Sample records for z-area saltstone disposal

  1. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report (1998 Annual Report)

    SciTech Connect (OSTI)

    Wells, D.

    1999-04-27T23:59:59.000Z

    In accordance with SRS Z-Area Saltstone Industrial Solid Waste Permit, wells ZBG-1, ZBG-1A and ZBG-2 are monitored for the parameters listed in this document. Sampling was done during the first and third quarters of 1998. Additional Analyses were also run. The analytical results appear in Appendix 1.

  2. Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Cook, James R.

    2005-12-07T23:59:59.000Z

    Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in the development of conceptual models and interpretation of results. Applicable quality assurance (QA) requirements are identified and the methods for implementing QA for both software and documentation are described. The plan identifies project resources supporting the core team and providing project oversight. Program issues and risks are identified as well as mitigation of those risks. Finally, a preliminary program schedule has been developed and key deliverables identified. A number of significant changes have been implemented since the last PA revision resulting in a new design for future SDF disposal units. This revision will encompass the existing and planned disposal units, PA critical radionuclides and exposure pathways important to SDF performance. An integrated analysis of the overall facility layout, including all disposal units, will be performed to assess the impact of plume overlap on PA results. Finally, a rigorous treatment of uncertainty will be undertaken using probabilistic simulations. This analysis will be reviewed and approved by DOE-SR, DOE-HQ and potentially the Nuclear Regulatory Commission (NRC). This revision will be completed and ready for the start of the DOE review at the end of December 2006. This work supports a Saltstone Vault 2 fee-bearing milestone. This milestone includes completion of the Vault 2 module of the PA revision by the end of FY06.

  3. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    SciTech Connect (OSTI)

    Cook, J.R.; Fowler, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-12-18T23:59:59.000Z

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements.

  4. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    2000-03-13T23:59:59.000Z

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility.

  5. FY 2006 ANNUAL REVIEW-SALTSTONE DISPOSAL FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Crapse, K; Benjamin Culbertson, B

    2007-03-15T23:59:59.000Z

    The Z-Area Saltstone Disposal Facility (SDF) consists of two disposal units, Vaults 1 and 4, described in the Performance Assessment (PA) (WSRC 1992). The FY06 PA Annual Review concludes that both vaults contain much lower levels of radionuclides (curies) than that allowed by the PA. The PA controls established to govern waste operations and monitor disposal facility performance are determined to be adequate.

  6. Composite analysis E-area vaults and saltstone disposal facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01T23:59:59.000Z

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  7. PORFLOW MODELING FOR A PRELIMINARY ASSESSMENT OF THE PERFORMANCE OF NEW SALTSTONE DISPOSAL UNIT DESIGNS

    SciTech Connect (OSTI)

    Smith, F.

    2012-08-06T23:59:59.000Z

    At the request of Savannah River Remediation (SRR), SRNL has analyzed the expected performance obtained from using seven 32 million gallon Saltstone Disposal Units (SDUs) in the Z-Area Saltstone Disposal Facility (SDF) to store future saltstone grout. The analysis was based on preliminary SDU final design specifications. The analysis used PORFLOW modeling to calculate the release of 20 radionuclides from an SDU and transport of the radionuclides and daughters through the vadose zone. Results from this vadose zone analysis were combined with previously calculated releases from existing saltstone vaults and FDCs and a second PORFLOW model run to calculate aquifer transport to assessment points located along a boundary 100 m from the nearest edge of the SDF sources. Peak concentrations within 12 sectors spaced along the 100 m boundary were determined over a period of evaluation extending 20,000 years after SDF closure cap placement. These peak concentrations were provided to SRR to use as input for dose calculations.

  8. Measurement of Thermal Properties of Saltstone

    SciTech Connect (OSTI)

    Steimke, J.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Fowley, M.D.

    1998-05-01T23:59:59.000Z

    Radioactive liquid effluent from the In Tank Precipitation Process is mixed with Portland cement, flyash and furnace alag to form Saltstone. The Saltstone is poured into vaults at Z Area for long term disposal. A transient heat transfer model of the Saltstone pouring process was previously written to determine whether the Saltstone temperature would exceed the Technical Specification Limit of 95 degrees C. The present work was performed to provide Saltstone density, heat capacity, heat of hydration and thermal conductivity for inclusion in the model.

  9. [Composite analysis E-area vaults and saltstone disposal facilities]. PORFLOW and FACT input files

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01T23:59:59.000Z

    This diskette contains the PORFLOW and FACT input files described in Appendix B of the accompanying report `Composite Analysis E-Area Vaults and Saltstone Disposal Facilities`.

  10. Special Analysis: Revision of Saltstone Vault 4 Disposal Limits (U)

    SciTech Connect (OSTI)

    Cook, J

    2005-05-26T23:59:59.000Z

    New disposal limits have been computed for Vault 4 of the Saltstone Disposal Facility based on several revisions to the models in the existing Performance Assessment and the Special Analysis issued in 2002. The most important changes are the use of a more rigorous groundwater flow and transport model, and consideration of radon emanation. Other revisions include refinement of the aquifer mesh to more accurately model the footprint of the vault, a new plutonium chemistry model accounting for the different transport properties of oxidation states III/IV and V/VI, use of variable infiltration rates to simulate degradation of the closure system, explicit calculation of gaseous releases and consideration of the effects of settlement and seismic activity on the vault structure. The disposal limits have been compared with the projected total inventory expected to be disposed in Vault 4. The resulting sum-of-fractions of the 1000-year disposal limits is 0.2, which indicates that the performance objectives and requirements of DOE 435.1 will not be exceeded. This SA has not altered the conceptual model (i.e., migration of radionuclides from the Saltstone waste form and Vault 4 to the environment via the processes of diffusion and advection) of the Saltstone PA (MMES 1992) nor has it altered the conclusions of the PA (i.e., disposal of the proposed waste in the SDF will meet DOE performance measures). Thus a PA revision is not required and this SA serves to update the disposal limits for Vault 4. In addition, projected doses have been calculated for comparison with the performance objectives laid out in 10 CFR 61. These doses are 0.05 mrem/year to a member of the public and 21.5 mrem/year to an inadvertent intruder in the resident scenario over a 10,000-year time-frame, which demonstrates that the 10 CFR 61 performance objectives will not be exceeded. This SA supplements the Saltstone PA and supersedes the two previous SAs (Cook et al. 2002; Cook and Kaplan 2003).

  11. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    SciTech Connect (OSTI)

    Flach, G. P; Smith, F. G. III

    2013-03-19T23:59:59.000Z

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate (CE) and more defensible than the best estimate (BE). The combined effects of multiple phenomena are then considered to determine the most limiting degradation time scale for each cementitious material. Degradation times are estimated using a combination of analytic solutions from literature and numerical simulation codes provided through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox (http://cementbarriers.org). For the SDU 2 design, the roof, wall, and floor components are projected to become fully degraded under Nominal conditions at 3866, 923, and 1413 years, respectively. For SDU 4 the roof and floor are estimated to be fully degraded under Nominal conditions after 1137 and 1407 years, respectively; the wall is assumed to be fully degraded at time zero in the most recent PA simulations. Degradation of these concrete barriers generally occurs from combined sulfate attack and corrosion of embedded steel following carbonation. Saltstone is projected to degrade very slowly by decalcification, with complete degradation occurring in excess of 200,000 years for any SDU type. Complete results are provided.

  12. SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES

    SciTech Connect (OSTI)

    Flach, G.

    2014-10-28T23:59:59.000Z

    PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

  13. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    SciTech Connect (OSTI)

    Dixon, K; Mark Phifer, M

    2008-03-19T23:59:59.000Z

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples.

  14. CHARACTERIZATION OF CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Cozzi, A.; Duncan, A.

    2010-01-28T23:59:59.000Z

    During the month of September 2008, grout core samples were collected from the Saltstone Disposal Facility, Vault 4, cell E. This grout was placed during processing campaigns in December 2007 from Deliquification, Dissolution and Adjustment Batch 2 salt solution. The 4QCY07 Waste Acceptance Criteria sample collected on 11/16/07 represents the salt solution in the core samples. Core samples were retrieved to initiate the historical database of properties of emplaced Saltstone and to demonstrate the correlation between field collected and laboratory prepared samples. Three samples were collected from three different locations. Samples were collected using a two-inch diameter concrete coring bit. In April 2009, the core samples were removed from the evacuated sample container, inspected, transferred to PVC containers, and backfilled with nitrogen. Samples furthest from the wall were the most intact cylindrically shaped cored samples. The shade of the core samples darkened as the depth of coring increased. Based on the visual inspection, sample 3-3 was selected for all subsequent analysis. The density and porosity of the Vault 4 core sample, 1.90 g/cm{sup 3} and 59.90% respectively, were comparable to values achieved for laboratory prepared samples. X-ray diffraction analysis identified phases consistent with the expectations for hydrated Saltstone. Microscopic analysis revealed morphology features characteristic of cementitious materials with fly ash and calcium silicate hydrate gel. When taken together, the results of the density, porosity, x-ray diffraction analysis and microscopic analysis support the conclusion that the Vault 4, Cell E core sample is representative of the expected waste form.

  15. DISTRIBUTION COEFICIENTS (KD) GENERATED FROM A CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Almond, P.; Kaplan, D.

    2011-04-25T23:59:59.000Z

    Core samples originating from Vault 4, Cell E of the Saltstone Disposal Facility (SDF) were collected in September of 2008 (Hansen and Crawford 2009, Smith 2008) and sent to SRNL to measure chemical and physical properties of the material including visual uniformity, mineralogy, microstructure, density, porosity, distribution coefficients (K{sub d}), and chemical composition. Some data from these experiments have been reported (Cozzi and Duncan 2010). In this study, leaching experiments were conducted with a single core sample under conditions that are representative of saltstone performance. In separate experiments, reducing and oxidizing environments were targeted to obtain solubility and Kd values from the measurable species identified in the solid and aqueous leachate. This study was designed to provide insight into how readily species immobilized in saltstone will leach from the saltstone under oxidizing conditions simulating the edge of a saltstone monolith and under reducing conditions, targeting conditions within the saltstone monolith. Core samples were taken from saltstone poured in December of 2007 giving a cure time of nine months in the cell and a total of thirty months before leaching experiments began in June 2010. The saltstone from Vault 4, Cell E is comprised of blast furnace slag, class F fly ash, portland cement, and Deliquification, Dissolution, and Adjustment (DDA) Batch 2 salt solution. The salt solution was previously analyzed from a sample of Tank 50 salt solution and characterized in the 4QCY07 Waste Acceptance Criteria (WAC) report (Zeigler and Bibler 2009). Subsequent to Tank 50 analysis, additional solution was added to the tank solution from the Effluent Treatment Project as well as from inleakage from Tank 50 pump bearings (Cozzi and Duncan 2010). Core samples were taken from three locations and at three depths at each location using a two-inch diameter concrete coring bit (1-1, 1-2, 1-3; 2-1, 2-2, 2-3; 3-1, 3-2, 3-3) (Hansen and Crawford 2009). Leaching experiments were conducted with a section of core sample 3-2. All cores from location 3 were drilled without using water. Core sample 3-2 was drilled from approximately six inches to a depth of approximately 13 inches. Approximately six inches of the core was removed but it broke into two pieces during removal from the bit. At the time of drilling, core material appeared olive green in color (Smith 2008). The fact that the samples were cored as olive green and were received after storage with a gray outer layer is indicative that some oxidation had occurred prior to leaching studies.

  16. Grout long radius flow testing to support Saltstone disposal Unit 5 design

    SciTech Connect (OSTI)

    Stefanko, D. B.; Langton, C. A.; Serrato, M. G.; Brooks, T. E. II; Huff, T. H.

    2013-02-24T23:59:59.000Z

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as “Saltstone”. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a “mega vault” and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (saltstone premix plus water) were designed to simulate slurry with the reference saltstone rheology and a saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0º, 2.4º, and 0.72º. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7º to 0.9º. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch.

  17. Grout Long Radius Flow Testing to Support Saltstone Disposal Unit 6 Design - 13352

    SciTech Connect (OSTI)

    Stefanko, D.B.; Langton, C.A.; Serrato, M.G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States); Brooks, T.E. II; Huff, T.H. [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as 'Saltstone'. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a 'mega vault' and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; Saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (Saltstone premix plus water) were designed to simulate slurry with the reference Saltstone rheology and a Saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0 deg., 2.4 deg., and 0.72 deg.. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7 deg. to 0.9 deg. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch. (authors)

  18. HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

    SciTech Connect (OSTI)

    Dixon, K; John Harbour, J; Mark Phifer, M

    2008-11-25T23:59:59.000Z

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with (1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), (2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and (3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties were determined following a minimum 28 day curing period. Additional testing of the three saltstone formulations was conducted following a minimum 90 day curing period. The compressive strength of each saltstone and concrete material was measured at approximately 14, 28, 56, and 90 days. Recommended hydraulic property values for each saltstone grout and the vault concretes are provided. The hydraulic properties provided for each material include the saturated hydraulic conductivity, dry bulk density, particle density, and porosity. In addition, water retention data are presented for each material along with the van Genuchten transport parameters as determined using the RETC code.

  19. SALTSTONE DISPOSAL FACILITY: DETERMINATION OF THE PROBABLE MAXIMUM WATER TABLE ELEVATION

    SciTech Connect (OSTI)

    Hiergesell, R

    2005-04-01T23:59:59.000Z

    A coverage depicting the configuration of the probable maximum water table elevation in the vicinity of the Saltstone Disposal Facility (SDF) was developed to support the Saltstone program. This coverage is needed to support the construction of saltstone vaults to assure that they remain above the maximum elevation of the water table during the Performance Assessment (PA) period of compliance. A previous investigation to calculate the historical high water table beneath the SDF (Cook, 1983) was built upon to incorporate new data that has since become available to refine that estimate and develop a coverage that could be extended to the perennial streams adjacent to the SDF. This investigation incorporated the method used in the Cook, 1983 report to develop an estimate of the probable maximum water table for a group of wells that either existed at one time at or near the SDF or which currently exist. Estimates of the probable maximum water table at these wells were used to construct 2D contour lines depicting this surface beneath the SDF and extend them to the nearby hydrologic boundaries at the perennial streams adjacent to the SDF. Although certain measures were implemented to assure that the contour lines depict a surface above which the water table will not rise, the exact elevation of this surface cannot be known with complete certainty. It is therefore recommended that the construction of saltstone vaults incorporate a vertical buffer of at least 5-feet between the base of the vaults and the depicted probable maximum water table elevation. This should provide assurance that the water table under the wet extreme climatic condition will never rise to intercept the base of a vault.

  20. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Jordan, J.; Flach, G.

    2012-03-29T23:59:59.000Z

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  1. Saltstone Disposal Facility Mechanically Stabilized Earth Vault Closure Cap Degradation: Sensitivity Analysis

    SciTech Connect (OSTI)

    PHIFER, MARK

    2004-03-19T23:59:59.000Z

    As part of the current Saltstone Disposal Facility (SDF) Performance Assessment (PA) revision, Mechanically Stabilized Earth (MSE) vault closure cap degradation mechanisms and their impact upon filtration through the MSE vault closure cap were evaluated for the base case land use scenario (i.e. institutional control to pine forest). The degradation mechanisms evaluated included pine forest succession, erosion, and colloidal clay migration (Phifer 2003). Infiltration through the upper hydraulic barrier layer of the closure cap as determined by this evaluation will be utilized as the infiltration input to subsequent PORFLOW vadose zone contaminant transport modeling, which will also be performed as part of the PA revision.

  2. MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE

    SciTech Connect (OSTI)

    Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

    2010-01-27T23:59:59.000Z

    The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

  3. RESULTS FOR THE MAY 19, 2010 INADVERTENT TRANSFER TO THE SALTSTONE DISPOSAL FACILITY SLURRY: SAMPLE ANALYTICAL RESULTS

    SciTech Connect (OSTI)

    Reigel, M.; Cozzi, A.

    2010-08-17T23:59:59.000Z

    This report details the chemical analysis results for the characterization of the May 19, 2010 inadvertent transfer from the Saltstone Production Facility (SPF) to the Saltstone Disposal Facility (SDF). On May 19, 2010, the Saltstone Processing Facility (SPF) inadvertently transferred approximately 1800 gallons of untreated low-level salt solution from the salt feed tank (SFT) to Cell F of Vault 4. The transfer was identified and during safe configuration shutdown, approximately 70 gallons of SFT material was left in the Saltstone hopper. After the shutdown, the material in the hopper was undisturbed, while the SFT has received approximately 1400 gallons of drain water from the Vault 4 bleed system. The drain water path from Vault 4 to the SFT does not include the hopper (Figure 1); therefore it was determined that the material remaining in the hopper was the most representative sample of the salt solution transferred to the vault. To complete item No.5 of Reference 1, Savannah River National Laboratory (SRNL) was asked to analyze the liquid sample retrieved from the hopper for pH, and metals identified by the Resource Conservation and Recovery Act (RCRA). SRNL prepared a report to complete item No.5 and determine the hazardous nature of the transfer. Waste Solidification Engineering then instructed SRNL to provide a more detailed analysis of the slurried sample to assist in the determination of the portion of Tank 50 waste in the hopper sample.

  4. SALTSTONE 3QCY09 TCLP RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2010-01-13T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the third quarter of calendar year 2009 (3QCY09). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846. The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the third quarter of the 2009 calendar year (3QCY09), Tank 50H accepted transfers of approximately 37 kgal from the Effluent Treatment Project (ETP) waste, approximately 5 kgal from Tank 710 - the H-Canyon General Purpose Evaporator, approximately 26 kgal from Tank 221H, approximately 319 kgal from the Modular Caustic Side Solvent Extraction Unit (MCU) Decontaminated Salt Solution Hold Tank (DSS-HT), and approximately 358 kgal from Tank 23H. The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (ISWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). Savannah River National Laboratory (SRNL) was asked to prepare saltstone from a sample of Tank 50H obtained August 5, 2009 during 3QCY09 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&WTSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals-arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver-analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&WTSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  5. SALTSTONE 2QCY08 TCLP RESULTS

    SciTech Connect (OSTI)

    Cozzi, A

    2009-03-23T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory from a Tank 50H sample and Z-Area premix material for the second quarter of calendar year 2008 (2QCY08). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846. The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the second quarter of the 2008 calendar year (2QCY08), Tank 50 accepted transfers of approximately 21 kgal from the Effluent Treatment Project (ETP) waste, approximately 3 kgal from Tank 710--the H-Canyon General Purpose Evaporator, and approximately 23 kgal form the Modular Caustic Side Solvent Extraction Unit (MCU) Decontaminated Salt Solution Hold Tank (DSS-HT). The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (ISWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). SRNL was asked to prepare saltstone from a sample of Tank 50H obtained June 5, 2008, during 2QCY08 processing to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&WTSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP)2 and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals-arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver-analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge.3 B&WTSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  6. SALTSTONE 4QCY08 TCLP RESULTS

    SciTech Connect (OSTI)

    Cozzi, A.

    2009-08-10T23:59:59.000Z

    The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the fourth quarter of the 2008 calendar year (4QCY08), Tank 50 accepted transfers of approximately 15 kgal from the Effluent Treatment Project (ETP) waste, approximately 12 kgal from Tank 710-the H-Canyon General Purpose Evaporator, approximately 5 kgal from the H-Canyon Super Kukla campaign, and approximately 34 kgal from the Modular Caustic Side Solvent Extraction Unit (MCU) Decontaminated Salt Solution Hold Tank (DSS-HT). The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (ISWLF).1 During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). SRNL was asked to prepare saltstone from a sample of Tank 50H obtained October 29, 2008 during 4QCY08 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&WTSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP)2 and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals-arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver-analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge.3 B&WTSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide. A Saltstone waste form was prepared in the Savannah River National Laboratory from a Tank 50H sample and Z-Area premix material for the fourth quarter of calendar year 2008 (4QCY08). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  7. SALTSTONE 2QCY09 TCLP RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2009-10-29T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory from a Tank 50H sample and Z-Area premix material for the second quarter of calendar year 2009 (2QCY09). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846. The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the second quarter of the 2009 calendar year (2QCY09), Tank 50 accepted transfers of approximately 32 kgal from the Effluent Treatment Project (ETP) waste, approximately 4 kgal from Tank 710 - the H-Canyon General Purpose Evaporator, approximately 156 kgal from the Modular Caustic Side Solvent Extraction Unit (MCU) Decontaminated Salt Solution Hold Tank (DSS-HT), and approximately 484 kgal from Tank 23. The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (ISWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). SRNL was asked to prepare saltstone from a sample of Tank 50H obtained May 20, 2009 during 2QCY09 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&WTSGRACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&WTSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  8. SALTSTONE 3QCY09 TCLP RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2009-12-14T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the third quarter of calendar year 2009 (3QCY09). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846. The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the third quarter of the 2009 calendar year (3QCY09), Tank 50H accepted transfers of approximately 37 kgal from the Effluent Treatment Project (ETP) waste, approximately 5 kgal from Tank 710 - the H-Canyon General Purpose Evaporator, approximately 26 kgal from Tank 221H, approximately 319 kgal from the Modular Caustic Side Solvent Extraction Unit (MCU) Decontaminated Salt Solution Hold Tank (DSS-HT), and approximately 358 kgal from Tank 23H. The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (ISWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). Savannah River National Laboratory (SRNL) was asked to prepare saltstone from a sample of Tank 50H obtained August 5, 2009 during 3QCY09 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&WTSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&WTSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  9. SALTSTONE 3QCY11 TCLP RESULTS

    SciTech Connect (OSTI)

    Bannochie, C.

    2012-01-12T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the third quarter of calendar year 2011 (3QCY11). After the prescribed 32 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846. The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the third quarter of the 2011 calendar year (3QCY11), Tank 50H accepted transfers of approximately 20 kgal from the Effluent Treatment Project (ETP), approximately 236 kgal from the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) Decontaminated Salt Solution Hold Tank (DSS-HT), and approximately 25 kgal from other sources. The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (SWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained July 7, 2011 during 3QCY11 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  10. SALTSTONE 1QCY11 TCLP RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2011-05-16T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the first quarter of calendar year 2011 (1QCY11). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846. The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the first quarter of the 2011 calendar year (1QCY11), Tank 50H accepted transfers of approximately 15 kgal from the Effluent Treatment Project (ETP), approximately 15 kgal from Tank 710 - the H-Canyon General Purpose Evaporator, approximately 73 kgal from the H-Canyon Super Kukla campaign, approximately 285 kgal from the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) Decontaminated Salt Solution Hold Tank (DSS-HT), and approximately 21 kgal from other sources. The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (SWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained January 5, 2011 during 1QCY11 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals-arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver-analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  11. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.

    2009-11-30T23:59:59.000Z

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  12. SALTSTONE 1QCY10 TCLP RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2010-06-02T23:59:59.000Z

    The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the first quarter of the 2010 calendar year (1QCY10), Tank 50H accepted transfers of approximately 32 kgal from the Effluent Treatment Project (ETP), approximately 10 kgal from Tank 710 - the H-Canyon General Purpose Evaporator, approximately 32 kgal from the H-Canyon Super Kukla campaign, and approximately 26 kgal from the Modular Caustic Side Solvent Extraction Unit (MCU) Decontaminated Salt Solution Hold Tank (DSS-HT). The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (ISWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained January 8, 2010 during 1QCY10 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  13. SALTSTONE 2QCY11 TCLP RESULTS

    SciTech Connect (OSTI)

    Eibling, R.

    2011-07-28T23:59:59.000Z

    The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the second quarter of the 2011 calendar year (2QCY11), Tank 50H accepted transfers of approximately 15 kgal from the Effluent Treatment Project (ETP), approximately 2 kgal from Tank 710 - the H-Canyon General Purpose Evaporator, approximately 63 kgal from the HCanyon Super Kukla campaign, approximately 370 kgal from the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) Decontaminated Salt Solution Hold Tank (DSS-HT), and approximately 10 kgal from other sources. The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (SWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained April 5, 2011 during 2QCY11 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&W TSGRACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  14. SALTSTONE 4QCY11 TCLP RESULTS

    SciTech Connect (OSTI)

    Bannochie, C.

    2012-01-31T23:59:59.000Z

    The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the fourth quarter of the 2011 calendar year (4QCY11), Tank 50H accepted transfers of approximately 10 kgal from the Effluent Treatment Project (ETP), approximately 4 kgal from 211H, approximately 573 kgal from the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) Decontaminated Salt Solution Hold Tank (DSS-HT), and approximately 5 kgal from other sources. The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (SWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained Oct. 12, 2011 during 4QCY11 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) 2 and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  15. SALTSTONE 3QCY10 TCLP RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2010-12-14T23:59:59.000Z

    The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the third quarter of the 2010 calendar year (3QCY10), Tank 50H accepted transfers of approximately 76 kgal from the Effluent Treatment Project (ETP), approximately 7 kgal from Tank 710 - the HCanyon General Purpose Evaporator, approximately 57 kgal from the H-Canyon Super Kukla campaign, approximately 58 kgal from the Modular Caustic Side Solvent Extraction Unit (MCU) Decontaminated Salt Solution Hold Tank (DSS-HT), and approximately 6 kgal from other sources. The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (ISWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained July 1, 2010 during 3QCY10 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  16. SALTSTONE 2QCY10 TCLP RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2010-10-05T23:59:59.000Z

    The Saltstone Production Facility (SPF) receives waste from Tank 50H for treatment. In the second quarter of the 2010 calendar year (2QCY10), Tank 50H accepted transfers of approximately 19 kgal from the Effluent Treatment Project (ETP), approximately 5 kgal from Tank 710 - the H-Canyon General Purpose Evaporator, approximately 42 kgal from the HCanyon Super Kukla campaign, and approximately 73 kgal from the Modular Caustic Side Solvent Extraction Unit (MCU) Decontaminated Salt Solution Hold Tank (DSS-HT). The Saltstone Grout Sampling plan provides the South Carolina Department of Health and Environmental Control (SCDHEC) with the chemical and physical characterization strategy for the salt solution which is to be disposed of in the Z-Area Solid Waste Landfill (ISWLF). During operation, samples were collected from Tank 50H and grout samples prepared to determine the non-hazardous nature of the grout to meet the requirements of the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24(b) and R.61-79.268.48(a). Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained April 4, 2010 during 2QCY10 to determine the non-hazardous nature of the grout. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the UHCs benzene, phenols and total and amenable cyanide.

  17. Saltstone Disposal Facility Closure Cap Configuration and Degradation Base Case: Institutional Control to Pine Forest Scenario

    SciTech Connect (OSTI)

    Phifer, M.A.

    2004-03-19T23:59:59.000Z

    The Performance Assessment (PA) for the Saltstone Disposal Facility (SDF) is currently under revision. As part of the PA revision and as documented herein, the closure cap configuration has been reevaluated and closure cap degradation mechanisms and their impact upon infiltration through the closure cap have been evaluated for the institutional control to pine forest, land use scenario. This land use scenario is considered the base case land use scenario. This scenario assumes a 100-year institutional control period following final SDF closure during which the closure cap is maintained. At the end of institutional control, it is assumed that a pine forest succeeds the cap's original bamboo cover. Infiltration through the upper hydraulic barrier layer of the closure cap as determined by this evaluation will be utilized as the infiltration input to subsequent PORFLOW vadose zone contaminant transport modeling, which will also be performed as part of the PA revision. The impacts of pine forest succession, erosion, and colloidal clay migration as degradation mechanisms on the hydraulic properties of the closure cap layers over time have been estimated and the resulting infiltration through the closure cap has been evaluated. The primary changes caused by the degradation mechanisms that result in increased infiltration are the formation of holes in the upper GCL by pine forest succession and the reduction in the saturated hydraulic conductivity of the drainage layers due to colloidal clay migration into the layers. Erosion can also result in significant increases in infiltration if it causes the removal of soil layers, which provide water storage for the promotion of evapotranspiration. For this scenario, infiltration through the upper GCL was estimated at approximately 0.29 inches/year under initial intact conditions, it increased to approximately 11.6 inches/year at year 1000 in nearly a linear fashion, and it approached an asymptote of around 14.1 inches/year at year 1800 and thereafter. At year 1800, it was estimated that holes covered approximately 0.3 percent of the GCL due to root penetration, and that this resulted in an infiltration near that of typical background infiltration (i.e. as though the GCL were not there at all). This demonstrated that a very small area of holes essentially controlled the hydraulic performance of the GCL.

  18. Saltstone Disposal Facility Mechanically Stabilized Earth Vault Closure Cap Degradation Base Case: Institutional Control To Pine Forest Scenario

    SciTech Connect (OSTI)

    Phifer, MA

    2004-03-19T23:59:59.000Z

    As part of the current Saltstone Disposal Facility (SDF) Performance Assessment (PA) revision, the closure cap configuration was reevaluated and closure cap degradation mechanisms and their impact upon infiltration through the closure cap was evaluated for the existing SDF concrete vaults (i.e. vaults 1 and 4) for the base case land use scenario (i.e. institutional control to pine forest scenario) and documented in Phifer and Nelson (2003). The closure cap configuration was modified from a compacted kaolin barrier layer concept to a geosynthetic clay layer (GCL) barrier layer concept. The degradation mechanisms developed included pine forest succession, erosion, and colloidal clay migration. These degradation mechanisms resulted in changes in the hydraulic properties of the closure cap layers and resulting increases in infiltration through the closure cap over time.

  19. Improved Saltstone Facilities Restart Operations | Department...

    Office of Environmental Management (EM)

    to provide a new and more reliable system to process larger amounts of decontaminated salt solution needed for future tank closure operations. Saltstone processs and disposes of...

  20. SALTSTONE CY07 TCLP RESULTS

    SciTech Connect (OSTI)

    Cozzi, A

    2008-06-25T23:59:59.000Z

    Saltstone waste forms were prepared in the Savannah River National Laboratory from Tank 50H samples and Z-Area premix material for each of the four quarters of calendar year 2007 (CY07). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  1. Potential Enhancement of the Saltstone Inadvertent Intruder Analysis

    SciTech Connect (OSTI)

    Wilhite, E.L.

    2003-05-14T23:59:59.000Z

    In 2002, a Special Analysis (SA) was conducted to develop radionuclide disposal limits for low curie salt and other salt wastes in the Saltstone Disposal Facility (SDF). This Special Analysis was done to update the Saltstone Performance Assessment (PA), which had assumed that only waste from the In-Tank Precipitation process and the Effluent Treatment Facility would be disposed in Saltstone and to address requirements of the new DOE Waste Management Order.

  2. Saltstone Osmotic Pressure

    SciTech Connect (OSTI)

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-09-23T23:59:59.000Z

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR-2013-0004. Simulated saltstone typically has very low permeability (Dixon et al. 2008) and pore water that contains a large concentration of dissolved salts (Flach and Smith 2013). Pore water in simulated saltstone has a high salt concentration relative to pore water in concrete and groundwater. This contrast in salt concentration can generate high osmotic pressures if simulated saltstone has the properties of a semipermeable membrane. Estimates of osmotic pressure using results from the analysis of pore water collected from simulated saltstone show that an osmotic pressure up to 2790 psig could be generated within the saltstone. Most semi-permeable materials are non-ideal and have an osmotic efficiency <1 and as a result actual osmotic pressures are less than theoretical pressures. Observations from laboratory tests of simulated saltstone indicate that it may exhibit the behavior of a semi-permeable membrane. After several weeks of back pressure saturation in a flexible wall permeameter (FWP) the membrane containing a simulated saltstone sample appeared to have bubbles underneath it. Upon removal from the FWP the specimen was examined and it was determined that the bubbles were due to liquid that had accumulated between the membrane and the sample. One possible explanation for the accumulation of solution between the membrane and sample is the development of osmotic pressure within the sample. Osmotic pressure will affect fluid flow and contaminant transport and may result in the changes to the internal structure of the semi-permeable material. B?nard et al. 2008 reported swelling of wet cured Portland cement mortars containing salts of NaNO{sub 3}, KNO{sub 3}, Na{sub 3}PO{sub 4}x12H {sub 2}O, and K{sub 3}PO{sub 4} when exposed to a dilute solution. Typically hydraulic head is considered the only driving force for groundwater in groundwater models. If a low permeability material containing a concentrated salt solution is present in the hydrogeologic sequence large osmotic pressures may develop and lead to misinterpretation of groundwater flow and solute transport. The osmotic pressure in the semi-permeable material can significantly impact groundwater flow in the vicinity of the semi-permeable material. One possible outcome is that groundwater will flow into the semi-permeable material resulting in hydrologic containment within the membrane. Additionally, hyperfiltration can occur within semi-permeable materials when water moves through a membrane into the more concentrated solution and dissolved constituents are retained in the lower concentration solution. Groundwater flow and transport equations that incorporate chemical gradients (osmosis) have been developed. These equations are referred to as coupled flow equations. Currently groundwater modeling to assess the performance of saltstone waste forms is conducted using the PORFLOW groundwater flow and transport model. PORFLOW does not include coupled flow from chemico-osmotic gradients and therefore numerical simulation of the effect of coupled flow on contaminant transport in and around saltstone cannot be assessed. Most natural semi-permeable membranes are non-ideal membranes and do not restrict all movement of solutes and as a result theoretical osmotic potential is not realized. Osmotic efficiency is a parameter in the coupled flow equation that accounts for the

  3. SALTSTONE 3QCY08 TCLP RESULTS

    SciTech Connect (OSTI)

    Cozzi, A.

    2009-04-21T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory from a Tank 50H sample and Z-Area premix material for the third quarter of calendar year 2008 (3QCY08). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  4. SALTSTONE 1QCY09 TCLP RESULTS

    SciTech Connect (OSTI)

    Reigel, M.; Cozzi, A.

    2009-07-20T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory from a Tank 50H sample and Z-Area premix material for the first quarter of calendar year 2009 (1QCY09). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  5. SALTSTONE 4QCY10 TCLP RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2011-03-31T23:59:59.000Z

    Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the fourth quarter of calendar year 2010 (4QCY10). After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  6. Saltstone 1QCY13 TCLP Results

    SciTech Connect (OSTI)

    Eibling, R. E.

    2013-07-08T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the first quarter of calendar year 2013 (1QCY13). After a 49 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  7. Saltstone 3QCY12 TCLP Results

    SciTech Connect (OSTI)

    Eibling, R. E.

    2012-12-19T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the third quarter of calendar year 2012 (3QCY12). After a 34 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  8. SALTSTONE 4QCY13 TCLP RESULTS

    SciTech Connect (OSTI)

    Miller, D.

    2014-04-23T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the fourth quarter of calendar year 2013 (4QCY13). After a 62 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  9. Saltstone 2QCY13 TCLP Results

    SciTech Connect (OSTI)

    Reigel, M. M.

    2013-10-29T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the second quarter of calendar year 2013 (2QCY13). After a 49 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  10. Saltstone 4QCY12 TCLP results

    SciTech Connect (OSTI)

    Reigel, M. M.

    2013-03-14T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the fourth quarter of calendar year 2012 (4QCY12). After a 48 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  11. SALTSTONE 1QCY14 TCLP RESULTS

    SciTech Connect (OSTI)

    Miller, D.

    2014-06-19T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the first quarter of calendar year 2014 (1QCY14). After a 64 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  12. Saltstone 3QCY13 TCLP Results

    SciTech Connect (OSTI)

    Miller, D. H.

    2013-12-20T23:59:59.000Z

    A Saltstone waste form was prepared in the Savannah River National Laboratory (SRNL) from a Tank 50H sample and Z-Area premix material for the third quarter of calendar year 2013 (3QCY13). After a 63 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 and R.61-79.268.48(a) requirements for a nonhazardous waste form with respect to RCRA metals and underlying hazardous constituents. These analyses met all quality assurance specifications of USEPA SW-846.

  13. AMMONIA CONCENTRATION IN SALTSTONE HEADSPACE SUMMARY REPORT

    SciTech Connect (OSTI)

    Zamecnik, J; Alex Cozzi, A

    2008-09-26T23:59:59.000Z

    The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar into Tank 50. Saltstone samples were prepared with an 'MCU' type salt solution spiked with ammonia. The ammonia released from the saltstone was captured and analyzed. The ammonia concentration found in the headspace of samples maintained at 95 C and 1 atm was, to 95% confidence, less than or equal to 3.9 mg/L. Tank 50 is fed by several influent streams. The salt solution from Tank 50 is pumped to the salt feed tank (SFT) in the Saltstone Production Facility (SPF). The premix materials cement, slag and fly ash are blended together prior to transfer to the grout mixer. The premix is fed to the grout mixer in the SPF and the salt solution is incorporated into the premix in the grout mixer, yielding saltstone slurry. The saltstone slurry drops into a hopper and then is pumped to the vault. The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar{reg_sign} L into Tank 50. Waste Solidification-Engineering requested that the Savannah River National Laboratory (SRNL) perform testing to characterize the release of ammonia in curing saltstone at 95 C. The test temperature represents the maximum allowable temperature in the Saltstone Disposal Facility (SDF). Ammonia may be present in the salt solution and premix materials, or may be produced by chemical reactions when the premix and salt solution are combined. A final report (SRNS-STI-2008-00120, Rev. 0) will be issued that will cover in more depth the information presented in this report.

  14. PERMEABILITY TESTING OF SIMULATED SALTSTONE CORE AND VAULT 4 CELL E SALTSTONE

    SciTech Connect (OSTI)

    Nichols, R.; Dixon, K.

    2011-08-22T23:59:59.000Z

    The Engineering Process Development Group (EPD) of the Savannah River National Laboratory (SRNL) prepared simulated saltstone core samples to evaluate the effect of sample collection by coring on the permeability of saltstone. The Environmental Restoration Technology Section (ERTS) of the SRNL was given the task of measuring the permeability of cores of simulated saltstone. Saltstone samples collected from Vault 4 Cell E using both dry and wet coring methods were also submitted for permeability analysis. The cores from Vault 4 Cell E were in multiple pieces when they were recovered (Smith, 2008 Cheng et.al, 2009). Permeability testing was only performed on the portions of the core sample that were intact, had no visible fractures or cracks, and met the specifications for 'undisturbed specimens' identified in Method ASTM D5084-03 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter that was used for the testing. Permeability values for cores of simulated saltstone compared with values from permeability tests conducted on molded saltstone samples by an independent laboratory using the same method. All hydraulic conductivity results for Vault 4 samples exceeded results for both molded and cored saltstone simulant samples. The average hydraulic conductivity result for Vault 4 Cell E samples of 3.9 x 10{sup -7} cm/sec is approximately two orders of magnitude greater than that of the simulated saltstone with an average of 4.1 x 10{sup -9} cm/sec. Numerical flow and transport simulations of moisture movement through saltstone performed for the performance assessment of the Saltstone Disposal Facility (SDF) used 2.0 x 10{sup -9} cm/sec for the hydraulic conductivity of saltstone (Flach et al, 2009). The results for simulated versus actual saltstone were further compared using non-parametric statistics. The results from non-parametric statistical analysis of results indicate that there is at least a 98% probability that the hydraulic conductivity of saltstone samples collected from Vault 4 Cell E saltstone is greater than that of the baseline simulant mix.

  15. Lysimeter study of vegetative uptake from saltstone

    SciTech Connect (OSTI)

    Murphy, C.E. Jr.

    1990-06-08T23:59:59.000Z

    At the Savannah River Site, liquid, low-level nuclear waste will be disposed of by incorporating the waste in concrete, a wasteform called saltstone. Saltstone monoliths will then be buried in the earth. To study the potential uptake of radionuclides by trees and other plants growing in the soil in the area containing buried saltstone, a lysimeter study has been in progress since 1984. Thirty two lysimeters were designed, constructed, and filled with soil. Saltstone samples, containing the liquid, low-level supernate from the tank 50 in-tank precipitation demonstration, were buried in some of the lysimeters. Other lysimeters, not containing saltstone, were used as controls. Crops, grass, and trees were planted in the lysimeters and sampled periodically to determine radionuclide concentrations. Water samples were also collected from the lysimeter sumps and analyzed for radionuclide content. This report documents the results of vegetative and lysimeter sump water measurements from the beginning of the project in November of 1984 through September of 1989. 6 refs., 22 figs., 6 tabs.

  16. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V

    2008-09-29T23:59:59.000Z

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were {approx} 55% higher than the previous measurement of specific heat capacity on a reference Saltstone mix in 1997. Values of mixes prepared using Deliquification, Dissolution and Adjustment (DDA), Modular Caustic Side Solvent Extraction Unit (MCU) and Salt Waste Processing Facility (SWPF) simulants and premix at 0.60 w/cm ratio were {approx} 1.95 J/g/{sup o}C and were equivalent within experimental error. The simple law of mixtures was used to predict the heat capacities of the Saltstone and the results were in excellent agreement with experimental data. This simple law of mixtures can therefore be used to predict the heat capacities of Saltstone mixes in those cases where measurements have not been made. The time dependence of the heat capacity is important as an input to the modeling of temperature increase in Saltstone vaults. The heat capacity of a mix of MCU and premix at 0.60 w/cm ratio was measured immediately after initial mixing and then periodically up to times greater than 100 days. Within experimental error, the heat capacity did not change with time. Therefore, the modeling is not complicated by requiring a time dependent function for specific heat capacity. The water to cementitious material (w/cm) ratio plays a key role in determining the value of the heat capacity. Both experimental and predictive values for SWPF mixes as function of the w/cm ratio were obtained and presented in this report. Predictions of the maximum temperatures of the Saltstone mixes were made using the heat of hydration data from previous isothermal measurements and the newly measured heat capacities for DDA, MCU and SWPF mixes. The maximum temperature increase ranged from 37 to 48 C for these mixes. The presence of aluminate at 0.33 M produced a temperature increase of 68 C which is close to the adiabatic temperature rise of 74 C observed by Steimke and Fowler in 1997 for a mix containing 0.35 M aluminate. Aluminum dissolution of the sludge will increase the aluminate in the DSS which in turn will result in a larger temperature increase in the Saltstone vaults during the curing p

  17. Adiabatic Heat of Hydration Calorimetric Measurements for Reference Saltstone Waste

    SciTech Connect (OSTI)

    Bollinger, James

    2006-01-12T23:59:59.000Z

    The production of nuclear materials for weapons, medical, and space applications from the mid-1950's through the late-1980's at the Savannah River Site (SRS) generated approximately 35 million gallons of liquid high-level radioactive waste, which is currently being processed into vitrified glass for long-term storage. Upstream of the vitrification process, the waste is separated into three components: high activity insoluble sludge, high activity insoluble salt, and very low activity soluble salts. The soluble salt represents 90% of the 35 million gallons of overall waste and is processed at the SRS Saltstone Facility, where it mixed with cement, blast furnace slag, and flyash, creating a grout-like mixture. The resulting grout is pumped into aboveground storage vaults, where it hydrates into concrete monoliths, called saltstone, thus immobilizing the low-level radioactive salt waste. As the saltstone hydrates, it generates heat that slowly diffuses out of the poured material. To ensure acceptable grout properties for disposal and immobilization of the salt waste, the grout temperature must not exceed 95 C during hydration. Adiabatic calorimetric measurements of the heat generated for a representative sample of saltstone were made to determine the time-dependent heat source term. These measurements subsequently were utilized as input to a numerical conjugate heat transfer model to determine the expected peak temperatures for the saltstone vaults.

  18. Effect of Saltstone Vault Roof Configuration on the Rate of Contaminant Transport

    SciTech Connect (OSTI)

    Hsu, R.H.; Yu, A.D.; Lam, Poh-Sang

    1994-12-28T23:59:59.000Z

    At the Savannah River Site, low-level radioactive decontaminated salt solution is mixed with slag, flyash, and cement to form a grout-like material called ``Saltstone``. The Saltstone is poured into concrete vaults constructed at the Saltstone Disposal Facility (SDF). The impact of SDF on groundwater has been studied in a radiological performance assessment (PA). Sophisticated groundwater models were used to predict the groundwater flow and contaminant transport problems. The modeling effort was divided into two parts: the unsaturated-zone model and the saturated zone model. One of the major performance objectives is to show that the impacted groundwater will be in compliance with the Safe Drinking Water Act.

  19. Effect of Curing Environment on the Performance Properties of Saltstone - 13335

    SciTech Connect (OSTI)

    Reigel, Marissa M.; Pickenheim, Bradley R.; Daniel, William E. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    At the Savannah River Site (SRS), the low level radioactive waste (LLW) salt solution is immobilized as a cementitious waste form known as Saltstone. Depending on the Saltstone formulation, disposal unit size, environmental conditions and pour schedule, the waste form temperature, due to exothermic hydration reactions, can gradually increase by 30 deg. C to 50 deg. C above the starting temperature. Previous studies at Savannah River National Laboratory (SRNL) have shown that curing temperature has a negative impact on the hydraulic conductivity and other performance properties of Saltstone; specifically, these studies have shown that curing at elevated temperatures results in faster hydraulic conductivities than what is modeled in the Saltstone Performance Assessment (PA). SRNL is currently testing the performance of laboratory prepared Saltstone cured under controlled conditions (i.e. controlling relative humidity). The PA assumes that the Saltstone remains saturated; therefore, some samples are being kept completely saturated while others have a surface exposed to a high humidity environment. The formulation of these samples has been varied to continue studying the impact of processing parameters on the performance properties of Saltstone. The final water to premix (w/p) ratio of the Saltstone formulation does affect the density, porosity, and compressive strength of the cured Saltstone. The Saltstone formulations with 0.59 w/p ratios and lower had higher densities, lower porosities, and higher compressive strength than samples formulated at a higher w/p ratio. There is a general trend that the samples formulated at high w/p ratios (0.67 and higher) have the lowest density, highest porosity and lowest strength. However, for hydraulic conductivity, the curing environment had a greater effect on the results than the formulation. Therefore, the impact of elevated temperature is not as detrimental to the performance of the waste form as originally concluded, provided the curing environment is controlled and the waste form is not dried out. (authors)

  20. Technical Insights for Saltstone PA Maintenance

    SciTech Connect (OSTI)

    Flach, G.; Sarkar, S.; Mahadevan, S.; Kosson, D.

    2011-07-20T23:59:59.000Z

    The Cementitious Barriers Partnership (CBP) is a collaborative program sponsored by the US DOE Office of Waste Processing. The objective of the CBP is to develop a set of computational tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers and waste forms used in nuclear applications. CBP tools are expected to better characterize and reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the assessment process, as the five-year program progresses. In September 2009, entering its second year of funded effort, the CBP sought opportunities to provide near-term tangible support to DOE Performance Assessments (PAs). The Savannah River Saltstone Disposal Facility (SDF) was selected for the initial PA support effort because (1) cementitious waste forms and barriers play a prominent role in the performance of the facility, (2) certain important long-term behaviors of cementitious materials composing the facility are uncertain, (3) review of the SDF PA by external stakeholders is ongoing, and (4) the DOE contractor responsible for the SDF PA is open to receiving technical assistance from the CBP. A review of the current (SRR Closure & Waste Disposal Authority 2009) and prior Saltstone PAs (e.g., Cook et al. 2005) suggested five potential opportunities for improving predictions. The candidate topics considered were (1) concrete degradation from external sulfate attack, (2) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, (3) mechanistic prediction of geochemical conditions, (4) concrete degradation from rebar corrosion due to carbonation, and (5) early age cracking from drying and/or thermal shrinkage. The candidate topics were down-selected considering the feasibility of addressing each issue within approximately six months, and compatibility with existing CBP expertise and already-planned activities. Based on these criteria, the five original topics were down-selected to two: external sulfate attack and mechanistic geochemical prediction. For each of the selected topics, the CBP communicated with the PA analysts and subject matter experts at Savannah River to acquire input data specific to the Saltstone facility and related laboratory experiments. Simulations and analyses were performed for both topics using STADIUM (SIMCO 2008), LeachXS/ORCHESTRA (ECN 2007, Meeussen 2003), and other software tools. These supplemental CBP analyses produced valuable technical insights that can be used to strengthen the Saltstone PA using the ongoing PA maintenance process. This report in part summarizes key information gleaned from more comprehensive documents prepared by Sarkar et al. (2010), Samson (2010), and Sarkar (2010).

  1. Method Evaluation And Field Sample Measurements For The Rate Of Movement Of The Oxidation Front In Saltstone

    SciTech Connect (OSTI)

    Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States); Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States); Stefanko, D. B. [Savannah River Site (SRS), Aiken, SC (United States); Spencer, W. A. [Savannah River Site (SRS), Aiken, SC (United States); Hatfield, A. [Clemson University, Clemson, SC (United States); Arai, Y. [Clemson University, Clemson, SC (United States)

    2012-08-23T23:59:59.000Z

    The objective of this work was to develop and evaluate a series of methods and validate their capability to measure differences in oxidized versus reduced saltstone. Validated methods were then applied to samples cured under field conditions to simulate Performance Assessment (PA) needs for the Saltstone Disposal Facility (SDF). Four analytical approaches were evaluated using laboratory-cured saltstone samples. These methods were X-ray absorption spectroscopy (XAS), diffuse reflectance spectroscopy (DRS), chemical redox indicators, and thin-section leaching methods. XAS and thin-section leaching methods were validated as viable methods for studying oxidation movement in saltstone. Each method used samples that were spiked with chromium (Cr) as a tracer for oxidation of the saltstone. The two methods were subsequently applied to field-cured samples containing chromium to characterize the oxidation state of chromium as a function of distance from the exposed air/cementitious material surface.

  2. EFFECT OF TRANSPORTING SALTSTONE SAMPLES PRIOR TO SET

    SciTech Connect (OSTI)

    Reigel, M.

    2013-05-21T23:59:59.000Z

    The Saltstone Sampling and Analyses Plan provides a basis for the quantity (and configuration) of saltstone grout samples required for conducting a study directed towards correlation of the Performance Assessment (PA) related properties of field-emplaced samples and samples processed and cured in the laboratory. The testing described in the saltstone sampling and analyses plan will be addressed in phases. The initial testing (Phase I) includes collecting samples from the process room in the Saltstone Production Facility (SPF) and transporting them to Savannah River National Laboratory (SRNL) where they will cure under a temperature profile that mimics the temperature in the Saltstone Disposal Unit (SDU) and then be analyzed. SRNL has previously recommended that after the samples of fresh (uncured) saltstone are obtained from the SPF process room, they are allowed to set prior to transporting them to SRNL for curing. The concern was that if the samples are transported before they are set, the vibrations during transport may cause artificial delay of structure development which could result in preferential settling or segregation of the saltstone slurry. However, the results of this testing showed there was no clear distinction between the densities of the cylinder sections for any of the transportation scenarios tested (1 day, 1 hour, and 0 minutes set time prefer to transportation) . The bottom section of each cylinder was the densest for each transportation scenario, which indicates some settling in all the samples. Triplicate hydraulic conductivity measurements on samples from each set of time and transportation scenarios indicated that those samples transported immediately after pouring had the highest hydraulic conductivity. Conversely, samples that were allowed to sit for an hour before being transported had the lowest hydraulic conductivity. However, the hydraulic conductivities of all three samples fell within an acceptable range. Based on the cured property analysis of the three samples, there is no clear conclusion about transporting the samples before they are set; however, experience with saltstone grout indicates the samples should sit and develop some structure before being transported to SRNL for curing.

  3. Development and Implementation of a Scaled Saltstone Facility at Savannah River National Laboratory - 13346

    SciTech Connect (OSTI)

    Reigel, Marissa M.; Fowley, Mark D.; Hansen, Erich K.; Hera, Kevin R.; Marzolf, Athneal D.; Cozzi, Alex D. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has supported the Saltstone Production Facility (SPF) since its conception. However, bench scaled tests have not always provided process or performance data related to the mixing, transfer, and other operations utilized in the SPF. A need was identified to better understand the SPF processes and to have the capabilities at SRNL to simulate the SPF unit operations to support an active low-level radioactive waste (LLW) processing facility. At the SPF, the dry premix is weighed, mixed and transferred to the Readco '10-inch' continuous mixer where it is mixed with the LLW salt solution from the Salt Feed Tank (SFT) to produce fresh Saltstone slurry. The slurry is discharged from the mixer into a hopper. The hopper feeds the grout pump that transfers the slurry through at least 457.2 meters of piping and discharges it into the Saltstone Disposal Units (SDU) for permanent disposal. In conjunction with testing individual SPF processes over several years, SRNL has designed and fabricated a scaled Saltstone Facility. Scaling of the system is primarily based on the volume capacity of the mixer and maintaining the same shear rate and total shear at the wall of the transfer line. At present, SRNL is utilizing the modular capabilities of the scaled Saltstone Facility to investigate the erosion issues related to the augers and paddles inside the SPF mixer. Full implementation of the scaled Saltstone Facility is still ongoing, but it is proving to be a valuable resource for testing alternate Saltstone formulations, cleaning sequences, the effect of pumping Saltstone to farther SDU's, optimization of the SPF mixer, and other operational variables before they are implemented in the SPF. (authors)

  4. Impact Of Standing Bleed Water On Saltstone Placement

    SciTech Connect (OSTI)

    Cozzi, A. D.; Pickenheim, B. R.

    2012-09-28T23:59:59.000Z

    The amount of water present during placement and subsequent curing of saltstone has the potential to impact several properties important for grout quality. An active drain water system can remove residual standing water and expose the surface of the placed saltstone to air. Oxidation of the saltstone may result in an increase in the leachability of redox sensitive elements. A dry surface can lead to cracking, causing an increase in hydraulic conductivity. An inactive drain water system can allow standing water that generates unnecessary hydrostatic head on the vault walls. Standing water that cannot be removed via the drain system will be available for potential incorporation into subsequent grout placements. The objective of this work is to study the impact of standing water on grout quality pertaining to disposal units. A series of saltstone mixes were prepared, and cured at ambient temperature to evaluate the impact of standing water on saltstone placement. The samples were managed to control drying effects on leachability by either exposing or capping the samples. The water to premix ratio was varied to represent a range of processing conditions. Samples were analyzed for density, leachability, and hydraulic conductivity. A monolith of each composition was cut into four sections to analyze the homogeneity of the sample with respect to vertical position within the sample. The density of each section was measured by two methods, helium pycnometry and by ASTM 642-06. The results show a trend of increasing density with increasing depth in the samples. This effect is more pronounced with the inclusion of excess bleed water and indicative of increased settling. The leachability of the eight different samples was analyzed by ANS/ANSI 16.1 method. These results indicate that drying of the saltstone during curing leads to decreased Leachability Indices (indicative of more release) for potassium, sodium, rhenium, nitrite, and nitrate. This may be caused by shrinkage cracking in the samples creating additional pathways for contaminant release. There was no noticeable effect on leachability by changing the water to premix ratio or by including excess bleed water. There was no detectable chromium release in any of the samples. Chromium and rhenium were added in equal amounts to determine whether rhenium might be an acceptable surrogate for chromium, a hazardous material. This testing shows no correlation between the behavior of the two elements, as chromium is not released at detectable levels and rhenium is released at a comparable rate to nitrate, the most prevalent and mobile species in saltstone.

  5. ISOPAR L RELEASE FROM SALTSTONE CURED AT 55 C

    SciTech Connect (OSTI)

    Cozzi, A; Cora Berry, C; Michael Bronikowski, M; Russell Eibling, R; Jack Zamecnik, J

    2006-05-16T23:59:59.000Z

    The decontaminated salt solution waste stream from the Modular Caustic Side Solvent Extraction Unit and the Salt Waste Processing Facility is anticipated to contain entrained extraction solvent. The decontaminated salt solution is scheduled to be processed through Tank 50 into the Saltstone Production Facility. This study, among others, has been undertaken because the solvent concentration in the decontaminated salt solution may cause flammability issues within the Saltstone Disposal Facility that may need to be addressed prior to operation. Previous work at the Savannah River National Laboratory determined the release of Isopar{reg_sign} L from saltstone prepared with a simulated DSS with Isopar{reg_sign} L concentrations ranging from 50 to 200 {micro}g/g in the salt fraction and with test temperatures ranging from ambient to 95 C. The results from the curing of the saltstone showed that the Isopar{reg_sign} L release data can be treated as a percentage of initial concentration in the concentration range studied. The majority of the Isopar{reg_sign} L that was released over the test duration was released in the first few days. The release of Isopar{reg_sign} L begins immediately and the rate of release decreases over time. At higher temperatures the immediate release is larger than at lower temperatures. In this study, saltstone was prepared using a simulated decontaminated salt solution containing Isopar{reg_sign} L concentrations of 50 {micro}L/L (30 {micro}g/g) and 100 {micro}L/L (61 {micro}g/g) and cured at 55 C. The headspace of each sample was purged and the Isopar{reg_sign} L was trapped on a coconut shell carbon tube. The amount of Isopar{reg_sign} L captured was determined using NIOSH Method 1501. The percentage of Isopar{reg_sign} L released after 20 days was 1.4 - 3.7% for saltstone containing 50 {micro}L/L concentration and 2.1 - 4.3% for saltstone containing 100 {micro}L/L concentration. Given the measurement uncertainties in this work there is no clearly discernible relationship between percentage release and initial Isopar{reg_sign} L concentration.

  6. Effect of roof slope and thickness on the performance of a saltstone vault

    SciTech Connect (OSTI)

    Yu, A.D.; Lam, Poh-Sang; Hsu, R.H.

    1995-09-01T23:59:59.000Z

    At the Savannah River Site, low-level radioactive decontaminated salt solution is mixed with slag, flyash, and cement to form a grout-like material called ``Saltstone.`` The Saltstone is poured into concrete vaults constructed at the Saltstone Disposal Facility (SDF). The SDF is designed for the release of contaminants in a slow, controlled manner over thousands of years. The impact of SDF on groundwater has been studied in a radiological performance assessment (PA). Groundwater models were used to predict the fluid flow and contaminant transport at SDF. The models predicted a spatial contaminant concentration distribution in groundwater as a function of time. This study focuses on the roof configuration of Saltstone vault, with special interests in cost-effectiveness. We conducted a study to evaluate the effect of roof slope and thickness on the performance of a Saltstone vault. Four roof configurations were simulated. The tool used for the simulation was ECLIPSE, a finite-difference petroleum reservoir engineering code with an environmental tracer option. Nitrate was used as the ``tracer`` contaminant. In this study, ECLIPSE solves the two-phase two-dimensional flow and transport problem up to 10,000 years. This paper describes a modeling study used to evaluate roof design options for the Saltstone vault.

  7. OPERATIONAL AND COMPOSITIONAL FACTORS THAT AFFECT THE PERFORMANCE PROPERTIES OF ARP/MCU SALTSTONE GROUT

    SciTech Connect (OSTI)

    Reigel, M.; Edwards, T.; Pickenheim, B.

    2012-02-15T23:59:59.000Z

    The Saltstone Production Facility (SPF) receives low level waste (LLW) salt solution from Tank 50H for treatment and disposal. Tank 50H receives transfers from the Effluent Treatment Project (ETP), the H-Canyon General Purpose Evaporator, and the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) Decontaminated Salt Solution Hold Tank (DSS-HT). At the SPF, the LLW is mixed with premix (a cementitious mixture of portland cement (PC), blast furnace slag (BFS) and Class F fly ash (FA)) in a Readco mixer to produce fresh (uncured) saltstone that is transferred to the Saltstone Disposal Facility (SDF) vaults. The saltstone formulation (mix design) must produce a grout waste form that meets both placement and performance properties. In previous simulated saltstone studies, multiple compositional factors were identified that drive the performance properties of saltstone made from the projected ARP/MCU salt solution. This composition was selected as salt solution simulant since ARP/MCU is the primary influent into Tank 50H. The primary performance property investigated was hydraulic conductivity since it is a variable input property to the saltstone Performance Assessment (PA) transport model. In addition, the porosity, also referred to as void structure, is another variable that impacts the PA response. In addition, Young's modulus and cured density are other performance properties analyzed in this report; however they are indicators of the performance of saltstone and not direct inputs into the PA. The data from previous studies showed that the largest impact on the performance properties of saltstone was due to curing temperature, followed by aluminate concentration in the salt solution, water to premix ratio and premix composition. However, due to the scope of the previous studies, only a few mixes were cured and analyzed at higher temperatures. The samples cured at 60 C had an increased hydraulic conductivity of approximately 600 times that of the sample cured at room temperature. The hydration reactions initiated during the mixing of the premix and salt solution continue during the curing period in the vaults to produce the hardened waste form product. The heat generated from exothermic hydration reactions results in a temperature increase in the vaults that depends on the composition of the decontaminated salt solution being dispositioned, the grout formulation (mix design) and the pour frequency and volume. This heat generation is a contributing factor to the temperature increase in the vaults that leads to an increased cure temperature for the grout. This report will further investigate the impact of curing temperature on saltstone performance properties (hydraulic conductivity, Young's modulus, porosity, etc.) over a range of aluminate concentration, water to premix (w/p) ratio and weight percent fly ash in the premix processed at the SPF. The three curing temperatures selected for this study were chosen to provide data at fixed cure temperatures that represent measured temperatures in the SDF vaults. This does not represent the conditions in the vault where the temperature of the saltstone is continually changing with time. For example, it may take several days for the saltstone to reach 60 C at a given elevation. Previous results demonstrated that the rates at which a selected curing temperature is reached affect the performance properties. The approach taken in this task, a rapid increase to the curing temperature, may be conservative with respect to decreased performance. Nevertheless, the data will provide a basis from which to determine the impact of curing temperature on saltstone performance as a function of key variables. A statistical evaluation of the results for these mixes will be performed to provide the range, and associated uncertainties, of hydraulic conductivity and other properties over this factor space.

  8. Impact Of Standing Water On Saltstone Placement II - Hydraulic Conductivity Data

    SciTech Connect (OSTI)

    Cozzi, A. D.; Pickenheim, B. R.

    2012-12-06T23:59:59.000Z

    The amount of water present during placement and subsequent curing of saltstone has the potential to impact several properties important for grout quality. An active drain water system can remove residual standing water and expose the surface of the placed saltstone to air. Oxidation of the saltstone may result in an increase in the leachability of redox sensitive elements. A dry surface can lead to cracking, causing an increase in hydraulic conductivity. An inactive drain water system can allow standing water that generates unnecessary hydrostatic head on the vault walls. Standing water that cannot be removed via the drain system will be available for potential incorporation into subsequent grout placements. The objective of this work is to study the impact of standing water on grout quality pertaining to disposal units. A series of saltstone mixes was prepared and cured at ambient temperature to evaluate the impact of standing water on saltstone placement. The samples were managed to control drying effects on leachability by either exposing or capping the samples. The water to premix ratio was varied to represent a range of processing conditions. Samples were analyzed for density, leachability, and hydraulic conductivity. Report SRNL-STI-2012-00546 was issued detailing the experimental procedure, results, and conclusions related to density and leachability. In the previous report, it was concluded that: density tends to increase toward the bottom of the samples. This effect is pronounced with excess bleed water; drying of the saltstone during curing leads to decreased Leachability Index (more leaching) for potassium, sodium, rhenium, nitrite, and nitrate; there is no noticeable effect on saltstone oxidation/leachability by changing the water to premix ratio (over the range studied), or by pouring into standing water (when tested up to 10 volume percent). The hydraulic conductivity data presented in this report show that samples cured exposed to the atmosphere had about three orders of magnitude higher hydraulic conductivity than any of the other samples. Considering these data, along with the results presented in the previous report, leads to the conclusion that small changes in water to premix ratio and the inclusion of up to 10 volume percent standing water should not be expected to have a detrimental effect on saltstone grout quality. The hydraulic conductivity results further demonstrate that curing in a moist environment is critical to maintaining saltstone quality.

  9. Assessing the performance of the saltstone wasteform at the Savannah River Site

    SciTech Connect (OSTI)

    McDowell-Boyer, L.M.; Kocher, D.C. [Oak Ridge National Lab., TN (United States); Cook, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-03-01T23:59:59.000Z

    The radiological performance of the saltstone disposal facility (SDF) for low-level waste (LLW) at the Savannah River Site is being assessed in accordance with a US Department of Energy Order which was issued in 1988. Saltstone is a high-nitrate concrete matrix formed as a result of solidification of LLW streams. Potential human exposures to radionuclides that will be disposed of in the facility are being addressed. Engineered features of the SDF reduce and retard releases of radionuclides from the facility, but degradation of the features must be considered. Because prediction of the extent and timing of degradation becomes more uncertain over time, predicted releases also become more uncertain, particularly for long-lived radionuclides still present in the facility far into the future. Preliminary analyses indicate that long-lived radionuclides are the saltstone constitutents of greatest concern for radiological protection of groundwater resources. Application of federal drinking water standards to untreated groundwater may be a limiting requirement for LLW disposal facilities like the SDF, where the groundwater pathway is the most important for human exposure to radionuclides. The 4-mrem annual dose limit imposed by these standards is well below limits imposed by other regulations with which the disposal facilities must comply.

  10. Assessing the performance of the saltstone wasteform at the Savannah River Site

    SciTech Connect (OSTI)

    McDowell-Boyer, L.M.; Kocher, D.C. (Oak Ridge National Lab., TN (United States)); Cook, J.R. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-01-01T23:59:59.000Z

    The radiological performance of the saltstone disposal facility (SDF) for low-level waste (LLW) at the Savannah River Site is being assessed in accordance with a US Department of Energy Order which was issued in 1988. Saltstone is a high-nitrate concrete matrix formed as a result of solidification of LLW streams. Potential human exposures to radionuclides that will be disposed of in the facility are being addressed. Engineered features of the SDF reduce and retard releases of radionuclides from the facility, but degradation of the features must be considered. Because prediction of the extent and timing of degradation becomes more uncertain over time, predicted releases also become more uncertain, particularly for long-lived radionuclides still present in the facility far into the future. Preliminary analyses indicate that long-lived radionuclides are the saltstone constitutents of greatest concern for radiological protection of groundwater resources. Application of federal drinking water standards to untreated groundwater may be a limiting requirement for LLW disposal facilities like the SDF, where the groundwater pathway is the most important for human exposure to radionuclides. The 4-mrem annual dose limit imposed by these standards is well below limits imposed by other regulations with which the disposal facilities must comply.

  11. EVALUATION OF SULFATE ATTACK ON SALTSTONE VAULT CONCRETE AND SALTSTONESIMCO TECHNOLOGIES, INC. PART1 FINAL REPORT

    SciTech Connect (OSTI)

    Langton, C

    2008-08-19T23:59:59.000Z

    This report summarizes the preliminary results of a durability analysis performed by SIMCO Technologies Inc. to assess the effects of contacting saltstone Vaults 1/4 and Disposal Unit 2 concretes with highly alkaline solutions containing high concentrations of dissolved sulfate. The STADIUM{reg_sign} code and data from two surrogate concretes which are similar to the Vaults 1/4 and Disposal Unit 2 concretes were used in the preliminary durability analysis. Simulation results for these surrogate concrete mixes are provided in this report. The STADIUM{reg_sign} code will be re-run using transport properties measured for the SRS Vaults 1/4 and Disposal Unit 2 concrete samples after SIMCO personnel complete characterization testing on samples of these materials. Simulation results which utilize properties measured for samples of Vaults 1/4 and Disposal Unit 2 concretes will be provided in Revision 1 of this report after property data become available. The modeling performed to date provided the following information on two concrete mixes that will be used to support the Saltstone PA: (1) Relationship between the rate of advancement of the sulfate front (depth of sulfate ion penetration into the concrete) and the rate of change of the concrete permeability and diffusivity. (2) Relationship between the sulfate ion concentration in the corrosive leachate and the rate of the sulfate front progression. (3) Equation describing the change in hydraulic properties (hydraulic conductivity and diffusivity) as a function of sulfate ion concentration in the corrosive leachate. These results have been incorporated into the current Saltstone PA analysis by G. Flach (Flach, 2008). In addition, samples of the Saltstone Vaults 1/4 and Disposal Unit 2 concretes have been prepared by SIMCO Technologies, Inc. Transport and physical properties for these materials are currently being measured and sulfate exposure testing to three high alkaline, high sulfate leachates provided by SRNL is underway to validate the predicted results. Samples of saltstone were also prepared and will be evaluated for durability using the STADIUM{reg_sign} code and SIMCO methodology. Results available as of August 15 are included in this draft report. A complete set of results for saltstone will be available by December 31, 2008.

  12. SALTSTONE MATRIX CHARACTERIZATION AND STADIUM SIMULATION RESULTS

    SciTech Connect (OSTI)

    Langton, C.

    2009-07-30T23:59:59.000Z

    SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM{reg_sign} service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM{reg_sign} concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples is less than that expected for saltstone containing the reference amount of slag (45 wt.% of the total cementitious mixture versus 21 wt.% used in the SIMCO samples). Consequently the SIMCO saltstone samples are expected to have lower strengths, and tortuosity and higher porosity, water diffusivity, and intrinsic permeability compared to the reference case MCU saltstone. MCU reference saltstone contains nonradioactive salt solution with a composition designed to simulate the product of the Modular Caustic Side Solvent Extraction (MCU) Unit [Harbour, 2009]. The SIMCO saltstone samples were cast in molds and cured for three days under plastic with a source of water to prevent drying. Details of the sample preparation process are presented in Attachment 2. The molds were then removed and the samples were cured at a constant temperature (76 F, 24 C) and 100 percent relative humidity for up to one year. Selected samples were periodically removed and characterized the evolution of the matrix as a function of age. In order to preserve the age dependent microstructure at the specified curing times it is necessary to stop hydration. This was accomplished by immersing the samples in isopropanol for 5 days to replace water with alcohol. The microstructure of the matrix material was also characterized as a function of aging. This information was used as a base line for comparison with leached microstructures. After curing for 137 days, specimens were cut into 20 mm disks and exposed to deionized water with a pH maintained at 10.5. Microstructure and calcium sulfur leaching results for samples leached for 31 days are presented in this report. Insufficient leached material was generated during the testing to date to obtain physical and mineralogical properties for leached saltstone. Longer term experiments are required because the matrix alteration rate due to immersion in deionized water is slow.

  13. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    SciTech Connect (OSTI)

    Eibling, R.

    2011-09-28T23:59:59.000Z

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the inorganic species measured in the leachate do not exceed the MCL, SMCL or TW limits. (4) The inorganic waste species that exceeded the MCL by more than a factor of 10 were nitrate, nitrite and the sum of nitrate and nitrite. (5) Analyses met all quality assurance specifications of US EPA SW-846. (6) The organic species (benzene, toluene, 1-butanol, phenol) were either not detected or were less than reportable for the vault classification samples. (7) The gross alpha and radium isotopes could not be determined to the MCL because of the elevated background which raised the detection limits. (8) Most of the beta/gamma activity was from 137Cs and its daughter 137mBa. (9) The concentration of 137Cs and 90Sr were present in the leachate at concentrations 1/40th and 1/8th respectively than in the 2003 vault classification samples. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the SCHWMR R.61-79.261.24(b) RCRA metals requirements for a nonhazardous waste form. The TCLP leachate concentrations for nitrate, nitrite and the sum of nitrate and nitrite were greater than 10x the MCLs in SCDHEC Regulations R.61-107.19, Part I A, which confirms the Saltstone Disposal Facility classification as a Class 3 Landfill. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the R.61-79.268.48(a) non wastewater treatment standards.

  14. ALTERNATE APPROACH TO HAZARD CATEGORIZATION FOR SALTSTONE FACILITY AT SRS

    SciTech Connect (OSTI)

    Roy, B.

    2009-04-28T23:59:59.000Z

    The Saltstone Facility at Savannah River Site (SRS) was originally segmented into two segments: the Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). Based on the inventory of radionuclides available for release the SPF and SDF were categorized as Nonreactor Hazard Category (HC)-3. The hazard categorization recognized the SDF will contain contributions of radionuclides which would exceed the HC-2 Threshold Quantity (TQ) in the form of grout. However it was determined not to impact the facility hazard categorization based on the grout being in a solid, monolithic form which was not easily dispersible. But, the impact of a quantity of unset grout expected to be present at the vault following operation of the process was not addressed. A Potential Inadequacy in Safety Analysis (PISA) was later issued based on the hazard categorization determination for the facility not addressing unset grout. This initiated a re-evaluation of the accident scenarios within the hazards analysis. During this re-evaluation, the segmentation of the facility was challenged based on the potential interaction between facility segments; specifically, the leachate return line and the grout transfer line, which were considered separate segments, are located in close proximity at one point. such that for certain events (NPH as well as External Vehicle Impact) both could be damaged simultaneously and spill contents on the ground that could commingle. This would violate the guideline for segmentation. Therefore, the Hazard Categorization (HC) was reevaluated based on the facility being a single segment and including the additional unset grout as part of total inventory. This total inventory far exceeded the limit for HC-2 TQ and made the facility's initial categorization as HC-2. However, alternative analysis methodology based on credible release fractions allowed in DOE-STD-1027-92 (Ref.1) showed that the Saltstone facility could still be categorized as Hazard Category 3 Nuclear Facility with no segmentation. Since it was the first time any facility at SRS tried this alternate approach safety analyst had to face substantial resistance and reservations from both the facility and local DOE customers which were eventually overcome with approval and acceptance from DOE-HQ.

  15. IMPACT OF CURING TEMPERATURE ON THE SATURATED LIQUID PERMEABILITY OF SALTSTONE

    SciTech Connect (OSTI)

    Williams, F.; Harbour, J.

    2011-02-14T23:59:59.000Z

    This report focuses on the impact of curing temperature on the performance properties of simulated Saltstone mixes. The key performance property of interest is saturated liquid permeability (measured as hydraulic conductivity), an input to the Performance Assessment (PA) modeling for the Saltstone Disposal Facility (SDF). Therefore, the current study was performed to measure the dependence of saturated hydraulic conductivity on curing temperature of Saltstone mixes, to correlate these results with measurements of Young's moduli on the same samples and to compare the Scanning Electron Microscopy (SEM) images of the microstructure at each curing temperature in an effort to associate this significant changes in permeability with changes in microstructure. This work demonstrated that the saturated liquid permeability of Saltstone mixes depends significantly on the curing temperature. As the curing temperature increases, the hydraulic conductivity can increase over three orders of magnitude from roughly 10{sup -9} cm/sec to 10{sup -6} cm/sec over the temperature range of 20 C to 80 C. Although an increased aluminate concentration (at 0.22 M) in the ARP/MCU waste stream improves (decreases) saturated permeability for samples cured at lower temperatures, the permeabilities for samples cured at 60 C to 80 C are the same as the permeabilities measured for an equivalent mix but with lower aluminate concentration. Furthermore, it was demonstrated that the unsaturated flow apparatus (UFA) system can be used to measure hydraulic conductivity of Saltstone samples. The permeability results obtained using the UFA centrifuge system were equivalent within experimental error to the conventional permeameter results (the falling head method) obtained at MACTEC. In particular the UFA technique is best suited for the range of hydraulic conductivities between 10{sup -10} cm/sec to 10{sup -6} cm/sec. Measurements of dynamic Young's moduli (E) for these mixes revealed a correlation between E and hydraulic conductivity. Therefore, it is possible to use E values to estimate the values of hydraulic conductivity. Measurement of Young's modulus is much easier than the measurement of permeability of Saltstone mixes and facilitates the measurement of the time dependence hydraulic conductivity. The results presented in this report show that changes in permeability as a function of curing temperature appear to be related to microstructural changes in the cured Saltstone mixes. Backscattered electron microscopy images revealed significant differences between the samples cured at different temperatures.

  16. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V

    2008-07-18T23:59:59.000Z

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. One of those properties of importance is the Waste Loading (WL) of the decontaminated salt solution (DSS) in the Saltstone waste form. Waste loading is a measure of the amount of waste that can be incorporated within a waste form. The value of the Saltstone waste loading ultimately determines the number of vaults that will be required to disposition all of the DSS. In this report, the waste loading is defined as the volume in milliliters of DSS per liter of Saltstone waste form. The two most important parameters that determine waste loading for Saltstone are water to cementitious material (w/cm) ratio and the cured grout density. Data are provided that show the dependence of waste loading on the w/cm ratio for a fixed DSS composition using the current premix material (45% Blast Furnace Slag (BFS), 45% Fly Ash (FA) and 10% Ordinary Portland Cement (OPC)). The impact of cured grout density on waste loading was also demonstrated. Mixes (at 0.60 w/cm) made with a Modular Caustic side extraction Unit (MCU) simulant and either OPC or BFS have higher cured grout densities than mixes made with premix and increase the WL to 709 mL/L for the OPC mix and 689 mL/L for the BFS mix versus the value of 653 mL/L for MCU in premix at 0.60 w/cm ratio. Bleed liquid reduces the waste loading and lowers the effective w/cm ratio of Saltstone. A method is presented (and will be used in future tasks) for correcting the waste loading and the w/cm ratio of the as-batched mixes in those cases where bleed liquid is present. For example, the Deliquification, Dissolution and Adjustment (DDA) mix at an as-batched 0.60 w/cm ratio, when corrected for % bleed, gives a mix with a 0.55 w/cm ratio and a WL that has been reduced from 662 to 625 mL/L. An example is provided that demonstrated the quantitative impact of WL on the number of cells (each Saltstone vault contains two cells) required to disposition all of the {approx}100 million gallons of DSS available in the tanks. This calculation revealed that the number of cells required over the range of 0.48 to 0.62 w/cm ratio (equivalent to a WL range of 591 to 666 mL/L) varies from 65 to 57 cells (33 to 29 vaults). The intent of this oversimplified example was to show the range of variation in vaults expected due to w/cm ratio rather than to estimate the actual number of vaults required. There is a tradeoff between the waste loading and the processing and performance properties of Saltstone. The performance properties improve in general as the w/cm ratio decreases whereas the waste loading is reduced at lower w/cm ratios resulting in a larger number of Saltstone vaults. The final performance and processing requirements of Saltstone will determine the maximum waste loading achievable.

  17. EVALUATION OF THE IMPACT OF THIN POURS ON SALTSTONE PROPERTIES

    SciTech Connect (OSTI)

    Cozzi, A.; Langton, C.; Fox, K.

    2012-10-02T23:59:59.000Z

    The proposed Saltstone Disposal Unit 6 (SDU6) is a larger structure than the SDU4 cells and larger than the disposal units (SDU2, SDU3, and SDU5) currently in use or under construction. The additional capacity provided by SDU6 is desired to reduce life cycle costs and support site accelerated closure goals. The larger size of the planned SDU6 could result in saltstone being placed in thinner lifts as the unit is filled. This study was performed to determine whether thinner layers of saltstone negatively impact the performance of the waste form. A larger number of cold joints could potentially result in increased drying, salt deposition, and surface oxidation. A matrix of samples was prepared to simulate thin pours ranging from 0.5 to 6 inches thick. Each sample was cured for at least 28 days prior to further characterization. Leachability results showed that there is no obvious impact of the number of grout layers on the Leachability Index values for Na and NO{sub 3}. The concentrations of Cr, NO{sub 2}, and C{sub 2}O{sub 4} were below detection limits for all of the leachates. No attempt was made to evaluate the oxidation of these samples since no measureable Cr was leached, although this would appear to indicate that Cr in the samples remained reduced for cold joints with surfaces exposed for approximately four days. The results of hydraulic conductivity measurements showed that the number of cold joints in the samples did not have a significant impact on the measured values for the vertical lift orientation (i.e., when the flow path is perpendicular to the cold joints). For the horizontal lift orientation (i.e., when the flow path is parallel to the cold joints), the number of cold joints in the samples also did not appear to have a significant impact on hydraulic conductivity. The measured hydraulic conductivity was faster when the flow path was parallel to the cold joints as compared to when the flow path was perpendicular to the cold joints. Percolation testing showed increased flow when the number of cold joints was increased. Compressive strength testing showed that the maximum load at the onset of cracking was reduced by approximately 26% for those samples that contained cold joints as compared to the monolithic samples. The number of cold joints in the sample had no significant impact on the maximum load prior to cracking. The porosity of the samples was not influenced by cold joints. This result was expected as the porosity is a material property affected by the properties of the components (premix and salt solution) and the water to premix ratio. Overall, the only obvious impact of cold joints in the samples was to significantly increase hydraulic conductivity in the direction parallel to the cold joints. An increasing number of cold joints (thin layers) in the simulated saltstone samples did not exacerbate this effect, nor did it have a negative impact on the Leachability Indices or porosity for surfaces exposed for approximately four days. The presence of a cold joint reduced the compressive strength of the material, although this impact was seen regardless of the number of cold joints in the sample.

  18. Process Formulations And Curing Conditions That Affect Saltstone Properties

    SciTech Connect (OSTI)

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28T23:59:59.000Z

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  19. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Shafer, A.

    2010-05-05T23:59:59.000Z

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  20. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    SciTech Connect (OSTI)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05T23:59:59.000Z

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters were essentially the same for the salt grout without admixture. When Daratard 17 was added, the Bingham Plastic yield stress increased for the 10 minute mix. The simulant salt used in this task had similar physical properties of the Tank 50 3Q13 salt grout and is recommended for future use, if the salt solution in Tank 50 does not change. The design basis physical properties used to size the pumps and mixers at SPF were obtained from DPST-85-312. The grouts characterized in this report are bounded by the design basis density and Bingham Plastic yield stress. The opposite is true for the plastic viscosity. Steady state pressure drop calculations were performed for the design basis values using the flow rate for the clean cap and salt grouts and they bound the pressure drop of the grouts characterized in this report. A comparison of the lab prepared samples to PI ProcessBook data, specifically average pressure drop, indicate that the lab prepared samples are more viscous in nature than what is processed in the facility. This difference could be due to the applied shear rates which could be lower in the lab as compared to the facility and that fact the SPF added flush water, making this comparison more difficult. A perfunctory review of the PI ProcessBook data was discussed. It may be possible that the frequency that the distributed control system alters the grout pump speed to maintain grout hopper volume can negatively affect the efficiency of the grout pump.

  1. KEY FACTORS THAT INFLUENCE THE PERFORMANCE PROPERTIES OF ARP/MCU SALTSTONE MIXES

    SciTech Connect (OSTI)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-10-05T23:59:59.000Z

    At the Saltstone Production Facility (SPF), decontaminated salt solution (DSS) is combined with premix (a cementitious mixture of portland cement (PC), blast furnace slag (BFS) and Class F fly ash (FA)) in a Readco mixer to produce fresh (uncured) Saltstone. After transfer to the Saltstone Disposal Facility (SDF) the hydration reactions initiated during the contact of the premix and salt solution continue during the curing period to produce the hardened waste form product. The amount of heat generated from hydration and the resultant temperature increase in the vaults depend on the composition of the decontaminated salt solution being dispositioned as well as the grout formulation (mix design). This report details the results from Task 3 of the Saltstone Variability Study for FY09 which was performed to identify, and quantify when possible, those factors that drive the performance properties of the projected ARP/MCU Batches. A baseline ARP/MCU mix (at 0.60 water to cementitious materials (w/cm) ratio) was established and consisted of the normal premix composition and a salt solution that was an average of the projected compositions of the last three ARP/MCU batches developed by T. A. Le. This task introduced significant variation in (1) wt % slag, w/cm ratio, and wt % portland cement about the baseline mix and (2) the temperature of curing in order to better assess the dependence of the performance properties on these factors. Two separate campaigns, designated Phase 10 and Phase 11, were carried out under Task 3. Experimental designs and statistical analyses were used to search for correlation among properties and to develop linear models to predict property values based on factors such as w/cm ratio, slag concentration, and portland cement concentration. It turns out that the projected salt compositions contained relatively high amounts of aluminate (0.22 M) even though no aluminate was introduced due to caustic aluminate removal from High Level Waste. Previous studies revealed that increased levels of aluminate in the feed cause a significant increase in the heat generation. For Phase 10, a mix with 0.05 M aluminate was used as a comparison point for the mixes at 0.22 M aluminate. The temperature of curing in Task 3 ranged from 22 C to 75 C. Recent results demonstrated that it is not only the temperature of curing which is important but also the time/temperature sequence of curing. Therefore, this report also focuses on the impact of the sequencing of time and curing temperature on Saltstone properties.

  2. 2009 Performance Assessment for the Saltstone Disposal Facility |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site »StrategicReferencesRobotics Engineer: Lonnie Love 107

  3. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    SciTech Connect (OSTI)

    Not Available

    1989-04-04T23:59:59.000Z

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.

  4. DIRECT DISPOSAL OF A RADIOACTIVE ORGANIC WASTE IN A CEMENTITIOUS WASTE FORM

    SciTech Connect (OSTI)

    Zamecnik, J; Alex Cozzi, A; Russell Eibling, R; Jonathan Duffey, J; Kim Crapse, K

    2007-02-22T23:59:59.000Z

    The disposition of {sup 137}Cs-containing tetraphenylborate (TPB) waste at the Savannah River Site (SRS) by immobilization in the cementitious waste form, or grout called ''saltstone'' was proposed as a straightforward, cost-effective method for disposal. Tests were performed to determine benzene release due to TPB decomposition in saltstone at several initial TPB concentrations and temperatures. The benzene release rates for simulants and radioactive samples were generally comparable at the same conditions. Saltstone monoliths with only the top surface exposed to air at 25 and 55 C at any tetraphenylborate concentration or at any temperature with 30 mg/L TPB gave insignificant releases of benzene. At higher TPB concentrations and 75 and 95 C, the benzene release could result in exceeding the Lower Flammable Limit in the saltstone vaults.

  5. NUMERICAL FLOW AND TRANSPORT SIMULATIONS SUPPORTING THE SALTSTONE FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Flach, G.

    2009-02-28T23:59:59.000Z

    The Saltstone Disposal Facility Performance Assessment (PA) is being revised to incorporate requirements of Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), and updated data and understanding of vault performance since the 1992 PA (Cook and Fowler 1992) and related Special Analyses. A hybrid approach was chosen for modeling contaminant transport from vaults and future disposal cells to exposure points. A higher resolution, largely deterministic, analysis is performed on a best-estimate Base Case scenario using the PORFLOW numerical analysis code. a few additional sensitivity cases are simulated to examine alternative scenarios and parameter settings. Stochastic analysis is performed on a simpler representation of the SDF system using the GoldSim code to estimate uncertainty and sensitivity about the Base Case. This report describes development of PORFLOW models supporting the SDF PA, and presents sample results to illustrate model behaviors and define impacts relative to key facility performance objectives. The SDF PA document, when issued, should be consulted for a comprehensive presentation of results.

  6. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    SciTech Connect (OSTI)

    Cozzi, A.; Hansen, E.

    2011-08-03T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall shearing was shown to reduce the rheological properties of the grout as it was processed through the transfer line. Samples taken at the static feed tank showed that gelling impacted the rheological properties of the grout before it was fed into the pump and transfer line. A comparison of the rheological properties of samples taken at the feed tank and transfer line discharge indicated shearing of the grout was occurring in the transfer line. Bench scale testing of different mixing methods with three different salt solutions showed that method of mixing influences the rheological properties of the grouts. The paddle blade mixing method of the salt solution used for the BMSR testing provided comparable rheological properties of the grout prepared in the BMSR after 14 minutes of processing, B3. The paddle blade mixing method can be used to represent BMSR results and mixing time can be adjusted to represent larger scale mixing.

  7. ISOPAR L RELEASE RATES FROM SALTSTONE USING SIMULATED SALT SOLUTIONS

    SciTech Connect (OSTI)

    Zamecnik, J; Michael Bronikowski, M; Alex Cozzi, A; Russell Eibling, R; Charles Nash, C

    2008-07-31T23:59:59.000Z

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) and the Salt Waste Processing Facility (SWPF) will produce a Decontaminated Salt Solution (DSS) that will go to the Saltstone Production Facility (SPF). Recent information indicates that solvent entrainment in the DSS is larger than expected. The main concern is with Isopar{reg_sign} L, the diluent in the solvent mixture, and its flammability in the saltstone vault. If it is assumed that all the Isopar{reg_sign} L is released instantaneously into the vault from the curing grout before each subsequent pour, the Isopar{reg_sign} L in the vault headspace is well mixed, and each pour displaces an equivalent volume of headspace, the maximum concentration of Isopar{reg_sign} L in the DSS to assure 25% of the lower flammable limit is not exceeded has been determined to be about 4 ppm. The amount allowed would be higher if the release from grout were significantly less. The Savannah River National Laboratory was tasked with determining the release of Isopar{reg_sign} L from saltstone prepared with a simulated DSS with Isopar{reg_sign} L concentrations ranging from 50 to 200 mg/L in the salt fraction and with test temperatures ranging from ambient to 95 C. The results from the curing of the saltstone showed that the amount of Isopar{reg_sign} L released versus time can be treated as a percentage of initial amount present; there was no statistically significant dependence of the release rate on the initial concentration. The majority of the Isopar{reg_sign} L that was released over the test duration was released in the first few days. The release of Isopar{reg_sign} L begins immediately and the rate of release decreases over time. At higher temperatures the immediate release rate is larger than at lower temperatures. Initial curing temperature was found to be very important as slight variations during the first few hours or days had a significant effect on the amount of Isopar{reg_sign} L released. Short scoping tests at 95 C with solvent containing all components (Isopar{reg_sign} L, suppressor trioctylamine (TOA), and modifier Cs-7SB) except the BOBCalixC6 extractant released less Isopar{reg_sign} L than the tests run with Isopar{reg_sign} L/TOA. Based on these scoping tests, the Isopar{reg_sign} L releases reported herein are conservative. Isopar{reg_sign} L release was studied for a two-month period and average cumulative release rates were determined from three sets of tests each at 95 and 75 C and at ambient conditions. The overall average releases at were estimated for each temperature. For the 95 and 75 C data, at a 5% significance level, the hypothesis that the three test sets at each temperature had the same average percent release can be rejected, suggesting that there was a statistically significant difference among the three averages seen in the three experimental tests conducted. An upper confidence limit on the mean percent release required incorporation of variation from two sources: test-to-test variation as well as the variation within a test. An analysis of variance that relies on a random effects model was used to estimate the two variance components. The test-to-test variance and the within test (or residual) variance were both calculated. There is no indication of a statistically significant linear correlation between the percent Isopar{reg_sign} L release and the Isopar{reg_sign} L initial concentration. From the analysis of variance, upper confidence limits at confidences of 80-95% were calculated for the data at 95 and 75 C. The mean Isopar{reg_sign} L percent releases were 67.33% and 13.17% at 95 and 75 C, respectively.

  8. EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    SciTech Connect (OSTI)

    Mickalonis, J.; Torres, R.

    2012-08-15T23:59:59.000Z

    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wear relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.

  9. TOXICITY CHARACTERISTIC LEACHING PROCEDURE APPLIED TO RADIOACTIVE SALTSTONE CONTAINING TETRAPHENYLBORATE: DEVELOPMENT OF A MODIFIED ZERO-HEADSPACE EXTRACTOR

    SciTech Connect (OSTI)

    Crapse, K.; Cozzi, A.; Crawford, C.; Jurgensen, A.

    2006-09-30T23:59:59.000Z

    In order to assess the effect of extended curing times at elevated temperatures on saltstone containing Tank 48H waste, saltstone samples prepared as a part of a separate study were analyzed for benzene using a modification of the United States Environmental Protection Agency (USEPA) method 1311 Toxicity Characteristic Leaching Procedure (TCLP). To carry out TCLP for volatile organic analytes (VOA), such as benzene, in the Savannah River National Laboratory (SRNL) shielded cells (SC), a modified TCLP Zero-Headspace Extractor (ZHE) was developed. The modified method was demonstrated to be acceptable in a side by side comparison with an EPA recommended ZHE using nonradioactive saltstone containing tetraphenylborate (TPB). TCLP results for all saltstone samples tested containing TPB (both simulant and actual Tank 48H waste) were below the regulatory limit for benzene (0.5 mg/L). In general, higher curing temperatures corresponded to higher concentrations of benzene in TCLP extract. The TCLP performed on the simulant samples cured under the most extreme conditions (3000 mg/L TPB in salt and cured at 95 C for at least 144 days) resulted in benzene values that were greater than half the regulatory limit. Taking into account that benzene in TCLP extract was measured on the same order of magnitude as the regulatory limit, that these experimental conditions may not be representative of actual curing profiles found in the saltstone vault and that there is significant uncertainty associated with the precision of the method, it is recommended that to increase confidence in TCLP results for benzene, the maximum curing temperature of saltstone be less than 95 C. At this time, no further benzene TCLP testing is warranted. Additional verification would be recommended, however, should future processing strategies result in significant changes to salt waste composition in saltstone as factors beyond the scope of this limited study may influence the decomposition of TPB in saltstone.

  10. HYDRAULIC CONDUCTIVITY OF SALTSTONE FORMULATED USING 1Q11, 2Q11 AND 3Q11 TANK 50 SLURRY SAMPLES

    SciTech Connect (OSTI)

    Reigel, M.; Nichols, R.

    2012-06-27T23:59:59.000Z

    As part of the Saltstone formulation work requested by Waste Solidification Engineering (WSE), Savannah River National Laboratory (SRNL) was tasked with preparing Saltstone samples for fresh property analysis and hydraulic conductivity measurements using actual Tank 50 salt solution rather than simulated salt solution. Samples of low level waste salt solution collected from Tank 50H during the first, second, and third quarters of 2011 were used to formulate the Saltstone samples. The salt solution was mixed with premix (45 wt % slag, 45 wt % fly ash, and 10 wt % cement), in a ratio consistent with facility operating conditions during the quarter of interest. The fresh properties (gel, set, bleed) of each mix were evaluated and compared to the recommended acceptance criteria for the Saltstone Production Facility. ASTM D5084-03, Method C was used to measure the hydraulic conductivity of the Saltstone samples. The hydraulic conductivity of Saltstone samples prepared from 1Q11 and 2Q11 samples of Tank 50H is 4.2E-9 cm/sec and 2.6E-9 cm/sec, respectively. Two additional 2Q11 and one 3Q11 sample were not successfully tested due to the inability to achieve stable readings during saturation and testing. The hydraulic conductivity of the samples made from Tank 50H salt solution compare well to samples prepared with simulated salt solution and cured under similar conditions (1.4E-9 - 4.9E-8 cm/sec).

  11. EVALUATION OF FABRIC MEMBRANES FOR USE IN SALTSTONE DRAIN WATER SYSTEM

    SciTech Connect (OSTI)

    Pickenheim, B.; Miller, D.; Burket, P.

    2012-03-08T23:59:59.000Z

    Saltstone Disposal Unit 2 contains a sheet drain fabric intended to separate solids from drain water to be returned to the Salt Feed Tank. A similar system installed in Vault 4 appears to be ineffective in keeping solids out of the drain water return lines. Waste Solidification Engineering is considering installation of an additional fabric membrane to supplement the existing sheet drain in SDU 2. Amerdrain 200 is the product currently installed in SDU 2. This product is no longer available, so Sitedrain 94 was used as the replacement product in this testing. Fabrics with apparent opening sizes of 10, 25, 50 and 100 microns were evaluated. These fabrics were evaluated under three separate test conditions, a water flow test, a solids retention test and a grout pour test. A flow test with water showed that installation of an additional filter layer will predictably reduce the theoretical flux through the sheet drain. The manufacturer reports the flux for Sitedrain 94 as 150 gpm/ft{sup 2} by ASTM D-4491. This compares reasonably well with the 117 gpm/ft{sup 2} obtained in this testing. A combination of the 10 micron fabric with Sitedrain 94 could be expected to decrease flux by about 10 times as compared to Sitedrain 94 alone. The different media were used to filter a slag and fly ash mixture from water. Slag historically has the smallest nominal particle size of the premix components. Cement was omitted from the test because of its reactivity with water would prohibit accurately particle size measurements of the filtered samples. All four media sizes were able to remove greater than 95% of particles larger than 100 microns from the slurry. The smaller opening sizes were increasingly effective in removing more particles. The 10 micron filter captured 15% of the total amount of solids used in the test. This result implies that some insoluble particles may still be able to enter the drain water collection system, although the overall solids rejection is significantly improved over the current design. Test boxes were filled with grout to evaluate the performance of the sheet drain and fabrics in a simulated vault environment. All of the tests produced a similar amount of drain water, between 8-11% of the amount of water in the mix, which is expected with the targeted formulation. All of the collected drain waters contained some amount of solids, although the 10 micron filter did not appear to allow any premix materials to pass through. The solids collected from this box are believed to consist of calcium carbonate based on one ICP-AES measurement. Any of the four candidate fabrics would be an improvement over the sheet drain alone relative to solids removal. The 10 micron fabric is the only candidate that stopped all premix material from passing. The 10 micron fabric will also cause the largest decrease in flux. This decrease in flux was not enough to inhibit the total amount of drain water removed, but may lead to increased time to remove standing water prior to subsequent pours in the facility. The acceptability of reduced liquid flux through the 10 micron fabric will depend on the amount of excess water to be removed, the time available for water removal and the total area of fabric installed at the disposal cell.

  12. FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION

    SciTech Connect (OSTI)

    Cozzi, A.

    2011-01-18T23:59:59.000Z

    The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.

  13. Disposal rabbit

    DOE Patents [OSTI]

    Lewis, L.C.; Trammell, D.R.

    1983-10-12T23:59:59.000Z

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  14. Disposable rabbit

    DOE Patents [OSTI]

    Lewis, Leroy C. (Idaho Falls, ID); Trammell, David R. (Rigby, ID)

    1986-01-01T23:59:59.000Z

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  15. Characterization of Tank 23H Supernate Per Saltstone Waste Acceptance Criteria Analysis Requirements-2005

    SciTech Connect (OSTI)

    Oji, L

    2005-06-01T23:59:59.000Z

    Variable depth Tank 23H samples (22-inch sample [HTF-014] and 185-inch sample [HTF-013]) were pulled from Tank 23H in February, 2005 for characterization. The characterization of the Tank 23H low activity waste is part of the overall liquid waste processing activities. This characterization examined the species identified in the Saltstone Waste Acceptance Criteria (WAC) for the transfer of waste into the Salt-Feed Tank (SFT). The samples were delivered to the Savannah River National Laboratory (SRNL) and analyzed. Apart from radium-226 with an average measured detection limit of < 2.64E+03 pCi/mL, which is about the same order of magnitude as the WAC limit (< 8.73E+03 pCi/mL), none of the species analyzed was found to approach the limits provided in the Saltstone WAC. The concentration of most of the species analyzed for the Tank 23H samples were 2-5 orders of magnitude lower than the WAC limits. The achievable detection limits for a number of the analytes were several orders of magnitude lower than the WAC limits, but one or two orders of magnitude higher than the requested detection limits. Analytes which fell into this category included plutonium-241, europium-154/155, antimony-125, tin-126, ruthenium/rhodium-106, selenium-79, nickel-59/63, ammonium ion, copper, total nickel, manganese and total organic carbon.

  16. Characterization of Tank 23H Supernate Per Saltstone Waste Acceptance Criteria Analysis Requirements -2005

    SciTech Connect (OSTI)

    Oji, L

    2005-05-05T23:59:59.000Z

    Variable depth Tank 23H samples (22-inch sample [HTF-014] and 185-inch sample [HTF-013]) were pulled from Tank 23H in February, 2005 for characterization. The characterization of the Tank 23H low activity waste is part of the overall liquid waste processing activities. This characterization examined the species identified in the Saltstone Waste Acceptance Criteria (WAC) for the transfer of waste into the Salt-Feed Tank (SFT). The samples were delivered to the Savannah River National Laboratory (SRNL) and analyzed. Apart from radium-226 with an average measured detection limit of < 2.64E+03 pCi/mL, which is about the same order of magnitude as the WAC limit (< 8.73E+03 pCi/mL), none of the species analyzed was found to approach the limits provided in the Saltstone WAC. The concentration of most of the species analyzed for the Tank 23H samples were 2-5 orders of magnitude lower than the WAC limits. The achievable detection limits for a number of the analytes were several orders of magnitude lower than the WAC limits, but one or two orders of magnitude higher than the requested detection limits. Analytes which fell into this category included plutonium-241, europium-154/155, antimony-125, tin-126, ruthenium/rhodium-106, selenium-79, nickel-59/63, ammonium ion, copper, total nickel, manganese and total organic carbon.

  17. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    SciTech Connect (OSTI)

    Fondeur, F. F.

    2013-04-17T23:59:59.000Z

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case will not impact decontamination or immobilization operations at Savannah River Site (SRS). Some applications have zero tolerance for dimensional changes such as the operation of valves while other applications a finite dimensional change improves the function of the application such as seals and gaskets. Additional considerations are required before using the conclusions from this work to judge outcomes in field applications. Decane, a component of Isopar?L that is most likely to interact with the polymers, mildly interacted with the elastomers and the propylene based polymers but their degree of swelling is at most 10% and the confined geometry that they are typically placed in indicate this is not significant. In addition, it was found that Vellumoid may leach protein into the NGS solvent. Since Vellumoid is used at the mixer in Saltstone where it sees minimum quantities of solvent, this leaching has no effect on the extraction process at MCU or the immobilization process at saltstone. No significant interaction is expected between MaxCalix and the polymers and elastomers used at MCU, DWPF, and Saltstone. Overall, minimal and insignificant interactions are expected on extraction and immobilization operations when MCU switches from CSSX to NGS solvent. It is expected that contacting NGS will not accelerate the aging rate of polymers and elastomers under radiation and heat. This is due to the minimal interaction between NGS and the polymers and the confined geometries for these polymers. SRNL recommends the use of the HSP method (for screening) and some testing to evaluate the impact of other organic such as alcohols, glycolate, and their byproducts on the polymers used throughout the site.

  18. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  19. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Poultry Farm Daily Disposal Methods 0;Disposal: Science and Theory First Composter in Delaware · Delmarva was of the first daily composting · 120 in USA over next 10 years #12;Disposal: Science and Theory Composting Procedure · Mixture ­ 1 ½ to 2

  20. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Disposal options emergency mortality composting procedure · Use of composting during outbreaks #12;Disposal: Science and disinfection of farms and surveillance around affected flocks. " USDA APHIS VS EMD, 2007 #12;Disposal: Science

  1. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    SciTech Connect (OSTI)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01T23:59:59.000Z

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

  2. Disposal of drilling fluids

    SciTech Connect (OSTI)

    Bryson, W.R.

    1983-06-01T23:59:59.000Z

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  3. RADIOACTIVE WASTE DISPOSAL IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

  4. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foam Used in Actual Outbreak · Water #12;Disposal: Science and Theory Water Based Foam Culling Demo · First large scale comparison · Two:46 (m:s) #12;Disposal: Science and Theory WV H5N2 AIV 2007 · AIV positive turkeys ­ 25,000 turkey farm

  5. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Opciones para la producción de espuma espuma · Sistemas de boquilla #12;Disposal: Science and Theory Requisitos estimados: · Tiempo: 2 a 3 compactas ­ Equipo de respuesta propio de la industria Espuma de aire comprimido #12;Disposal: Science

  6. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Use of Composting · Composting has ­ British Columbia 2009 #12;Disposal: Science and Theory · Initial farm linked to NY LBM · Two additional and pile procedure Delmarva 2004 #12;Disposal: Science and Theory Delmarva 2004 · Composting used

  7. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Las recomendaciones de campo se la espuma #12;Disposal: Science and Theory · Múltiples especies de aves pueden despoblarse con espuma cesación #12;Disposal: Science and Theory · Dentro de una especie, pueden existir variaciones ­ Los ánades

  8. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foaming Options · Compressed Air Foam Systems (CAFS) · Foam Blower · Foam Generator · Nozzle Systems #12;Disposal: Science and Theory Compressed ­ Industry owned response team #12;Disposal: Science and Theory Commercial CAFS for Poultry · Poultry

  9. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Procedimiento básico ­ Desarrollar una pila de carcasas y lecho. Compostaje masivo de emergencia #12;Disposal: Science and Theory de emergencia #12;Disposal: Science and Theory · Desarrollar planes antes de que ocurra una

  10. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory 0 20 40 60 80 100 Compostaje #12;Disposal: Science and Theory · Delmarva fue de las primeras granjas en realizar el compostaje de en EE.UU. en los próximos 10 años. Pionera en compostaje en Delaware #12;Disposal: Science and Theory

  11. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Compostaje de aves de corralRouchey et al., 2005) Investigación previa #12;Disposal: Science and Theory · Se ha evaluado y documentado el, bovino Investigación previa #12;Disposal: Science and Theory · Experimento nro. 1 Impacto de la espuma en

  12. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Composting · Composting is defined drop #12;Disposal: Science and Theory Composting · Optimal composting ­ Carbon to nitrogen ratio (C;Disposal: Science and Theory Compost Composition · A variety of supplemental carbon materials have been

  13. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Opciones para la eliminación · ¿Qué compostaje durante brotes de enfermedades Lista de contenido #12;Disposal: Science and Theory "Ante un brote brotes de IIAP #12;Disposal: Science and Theory · En 2004, se despoblaron 100 millones de aves en todo el

  14. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Brief History of Foam 2004 ­ Bud and foam 2009 ­ No advantage for gas #12;Disposal: Science and Theory What is foam? · What is fire fighting system. #12;Disposal: Science and Theory Foam Composition · Foam can include ­ Mixture of surfactants

  15. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se ha usado como Virginia (2007) ­ British Columbia (2009) Uso del compostaje #12;Disposal: Science and Theory · Primera apilamiento Delmarva (2004) #12;Disposal: Science and Theory · El compostaje se usó para proteger una densa

  16. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Mass Emergency Composting · Basic ­ Create carcass and litter windrow #12;Disposal: Science and Theory Mass Emergency Composting · Basic cover ­ Clean and disinfect house ­ Sample for virus again #12;Disposal: Science and Theory Mass

  17. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory 2004 ­ Participación de Bud Malone y la espuma 2009 ­ Ninguna ventaja para el gas Breve historia de la espuma #12;Disposal: Science sistema de boquilla ¿Qué es la espuma? #12;Disposal: Science and Theory · La espuma puede incluir: ­ Una

  18. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Gassing is a preferred #12;Disposal: Science and Theory Carbon Dioxide Gassing · Carbon dioxide (CO2) one of the standard sensitivity time #12;Disposal: Science and Theory · Argon-CO2 gas depopulation evaluated under laboratory

  19. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foam Generator Setup · Drop off foam generator cart at one end of house #12;Disposal: Science and Theory Foam Generator Setup · Trailer parked generator attached to hose #12;Disposal: Science and Theory Foam Generation Begins · Team of two to operate

  20. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Summary · Foam is currently a viable ­ Foam application directly to cage #12;Disposal: Science and Theory Legal Status of Foam · Procedure depopulation, culling, and euthanasia #12;Disposal: Science and Theory Acknowledgements · USDA AICAP2 · USDA

  1. HEAT OF HYDRATION OF SALTSTONE MIXES-MEASUREMENT BY ISOTHERMAL CALORIMETRY

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V; Tommy Edwards, T

    2007-07-02T23:59:59.000Z

    This report provides initial results on the measurement of heat of hydration of Saltstone mixes using isothermal calorimetry. The results were obtained using a recently purchased TAM Air Model 3116 Isothermal Conduction Calorimeter. Heat of hydration is an important property of Saltstone mixes. Greater amounts of heat will increase the temperature of the curing mix in the vaults and limit the processing rate. The heat of hydration also reflects the extent of the hydraulic reactions that turn the fluid mixture into a ''stone like'' solid and consequently impacts performance properties such as permeability. Determining which factors control these reactions, as monitored by the heat of hydration, is an important goal of the variability study. Experiments with mixes of portland cement in water demonstrated that the heats measured by this technique over a seven day period match very well with the literature values of (1) seven day heats of hydration using the standard test method for heat of hydration of hydraulic cement, ASTM C 186-05 and (2) heats of hydration measured using isothermal calorimetry. The heats of hydration of portland cement or blast furnace slag in a Modular Caustic Side Solvent Extraction Unit (MCU) simulant revealed that if the cure temperature is maintained at 25 C, the amount of heat released over a seven day period is roughly 62% less than the heat released by portland cement in water. Furthermore, both the blast furnace slag and the portland cement were found to be equivalent in heat production over the seven day period in MCU. This equivalency is due to the activation of the slag by the greater than 1 Molar free hydroxide ion concentration in the simulant. Results using premix (a blend of 10% cement, 45% blast furnace slag, and 45% fly ash) in MCU, Deliquification, Dissolution and Adjustment (DDA) and Salt Waste Processing Facility (SWPF) simulants reveal that the fly ash had not significantly reacted (undergone hydration reactions) after seven days (most likely less than 5%). There were clear differences in the amount of heat released and the peak times of heat release for the three different simulants. It turns out that SWPF simulant mixes give off greater heat than does MCU and DDA simulant mixes. The temperature dependence of the heat of hydration was measured by carrying out these measurements at 25, 40 and 55 C. In general, the peak times shifted to shorter times as the isothermal temperature increased and the amount of heat released was independent of temperature for DDA and MCU but slightly higher at higher temperatures for SWPF. The goal of this study is to apply this technique to the measurement of the heat of hydration of mixes that will be made as part of the variability study. It is important to understand which variables will impact (and to what extent) the amount of heat generated and the peak times for the heat release. Those variables that can be controlled can then be tuned to adjust the heat of hydration as long as the other properties are still acceptable. The first application of heat of hydration measurements to the variability study was completed and the results presented in this report. These measurements were made using Phase VI mixes (SWPF simulants) following a statistical design that included variation in the compositional and operational variables. Variation in both the amount of heat released and the peak times for the heat release were observed. The measured ranges were 23 Joules per gram of premix for the heat release and 23 hours for the peak time of heat release at 25 C. Linear models with high R{sup 2} values and no statistical evidence for lack of fit were developed that relate the amount of heat release and the peak time for heat release for the Phase VI mixes to certain variables. The amount of heat released was a function of the aluminate and portland cement concentrations as well as the temperature of mixing. The peak time for heat release was a function of aluminate, portland cement and total nitrate plus nitrite concentrations. A comparison was made of the mea

  2. ALTERNATE PADDLE CONFIGURATION FOR IMPROVED WEAR RESISTANCE IN THE SALTSTONE MIXER

    SciTech Connect (OSTI)

    Reigel, M.; Fowley, M.

    2013-09-23T23:59:59.000Z

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configuration similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 ? 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the same way. The wear rate from wear test 2a was approximately double the wear rate from wear test 2b for paddle pairs 4 and 5. For both configurations, there was little or no wear on paddle pairs 1, 2, 3 and 6 based on mass change, indicating that the un-wetted and fully wetted premix materials cause less wear than the partially wetted premix. Additionally, inspection of the wear surface of the paddles showed more deformation on the flat paddles than the helical paddles which was consistent with the wear rates. Aligning of the auger discharge flight with paddle pair 1 resulted in a lower wear rate paddle pair 1 rather than having them misaligned with the feed augers. During the paddle wear tests, polishing wear was observed on the inside barrel of the mixer. The polishing wear is evident on the upper housing clamshell and the lower housing clamshell primarily at paddle pairs 4 and 5, which is the transition region of the mixer. Wear on the mixer barrel increases the space between the paddles and the barrel, resulting in increased grout build up on the barrel. Since the mixer barrel cannot be reconfigured or replaced in the SPF, the method for mitigating wear on the barrel is to move the more viscous grout through the transition region as quickly as possible. In addition, the location of the liquid inlet does not allow for sufficient cleaning of the mixer since residual grout remains on paddle pairs 1 ? 4. As the paddles continue to wear and the self-cleaning capability of the paddles is lost, the lack of sufficient flushing would aid in grout build up between the barrel and the paddles which could eventually lead to decreased throughput capacity of the dry feeds. Changing the paddle configuration from flat to helical resulted in no change to the rheological properties of the grout mixture. Both tests produced a grout that is within the processing range of the SPF. Based on the results of this testing, it is recommended for the currently installed SPF mixer that paddle pairs 1 through 6 be helical rather than flat, with the paddle pair 1 aligned with the feed au

  3. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  4. Depleted uranium disposal options.

    SciTech Connect (OSTI)

    Biwer, B. M.; Ranek, N. L.; Goldberg, M.; Avci, H. I.

    2000-04-01T23:59:59.000Z

    Depleted uranium hexafluoride (UF{sub 6}) has been produced in the United States since the 1940s as part of both the military program and the civilian nuclear energy program. The U.S. Department of Energy (DOE) is the agency responsible for managing most of the depleted UF{sub 6} that has been produced in the United States. The total quantity of depleted UF{sub 6} that DOE has to or will have to manage is approximately 700,000 Mg. Studies have been conducted to evaluate the various alternatives for managing this material. This paper evaluates and summarizes the alternative of disposal as low-level waste (LLW). Results of the analysis indicate that UF{sub 6} needs to be converted to a more stable form, such as U{sub 3}O{sub 8}, before disposal as LLW. Estimates of the environmental impacts of disposal in a dry environment are within the currently applicable standards and regulations. Of the currently operating LLW disposal facilities, available information indicates that either of two DOE facilities--the Hanford Site or the Nevada Test Site--or a commercial facility--Envirocare of Utah--would be able to dispose of up to the entire DOE inventory of depleted UF{sub 6}.

  5. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19T23:59:59.000Z

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  6. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01T23:59:59.000Z

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  7. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Why Depopulate? · Depopulation Methods · Basics of Foam · Types of Foam Equipment · Science Behind Foam · Implementing Foam Depopulation · Use of Foam in the Field · Conclusions #12;Disposal: Science and Theory "When HPAI outbreaks

  8. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se define como la: Science and Theory · Compostaje óptimo ­ Relación carbono/nitrógeno (C:N): 20:1 a 35:1 ­ Contenido de Compostaje #12;Disposal: Science and Theory · Se ha utilizado satisfactoriamente una variedad de materiales

  9. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Se ubica el carretón con el enfriamiento Ventiladores de túnel de viento #12;Disposal: Science and Theory · Se estaciona el remolque en uno: Science and Theory · Se usa un equipo de dos personas para hacer funcionar el sistema: ­ Operario del

  10. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Field recommendations based of activity ­ Corticosterone ­ EEG, ECG and motion studies · Large scale testing ­ Field scale units Science of Foam #12;Disposal: Science and Theory Cessation Time · Multiple bird species can be depopulated

  11. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS GENERATED AT DEPAUL UNIVERSITY.4 Hazardous Waste Defined p.5 Chemical Waste Procedure for Generating Departments p.6 o A of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G

  12. Development of Risk Insights for Regulatory Review of a Near-Surface Disposal Facility for Radioactive Waste

    SciTech Connect (OSTI)

    Esh, D.W.; Ridge, A.C.; Thaggard, M. [U.S. Nuclear Regulatory Commission, Mail Stop T7J8, Washington, DC 20555 (United States)

    2006-07-01T23:59:59.000Z

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the Department of Energy (DOE) to consult with the Nuclear Regulatory Commission (NRC) about non-High Level Waste (HLW) determinations. In its consultative role, NRC performs technical reviews of DOE's waste determinations but does not have regulatory authority over DOE's waste disposal activities. The safety of disposal is evaluated by comparing predicted disposal facility performance to the performance objectives specified in NRC regulations for the disposal of low-level waste (10 CFR Part 61 Subpart C). The performance objectives contain criteria for protection of the public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. The potential radiological dose to receptors typically is evaluated with a performance assessment (PA) model that simulates the release of radionuclides from the disposal site, transport of radionuclides through the environment, and exposure of potential receptors to residual contamination for thousands of years. This paper describes NRC's development and use of independent performance assessment modeling to facilitate review of DOE's non-HLW determination for the Saltstone Disposal Facility (SDF) at the Savannah River Site. NRC's review of the safety of near-surface disposal of radioactive waste at the SDF was facilitated and focused by risk insights developed with an independent PA model. The main components of NRC's performance assessment model are presented. The development of risk insights that allow the staff to focus review efforts on those areas that are most important to satisfying the performance objectives is discussed. Uncertainty analysis was performed of the full stochastic model using genetic variable selection algorithms. The results of the uncertainty analysis were then used to guide the development of simulations of other scenarios to understand the key risk drivers and risk limiters of the SDF. Review emphasis was placed on those aspects of the disposal system that were expected to drive performance: the physical and chemical performance of the cementitious wasteform and concrete vaults. Refinement of the modeling of the degradation and release from the cementitious wasteform had a significant effect on the predicted dose to a member of the public. (authors)

  13. Radium bearing waste disposal

    SciTech Connect (OSTI)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1995-07-01T23:59:59.000Z

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  14. Assessment of the Impact of a New Guanidine Suppressor In NGS on F/H Laboratory Analyses For DWPF and Saltstone MCU Transfers

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2013-04-29T23:59:59.000Z

    Implementation of the Next Generation Solvent (NGS) in the Modular Caustic-Side Solvent Extraction Unit (MCU) will now proceed with a new suppressor compound, 1,2,3-tris(3,7-dimethyloctyl)guanidine (TiDG), replacing the originally planned suppressor for NGS, 1,3-dicyclohexyl-2-(11-methyldodecyl) guanidine (DCiTG). The Savannah River National Laboratory (SRNL) was tasked with evaluating the potential impact to F/H Laboratory analyses supporting the Defense Waste Processing Facility (DWPF) Waste Acceptance Criteria (WAC) used to qualify transfers of MCU Strip Effluent (SE) into the facility and the Saltstone WAC used to qualify transfers of Tank 50 containing Decontaminated Salt Solution (DSS) from MCU into Saltstone. This assigned scope is covered by a Task Technical and Quality Assurance Plan (TTQAP). Previous impact evaluations were conducted when the DCiTG suppressor was planned for NGS and concluded that there was no impact to either the determination of MCU SE pH nor the analysis of Isopar® L carryover in the MCU SE and DSS streams. SRNL reported on this series of cross-check studies between the SRNL and F/H Laboratories. The change in suppressor from DCiTG to TiDG in the NGS should not impact the measurement of Isopar® L or pH in SE or DSS necessary to satisfy DWPF and Saltstone WAC (Tank 50) criteria, respectively. A statistical study of the low bias observed in Isopar® L measurements in both SRNL and F/H Laboratories may be necessary now that the final NGS composition is fixed in order to quantify the low bias so that a proper correction can be applied to measurements critical to the DWPF and Saltstone WACs. Depending upon the final DWPF WAC requirement put in place for SE pH, it could become necessary to implement an alternative ICP-AES measurement of boron. The current blended solvent system testing in SRNL should address any impacts to Isopar® L carryover into either the DSS or the SE. It is recommended that SRNL monitor the current blended solvent work underway with simulants in SRNL as well as any DWPF CPC testing done with the new SE stream to ascertain whether any need develops that could result in modification of any currently planned F/H Laboratory testing protocols.

  15. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  16. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  17. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010 TeppeiMaterial Disposal

  18. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  19. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

  20. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03T23:59:59.000Z

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  1. Melter Disposal Strategic Planning Document

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-09-25T23:59:59.000Z

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  2. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    SciTech Connect (OSTI)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29T23:59:59.000Z

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  3. Transportation, Aging and Disposal Canister System Performance...

    Broader source: Energy.gov (indexed) [DOE]

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. Transportation, Aging and Disposal...

  4. Ethidium Bromide: Disposal, Decontamination, and Destruction

    E-Print Network [OSTI]

    Jia, Songtao

    Ethidium Bromide: Disposal, Decontamination, and Destruction Procedure: 8.03 Created: 2 #12;Ethidium Bromide: Disposal, Decontamination, and Destruction Procedure: 8.03 Created: 2

  5. Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...

    Energy Savers [EERE]

    ERDF comprises a series disposal areas called cells. Each pair of cells is 70 feet deep, 500 feet wide and 1,000 feet long at the base - large enough to hold about three million...

  6. Title I Disposal Site

    E-Print Network [OSTI]

    Mr. Bill; Von Till

    2006-01-01T23:59:59.000Z

    The Office of Legacy Management and the Navajo Nation have been discussing an item specified in the Long Term Surveillance Plan (LTSP) for the Mexican Hat site for some time now, and we have come to a resolution on the matter. The LTSP specifies seep sampling at the site to confirm that the disposal cell is operating as designed. Typically, this is to be done for a specific time and then reevaluated, but, in this LTSP there is no time frame given. After 8 years of experience in sampling and observing these six seeps, it has been found that most are not flowing at all, and those that have any water running are so limited in flow that it is difficult to obtain a sample. In addition, several risk assessments have been performed over the years to evaluate the possible ecological risks associated with exposure to this seep water. The analysis indicates there would be no eco-risk based on the historic data to any wildlife or livestock. This information and a full analysis of the situation was submitted to the Navajo Nation for their consideration, and, in further discussions, they have agreed to limit the sampling to only making observations during the annual cell inspection, and if water is observed to be increased compared to historic observations, then sampling will resume. Their agreement to this change is noted in the enclosed copy of their letter to DOE dated July 25, 2006. I have enclosed a copy of this report,

  7. Solid Waste Disposal Facilities (Massachusetts)

    Broader source: Energy.gov [DOE]

    These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

  8. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  9. Puget Sound Dredged Disposal Analysis

    SciTech Connect (OSTI)

    Urabeck, F.J.; Phillips, K.E.

    1992-04-01T23:59:59.000Z

    Future disposal of dredged material in the Puget Sound estuary of the State of Washington is of major interest to Federal, state, and local governmental regulatory agencies, as well as those responsible for maintaining existing waterways and harbors. Elevated levels of toxic chemicals exist in bottom sediments of all the urban bays, with tumors and other biological abnormalities found in bottom fish associated with these water bodies. Public awareness of this situation has been heightened by extensive media coverage of recent government investigations of environmental conditions in Puget Sound. These investigations and public concerns have led to three ongoing regional planning efforts, all of which deal with Puget Sound water quality and marine bottom sediments. This paper reports on the Puget Sound Dredged Disposal Analysis (PSDDA), a 3-year joint Federal-state study primarily focusing on unconfined, open-water disposal of material dredged from Federal and non-Federal navigation projects. Study objectives include (a) selection of unconfined, open-water disposal sites; (b) development of sampling, testing, and test interpretation procedures to be used in evaluating the suitability of dredged material for disposal in Puget Sound waters; and (c) formulation of disposal site management plans. Preliminary findings for each of these objectives are discussed for central Puget Sound, which includes the ports of Seattle, Tacoma, and Everett.

  10. NRC Consultation and Monitoring at the Savannah River Site: Focusing Reviews of Two Different Disposal Actions - 12181

    SciTech Connect (OSTI)

    Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.; Parks, Leah S.; Grossman, Christopher J.; Alexander, George W. [U.S. Nuclear Regulatory Commission (United States)

    2012-07-01T23:59:59.000Z

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms, and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to radionuclide release from the waste. Because the waste inventory and concentration at both sites is sufficient to generate unacceptable doses to an off-site member of the public or inadvertent intruder in the absence of engineered barriers, the NRC staff review focused on the engineering features DOE plans to put in place to limit radionuclide release. At the FTF, DOE expects that peak doses are delayed beyond a 10,000 year performance period by a combination of (1) the flow-limiting effect of the steel tank liner and (2) chemical conditions created by the stabilizing grout overlying the waste that limit the solubility of key radionuclides for tens of thousands of years. At the SDF, DOE expects that flow will be significantly limited by water shedding along the closure cap lower drainage layer and that radionuclide release will be further limited by radionuclide precipitation or sorption within the high pH, chemically reducing conditions created within the saltstone waste form. Because the performance of both facilities depends on the performance of engineered barriers for thousands of years, the reviews included a detailed evaluation of the expected long-term behavior of these barriers. As previously discussed, NRC staff reviews of DOE waste determinations during consultation are designed to evaluate the three NDAA criteria, whereas the review of an updated PA during monitoring only addresses whether the NRC staff has reasonable assurance that the planned disposal action will meet the performance objectives of 10 CFR Part 61. The NRC staff review of the Waste Determination for the FTF did not include conclusions about whether the planned disposal of residual waste at the FTF would meet the NDAA criteria because of the substantial uncertainties in the degree of waste removal DOE would achieve and other technical uncertainties. The main product of the NRC staff review of the planned FTF disposal action is the recommendation that DOE should conduct waste release experiments to increase support for key modeling assumptions related to: (1) the evolution of pH and Eh in the grouted tank syst

  11. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01T23:59:59.000Z

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  12. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01T23:59:59.000Z

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  13. Disposable telemetry cable deployment system

    DOE Patents [OSTI]

    Holcomb, David Joseph (Sandia Park, NM)

    2000-01-01T23:59:59.000Z

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  14. MATERIAL HANDLING, STORAGE, AND DISPOSAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

  15. Disposal requirements for PCB waste

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    Polychlorinated biphenyls (PCBs) are a class of organic chemicals that had become widely used in industrial applications due to their practical physical and chemical properties. Historical uses of PCBs include dielectric fluids (used in utility transformers, capacitors, etc.), hydraulic fluids, and other applications requiring stable, fire-retardant materials. Due to findings that PCBs may cause adverse health effects and due to their persistence and accumulation in the environment, the Toxic Substances Control Act (TSCA), enacted on october 11, 1976, banned the manufacture of PCBs after 1978 [Section 6(e)]. The first PCB regulations, promulgated at 40 CFR Part 761, were finalized on February 17, 1978. These PCB regulations include requirements specifying disposal methods and marking (labeling) procedures, and controlling PCB use. To assist the Department of Energy (DOE) in its efforts to comply with the TSCA statute and implementing regulations, the Office of Environmental Guidance has prepared the document ``Guidance on the Management of Polychlorinated Biphenyls (PCBs).`` That document explains the requirements specified in the statute and regulations for managing PCBs including PCB use, storage, transport, and disposal. PCB materials that are no longer in use and have been declared a waste must be disposed of according to the requirements found at 40 CFR 761.60. These requirements establish disposal options for a multitude of PCB materials including soil and debris, liquid PCBs, sludges and slurries, containers, transformers, capacitors, hydraulic machines, and other electrical equipment. This Information Brief supplements the PCB guidance document by responding to common questions concerning disposal requirements for PCBs. It is one of a series of Information Briefs pertinent to PCB management issues.

  16. Dredged and Fill Material Disposal (North Dakota)

    Broader source: Energy.gov [DOE]

    This chapter provides regulations for the disposal of dredged and fill material. Any entity desiring to dispose of such material must first obtain a permit, and the State Engineer has the...

  17. Spent Fuel Disposal Trust Fund (Maine)

    Broader source: Energy.gov [DOE]

    Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

  18. Deep Borehole Disposal Research: Demonstration Site Selection...

    Office of Environmental Management (EM)

    Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

  19. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01T23:59:59.000Z

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  20. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    Asset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have the refrigerant recovered in accordance with EPA's requirements for servicing. However, equipment that typically

  1. Waste disposal options report. Volume 1

    SciTech Connect (OSTI)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01T23:59:59.000Z

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

  2. Disposable remote zero headspace extractor

    DOE Patents [OSTI]

    Hand, Julie J. (Idaho Falls, ID); Roberts, Mark P. (Arco, ID)

    2006-03-21T23:59:59.000Z

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  3. Sample storage/disposal study

    SciTech Connect (OSTI)

    Valenzuela, B.D.

    1994-09-29T23:59:59.000Z

    Radioactive waste from defense operations has accumulated at the Hanford Site`s underground waste tanks since the late 1940`s. Each tank must be analyzed to determine whether it presents any harm to the workers at the Hanford Site, the public or the environment. Analyses of the waste aids in the decision making process in preparation of future tank waste stabilization procedures. Characterization of the 177 waste tanks on the Hanford Site will produce a large amount of archived material. This also brings up concerns as to how the excess waste tank sample material from 325 and 222-S Analytical Laboratories will be handled. Methods to archive and/or dispose of the waste have been implemented into the 222-S and 325 Laboratory procedures. As the amount of waste characterized from laboratory analysis grows, an examination of whether the waste disposal system will be able to compensate for this increase in the amount of waste needs to be examined. Therefore, the need to find the safest, most economically sound method of waste storage/disposal is important.

  4. Technical and philosophical aspects of ocean disposal

    E-Print Network [OSTI]

    Zapatka, Marchi Charisse

    1976-01-01T23:59:59.000Z

    ting Permissible Concentrations Alternatives to Ocean Oisposal. Deep-well injection. Incineration Land-based storage Land disposal. Rocycling. Advanced treatment Trends 55 56 58 58 61 61 62 65 66 71 83 87 90 91 TABLE OF CONTENTS... of Ocean Disposal. (August 1976) Plarchi Charisse Zapatka, B. S. , Texas ASM University Chairman of Advisory Committee: Dr. Roy W. Harm, Jr. The ocean disposal of waste materials is a controversial subject. People d1sagree as to whether this method...

  5. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, Michael D. (Las Vegas, NV); Klapperick, Robert L. (Las Vegas, NV); Bell, Chris (Las Vegas, NV)

    1993-01-01T23:59:59.000Z

    Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

  6. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, M.D.; Klapperick, R.L.; Bell, C.

    1993-12-21T23:59:59.000Z

    Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

  7. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  8. Sandia National Laboratories: Deep Borehole Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NESL) Brayton Lab SCO2 Brayton Cycle Technology Videos Heat Exchanger Development Diffusion Bonding Characterization Mechanical Testing Deep Borehole Disposal Nuclear...

  9. Electrochemical Apparatus with Disposable and Modifiable Parts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in academia, might be able to afford only a limited inventory, which could stall productivity. Too expensive to be disposable, the cells must be cleaned after each experiment,...

  10. Material Recycling and Waste Disposal Document Control

    E-Print Network [OSTI]

    Guillas, Serge

    1 Material Recycling and Waste Disposal Procedure Document Control Document Created by 23, treatment, handling, transport and disposal of recyclable materials and residual wastes so as to maximise the opportunity and value for the recyclable materials and to minimise the quantity of residual materials

  11. SciTech Connect: Deep Borehole Disposal Research: Geological...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  12. NDAA Section 3116 Waste Determinations with Related Disposal...

    Office of Environmental Management (EM)

    NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Section...

  13. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27T23:59:59.000Z

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  14. A disposable, self-administered electrolyte test

    E-Print Network [OSTI]

    Prince, Ryan, 1977-

    2003-01-01T23:59:59.000Z

    This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

  15. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  16. Economic assessment of CO? capture and disposal

    E-Print Network [OSTI]

    Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

    A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

  17. Waste disposal options report. Volume 2

    SciTech Connect (OSTI)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01T23:59:59.000Z

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  18. Subseabed Disposal Program Plan. Volume I. Overview

    SciTech Connect (OSTI)

    None

    1981-07-01T23:59:59.000Z

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations.

  19. Biohazardous Waste Disposal GuidelinesDescriptionStorage& LabelingTreatmentDisposal

    E-Print Network [OSTI]

    Wikswo, John

    Waste Sharps Waste Solid Lab Waste Liquid Waste Any of these devices if contaminated with biohazardousBiohazardous Waste Disposal GuidelinesDescriptionStorage& packaging LabelingTreatmentDisposal Mixed container. Container must be leakproof, ridgid, puncture resistant, clearly marked for biohazardous waste

  20. Electrochemical apparatus comprising modified disposable rectangular cuvette

    DOE Patents [OSTI]

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10T23:59:59.000Z

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  1. Economic disposal of solid oilfield wastes

    SciTech Connect (OSTI)

    Bruno, M.S.; Qian, H.X.

    1995-09-01T23:59:59.000Z

    A variety of solid oilfield wastes, including produced sand, tank bottoms, and crude contaminated soils, are generated during drilling, production, and storage processes. Crude oil and crude-contaminated sands or soils are generally designated as nonhazardous wastes. However, these materials still must be disposed of in an environmentally acceptable manner. The problems can become most pressing as oil fields in urban areas reach the end of their productive lives and the productive lives and the properties are redeveloped for residential use. An economically and environmentally sound solution is to reinject the solid waste into sand formations through slurry fracture muds and cuttings in Alaska, the Gulf of Mexico, and the North Sea; naturally occurring radioactive materials in Alaska and the Gulf of Mexico; and large volumes of produced oily sand in the provinces of Alberta and Saskatchewan, Canada. The technique offers a number of economic and environmental advantages for disposal of solid oilfield wastes. When reinjecting into depleted oil sands, the crude waste is simply being returned to its place of origin. The long-term liability to the operator is eliminated, in marked contrast to surface storage or landfill disposal. Finally, fracture-injection costs are less than typical transport and landfill disposal costs for moderate to large quantities of solid waste

  2. Low level tank waste disposal study

    SciTech Connect (OSTI)

    Mullally, J.A.

    1994-09-29T23:59:59.000Z

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  3. Waste Handling and Disposal Biological Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    plumbing services, EHS personnel wastewater treatment plant personnel, and the general public canWaste Handling and Disposal Biological Safety General Biosafety Practices (GBP) Why You Should Care on the next experiment. Are you working with r/sNA, biological toxins, human materials, needles, plasticware

  4. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    SciTech Connect (OSTI)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21T23:59:59.000Z

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  5. Investigations of Dual-Purpose Canister Direct Disposal Feasibility...

    Office of Environmental Management (EM)

    Investigations of Dual-Purpose Canister Direct Disposal Feasibility (FY14) R1 Investigations of Dual-Purpose Canister Direct Disposal Feasibility (FY14) R1 Results continue to...

  6. EM Completes Salt Waste Disposal Units $8 Million under Budget...

    Office of Environmental Management (EM)

    EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site February...

  7. Strategy for the Management and Disposal of Used Nuclear Fuel...

    Office of Environmental Management (EM)

    Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

  8. Solid waste disposal options: an optimum disposal model for the management of municipal solid waste

    E-Print Network [OSTI]

    Haney, Brenda Ann

    1989-01-01T23:59:59.000Z

    management from landfill disposal to incineration and other technologies. An increase in the number of operating incinerators and the average plant capacity has increased since 1980. Incineration with waste-to-energy recovery replaced traditional... that are considered in- clude: composting, recycling, landfills and incineration with waste-to-energy recovery. The model evaluates disposal options based on the percentage of the total waste stream eliminated by each method. Once the amount of waste is determined...

  9. Used Fuel Disposition Campaign Disposal Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign International Activities Implementation Plan Review of...

  10. Acceptance of Classified Excess Components for Disposal at Area 5

    SciTech Connect (OSTI)

    Poling, Jeanne [National Security Technologies, LLC (United States); Saad, Max [Sandia National Lab., NM (United States)

    2012-04-09T23:59:59.000Z

    This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

  11. DREDGED MATERIAL DISPOSAL ECONOMICS By Jay R. Lund,1

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    DREDGED MATERIAL DISPOSAL ECONOMICS By Jay R. Lund,1 Associate Member, ASCE ABSTRACT: Recent difficulties in siting dredged material disposal facilities are increasing interests in alternative disposal or reuse of dredged material and the possible adverse consequences of any increases in the generation

  12. Cost of meeting geothermal liquid effluent disposal regulations

    SciTech Connect (OSTI)

    Wells, K.D.; Currie, J.W.; Price, B.A.; Rogers, E.A.

    1981-06-01T23:59:59.000Z

    Background information is presented on the characteristics of liquid wastes and the available disposal options. Regulations that may directly or indirectly influence liquid waste disposal are reviewed. An assessment of the available wastewater-treatment systems is provided. A case study of expected liquid-waste-treatment and disposal costs is summarized. (MHR)

  13. Sorting and disposal of hazardous laboratory Radioactive waste

    E-Print Network [OSTI]

    Maoz, Shahar

    Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel into the solid biological waste. Formalin should be disposed off as Chemical Waste. Carcasses of experimental

  14. Landfill Disposal of CCA-Treated Wood with Construction and

    E-Print Network [OSTI]

    Florida, University of

    Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

  15. Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms

    SciTech Connect (OSTI)

    Vinson, D.W.

    1998-11-06T23:59:59.000Z

    This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

  16. Pesticide fate in an aboveground disposal system

    E-Print Network [OSTI]

    Vanderglas, Brian Richard

    1988-01-01T23:59:59.000Z

    Engineers, 1979). Prior to the Resource Conservation and Recovery Act (RCRA) of 1976. , little attention had been given to pesticide waste solutions leading to careless and dangerous disposal practices. Rinsate and washwaters were rarely collected... health as well as to livestock and crops and other vegetation in the affected area. Recent amendments (1984) to RCRA's federal regulations require that pesticide users who generate more than one hundred kilograms per month of acutely hazardous wastes...

  17. Disposal of Hanford site tank wastes

    SciTech Connect (OSTI)

    Kupfer, M.J.

    1993-09-01T23:59:59.000Z

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 {times} 10{sup 5} m{sup 3} of solid and liquid wastes. Wastes in the SSTs contain about 5.7 {times} 10{sup 18} Bq (170 MCi) of various radionuclides including {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 {times} 10{sup 4} m{sup 3} of liquid (mainly) and solid wastes; approximately 4 {times} 10{sup 18}Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes.

  18. Specialized Disposal Sites for Different Reprocessing Plant Wastes

    SciTech Connect (OSTI)

    Forsberg, Charles W. [Nuclear Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831 (United States); Driscoll, Michael J. [Department of Nuclear Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States)

    2007-07-01T23:59:59.000Z

    Once-through fuel cycles have one waste form: spent nuclear fuel (SNF). In contrast, the reprocessed SNF yields multiple wastes with different chemical, physical, and radionuclide characteristics. The different characteristics of each waste imply that there are potential cost and performance benefits to developing different disposal sites that match the disposal requirements of different waste. Disposal sites as defined herein may be located in different geologies or in a single repository containing multiple sections, each with different characteristics. The paper describes disposal options for specific wastes and the potential for a waste management system that better couples various reprocessing plant wastes with disposal facilities. (authors)

  19. PROPERTY DISPOSAL RECORDS | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5 Accretion-of-DutiesPROPERTY DISPOSAL RECORDS PROPERTY

  20. Paducah Waste Disposal | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducationRemediation » Paducah Waste Disposal Paducah

  1. Spook, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1 ~(3JlpV Project ProposalFirstI

  2. The Salt Defense Disposal Investigations (SDDI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand WaterThe FutureRiskSalt Defense Disposal

  3. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  4. Crescent Junction Disposal Site Diversion Channel Design, North Side Disposal Cell Sources of Data:

    E-Print Network [OSTI]

    unknown authors

    Checked b"t me-Kao a MName A e4719 lProblem Statement: " Design erosion protection for the north slope of the disposal cell to prevent detrimental erosion from surface water flows from upland area, consistent with the requirements of 40 CFR Part 192 and NRC guidance in NUREG 1623.

  5. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    SciTech Connect (OSTI)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01T23:59:59.000Z

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

  6. Will new disposal regulations undo decades of progress?

    SciTech Connect (OSTI)

    Ward, J. [John Ward Inc. (United States)

    2009-07-01T23:59:59.000Z

    In 1980, the Belville Amendments to RCRA instructed EPA to 'conduct a detailed and comprehensive study and submit a report' to Congress on the 'adverse effects on human health and the environment, if any, of the disposal and utilization' of coal ash. In both 1988 and 1999, EPA submitted reports to Congress and recommended coal ash should not be regulated as hazardous waste. After the failure of a Tennesse power plant's coal ash disposal facility, EPA will be proposing new disposal regulations.

  7. Processing and waste disposal representative for fusion breeder blanket systems

    SciTech Connect (OSTI)

    Finn, P.A.; Vogler, S.

    1987-01-01T23:59:59.000Z

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made.

  8. Remedial Action and Waste Disposal Conduct of OperationsMatrix

    SciTech Connect (OSTI)

    M. A. Casbon.

    1999-05-24T23:59:59.000Z

    This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

  9. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-01-29T23:59:59.000Z

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  10. Reactor Pressure Vessel Head Packaging & Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.; Posivak, E.; Freitag, A.; Geddes, B.

    2003-02-26T23:59:59.000Z

    Reactor Pressure Vessel (RPV) Head replacements have come to the forefront due to erosion/corrosion and wastage problems resulting from the susceptibility of the RPV Head alloy steel material to water/boric acid corrosion from reactor coolant leakage through the various RPV Head penetrations. A case in point is the recent Davis-Besse RPV Head project, where detailed inspections in early 2002 revealed significant wastage of head material adjacent to one of the Control Rod Drive Mechanism (CRDM) nozzles. In lieu of making ASME weld repairs to the damaged head, Davis-Besse made the decision to replace the RPV Head. The decision was made on the basis that the required weld repair would be too extensive and almost impractical. This paper presents the packaging, transport, and disposal considerations for the damaged Davis-Besse RPV Head. It addresses the requirements necessary to meet Davis Besse needs, as well as the regulatory criteria, for shipping and burial of the head. It focuses on the radiological characterization, shipping/disposal package design, site preparation and packaging, and the transportation and emergency response plans that were developed for the Davis-Besse RPV Head project.

  11. Low-Level Waste Disposal Alternatives Analysis Report

    SciTech Connect (OSTI)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01T23:59:59.000Z

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  12. South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

  13. Depleted uranium storage and disposal trade study: Summary report

    SciTech Connect (OSTI)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01T23:59:59.000Z

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  14. Fees For Disposal Of Hazardous Waste Or Substances (Alabama)

    Broader source: Energy.gov [DOE]

    The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

  15. Title I Disposal Sites Annual Report | Department of Energy

    Office of Environmental Management (EM)

    Sites Annual Report 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites (March 2014) 2013 Annual Site...

  16. alcatraz disposal site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Radium-226 are the predominant radioactive contaminents on Formerly Utilized Sites Remedial Action Plan (FUSRAP) sites. Engineering Websites Summary: by the nearby disposal...

  17. Disposable Carbon Nanotube Modified Screen-Printed Biosensor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Disposable Carbon Nanotube Modified Screen-Printed Biosensor...

  18. Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste....

  19. ash disposal area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAP WASTEWATER TREATMENT CENTRE ACKNOWLEDGEMENTS Funding for this study was provided...

  20. ash disposal island: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAP WASTEWATER TREATMENT CENTRE ACKNOWLEDGEMENTS Funding for this study was provided...

  1. ash disposal site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAP WASTEWATER TREATMENT CENTRE ACKNOWLEDGEMENTS Funding for this study was provided...

  2. ash disposal sites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAP WASTEWATER TREATMENT CENTRE ACKNOWLEDGEMENTS Funding for this study was provided...

  3. Disposable sludge dewatering container and method

    DOE Patents [OSTI]

    Cole, Clifford M. (1905 Cottonwood Dr., Aiken, SC 29803)

    1993-01-01T23:59:59.000Z

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  4. Radioactive waste disposal in thick unsaturated zones

    SciTech Connect (OSTI)

    Winograd, I.J.

    1981-06-26T23:59:59.000Z

    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolation is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere. 4 figures.

  5. TMI Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect (OSTI)

    Larry L. Taylor

    2003-09-01T23:59:59.000Z

    This report documents the reported contents of the Three Mile Island Unit 2 (TMI-2) canisters. proposed packaging, and degradation scenarios expected in the repository. Most fuels within the U.S. Department of Energy spent nuclear fuel inventory deal with highly enriched uranium, that in most cases require some form of neutronic poisoning inside the fuel canister. The TMI-2 fuel represents a departure from these fuel forms due to its lower enrichment (2.96% max.) values and the disrupted nature of the fuel itself. Criticality analysis of these fuel canisters has been performed over the years to reflect conditions expected during transit from the reactor to the Idaho National Engineering and Environmental Laboratory, water pool storage,1 and transport/dry-pack storage at Idaho Nuclear Technology and Engineering Center.2,3 None of these prior analyses reflect the potential disposal conditions for this fuel inside a postclosure repository.

  6. Method for disposing of hazardous wastes

    DOE Patents [OSTI]

    Burton, Frederick G. (West Richland, WA); Cataldo, Dominic A. (Kennewick, WA); Cline, John F. (Prosser, WA); Skiens, W. Eugene (Richland, WA)

    1995-01-01T23:59:59.000Z

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  7. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  8. Challenges in Disposing of Anthrax Waste

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Stein, Steven L.; Upton, Jaki F.; Toomey, Christopher

    2011-09-01T23:59:59.000Z

    Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration’s (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material will require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussion was the identification of three primary topical areas that must be addressed: 1) Planning; 2) Unresolved research questions, and resolving regulatory issues.

  9. Results For The Second Quarter 2013 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    SciTech Connect (OSTI)

    Bannochie, Christopher J.

    2013-07-31T23:59:59.000Z

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Saltstone Facility Engineering (SFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  10. Results for the second quarter 2014 tank 50 WAC slurry sample chemical and radionuclide contaminants

    SciTech Connect (OSTI)

    Bannochie, C. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-09-04T23:59:59.000Z

    This report details the chemical and radionuclide contaminant results for the characterization of the 2014 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  11. Results For The Third Quarter 2013 Tank 50 WAC Slurry Sample

    SciTech Connect (OSTI)

    Bannochie, Christopher J.

    2013-11-26T23:59:59.000Z

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  12. A Change in Envirocare's Disposal Cell Design

    SciTech Connect (OSTI)

    Rogers, T.

    2002-02-25T23:59:59.000Z

    Envirocare of Utah, Inc. operates a Low Level Radioactive Waste (LLRW) and 11e. disposal facility in the Utah west dessert. Envirocare disposes of LLRW in above ground cells. A seven-foot excavation lined with two feet of clay comprises the cell floor. Approximately 22 feet of waste is then placed in the cell in one-foot thick compacted lifts. The cover system consists of a nine-foot clay radon barrier and three-foot rock erosion barrier. This is required to prevent radon emissions at the surface of the radon barrier from exceeding 20 pCi/m2s, the radon release standard in Criterion 6 of 10 CFR 40. The required thickness of the current clay radon barrier cover was based on the original radon flux model used to evaluate the safety of Envirocare's proposed LLRW and 11e.(2) license operations. Because of the lack of actual measurements, universally conservative values were used for the long-term moisture content and the radon diffusion coefficients of the waste and radon barrier material. Since receiving its license, Envirocare has collected a number of samples from the radon barrier and waste material to determine their actual radon attenuation characteristics, including the long-term moisture content and the associated radon diffusion coefficient. In addition, radon flux measurements have been performed to compare the model calculations with the calculated results. The results from these analyses indicate that the initial modeling input parameters, specifically the long-term moisture content and the radon diffusion coefficient, are more conservative than that needed to ensure compliance with the applicable regulatory requirements.

  13. EIA Practice Examples of Cumulative Effects and Final Disposal of

    E-Print Network [OSTI]

    EIA Practice Examples of Cumulative Effects and Final Disposal of Spent Nuclear Fuel Antoienette: SLU Service/Repro, Uppsala 2012 #12;EIA Practice. Examples of Cumulative Effects and Final Disposal of Spent Nuclear Fuel Abstract This thesis is about Environmental Impact Assessment (EIA) practice

  14. Procedure for the Recycling Material and Disposal of Waste from

    E-Print Network [OSTI]

    Guillas, Serge

    assessments must include consideration of storage, handling, movement and disposal of wastes under that waste is produced, stored, transported and disposed of without harming the environment. This is your Clinical Wastes Radioactive Wastes Laboratory Wastes of Unknown Hazard Non-Hazardous Laboratory Wastes

  15. The College of Engineering Electronic Media Disposal Policy

    E-Print Network [OSTI]

    Demirel, Melik C.

    The College of Engineering Electronic Media Disposal Policy COE­EMD­01 1.0 Purpose The purpose of this policy is to establish requirements for the proper disposal of electronic media containing sensitive data of information resources contain electronic media including, but not limited to: computer systems, personal

  16. User Guide for Disposal of Unwanted Items and Electronic Waste

    E-Print Network [OSTI]

    Mullins, Dyche

    User Guide for Disposal of Unwanted Items and Electronic Waste January 31, 2012 Jointly developed metal and wood o Waste/trash management o Recycle, reuse or disposal of materials D&S does not process o and electronics of all types (working or not) o Furniture o Reusable/Recyclable items o Assets with UC Property

  17. 3DD - Three Dimensional Disposal of Spent Nuclear Fuel - 12449

    SciTech Connect (OSTI)

    Dvorakova, Marketa; Slovak, Jiri [Radioactive Waste Repository Authority (RAWRA), Prague (Czech Republic)

    2012-07-01T23:59:59.000Z

    Three dimensional disposal is being considered as a way in which to store long-term spent nuclear fuel in underground disposal facilities in the Czech Republic. This method involves a combination of the two most common internationally recognised disposal methods in order to practically apply the advantages of both whilst, at the same time, eliminating their weaknesses; the method also allows easy removal in case of potential re-use. The proposed method for the disposal of spent nuclear fuel will reduce the areal requirements of future deep geological repositories by more than 30%. It will also simplify the container handling process by using gravitational forces in order to meet requirements concerning the controllability of processes and ensuring operational and nuclear safety. With regard to the issue of the efficient potential removal of waste containers, this project offers an ingenious solution which does not disrupt the overall stability of the original disposal complex. (authors)

  18. PROCEDURES FOR DISPOSING OF WASTE CHEMICALS 1. All containers submitted for disposal must be clearly labeled with the following information

    E-Print Network [OSTI]

    -duty plastic bags. Tape all containers of chemically-contaminated dry materials securely shut and label. Container Is - Indicate P (plastic), G (glass), or M (metal). Physical State - Indicate if the material8/99 PROCEDURES FOR DISPOSING OF WASTE CHEMICALS 1. All containers submitted for disposal must

  19. University of Delaware Laboratory Chemical Waste Disposal Guide ALL CHEMICAL WASTE MUST BE DISPOSED OF THROUGH THE

    E-Print Network [OSTI]

    Firestone, Jeremy

    containment bin. CHEMICALLY CONTAMINATED SOLID WASTE · Place materials in a heavy duty plastic bag insideUniversity of Delaware Laboratory Chemical Waste Disposal Guide ALL CHEMICAL WASTE MUST BE DISPOSED OF THROUGH THE DEPARTMENT OF HEALTH & SAFETY http://www.udel.edu/ HS EXAMPLES OF CHEMICAL WASTE INCLUDE

  20. The full fuel cycle of CO{sub 2} capture and disposal capture and disposal technology

    SciTech Connect (OSTI)

    Saroff, L.

    1995-12-31T23:59:59.000Z

    The overall objective of this study was to develop a methodology for the evaluation of the energy usage and cost both private and societal (external cost)for full fuel cycles. It was envisioned that other organizations could employ the methodology with minor alterations for a consistent means of evaluating full fuel cycles. The methodology has been applied to three fossil fuel electric generation processes each producing 500 MWe (net). These are: a Natural Gas Combined Cycle (NGCC) power plant burning natural gas with direct CO{sub 2} capture and disposal; an Integrated Gasification Combined Cycle (IGCC) power plant burning coal with direct CO{sub 2} capture and disposal; and a Pulverized Fuel (PC) power plant burning coal with a managed forest indirectly sequestering CO{sub 2}. The primary aim is to provide decision makers with information from which to derive policy. Thus, the evaluation reports total energy used, private costs to build the facility, emissions and burdens, and the valuation (externalities) of the impacts of the burdens. The energy usage, private costs including capture and disposal, and emissions are reported in this paper. The valuations and analysis of the impact of the plant on the environment are reported in the companion paper. The loss in efficiency (LHV) considering the full fuel cycle as opposed to the thermal efficiency of the power plant is; 0.9, 2.4, and 4.6 for the NGCC, IGCC, and PC+controls, respectively. Electricity cost, c/kWh, including capital, operating and fuel, at a 10% discount rate. ranges from 5.6 to 7.08 for NGCC and 7.24 to 8.61 for IGCC. The range is dependent on the mode of disposal, primarily due to the long pipeline to reach a site for the pope disposal in the ocean. For the PC+ controls then is a considerable range from 7.66 to over 16 c/kWh dependent on the size and cost of the managed forest.

  1. Generic Argillite/Shale Disposal Reference Case

    SciTech Connect (OSTI)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08T23:59:59.000Z

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

  2. Hazardous-Substance Generator, Transporter and Disposer Liability under the Federal and California Superfunds

    E-Print Network [OSTI]

    Vernon, James; Dennis, Patrick W.

    1981-01-01T23:59:59.000Z

    Carpenter-Presley-Tanner Hazardous Substance Account Act ofincluding spills and hazardous- waste disposal sites thatlabel for the disposal of hazardous wastes. Id. at 607. The

  3. Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

  4. Immobilized low-level waste disposal options configuration study

    SciTech Connect (OSTI)

    Mitchell, D.E.

    1995-02-01T23:59:59.000Z

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  5. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect (OSTI)

    Perkins, B.L.

    1982-01-01T23:59:59.000Z

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  6. Analysis of alternatives for immobilized low activity waste disposal

    SciTech Connect (OSTI)

    Burbank, D.A.

    1997-10-28T23:59:59.000Z

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  7. Proof of Proper Solid Waste Disposal (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

  8. Canister design for deep borehole disposal of nuclear waste

    E-Print Network [OSTI]

    Hoag, Christopher Ian

    2006-01-01T23:59:59.000Z

    The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

  9. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS...

  10. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  11. Radionuclide limits for vault disposal at the Savannah River Site

    SciTech Connect (OSTI)

    Cook, J.R.

    1992-02-04T23:59:59.000Z

    The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above-grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater, and or waste package concentrations for those radionuclides which could affect intruders.

  12. Minor actinide waste disposal in deep geological boreholes

    E-Print Network [OSTI]

    Sizer, Calvin Gregory

    2006-01-01T23:59:59.000Z

    The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

  13. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    SciTech Connect (OSTI)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18T23:59:59.000Z

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  14. Used Nuclear Fuels Storage, Transportation, and Disposal Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Used Nuclear Fuels Storage, Transportation, and Disposal Analysis Resource and Data System (UNF-ST&DARDS) Apr 08 2014 10:00 AM - 11:00 AM John M. Scaglione, ORNL staff, Oak Ridge...

  15. Laboratory to demolish excavation enclosures at Material Disposal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work...

  16. Laboratory to demolish excavation enclosures at Material Disposal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excavation enclosures at MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP road Pre-demolition activities are beginning this week and the work...

  17. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    by calling 1 (800) 336-9477 COVER SHEET Lead Agency: U.S. Department of Energy Title: Waste Isolation Pilot Plant Disposal Phase Final Supplemental Environmental Impact Statement...

  18. Evaluation of Options for Permanent Geologic Disposal of Spent...

    Energy Savers [EERE]

    other within a single repository; 5) salt allows for more flexibility in managing high-heat waste; 6) direct disposal of commercial SNF in existing dual-purpose canisters is...

  19. Low-Level Radioactive Waste Disposal Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and...

  20. Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental...

  1. Disposable endoscope tip actuation design and robotic platform

    E-Print Network [OSTI]

    Chen, Yi

    A disposable endoscopic platform with actuation motors inside the body of the endoscope is presented. This platform can enable new medical devices for diagnosis and for minimally invasive surgeries. This paper addresses ...

  2. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01T23:59:59.000Z

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  3. Selected biological investigations on deep sea disposal of industrial wastes

    E-Print Network [OSTI]

    Page, Sandra Lea

    1975-01-01T23:59:59.000Z

    SELECTED SIOLOGICAL INVESTIGATIONS ON DEEP SEA DISPOSAL OF INDUSTRIAL WASTES A Thesis by SANDRA LEA PAGE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1975 Major Subject: Civil Engineering SELECTED BIOLOGICAL INVESTIGATIONS ON DEEP SEA DISPOSAL OF INDUSTRIAL WASTES A Thesis by SANDRA LEA PAGE Approved as to style and content by: ((chairman of Committee) / / (Head of Department) bger...

  4. Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538

    SciTech Connect (OSTI)

    Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

    2013-07-01T23:59:59.000Z

    The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

  5. Analysis of environmental regulations governing the disposal of geothermal wastes in California

    SciTech Connect (OSTI)

    Royce, B.A.

    1985-09-01T23:59:59.000Z

    Federal and California regulations governing the disposal of sludges and liquid wastes associated with the production of electricity from geothermal resources were evaluated. Current disposal practices, near/far term disposal requirements, and the potential for alternate disposal methods or beneficial uses for these materials were determined. 36 refs., 3 figs., 15 tabs. (ACR)

  6. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01T23:59:59.000Z

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  7. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    SciTech Connect (OSTI)

    Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

  8. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect (OSTI)

    Veil, J.A. [Argonne National Lab., Washington, DC (United States). Water Policy Program

    1997-10-01T23:59:59.000Z

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  9. Remediation of a Former USAF Radioactive Material Disposal Site

    SciTech Connect (OSTI)

    Hoffman, D. E.; Cushman, M; Tupyi, B.; Lambert, J.

    2003-02-25T23:59:59.000Z

    This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had been identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while minimizing disposal costs. In addition, worker exposures were maintained ALARA as a result of the removal and characterization methods employed.

  10. A new method of petroleum sludge disposal and utilization

    SciTech Connect (OSTI)

    Kanakamedala, R.D.; Islam, M.R. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    1995-12-31T23:59:59.000Z

    Disposal of the oil sludge is one of the fundamental problems of petroleum production. Increasingly stringent environmental control regulations, lack of final disposal sites, and high costs involved in disposal have resulted in limitations off oil sludge disposal options. In this study, two options for disposing the oil sludge are investigated. One option is the use of solid-liquid centrifugal separation. The second option is the use of the oil sludge as a cementing material. It is shown that the two options can be used in tandem for total remediation of the petroleum sludge. If the initial oil concentration in the sludge is high, high temperature centrifugation with biodegradable surfactant is recommended to lower the concentration to a reasonable value. The resulting solid extract was mixed with cement and silica fume and examined for cementing properties. Evaluation of compressive strengths of the mortar cubes indicates that it is possible to produce cement from the oil sludge which will satisfy the strength requirements in the ASTM standard for masonry cement.

  11. Repository disposal requirements for commercial transuranic wastes (generated without reprocessing)

    SciTech Connect (OSTI)

    Daling, P.M.; Ludwick, J.D.; Mellinger, G.B.; McKee, R.W.

    1986-06-01T23:59:59.000Z

    This report forms a preliminary planning basis for disposal of commercial transuranic (TRU) wastes in a geologic repository. Because of the unlikely prospects for commercial spent nuclear fuel reprocessing in the near-term, this report focuses on TRU wastes generated in a once-through nuclear fuel cycle. The four main objectives of this study were to: develop estimates of the current inventories, projected generation rates, and characteristics of commercial TRU wastes; develop proposed acceptance requirements for TRU wastes forms and waste canisters that ensure a safe and effective disposal system; develop certification procedures and processing requirements that ensure that TRU wastes delivered to a repository for disposal meet all applicable waste acceptance requirements; and identify alternative conceptual strategies for treatment and certification of commercial TRU first objective was accomplished through a survey of commercial producers of TRU wastes. The TRU waste acceptance and certification requirements that were developed were based on regulatory requirements, information in the literature, and from similar requirements already established for disposal of defense TRU wastes in the Waste Isolation Pilot Plant (WIPP) which were adapted, where necessary, to disposal of commercial TRU wastes. The results of the TRU waste-producer survey indicated that there were a relatively large number of producers of small quantities of TRU wastes.

  12. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29T23:59:59.000Z

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  13. DOE SNF technology development necessary for final disposal

    SciTech Connect (OSTI)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-02-01T23:59:59.000Z

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes.

  14. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    SciTech Connect (OSTI)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01T23:59:59.000Z

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  15. Earth melter and method of disposing of feed materials

    DOE Patents [OSTI]

    Chapman, Christopher C. (Richland, WA)

    1994-01-01T23:59:59.000Z

    An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

  16. Earth melter and method of disposing of feed materials

    DOE Patents [OSTI]

    Chapman, C.C.

    1994-10-11T23:59:59.000Z

    An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.

  17. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01T23:59:59.000Z

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  18. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  19. Acceptance test procedure: RMW Land Disposal Facility Project W-025

    SciTech Connect (OSTI)

    Roscha, V. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-12-12T23:59:59.000Z

    This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting.

  20. General Safety Guidelines for Bio-Hazardous Waste Disposal

    E-Print Network [OSTI]

    Holland, Jeffrey

    General Safety Guidelines for Bio-Hazardous Waste Disposal · Determine if you have a Bio-Hazardous, cell cultures, Petri dishes, and etc. NOT fitting the category 1 description. · ALL BIO-HAZARDOUS WASTE OF CATEGORY 1 NEEDS TO BE TREATED BY AUTOCLAVE OR WITH HIV/HBV KILLING AGENT BEFORE PICK-UP · Bio-hazardous

  1. Doctoral Defense "Biogeochemical evaluation of disposal options for arsenic-

    E-Print Network [OSTI]

    Kamat, Vineet R.

    generated during drinking water treatment" Tara Clancy Date: December 2, 2014 Time: 9:00 AM Location: GM Lutgarde Raskin Professor, Civil & Environmental Engineering Arsenic contamination of drinking water of arsenic removal technologies requires disposal options for produced wastes that limit the release

  2. Advance disposal fees and recycling: Partners or foes?

    SciTech Connect (OSTI)

    Woods, R.

    1995-05-01T23:59:59.000Z

    A political trend of shifting government responsibilities from the federal to the state and local level is beginning to take hold in many municipalities this year. Evidence of this shift recently was codified by the passage of Congress`s unfunded mandates bills, which require a panel review of any federal government mandates that create a cost burden of at least $50 million on state and local government. Expecting to be freed from the yoke of the most costly unfunded federal laws, many states are taking a second look at their expensive recycling laws and considering reassessment of how funding mechanisms are structured. This search for ways to raise revenue has renewed the continuing debate over advance disposal fees (ADFs), which are included in the cost of a product to pay for its ultimate disposal or reuse. These ADFs have been used for several years in a majority of US states to help handle scrap tire disposal. Due to concern over fire hazards posed by the nation`s growing scrap tire piles, several states have implemented a $1--$2 fee on each tire to help pay for disposal, most of which have been reasonably successful.

  3. Guidelines for Disposing Electronic Items on Campus STATE PROPERTY ONLY

    E-Print Network [OSTI]

    Harms, Kyle E.

    Association of Electronics Recyclers Throwing e-waste away and having it end up in a landfill is also a directGuidelines for Disposing Electronic Items on Campus STATE PROPERTY ONLY As technology advances more and more, electronics become obsolete. Broken or faulty electronic items sometimes end up in dumpsters

  4. Disposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    will be utilized. Please visit the VEHS website to submit an electronic Chemical Waste Collection Request FormDisposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1 Vanderbilt Environmental Health WASTE COLLECTION PROGRAM VEHS has implemented a Hazardous Waste Collection Program to collect hazardous

  5. Disposal of CCA-treated Wood: An Evaluation of

    E-Print Network [OSTI]

    Florida, University of

    Disposal of CCA-treated Wood: An Evaluation of Existing and Alternative Management Options (FINAL CHARACTERISTICS OF CCA-TREATED WOOD ASH II.1 Sample Preparation 10 II.2 Laboratory Methods 15 II.3 Laboratory Results 24 CHAPTER III, SORTING TECHNOLOGIES FOR SEPARATING TREATED WOOD FROM UNTREATED WOOD III.1

  6. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29T23:59:59.000Z

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  7. Support of the Iraq nuclear facility dismantlement and disposal program

    SciTech Connect (OSTI)

    Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

  8. 1 INSTRODUCTION In the concept of geological radioactive waste disposal,

    E-Print Network [OSTI]

    Boyer, Edmond

    , thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being elements from the waste package towards the environment. During the construction and exploitation phase

  9. Geosynthetic Clay Liner applications in waste disposal facilities

    SciTech Connect (OSTI)

    McGrath, L.T.; Creamer, P.D. [RMT, Inc., Madison, WI (United States)

    1995-12-31T23:59:59.000Z

    Geosynthetic Clay Liners (GCLs) are becoming a popular alternative to compacted clay barrier layers, and represent the state of the art in waste disposal facility design. They possess many of the same qualities of compacted clay barrier layers while occupying only a small fraction of the airspace. This is a very attractive feature to waste disposal facility owners and operators. There are many manufacturers of GCLs in the marketplace, providing numerous products that can be used in a wide variety of applications. Designing for the constructing with a GCL an be a challenging task; stability issues must be evaluated, selecting the appropriate product should be considered, comprehensive specifications are needed to ensure proper product selection and installation, and steps must be taken during installation to prevent damage to the GCL. Perhaps most importantly, state regulatory agencies must be convinced that GCLs will provide long-term protection equivalent to a clay barrier layer. This paper will discuss design considerations, specification guidelines, installation criteria, construction quality assurance guidelines and regulatory issues pertaining to GCL. The paper will also present three brief case histories of relevant GCL applications in waste disposal facility design and construction. The purpose of the paper is to demonstrate that GCLs are a viable alternative to compacted clay barrier layers and to provide useful information in designing, specifying and installing them in waste disposal facilities.

  10. Laboratory to demolish excavation enclosures at Material Disposal Area B

    E-Print Network [OSTI]

    to hazardous and radiological contamination while excavating and packaging contaminated debris and soil from of a highly successful environmental cleanup project at Material Disposal Area B," said Ed Worth, federal project manager #12;- 2 - with the National Nuclear Security Administration's Los Alamos Site Office. "We

  11. Hydrological Evaluation of Septic Disposal Field Design in Sloping Terrains

    E-Print Network [OSTI]

    Walter, M.Todd

    . Steenhuis7 Abstract: The most common form of onsite domestic wastewater treatment in the United States; Slopes; Wastewater treatment; Waste disposal. Introduction The most common form of onsite wastewater treatment is the septic system Wastewater 1991 . Over 50 million people in the United States use septic

  12. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-09-22T23:59:59.000Z

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  13. Long-Term Performance of Uranium Tailings Disposal Cells - 13340

    SciTech Connect (OSTI)

    Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)] [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

    2013-07-01T23:59:59.000Z

    Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated hydraulic conductivity after transient drainage, eventually the amount of moisture leaving the tailings has a negligible effect on groundwater quality. Although some of the UMTRA sites are not in compliance with the groundwater standards, the explanation may be legacy contamination from mining, or earlier higher fluxes from the tailings or unlined processing ponds. Investigation of other legacy sources at the UMTRA sites may help explain persistent groundwater contamination. (authors)

  14. UMTRA project disposal cell cover biointrusion sensitivity assessment, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This study provides an analysis of potential changes that may take place in a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell cover system as a result of plant biointrusion. Potential changes are evaluated by performing a sensitivity analysis of the relative impact of root penetrations on radon flux out of the cell cover and/or water infiltration into the cell cover. Data used in this analysis consist of existing information on vegetation growth on selected cell cover systems and information available from published studies and/or other available project research. Consistent with the scope of this paper, no new site-specific data were collected from UMTRA Project sites. Further, this paper does not focus on the issue of plant transport of radon gas or other contaminants out of the disposal cell cover though it is acknowledged that such transport has the potential to be a significant pathway for contaminants to reach the environment during portions of the design life of a disposal cell where plant growth occurs. Rather, this study was performed to evaluate the effects of physical penetration and soil drying caused by plant roots that have and are expected to continue to grow in UMTRA Project disposal cell covers. An understanding of the biological and related physical processes that take place within the cover systems of the UMTRA Project disposal cells helps the U.S. Department of Energy (DOE) determine if the presence of a plant community on these cells is detrimental, beneficial, or of mixed value in terms of the cover system`s designed function. Results of this investigation provide information relevant to the formulation of a vegetation control policy.

  15. DEVELOPMENT OF DATABASE ON FECAL SLUDGE COLLECTION, TREATMENT AND DISPOSAL IN THACHIN,

    E-Print Network [OSTI]

    Richner, Heinz

    i DEVELOPMENT OF DATABASE ON FECAL SLUDGE COLLECTION, TREATMENT AND DISPOSAL IN THACHIN, CHAOPRAYA Sludge (FS) management and lacking of data on FS collection, treatment and disposal. Nevertheless, FS

  16. Environmental effects of dredging. Implementation approach for thalweg disposal of dredged material. Technical notes

    SciTech Connect (OSTI)

    Olin, T.J.; Miller, A.C.; Palermo, M.R.

    1993-05-01T23:59:59.000Z

    This technical note introduces the concept of thalweg disposal and associated considerations for implementation, including disposal site selection, environmental and regulatory considerations, and suitable dredging methods and equipment. Monitoring procedures are also outlined.

  17. The Very Deep Hole Concept: Evaluation of an Alternative for Nuclear Waste Disposal

    E-Print Network [OSTI]

    1979-01-01T23:59:59.000Z

    OF AN ALTERNATIVE FOR NUCLEAR WASTE DISPOSAL M.T. O'Brien,OF AN ALTERNATIVE FOR NUCLEAR WASTE DISPOSAL M. T. O'Brien,from commercial nuclear wastes in geologic storage. Oak

  18. Assessment of Disposal Options for DOE-Managed High-Level Radioactive...

    Energy Savers [EERE]

    Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and...

  19. RESULTS FOR THE THIRD QUARTER 2007 TANK 50H WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Zeigler, K; Ned Bibler, N

    2008-07-11T23:59:59.000Z

    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low activity wastewater streams from the Effluent Treatment Project (ETP), H-Canyon, and the high level waste (HLW) storage tanks, are stored as a mixture in Tank 50H until it can be pumped to the Saltstone Facility for treatment and disposal. Specific waste acceptance criteria (WAC) must be met for the transfer of low-level aqueous waste from Tank 50H to the Saltstone Facility. Low level waste which meets the WAC can be transferred, stored and treated in the Saltstone Production Facility (SPF) for subsequent disposal as saltstone in the Saltstone Disposal Facility (SDF). Waste Solidification Engineering (WSE) has requested through a Technical Task Request (TTR) that the Savannah River National Laboratory (SRNL) measure the concentrations of chemical and radionuclide contaminants listed in the currently approved Saltstone Waste Acceptance Criteria (WAC). A Task Technical and Quality Assurance Plan and Analytical Study Plan has been written for this request. WAC determinations are needed on a quarterly basis for chemical contaminants and every first and third quarter for radioactive contaminants. This memorandum presents the results for the chemical and radionuclide contaminants in the third quarter, from the samples taken from Tank 50 in September, 2007.

  20. Interface control document between PUREX Plant Transition and Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Carlson, A.B.

    1995-09-01T23:59:59.000Z

    The interfacing responsibilities regarding solid waste management are described for the Solid Waste Disposal Division and the PUREX Transition Organization.

  1. Taxes In, Garbage Out The Need for Better Solid Waste Disposal

    E-Print Network [OSTI]

    .................................................................................................................... 8 THE FISCAL AND ENVIRONMENTAL IMPACTS OF CURRENT DISPOSAL PRACTICES.....................9 Fiscal..................................................................................... 2 History of the Municipal System Impact

  2. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Arnold, P.

    2012-10-31T23:59:59.000Z

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  3. River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description

    SciTech Connect (OSTI)

    DOVALLE, O.R.

    1999-12-29T23:59:59.000Z

    This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

  4. INCO-WBC-1-509173 Reintegration of coal ash disposal sites and mitigation of

    E-Print Network [OSTI]

    1 INCO-WBC-1-509173 RECOAL Reintegration of coal ash disposal sites and mitigation of pollution of coal ash disposal sites Due date of deliverable: 12.2007 Actual submission date: 02.2008 Start date of the consortium (including the Commission Services) #12;2 Handbook on treatment of coal ash disposal sites Preface

  5. Monthly Theme Hazardous Waste Disposal July 2009 Monthly Theme for discussion at Department Meetings -July 2009

    E-Print Network [OSTI]

    Calgary, University of

    Monthly Theme ­ Hazardous Waste Disposal ­ July 2009 Monthly Theme for discussion at Department Meetings - July 2009 Hazardous Waste Disposal Often a waste pick-up is initiated but the waste isn't picked that it would be beneficial to have a stand and deliver course on Hazardous Waste Disposal offered

  6. Generation, Use, Disposal, and Management Options for CCA-Treated Wood

    E-Print Network [OSTI]

    Florida, University of

    Generation, Use, Disposal, and Management Options for CCA-Treated Wood May 1998 Helena Solo, INVENTORY OF CCA-TREATED WOOD IN FLORIDA II.1 Characteristics of the Florida Wood Treatment Industry in 1996 10 II.2 Generation and Disposal of Cca-treated Wood 14 II.3 Disposal Reservoirs for Cca-treated Wood

  7. LOCAL ARRANGEMENTS FOR WASTE DISPOSAL (MAIN SITE) Landfill (England & Wales) Regulations 2002

    E-Print Network [OSTI]

    Paxton, Anthony T.

    the Chemicals Technicians when they have empty glass bottles for disposal. EMPTY PLASTIC CHEMICAL BOTTLES Plastic containers that have open necks, e.g. solvent bottles, may be washed out and disposed of via be disposed of as non-hazardous waste. EMPTY (GLASS) CHEMICAL BOTTLES University regulations governing

  8. Regulatory requirements affecting disposal of asbestos-containing waste

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    Many U.S. Department of Energy (DOE) facilities are undergoing decontamination and decommissioning (D&D) activities. The performance of these activities may generate asbestos-containing waste because asbestos was formerly used in many building materials, including floor tile, sealants, plastics, cement pipe, cement sheets, insulating boards, and insulating cements. The regulatory requirements governing the disposal of these wastes depend on: (1) the percentage of asbestos in the waste and whether the waste is friable (easily crumbled or pulverized); (2) other physical and chemical characteristics of the waste; and (3) the State in which the waste is generated. This Information Brief provides an overview of the environment regulatory requirements affecting disposal of asbestos-containing waste. It does not address regulatory requirements applicable to worker protection promulgated under the Occupational Safety and Health Act (OSHAct), the Mining Safety and Health Act (MSHA), or the Toxic Substances Control Act (TSCA).

  9. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-10-01T23:59:59.000Z

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  10. On-Farm Storage and Disposal of Sorghum Grain.

    E-Print Network [OSTI]

    Brown, Charles W.; Moore, Clarence A.

    1963-01-01T23:59:59.000Z

    APRIL 1963 ON-FARM - STORAGE AND DISPOSAL OF SORGHUM GRAIN -- THE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS TEXAS AGRICULTURAL EXPERIMENT STATION R. E. PATTERSON. DIRECTOR. COLLEGE ST+TION, TEXAS IN COOPERATION WITH THE U. S. DEPARTMENT... of its relative feeding value, an increasing number of livestock on feed, increases in concentrates fed per animal unit, a favorable price relative to other feed grains and gains in exports to foreign markets. Off-farm storage space in Texas...

  11. Subseabed Disposal Program. Annual report, January-December 1978

    SciTech Connect (OSTI)

    Talbert, D.M. (ed.)

    1980-02-01T23:59:59.000Z

    This is the fifth annual report describing the progress and evaluating the status of the Subseabed Disposal Program (SDP), which was begun in June 1973. The program was initiated by Sandia Laboratories to explore the utility of stable, uniform, and relatively unproductive areas of the world as possible repositories for high-level nuclear wastes. The program, now international in scope, is currently focused on the stable submarine geologic formations under the deep oceans.

  12. Ultimate disposal of low and medium radioactive waste in France

    SciTech Connect (OSTI)

    Ringeard, C. [National Radioactive Waste Management Agency, Fontenay aux Roses (France). Environmental, Safety, Quality Dept.

    1993-12-31T23:59:59.000Z

    The National Radioactive Waste Management Agency (ANDRA) has been entrusted with the long-term management of radioactive waste. This paper presents the methodology of safety assessment used by ANDRA for a land disposal facility of radioactive waste with short or medium half-life and with low or medium specific activity. This methodology was used in the design of ``the Centre de stockage de l`Aube``.

  13. Puget Sound Dredged Disposal Analysis: Management plan assessment report. Dredged Material Management Year 1990

    SciTech Connect (OSTI)

    Not Available

    1991-03-01T23:59:59.000Z

    Puget Sound Dredged Disposal Analysis (PSDDA) is an interagency program for the management of unconfined, open-water disposal of dredged material into Puget Sound, Washington. The Management Plans for the PSDDA program identify disposal sites, describe dredged material evaluation procedures, and establish site monitoring and management practices. The plans also commit the involved agencies to a cooperative annual review process which evaluates disposal site use and conditions, dredged material testing results, and new scientific information, in order to determine if changes to the evaluation procedures and/or disposal site management practices are needed. Sampling was conducted to determine any chemical/biological contamination.

  14. A critical comparison of ten disposable cup LCAs

    SciTech Connect (OSTI)

    Harst, Eugenie van der, E-mail: eugenie.vanderharst@wur.nl [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands); Potting, José, E-mail: jose.potting@wur.nl [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands) [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands); Environmental Strategies Research (fms), KTH Royal Institute of Technology, SE-110 44 Stockholm (Sweden)

    2013-11-15T23:59:59.000Z

    Disposable cups can be made from conventional petro-plastics, bioplastics, or paperboard (coated with petro-plastics or bioplastics). This study compared ten life cycle assessment (LCA) studies of disposable cups with the aim to evaluate the robustness of their results. The selected studies have only one impact category in common, namely climate change with global warming potential (GWP) as its category indicator. Quantitative GWP results of the studies were closer examined. GWPs within and across each study show none of the cup materials to be consistently better than the others. Comparison of the absolute GWPs (after correction for the cup volume) also shows no consistent better or worse cup material. An evaluation of the methodological choices and the data sets used in the studies revealed their influence on the GWP. The differences in GWP can be attributed to a multitude of factors, i.e., cup material and weight, production processes, waste processes, allocation options, and data used. These factors basically represent different types of uncertainty. Sensitivity and scenario analyses provided only the influence of one factor at once. A systematic and simultaneous use of sensitivity and scenario analyses could, in a next research, result in more robust outcomes. -- Highlights: • Conflicting results from life cycle assessment (LCA) on disposable cups • GWP results of LCAs did not point to a best or worst cup material. • Differences in GWP results are due to methodological choices and data sets used. • Standardized LCA: transparency of LCA studies, but still different in approaches.

  15. Pyramiding tumuli waste disposal site and method of construction thereof

    DOE Patents [OSTI]

    Golden, Martin P. (Hamburg, NY)

    1989-01-01T23:59:59.000Z

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  16. Hanford land disposal restrictions plan for mixed wastes

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  17. Proceedings of the 1981 subseabed disposal program. Annual workshop

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal.

  18. Does Dual Ownership of Waste Imply a Regional Disposal Approach?

    SciTech Connect (OSTI)

    Mele, I. [ARAO - Agency for Radwaste Management, Parmova 53, Si-1000 Ljubljana (Slovenia)

    2006-07-01T23:59:59.000Z

    The construction of the Nuclear Power Plant Krsko, being located in Slovenia near the Slovenian-Croatian border, was a joint investment by Slovenia and Croatia, two republics of the former Yugoslavia. The plant was completed in 1981 and the commercial operation started early in 1983. The obligations and rights of both investors during the construction and operation were specified in two bilateral contracts signed in 1974 and 1982. These contracts were fairly detailed on construction, operation and exploitation of the nuclear power plant (NPP), but they said very little about future nuclear liabilities. The electricity production was equally shared between the two countries and both parties participated in management of the NPP. In 1991, after Slovenia and Croatia became two independent countries, the agreement on the ownership and exploitation of the NPP Krsko was re-negotiated and a new contract signed in 2003. By the new contract the decommissioning and the disposal of spent fuel (SF) as well as low and intermediate level waste (LILW) is the responsibility of both parties, and the financial resources for covering these liabilities should be equally provided. Regardless of shared ownership of waste, the agreement opts for a single disposal solution for LILW as well as for SF, but the details are left open. More clear elaboration of these responsibilities is given in the programme of the decommissioning and disposal of radioactive waste from the NPP which was jointly prepared by the Slovenian and Croatian waste management organisations in 2004. The programme is clearly opting for only one repository for LILW and one repository for spent fuel, which can be located either in Slovenia or Croatia. Irrespective of the country where such a repository will be sited, dual ownership of waste opens up another dimension of such a solution: will such a repository be regarded as a national facility or as a regional or multinational facility? Both options-national and regional/multinational- may have a strong influence on future agreements on waste disposal, but so far these aspects have not been addressed either in Slovenia or Croatia. The paper brings reflections and discussion on these aspects of waste management in Slovenia and reveals the current situation of the waste disposal project in the country. (authors)

  19. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    SciTech Connect (OSTI)

    Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert 'Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States)] [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2013-07-01T23:59:59.000Z

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill material. This paper describes the ex situ soil segregation methods, the considerations of each method, and the estimated cost savings from minimizing the volume of soil requiring transportation and off-site disposal. (authors)

  20. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30T23:59:59.000Z

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

  1. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17T23:59:59.000Z

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were develope

  2. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-01-27T23:59:59.000Z

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  3. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect (OSTI)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21T23:59:59.000Z

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

  4. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31T23:59:59.000Z

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.

  5. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01T23:59:59.000Z

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  6. Design and Installation of a Disposal Cell Cover Field Test

    SciTech Connect (OSTI)

    Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

    2011-02-27T23:59:59.000Z

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  7. Update on onshore disposal of offshore drilling wastes

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-11-29T23:59:59.000Z

    The US Environmental Protection Agency (EPA) is developing effluent limitations guidelines to govern discharges of cuttings from wells drilled using synthetic-based muds. To support this rulemaking, Argonne National Laboratory was asked by EPA and the US Department of Energy (DOE) to collect current information about those onshore commercial disposal facilities that are permitted to receive offshore drilling wastes. Argonne contacted state officials in Louisiana, Texas, California and Alaska to obtain this information. The findings, collected during October and November 1999, are presented by state.

  8. B Plant complex treatment, storage, and disposal units inspection plan

    SciTech Connect (OSTI)

    Beam, T.G.

    1994-10-01T23:59:59.000Z

    Owners or operators of facilities that treat, store, and/or dispose of dangerous waste and/or mixed waste as defined by WAC 173-303, {open_quotes}Dangerous Waste Regulations,{close_quotes} must inspect their facilities to prevent malfunctions and deteriorations, operator errors, and discharges that may cause or lead to the release of hazardous waste constituents to the environment and/or cause a threat to human health. The WAC regulations require a written inspection schedule be developed, implemented, and kept at the facility.

  9. Title I Disposal Sites Annual Report | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveI Disposal Sites Annual Report Title I

  10. Title II Disposal Sites Annual Report | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveI Disposal Sites Annual Report Title III

  11. DOE - Office of Legacy Management -- Clive Disposal Cell - 036

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NYBowen LabSouth,Clive Disposal Cell

  12. DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffaloJohns0-04Maryland Disposal Site -

  13. DOE - Office of Legacy Management -- Pennsylvania Disposal Site - PA 43

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CTOregon MetallurgicalWestPaulDisposal

  14. Salt Lake City, Utah, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8B100B100WWNASCUBA80 ' ,19.7Salt

  15. Shirley Basin South, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O

  16. Grand Junction, Colorado, Processing Site and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 s %Grand

  17. Gunnison, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 s

  18. The Texas Solution to the Nation's Disposal Needs for Irradiated Hardware - 13337

    SciTech Connect (OSTI)

    Britten, Jay M. [Waste Control Specialists LLC, Andrews, TX 79714 (United States)] [Waste Control Specialists LLC, Andrews, TX 79714 (United States)

    2013-07-01T23:59:59.000Z

    The closure of the disposal facility in Barnwell, South Carolina, to out-of-compact states in 2008 left commercial nuclear power plants without a disposal option for Class B and C irradiated hardware. In 2012, Waste Control Specialists LLC (WCS) opened a highly engineered facility specifically designed and built for the disposal of Class B and C waste. The WCS facility is the first Interstate Compact low-level radioactive waste disposal facility to be licensed and operated under the Low-level Waste Policy Act of 1980, as amended in 1985. Due to design requirements of a modern Low Level Radioactive Waste (LLRW) facility, traditional methods for disposal were not achievable at the WCS site. Earlier methods primarily utilized the As Low as Reasonably Achievable (ALARA) concept of distance to accomplish worker safety. The WCS method required the use of all three ALARA concepts of time, distance, and shielding to ensure the safe disposal of this highly hazardous waste stream. (authors)

  19. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  20. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  1. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  2. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  3. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  4. Results for the Third Quarter 2012 Tank 50 WAC Slurry Sample: Chemical and Radionuclide Contaminants

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2012-10-26T23:59:59.000Z

    This report details the chemical and radionuclide contaminant results for the characterization of the 2012 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  5. Oil field waste disposal in salt caverns: An information website

    SciTech Connect (OSTI)

    Tomasko, D.; Veil, J. A.

    1999-12-10T23:59:59.000Z

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  6. Low-level radioactive waste disposal facility closure

    SciTech Connect (OSTI)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01T23:59:59.000Z

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  7. Tritiated wastewater treatment and disposal evaluation for 1995

    SciTech Connect (OSTI)

    Allen, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-08-01T23:59:59.000Z

    A second annual summary and analysis of potential processes for the mitigation of tritium contained in process effluent, ground water and stored waste is presented. It was prepared to satisfy the Hanford Federal Facility and Consent Order (Tri-Party Agreement) Milestone M-26-05B. Technologies with directed potential for separation of tritium at present environmental levels are organized into two groups. The first group consists of four processes that have or are undergoing significant development. Of these four, the only active project is the development of membrane separation technology at the Pacific Northwest Laboratory (PNL). Although research is progressing, membrane separation does not present a near term option for the mitigation of tritium. A second grouping of five early stage projects gives an indication of the breadth of interest in low level tritium separation. If further developed, two of these technologies might prove to be candidates for a separation process. At the present, there continues to be no known commercially available process for the practical reduction of the tritium burden in process effluent. Material from last year`s report regarding the occurrence, regulation and management of tritium is updated and included in the appendices of this report. The use of the State Approved Land Disposal Site (SALDS) for disposal of tritiated effluent from the 200 Area Effluent Treatment Facility (ETF) begins in the fall of 1995. This is the most significant event impacting tritium in the environment at the Hanford Site this coming year.

  8. Performance assessment for the class L-II disposal facility

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

  9. System-Level Logistics for Dual Purpose Canister Disposal

    SciTech Connect (OSTI)

    Kalinina, Elena A.

    2014-06-03T23:59:59.000Z

    The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.

  10. International low level waste disposal practices and facilities

    SciTech Connect (OSTI)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19T23:59:59.000Z

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34 countries actively planning reactors, as of September 2010: 14 indicate a strong intention to precede w

  11. Comparison of low-level waste disposal programs of DOE and selected international countries

    SciTech Connect (OSTI)

    Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

    1996-06-01T23:59:59.000Z

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

  12. Developing operating procedures for a low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01T23:59:59.000Z

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  13. Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    public, and environment through specific requirements for the generation, treatment, storage, and disposal of US DOE radioactive waste. The Order is divided into four...

  14. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01T23:59:59.000Z

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  15. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The US Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer.

  16. Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous...

    Office of Environmental Management (EM)

    risks associated with worker safety and the environment (e.g., resource consumption, air pollution, air dispersal) that may be associated with exhumation and re-disposal of...

  17. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...

    National Nuclear Security Administration (NNSA)

    Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  18. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01T23:59:59.000Z

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  19. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01T23:59:59.000Z

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  20. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-10-01T23:59:59.000Z

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  1. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    SciTech Connect (OSTI)

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01T23:59:59.000Z

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  2. Long-length contaminated equipment disposal process path document

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-30T23:59:59.000Z

    The first objective of the LLCE Process Path Document is to guide future users of this system on how to accomplish the cradle-to-grave process for the disposal of long-length equipment. Information will be provided describing the function and approach to each step in the process. Pertinent documentation, prerequisites, drawings, procedures, hardware, software, and key interfacing organizations will be identified. The second objective is related to the decision to lay up the program until funding is made available to complete it or until a need arises due to failure of an important component in a waste tank. To this end, the document will identify work remaining to be completed for each step of the process and open items or issues that remain to be resolved.

  3. Disposal of radioactive waste from nuclear research facilities

    E-Print Network [OSTI]

    Maxeiner, H; Kolbe, E

    2003-01-01T23:59:59.000Z

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  4. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect (OSTI)

    Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

    2008-07-01T23:59:59.000Z

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  5. Reducing biosolids disposal costs using land application in forested areas

    SciTech Connect (OSTI)

    Huffines, R.L.

    1995-11-01T23:59:59.000Z

    Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells.

  6. Licensing plan for UMTRA project disposal sites. Final [report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC`s acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information.

  7. Ridge station eases Florida's waste-disposal problems

    SciTech Connect (OSTI)

    Swanekamp, R.

    1994-10-01T23:59:59.000Z

    Two results of Florida's continuing population growth are (1) a critical need for electricity, and (2) a solid-waste disposal crisis. During a recent winter cold snap, electric demand in one service territory surged 25% over generating capacity and 10% over net system capability. Rolling blackouts ensued. At the same time, Florida's fragile wetlands environment is suffering from years of unfettered development. Groundwater sources are contaminated, landfill space is scarce, and illegal tire dumps blight the landscape. The recently constructed Ridge generating station in Polk County, Fla. is addressing both the state's electrical and environmental needs. Ridge, which entered commercial operation in May, burns a unique mix of urban woodwaste and scrap tires to provide 45 MW of critically needed electricity while keeping large quantities of solid waste out of landfills. When pipeline construction at an adjacent landfill is completed, the facility also will burn the methane gases produced when garbage decomposes.

  8. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Danny Anderson

    2014-07-01T23:59:59.000Z

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

  9. LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL

    SciTech Connect (OSTI)

    Stephen M. Masutani

    1999-12-31T23:59:59.000Z

    This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

  10. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  11. Fort Calhoun Station disposal of spent fuel pool racks

    SciTech Connect (OSTI)

    Jamieson, T.W. [Omaha Public Power District, Fort Calhoun Station, NE (United States)

    1995-09-01T23:59:59.000Z

    The original plan was to have the racks pulled out of the pool, washed down and wrapped and placed in Sea/Lands to be sent to a vendor for free release and disposal. In the winter of 93 the proposed quotations on the Spent Fuel Rerack Processing were all rejected. With the rerack job starting in March of 94 and the closing of Barnwell in July we were faced with what to do with the racks. Processing of the existing racks were required since if the racks were sent to Barnwell for burial intact the cost would be prohibitive, that is, if Barnwell would have stayed open. If the racks were sent to a smelter, such as Scientific Ecology Group (SEG), there are restrictions on the length of the components that can go through the smelter. If SEG were to do the rack processing (sectioning) at their facility, the cost would also be prohibitive and they would not be in a position to receive the racks until June, 1995. Therefore, bid specifications were requested for on-site volume reduction processing of the existing spent fuel storage racks, with further ultimate disposal to be performed by SEG. The processing of the racks included piping and supports. Volume reduction (VR) was an issue in the evaluation since after this process the racks were to be shipped to SEG. If a low VR ratio option was chosen, OPPD would need a significant number of shipping containers and required more radwaste shipments versus if a high VR ratio option were chosen.

  12. ASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES THE METHOD BEHIND GESTABOUES TOOL

    E-Print Network [OSTI]

    Boyer, Edmond

    stakeholders to better understand the carbon footprint of sludge treatment and disposal options, we developed by a wastewater treatment plant of x per-captia-equivalents (PCE) during one year. The carbon footprint method we developed is adapted to sludge treatment and disposal processes and based on the "Bilan Carbone® " method

  13. MONITORING AND MODELING NEARSHORE DREDGE DISPOSAL FOR INDIRECT BEACH NOURISHMENT, OCEAN BEACH, SAN

    E-Print Network [OSTI]

    MONITORING AND MODELING NEARSHORE DREDGE DISPOSAL FOR INDIRECT BEACH NOURISHMENT, OCEAN BEACH, SAN FRANCISCO Patrick L. Barnard1 , Daniel M. Hanes1 , Jamie Lescinski1 and Edwin Elias2 Nearshore dredge toward the shore, providing evidence that annual dredge disposal at this site could be beneficial over

  14. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-08-31T23:59:59.000Z

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  15. P\\procedure\\EH&S#15 Page 1 of 2 TITLE: HAZARDOUS CHEMICAL WASTE DISPOSAL POLICY

    E-Print Network [OSTI]

    Fernandez, Eduardo

    P\\procedure\\EH&S#15 Page 1 of 2 TITLE: HAZARDOUS CHEMICAL WASTE DISPOSAL POLICY OBJECTIVE AND PURPOSE: Ensure the proper disposal of hazardous chemical waste generated on FAU Campuses RESPONSIBILITY EH&S or local Fire Department. Assist EH&S and or Fire Department in securing the area. HAZARDOUS

  16. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01T23:59:59.000Z

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  17. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01T23:59:59.000Z

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  18. LLaannggeerrhhaannss LLaabb PPrroottooccoollss Chemical Waste Disposal Protocol.docx pg 1 of 1

    E-Print Network [OSTI]

    Langerhans, Brian

    LLaannggeerrhhaannss LLaabb PPrroottooccoollss Chemical Waste Disposal Protocol.docx pg 1 of 1 Chemical Waste Disposal Protocol For Chemical Waste Pick-Up: 1. Log on to http://www.ncsu.edu/ehs. 2. Click waste item being submitted. 7. Fill out and affix a Hazardous Waste label, from the drawer labeled

  19. Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells Hong Zhao and T. S. Zhao* Disposable paper-cups are used for the formation of graphene sheets with Fe2+ as a catalyst. The proposed synthesis strategy not only enables graphene sheets to be produced in high yield

  20. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  1. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  2. Long-term surveillance plan for the Gunnison, Colorado disposal site

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  3. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  4. ALL INFECTIOUS WASTE MUST BE DISPOSED OF THROUGH THE DEPARTMENT OF HEALTH & SAFETY 831-8475

    E-Print Network [OSTI]

    Firestone, Jeremy

    BUT ARE NOT LIMITED TO: SEGREGATION AND PACKAGING GUIDELINES SOLID WASTE GEL WASTE SHARPS LIQUID INFECTIOUS WASTEALL INFECTIOUS WASTE MUST BE DISPOSED OF THROUGH THE DEPARTMENT OF HEALTH & SAFETY 831-8475 http://www.udel.edu/ HS University of Delaware Proper Disposal of Infectious Waste EXAMPLES OF INFECTIOUS WASTE INCLUDE

  5. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01T23:59:59.000Z

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  6. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    SciTech Connect (OSTI)

    B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

    1999-08-01T23:59:59.000Z

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

  7. Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania

    E-Print Network [OSTI]

    Jackson, Robert B.

    States, oil and gas wastewater is managed through recycling of the wastewater for shale gas operationsImpacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R Supporting Information ABSTRACT: The safe disposal of liquid wastes associated with oil and gas production

  8. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    SciTech Connect (OSTI)

    G. Radulesscu; J.S. Tang

    2000-06-07T23:59:59.000Z

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.

  9. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.

    2006-09-05T23:59:59.000Z

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the types of offsite commercial disposal facilities that are found in each state. In later sections, data are presented by waste type and then by disposal method.

  10. An Assessment of the Disposal of Petroleum Industry NORM in Nonhazardous Landfills

    SciTech Connect (OSTI)

    Arnish, John J.; Blunt, Deborah, L.; Haffenden, Rebecca A.; Herbert, Jennifer; Pfingston, Manjula; Smith, Karen P.; Williams, Gustavious P.

    1999-10-12T23:59:59.000Z

    In this study, the disposal of radium-bearing NORM wastes in nonhazardous landfills in accordance with the MDEQ guidelines was modeled to evaluate potential radiological doses and resultant health risks to workers and the general public. In addition, the study included an evaluation of the potential doses and health risks associated with disposing of a separate NORM waste stream generated by the petroleum industry--wastes containing lead-210 (Pb-210) and its progeny. Both NORM waste streams are characterized in Section 3 of this report. The study also included reviews of (1) the regulatory constraints applicable to the disposal of NORM in nonhazardous landfills in several major oil and gas producing states (Section 2) and (2) the typical costs associated with disposing of NORM, covering disposal options currently permitted by most state regulations as well as the nonhazardous landfill option (Section 4).

  11. Long-term surveillance plan for the Shiprock disposal site, Shiprock, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office.

  12. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01T23:59:59.000Z

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  13. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01T23:59:59.000Z

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  14. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01T23:59:59.000Z

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  15. New Bedford Harbor Superfund Project, Acushnet River estuary engineering feasibility study of dredging and dredged-material disposal alternatives. Report 11. Evaluation of conceptual dredging and disposal alternatives. Technical report, August 1985-July 1988

    SciTech Connect (OSTI)

    Averett, D.E.; Palermo, M.R.; Otis, M.J.; Rubinoff, P.B.

    1989-07-01T23:59:59.000Z

    This report evaluates conceptual dredging and disposal alternatives for the Acushnet River Estuary, a part of the New Bedford Harbor Superfund Site. Dredging for removal of the highly contaminated sediment and subsequent disposal in upland or nearshore confined disposal facilities or disposal in contaminated aquatic disposal facilities are alternative considered in the Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Sediment testing and sediment-transport modeling performed as earlier tasks of the study form the basis for evaluation of the alternatives. The technical feasibility of conceptual design options is based on site availability, capacity, and characteristics and on sediment physical characteristics and dredged-material settling behavior as defined by laboratory testing. Contamination releases during dredging and disposal operations are estimated for each disposal option. A preliminary cost estimate for implementation of each option evaluated is alo presented.

  16. Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources

    SciTech Connect (OSTI)

    Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

  17. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01T23:59:59.000Z

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  18. Numerical simulation of hydrothermal salt separation process and analysis and cost estimating of shipboard liquid waste disposal

    E-Print Network [OSTI]

    Hunt, Andrew Robert

    2007-01-01T23:59:59.000Z

    Due to environmental regulations, waste water disposal for US Navy ships has become a requirement which impacts both operations and the US Navy's budget. In 2006, the cost for waste water disposal Navy-wide was 54 million ...

  19. Hazardous Waste Contacts Please note some types of hazardous waste already have a specific disposal route in place

    E-Print Network [OSTI]

    Evans, Paul

    staff from Estates. Steven Swift - ext. 4834 Refrigerators: These should be disposed of through the WEEE equipment These should be disposed of through the WEEE cages. Andy Brown ­ ext. 6556 or Chris Gration ­ ext

  20. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-08-05T23:59:59.000Z

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  1. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-07-31T23:59:59.000Z

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

  2. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    SciTech Connect (OSTI)

    Peggy Hinman

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  3. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  4. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01T23:59:59.000Z

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  5. Disposal site-selection technical appendix. Phase 2. (North and South Puget Sound)

    SciTech Connect (OSTI)

    Kendall, D.; Jamison, D.; Malek, J.; Ehlers, P.

    1989-09-01T23:59:59.000Z

    This document is a technical appendix to both the Proposed Management Plan Report and the Environmental Impact Statement (EIS) for the Puget Sound Dredged Disposal Analysis (PSDDA) Phase II study covering north and south Puget Sound. Results of disposal-site-selection studies for Phase II of PSDDA, are summarized herein. Phase II includes the southern portion of Puget Sound south of the Tacoma Narrows and the northern portion of Puget Sound north of Admiralty Inlet to the U.S./Canadian border and west to Port Angeles. DSWG's task in Phase II was to identify suitable unconfined, open-water disposal sites. This technical appendix summarizes the process by which DSWG carried out its task. Each site includes a 900-foot radius, 58-acre surface disposal zone within which all dredged material must be released. Each of the dispersive sites includes a 1,500-foot radius, 162-acre surface disposal zone within which all dredgfed material must be released. The capacities of the nondispersive disposal sites in the Phase II area are estimated to be several times the probable volume of dredged material projected for disposal through the year 2000.

  6. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  7. Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance.

  8. Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

  9. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  10. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  11. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01T23:59:59.000Z

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  12. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31T23:59:59.000Z

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  13. Engineering analysis for disposal of depleted uranium tetrafluoride (UF{sub 4}).

    SciTech Connect (OSTI)

    Folga, S. M.; Kier, P. H.

    2001-06-22T23:59:59.000Z

    This report presents and evaluates options for disposing of depleted uranium in the chemical form of uranium tetrafluoride (UF{sub 4}). Two depleted uranium inventories are considered. One results from the original U.S. Department of Energy (DOE) inventory of 560,000 metric tons (te) of depleted uranium hexafluoride (UF{sub 6}); the other inventory is the original DOE inventory augmented by 145,000 te of depleted UF{sub 6} from the United States Enrichment Corporation. Preconceptual designs are included for three disposal options: disposal in a vault, disposal in an engineered trench, and disposal in a deep mine cavity. The disposal container is taken to be either a 30-gallon drum or a 55-gallon drum. Descriptions of the facilities associated with the three disposal options are provided. Staffing estimates for the construction and operation of the facilities are also provided. Wastes and emissions from the facilities during construction, operation, and maintenance have been estimated. Parametric studies have also been performed on the basis of 25% and 50% of the original inventory.

  14. Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE has implemented to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer. The LTSP is based on the UMTRA Project`s long-term surveillance program guidance and meets the requirements of 10 CFR 40.27(b) and 40 CFR 192.03.

  15. Conditioning of spent nuclear fuel for permanent disposal

    SciTech Connect (OSTI)

    Laidler, J.J.

    1994-10-01T23:59:59.000Z

    A compact, efficient method for conditioning spent nuclear fuel is under development This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (99.9%) separation of transuranics. The resultant waste forms from the pyroprocess are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and preclude the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  16. Unreviewed Disposal Question Evaluation: Backfill Soil Compaction Requirements

    SciTech Connect (OSTI)

    Phifer, M.A.

    2003-04-15T23:59:59.000Z

    One intent of DOE Order 435.1 (USDOE 1999a ), as expressed in the performance assessment/composite analysis guidance (USDOE 1999c), is to ensure that proposed changes in wasteforms, containers, radionuclide inventories, facility design, and operations are reviewed to ensure that the assumptions, results, and conclusions of the DOE approved performance assessment (PA) (WSRC 2000), and composite analysis (CA) (WSRC 1997), as well as any Special analyses (SA) that might have been performed, remain valid (i.e., that the proposed change is bounded by the PA and CA) and the changes are within the bounds of the Disposal Authorization Statement (USDOE 1999b). The goal is to provide flexibility in day-to-day operation and to require those issues with a significant impact on the PA's conclusions, and therefore the projected compliance with performance objectives/measures, to be identified and brought to the proper level of attention. It should be noted that the term performance measure is used t o describe site specific adaptations of the DOE Order 435.1 Performance Objectives and requirements (e.g., performance measures such as applying drinking water standards to the groundwater impacts assessment). The intent of this document is to provide an evaluation of the issues identified within Problem Identification Report (PIR) number 2002-PIR-26-0050 (Kukraja 2002).

  17. B Plant treatment, storage, and disposal (TSD) units inspection plan

    SciTech Connect (OSTI)

    Beam, T.G.

    1996-04-26T23:59:59.000Z

    This inspection plan is written to meet the requirements of WAC 173-303 for operations of a TSD facility. Owners/operators of TSD facilities are required to inspection their facility and active waste management units to prevent and/or detect malfunctions, discharges and other conditions potentially hazardous to human health and the environment. A written plan detailing these inspection efforts must be maintained at the facility in accordance with Washington Administrative Code (WAC), Chapter 173-303, ``Dangerous Waste Regulations`` (WAC 173-303), a written inspection plan is required for the operation of a treatment, storage and disposal (TSD) facility and individual TSD units. B Plant is a permitted TSD facility currently operating under interim status with an approved Part A Permit. Various operational systems and locations within or under the control of B Plant have been permitted for waste management activities. Included are the following TSD units: Cell 4 Container Storage Area; B Plant Containment Building; Low Level Waste Tank System; Organic Waste Tank System; Neutralized Current Acid Waste (NCAW) Tank System; Low Level Waste Concentrator Tank System. This inspection plan complies with the requirements of WAC 173-303. It addresses both general TSD facility and TSD unit-specific inspection requirements. Sections on each of the TSD units provide a brief description of the system configuration and the permitted waste management activity, a summary of the inspection requirements, and details on the activities B Plant uses to maintain compliance with those requirements.

  18. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24T23:59:59.000Z

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  19. Operating limit evaluation for disposal of uranium enrichment plant wastes

    SciTech Connect (OSTI)

    Lee, D.W.; Kocher, D.C.; Wang, J.C.

    1996-02-01T23:59:59.000Z

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

  20. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    Simonds, J.

    2007-11-06T23:59:59.000Z

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  1. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  2. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  3. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  4. Automated dredging and disposal alternatives management system (ADDAMS). Environmental effects of dredging. Technical note

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This technical note describes the current capabilities and availability of the Automated Dredging and Disposal Alternatives Management System (ADDAMS). The technical note replaces the earlier Technical Note EEDP-06-12, which should be discarded. Planning, design, and management of dredging and dredged material disposal projects often require complex or tedious calculations or involve complex decision-making criteria. In addition, the evaluations often must be done for several disposal alternatives or disposal sites. ADDAMS is a personal computer (PC)-based system developed to assist in making such evaluations in a timely manner. ADDAMS contains a collection of computer programs (applications) designed to assist in managing dredging projects. This technical note describes the system, currently available applications, mechanisms for acquiring and running the system, and provisions for revision and expansion.

  5. Bioassessment methods for determining the hazards of dredged-material disposal in the marine environment

    SciTech Connect (OSTI)

    Gentile, J.H.; Pesch, G.G.; Scott, K.J.; Nelson, W.; Munns, W.R.

    1991-01-01T23:59:59.000Z

    Approximately 325 million cu m of sediment are dredged annually for navigation purposes in the United States. Of this, 46 million cu m are disposed of annually in the ocean. Decisions regarding the ocean disposal of dredged material result, in large part, from bioassessment-based estimates of contaminant exposure and ecological impacts. Predictions of impacts for an individual dredging project are estimated from laboratory determinations of the magnitude, bioavailability, bioaccumulation, and hazards (toxicity) of dredged material contaminants. Disposal site management of individual and multiple dredging projects requires monitoring for contaminant transport, availability and accumulation in biota, and the hazards to ecologically and commercially important populations. Because of their importance, suites of bioassessment methods representing several levels of biological organization have been proposed for predicting and assessing the hazards resulting from the ocean disposal of dredged material.

  6. Risk assessment involving the land disposal of animal waste on Central Texas dairies

    E-Print Network [OSTI]

    Lee, Thomas Chadwick

    1999-01-01T23:59:59.000Z

    Land disposal of animal waste is an increasing problem for dairies in central Texas Once isolated, many producers now and themselves surrounded by towns and subdivisions. Many of these new neighbors are showing an increasing concern about potential...

  7. An evaluation of the feasibility of disposal of nuclear waste in very deep boreholes

    E-Print Network [OSTI]

    Anderson, Victoria Katherine, 1980-

    2004-01-01T23:59:59.000Z

    Deep boreholes, 3 to 5 km into igneous rock, such as granite, are evaluated for next- generation repository use in the disposal of spent nuclear fuel and other high level waste. The primary focus is on the stability and ...

  8. Effective thermal conductivity measurements relevant to deep borehole nuclear waste disposal

    E-Print Network [OSTI]

    Shaikh, Samina

    2007-01-01T23:59:59.000Z

    The objective of this work was to measure the effective thermal conductivity of a number of materials (particle beds, and fluids) proposed for use in and around canisters for disposal of high level nuclear waste in deep ...

  9. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    SciTech Connect (OSTI)

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  10. Basis for Identification of Disposal Options for R and D for...

    Broader source: Energy.gov (indexed) [DOE]

    in granitic rocks. Basis for Identification of Disposal Options for R&D for Spent Nuclear Fuel and High-Level Waste, FCRD-USED-2011-000071 More Documents & Publications...

  11. Dynamics of particle clouds in ambient currents with application to open-water sediment disposal

    E-Print Network [OSTI]

    Gensheimer, Robert James, III

    2010-01-01T23:59:59.000Z

    Open-water sediment disposal is used in many applications around the world, including land reclamation, dredging, and contaminated sediment isolation. Timely examples include the land reclamation campaign currently underway ...

  12. Thermoplastic Microfluidic Device for On-Chip Purification of Nucleic Acids for Disposable

    E-Print Network [OSTI]

    Thermoplastic Microfluidic Device for On-Chip Purification of Nucleic Acids for Disposable, Brookline, Massachusetts 02446 A polymeric microfluidic device for solid-phase extraction (SPE applications. Microfluidic approaches to nucleic acid isolation have therefore received great attention

  13. Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division...

  14. The Full Water Disposal Ways and Study on Central Air-conditioning Circulation Cooling Water System

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    This paper has been made the further study about the water quality issue of the central air-conditioning circulation cooling water. Based on the comparison of the existing common adopted disposal ways, put forward the new ways of combination...

  15. Regional Examples of Geological Settings for Nuclear Waste Disposal in Deep Boreholes

    E-Print Network [OSTI]

    Sapiie, B.

    This report develops and exercises broad-area site selection criteria for deep boreholes suitable for disposal of spent nuclear fuel and/or its separated constituents. Three candidates are examined: a regional site in the ...

  16. OAR 340-044 - Construction and Use of Waste Disposal Wells or...

    Open Energy Info (EERE)

    OAR 340-044 - Construction and Use of Waste Disposal Wells or Other Underground Injection Activities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  17. South Florida Sun-Sentinel.com Seaweed invasion creates disposal problem

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Beach, said it's impossible to haul tons of seaweed off these beaches for disposal because there are few access points for trucks. The company has begun raking the seaweed into the beach, mixing it with the top

  18. Criteria for releases and disposal of low level and intermediate level waste in Sweden

    SciTech Connect (OSTI)

    Lindbom, G. [Swedish Radiation Protection Inst., Stockholm (Sweden). Div. of Waste Management and Environmental Protection

    1993-12-31T23:59:59.000Z

    In Sweden there exists a complete system for management, including final disposal, of all radioactive wastes which are not classified as long-lived or high-level waste. This paper will present the disposal options and the requirements set on the waste categories as well as Sweden`s four different engineered shallow land disposals. The advantages of having a shallow land disposal together with exemption of waste and a final storage facility for low-level and intermediate-level waste are discussed. Finally, the paper will give a summary of why Sweden has succeeded in establishing a full system for low-level and intermediate-level waste. The discussion is from regulatory point of view.

  19. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds

    Broader source: Energy.gov [DOE]

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

  20. EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

  1. Management Policy for Planning, Programming, Budgeting, Operation, Maintenance and Disposal of Real Property

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish Department of Energy (DOE) management policy for the planning, programming, budgeting, operation, maintenance and disposal of real property owned by the United States and under the custody and control of DOE.

  2. Engineering geology criteria for dredged material disposal in upper Laguna Madre, Texas

    E-Print Network [OSTI]

    Stinson, James Edmellaire

    1977-01-01T23:59:59.000Z

    area showing dredged material islands and channel locations 3 Frequency of wind by direction at Corpus Christi 14 Wind roses compiled from data recorded at the weather monitoring station during field investigation 19 Sketch of drogue used.... The disposal of dredged material next to the channel minimizes handling costs and reduces dredging time. Open water disposal has been used extensively along the Gulf Coast for the dredging of the Gulf intracoastal Waterway and private channels, result- ing...

  3. Dredged-material disposal and total suspended matter offshore from Galveston, Texas

    E-Print Network [OSTI]

    Cool, Thomas Edward

    1976-01-01T23:59:59.000Z

    wind speed and direction for the two week period of 11 October to 26 October, 1975 at Buoy D. Map of the bathymetry of the offshore disposal site (run in April, 1975). Erosion, transportation and deposition criteria for different grain sizes...DREDGED-MATERIAL DISPOSAL AND TOTAL SUSPENDED MATTER OFFSHORE FROM GALVESTON, TEXAS A Thesis by Thomas Edward Cool Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER...

  4. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon

    SciTech Connect (OSTI)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01T23:59:59.000Z

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  5. Evaluation of open pit incineration for the disposal of hydrocarbon wastes

    E-Print Network [OSTI]

    Bell, Stuart Ray

    1981-01-01T23:59:59.000Z

    of Department) December 1981 ABSTRACT Evaluation of Open Pit Incine. ration For the Disposal of Hydrocarbon i&astes. (December 1981) Stuart Ray Bell, B. S. , Texas ASH University Chairman of Advisory Committee: Dr. Thomas R. Lalk The disposal... of hydrocarbon wastes using an open pit air curtain destructor (ACD) type incinerator was investigated. A prototype experi- mental incinerator was designed and constructed, and experiments were performed with it to determine the relationships among various...

  6. Alvenus oil spill debris disposal and the potential of land treatment 

    E-Print Network [OSTI]

    Clark, Kenneth Gregory

    1988-01-01T23:59:59.000Z

    ALVENUS OIL SPILL DEBRIS DISPOSAL AND THE POTENTIAL OF LAND TREATMENT A Thesis by KENNETH GREGORY CLARK Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... August 1988 Major Subject: Civil Engineering ALVENUS OIL SPILL DEBRIS DISPOSAL AND THE POTENTIAL OF LAND TREATMENT A Thesis by KENNETH GREGORY CLARK Approved as to style and content by: y W. Harm, r. (Chair of Committee) / r ( Charles...

  7. Assessment and evaluation of a safety factor with respect to ocean disposal of waste materials

    E-Print Network [OSTI]

    Zapatka, Thomas Francis

    1976-01-01T23:59:59.000Z

    &M University Chairman of Advisory Committee: Dr. Roy W. Harm, Jr. In the past, waste materials too toxic or hazardous for disposal on land or in estuaries have customarily been disposed of at sea. Assessment of the risk and consequent environmental harm... was to investigate and define the correlations between acute and chronic toxicities for known hazardous materials. This relationship is vital for the deter- mination of an appropriate safety factor to be used in evaluating allowable discharges or concentrations...

  8. Significance of the microstructure of Pacific red clays to nuclear waste disposal

    E-Print Network [OSTI]

    Burkett, Patti Jo

    1987-01-01T23:59:59.000Z

    and disturbed dredge sediments were used in the investigations. Dredged samples were remolded and reconsolidated to equivalent in situ porosities for use in a scaled simulation test for the Subseabed Disposal Program, Sandia National Laboratories. This study... extended to me. I also appreciate the efforts of Dr. C. Mark Percival in providing the EM subsamples, and Dr. Les Shephard as a friend and scientist. The project was funded by Sandia National Labor atories Subseabed Disposal Program and supplemental...

  9. Assessment and evaluation of a safety factor with respect to ocean disposal of waste materials 

    E-Print Network [OSTI]

    Zapatka, Thomas Francis

    1976-01-01T23:59:59.000Z

    &M University Chairman of Advisory Committee: Dr. Roy W. Harm, Jr. In the past, waste materials too toxic or hazardous for disposal on land or in estuaries have customarily been disposed of at sea. Assessment of the risk and consequent environmental harm... was to investigate and define the correlations between acute and chronic toxicities for known hazardous materials. This relationship is vital for the deter- mination of an appropriate safety factor to be used in evaluating allowable discharges or concentrations...

  10. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03. 18 refs., 6 figs., 1 tab.

  11. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    SciTech Connect (OSTI)

    Quinn, G.J. [Wastren, Inc. (United States)

    1992-01-01T23:59:59.000Z

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement.

  12. Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts.

    SciTech Connect (OSTI)

    Sevougian, S. David; Freeze, Geoffrey A. [Sandia National Laboratories, Albuquerque, NM; Gardner, William Payton [Sandia National Laboratories, Albuquerque, NM; Hammond, Glenn Edward [Sandia National Laboratories, Albuquerque, NM; Mariner, Paul [Sandia National Laboratories, Albuquerque, NM

    2014-09-01T23:59:59.000Z

    directly, rather than through simplified abstractions. It also a llows for complex representations of the source term, e.g., the explicit representation of many individual waste packages (i.e., meter - scale detail of an entire waste emplacement drift). This report fulfills the Generic Disposal System Analysis Work Packa ge Level 3 Milestone - Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts (M 3 FT - 1 4 SN08080 3 2 ).

  13. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-09-14T23:59:59.000Z

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

  14. Framework for DOE mixed low-level waste disposal: Site fact sheets

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01T23:59:59.000Z

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  15. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    SciTech Connect (OSTI)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01T23:59:59.000Z

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  16. Long-term surveillance plan for the Lowman, Idaho, disposal site

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

  17. Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

  18. Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations

    SciTech Connect (OSTI)

    Fields, D.E.; Emerson, C.J.

    1984-08-01T23:59:59.000Z

    The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables.

  19. CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal

    E-Print Network [OSTI]

    Florida, University of

    CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW February 2007 Available online 9 April 2007 Abstract Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential

  20. Laboratory Experiments to Stimulate CO(2) Ocean Disposal

    SciTech Connect (OSTI)

    Masutani, S.M.

    1997-03-12T23:59:59.000Z

    This Technical Progress Report summarizes activities conducted over the period 8/16/96-2/15/97 as part of this project. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation is to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. Critical technical uncertainties of ocean disposal of CO{sub 2} will be addressed by performing experiments that: (1) characterize size spectra and velocities of a dispersed CO{sub 2} phase in the near-field of a discharge jet; and (2) estimate rates of mass transfer from dissolving droplets of liquid CO{sub 2} encased in a thin hydrate shell. Experiments will be conducted in a laboratory facility that can reproduce conditions in the ocean to depths of 600 m (1,969 ft). Between 8/16/96 and 2/15/97, activities focused on modifications to the experimental apparatus and the testing of diagnostics. Following completion of these tasks, experiments will be initiated and will continue through the end of the 36 month period of performance. Major accomplishments of this reporting period were: (1) delivery, set-up, and testing of the PDPA (Phase Doppler Particle Analyzer), which will be the principal diagnostic of the continuous CO{sub 2} jet injection tests; (2) presentation of research papers and posters at the 212th American Chemical Society National Meeting and the Third International Conference on Carbon Dioxide Removal; (3) participation in the 4th Expert Workshop on Ocean Storage of Carbon Dioxide; (4) execution of an Agreement with ABB Management, Ltd. to support and extend the activities of this grant; and (5) initiation of research collaborations with Dr. P.M. Haugen of the University of Bergen, Norway, and Dr. A. Yamasaki of the National Institute of Materials and Chemical Research, Japan.

  1. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    SciTech Connect (OSTI)

    Garcia, Julio Enrique

    2003-12-18T23:59:59.000Z

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.

  2. RESULTS FOR THE THIRD QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Reigel, M.

    2011-10-20T23:59:59.000Z

    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are in the current Saltstone WAC. Waste Solidification Engineering (WSE) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2011 Third Quarter samples collected from Tank 50 on July 7, 2011 and discusses those results in further detail than the previously issued results report.

  3. RESULTS FOR THE FOURTH QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Bannochie, C.

    2012-01-31T23:59:59.000Z

    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are in the current Saltstone WAC. Waste Solidification Engineering (WSE) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2011 Fourth Quarter samples collected from Tank 50 on October 12, 2011 and discusses those results in further detail than the previously issued results report.

  4. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    SciTech Connect (OSTI)

    Croff, A.G.

    2001-01-11T23:59:59.000Z

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  5. ANNUAL SUMMARY OF THE INTEGRATED DISPOSAL FACILITY PERFORMANCE ASSESSMENT FOR 2004

    SciTech Connect (OSTI)

    MANN, F M

    2005-02-09T23:59:59.000Z

    As required by the US. Department of Energy (DOE) order on radioactive waste management (DOE 1999a) and as implemented by the ''Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment'' (Mann 2004), an annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a performance assessment is not issued. A draft version of the 2001 ILAW PA was sent to the DOE Headquarters (DOE/HQ) in April 2001 for review and approval. The DOE approved (DOE 2001) the draft version of the 2001 ILAW PA and issued a new version of the Hanford Site waste disposal authorization statement (DAS). Based on comments raised during the review, the draft version was revised and the 2001 ILAW PA was formally issued (Mann et al. 2001). The DOE (DOE 2003a) has reviewed the final 2001 ILAW PA and concluded that no changes to the DAS were necessary. Also as required by the DOE order, annual summaries have been generated and approved. The previous annual summary (Mann 2003b) noted the change of mission from ILAW disposal to the disposal of a range of solid waste types, including ILAW. DOE approved the annual summary (DOE 2003c), noting the expanded mission. Considering the results of data collection and analysis, the conclusions of the 2001 ILAW PA remain valid as they pertain to ILAW disposal. The new data also suggest that impacts from the disposal of the other solid waste will be lower than initially estimated in the ''Integrated Disposal Facility Risk Assessment'' (Mann 2003a). A performance assessment for the Integrated Disposal Facility (IDF) will be issued in the summer of 2005.

  6. Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill

    SciTech Connect (OSTI)

    Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

    2002-02-26T23:59:59.000Z

    Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

  7. In Situ Grouting of Liquid Waste Disposal Trenches and Experimental Reactor Fuel Disposal Wells at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Johnson, Ch.; Cange, J.; Lambert, R. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Trujillo, E. [BWXT Pantex, LLC, Amarillo, TX (United States); Julius, J. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    In the early to mid-1960's, liquid low-level wastes (LLLW) generated at Oak Ridge National Laboratory were disposed of in specially-constructed, gravel-filled trenches within the Melton Valley watershed at the lab. The initial selected remedy for Trenches 5 and 7 was in situ vitrification; however, an amendment to the record of decision changed the remedy to in situ grouting of the trenches. The work was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout. At the HRE fuel wells, a 1-m ring of soil surrounding the fuel wells was grouted with acrylamide. The results of the hydraulic conductivity tests ranged from 4.74 x 10{sup -6} to 3.60 x 10{sup -7} cm/sec, values that were well below the 1 x 10{sup -5} cm/sec design criterion. In summary: The ISG Project was conducted to decrease hydraulic conductivity and thereby decrease water flow and contaminate migration from the area of the trenches. The initial remedy for Trenches 5 and 7 in the Melton Valley ROD was for in situ vitrification of the trench matrix. The remedy was changed to in situ grouting of the trenches and HRE fuel wells through an amendment to the ROD after moisture was found in the trenches. The grouting of the trenches was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout to further reduce water infiltration. Soil backfill above each of the seven HRE fuel wells was removed to a depth of approximately 1 m by augering, and the soils were replaced with a cement plug to prevent water infiltration from migrating down the original borehole. Soil surrounding the fuel wells was then grouted with acrylamide to ensure water infiltration through the HRE fuel wells is prevented. A summary of the quantities used is shown. After completion of grouting, in-situ hydraulic conductivities of the grouted materials were measured to verify attainment of the design objective. The areas were then covered with multi-layer caps as part of the MV hydrologic isolation project. (authors)

  8. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15T23:59:59.000Z

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  9. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-10T23:59:59.000Z

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  10. A HOST PHASE FOR THE DISPOSAL OF WEAPONS PLUTONIUM

    SciTech Connect (OSTI)

    WERNER LUTZE; K. B. HELEAN; W. L. GONG - UNIVERSITY OF NEW MEXICO RODNEY C. EWING - UNIVERSITY OF MICHIGAN

    1999-01-01T23:59:59.000Z

    Research was conducted into the possible use of zircon (ZrSiO{sub 4}) as a host phase for storage or disposal of excess weapons plutonium. Zircon is one of the most chemically durable minerals. Its structure can accommodate a variety of elements, including plutonium and uranium. Natural zircon contains uranium and thorium together in different quantities, usually in the range of less than one weight percent up to several weight percent. Zircon occurs in nature as a crystalline or a partially to fully metamict mineral, depending on age and actinide element concentration, i.e., on radiation damage. These zircon samples have been studied extensively and the results are documented in the literature in terms of radiation damage to the crystal structure and related property changes, e.g., density, hardness, loss of uranium and lead, etc. Thus, a unique suite of natural analogues are available to describe the effect of decay of {sup 239}Pu on zircon's structure and how zircon's physical and chemical properties will be affected over very long periods of time. Actually, the oldest zircon samples known are over 3 billion years old. This period covers the time for decay of {sup 239}Pu (half-life 24,300 yr.) and most of its daughter {sup 235}U (half-life 700 million yr.). Because of its chemical durability, even under extreme geological conditions, zircon is the most widely used mineral for geochronological dating (7,000 publications). It is the oldest dated mineral on earth and in the universe. Zircon has already been doped with about 10 weight percent of plutonium. Pure PuSiO{sub 4} has also been synthesized and has the same crystal structure as zircon. However, use of zircon as a storage medium or waste form for plutonium requires further materials characterization. Experiments can either be conducted in laboratories where plutonium can be handled or plutonium can be simulated by other elements, and experiments can be done under less restricted conditions. The authors conducted work with zircon doped with thorium, uranium and cerium, respectively. They synthesized various zircon compositions and studied the solid solution properties of mixed (Zr,X)SiO{sub 4} [X represents Th, U, Ce, respectively]. They measured the dissolution rate of pure crystalline zircon at elevated temperatures and of an amorphous hydrated zircon. This final report together with two previous annual reports summarize the accomplishments made in two areas: (1) synthesis of zircon solid solutions with Th, U, and Ce; and (2) measurement of the chemical durability of zircon. The focus of the final report is on the measurement of zircon's dissolution rate in water and on the determination of volubility limits of Th, U, and Ce in zircon.

  11. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Halsey, W G

    2011-03-02T23:59:59.000Z

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  12. Environmental impacts of options for disposal of depleted uranium tetrafluoride (UF{sub 4}).

    SciTech Connect (OSTI)

    Monette, F. A.; Allison, T.; Avci, H. I.; Biwer, B. M.; Butler, J. P.; Chang, Y.-S.; Chang, J.-J.; Folga, S. M.; Hartmann, H. M.; Lazaro, M. A.; LePoire, D. J.; Tomasko, D.; Van Lonkhuyzen, R. A.; Wilkins, B. D.

    2001-07-02T23:59:59.000Z

    The U.S. Department of Energy (DOE) evaluated options for managing its depleted uranium hexafluoride (UF{sub 6}) inventory in the Programmatic Environmental Impact Statement for the Long-Term Management and Use of Depleted Uranium Hexafluoride (PEIS) of April 1999. Along with the impacts from other management options, the PEIS discussed the environmental impacts from the disposal of depleted uranium oxide, which could result from the chemical conversion of depleted UF{sub 6}. It has been suggested that the depleted UF{sub 6} could also be converted to uranium tetrafluoride (UF{sub 4}) and disposed of. This report considers the potential environmental impacts from the disposal of DOE's depleted UF{sub 6} inventory after its conversion to UF{sub 4}. The impacts were evaluated for the same three disposal facility options that were considered in the PEIS for uranium oxide: shallow earthen structures, belowground vaults, and mines. They were evaluated for a dry environmental setting representative of the western United States. To facilitate comparisons and future decision making, the depleted UF{sub 4} disposal analyses performed and the results presented in this report are at the same level of detail as that in the PEIS.

  13. Long-term surveillance plan for the Rifle, Colorado, Disposal site

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP.

  14. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP.

  15. Exposure and risk calculations for disposal of wastes having minimal radioactivity

    SciTech Connect (OSTI)

    Fields, D.E.

    1984-01-01T23:59:59.000Z

    The US Nuclear Regulatory Commission is currently considering revision of rules 10 CFR 20 and 10 CFR 61, which cover disposal of solid wastes containing minimal activity radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. The PRESTO-II methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. The modeling of pathways and processes of migration from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 9 references, 2 figures, 3 tables.

  16. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-03-31T23:59:59.000Z

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by NDEP/BFF. The generator of permissible waste is responsible for preparing documentation related to waste acceptance criteria, waste characterization, and load verification. Waste and Water (WW) personnel are responsible for operating the disposal site and reviewing documentation to determine if the waste is acceptable.

  17. Environmental effects of dredging. Risk-based testing of dredged material for aquatic disposal evaluations. Technical note

    SciTech Connect (OSTI)

    Dillon, T.M.; Engler, R.M.; Patin, T.R.

    1992-12-01T23:59:59.000Z

    This technical note describes a risk-based framework for testing and evaluating dredged material scheduled for open-water disposal.

  18. Management plan report. Unconfined open-water disposal of dredged material. Phase 2. (North and south puget sound)

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    This report contains the findings of Phase II of the Puget Sound Dredged Disposal Analysis (PSDDA), a comprehensive study of unconfined dredged material disposal in deep waters of Puget Sound. The study was undertaken as a cooperative effort by the U.S. Army Corps of Engineers (Corps), U.S. Environmental Protection Agency (EPA), and the State of Washington Departments of Natural Resources (DNR) and Ecology (Ecology). A management plan for the Phase II area (North and South Puget Sound) is presented which identifies selected unconfined, open-water disposal sites, evaluation procedures for dredged material being considered for disposal at these sites, and site management considerations including environmental monitoring.

  19. Groundwater monitoring plan for the proposed state-approved land disposal structure

    SciTech Connect (OSTI)

    Reidel, S.P.

    1993-10-13T23:59:59.000Z

    This document outlines a detection-level groundwater monitoring program for the state-approved land disposal structure (SALDS). The SALDS is an infiltration basin proposed for disposal of treated effluent from the 200 Areas of the Hanford Site. The purpose of this plan is to present a groundwater monitoring program that is capable of determining the impact of effluent disposal at the SALDS on the quality of groundwater in the uppermost aquifer. This groundwater monitoring plan presents an overview of the SALDS, the geology and hydrology of the area, the background and indicator evaluation (detection) groundwater monitoring program, and an outline of a groundwater quality assessment (compliance) program. This plan does not provide a plan for institutional controls to track tritium beyond the SALDS.

  20. Evaluation of Dredged Material Proposed for Ocean Disposal from Port Chester, New York

    SciTech Connect (OSTI)

    Barrows, E.S.; Mayhew, H.L.; Word, J.Q.; Tokos, J.J.S. [Battelle Marine Sciences Laboratory, Sequim, WA (United States)

    1996-08-01T23:59:59.000Z

    Port Chester was one of seven waterways that the US Army Corps of Engineers-New York District requested the Battelle Marine Sciences Laboratory to sample and evaluate for dredging and disposal in March 1994. Tests and analyses were conducted on Port Chester sediment core samples. Because the Port Chester area is located on the border between New York and southeast Connecticut, its dredged material may also be considered for disposal at the Central Long Island Sound Disposal Site. The sediment evaluation consisted of bulk sediment chemical analyses, chemical analyses of site water and dredged material elutriate preparations, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Port Chester were analyzed for grain size, moisture content, and total organic carbon. In addition, sediment was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl congers, polynuclear aromatic hydrocarbons and 1,4-dichlorobenzene.

  1. Potential for Subsidence at the Low-level Waste Disposal Area

    SciTech Connect (OSTI)

    Keck, Karen Nina; Seitz, Roger Ray

    2002-09-01T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

  2. Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area

    SciTech Connect (OSTI)

    Keck, K.A.; Seitz, R.R.

    2002-09-26T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

  3. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  4. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    SciTech Connect (OSTI)

    Gregory J. McCarthy; Dean G. Grier

    1998-09-01T23:59:59.000Z

    The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.

  5. Method and apparatus for extracting tritium and preparing radioactive waste for disposal

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    Apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible's internal volume is sufficient by itself to hold and enclose the bundle's volume after heating. The crucible can then be covered and disposed of; the sleeve, on the other hand, can be reused.

  6. An underground characterization program for a nuclear fuel waste disposal vault in plutonic rock

    SciTech Connect (OSTI)

    Thompson, P.M.; Everitt, R.A. [AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.

    1993-12-31T23:59:59.000Z

    The Canadian Nuclear Fuel Waste Management Program (CNFWMP) is developing a concept for disposing of nuclear fuel waste that involves placing and sealing it in a disposal vault excavated 500 to 1,000 m deep in the stable plutonic rock of the Canadian Shield. In this concept, engineered and natural barriers serve to isolate the waste from the biosphere. Since 1983, underground characterization and testing in support of the CNFWMP has been ongoing at the Underground Research Laboratory (URL) in southeastern Manitoba. This paper draws on experience gained at the URL to recommend an approach to underground characterization that would provide the necessary information to make design decisions for a disposal vault in plutonic rock.

  7. Method and apparatus for extracting tritium and preparing radioactive waste for disposal

    DOE Patents [OSTI]

    Heung, L.K.

    1994-03-29T23:59:59.000Z

    Apparatus is described for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible's internal volume is sufficient by itself to hold and enclose the bundle's volume after heating. The crucible can then be covered and disposed of; the sleeve, on the other hand, can be reused. 4 figures.

  8. Heterogeneously integrated impedance measuring system with disposable thin-film electrodes

    E-Print Network [OSTI]

    Ma, Hanbin; Li, Jiahao; Cheng, Xiang; Nathan, Arokia

    2015-01-28T23:59:59.000Z

    chip is mounted on a PCB and connected to a disposable sensor via Dupont wires. The excitation signals applied to the electrodes on a disposable sensor and lock-in amplifier in CMOS chip are provided by dual-channel function generator. The voltage... decreases to the lowest point, and equals to the value of R1. The negative phase between 50 kHz to 500 kHz indicates a signal delay due to the capacitance. Note that there is no positive phase data in the ideal response as there is no inductive element...

  9. Performance assessment overview for subseabed disposal of high level radioactive waste

    SciTech Connect (OSTI)

    Klett, R.D.

    1997-06-01T23:59:59.000Z

    The Subseabed Disposal Project (SDP) was part of an international program that investigated the feasibility of high-level radioactive waste disposal in the deep ocean sediments. This report briefly describes the seven-step iterative performance assessment procedures used in this study and presents representative results of the last iteration. The results of the performance are compared to interim standards developed for the SDP, to other conceptual repositories, and to related metrics. The attributes, limitations, uncertainties, and remaining tasks in the SDP feasibility phase are discussed.

  10. Revised 21/2/12 The University produces and disposes of significant quantities of waste each year, for example during the 2005/06 we disposed of 1284 tonnes

    E-Print Network [OSTI]

    Oakley, Jeremy

    battery recycling scheme. This guidance relates to dry cell batteries. ScHARR method. You can take yourRevised 21/2/12 Recycling The University produces and disposes of significant quantities of waste should be reused and recycled rather than disposed of. To reduce the amount of waste that the University

  11. Refrigerated Equipment Decontamination Checklist If this is not possible, or if the equipment is beyond its useful life, then it must be disposed via the University appointed supplier for the disposal of WEEE

    E-Print Network [OSTI]

    Guo, Zaoyang

    Refrigerated Equipment Decontamination Checklist If this is not possible, or if the equipment & decontaminated prior to transfer or disposal Upon decomissioning & decontamination a 'Safe for disposal' notice. Equipment has been completely decontaminated and presents no chemical/biological/radiological or other

  12. 15th International Conference Ramiran, May 3-6, 2013, Versailles Accounting GHG emissions from sludge treatment and disposal routes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    sludge treatment and disposal routes ­ methodological problems focused on sludge land spreading% of sewage sludge is directly land spreading or composted before land spreading. Sludge application to quantify GHG emissions emitted during sludge treatment and disposal routes. This paper aims to present how

  13. UC DAVIS CUPA SELF AUDIT CHECKLIST 1. Are chemical hazardous waste containers disposed of through Yes No NA

    E-Print Network [OSTI]

    Kolner, Brian H.

    UC DAVIS CUPA SELF AUDIT CHECKLIST 1. Are chemical hazardous waste containers disposed of through days if 1 pound or 1 quart of acutely hazardous waste is accumulated? (Prudent practice is to dispose of within 90 days). 2. Does each chemical hazardous waste container have a UC Davis Yes Ë No Ë NA Ë

  14. Disposal John B. Carey and Fred D. Thornberry* Dead poultry on farms can cause nuisance, odor and

    E-Print Network [OSTI]

    Mukhtar, Saqib

    of implementation. The disposal methods allowed under S.B.1910 include: composting, incineration, rendering value in minimizing mistakes and future problems. Composting, incineration and rendering are currently/98 #12;Incineration Incineration can be a convenient and environmentally safe method to dispose of dead

  15. Mechanisms of contaminant migration from grouted waste

    SciTech Connect (OSTI)

    Magnuson, S.O. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Yu, A.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-12-31T23:59:59.000Z

    Low-level radioactive decontaminated salt solution is generated at the Savannah River Site (SRS) from the In-Tank Precipitation process. The solution is mixed with cement, slag, and fly ash, to form a grout, termed ``Saltstone``, that will be disposed in concrete vaults at the Saltstone Disposal Facility (SDF) [1]. Of the contaminants in the Saltstone, the greatest concern to SRS is the potential release of nitrate to the groundwater because of the high initial nitrate concentration (0.25 g/cm{sup 3}) in the Saltstone and the low Safe Drinking Water Act (SDWA) maximum contaminant level (MCL) of 44 mg/L. The SDF is designed to allow a slow, controlled release over thousands of years. This paper addresses a modeling study of nitrate migration from intact non-degraded concrete vaults in the unsaturated zone for the Radiological Performance Assessment (PA) of the SRS Saltstone Disposal Facility [3]. The PA addresses the performance requirements mandated by DOE Order 5820.2A [4].

  16. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2012-05-01T23:59:59.000Z

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  17. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOE Patents [OSTI]

    Malinchak, R.M.

    1981-09-03T23:59:59.000Z

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  18. Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation

    E-Print Network [OSTI]

    Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation of pollution being used for coal ash deposits. Pollutants present in the ash can contaminate water resources and soil its research on the thermo-electric plant (TEP) and associated coal ash sites at Tuzla, Bosnia

  19. Cefas contract report SLBA1 Marine material disposal Part II FEPA Radiological Assessment of

    E-Print Network [OSTI]

    of Dredging Application for Oldbury Power Station (2010) Cefas Environment Report RL 09/2010 Authors: K. S. Leonard and P. A. Smedley Issue date: October 2010 #12;#12;RADIOLOGICAL ASSESSMENT OF DREDGING APPLICATION to carry out a dredging program for a period of 3 years involving the disposal at sea of 59,900 m3

  20. Cefas contract report MLA/2012/00027 Marine material disposal Part II FEPA Radiological Assessment of

    E-Print Network [OSTI]

    Assessment of Dredging Application for Silloth Docks, Cumbria (2012) Cefas Environment Report RL 10 OF DREDGING APPLICATION FOR SILLOTH DOCKS (2012) Summary In 2012, Associated British Ports Holdings Limited lodged a FEPA licensing application to carry out a 3 year dredging program, involving the disposal at sea