. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency.

NONE

1995-05-16T23:59:59.000Z

433

DOE Solar Energy Technologies Program: FY 2004 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2005-10-01T23:59:59.000Z

434

NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010  

SciTech Connect (OSTI)

This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

Charles V Park

2011-01-01T23:59:59.000Z

435

DOE Solar Energy Technologies Program FY 2005 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2006-03-01T23:59:59.000Z

436

FY15 Phase I Release 2 FOA Webinar  

Broader source: Energy.gov [DOE]

Join the DOE SBIR/STTR Programs Director, Manny Oliver as he provides a 45 minute overview of: the Federal SBIR/STTR Programs, the DOE SBIR/STTR Technology Areas, and the DOE SBIR/STTR Application and Award Process as it relates to the FY15 Phase I Release 2 Funding Opportunity Announcement (FOA). The webinar will conclude with a 45 minute Q&A using your questions submitted at registration and during the webinar.

437

DOE Solar Energy Technologies Program FY 2006 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2007-07-01T23:59:59.000Z

438

FY 2006 ANNUAL REVIEW-SALTSTONE DISPOSAL FACILITY PERFORMANCE ASSESSMENT  

SciTech Connect (OSTI)

The Z-Area Saltstone Disposal Facility (SDF) consists of two disposal units, Vaults 1 and 4, described in the Performance Assessment (PA) (WSRC 1992). The FY06 PA Annual Review concludes that both vaults contain much lower levels of radionuclides (curies) than that allowed by the PA. The PA controls established to govern waste operations and monitor disposal facility performance are determined to be adequate.

Crapse, K; Benjamin Culbertson, B

2007-03-15T23:59:59.000Z

439

Pacific Northwest National Laboratory Institutional Plan FY 2004-2008  

SciTech Connect (OSTI)

This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

Quadrel, Marilyn J.

2004-04-15T23:59:59.000Z

440

Laboratory directed research and development program FY 2003  

SciTech Connect (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

Hansen, Todd

2004-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Analytical chemistry laboratory. Progress report for FY 1997  

SciTech Connect (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

1997-12-01T23:59:59.000Z

442

LLNL input to FY94 hydrogen annual report  

SciTech Connect (OSTI)

This report summarizes the FY 1994 progress made in hydrogen research at the Lawrence Livermore National Laboratory. Research programs covered include: Technical and Economic Assessment of the Transport and Storage of Hydrogen; Research and Development of an Optimized Hydrogen-Fueled Internal Combustion Engine; Hydrogen Storage in Engineered Microspheres; Synthesis, Characterization and Modeling of Carbon Aerogels for Hydrogen Storage; Chemical Kinetic Modeling of H2 Applications; and, Municipal Solid Waste to Hydrogen.

Schock, R.N.; Smith, J.R.; Rambach, G.; Pekala, R.W.; Westbrook, C.K.; Richardson, J.H.

1994-12-16T23:59:59.000Z

443

FY 2014 Budget Request Laboratory Table | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program ExchangeLaboratory Table FY 2014 Budget

444

FY 2014 Budget Request State Table | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program ExchangeLaboratory Table FY 2014

445

FY 2014 Budget Request Statistical Table | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program ExchangeLaboratory Table FY

446

Bioenergy Technologies Office FY 2016 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetterBIOENERGY TECHNOLOGIES OFFICE FY 2016

447

Idaho National Laboratory FY12 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

Kimberly Frerichs

2013-03-01T23:59:59.000Z

448

Idaho National Laboratory's FY11 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

Kimberly Frerichs

2012-03-01T23:59:59.000Z

449

Facilities and Infrastructure FY 2016 Budget At-A-Glance  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof EnergyUnited States DepartmentFY2012

450

Weatherization and Intergovernmental FY14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION AND INTERGOVERNMENTAL FY14 BUDGET

451

FY09 assessment of mercury reduction at SNL/NM.  

SciTech Connect (OSTI)

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

452

FY-95 technology catalog. Technology development for buried waste remediation  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

NONE

1995-10-01T23:59:59.000Z

453

Environmental Solutions FY05: PNNL Contributions to Bechtel Hanford, Inc.  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory provided support to Bechtel Hanford, Inc., for their work to safely demolish nuclear facilities and clean up waste sites near the Columbia River. During FY05, PNNL screened a variety of technologies to solve difficult problems. The danger of lung-scarring beryllium becoming airborne during the demolition of a nuclear fuel rod fabrication plant was addressed. For Bechtel Hanford, PNNL researchers extensively screened technologies and supported field testing of selected options. Assisted by the Laboratory's information, Bechtel Hanford staff razed the 76,000-square-feet facility near the Columbia River with no release of airborne beryllium. Removing large tanks and other equipment containing highly radioactive material from the 107-N facility continued to present challenges. The facility housed the filtration equipment for N Reactor's fuel storage basin. In FY05, PNNL identified and reviewed retrieval technologies. This work built on the evaluation criteria PNNL staff developed in FY04. In support of Bechtel Hanford's work to remediate and close the 618-7 burial ground, PNNL researchers evaluated remote technologies to characterize the waste drums as they are retrieved. One objective is to identify any drums containing Zircaloy, a zirconium alloy that can catch on fire when exposed to certain conditions. To assist in safely retrieving, treating, and disposing of spent nuclear fuel decladding waste in the 116-C-3 tank, PNNL identified and reviewed waste characterization, retrieval, and treatment technologies. This information was used by Bechtel Hanford staff as part of their engineering study of the situation.

Truex, Michael J.; Manke, Kristin L.

2005-12-15T23:59:59.000Z

454

Safeguards and Security Technology Development Directory. FY 1993  

SciTech Connect (OSTI)

The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

Not Available

1993-06-01T23:59:59.000Z

455

FY2007 Laboratory Directed Research and Development Annual Report  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

Craig, W W; Sketchley, J A; Kotta, P R

2008-03-20T23:59:59.000Z

456

Integrated Disposal Facility FY 2012 Glass Testing Summary Report  

SciTech Connect (OSTI)

PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

2013-03-29T23:59:59.000Z

457

Richland Operations (DOE-RL) Environmental Safety Health (ES and H) FY 2000 and FY 2001 Execution Commitment Summary  

SciTech Connect (OSTI)

All sites in the U.S. Department of Energy (DOE) Complex prepare this report annually for the DOE Office of Environment, Safety and Health (EH). The purpose of this report is to provide a summary of the previous and current year's Environment, Safety and Health (ES&H) execution commitments and the Safety and Health (S&H) resources that support these activities. The fiscal year (FY) 2000 and 2001 information and data contained in the Richland Operations Environment, Safefy and Health Fiscal Year 2002 Budget-Risk Management Summary (RL 2000a) were the basis for preparing this report. Fiscal year 2001 activities are based on the President's Amended Congressional Budget Request of $689.6 million for funding Ofice of Environmental Management (EM) $44.0 million for Fast Flux Test Facility standby less $7.0 million in anticipated DOE, Headquarters holdbacks for Office of Nuclear Energy, Science and Technology (NE); and $55.3 million for Safeguards and Security (SAS). Any funding changes as a result of the Congressional appropriation process will be reflected in the Fiscal Year 2003 ES&H Budget-Risk Management Summary to be issued in May 2001. This report provides the end-of-year status of FY 2000 ES&H execution commitments, including actual S&H expenditures, and describes planned FY 2001 ES&H execution commitments and the S&H resources needed to support those activities. This requirement is included in the ES&H guidance contained in the FY 2002 Field Budget Call (DOE 2000).

REEP, I.E.

2000-12-01T23:59:59.000Z

458

Hydrologic resources management program, FY 1998 progress report  

SciTech Connect (OSTI)

This report presents the results from FY 1998 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) project. The HRMP is sponsored by Defense Programs (DP) of the U.S. Department of Energy, Nevada Operations Office (DOE/NV), and supports DP operations at the Nevada Test Site (NTS) through studies of radiochemistry and resource management related to the defense programs mission. Other participating organizations include the Los Alamos National Laboratory (LANL), the United States Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the United States Environmental Protection Agency (EPA), and Bechtel-Nevada (BN). The UGTA project is an Environmental Management (EM) activity of DOE/NV that supports a Federal Facilities Agreement and Consent Order between the Department of Energy, the Department of Defense, and the State of Nevada. UGTA's primary function is to address the legacy release of hazardous constituents at the Nevada Test Site, the Tonopah Test Range, and off-Nevada Test Site underground nuclear testing areas. Participating contractors include LLNL (Earth and Environmental Sciences Directorate, Analytical and Nuclear Chemistry Division), LANL, DRI, USGS, BN, HSI-GeoTrans, and IT Corporation. The FY 1998 HRMP and UGTA annual progress report follows the organization and contents of our FY 1997 report (Smith et al., 1998), and includes our results from CY 1997-1998 technical studies of radionuclide migration and isotope hydrology at the Nevada Test Site. During FY 1998, LLNL continued its efforts under the HRMP to pursue a technical agenda relevant to the science-based stockpile stewardship program at DOE/NV. Support to UGTA in FY 1998 included efforts to quantitatively define the radionuclide source term residual from underground nuclear weapons testing and the derivative solution, or hydrologic source term, from radionuclides dissolved in or transported by groundwater. The hydrologic source term is a component of a predicted dose assessment for the five principal NTS testing areas.

Benedict, F.C.; Criss, R.E.; Davisson, M.L.; Eaton, G.F.; Hudson, G.B.; Kenneally, J.M.; Rose, T.P.; Smith, D.

1999-07-26T23:59:59.000Z

459

Environmental Systems Research and Analysis FY 2000 Annual Report  

SciTech Connect (OSTI)

The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the INEEL. Strengthening the Technical capabilities of the INEEL will provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). This is a progress report for the third year of the ESR Program (FY 2000). A report of activities is presented for the five ESR research investment areas: (1) Transport Aspects of Selective Mass Transport Agents, (2) Chemistry of Environmental Surfaces, (3) Materials Dynamics, (4) Characterization Science, and (5) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, the report describes activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the EM Science Program (EMSP) and the EM Focus Areas. The five research areas are subdivided into 18 research projects. FY 2000 research in these 18 projects has resulted in more than 50 technical papers that are in print, in press, in review, or in preparation. Additionally, more than 100 presentations were made at professional society meetings nationally and internationally. Work supported by this program was in part responsible for one of our researchers, Dr. Mason Harrup, receiving the Department of Energy’s “Bright Light” and “Energy at 23” awards. Significant accomplishments were achieved. Non-Destructive Assay hardware and software was deployed at the INEEL, enhancing the quality and efficiency of TRU waste characterization for shipment. The advanced tensiometer has been employed at numerous sites around the complex to determine hydrologic gradients in variably saturated vadose zones. An ion trap, secondary ion mass spectrometer (IT-SIMS) was designed and fabricated to deploy at the INEEL site to measure the chemical speciation of radionuclides and toxic metals on the surfaces of environmentally significant minerals. The FY 2001 program will have a significantly different structure and research content. This report presents the final summary of projects coming to an end in FY 2000 and is a bridge to the FY 2001 program.

David L. Miller; Castle, Peter Myer; Steven J. Piet

2001-01-01T23:59:59.000Z

460

Epsilon Metal Summary Report FY 2011  

SciTech Connect (OSTI)

The Epsilon-metal ({var_epsilon}-metal) phase was selected in FY 2009 as a potential waste form to for immobilizing the noble metals found in the undissolved solids + aqueous stream, and the soluble Tc from ion-exchange process, each resulting from proposed aqueous reprocessing. {var_epsilon}-metal phase is observed in used nuclear fuel and the natural reactors of Oklobono in Gabon, where the long-term corrosion behavior was demonstrated. This makes {var_epsilon}-metal a very attractive waste form. Last fiscal year, {var_epsilon}-metal was successfully fabricated by combining the five-metals, Mo, Ru, Rh, Pd and Re (surrogate for Tc), into pellets followed by consolidation with an arc melter. The arc melter produced fully dense samples with the epsilon structure. However, some chemistry differences were observed in the microstructure that resulted in regions rich in Re and Mo, and others rich in Pd, while Ru and Rh remained fairly constant throughout. This year, thermal stability (air), and corrosion testing of the samples fabricated by arc melting were the main focus for experimental work. Thermal stability was measured with a differential scanning calorimeter - thermogravimetric analyzer, by both ramp heating as well as step heating. There is clear evidence during the ramp heating experiment of an exothermic event + a weight loss peak both beginning at {approx}700 C. Step heating showed an oxidation event at {approx}690 C with minimal weight gain that occurs just before the weight loss event at 700 C. The conclusion being that the e-metal begins to oxidize and then become volatile. These findings are useful for considering the effects of voloxidation process. Three different pellets were subjected to electrochemical testing to study the corrosion behavior of the epsilon-metal phase in various conditions, namely acidic, basic, saline, and inert. Test was done according to an interim procedure developed for the alloy metal waste form. First an open circuit potential was measured, followed by linear polarization sweeps. The linear polarization sweep range was the Tafel equation was fit to the linear polarization sweep data to determine the corrosion rate of each pellet in each test solution. The average calculated corrosion rates of the three pellets according to solution conditions were: -1.91 x 10{sup -4} mm/yr (0.001 M NaOH), -1.48 x 10{sup -3} mm/yr (0.01 M NaCl), -8.77 x 10{sup -4} mm/yr (0.001 M H{sub 2}SO{sub 4}), -2.09 x 10{sup -3} mm/yr (0.001 M NaOH + 0.01 M NaCl), and -1.54 x 10{sup -3} mm/yr (0.001 M H{sub 2}SO{sub 4} + 0.01 M NaCl). Three single-pass flow through (SPFT) test were conducted at a flow rate of 10 ml/day, at 90 C, and pH of 2.5, 7.0, and 9.0 for up to 322 days. Results of the tests indicate that dissolution rates were 5 x 10{sup -4} g m{sup 2} d{sup -1} at pH 9.0, 1.2 x 10{sup -4} g m{sup -2} d{sup -1} at pH 7.0, and 2 x 10{sup -4} g m{sup -2} d{sup -1} at pH 2.5. The sample used for the pH 7.0 SPFT test contains extra Re compared to samples used for the other two SPFT test, which came from a single pellet. The corrosion data measured this year indicate that the {var_epsilon}-metal phase is chemically durable. The two chemically different phases, but structurally the same, behave differently during dissolution according to the microstructure changes observed in both the electrochemical and in SPFT test. Characterization of the test specimens after testing suggests that the dissolution is complex and involves oxidative dissolution followed by precipitation of both oxide and metallic phases. These data suggest that the dissolution in the electrochemical and SPFT tests is different; a process that needs further investigation.

Strachan, Denis M.; Crum, Jarrod V.; Zumhoff, Mac R.; Bovaird, Chase C.; Windisch, Charles F.; Riley, Brian J.

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Materials Corrosion and Mitigation Strategies for APT: End of Year Report, FY '96  

E-Print Network [OSTI]

Materials Corrosion and Mitigation Strategies for APT: End of Year Report, FY '96 R. Scott Lillard, Darryl P. Butt Materials Corrosion and Environmental Effects Laboratory MST-6, Metallurgy Los Alamos accomplishment in FY '96 was the design and fabrication of the corrosion probes to be used "In Beam" during

462

National Aeronautics and Space Administration Fiscal Year (FY) 2012 Report on  

E-Print Network [OSTI]

and Reducing Personally Identifiable Information (PII) And Eliminating Unnecessary Use of Social Security Numbers (SSNs) October 10, 2012 #12;NASA FY12 PII Review and Reduction Report 1 NASA FY 2012 PII Review (PII) holdings in an effort to eliminate the unnecessary collection and use of PII, including Social

463

ACTION 2015: Education First Reallocation ($21M) and AMP (non-Research Roadmap) for FY 2012  

E-Print Network [OSTI]

pg. 1 ACTION 2015: Education First Reallocation ($21M) and AMP (non-Research Roadmap) for FY 2012 at http://provost.tamu.edu/initiatives/strategic-planning-2010/strategic-planning-documents/strategic-budget multiple sources with varying restrictions on their use. We will be working during FY12 to get as much

464

ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111-228  

E-Print Network [OSTI]

ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111. Fusion Energy Sciences (FES) would be funded at $384.0 million, a decrease of $42.0 million below the FY10 enacted level and $4.0 million above the budget request. FUSION ENERGY SCIENCES The Committee

465

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section IV. Fuel Cells  

E-Print Network [OSTI]

W advanced PEM power plant. Approach Figure 1 provides a schematic of the gasoline fuel cell power plantHydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 265 Section IV. Fuel Cells #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 266 #12;Hydrogen

466

Live Webinar on EERE’s FY15 Budget for Renewable Power  

Broader source: Energy.gov [DOE]

On April 1, 2014, the Office of Energy Efficiency & Renewable Energy’s (EERE) Wind and Water Power Technologies Office will present its FY15 budget. Deputy Assistant Secretary Steve Chalk will present the EERE overview and Program Director Jose Zayas will discuss details of the Program’s FY15 budget request.

467

Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs - FY 2008 Budget Request  

SciTech Connect (OSTI)

This document summarizes the results of the benefits analysis of EERE's programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and for each of its nine Research, Development, Demonstration, and Deployment (RD3) programs. Benefits for the FY 2008 budget request are estimated for the midterm (2008-2030) and long term (2030-2050).

Not Available

2007-03-01T23:59:59.000Z

468

Cementitious Barriers Partnership FY2013 End-Year Report  

SciTech Connect (OSTI)

In FY2013, the Cementitious Barriers Partnership (CBP) demonstrated continued tangible progress toward fulfilling the objective of developing a set of software tools to improve understanding and prediction of the long?term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In November 2012, the CBP released “Version 1.0” of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. In addition, the CBP completed development of new software for the “Version 2.0” Toolbox to be released in early FY2014 and demonstrated use of the Version 1.0 Toolbox on DOE applications. The current primary software components in both Versions 1.0 and 2.0 are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. The CBP Software Toolbox Version 1.0 supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. Version 2.0 includes the additional analysis of chloride attack and dual regime flow and contaminant migration in fractured and non?fractured cementitious material. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). THAMES is a planned future CBP Toolbox component focused on simulation of the microstructure of cementitious materials and calculation of resultant hydraulic and constituent mass transfer parameters needed in modeling. Two CBP software demonstrations were conducted in FY2013, one to support the Saltstone Disposal Facility (SDF) at SRS and the other on a representative Hanford high?level waste tank. The CBP Toolbox demonstration on the SDF provided analysis on the most probable degradation mechanisms to the cementitious vault enclosure caused by sulfate and carbonation ingress. This analysis was documented and resulted in the issuance of a SDF Performance Assessment Special Analysis by Liquid Waste Operations this fiscal year. The two new software tools supporting chloride attack and dual?regime flow will provide additional degradation tools to better evaluate performance of DOE and commercial cementitious barriers. The CBP SRNL experimental program produced two patent applications and field data that will be used in the development and calibration of CBP software tools being developed in FY2014. The CBP software and simulation tools varies from other efforts in that all the tools are based upon specific and relevant experimental research of cementitious materials utilized in DOE applications. The CBP FY2013 program involved continuing research to improve and enhance the simulation tools as well as developing new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools through laboratory experiments and analysis of field specimens are ongoing and will continue into FY2014 to quantify and reduce the uncertainty associated with performance assessments. This end?year report summarizes FY2013 software development efforts and the various experimental programs that are providing data for calibration and validation of the CBP developed software.

Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States); Kosson, D. S. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Brown, K. G. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Meeussen, J. C.L. [Nuclear Research and Consultancy Group (NRG), Petten (The Netherlands); van der Sloot, H. A. [Hans van der Sloot Consultancy, Langedijk (The Netherlands); Garboczi, E. J. [Materials & Construction Research Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

2013-11-01T23:59:59.000Z

469

Method for reducing iron losses in an iron smelting process  

DOE Patents [OSTI]

A process of smelting iron that comprises the steps of: a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; b) maintaining conditions in said reactor to cause (i) at least some of the iron oxide to be chemically reduced, (ii) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (iii) carbon monoxide gas to rise through the slag; c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: e) keep the temperature of the molten iron at or below about 1550.degree. C. and f) keep the slag weight at or above about 0.8 tonne per square meter.

Sarma, Balu (Airmont, NY); Downing, Kenneth B. (Greenville, SC)

1999-01-01T23:59:59.000Z

470

Method for reducing iron losses in an iron smelting process  

DOE Patents [OSTI]

A process of smelting iron that comprises the steps of: (a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; (b) maintaining conditions in said reactor to cause (1) at least some of the iron oxide to be chemically reduced, (2) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (3) carbon monoxide gas to rise through the slag; (c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and (d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: (1) keep the temperature of the molten iron at or below about 1550 C and (2) keep the slag weight at or above about 0.8 ton per square meter. 13 figs.

Sarma, B.; Downing, K.B.

1999-03-23T23:59:59.000Z

471

Process for the synthesis of iron powder  

DOE Patents [OSTI]

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

Welbon, W.W.

1983-11-08T23:59:59.000Z

472

Process for the synthesis of iron powder  

DOE Patents [OSTI]

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

Not Available

1982-03-06T23:59:59.000Z

473

Iron and Steel Energy Intensities  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use...

474

Explorations of iron-iron hydrogenase active site models by experiment and theory  

E-Print Network [OSTI]

This dissertation describes computational and experimental studies of synthetic complexes that model the active site of the iron-iron hydrogenase [FeFe]H2ase enzyme. Simple dinuclear iron dithiolate complexes act as functional models of the ironiron...

Tye, Jesse Wayne

2009-05-15T23:59:59.000Z

475

Laboratory Directed Research and Development FY-10 Annual Report  

SciTech Connect (OSTI)

The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

Dena Tomchak

2011-03-01T23:59:59.000Z

476

Laboratory Directed Research and Development LDRD-FY-2011  

SciTech Connect (OSTI)

This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

Dena Tomchak

2012-03-01T23:59:59.000Z

477

Building America Systems Integration Research Annual Report: FY 2012  

SciTech Connect (OSTI)

This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

Gestwick, M.

2013-05-01T23:59:59.000Z

478

Biological and chemical technologies research. FY 1995 annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

None

1996-03-01T23:59:59.000Z

479

Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results  

SciTech Connect (OSTI)

In FY2009, PNNL performed scoping studies to qualify two waste form candidates, tellurite (TeO2-based) glasses and halide minerals, for the electrochemical waste stream for further investigation. Both candidates showed promise with acceptable PCT release rates and effective incorporation of the 10% fission product waste stream. Both candidates received reprisal for FY2010 and were further investigated. At the beginning of FY2010, an in-depth literature review kicked off the tellurite glasses study. The review was aimed at ascertaining the state-of-the-art for chemical durability testing and mixed chloride incorporation for tellurite glasses. The literature review led the authors to 4 unique binary and 1 unique ternary systems for further investigation which include TeO2 plus the following: PbO, Al2O3-B2O3, WO3, P2O5, and ZnO. Each system was studied with and without a mixed chloride simulated electrochemical waste stream and the literature review provided the starting points for the baseline compositions as well as starting points for melting temperature, compatible crucible types, etc. The most promising glasses in each system were scaled up in production and were analyzed with the Product Consistency Test, a chemical durability test. Baseline and PCT glasses were analyzed to determine their state, i.e., amorphous, crystalline, phase separated, had undissolved material within the bulk, etc. Conclusions were made as well as the proposed direction for FY2011 plans. Sodalite was successfully synthesized by the sol-gel method. The vast majority of the dried sol-gel consisted of sodalite with small amounts of alumino-silicates and unreacted salt. Upon firing the powders made by sol-gel, the primary phase observed was sodalite with the addition of varying amounts of nepheline, carnegieite, lithium silicate, and lanthanide oxide. The amount of sodalite, nepheline, and carnegieite as well as the bulk density of the fired pellets varied with firing temperature, sol-gel process chemistry, and the amount of glass sintering aid added to the batch. As the firing temperature was increased from 850 C to 950 C, chloride volatility increased, the fraction of sodalite decreased, and the fractions nepheline and carnegieite increased. This indicates that the sodalite structure is not stable and begins to convert to nepheline and carnegieite under these conditions at 950 C. Density has opposite relationship with relation to firing temperature. The addition of a NBS-1, a glass sintering aid, had a positive effect on bulk density and increased the stability of the sodalite structure in a minimal way.

Riley, Brian J.; Rieck, Bennett T.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Sundaram, S. K.; Vienna, John D.

2010-08-01T23:59:59.000Z

480

FY-2007 PNNL Voluntary Protection Program (VPP) Program Evaluation  

SciTech Connect (OSTI)

This document reports the results of the FY-2007 PNNL VPP Program Evaluation, which is a self-assessment of the operational and programmatic performance of the Laboratory related to worker safety and health. The report was compiled by a team of worker representatives and safety professionals who evaluated the Laboratory's worker safety and health programs on the basis of DOE-VPP criteria. The principle elements of DOE's VPP program are: Management Leadership, Employee Involvement, Worksite Analysis, Hazard Prevention and Control, and Safety and Health Training.

Wright, Patrick A.; Fisher, Julie A.; Goheen, Steven C.; Isern, Nancy G.; Madson, Vernon J.; Meicenheimer, Russell L.; Pugh, Ray; Schneirla, Keri A.; Shockey, Loretta L.; Tinker, Mike R.

2008-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "zero-valent iron fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Laboratory-directed research and development: FY 1996 progress report  

SciTech Connect (OSTI)

This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

Vigil, J.; Prono, J. [comps.

1997-05-01T23:59:59.000Z

482

PNNL FY2005 DOE Voluntary Protection Program (VPP) Program Evaluation  

SciTech Connect (OSTI)

This document reports the results of the FY 2005 PNNL VPP Program Evaluation, which is a self-assessment of the operational and programmatic performance of the Laboratory related to worker safety and health. The report was compiled by a team of worker representatives and safety professionals who evaluated the Laboratory's worker safety and health programs on the basis of DOE-VPP criteria. The principle elements of DOE's VPP program are: Management Leadership, Employee Involvement, Worksite Analysis, Hazard Prevention and Control, and Safety and Health Training.

Wright, Patrick A.; Madson, Vernon J.; Isern, Nancy G.; Haney, Janice M.; Fisher, Julie A.; Goheen, Steven C.; Gulley, Susan E.; Reck, John J.; Collins, Drue A.; Tinker, Mike R.; Walker, Landon A.; Wynn, Clifford L.

2005-01-31T23:59:59.000Z

483

Pacific Northwest National Laboratory Institutional Plan FY 2000-2004  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

Pearson, Erik W.

2000-03-01T23:59:59.000Z

484

Pacific Northwest National Laboratory Institutional Plan FY 2001-2005  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

Fisher, Darrell R.; Pearson, Erik W.

2000-12-29T23:59:59.000Z

485

River Protection Project FY 2000 Multi Year Work Plan Summary  

SciTech Connect (OSTI)

The River Protection Project (RPP), formerly the Tank Waste Remediation System (TWRS), is a major part of the U.S. Department of Energy's (DOE) Office of River Protection (ORP). The ORP was established as directed by Congress in Section 3139 of the Strom Thurmond National Defense Authorization Act for Fiscal Year (FY) 1999. The ORP was established to elevate the reporting and accountability for the RPP to the DOE-Headquarters level. This was done to gain Congressional visibility and obtain support for a major $10 billion high-level liquid waste vitrification effort.

LENSEIGNE, D.L.

1999-08-27T23:59:59.000Z

486

FY13 Energy Department Federal Program Inventory | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program ExchangeLaboratory TableDepartmentFY13

487

FY 2007 Congressional Budget Request | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- Enron DocumentsFY 2007

488

FY 2008 Annual Performance Report | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- Enron DocumentsFY 2007Annual

489

FY 2008 Overall Contract and Project Management Improvement Performance  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- Enron DocumentsFY

490

FY 2011 Environmental Management Budget Request to Congress | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudget » FY 2011

491

FY 2012 Annual Uncosted Balances Report | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department- EnronAnnualBudget » FY

492

FY 2016 Congressional Budget Request for OE | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRIC SUMMARY FY 2015 of5

493

Fossil Energy FY 2009 Budget | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescentDepartment09 Budget Fossil Energy FY

494

Fossil Energy FY 2010 Budget | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescentDepartment09 Budget Fossil Energy FY0

495

Fossil Energy FY 2014 Appropriations Hearing | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescentDepartment09 Budget Fossil Energy23FY

496

DOE FY 2012 Budget Overview presentation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5DOEDOE FY

497

Policy Flashes for FY 2005 | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic TheoryPlant 242-ZPolaron Behavior1-617ofTitlesFY895

498

Policy Flashes for FY 2006 | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic TheoryPlant 242-ZPolaron Behavior1-617ofTitlesFY8956

499

Policy Flashes for FY 2011 | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic TheoryPlant 242-ZPolaron Behavior1-617ofTitlesFY8956for

500

FY 2012 Federal Office Departmental Averages | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarch 4, 2014Federal