National Library of Energy BETA

Sample records for zenith radar kazr

  1. ARM: Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate sensitivity mode, cross-polarized mode Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate ...

  2. ARM: Ka ARM Zenith Radar (KAZR): filtered spectral data, high...

    Office of Scientific and Technical Information (OSTI)

    Ka ARM Zenith Radar (KAZR): filtered spectral data, high sensitivity mode, co-polarized mode Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Nitin ...

  3. Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-03-06

    The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.

  4. ARM KAZR-ARSCL Value Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    The Ka-band ARM Zenith Radars (KAZRs) have replaced the long-serving Millimeter Cloud Radars, or MMCRs. Accordingly, the primary MMCR Value Added Product (VAP), the Active Remote Sensing of CLouds (ARSCL) product, is being replaced by a KAZR-based version, the KAZR-ARSCL VAP. KAZR-ARSCL provides cloud boundaries and best-estimate time-height fields of radar moments.

  5. ARM KAZR-ARSCL Value Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    2012-09-28

    The Ka-band ARM Zenith Radars (KAZRs) have replaced the long-serving Millimeter Cloud Radars, or MMCRs. Accordingly, the primary MMCR Value Added Product (VAP), the Active Remote Sensing of CLouds (ARSCL) product, is being replaced by a KAZR-based version, the KAZR-ARSCL VAP. KAZR-ARSCL provides cloud boundaries and best-estimate time-height fields of radar moments.

  6. ARM - Instrument - kazr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extent and composition of clouds at millimeter wavelengths. The KAZR is a zenith-pointing Doppler radar that operates at a frequency of approximately 35 GHz. The main purpose of...

  7. ARM - Measurement - Radar Doppler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality assurance purposes. ARM Instruments CSAPR : C-Band ARM Precipitation Radar DL : Doppler Lidar KAZR : Ka ARM Zenith Radar KASACR : Ka-Band Scanning ARM Cloud Radar MWACR :...

  8. ARM: Ka ARM Zenith Radar (KAZR): filtered spectral data, moderate...

    Office of Scientific and Technical Information (OSTI)

    Authors: Joseph Hardin ; Dan Nelson ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Alyssa Matthews ; Nitin Bharadwaj + Show Author Affiliations (Andrei) Lindenmaier Publication Date: ...

  9. ARM: Ka ARM Zenith Radar (KAZR): precipitation mode (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Authors: Joseph Hardin ; Dan Nelson ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Alyssa Matthews ; Nitin Bharadwaj + Show Author Affiliations (Andrei) Lindenmaier Publication Date: ...

  10. ARM: Ka ARM Zenith Radar (KAZR): cirrus mode (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 1025213 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak ...

  11. ARM - Evaluation Product - Cloud Microbase-kazr Profiles (ka) VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCloud Microbase-kazr Profiles (ka) VAP ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Cloud Microbase-kazr Profiles (ka) VAP The KAZR radars have recently replaced the MMCR at ARM sites, and so the new KAZR-based radar products will now serve as input to Microbase. All of the historic Microbase

  12. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Zenith Pointing...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 54 Environmental Sciences Atmospheric turbulence; Cloud particle size distribution; Hydrometeor fall velocity; Radar Doppler; Radar polarization; Radar ...

  13. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  14. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing...

    Office of Scientific and Technical Information (OSTI)

    Availability: ORNL Language: English Subject: 54 Environmental Sciences Cloud particle size distribution; Hydrometeor fall velocity; Radar polarization; Radar reflectivity Dataset ...

  15. ARM KAZR-ARSCL Value Added Product (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences ARM, KAZR, ARSCL,KAZR-ARSCL Dataset File size NAView Dataset ...

  16. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  17. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  18. ARM - VAP Process - kazrcor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productskazrcor Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : KAZR Corrected Data (KAZRCOR) Instrument Categories Cloud Properties Output Products kazrcorge : Ka ARM Zenith Radar (KAZR): general mode Corrected kazrcorhi : Ka ARM Zenith Radar (KAZR): highest sensitivity mode Corrected kazrcormd : Ka ARM Zenith Radar (KAZR): moderate

  19. ARM - Field Campaign - ARM West Antarctic Radiation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cloud Radar Browse Data KAZR Ka ARM Zenith Radar Browse Data LDIS Laser Disdrometer Browse Data MET Surface Meteorological Instrumentation Browse Data Browse Plots MFR ...

  20. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

    SciTech Connect (OSTI)

    Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

    2014-11-01

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

  1. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse Plots Browse Data Single installation KAZR Ka ARM Zenith Radar Cloud Properties Browse Data Single installation LDIS Laser Disdrometer Surface Meteorology Browse ...

  2. Observation of Fair-weather Cumuli over Land Dynamical Factors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state-of-the-art instruments such as the Ka ARM Zenith Radar (KAZR) for cloud thickness, Doppler lidar for clear and cloudy atmosphere vertical velocity, and Raman lidar for...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Automated rain rate estimates using the Ka-band ARM Zenith Radar (KAZR)." Atmospheric Measurement Techniques, 8(1-15), doi:10.5194amt-8-1-2015. ACCEPTED. Time series of 1-min...

  4. ARM - Datastreams - kazrspeccmaskprcross

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazrspeccmaskprcross Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRSPECCMASKPRCROSS Ka ARM Zenith Radar (KAZR): raw spectral data Active Dates 2015.10.01 - 2016.09.01 Measurement Categories Cloud Properties Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements considered scientifically relevant are shown below by default. Show

  5. Zenith Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zenith Solar Ltd Place: Qiryat Gat, Israel Zip: 82000 Product: Israel-based developers of a HCPV - highly concentrator PV system for residential and industrial use. References:...

  6. Zenith Materials Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Materials Technology Corp Jump to: navigation, search Name: Zenith Materials Technology Corp. Place: Hsinchu, Taiwan Sector: Solar Product: Taiwan-based manufacturer of solar ingot...

  7. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect (OSTI)

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  8. Zenith Energy Services P Ltd ZESL | Open Energy Information

    Open Energy Info (EERE)

    Biomass, Services Product: Zenith provides services to project developers, such as feasibility studies, DPR, biomass assessment studies and financial services. References: Zenith...

  9. ARM - VAP Product - kazrcorge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productskazrcorkazrcorge Documentation Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : KAZRCORGE Ka ARM Zenith Radar (KAZR): general mode Corrected Active Dates 2011.10.09 - 2012.02.07 Originating VAP Process KAZR Corrected Data : KAZRCOR Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements

  10. ARM - VAP Product - kazrcorhi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productskazrcorkazrcorhi Documentation Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : KAZRCORHI Ka ARM Zenith Radar (KAZR): highest sensitivity mode Corrected Active Dates 2011.10.07 - 2012.02.07 Originating VAP Process KAZR Corrected Data : KAZRCOR Measurements Only measurements considered scientifically relevant are shown below by default. Show all

  11. ARM: Ka ARM Zenith Radar (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Authors: Joseph Hardin ; Dan Nelson ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Alyssa Matthews ; Nitin Bharadwaj + Show Author Affiliations (Andrei) Lindenmaier Publication Date: ...

  12. ARM - Datastreams - kazraux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazraux Documentation Data Quality Plots Citation DOI: 10.5439/1025211 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : KAZRAUX Ka ARM Zenith Radar (KAZR): auxiliary data Active Dates 2011.01.18 - 2016.09.02 Originating Instrument Ka ARM Zenith Radar (KAZR) Measurements Only measurements considered scientifically relevant are shown below by default. Show all

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automated Rain Rate Estimates Using the Ka-band ARM Zenith Radar (KAZR) Submitter: Chandra, A. S., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Chandra A, C Zhang, P Kollias, S Matrosov, and W Szyrmer. 2015. "Automated rain rate estimates using the Ka-band ARM Zenith Radar (KAZR)." Atmospheric Measurement Techniques, 8(1-15), doi:10.5194/amt-8-1-2015. ACCEPTED. Scatter plots of rain rates (R) observed from a video

  14. Shortwave Array Spectroradiometer-Zenith Instrument Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Shortwave Array Spectroradiometer-Zenith Instrument Handbook April 2016 CJ Flynn DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  15. MAGIC Cloud Properties from Zenith Radiance Data Final Campaign...

    Office of Scientific and Technical Information (OSTI)

    Title: MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary Cloud droplet size and optical depth are the most fundamental properties for understanding cloud ...

  16. CIMEL Measurements of Zenith Radiances at the ARM SGP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CIMEL Measurements of Zenith Radiances at the ARM SGP Site W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Climate and Radiation Branch Greenbelt, Maryland A. Marshak and K. Evans Joint Center for Earth Systems Technology University of Maryland Baltimore, Maryland Y. Knyazikhin Department of Geography Boston University Boston, Massachusetts H. W. Barker Environment Canada Downsview, Ontario, Canada C. F. Pavloski Department of Meteorology Pennsylvania

  17. ARM - Datastreams - kazr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamskazr Documentation Data Quality Plots Citation DOI: 10.5439/1182009 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. No datastream found.

  18. Zenith/Nadir Pointing mm-Wave Radars: Linear or Circular Polarization...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE SC OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text ...

  19. Use of the ARM Measurements of Spectral Zenith Radiance for Better...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Use of the ARM Measurements of Spectral Zenith ... situation, with particular emphasis on cloud optical depth and effective particle size. ...

  20. W-band ARM Cloud Radar (WACR) Handbook

    SciTech Connect (OSTI)

    Widener, KB; Johnson, K

    2005-01-05

    The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files. Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

  1. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    SciTech Connect (OSTI)

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  2. Inferring spatial clouds statistics from limited field-of-view, zenith observations

    SciTech Connect (OSTI)

    Sun, C.H.; Thorne, L.R.

    1996-04-01

    Many of the Cloud and Radiation Testbed (CART) measurements produce a time series of zenith observations, but spatial averages are often the desired data product. One possible approach to deriving spatial averages from temporal averages is to invoke Taylor`s hypothesis where and when it is valid. Taylor`s hypothesis states that when the turbulence is small compared with the mean flow, the covariance in time is related to the covariance in space by the speed of the mean flow. For clouds fields, Taylor`s hypothesis would apply when the {open_quotes}local{close_quotes} turbulence is small compared with advective flow (mean wind). The objective of this study is to determine under what conditions Taylor`s hypothesis holds or does not hold true for broken cloud fields.

  3. ARM - Radar Backgrounder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuesday, A24B-02: Use of Dual Frequency Doppler Radar to Infer Cloud and Precipitation Properties and Air Motion Statistics. Science Team: Mike Jensen, Brookhaven National ...

  4. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  5. Determination of radar MTF

    SciTech Connect (OSTI)

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  6. Science Goals for the ARM Recovery Act Radars

    SciTech Connect (OSTI)

    JH Mather

    2012-05-29

    field. These additional microphysical measurements would allow detailed cloud properties to be derived even in the presence of light precipitation. It is important to couple these detailed measurements of cloud microphysics to vertical motion on the cloud scale to couple microphysics with meteorological processes. Vertically pointing Doppler radars provide the vertical motion of cloud particles but, to separate particle motion from air motion, a wind profiler is required. The American Recovery and Reinvestment Act provided the means to address these needs and implement a multi-frequency suite of radars, including scanning radars, at each of the ARM sites. In addition, Doppler lidars have been deployed at several sites. With these new measurement capabilities, ARM has the measurement capabilities to tackle the problems of improving microphysical profile descriptions and evaluating the relationship between our current narrow-field-of view, zenith perspective on clouds to a description of the full 3D cloud field and its temporal evolution.

  7. Downhole pulse radar

    DOE Patents [OSTI]

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  8. Downhole pulse radar

    DOE Patents [OSTI]

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  9. ARM - Measurement - Radar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a radar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties Instruments The above

  10. ARM - Evaluation Product - Calibrated KAZR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calibrated and corrected via a new value-added product (VAP) KAZRCAL. The nsakazrgeC1.a1 and nsakazrmdC1.a1 datastreams are used as input, in addition to a set of calibration...

  11. ARM - Evaluation Product - KAZR Correction (KAZRCOR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the extent and composition of clouds at millimeter wavelengths. Data Details Developed by Karen Johnson Contact Tami Toto ttoto@bnl.gov (631) 344-5952 Upton, NY 11973 Resource(s)...

  12. Impulse radar studfinder

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  13. Impulse radar studfinder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  14. Just where exactly is the radar? (a.k.a. the radar antenna phase...

    Office of Scientific and Technical Information (OSTI)

    Just where exactly is the radar? (a.k.a. the radar antenna phase center). Citation Details In-Document Search Title: Just where exactly is the radar? (a.k.a. the radar antenna ...

  15. Imaging synthetic aperture radar

    DOE Patents [OSTI]

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  16. TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TTU Advanced Doppler Radar - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  17. ARM: X-Band Scanning ARM Cloud Radar (X-SACR) Side-Looking Radar...

    Office of Scientific and Technical Information (OSTI)

    Availability: ORNL Language: English Subject: 54 Environmental Sciences Cloud particle size distribution; Hydrometeor fall velocity; Radar polarization; Radar reflectivity Dataset ...

  18. Python-ARM Radar Toolkit

    Energy Science and Technology Software Center (OSTI)

    2013-03-17

    The Python-ARM Radar Toolkit (Py-ART) is a collection of radar quality control and retrieval codes which all work on two unifying Python objects: the PyRadar and PyGrid objects. By building ingests to several popular radar formats and then abstracting the interface Py-ART greatly simplifies data processing over several other available utilities. In addition Py-ART makes use of Numpy arrays as its primary storage mechanism enabling use of existing and extensive community software tools.

  19. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOE Patents [OSTI]

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  20. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Cover of the Federal Interagency ...

  1. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... First, the authors would like to thank the entire Wind Turbine Radar Interference Working ...

  2. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aerosol properties during clear-sky conditions. The ETL Radar Meteorology and Oceanography Division will field their NOAAK scanning cloud radar near the new ARM millimeter...

  3. Doppler radar flowmeter

    DOE Patents [OSTI]

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  4. DOE/SC-ARM-11-024 ARM Climate Research Facility ANNUAL REPORT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2011 * C-SAPR on Manus Island, Papua New Guinea, installed, representing the frst operational precipitation radar in the TWP area. May 2011 * New KAZR began operation at NSA, ...

  5. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  6. ARM: 1290-MHz Radar Wind Profiler, precipitation moments data...

    Office of Scientific and Technical Information (OSTI)

    1290-MHz Radar Wind Profiler, precipitation moments data Title: ARM: 1290-MHz Radar Wind Profiler, precipitation moments data 1290-MHz Radar Wind Profiler, precipitation moments ...

  7. How Radar Works | Open Energy Information

    Open Energy Info (EERE)

    Radar Works Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: How Radar Works Author Institute For Geophysics Published Institute For Geophysics, 2013...

  8. Obstacle penetrating dynamic radar imaging system

    DOE Patents [OSTI]

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  9. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  10. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  11. Radar operation in a hostile electromagnetic environment

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  12. Synthetic aperture radar capabilities in development

    SciTech Connect (OSTI)

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  13. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  14. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  15. Radar channel balancing with commutation

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  16. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  17. Characterization of Radar Boundary Layer Data Collected During the 2001 Multi-Frequency Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Radar Boundary Layer Data Collected During the 2001 Multi-Frequency Radar IOP A. Khandwalla, N. Majurec, and S. M. Sekelsky University of Massachusetts Amherst, Massachusetts C. R. Williams and K. S. Gage National Oceanic and Atmospheric Administration Aeronomy Laboratory Boulder, Colorado Introduction Ground-based radar measurements of insect clutter at Ka-band (35 GHz) and W-band (95 GHz) were collected over an extended period during the 2001 multi-frequency radar (MFR)

  18. Federal Interagency Wind Turbine Radar Interference Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report ... from the advice and comments of two wind industry and trade association ...

  19. Ultra-wideband radar motion sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  20. ARM - Evaluation Product - Corrected Precipitation Radar Moments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCorrected Precipitation Radar Moments in Antenna Coordinates Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would...

  1. Correcting radar range measurements for atmospheric propagation...

    Office of Scientific and Technical Information (OSTI)

    Title: Correcting radar range measurements for atmospheric propagation effects. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2013-12-01 OSTI Identifier: ...

  2. Balancing radar receiver channels with commutation. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Balancing radar receiver channels with commutation. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2015-01-01 OSTI Identifier: 1244859 Report ...

  3. Synthetic Aperture Radar Persistent Scatterer Interferometry...

    Open Energy Info (EERE)

    NA, 2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR)...

  4. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in...

    Office of Scientific and Technical Information (OSTI)

    915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind ...

  5. Merged and corrected 915 MHz Radar Wind Profiler moments (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Merged and corrected 915 MHz Radar Wind Profiler moments Title: Merged and corrected 915 MHz Radar Wind Profiler moments The radar wind profiler (RWP) present at the SGP central ...

  6. Radar network communication through sensing of frequency hopping

    DOE Patents [OSTI]

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  7. Wind Turbine Radar Interference Mitigation Working Group Releases...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Turbine Radar Interference Mitigation Working Group to address these challenges. This new report lays out the plan for how the working group will address wind turbine radar ...

  8. ARM Climate Research Facility Radar Operations Plan (Program...

    Office of Scientific and Technical Information (OSTI)

    Climate Research Facility Radar Operations Plan Citation Details In-Document Search Title: ARM Climate Research Facility Radar Operations Plan Roles, responsibilities, and ...

  9. ARM: Millimeter Wavelength Cloud Radar (MMCR): monitoring data...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences Horizontal wind; Radar Doppler; Radar reflectivity; Vertical velocity ...

  10. ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation...

    Office of Scientific and Technical Information (OSTI)

    Precipitation Datastream Title: ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream ...

  11. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Office of Environmental Management (EM)

    INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION ...

  12. ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF...

    Office of Scientific and Technical Information (OSTI)

    transmitted RF power Title: ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Authors: Karen ...

  13. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  14. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    SciTech Connect (OSTI)

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in the $E\\gt 8$ EeV energy bin, with an amplitude for the first harmonic in right ascension $r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$, that has a chance probability $P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$, reinforcing the hint previously reported with vertical events alone.

  15. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in themore » $$E\\gt 8$$ EeV energy bin, with an amplitude for the first harmonic in right ascension $$r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$$, that has a chance probability $$P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$$, reinforcing the hint previously reported with vertical events alone.« less

  16. Ultra-wideband radar sensors and networks

    DOE Patents [OSTI]

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  17. Helicopter discrimination apparatus for the murine radar

    DOE Patents [OSTI]

    Webb, Jr., John G.; Gray, Roger M.

    1977-01-01

    A helicopter discrimination apparatus for a radar utilizing doppler filtering to discriminate between a missile and ground clutter. The short duration of the doppler filter pulses which are emitted by helicopter rotor blades are processed to prevent false alarms, thus allowing the radar-protected helicopter to operate in formation with other helicopters while maintaining protection against infra-red-seeking missiles.

  18. ARM - Evaluation Product - KAZR Corrected for Ship Motion (KAZRSHIPCOR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluation product for the MAGIC and ACAPEX campaigns. Reflectivity, spectral width, and signal to noise ratio are corrected to account for the pitch and roll of the ship. Mean...

  19. ARM - Evaluation Product - KAZR Active Remotely-Sensed Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements to provide a more comprehensive dataset. Data Details Developed by Karen Johnson | Michael Jensen Contact Tami Toto ttoto@bnl.gov (631) 344-5952 Upton, NY...

  20. Tangential velocity measurement using interferometric MTI radar

    DOE Patents [OSTI]

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  1. Magneto-Radar Hidden Metal Detector

    DOE Patents [OSTI]

    McEwan, Thomas E.

    2005-07-05

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  2. ARM - Evaluation Product - Scanning ARM Cloud Radar Corrections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    added moment variables (reflectivitycorrected, meandopplervelocitycorrected, and meandopplervelocitycorrected2) provide radar moments filtered to remove measurement...

  3. Navigator alignment using radar scan

    DOE Patents [OSTI]

    Doerry, Armin W.; Marquette, Brandeis

    2016-04-05

    The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.

  4. Using doppler radar images to estimate aircraft navigational heading error

    DOE Patents [OSTI]

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  5. ARM - Field Campaign - NSA Scanning Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : NSA Scanning Radar IOP ... Low-level mixed-phase clouds, frequently present over the North Slope of Alaska (NSA) ...

  6. ARM - Evaluation Product - Precipitation Radar Moments Mapped...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Precipitation Radar Moments Mapped to a Cartesian Grid The Scanning...

  7. Time Correlations in Backscattering Radar Reflectivity Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... kristy@essc.psu.edu, (814) 863-4722 References Atlas, D., S.Y. Matrosov, A. J. Heymsfield, M.-D. Chou, and D. B. Wolff, 1995: Radar and radiation properties of ice clouds. J. Appl. ...

  8. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  9. FACT SHEET U.S. Department of Energy Eastern North Atlantic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * eddy correlation flux measurement system * disdrometer Lidars * micropulse lidar * Doppler lidar * Raman lidar Radars * zenith cloud radar * scanning cloud radar * scanning...

  10. ARM Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Radiometer Calibration Facility Equipment Repair Lab Main Office Raman Lidar Doppler Lidar and Radar Wind Profiler Ka-Band Scanning ARM Cloud Radar Ka-Zenith Radar...

  11. ARM - Instrument - wacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radar General Overview The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and...

  12. Siting: Wind Turbine/Radar Interference Mitigation (TSPEAR &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Wind TurbineRadar Interference Mitigation (TSPEAR & IFT&E) HomeStationary PowerEnergy Conversion EfficiencyWind EnergySiting and Barrier MitigationSiting: Wind TurbineRadar ...

  13. Federal Interagency Wind Turbine Radar Interference Mitigation Strategy

    Broader source: Energy.gov [DOE]

    Wind development located within the line of sight of radar systems can cause clutter and interference, which at some radars has resulted in significant performance degradation. As wind turbines...

  14. Discover the Benefits of Radar Imaging | Open Energy Information

    Open Energy Info (EERE)

    of Radar Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Discover the Benefits of Radar Imaging Author William V. Parker Published EIJ...

  15. W-Band ARM Cloud Radar - Specifications and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-Band ARM Cloud Radar - Specifications and Design K. B. Widener Pacific Northwest ... to develop and deploy the W-band ARM Cloud Radar (WACR) at the SGP central facility. ...

  16. Comments on: Texas Tech University mobile doppler radars provide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    texas-tech-university-mobile-doppler-radars-provide-unique-wind-measurements-to-multi-instrument-doe-field-campaign...

  17. Micropower radar systems for law enforcement technology

    SciTech Connect (OSTI)

    Azevedo, S.G.; Mast, J.; Brase, J.

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  18. CloudSat as a Global Radar Calibrator

    SciTech Connect (OSTI)

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  19. Motion Measurement for Synthetic Aperture Radar.

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  20. ARM - Evaluation Product - Radar Contoured Frequency by Altitude Diagram

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from ARM Radar Simulator ProductsRadar Contoured Frequency by Altitude Diagram from ARM Radar Simulator ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Radar Contoured Frequency by Altitude Diagram from ARM Radar Simulator [ ARM research - evaluation data product ] The data products are generated from

  1. Development of a Drillrod/Telemetry Radar

    SciTech Connect (OSTI)

    Raton Technology Research, Inc.

    1999-11-12

    Efficient extraction of deeply buried natural resources is dependent upon accurate geologic models. The model becomes the basis for developing plans for extraction of the resource. Geoscientists working in geothermal and hydrocarbon recovery have a great deal in common with fellow geoscientists working in the mining industry. They appreciate the intractable problem of increasing the depth of investigation to tens of meters from the wellbore. The goal of this project was to develop a borehole radar tool to acquire data within tens of meters from the wellbore. For geothermal and hydrocarbon applications, the tool was to acquire data for mapping fractures surrounding the wellbore. In mining of coal, the radar acquires data for determining coal seam thickness and detecting geologic anomalies ahead of mining.

  2. Properties of tropical convection observed by ARM millimeter-radars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Properties of tropical convection observed by ARM millimeter-radars Haynes, John Colorado State University Stephens, Graeme Colorado State University Category: Cloud Properties The results of an analysis of tropical cloud systems observed from a variety of vertically pointing radar systems are described. In particular, observations taken during five years of operation of the ARM millimeter wavelength radar system (MMCR) at Manus Island in the Tropical West Pacific region are characterized into

  3. Radar applications of gigawatt sources at millimeter wave frequencies

    SciTech Connect (OSTI)

    Bruder, J.A.; Belcher, M.L. . Research Inst.)

    1991-06-01

    The high transmit powers provided by free electron laser (FEL) sources in combination with the narrow antenna beamwidths achievable at millimeter wave (MMW) frequencies offer potential for use in a number of radar applications. Potential applications of high power millimeter wave sources include satellite imaging, low angle radar tracking, radar astronomy, and a number of other possible applications such as atmospheric research, space debris detection, and space vehicle tracking. 3 refs., 3 figs.

  4. Title: Radar-observed convective characteristics during TWP-ICE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will describe the convective systems observed during the project by two scanning C-band Doppler radars, one of which will provide dual-polarization measurements, and ARM's...

  5. Inversion of synthetic aperture radar interferograms for sources...

    Open Energy Info (EERE)

    Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference...

  6. Wind Turbine Radar Interference Mitigation Working Group Releases New Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    While wind energy presents many benefits, spinning wind turbines can interfere with weather, air traffic control, and air surveillance radar systems. As advances in wind technology enable turbines...

  7. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for retrieving cloud liquid water content and drizzle characteristics using a K -band Doppler radar (Kropfli et al. 1990) and microwave radiometer (Hogg et al. 1983). The...

  8. Separating Cloud and Drizzle Radar Moments during Precipitation...

    Office of Scientific and Technical Information (OSTI)

    Onset using Doppler Spectra Citation Details In-Document Search Title: Separating Cloud and Drizzle Radar Moments during Precipitation Onset using Doppler Spectra Authors: ...

  9. Radar range measurements in the atmosphere. (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models. Authors: Doerry, Armin Walter ...

  10. Scanning ARM Cloud Radar Handbook (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical ... Subject: 54 ENVIRONMENTAL SCIENCES; ATTENUATION; CLOUDS; MANUALS; RADAR; WATER VAPOR Word ...

  11. INTRODUCTION TO DOPPLER RADAR Pavlos Kollias McGill University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOPPLER RADAR Pavlos Kollias McGill University radarscience.weebly.com 15 March 2016 ARM Summer Training and Science Applications GRANT CHALLENGES OF RADARS 15 March 2016 ARM Summer Training and Science Applications Cloud Radars The use of letters for radar frequency bands and decibels The decibel (dB) is a logarithmic unit that expresses the ratio of two values of a physical quantity, often power or intensity. 3 dB is a factor of 2 !! 15 March 2016 ARM Summer Training and Science Applications

  12. Modeling Of Surface Deformation From Satellite Radar Interferometry...

    Open Energy Info (EERE)

    Salton Sea geothermal field is modeled using results from satellite radar interferometry, data from leveling surveys, and observations from the regional GPS network. The field is...

  13. Earth curvature and atmospheric refraction effects on radar signal...

    Office of Scientific and Technical Information (OSTI)

    The earth isn't flat, and radar beams don't travel straight. This becomes more noticeable as range increases, particularly at shallow depressiongrazing angles. This report ...

  14. ARM: Marine W-band (95 GHz) ARM Cloud Radar (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Radar Title: ARM: Marine W-band (95 GHz) ARM Cloud Radar Marine W-band (95 GHz) ARM Cloud Radar Authors: Joseph Hardin ; Bradley Isom ; Alyssa Matthews ; Karen Johnson ; Nitin ...

  15. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Authors: Dan Nelson ; ...

  16. One-of-a-Kind Radar Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cf * * * " " f * * " f f * * " * * r * " f * " " f " * " * f * " f a " arm f * ff " f " * * * " * " " f " f * * f * * ff * " " f " * f " f * " f * t" * ** SR * " * f " "M * f f f " f " f " * * One-of-a-Kind Radar Network aff arm * " " " " fM f " f c " f f * " * " f " * " " f* f * f * f t"

  17. Radar-cross-section reduction of wind turbines. part 1.

    SciTech Connect (OSTI)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  18. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  19. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  20. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-09-08

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling. 25 figs.

  1. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-09-08

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna (10), so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive (24) and transmit cavities (22) by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling.

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    refers to the specific radio frequency range of this radar, which is a 95 gigahertz pulse Doppler zenith pointing radar, providing profiles of cloud reflectivity and particle...

  3. Validation of a radar doppler spectra simulator using measurements from the ARM cloud radars

    SciTech Connect (OSTI)

    Remillard, J.; Luke, E.; Kollias, P.

    2010-03-15

    The use of forward models as an alternative approach to compare models with observations contains advantages and challenges. Radar Doppler spectra simulators are not new; their application in high- resolution models with bin microphysics schemes could help to compare model output with the Doppler spectra recorded from the vertically pointing cloud radars at the ARM Climate Research Facility sites. The input parameters to a Doppler spectra simulator are both microphysical (e.g., particle size, shape, phase, and number concentration) and dynamical (e.g., resolved wind components and sub-grid turbulent kinetic energy). Libraries for spherical and non-spherical particles are then used to compute the backscattering cross-section and fall velocities, while the turbulence is parameterized as a Gaussian function with a prescribed width. The Signal-to-Noise Ratio (SNR) is used to determine the amount of noise added throughout the spectrum, and the spectral smoothing due to spectral averages is included to reproduce the averaging realized by cloud radars on successive returns. Thus, realistic Doppler spectra are obtained, and several parameters that relate to the morphological characteristics of the synthetically generated spectra are computed. Here, the results are compared to the new ARM microARSCL data products in an attempt to validate the simulator. Drizzling data obtained at the SGP site by the MMCR and the AMF site at Azores using the WACR are used to ensure the liquid part and the turbulence representation part of the simulator are properly accounted in the forward model.

  4. Radar transponder operation with compensation for distortion due to amplitude modulation

    DOE Patents [OSTI]

    Ormesher, Richard C.; Tise, Bertice L.; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  5. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  6. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  7. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect (OSTI)

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  8. Mitigating Wind-Radar Interference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Wind-Radar Interference Mitigating Wind-Radar Interference April 1, 2013 - 12:54pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) and federal agency partners recently completed the final operational field test in a 2-year initiative to accelerate the deployment of the most promising new technologies for mitigating radar interference caused by the physical and electromagnetic effects of wind

  9. Monitoring internal organ motion with continuous wave radar in CT

    SciTech Connect (OSTI)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-09-15

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  10. ARM - Field Campaign - 2001 Multi-Frequency Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign : 2001 Multi-Frequency Radar IOP 2001.03.01 - 2001.09.30 Lead Scientist : Stephen Sekelsky Data Availability http:abyss.ecs.umass.edu For data sets, see below....

  11. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, ... Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM ...

  12. Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laboratory test of the new processor, operating the current modes used on the SGP radar. ... In the upgrade the hardware is altered with the addition of an ortho- mode transducer ...

  13. Texas Tech University mobile doppler radars provide unique wind...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Texas Tech University mobile doppler radars provide unique wind measurements to multi-instrument DOE Field Campaign HomeWind Energy, Wind NewsTexas Tech University mobile doppler ...

  14. Time-frequency analysis of synthetic aperture radar signals

    SciTech Connect (OSTI)

    Johnston, B.

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  15. Polarimetric radar and aircraft observations of saggy bright...

    Office of Scientific and Technical Information (OSTI)

    Polarimetric radar and aircraft observations of saggy bright bands during MC3E Citation Details In-Document Search This content will become publicly available on March 19, 2017 ...

  16. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect (OSTI)

    Chiswell, S.; Buckley, R.

    2009-01-15

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher

  17. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A cloud surveillance scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  18. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    SciTech Connect (OSTI)

    Huang, Xianjun; Hu, Zhirun; Liu, Peiguo

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  19. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOE Patents [OSTI]

    Warhus, John P.; Mast, Jeffrey E.

    1998-01-01

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  20. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOE Patents [OSTI]

    Warhus, J.P.; Mast, J.E.

    1998-11-10

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 11 figs.

  1. DOE/SC-ARM-12-010 Science Goals for the ARM Recovery Act Radars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for a total of three at a single site (35 GHz, 94 GHz, and a precipitation radar) and a Doppler lidar. Evolving to a multi-frequency scanning radar is a medium-term goal to...

  2. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook...

    Office of Scientific and Technical Information (OSTI)

    X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook Citation Details In-Document Search Title: X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook ...

  3. C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook Citation Details In-Document Search Title: C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook The C-band scanning ...

  4. Potential application of the Motorola MSR-20 Radar to DOE site security

    SciTech Connect (OSTI)

    Arlowe, D.; Rebeil, P.; Vigil, R.

    1993-09-01

    This paper describes the results of testing the MSR-20 radar and provides guidance on how this radar may be used to provide early detection and warning of approaching intruders beyond DOE facility site boundaries.

  5. ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler ...

    Office of Scientific and Technical Information (OSTI)

    wind mode Title: ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low-low wind mode Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) ...

  6. ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler ...

    Office of Scientific and Technical Information (OSTI)

    wind mode Title: ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low wind mode Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) ...

  7. ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler ...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low-low precipitation mode Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) ...

  8. ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment...

    Office of Scientific and Technical Information (OSTI)

    Wind and Moment Averages Title: ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages ...

  9. ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler ...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low precipitation mode Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) ...

  10. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan Authors: Dan Nelson ; Joseph Hardin ; ...

  11. ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    W-SACR) Corner Reflector Raster Scan Title: ARM: X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector Raster Scan X-Band Scanning ARM Cloud Radar (W-SACR) Corner Reflector ...

  12. ARM: Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral...

    Office of Scientific and Technical Information (OSTI)

    Radar, filtered spectral data, co-polarized mode Title: ARM: Marine W-band (95 GHz) ARM Cloud Radar, filtered spectral data, co-polarized mode Marine W-band (95 GHz) ARM Cloud ...

  13. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan...

    Office of Scientific and Technical Information (OSTI)

    Cross-Wind RHI Scan Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan Authors: Dan Nelson ; Joseph ...

  14. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Raster Scan Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Raster Scan Authors: Dan Nelson ; ...

  15. Interpretation of Synthetic Aperture Radar measurements of ocean currents

    SciTech Connect (OSTI)

    Rufenach, C.L.; Shuchman, R.A.; Lyzenga, D.R.

    1983-02-28

    Synthetic Aperture Radar (SAR) experiments hae been performed over the last few years to measure ocean currents inferred from shifts in the Doppler spectral peak. Interpretations of aircraft SAR measurements, when compared with limited surface values, tend to underestimate the currents by about 25%. A theory is developed that modifies the classical Doppler expression showing that the radar measurements are dependent on the radar processor (system) bandwidth and the received signal bandwidth. Measured bandwidths give a correction that increases the inferred current values by about 25%, bringing the measurements into good agreement. This new correction lends credence to the theory and increases the potential for application of SAR systems to future ocean current measurements. SAR measurements should include the determination of processor and signal bandwidths such that this correction can be applied.

  16. Wideband Waveform Design principles for Solid-state Weather Radars

    SciTech Connect (OSTI)

    Bharadwaj, Nitin; Chandrasekar, V.

    2012-01-01

    The use of solid-state transmitter is becoming a key part of the strategy to realize a network of low cost electronically steered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper a frequency diversity wideband waveforms design is proposed to mitigate low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize side lobe levels is presented. The impact of range side lobe level on the retrieval of Doppler moments are presented. Realistic simulations are performed based on CSU-CHILL radar data and Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data.

  17. Tracking moving radar targets with parallel, velocity-tuned filters

    DOE Patents [OSTI]

    Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana

    2013-04-30

    Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.

  18. Interagency Field Test Evaluates Co-operation of Turbines and Radar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department of Energy and federal agency partners recently completed the first in a series of three radar technology field tests and demonstrations. The Interagency Field Test and Evaluation of Wind-Radar Mitigation Technologies is an $8 million demonstration initiative co-funded by the Energy Department,

  19. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsDC-8 Cloud Radar Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : DC-8 Cloud Radar Campaign 1998.06.16 - 1998.06.28 Lead Scientist : Stephen Sekelsky Data Availability Quick-look images and datalogs are available from http://abyss.ecs.umass.edu/CART98DC8/ Data files are available to interested science team members. Contact Lihua Li (lihua@mirsl.ecs.umass.edu) or Steve Sekelsky (sekelsky@mirsl.ecs.umass.edu). Summary

  20. Radar imagery from the 1994 Lock Linnhe ship wake experiment

    SciTech Connect (OSTI)

    Mullenhoff, C.J.; Lehman, S.K.; Jones, H.

    1994-11-15

    The 1994 Loch Linnhe radar ocean imaging trials were held from September 4 through September 17. Two ships were used: the R.V. Colonel Templer, and the RMAS Collie. Thorn EMI, Inc., fielded a dual band, dual polarization radar on a hillside overlooking the loch. A primary purpose of the experiment was to obtain highly visible images of ship generated internal waves. Presented here is imagery for a few of the good ship runs, as well as a study of the environment of the visibility of ship generated internal waves.

  1. Zenith Radiance Retrieval of Cloud Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retrievals of cloud properties from the AMF/COPS campaign Preliminary retrievals of cloud properties from the AMF/COPS campaign Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC The cloud optical properties of interest are: The cloud optical properties of interest are: * Cloud optical depth τ - the great unknown * Radiative cloud

  2. Generating nonlinear FM chirp radar signals by multiple integrations

    DOE Patents [OSTI]

    Doerry, Armin W.

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  3. Three-dimensional subsurface imaging Synthetic Aperture Radar

    SciTech Connect (OSTI)

    Wuenschel, E.

    1995-10-01

    This report describes the development of a system known as 3-D SISAR. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments at DOE storage sites.

  4. RADAR OBSERVATIONS OF COMET 103P/HARTLEY 2

    SciTech Connect (OSTI)

    Harmon, John K.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A.; Giorgini, Jon D.

    2011-06-10

    Comets rarely come close enough to be studied intensively with Earth-based radar. The most recent such occurrence was when Comet 103P/Hartley 2 passed within 0.12 AU in late 2010 October, less than two weeks before the EPOXI flyby. This offered a unique opportunity to improve pre-encounter trajectory knowledge and obtain complementary physical data for a spacecraft-targeted comet. 103P/Hartley 2 is only the fourth comet nucleus to be imaged with radar and already the second to be identified as an elongated, bilobate object based on its delay-Doppler signature. The images show the dominant spin mode to be a rotation about the short axis with a period of 18.2 hr. The nucleus has a low radar albedo consistent with a surface density of 0.5-1.0 g cm{sup -3}. A separate echo component was detected from large (>cm) grains ejected anisotropically with velocities of several to tens of meters per second. Radar shows that, in terms of large-grain production, 103P/Hartley 2 is an unusually active comet for its size.

  5. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  6. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  7. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addition, the Ka-ARM zenith radar, W-Band Scanning ARM Cloud Radar, radar wind profiler, Doppler lidar, and 2-D video disdrometer instrumentation was also added. (See the ENA...

  8. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOE Patents [OSTI]

    Ormesher, Richard C.; Axline, Robert M.

    2006-04-18

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  9. Federal Interagency Wind Turbine Radar Interference Mitigation Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report is being disseminated by the U.S. Department of Energy (DOE). As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for fiscal year 2001 (public law 106-554) and information quality guidelines issued by DOE. Though this report does not constitute "influential" information, as that term is defined in DOE's information quality

  10. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  11. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect (OSTI)

    Doerry, Armin Walter; Marquette, Brandeis

    2013-01-01

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  12. Radar echo processing with partitioned de-ramp

    DOE Patents [OSTI]

    Dubbert, Dale F.; Tise, Bertice L.

    2013-03-19

    The spurious-free dynamic range of a wideband radar system is increased by apportioning de-ramp processing across analog and digital processing domains. A chirp rate offset is applied between the received waveform and the reference waveform that is used for downconversion to the intermediate frequency (IF) range. The chirp rate offset results in a residual chirp in the IF signal prior to digitization. After digitization, the residual IF chirp is removed with digital signal processing.

  13. Sandia National Laboratories: Synthetic Aperture Radar (SAR) Imagery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Images Facebook Twitter YouTube Flickr RSS Pathfinder Airborne ISR Systems Synthetic Aperture Radar (SAR) Imagery The following is a selection of imagery available for your viewing, sorted by frequency band and/or program. (Note: Resolutions are for original images prior to downsampling for web viewing.) Images are available for public reproduction. Please credit Sandia using the following statement 'Courtesy of Sandia National Laboratories, Airborne ISR' Click thumbnails below to enlarge

  14. Beam Propagator for Weather Radars, Modules 1 and 2

    Energy Science and Technology Software Center (OSTI)

    2013-10-08

    This program simulates the beam propagation of weather radar pulses under particular and realistic atmospheric conditions (without using the assumption of standard refraction conditions). It consists of two modules: radiosondings_refract_index_many.pro (MAIN MODULE) beam_propagation_function.pro(EXTERNAL FUNCTION) FOR THE MAIN MODULE, THE CODE DOES OUTPUT--INTO A FILE--THE BEAM HEIGHT AS A FUNCTION OF RANGE. THE RADIOSONDE INPUT FILES SHOULD BE ALREADY AVAILABLE BY THE USER. FOR EXAMPLE, RADIOSONDE OBSERVATION FILES CAN BE OBTAINED AT: RADIOSONDE OBSERVATIONS DOWNLOADED ATmore » "http://weather.uwyo.edu/upperair/soounding.html" OR "http://jervis.pyr.ec.gc.ca" THE EXTERNAL FUNCTION DOES THE ACTUAL COMPUTATION OF BEAM PROPAGATION. IT INCLUDES CONDITIONS OF ANOMALOUS PROPAGATION AND NEGATIVE ELEVATION ANGLES. THE EQUATIONS USED HERE WERE DERIVED BY EDWIN CAMPOS, BASED ON THE SNELL-DESCARTES LAW OF REFRACTION, CONSIDERING THE EARTH CURVATURE. THE PROGRAM REQUIRES A COMPILER FOR THE INTERACTIVE DATA LANGUAGE (IDL). DESCRIPTION AND VALIDATION DETAILS HAVE BEEN PUBLISHED IN THE PEER-REVIEWED SCIENTIFIC LITERATURE, AS FOLLOWS: Campos E. 2012. Estimating weather radar coverage over complex terrain, pp.26-32, peer reviewed, in Weather Radar and Hydrology, edited by Moore RJ, Cole SJ and Illingworth AJ. International Association of Hydrological Sciences (IAHS) Press, IAHS Publ. 351. ISBN 978-1-907161-26-1.« less

  15. Improving ISR Radar Utilization (How I quit blaming the user and made the radar easier to use).

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2014-08-01

    In modern multi - sensor multi - mode Intelligence, Surveillance, and Reconnaissance ( ISR ) platforms, the plethora of options available to a sensor/payload operator are quite large, leading to an over - worked operator often down - selecting to favorite sensors an d modes. For example, Full Motion Video (FMV) is justifiably a favorite sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. The challenge is then to increase the utilization of the radar modes in a man ner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into 'super - modes'. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia Natio nal Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL850 00.

  16. Cloud Properties from Doppler Radar Spectra - a Growing Suite of Information Extraction Algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Doppler Radar Spectra - a Growing Suite of Information Extraction Algorithms Edward Luke 1 , Pavlos Kollias 2 , Matthew Shupe 3 , Karen Johnson 1 , Eugene Clothiaux 4 1. Brookhaven National Laboratory 2. McGill University 3. CIRES/NOAA/ETL 4. Penn State University C F B A E D Lidar Prediction Algorithm Depolarization C F B A E D Backscatter DOPPLER RADAR SPECTRA HYDROMETEOR PHASE CLASSIFICATION MIXED LIQUID SOLID MIXED LIQUID SOLID Shupe Multi-instrument Technique Doppler Radar Spectra

  17. ARM: Ka-Band Scanning ARM Cloud Radar, filtered spectral data...

    Office of Scientific and Technical Information (OSTI)

    Ka-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Nitin Bharadwaj + Show ...

  18. ARM: X-Band Scanning ARM Cloud Radar, filtered spectral data...

    Office of Scientific and Technical Information (OSTI)

    X-Band Scanning ARM Cloud Radar, filtered spectral data, co-polarized mode Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; Nitin Bharadwaj + Show ...

  19. Balancing I/Q data in radar range-Doppler images. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Balancing IQ data in radar range-Doppler images. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2015-01-01 OSTI Identifier: 1244856 Report ...

  20. DOE/SC-ARM-13-008 First ARM/ASR Radar Workshop: Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... a Reliable ARM Radar Network ......facility expected to support biomedical science and ... IRIS software license to utilize spare RVP9s 3 ...

  1. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Rmillard, J.; Szyrmer, W.

    2011-07-02

    Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud-scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter-wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud-only, cloud mixed with drizzle, and drizzle-only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal-to-noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.

  2. Radar-Derived Characteristics of Precipitation in South East Queensland

    SciTech Connect (OSTI)

    Peter, Justin R; May, Peter T; Potts, Rodney J; Collis, Scott M.; Manton, Michael J; Wilson, Louise

    2015-10-01

    Statistics of radar-retrievals of precipitation are presented. A K-means clustering algorithm is applied to an historical record of radiosonde measurements which identified three major synoptic regimes; a dry, stable regime with mainly westerly winds prevalent during winter, a moist south easterly trade wind regime and a moist northerly regime both prevalent during summer. These are referred to as westerly, trade wind and northerly regimes, respectively. Cell statistics are calculated using an objective cell identification and tracking methodology on data obtained from a nearby S-band radar. Cell statistics are investigated for the entire radar observational period and also during sub-periods corresponding to the three major synoptic regimes. The statistics investigated are cell initiation location, area, rainrate, volume, height, height of the maximum reflectivity, volume greater than 40 dBZ and storm speed and direction. Cells are found predominantly along the elevated topography. The cell statistics reveal that storms which form in the dry, stable westerly regime are of comparable size to the deep cells which form in the northerly regime, larger than those in the trade regime and, furthermore, have the largest rainrate. However, they occur less frequently and have shorter lifetimes than cells in the other regimes. Diurnal statistics of precipitation area and rainrate exhibit early morning and mid afternoon peaks, although the areal coverage lags the rainrate by several hours indicative of a transition from convective to stratiform precipitation. The probability distributions of cell area, rainrate, volume, height and height of the maximum re ectivity are found to follow lognormal distributions.

  3. I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar Resources with Additional Information I.I. Rabi Courtesy of Brookhaven National Laboratory 'Isidor Isaac Rabi [was] a pioneer in exploring the atom and a major force in 20th-century physics.'1 He won the 1944 Nobel Prize in Physics "for his resonance method for recording the magnetic properties of atomic nuclei". 'His work in turn made possible the precise measurements necessary for the development of the atomic clock, the laser

  4. Interferometric millimeter wave and THz wave doppler radar

    DOE Patents [OSTI]

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  5. Apodized RFI filtering of synthetic aperture radar images

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  6. Synthetic aperture radar images with composite azimuth resolution

    DOE Patents [OSTI]

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  7. ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low-low precipitation mode

    SciTech Connect (OSTI)

    Timothy Martin; Paytsar Muradyan; Richard Coulter

    2014-01-28

    Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low-low precipitation mode

  8. Merged and corrected 915 MHz Radar Wind Profiler moments

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    2014-06-25

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  9. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Widener, Kevin (3) Lindenmaier, Iosif Andrei (1) Nelson, Dan (1) Save Results Excel ... ARM: X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing PPI Widener, Kevin ; Nelson, ...

  10. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Johnson, Karen (3) Lindenmaier, Iosif Andrei (3) Nelson, Dan (3) Save Results Excel ... ARM: X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing PPI Widener, Kevin ; Nelson, ...

  11. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Zenith Radar Cloud Properties Browse Data Single installation LDIS Laser Disdrometer Surface Meteorology Browse Data Installed at 2 facilities MET Surface ...

  12. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zenith Radar Cloud Properties Browse Data Installed at 2 facilities LDIS Laser Disdrometer Surface Meteorology Browse Data Installed at 2 facilities MPL Micropulse Lidar ...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2012 [Facility News] New Organization to Optimize ARM Radar Data Bookmark and Share Every ARM fixed and mobile site now includes both scanning (left) and zenith-pointing (right) cloud radars. The fixed sites also include scanning precipitation radars. Every ARM fixed and mobile site now includes both scanning (left) and zenith-pointing (right) cloud radars. The fixed sites also include scanning precipitation radars. In the past few years, the ARM Facility added 19 new scanning cloud and

  14. Two antenna, two pass interferometric synthetic aperture radar

    DOE Patents [OSTI]

    Martinez, Ana; Doerry, Armin W.; Bickel, Douglas L.

    2005-06-28

    A multi-antenna, multi-pass IFSAR mode utilizing data driven alignment of multiple independent passes can combine the scaling accuracy of a two-antenna, one-pass IFSAR mode with the height-noise performance of a one-antenna, two-pass IFSAR mode. A two-antenna, two-pass IFSAR mode can accurately estimate the larger antenna baseline from the data itself and reduce height-noise, allowing for more accurate information about target ground position locations and heights. The two-antenna, two-pass IFSAR mode can use coarser IFSAR data to estimate the larger antenna baseline. Multi-pass IFSAR can be extended to more than two (2) passes, thereby allowing true three-dimensional radar imaging from stand-off aircraft and satellite platforms.

  15. 915-MHz Radar Wind Profiler (915RWP) Handbook

    SciTech Connect (OSTI)

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  16. Moving receive beam method and apparatus for synthetic aperture radar

    DOE Patents [OSTI]

    Kare, Jordin T.

    2001-01-01

    A method and apparatus for improving the performance of Synthetic Aperture Radar (SAR) systems by reducing the effect of "edge losses" associated with nonuniform receiver antenna gain. By moving the receiver antenna pattern in synchrony with the apparent motion of the transmitted pulse along the ground, the maximum available receiver antenna gain can be used at all times. Also, the receiver antenna gain for range-ambiguous return signals may be reduced, in some cases, by a large factor. The beam motion can be implemented by real-time adjustment of phase shifters in an electronically-steered phased-array antenna or by electronic switching of feed horns in a reflector antenna system.

  17. Iterative Self-Dual Reconstruction on Radar Image Recovery

    SciTech Connect (OSTI)

    Martins, Charles; Medeiros, Fatima; Ushizima, Daniela; Bezerra, Francisco; Marques, Regis; Mascarenhas, Nelson

    2010-05-21

    Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizes when applied to simulated and real SAR images in comparison with standard filters.

  18. Lightning and radar observations of hurricane Rita landfall

    SciTech Connect (OSTI)

    Henderson, Bradley G; Suszcynsky, David M; Hamlin, Timothy E; Jeffery, C A; Wiens, Kyle C; Orville, R E

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  19. Phase coded, micro-power impulse radar motion sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  20. Phase coded, micro-power impulse radar motion sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  1. The lidar dark band: An oddity of the radar bright band analogy

    SciTech Connect (OSTI)

    Sassen, K.

    1996-04-01

    Although much has sbeen learned from independent radar and lidar studies of atmospheric precipitations, occasionally supported by aircraft profiling, what has been lacking is combined optical, microwave, and insitu observations of the melting layer. Fortunately, the rainshowers on April 21, 1994, during the Remote Cloud Sensing intensive obervations Period (RCSIOP) at the Southern Great Plains Cloud and radiation Testbed (CART) site provided an opportunity for coordinated dual-wavelength University of Utah Polarization Diversity Lidar, University of Massachusetts Cloud Profiling Radar System Doppler Radar, and the University of North Dakota Citation aircraft measurements.

  2. Ultra-wideband short-pulse radar with range accuracy for short range detection

    DOE Patents [OSTI]

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  3. A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.

    SciTech Connect (OSTI)

    Luke,E.; Kollias, P.; Johnson, K.

    2006-06-12

    The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basis for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.

  4. ARM: X-Band Scanning ARM Cloud Radar (XSACR) RHI Scans, which...

    Office of Scientific and Technical Information (OSTI)

    X-Band Scanning ARM Cloud Radar (XSACR) RHI Scans, which can vary in elevation range and azimuth Authors: Dan Nelson ; Joseph Hardin ; Iosif 1 ; Bradley Isom ; Karen Johnson ; ...

  5. Radar signal pre-processing to suppress surface bounce and multipath

    DOE Patents [OSTI]

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  6. DOE/SC-ARM-12-006 ARM Climate Research Facility Radar Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 ARM Climate Research Facility Radar Operations Plan May 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States...

  7. A Radar-based Observing System for Validation of Cloud Resolving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from photographically recorded data of the radar PPI images Houze and Chen, 1977 South China Sea Monsoon Experiment (SCSMEX) TOGA-COARE 1992-1993 5 April to 31 August, 1998 TRMM ...

  8. ARM - PI Product - Merged and corrected 915 MHz Radar Wind Profiler...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsMerged and corrected 915 MHz Radar Wind Profiler moments ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at ...

  9. Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)

    SciTech Connect (OSTI)

    Russell, M.E.; Crain, A.; Curran, A.; Campbell, R.A.; Drubin, C.A.; Miccioli, W.F.

    1997-12-01

    If automotive intelligent cruise-control (ICC) systems are to be successful in the marketplace, they must provide robust performance in a complex roadway environment. Inconveniences caused by reduced performance during inclement weather, interrupted performance due to dropped tracks, and annoying nuisance alarms will not be tolerated by the consumer, and would likely result in the rejection of this technology in the marketplace. An all-weather automotive millimeter-wave (MMW) radar sensor is described that uses a frequency-modulation coplanar-wave (FMCW) radar design capable of acquiring and tracking all obstacles in its field of view. Design tradeoffs are discussed and radar-sensor test results are presented along with the applicability of the radar to collision-warning systems.

  10. Laser radar VI; Proceedings of the Meeting, Los Angeles, CA, Jan. 23-25, 1991

    SciTech Connect (OSTI)

    Becherer, R.J.

    1991-01-01

    Topics presented include lidar wind shear detection for commercial aircraft, centroid tracking of range-Doppler images, an analytic approach to centroid performance analysis, simultaneous active/passive IR vehicle detection, and resolution limits for high-resolution imaging lidar. Also presented are laser velocimetry applications, the application of laser radar to autonomous spacecraft landing, 3D laser radar simulation for autonomous spacecraft landing, and ground based CW atmospheric Doppler lidar performamce modeling.

  11. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Szyrmer, W.; Rmillard, J.

    2011-07-02

    In part I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended to include skewness and kurtosis as additional descriptors of the Doppler spectrum. Here, a short climatology of observed Doppler spectra moments as a function of the radar reflectivity at continental and maritime ARM sites is presented. The evolution of the Doppler spectra moments is consistent with the onset and growth of drizzle particles and can be used to assist modeling studies of drizzle onset and growth. Time-height radar observations are used to exhibit the coherency of the Doppler spectra shape parameters and demonstrate their potential to improve the interpretation and use of radar observations. In addition, a simplified microphysical approach to modeling the vertical evolution of the drizzle particle size distribution in warm stratiform clouds is described and used to analyze the observations. The formation rate of embryonic drizzle droplets due to the autoconversion process is not calculated explicitly; however, accretion and evaporation processes are explicitly modeled. The microphysical model is used as input to a radar Doppler spectrum forward model, and synthetic radar Doppler spectra moments are generated. Three areas of interest are studied in detail: early drizzle growth near the cloud top, growth by accretion of the well-developed drizzle, and drizzle depletion below the cloud base due to evaporation. The modeling results are in good agreement with the continental and maritime observations. This demonstrates that steady state one-dimensional explicit microphysical models coupled with a forward model and comprehensive radar Doppler spectra observations offer a powerful method to explore the vertical evolution of the drizzle particle size distribution.

  12. Final Scientific/Technical Report Grant title: Use of ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction This is a collaborative project with the NASA GSFC project of Dr. A. Marshak and W. Wiscombe (PIs). This report covers BU activities from February 2011 to June 2011 and BU "no-cost extension" activities from June 2011 to June 2012. This report summarizes results that complement a final technical report submitted by the PIs in 2011.

    SciTech Connect (OSTI)

    Knyazikhin, Y

    2012-09-10

    Main results are summarized for work in these areas: spectrally-invariant approximation within atmospheric radiative transfer; spectral invariance of single scattering albedo for water droplets and ice crystals at weakly absorbing wavelengths; seasonal changes in leaf area of Amazon forests from leaf flushing and abscission; and Cloud droplet size and liquid water path retrievals from zenith radiance measurements.

  13. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    SciTech Connect (OSTI)

    P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

  14. Moving target indicating radar applications in an integrated site security suite

    SciTech Connect (OSTI)

    Appenzeller, R.C. )

    1991-01-01

    The integration of a small, lightweight, low power consumption radar into a site security sensor suite can provide several key advantages in the ability to detect vehicles and personnel over large ground areas. This paper presents rationale for the inclusion of a man-portable Moving Target Indicator (MTI) radar in several security scenarios and outlines the technical specifics of a candidate radar. The Department of Energy (DOE) is currently investigating the effectiveness of a combination of optical sensors in concert with a scanning narrow beam radar at the Nevada Test Site in Mercury, Nevada. Demonstration results from these previous test activities are included herein. Of particular interest is the complimentary nature of this sensor suite where the large field of view achievable with radar allows the optical sensors to be used as pinpoint target classification devices. The inclusion of a radar minimizes operator fatigue caused by watching cameras scanning in azimuth and elevation. Advances in the areas of nuisance alarm rejection and improved range detection against single personnel targets were made in 1990 and this capability is included in the current production version.

  15. Lynx: A High-Resolution Synthetic Aperture Radar

    SciTech Connect (OSTI)

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  16. A novel data-driven learning method for radar target detection in nonstationary environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata

    2016-04-12

    Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less

  17. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOE Patents [OSTI]

    Mast, Jeffrey E. (Livermore, CA)

    1998-01-01

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  18. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOE Patents [OSTI]

    Mast, J.E.

    1998-08-18

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 10 figs.

  19. Three-dimensional ground penetrating radar imaging using multi-frequency diffraction tomography

    SciTech Connect (OSTI)

    Mast, J.E.; Johansson, E.M.

    1994-11-15

    In this talk we present results from a three-dimensional image reconstruction algorithm for impulse radar operating in monostatic pule-echo mode. The application of interest to us is the nondestructive evaluation of civil structures such as bridge decks. We use a multi-frequency diffraction tomography imaging technique in which coherent backward propagations of the received reflected wavefield form a spatial image of the scattering interfaces within the region of interest. This imaging technique provides high-resolution range and azimuthal visualization of the subsurface region. We incorporate the ability to image in planarly layered conductive media and apply the algorithm to experimental data from an offset radar system in which the radar antenna is not directly coupled to the surface of the region. We present a rendering in three-dimensions of the resulting image data which provides high-detail visualization.

  20. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore » design and performance of the TARA transmitter and receiver systems.« less

  1. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect (OSTI)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Thomson, G. B.; Von Maluski, D.

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  2. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

  3. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

  4. Radar imagery interpretation to assess the hydrocarbon potential of four sites in the Philippines

    SciTech Connect (OSTI)

    Not Available

    1988-11-17

    The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nationwide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential petroleum and geothermal prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 29 refs., 30 figs., 14 tabs.

  5. Executive summary: Radar imagery interpretation to assess the hydrocarbon potential of four sites in the Phillipines

    SciTech Connect (OSTI)

    Not Available

    1988-11-17

    The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nationwide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential petroleum and geothermal prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 9 refs., 9 figs., 3 tabs.

  6. Radar imagery interpretation to provide information about several geothermal sites in the Philippines

    SciTech Connect (OSTI)

    Not Available

    1988-11-17

    The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nation-wide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential geothermal and petroleum prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 7 refs., 20 figs., 2 tabs.

  7. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    SciTech Connect (OSTI)

    Karlson, Benjamin; LeBlanc, Bruce Philip; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz; Keck, Chris; Sullivan, Jonathan; Brigada, David; Parker, Lorri; Younger, Richard; Biddle, Jason

    2014-10-01

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

  8. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Nitin Bharadwaj

    1990-01-01

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  9. On the radar cross section (RCS) prediction of vehicles moving on the ground

    SciTech Connect (OSTI)

    Sabihi, Ahmad

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Targets material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  10. ARM - Field Campaign - Radar Wind Profiler for Cloud Forecasting at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRadar Wind Profiler for Cloud Forecasting at BNL Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Radar Wind Profiler for Cloud Forecasting at BNL 2013.07.15 - 2015.08.06 Lead Scientist : Michael Jensen For data sets, see below. Abstract In support of recent activities funded by the DOE Energy Efficiency and Renewable Energy (EERE) to produce short-term