National Library of Energy BETA

Sample records for yucca mountain site

  1. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect (OSTI)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  2. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  3. Yucca Mountain Site Characterization Project Technical Data Catalog; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-06-30

    The June 1, 1985 DOE/NRC Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. This edition of the Technical Data Catalog supersedes the edition dated March 31, 1992.

  4. Yucca Mountain Site Characterization Project technical data catalog; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-09-30

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition.

  5. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  6. Yucca Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Mountain We are applying our unique scientific and engineering capabilities to ensure the safety of the nation's first high-level nuclear waste repository. 8 08 FACT SHEET...

  7. Yucca Mountain - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Mountain In 2009, the Department of Energy announced it was halting work on Yucca Mountain in the Nevada desert which The Nuclear Waste Policy Act of 1982 established as the preferred and only site for permanent storage of nuclear waste. The law also committed the federal government to accept defense waste and commercial spent fuel for long-term storage. When the waste finally reached the depths of Yucca Mountain, it would be safe and secure. It was a solution forever sealed from human

  8. Illuminating the Decision Path: The Yucca Mountain Site Recommendation

    SciTech Connect (OSTI)

    Knox, E.; Slothouber, L.

    2003-02-25

    On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context.

  9. Technical Data Catalog: Yucca Mountain Site Characterization Project. Quarterly supplement

    SciTech Connect (OSTI)

    1995-06-30

    This report presents reference information contained in the Yucca Mountain Project Automated Technical Data Tracking System. The Department of Energy is seeking to design and maintain a geologic repository for the disposal of high-level radioactive wastes. However, before this repository can be built, the DOE must first do a comprehensive site evaluation. This evaluation is subject to many regulations. This report fulfills the reporting requirements of the Site-Specific Procedural Agreement for Geologic Repository to develop and maintain a catalog of data which will be updated and provided to the Nuclear Regulatory Commission on a quarterly basis. This catalog contains: description of data; time, place, and method of acquisition; and where data may be examined.

  10. [Paleoclimatology studies for Yucca Mountain site characterization]. Final report

    SciTech Connect (OSTI)

    NONE

    1996-05-03

    This report consists of two separate papers: Fernley Basin studies; and Influence of sediment supply and climate change on late Quaternary eolian accumulation patterns in the Mojave Desert. The first study involved geologic mapping of late Quaternary sediments and lacustrine features combined with precise control of elevations and descriptions of sediments for each of the major sedimentary units. The second paper documents the response of a major eolian sediment transport system in the east-central Mojave Desert: that which feeds the Kelso Dune field. Information from geomorphic, stratigraphic, and sedimentologic studies of eolian deposits and landforms is combined with luminescence dating of these deposits to develop a chronology of periods of eolian deposition. Both studies are related to site characterization studies of Yucca Mountain and the forecasting of rainfall patterns possible for the high-level radioactive waste repository lifetime.

  11. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  12. Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J.

    1992-09-01

    The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

  13. Yucca Mountain Site Characterization Project Technical Data Catalog

    SciTech Connect (OSTI)

    1992-12-31

    The June 1, 1985, Department of Energy (DOE)/Nuclear, Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition.

  14. Yucca Mountain Site Characterization Project Technical Data Catalog (quarterly supplement)

    SciTech Connect (OSTI)

    1993-06-30

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated December 31, 1992, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1993.

  15. Yucca Mountain Site Characterization Project Technical Data Catalog (Quarterly supplement)

    SciTech Connect (OSTI)

    1993-12-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  16. Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement

    SciTech Connect (OSTI)

    1994-12-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  17. Yucca Mountain Site Characterization Project technical data catalog quarterly supplement

    SciTech Connect (OSTI)

    1995-03-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with t requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to@ previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  18. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    SciTech Connect (OSTI)

    1994-03-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  19. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  20. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9

    SciTech Connect (OSTI)

    1994-02-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  1. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1992--March 31, 1993, No. 8

    SciTech Connect (OSTI)

    1993-08-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1992, through March 31, 1993. This report is the eighth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  2. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3

    SciTech Connect (OSTI)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  3. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1

    SciTech Connect (OSTI)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

  4. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2

    SciTech Connect (OSTI)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  5. Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995

    SciTech Connect (OSTI)

    1996-08-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it.

  6. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    SciTech Connect (OSTI)

    Stephan, P.M.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  7. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    SciTech Connect (OSTI)

    Stephan, P.M.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  8. Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update

    SciTech Connect (OSTI)

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  9. February 14, 2002: Yucca Mountain

    Broader source: Energy.gov [DOE]

    February 14, 2002Secretary Abraham formally recommends to President Bush that the Yucca Mountain site in Nevada be developed as the nation's first long-term geologic repository for high-level...

  10. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    SciTech Connect (OSTI)

    Hoxie, D.T.

    1995-04-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system.

  11. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  12. Site characterization plan overview: Yucca Mountain site, Nevada Research and Development Area, Nevada

    SciTech Connect (OSTI)

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs.

  13. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7

    SciTech Connect (OSTI)

    1992-12-01

    In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences` National Research Council released its report entitled ``Ground Water at Yucca Mountain: How High Can It Rise?`` which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities.

  14. Site characterization progress report, Yucca Mountain, Nevada: Number 19, April 1, 1998--September 30, 1998

    SciTech Connect (OSTI)

    Not Available

    1999-06-01

    The nineteenth semiannual report of the Yucca Mountain Site Characterization Project (YMP) summarizes activities during the period from April 1, 1998, through September 30, 1998. Project activities are aimed at evaluating Yucca Mountain as a potential location for permanent geologic disposal of nuclear materials, as directed by the Nuclear Waste Policy Act of 1982, as amended (NWPA). The progress report documents activities this period that contribute to completing the Project`s near-term programmatic and statutory objectives. These objectives include completing the Viability Assessment, the Environmental Impact Statement (EIS), a possible US Department of Energy (DOE) Secretarial Site Recommendation to the President, and, if the site is suitable, submittal of a license application to the US Nuclear Regulatory Commission (NRC). Project work this period continued to be concentrated in three integrated activities: site characterization, engineering design and construction, and performance assessment. Accomplishments this period and their relation to near-term objectives are briefly summarized.

  15. Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4

    SciTech Connect (OSTI)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

  16. Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

    Broader source: Energy.gov [DOE]

    Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

  17. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

  18. Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

  19. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1993--March 31, 1994

    SciTech Connect (OSTI)

    1994-10-01

    This report is the tenth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Also included in this report are descriptions of activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies. The Executive Summary is intended to provide a summary of major decisions, activities, accomplishments, and issues of interest during the reporting period. Chapter 1, Introduction, provides background information to assist the reader in understanding the current status of the program. Chapter 2 provides specific detailed discussions of activities conducted during the current reporting period and has two major divisions. Section 2.1, Preparatory Activities, provides information on select preparatory activities necessary to conduct site characterization and design activities. Sections 2.2 through 2.8 provide specific details on studies and activities conducted during the reporting period and follow the original structure of the Department`s 1988 Site Characterization Plan. Chapter 3 contains the current summary schedule, while Chapter 4 provides a description of the program outreach, including activities during the reporting period, in both the international program and public outreach. Chapter 5 presents an epilogue of significant events that occurred after the end of the reporting period.

  20. Progress report on colloid-facilitated transport at Yucca Mountain: Yucca Mountain site characterization program milestone 3383

    SciTech Connect (OSTI)

    Triay, I.R.; Degueldre, C.; Wistrom, A.O.; Cotter, C.R.; Lemons, W.W.

    1996-06-01

    To assess colloid-facilitated radionuclide transport in groundwaters at the potential nuclear waste repository at Yucca Mountain, it is very important to understand the generation and stability of colloids, including naturally occurring colloids. To this end, we measured the colloid concentration in waters from Well J-13, which is on the order of 106 particles per milliliter (for particle sizes larger than 100 manometers). At this low particle loading, the sorption of radionuclides to colloids would have to be extremely high before the colloids could carry a significant amount of radionuclides from the repository to the accessible environment. We also performed aggregation experiments to evaluate the stability of silica (particle diameter: 85 nm) and clay colloids (particle diameter: 140 nm) as a function of ionic strength in a carbonate-rich synthetic groundwater. When the concentration of electrolyte is increased to induce aggregation, the aggregation is irreversible and the rate of aggregation increases with increasing electrolyte strength. We used autocorrelation photon spectroscopy to estimate the rate of particle aggregation for both types of colloids. By relating the measured aggregation rate to the Smoluchowski rate expression, we determined the stability ratio, W. Aggregation of silica particles and kaolinite clay particles decreased dramatically for an electrolyte concentration, C{sub NaCl}, below 300 mM and 200 mM, respectively.

  1. Site characterization progress report: Yucca Mountain, Nevada. Number 15, April 1--September 30, 1996

    SciTech Connect (OSTI)

    1997-04-01

    During the second half of fiscal year 1996, activities at the Yucca Mountain Site Characterization Project (Project) supported the objectives of the revised Program Plan released this period by the Office of Civilian Radioactive Waste Management of the US Department of Energy (Department). Outlined in the revised plan is a focused, integrated program of site characterization, design, engineering, environmental, and performance assessment activities that will achieve key Program and statutory objectives. The plan will result in the development of a license application for repository construction at Yucca Mountain, if the site is found suitable. Activities this period focused on two of the three near-term objectives of the revised plan: updating in 1997 the regulatory framework for determining the suitability of the site for the proposed repository concept and providing information for a 1998 viability assessment of continuing toward the licensing of a repository. The Project has also developed a new design approach that uses the advanced conceptual design published during the last reporting period as a base for developing a design that will support the viability assessment. The initial construction phase of the Thermal Testing Facility was completed and the first phase of the in situ heater tests began on schedule. In addition, phase-one construction was completed for the first of two alcoves that will provide access to the Ghost Dance fault.

  2. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  3. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    SciTech Connect (OSTI)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

  4. Site characterization progress report: Yucca Mountain, Nevada. October 1, 1996--March 31, 1997

    SciTech Connect (OSTI)

    1997-10-01

    The report is the sixteenth in a series issued approximately every six months to report progress and results of site characterization activities being conducted to evaluate Yucca Mountain as a possible geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. This report highlights work started, in progress, and completed during the reporting period. In addition, this report documents and discusses changes to the Office of Civilian Radioactive Waste Management (OCRWM) Site Characterization Program (Program) resulting from the ongoing collection and evaluation of site information, systems analyses, development of repository and waste package designs, and results of performance assessment activities. Details on the activities summarized can be found in the numerous technical reports cited throughout the progress report. Yucca Mountain Site Characterization Project (Project) activities this period focused on implementing the near-term objectives of the revised Program Plan issued last period. Near-term objectives of the revised Program Plan include updating the US Department of Energy`s (DOE) repository siting guidelines to be consistent with a more focused performance-driven program; supporting an assessment in 1998 of the viability of continuing with actions leading to the licensing of a repository; and if the site is suitable, submittal of a Secretarial site recommendation to the President in 2001 and license application the US Nuclear Regulatory Commission (NRC) in 2002. During this reporting period, the Project developed and baselined its long-range plan in December 1996. That revision reflected the detailed fiscal year (FY) 1997 work scope and funding plan previously baselined at the end of FY 1996. Site characterization activities have been focused to answer the major open technical issues and to support the viability assessment.

  5. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    SciTech Connect (OSTI)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  6. An example postclosure risk assessment using the potential Yucca Mountain Site

    SciTech Connect (OSTI)

    Doctor, P.G.; Eslinger, P.W.; Elwood, D.M.; Engel, D.W.; Freshley, M.D.; Liebetrau, A.M.; Reimus, P.W.; Strenge, D.L.; Tanner, J.E.; Van Luik, A.E.

    1992-05-01

    The risk analysis described in this document was performed for the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) over a 2-year time period ending in June 1988. The objective of Pacific Northwest Laboratory`s (PNL) task was to demonstrate an integrated, though preliminary, modeling approach for estimating the postclosure risk associated with a geologic repository for the disposal of high-level nuclear waste. The modeling study used published characterization data for the proposed candidate site at Yucca Mountain, Nevada, along with existing models and computer codes available at that time. Some of the site data and conceptual models reported in the Site Characterization Plan published in December 1988, however, were not yet available at the time that PNL conducted the modeling studies.

  7. A simplified radionuclide source term for total-system performance assessment; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Wilson, M.L.

    1991-11-01

    A parametric model for releases of radionuclides from spent-nuclear-fuel containers in a waste repository is presented. The model is appropriate for use in preliminary total-system performance assessments of the potential repository site at Yucca Mountain, Nevada; for this reason it is simpler than the models used for detailed studies of waste-package performance. Terms are included for releases from the spent fuel pellets, from the pellet/cladding gap and the grain boundaries within the fuel pellets, from the cladding of the fuel rods, and from the radioactive fuel-assembly parts. Multiple barriers are considered, including the waste container, the fuel-rod cladding, the thermal ``dry-out``, and the waste form itself. The basic formulas for release from a single fuel rod or container are extended to formulas for expected releases for the whole repository by using analytic expressions for probability distributions of some important parameters. 39 refs., 4 figs., 4 tabs.

  8. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1993 Quality Program status report

    SciTech Connect (OSTI)

    Bolivar, S.L.

    1995-05-01

    This status report is for calendar year 1993. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, we establish a baseline that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify long term trends and to evaluate improvements. This is the third annual status report (Bolivar, 1992; Bolivar, 1994). This report is divided into two primary sections: Program Activities and Trend Analysis. Under Program Activities, programmatic issues occurring in 1993 are discussed. The goals for 1993 are also listed, followed by a discussion of their status. Lastly, goals for 1994 are identified. The Trend Analysis section is a summary of 1993 quarterly trend reports and provides a good overview of the quality assurance issues of the Los Alamos YMP.

  9. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    SciTech Connect (OSTI)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

  10. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  11. Getting Beyond Yucca Mountain - 12305

    SciTech Connect (OSTI)

    Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 89706 (United States); Williams, James M. [Western Interstate Energy Board, Denver, CO 80202 (United States)

    2012-07-01

    The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However, the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track requires, among other things, new principles for siting-principles based on partnership between the federal implementing agency and prospective host states. These principles apply to the task of developing an integrated waste management strategy, to interactions between the federal government and prospective host states for consolidated storage and disposal facilities, and to the logistically and politically complicated task of transportation system design. Lessons from the past 25 years, in combination with fundamental parameters of the nuclear waste management task in the US, suggest new principles for partnership outlined in this paper. These principles will work better if well-grounded and firm guidelines are set out beforehand and if the challenge of maintaining competence, transparency and integrity in the new organization is treated as a problem to be addressed rather than a result to be expected. (authors)

  12. Yucca Mountain Site Characterization Project: Technical data catalog,(quarterly supplement)

    SciTech Connect (OSTI)

    1993-03-31

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year.

  13. Technical data base quarterly report, April--June 1992; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-09-01

    The acquisition and development of technical data are activities that provide the information base from which the Yucca mountain Site will be characterized and may P-ventually be licensed as a high-level waste repository. The Project Technical Data Base (TDB) is the repository for the regional and site-specific technical data required in intermediate and license application analyses and models. The TDB Quarterly Report provides the mechanism for identifying technical data currently available from the Project TDB. Due to the variety of scientific information generated by YMP activities, the Project TDB consists of three components, each designed to store specific types of data. The Site and Engineering Properties Data Base (SEPDB) maintains technical data best stored in a tabular format. The Geographic Nodal Information Study and Evaluation System (GENISES), which is the Geographic Information System (GIS) component of the Project TDB, maintains spatial or map-like data. The Geologic and Engineering Materials Bibliography of Chemical Species (GEMBOCHS) data base maintains thermodynamic/geochemical data needed to support geochemical reaction models involving the waste package and repository geochemical environment. Each of these data bases are addressed independently within the TDB Quarterly Report.

  14. Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site

    SciTech Connect (OSTI)

    Simecka, W.B.; Grant, T.A.; Voegele, M.D.; Cline, K.M.

    1992-12-31

    A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation`s first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities.

  15. An overview of the Yucca Mountain Site Characterization Project field test program for evaluating seal performance

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.

    1993-12-31

    Sandia National Laboratories (SNL), a participant in the Yucca Mountain Site Characterization Project, is responsible for implementing the repository sealing program. One aspect of this program is the definition and fielding of tests related to sealing components which comprise the sealing subsystem. The sealing components are identified in the Site Characterization Plan (U.S. DOE, 1988) and Fernandez et al. (1987). These include an anchor-to-bedrock plug, single dams (or single bulkheads with not settlement), general shaft fill, drift backfill, station and shaft plugs, double bulkheads, backfilled sumps, and channels in a backfilled room. The materials used to create these components are cementitious and earthen. Earthen materials will be used for as many applications as possible to minimize potential degradation of physical properties and potential adverse effects on ground-water chemistry in the repository environment. In places where low strength is acceptable, earthen materials may be used. The most likely application for cementitious materials is where high strength and low deformability may be required. (Hinkebein and Fernandez, 1989). The basis for performing seal component testing is divided into two parts: regulatory requirements and technical requirements. The regulatory requirements are derived primarily from Title 10 Code of Federal Regulations, Part 60 (10 CFR 60) (U.S. Nuclear Regulatory Commission, 1986). The technical requirements are defined by the uncertainties associated with seal performance and seal emplacement. Both categories of requirements are discussed below.

  16. Yucca Mountain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north...

  17. Basis for in-situ geomechanical testing at the Yucca Mountain site

    SciTech Connect (OSTI)

    Board, M.

    1989-07-01

    This report presents an analysis of the in-situ geomechanical testing needs for the Exploratory Shaft (ES) test facility at the Yucca Mountain site in Nevada. The testing needs are derived from 10CFR60 regulations and simple thermomechanical canister- and room-scale numerical studies. The testing approach suggested is based on an ``iterative`` procedure of full-scale testing combined with numerical and empirical modeling. The testing suggested is based heavily on demonstration of excavation and thermal loading of full-scale repository excavations. Numerical and/or empirical models are compared to the full-scale response, allowing for adjustment of the model and evaluation of confidence in their predictive ability. Additional testing may be specified if confidence in prediction of the rock mass response is low. It is suggested that extensive drifting be conducted within the proposed repository area, including exploration of the bounding Drill Hole Wash and Imbricate fault structures, as well as the Ghost Dance fault. This approach is opposed to an a priori statistical specification of a number of ``point`` tests which attempt to measure a given property at a specific location. 40 refs., 49 figs., 6 tabs.

  18. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  19. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  20. Preliminary 3-D site-scale studies of radioactive colloid transortin the unsaturated zone at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Moridis, G.J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G.S.

    2001-09-01

    The U.S: Department of Energy is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in a repository to be situated in the unsaturated zone at Yucca Mountain, Nevada. In this study we investigate, by means of numerical simulation, the transport of radioactive colloids under ambient conditions from the potential repository horizon to the water table. The site hydrology and the effects of the spatial distribution of hydraulic and transport properties in the Yucca Mountain subsurface are considered. The study of migration and retardation of colloids accounts for the complex processes in the unsaturated zone of Yucca Mountain, and includes advection, diffusion, hydrodynamic dispersion, kinetic colloid filtration, colloid straining, and radioactive decay. The results of the study indicate that the most important factors affecting colloid transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces, and transport velocity) and by the parameters of the kinetic-filtration model used for the simulations. Arrival times at the water table decrease with an increasing colloid size because of smaller diffusion, increased straining, and higher transport velocities. The importance of diffusion as a retardation mechanism increases with a decreasing colloid size, but appears to be minimal in large colloids.

  1. A saturated zone site-scale flow model for Yucca mountain

    SciTech Connect (OSTI)

    Eddebbarh, Al Aziz

    2008-01-01

    A saturated zone site-scale flow model (YMSZFM) was developed for licensing requirements for the Yucca Mountain nuclear waste repository to incorporate recent data and analyses including recent stratigraphic and water-level data from Nye County wells, single-and multiple-well hydraulic testing data, and recent hydrochemistry data. Analyses include use of data from the 2004 transient Death Valley Regional (ground-water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500-to 250-m grid spacing), and (5) use of new data. The flow model was completed using the three-dimensional, Finite-Element Heat and Mass Transfer computer code (FEHM). The SZ site-scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. A total of 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water-level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to generate flow paths and specific discharge predictions. Model confidence was built by comparing: (l) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water-chemistry data. Uncertainties in the SZ site-scale flow model were quantified because all uncertainty contributes to inaccuracy in system representation and response. Null space and solution space uncertainties were determined.

  2. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1992 quality program status report

    SciTech Connect (OSTI)

    Bolivar, S.L.; Burningham, A.; Chavez, P.

    1994-03-01

    This status report summarizes the activities and accomplishments of the Los Alamos Yucca Mountain Site Characterization Project`s quality assurance program for calendar year 1992. The report includes major sections on Program Activities and Trend Analysis. Program Activities are discussed periodically at quality meetings. The most significant issue addressed in 1992 has been the timely revision of quality administrative procedures. The procedure revision process was streamlined from 55 steps to 7. The number of forms in procedures was reduced by 38%, and the text reduced by 29%. This allowed revision in 1992 of almost half of all implementing procedures. The time necessary to complete the revision process (for a procedure) was reduced from 11 months to 3 months. Other accomplishments include the relaxation of unnecessarily strict training requirements, requiring quality assurance reviews only from affected organizations, and in general simplifying work processes. All members of the YMP received training to the new Orientation class Eleven other training classed were held. Investigators submitted 971 records to the Project and only 37 were rejected. The software program has 115 programs approved for quality-affecting work. The Project Office conducted 3 audits and 1 survey of Los Alamos activities. We conducted 14 audits and 4 surveys. Eight corrective action reports were closed, leaving only one open. Internally, 22 deficiencies were recognized. This is a decrease from 65 in 1991. Since each deficiency requires about 2 man weeks to resolve, the savings are significant. Problems with writing acceptable deficiency reports have essentially disappeared. Trend reports for 1992 were examined and are summarized herein. Three adverse trends have been closed; one remaining adverse trend will be closed when the affected procedures are revised. The number of deficiencies issued to Los Alamos compared to other participants is minimal.

  3. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.; Givens, C.A.; Carney, B.C.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  4. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect (OSTI)

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  5. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 4, Part B: Chapter 8, Sections 8.0 through 8.3.1.4

    SciTech Connect (OSTI)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 74 figs., 32 tabs.

  6. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

  7. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Dunn, E.; Sobolik, S.R.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

  8. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  9. ADVANCES IN YUCCA MOUNTAIN DESIGN

    SciTech Connect (OSTI)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-02-27

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield.

  10. Microbial activity at Yucca Mountain

    SciTech Connect (OSTI)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  11. Yucca Mountain Press Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yucca Mountain Press Conference Yucca Mountain Press Conference June 3, 2008 - 12:51pm Addthis Remarks as Prepared for Delivery for Secretary Bodman Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. We are confident that the

  12. Environmental Regulatory Compliance Plan for site: Draft characterization of the Yucca Mountain site:Draft

    SciTech Connect (OSTI)

    1988-01-01

    The objective of the EMMP is to document compliance with the NWPA. To do so, a summary description of site characterization activites is provided, based on the consultation draft of the SCP. Subsequent chpaters identify those technical areas having the potential to be impacted by site characterization activities and the monitoring plans proposed to identify whether those impacts acutally occur. Should monitoring confirm the potential for significant adverse impact, mitigative measures will be developed. In the context of site characterization, mitigation is defined as those changes in site characterization activities that serve to avoid or minimize, to the maximum extent practicle, any significant adverse environmental impacts. Although site characterization activies involve both surface and subsurface activities, it is the surface-based aspect of site characterization that is addressed in detailed by the EMMP. The schedule and duration of these activities is given in the consultation draft of the SCP. A breif summary of all proposed activities is given in the EMMP. 10 refs., 8 figs.

  13. Yucca Mountain Science and Engineering Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time.

  14. Motion to Withdraw from Yucca Mountain application | Department...

    Office of Environmental Management (EM)

    DOE's withdraws it's pending license application for a permanent geologic repository at Yucca Mountain, Nevada. PDF icon Motion to Withdraw from Yucca Mountain...

  15. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    SciTech Connect (OSTI)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during Pleistocene and Holocene times; these paleoseismic studies form the basis for evaluating the potential for future earthquakes and fault displacements. Thermoluminescence and U-series analyses were used to date the surficial materials involved in the Quaternary faulting events. The rate of erosional downcutting of bedrock on the ridge crests and hillslopes of Yucca Mountain, being of particular concern with respect to the potential for breaching of the proposed underground storage facility, was studied by using rock varnish cation-ratio and {sup 10}Be and {sup 36}Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time.

  16. Site characterization progress report: Yucca Mountain, Nevada. Progress report number 17, April 1, 1997--September 30, 1997

    SciTech Connect (OSTI)

    1998-04-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM), created with the enactment of the Nuclear Waste Policy Act of 1982 (NWPA), is tasked to accept and dispose of the nation`s high-level radioactive waste and spent nuclear fuel in a deep geologic repository (high-level radioactive waste program). The report summarizes significant site characterization activities during the period from April 1, 1997 through September 30, 1997, in the evaluation of Yucca Mountain as a potential site for the geologic disposal of spent nuclear fuel and high-level radioactive wastes. The progress report also cites technical reports and research products that provide the detailed information on these activities. Chapter 2 outlines technical and regulatory issues that must be addressed by the Project and planned work toward achieving future objectives concerning the viability assessment, the environmental impact statement, the site recommendation, and the license application. Chapter 3 describes technical progress in preclosure radiological safety analysis, postclosure performance assessment, and performance confirmation activities. Chapter 4 describes various aspects of repository and waste package design and construction. It also discusses the Exploration Studies Facility cross drift. Chapter 5 describes site characterization activities, and Chapter 6 contains a complete list of references.

  17. April 25, 1997: Yucca Mountain exploratory drilling | Department of Energy

    Energy Savers [EERE]

    5, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997 Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada

  18. Progress report on the scientific investigation program for the Nevada Yucca Mountain Site, October 1, 1991--March 31, 1992, Number 6

    SciTech Connect (OSTI)

    1992-09-01

    In accordance with the requirements of section 113(b)(3) of the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18(g), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1991, through March 31, 1992. This report is the sixth in a series of reports that are issued at intervals of approximately six months during site characterization. Also included in this report are activities such as public outreach and international programs that are not officially part of site characterization. Information on these activities is provided in order to fully integrate all aspects of the Yucca Mountain studies.

  19. Predictions of tracer transport in interwell tracer tests at the C-Hole complex. Yucca Mountain site characterization project report milestone 4077

    SciTech Connect (OSTI)

    Reimus, P.W.

    1996-09-01

    This report presents predictions of tracer transport in interwell tracer tests that are to be conducted at the C-Hole complex at the Nevada Test Site on behalf of the Yucca Mountain Site Characterization Project. The predictions are used to make specific recommendations about the manner in which the tracer test should be conducted to best satisfy the needs of the Project. The objective of he tracer tests is to study flow and species transport under saturated conditions in the fractured tuffs near Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository. The potential repository will be located in the unsaturated zone within Yucca Mountain. The saturated zone beneath and around the mountain represents the final barrier to transport to the accessible environment that radionuclides will encounter if they breach the engineered barriers within the repository and the barriers to flow and transport provided by the unsaturated zone. Background information on the C-Holes is provided in Section 1.1, and the planned tracer testing program is discussed in Section 1.2.

  20. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  1. A preliminary investigation of the structure of southern Yucca Flat, Massachusetts Mountain, and CP basin, Nevada Test Site, Nevada, based on geophysical modeling.

    SciTech Connect (OSTI)

    Geoffrey A. Phelps; Leigh Justet; Barry C. Moring, and Carter W. Roberts

    2006-03-17

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  2. Testimony of Greg Friedman Yucca Mountain

    Broader source: Energy.gov (indexed) [DOE]

    ... at Yucca Mountain IG-0366 1995-02-15 27. TRW Environmental ... of Costs Claimed by and Reimbursed to TRW Environmental Safety Systems, Inc. Under Department of Energy Contract ...

  3. Yucca Mountain Climate Technical Support Representative

    SciTech Connect (OSTI)

    Sharpe, Saxon E

    2007-10-23

    The primary objective of Project Activity ORD-FY04-012, “Yucca Mountain Climate Technical Support Representative,” was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

  4. Preparing to Submit a License Application for Yucca Mountain

    SciTech Connect (OSTI)

    W.J. Arthur; M.D. Voegele

    2005-03-14

    In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

  5. New Yucca Mountain Repository Design to be Simpler, Safer and...

    Office of Environmental Management (EM)

    New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective PDF icon...

  6. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  7. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1994--March 31, 1995, Number 12. Nuclear Waste Policy Act (Section 113)

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    During the first half of fiscal year 1995, most activities at the Yucca Mountain Site Characterization Project were directed at implementing the Program Plan developed by the Office of Civilian Radioactive Waste Management. The Plan is designed to enable the Office to make measurable and significant progress toward key objectives over the next five years within the financial resources that can be realistically expected. Activities this period focused on the immediate goal of determining by 1998 whether Yucca Mountain, Nevada, is technically suitable as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Work on the Project advanced in several critical areas, including programmatic activities such as issuing the Program Plan, completing the first technical basis report to support the assessment of three 10 CFR 960 guidelines, developing the Notice of Intent for the Environmental Impact Statement, submitting the License Application Annotated Outline, and beginning a rebaselining effort to conform with the goals of the Program Plan. Scientific investigation and analysis of the site and design and construction activities to support the evaluation of the technical suitability of the site also advanced. Specific details relating to all Project activities and reports generated are presented in this report.

  8. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

  9. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 8, Part B: Chapter 8, Sections 8.4 through 8.7; Glossary and Acronyms

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Section 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 88 figs., 42 tabs.

  10. Uranium and Neptunium Desorption from Yucca Mountain Alluvium

    SciTech Connect (OSTI)

    C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

    2006-03-16

    Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

  11. Characterize Eruptive Processes at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  12. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    SciTech Connect (OSTI)

    Flynn, T.; Buchanan, P.; Trexler, D.; Shevenell, L., Garside, L.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  13. Overview of calcite/opal deposits at or near the proposed high-level nuclear waste site, Yucca Mountain, Nevada, USA: Pedogenic, hypogene, or both?

    SciTech Connect (OSTI)

    Hill, C.A.; Dublyansky, Y.V.; Harmon, R.S.

    1995-09-01

    Calcite/opal deposits (COD) at Yucca Mountain were studied with respect to their regional and field geology, petrology and petrography, chemistry and isotopic geochemistry, and fluid inclusions. They were also compared with true and pedogenic deposits (TPD), groundwater spring deposits (GSD), and calcite vein deposits (CVD) in the subsurface. Some of the data are equivocal and can support either a hypogene or pedogenic origin for these deposits. However, Sr-, C-, and O-isotope, fluid inclusion, and other data favor a hypogene interpretation. A hypothesis that may account for all currently available data is that the COD precipitated from warm, CO{sub 2}-rich water that episodically upwelled along faults during the Pleistocene, and which, upon reaching the surface, flowed down-slope within existing alluvial, colluvial, eluvial, or soil deposits. Being formed near, or on, the topographic surface, the COD acquired characteristics of pedogenic deposits. This subject relates to the suitability of Yucca Mountain as a high-level nuclear waste site. 64 refs., 21 figs., 3 tabs.

  14. Testimony of Greg Friedman Yucca Mountain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment and the Economy of the Committee on Energy and Commerce U.S. House of Representatives FOR RELEASE ON DELIVERY 1:00 PM Wednesday, June 1, 2011 1 Mr. Chairman and members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's Yucca Mountain Project. As you know, issues surrounding the termination of the Project have been widely publicized. They directly impact the Department's responsibilities to manage legacy waste

  15. Microsoft Word - Yucca Mountain Press Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR IMMEDIATE RELEASE Angela Hill, (202) 586-4940 Tuesday, June 3, 2008 Remarks as Prepared for Delivery for Energy Secretary Samuel Bodman Yucca Mountain Press Conference National Press Club Washington, D.C. Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive

  16. Department of Energy Files Motion to Withdraw Yucca Mountain License

    Energy Savers [EERE]

    Application | Department of Energy Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today filed a motion with the Nuclear Regulatory Commission to withdraw the license application for a high-level nuclear waste repository at Yucca Mountain with prejudice. "President Obama is fully committed to ensuring that the

  17. DOE Announces Yucca Mountain License Application Schedule | Department of

    Energy Savers [EERE]

    Energy Yucca Mountain License Application Schedule DOE Announces Yucca Mountain License Application Schedule July 19, 2006 - 3:13pm Addthis New Director Ward Sproat Testifies on Revised Timeline WASHINGTON, DC - The Department of Energy (DOE) today announced that it will submit a license application to the Nuclear Regulatory Commission (NRC) for a nuclear waste repository at Yucca Mountain, Nevada, no later than June 30, 2008. The Department also announced that if requested legislative

  18. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Hudson, D.B.; Guertal, W.R. [Foothill Engineering, Inc., Mercury, NV (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN {number_sign}85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper.

  19. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  20. Calcite deposits in drill cores USW G-2 and USW GU-3/G-3 at Yucca Mountain, Nevada: Preliminary report

    SciTech Connect (OSTI)

    Vaniman, D.T.

    1994-04-01

    Yucca Mountain is being studied as a potential site for deep geologic disposal of high-level radioactive waste. Should a repository be developed at Yucca Mountain, the preferred location is within the upper unsaturated tuffaceous volcanic rocks. In this location, one factor of concern is the amount and rate of aqueous transport through the unsaturated rocks toward the underlying saturated intervals. Calcite, one of the most recently-formed minerals at Yucca Mountain, is of minor abundance in the unsaturated rocks but is widely distributed. Studies of calcite ages, isotopic systematics, chemistry and petrography could lead to a better understanding of transport processes at Yucca Mountain.

  1. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    SciTech Connect (OSTI)

    Kessler, John H. [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States); Kemeny, John [University of Arizona, Tucson AZ 85721 (United States); King, Fraser [Integrity Corrosion Consulting, Ltd., 6732 Silverview Drive NW, Calgary, Alberta (Canada); Ross, Alan M. [Alan M. Ross and Associates, 1061 Gray Fox Circle Pleasanton, CA 94566 (Canada); Ross, Benjamen [Disposal Safety, Inc., Bethesda, MD 20814 (United States)

    2006-07-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

  2. Two Independent Assessments Find the Department of Energy's Yucca Mountain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project is on Track | Department of Energy Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca

  3. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  4. Mineralogic summary of Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Bish, D.L.; Vaniman, D.T.

    1985-10-01

    Quantitative x-ray powder diffraction analysis of tuffs and silicic lavas, using matrix-flushing techniques, has been used to obtain a model of three-dimensional mineral distributions at Yucca Mountain, Nevada. This method of analysis is especially useful in tuff, where the most abundant phases are commonly too fine grained for optical determination. The three-dimensional distributions of primary glass and of tridymite are particularly well constrained. Vitric nonwelded glasses occur above and below the welded devitrified Topopah Spring Member, but the glass in the lower nonwelded vitric zone is progressively altered to zeolites to the east where the zone is closer to the static water level. The zeolites clinoptilolite, mordenite, heulandite, and erionite have all been found at Yucca Mountain, but only mordenite and clinoptilolite are abundant and can be mapped between many drill holes and at many depths. Heulandite distribution is also mappable, but only below the densely welded devitrified part of the Topopah Storing Member. Erionite has been confirmed only once, as a fracture coating. There is a fairly continuous smectite-rich interval immediately above the basal vitrophyre of the Topopah Spring Member, but no evidence suggests that the smectites can provide information on the paleogroundwater table. There are at least four mappable zeolitized zones in Yucca Mountain, and the thicker zones tend to coincide with intervals that retained glass following early tuff devitrification. Problems in extrapolation occur where zones of welding pinch out. No phillipsite has been found, and some samples previously reported to contain phillipsite or erionite were reexamined with negative results. The deeper alteration to albite and analcime was not sampled in every drill hole, and the distribution of these phases is difficult to map.

  5. The Occurrence of Erionite at Yucca Mountain

    SciTech Connect (OSTI)

    NA

    2004-07-01

    The naturally-occurring zeolite mineral erionite has a fibrous morphology and is a known human carcinogen (inhalation hazard). Erionite has been found typically in very small quantities and restricted occurrences in the course of mineralogic characterization of Yucca Mountain as a host for a high-level nuclear waste repository. The first identification of erionite was made in 1984 on the basis of morphology and chemical composition and later confirmed by X-ray diffraction analysis. It was found in the lower vitrophyre (Tptpv3) of the Topopah Spring Tuff in a borehole sidewall sample. Most erionite occurrences identified at Yucca Mountain are in the Topopah Spring Tuff, within an irregular zone of transition between the lower boundary of devitrified tuff and underlying glassy tuff. This zone is fractured and contains intermingled devitrified and vitric tuff. In 1997, a second host of erionite mineralization was identified in the Exploratory Studies Facility within and adjacent to a high-angle fracture/breccia zone transgressing the boundary between the lowermost devitrified tuff (Tpcplnc) and underlying moderately welded vitric tuff (Tpcpv2) of the Tiva Canyon Tuff. The devitrified-vitric transition zones where erionite is found tend to have complex secondary-mineral assemblages, some of very localized occurrence. Secondary minerals in addition to erionite may include smectite, heulandite-clinoptilolite, chabazite, opal-A, opal-CT, cristobalite, quartz, kenyaite, and moganite. Incipient devitrification within the Topopah Spring Tuff transition zone includes patches that are highly enriched in potassium feldspar relative to the precursor volcanic glass. Geochemical conditions during glass alteration may have led to local evolution of potassium-rich fluids. Thermodynamic modeling of zeolite stability shows that erionite and chabazite stability fields occur only at aqueous K concentrations much higher than in present Yucca Mountain waters. The association of erionite with opal-A, opal-CT, and moganite suggests that erionite formed at a high silica activity.

  6. Government Decision to Abandon Yucca Mountain Negatively Impacts Central Savannah River Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Immediate Release Contact: Rick McLeod Monday, November 9, 2009 803.593.9954 x1411 Government Decision to Abandon Yucca Mountain Negatively Impacts Central Savannah River Area AIKEN, SC - The Federal Government's failure to complete construction of its only option for long-term nuclear waste storage at Yucca Mountain in the Nevada desert will result in the Savannah River Site becoming the permanent home to tons of high- level nuclear waste, a local community group says. The SRS Community

  7. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    SciTech Connect (OSTI)

    J.S. Stuckless; D. O'Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  8. PACE-90 water and solute transport calculations for 0.01, 0.1, and 0. 5 mm/yr infiltration into Yucca Mountain; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.; Martinez, M.J.

    1991-12-01

    Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time of solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.

  9. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs.

  10. Products of an Artificially Induced Hydrothermal System at Yucca Mountain

    SciTech Connect (OSTI)

    S. Levy

    2000-08-07

    Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than during the deposition of natural calcite-opal deposits.

  11. Viability Assessment of a Repository at Yucca Mountain

    Broader source: Energy.gov [DOE]

    The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution.

  12. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    SciTech Connect (OSTI)

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

  13. An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca

    Office of Scientific and Technical Information (OSTI)

    Mountain. (Conference) | SciTech Connect An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Abstract not provided. Authors: Arnold, Bill Walter ; Kelkar, Sharad ; Ding, Mei ; Chu, Shaoping ; ROBINSON, BRUCE ; Meijer, Arend Publication Date: 2007-09-01 OSTI Identifier: 1147462 Report Number(s): SAND2007-5874C 521772 DOE Contract

  14. Technical Report Confirms Reliability of Yucca Mountain Technical Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technical Report Confirms Reliability of Yucca Mountain Technical Work Technical Report Confirms Reliability of Yucca Mountain Technical Work February 17, 2006 - 11:59am Addthis WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today released a report confirming the technical soundness of infiltration modeling work performed by U.S. Geological Survey (USGS) employees. "The report makes clear that the technical basis

  15. DOE - NNSA/NFO -- News & Views Yucca Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Mountain Studies Authorized in 1976 Photo - Yucca Mountain on Sept. 25, 1985. In 1982, Congress passed the Nuclear Waste Policy Act (NWPA) to set national policy to help solve the issue of high-level nuclear waste disposal. Congress based this law on a concept that most scientists agreed was the best way to dispose of nuclear waste. The NWPA made the U.S. Department of Energy (DOE) responsible for locating, building, and operating an underground geologic repository for the permanent

  16. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    SciTech Connect (OSTI)

    Oliver, H.W.; Hardin, E.L.; Nelson, P.H.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

  17. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006

    SciTech Connect (OSTI)

    Smith, Ken

    2007-11-26

    This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report.

  18. Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada

    SciTech Connect (OSTI)

    Oliver, H.W.; Ponce, D.A.; Hunter, W.C.

    1995-12-31

    In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

  19. Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)

    SciTech Connect (OSTI)

    Bowker, L.M.; Espinosa, M.L.; Klein, S.H.

    1995-11-01

    This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

  20. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    SciTech Connect (OSTI)

    Ruhala, E.R.; Klein, S.H.

    1997-06-01

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

  1. Nye County Nevada Perspectives on the State of the Yucca Mountain Project - 12388

    SciTech Connect (OSTI)

    Lacy, Darrell; Voegele, Michael; Jaszczak, Casmier [Nye County Nuclear Waste Repository Project Office (United States)

    2012-07-01

    Responding to the Department of Energy decision to try to withdraw the Yucca Mountain license application and the Administration actions to close down the Yucca Mountain project, Nye County undertook a number of activities to articulate its support for continuing the Yucca Mountain project. The activities included responding to inquiries from federal agencies, including investigations undertaken by the Government Accountability Office addressing other potential uses for the Yucca Mountain site, responding to a Draft Environmental Impact Statement on the possible use of Yucca Mountain for disposal of Greater than Class C wastes, testifying in hearings, and interacting with the President's Blue Ribbon Commission on America's Nuclear Future. The paper summarizes Nye County's position on the Yucca Mountain repository, Nye County's perspectives on the various activities that were developed and considered by the Government Accountability Office, Nye County's concerns with the use of the Nevada National Security Site for Disposal of Greater than Class C Low-Level Radioactive Wastes, testimony of Nye County officials expressing local community support for the Yucca Mountain project, and Nye County's perspectives on recommendations provided by the Blue Ribbon Commission to move the nation's high-level radioactive waste disposal programs forward without consideration of the role Yucca Mountain could have served in those recommendations. Nye County believes that every effort should be made to, at a minimum, fund the Nuclear Regulatory Commission to complete the license application review. Then, if Congress does decide to change the Nuclear Waste Policy Act, there will be valuable information available to support new policy development. This administration contends that Congressional language associated with the FY2010 and FY2011 appropriations and authorization process is sufficient evidence of its intent to terminate the Yucca Mountain repository program. The appropriation process needs to be explicit that, absent explicit language to the contrary, the Nuclear Waste Policy Act stands. It also should include language that requires the Department of Energy to preserve all necessary records until the Nuclear Waste Policy Act is amended or rescinded by specific Congressional action. (authors)

  2. Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain

    SciTech Connect (OSTI)

    S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

    2006-02-14

    This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

  3. Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report. Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Martin, R.J.; Boyd, P.J.; Noel, J.S. [New England Research, Inc. White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves prediction of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from the USW NRG-717A borehole drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. USW NRG-7/7A was drilled to a depth of 1,513.4 feet through five thermal/mechanical units of Paintbrush tuff and terminating in the tuffaceous beds of the Calico IEUS. The thermal/mechanical stratigraphy was defined by Orfiz et al. to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy is presented. The tuff samples in this study have a wide range of welding characteristics, and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

  4. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect (OSTI)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  5. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI); Final report, January 1, 1987--June 30, 1988: Volume 1

    SciTech Connect (OSTI)

    1988-10-01

    This report provides a summary of progress for the project ``Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)`` for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion.

  6. Summary report on the geochemistry of Yucca Mountain and environs

    SciTech Connect (OSTI)

    Daniels, W.R.; Wolfsberg, K.; Rundberg, R.S.

    1982-12-01

    This report gives a detailed description of work at Los Alamos that will help resolve geochemical issues pertinent to siting a high-level nuclear waste repository in tuff at Yucca Mountain, Nevada. It is necessary to understand the properties and setting of the host tuff because this rock provides the first natural barrier to migration of waste elements from a repository. The geochemistry of tuff is being investigated with particular emphasis on retardation processes. This report addresses the various aspects of sorption by tuff, physical and chemical makeup of tuff, diffusion processes, tuff/groundwater chemistry, waste element chemistry under expected repository conditions, transport processes involved in porous and fracture flow, and geochemical and transport modeling.

  7. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    SciTech Connect (OSTI)

    J.H. Payer

    2005-03-10

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective.

  8. The National Repository at Yucca Mountain, Russ Dyer

    Office of Environmental Management (EM)

    Repository at Yucca Mountain Presented to: EM High Level Waste Corporate Board Presented by: Russ Dyer Chief Scientist Office of Civilian Radioactive Waste Management July 24, 2008 Idaho National Laboratory 2 SBBB-GeneralBriefing_070808Rev1.ppt Solving a national problem now * On June 3, 2008, the U.S. Department of Energy submitted an application to the U.S. Nuclear Regulatory Commission for a license to construct a repository at Yucca Mountain 3 SBBB-GeneralBriefing_070808Rev1.ppt Repository

  9. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    SciTech Connect (OSTI)

    Hill, C.A.; Schluter, C.M.; Harmon, R.S.

    1994-01-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that {open_quotes}there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwater{close_quotes} and that {open_quotes}instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fractures{close_quotes}. Based on such information the Department of Energy has stated that it {open_quotes}finds no basis to continue to study the origin of these specific deposits{close_quotes}. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits.

  10. Information Request Yucca Mountain Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduces the rate of movement of water to the waste, and the release rate of ... In other words, both the natural and engineered components contribute to safety. The Total ...

  11. Evaluating the Long-Term Safety of a Repository at Yucca Mountain 

    SciTech Connect (OSTI)

    Van Luik, Abe

    2009-07-17

    Regulations require that the repository be evaluated for its health and safety effects for 10,000 years for the Site Recommendation process. Regulations also require potential impacts to be evaluated for up to a million years in an Environmental Impact Statement. The Yucca Mountain Project is in the midst of the Site Recommendation process. The Total System Performance Assessment (TSPA) that supports the Site Recommendation evaluated safety for these required periods of time. Results showed it likely that a repository at this site could meet the licensing requirements promulgated by the Nuclear Regulatory Commission. The TSPA is the tool that integrates the results of many years of scientific investigations with design information to allow evaluations of potential far-future impacts of building a Yucca Mountain repository. Knowledge created in several branches of physics is part of the scientific basis of the TSPA that supports the Site Recommendation process.

  12. Modeling Temporal-Spatial Earthquake and Volcano Clustering at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    T. Parsons; G.A. Thompson; A.H. Cogbill

    2006-05-31

    The proposed national high-level nuclear repository at Yucca Mountain is close to Quaternary faults and cinder cones. The frequency of these events is low, with indications of spatial and temporal clustering, making probabilistic assessments difficult. In an effort to identify the most likely intrusion sites, we based a 3D finite element model on the expectation that faulting and basalt intrusions are primarily sensitive to the magnitude and orientation of the least principal stress in extensional terranes. We found that in the absence of fault slip, variation in overburden pressure caused a stress state that preferentially favored intrusions at Crater Flat. However, when we allowed central Yucca Mountain faults to slip in the model, we found that magmatic clustering was not favored at Crater Flat or in the central Yucca Mountain block. Instead, we calculated that the stress field was most encouraging to intrusions near fault terminations, consistent with the location of the most recent volcanism at Yucca Mountain, the Lathrop Wells cone. We found this linked fault and magmatic system to be mutually reinforcing in the model in that dike inflation favored renewed fault slip.

  13. Age constraints on fluid inclusions in calcite at Yucca Mountain

    SciTech Connect (OSTI)

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

    2001-04-29

    The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

  14. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    Bullard, K.L.

    1994-08-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

  15. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    SciTech Connect (OSTI)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  16. Shallow infiltration processes in arid watersheds at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Flint, L.E.; Flint, A.L. Hevesi, J.A. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    A conceptual model of shallow infiltration processes at Yucca Mountain, Nevada, was developed for use in hydrologic flow models to characterize net infiltration (the penetration of the wetting front below the zone influenced by evapotranspiration). The model categorizes the surface of the site into four infiltration zones. These zones were identified as ridgetops, sideslopes, terraces, and active channels on the basis of water-content changes with depth and time. The maximum depth of measured water-content change at a specific site is a function of surface storage capacity, the timing and magnitude of precipitation, evapotranspiration, and the degree of saturation of surficial materials overlying fractured bedrock. Measured water-content profiles for the four zones indicated that the potential for net infiltration is higher when evapotranspiration is low (i.e winter, cloudy periods), where surface concentration of water is likely to occur (i.e. depressions, channels), where surface storage capacity is low, and where fractured bedrock is close to the surface.

  17. DOE Does Not Oppose Petitions to Intervene in Yucca Mountain NRC Proceeding

    Office of Environmental Management (EM)

    | Department of Energy Does Not Oppose Petitions to Intervene in Yucca Mountain NRC Proceeding DOE Does Not Oppose Petitions to Intervene in Yucca Mountain NRC Proceeding March 30, 2010 - 9:57am Addthis The U.S. Department of Energy yesterday filed with the Nuclear Regulatory Commission a response to Petitions to Intervene filed by several parties seeking to oppose the Department's motion to withdraw its license application for a nuclear waste repository at Yucca Mountain. DOE said it is

  18. Vertical Variability in Saturated Zone Hydrochemistry Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    G. Patterson; P. Striffler

    2007-02-17

    The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain facies that has moved through clay-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel.

  19. Impact of Quaternary Climate on Seepage at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    J.F. Whelan; J.B. Paces; L.A. Neymark; A.K. Schmitt; M. Grove

    2006-03-17

    Uranium-series ages, oxygen-isotopic compositions, and uranium contents were determined in outer growth layers of opal and calcite from 0.5- to 3-centimeter-thick mineral coatings hosted by lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a permanent repository for high-level radioactive waste. Micrometer-scale growth layering in the minerals was imaged using a cathodoluminescence detector on a scanning electron microscope. Determinations of the chemistry, ages, and delta oxygen-18 values of the growth layers were conducted by electron microprobe analysis and secondary ion mass spectrometry techniques at spatial resolutions of 1 to about 20 micrometers ({micro}m) and 25 to 40 micrometers, respectively. Growth rates for the last 300 thousand years (k.y.) calculated from about 300 new high-resolution uranium-series ages range from approximately 0.5 to 1.5 {micro}m/k.y. for 1- to 3-centimeter-thick coatings, whereas coatings less than about I-centimeter-thick have growth rates less than 0.5 {micro}m/k.y. At the depth of the proposed repository, correlations of uranium concentration and delta oxygen-18 values with regional climate records indicate that unsaturated zone percolation and seepage water chemistries have responded to changes in climate during the last several hundred thousand years.

  20. Ground water of Yucca Mountain: How high can it rise?; Final report

    SciTech Connect (OSTI)

    1992-12-31

    This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

  1. Yucca Mountain - U.S. Department of Energy's Brief in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceeding before the Nuclear Regulatory Commission on DOE's application for a license to construct a high-level waste repository at Yucca Mountain, Nevada; DOE brief...

  2. Yucca Mountain - U.S. Department of Energy's Response to the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commission in the proceeding on DOE's applciation to construct a high-level waste repository at Yucca Mountain, Nevada; DOE opposes the motion of Washington, South Carolina,...

  3. Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding

    SciTech Connect (OSTI)

    Pruess, K.

    1998-08-01

    The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories.

  4. Multiscale Thermohydrologic Model Supporting the Licence Application for the Yucca Mountain Repository

    SciTech Connect (OSTI)

    T.A> Buscheck; Y. Sun; Y. Hao

    2006-03-28

    The MultiScale ThermoHydrologic Model (MSTHM) predicts thermal-hydrologic (TH) conditions within emplacement tunnels (drifts) and in the adjoining host rock at Yucca Mountain, Nevada, which is the proposed site for a radioactive waste repository in the US. Because these predictions are used in the performance assessment of the Yucca Mountain repository, they must address the influence of variability and uncertainty of the engineered- and natural-system parameters that significantly influence those predictions. Parameter-sensitivity studies show that the MSTHM predictions adequately propagate the influence of parametric variability and uncertainty. Model-validation studies show that the influence of conceptual-model uncertainty on the MSTHM predictions is insignificant compared to that of parametric uncertainty, which is propagated through the MSTHM.

  5. Shallow infiltration processes at Yucca Mountain, Nevada: Neutron logging data 1984--1993

    SciTech Connect (OSTI)

    Flint, L.E.; Flint, A.L.

    1995-12-31

    To determine site suitability of Yucca Mountain, Nevada, as a potential high-level radioactive waste repository, a study was devised to characterize net infiltration. This study involves a detailed data set produced from 99 neutron boreholes that consisted of volumetric water-content readings with depth from 1984 through 1993 at Yucca Mountain. Boreholes were drilled with minimal disturbance to the surrounding soil or rock in order to best represent field conditions. Boreholes were located in topographic positions representing infiltration zones identified as ridgetops, sideslopes, terraces, and active channels. Through careful field calibration, neutron moisture logs, collected on a monthly basis and representing most of the areal locations at Yucca Mountain, illustrated that the depth of penetration of seasonal moisture, important for escaping loss to evapotranspiration, was influenced by several factors. It was increased (1) by thin soil cover, especially in locations where thin soil is underlain by fractured bedrock; (2) on ridgetops; and (3) during the winter when evapotranspiration is low and runoff is less frequent. This data set helps to provide a seasonal and areal distribution of changes in volumetric water content with which to assess hydrologic processes contributing to net infiltration.

  6. Shallow infiltration processes at Yucca Mountain, Nevada - neutron logging data 1984-93

    SciTech Connect (OSTI)

    Flint, L.E.; Flint, A.L.

    1995-11-01

    To determine site suitability of Yucca Mountain, Nevada, as a potential high-level radioactive waste repository, a study was devised to characterize net infiltration. This study involves a detailed data set produced from 99 neutron boreholes that consisted of volumetric water-content readings with depth from 1984 through 1993 at Yucca Mountain. Boreholes were drilled with minimal disturbance to the surrounding soil or rock in order to best represent field conditions. Boreholes were located in topographic positions representing infiltration zones identified as ridge-tops, sideslopes, terraces, and active channels. Through careful field calibration, neutron moisture logs, collected on a monthly basis and representing most of the areal locations at Yucca Mountain, illustrated that the depth of penetration of seasonal moisture, important for escaping loss to evapotranspiration, was influenced by several factors. It was increased (1) by thin soil cover, especially in locations where thin soil is underlain by fractured bedrock; (2) on ridgetops; and (3) during the winter when evapotranspiration is low and runoff is less frequent. This data set helps to provide a seasonal and areal distribution of changes in volumetric water content with which to assess hydrologic processes contributing to net infiltration.

  7. Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Guthrie, G.D. Jr.; Bish, D.L.; Chipera, S.J.; Raymond, R. Jr.

    1995-05-01

    Drilling, trenching, excavation of the Exploratory Studies Facility, and other surface and underground-distributing activities have the potential to release minerals into the environment from tuffs at Yucca Mountain, Nevada. Some of these minerals may be potential respiratory health hazards. Therefore, an understanding of the distribution of the minerals that may potentially be liberated during site-characterization and operation of the potential repository is crucial to ensuring worker and public safety. Analysis of previously reported mineralogy of Yucca Mountain tuffs using data and criteria from the International Agency for Research on Cancer (IARC) suggests that the following minerals are of potential concern: quartz, cristobalite, tridymite, opal-CT, erionite, mordenite, and palygorskite. The authors have re-evaluated the three-dimensional mineral distribution at Yucca Mountain above the static water level both in bulk-rock samples and in fractures, using quantitative X-ray powder diffraction analysis. Erionite, mordenite, and palygorskite occur primarily in fractures; the crystalline-silica minerals, quartz, cristobalite, and tridymite are major bulk-rock phases. Erionite occurs in the altered zone just above the lower Topopah Spring Member vitrophyre, and an occurrence below the vitrophyre but above the Calico Hills has recently been identified. In this latter occurrence, erionite is present in the matrix at levels up to 35 wt%. Mordenite and palygorskite occur throughout the vadose zone nearly to the surface. Opal-CT is limited to zeolitic horizons.

  8. U-Pb ages of secondary silica at Yucca Mountain, Nevada: implications for the paleohydrology of the unsaturated zone

    SciTech Connect (OSTI)

    Neymark, L.A.; Amelin, Y.; Paces, J.B.; Peterman, Z.E.

    2002-06-01

    This paper reports the results of analyses of uranium, thorium, and lead in layers of opal and chalcedony from individual mm- to cm-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository.

  9. Evidence for Gropun-Water Stratification Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    K. Futa; B.D. Marshall; Z.E. Peterman

    2006-03-24

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

  10. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    SciTech Connect (OSTI)

    Cheng, J; Twilley, K; Murvosh, H; Tu, Y; Luke, B; Yfantis, A; Harris, D B

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals. Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.

  11. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-05-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent {sup 14}C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent {sup 14}C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent {sup 14}C age and {delta}{sup 13}C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab.

  12. MIC evaluation and testing for the Yucca Mountain repository

    SciTech Connect (OSTI)

    Horn, J.M.; Rivera, A.; Lain, T.; Jones, D.A.

    1997-10-01

    The U.S. Department of Energy is engaged in a suitability study for a potential deep geological repository at Yucca Mountain (YM), Nevada, for the containment and storage of high-level nuclear waste. There is growing awareness that biotic factors could affect the integrity of the repository directly through microbially induced corrosion (MIC) of waste package (WP) materials and other repository elements. A program to determine the degree that microorganisms, especially bacteria, influence the corrosion of waste package materials has therefore been undertaken. These studies include testing candidate waste package materials for their susceptibility to MIC, and also seek to determine rates of biocorrosion under varying environmental conditions, as well as predict rates of waste package corrosion over the long term. Previous characterization of bacterial isolates derived from YM geologic material showed that many possessed biochemical activities associated with MIC, 2. Various Yucca Mountain microbes demonstrated the abilities to oxidize iron, reduce sulfate to sulfide, produce acids, and generate exopolysaccharides (or `slime`). Table 1 summarizes previously characterized YM organisms and their associated relevant activities. A subset of the characterized YM bacteria were spread on WP alloy coupons in systems designed to collect polarization resistance (Rp) data for corrosion rate calculations, and to determine cathodic and anodic potentiodynamic polarization to assess corrosion mechanisms. Coupons inoculated with bacteria were compared to those that remained sterile, to determine the bacterial contribution to overall corrosion rates.

  13. The Sorption/Desorption Behavior of Uranium in Transport Studies Using Yucca Mountain Alluvium

    SciTech Connect (OSTI)

    C. D. Scism

    2006-02-15

    Yucca Mountain, Nevada is the proposed site of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste in the United States. In the event repository engineered barriers fail, the saturated alluvium located south of Yucca Mountain is expected to serve as a natural barrier to the migration of radionuclides to the accessible environment. The purpose of this study is to improve the characterization of uranium retardation in the saturated zone at Yucca Mountain to support refinement of an assessment model. The distribution of uranium desorption rates from alluvium obtained from Nye County bore holes EWDP-19IM1, EWDP-10SA, EWDP-22SA were studied to address inconsistencies between results from batch sorption and column transport experiments. The alluvium and groundwater were characterized to better understand the underlying mechanisms of the observed behavior. Desorption rate constants were obtained using an activity based mass balance equation and column desorption experiments were analyzed using a mathematical model utilizing multiple sorption sites with different first-order forward and reverse reaction rates. The uranium desorption rate constants decreased over time, suggesting that the alluvium has multiple types of active sorption sites with different affinities for uranium. While a significant fraction of the initially sorbed uranium desorbed from the alluvium quite rapidly, a roughly equivalent amount remained sorbed after several months of testing. The information obtained through this research suggests that uranium may experience greater effective retardation in the alluvium than simple batch sorption experiments would suggest. Electron Probe Microanalysis shows that uranium is associated with both clay minerals and iron oxides after sorption to alluvial material. These results provide further evidence that the alluvium contains multiple sorption sites for uranium.

  14. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  15. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Crater Flat, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) (cover page figure) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  16. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D Campbell; S. Campbell; S. Kohl, D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  17. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  18. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Crater Flat, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S.Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) (cover page figure) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  19. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  20. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  1. Yucca Mountain - U.S. Department of Energy's Reply to the Responses to the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motion to Withdraw | Department of Energy U.S. Department of Energy's Reply to the Responses to the Motion to Withdraw Yucca Mountain - U.S. Department of Energy's Reply to the Responses to the Motion to Withdraw Department of Energy's reply brief in support of its motion to withdraw its license application to construct a high-level waste repository at Yucca Mountain, Nevada; administrative proceeding before the NRC's Atomic Safety and Licensing Board. PDF icon Yucca Mountain - U.S.

  2. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    SciTech Connect (OSTI)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  3. Yucca Mountain program summary of research and technical review activities, July 1988--June 1989

    SciTech Connect (OSTI)

    1989-11-01

    The Desert Research Institute (DRI), through its Water Resources Center (WRC), since 1984 has supported the State of Nevada Nuclear Waste Project Office`s activities related to the proposed high-level radioactive waste repository at Yucca Mountain on the Nevada Test Site (NTS). This effort is directed at providing the State Office with an unbiased evaluation of the Yucca Mountain Project (YMP) investigations performed by the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). The overall objective is to determine independently whether or not the site meets the performance criteria defined by the Nuclear Waste Policy Act of 1982 and amendments for isolating and containing the wastes during emplacement and the proposed life of the repository. A particularly important area of concern with the proposed repository is the site`s hydrology. The faculty of the DRI have long been involved with research throughout the State and have particular expertise in groundwater studies related to radionuclide migration and hydrologic safety of underground nuclear testing by DOE and predecessor agencies. In addition, we utilize laboratory personnel for chemical and isotopic analyses in both of the DRI-WMC water chemistry laboratories.

  4. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    K. Coppersmith; R. Quittmeyer

    2005-02-16

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10{sup -8}. For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the horizontal PGV hazard curve for the waste emplacement level. The relation of this analysis to other work feeding the seismic consequence abstraction and the TSPA is shown on Figure 1-1. The ground motion hazard results from the PSHA provide the basis for inputs to a site-response model that determines the effect of site materials on the ground motion at a location of interest (e.g., the waste emplacement level). Peak ground velocity values determined from the site-response model for the waste emplacement level are then used to develop time histories (seismograms) that form input to a model of drift degradation under seismic loads potentially producing rockfall. The time histories are also used to carry out dynamic seismic structural response calculations of the drip shield and waste package system. For the drip shield, damage from seismically induced rockfall also is considered. In the seismic consequence abstraction, residual stress results from the structural response calculations are interpreted in terms of the percentage of the component (drip shield, waste package) damaged as a function of horizontal PGV. The composite hazard curve developed in this analysis, which reflects the results of site-response modeling and the bound to credible horizontal PGV at the waste emplacement level, also feeds the seismic consequence abstraction. The composite hazard curve is incorporated into the TSPA sampling process to bound horizontal PGV and related seismic consequences to values that are credible.

  5. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991; Volume 2

    SciTech Connect (OSTI)

    Fowler, C.S.

    1991-10-15

    This report consists of Yucca Mountain Project bibliographies. It is the appendix to a report that summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada`s Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona.

  6. New Yucca Mountain Repository Design to be Simpler, Safer and More

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Effective | Department of Energy New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective PDF icon untitled More Documents & Publications Audit Report: OAS-L-07-08 EIS-0250-S1: Final Supplemental Environmental Impact Statement EIS-0250-S1: Notice of Intent to Prepare a Supplement to the Final Environmental Impact Statement

  7. Statement from Ward Sproat on Yucca Mountain, Director of the Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Civilian Radioactive Waste Management | Department of Energy Ward Sproat on Yucca Mountain, Director of the Office of Civilian Radioactive Waste Management Statement from Ward Sproat on Yucca Mountain, Director of the Office of Civilian Radioactive Waste Management December 12, 2007 - 4:44pm Addthis "We are pleased with the Nuclear Regulatory Commission's (NRC) Pre-license Application Presiding Officer Board's ruling today to uphold DOE's Licensing Support Network (LSN) certification.

  8. Yucca Mountain - The Department of Energy's Status Report on Its Archiving

    Broader source: Energy.gov (indexed) [DOE]

    Plan | Department of Energy Proceeding before the Nuclear Regulatory Commission on DOE's application for a license to construct a high-level waste repository at Yucca Mountain, Nevada; DOE provides answers to the questions of the Atomic Safety and Licensing Board regarding its plans to archive its document collection on the Licensing Support Network. PDF icon Yucca Mountain - The Department of Energy's Status Report on Its Archiving Plan More Documents & Publications U.S. Department of

  9. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C.

    1999-03-01

    Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

  10. Environmental Radiation Protection Standards for Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Clark, R. L.

    2002-02-27

    The Environmental Protection Agency (EPA) has issued radiation protection standards for the potential spent nuclear fuel and high-level radioactive waste disposal system in Yucca Mountain, Nevada. These standards are found in Part 197 of Title 40 of the Code of Federal Regulations (40 CFR Part 197). The Energy Policy Act of 1992 directed, and gave the authority to, EPA to take this action based upon input from the National Academy of Sciences (NAS). The final standards were published in the Federal Register (66 FR 32073) on 13 June 2001. The 40 CFR Part 197 standards have four major parts: (1) individual-protection during storage activities; (2) individual-protection following closure of the repository; (3) human-intrusion; and (4) ground-water protection. The storage standard is 150 microsieverts (Sv) annual committed effective dose equivalent (CEDE) to any member of the general public. The disposal standards are: (1) 150 Sv annual CEDE for the reasonably maximally exposed individual (RMEI) for 10,000 years after disposal; (2) 150 Sv received by the RMEI within 10,000 years after disposal as a result of human intrusion; and (3) the levels of radionuclides in the ground water cannot exceed 40 Sv from beta and gamma emitters, 5 picocuries per liter (pCi/L) of radium-226 and -228, and 15 pCi/L of gross alpha activity. There are also requirements related to the post-10,000-year period, the basis of compliance judgments, and performance assessments. The Agency has published its responses to the comments received, its technical background document, and its economic impact analysis. In addition to printed form, the documents are available on the World Wide Web at http://www.epa.gov/radiation/yucca/index.html.

  11. THE DECISION TO RECOMMEND YUCCA MOUNTAIN AND THE NEXT STEPS TOWARD LICENSED REPOSITORY DEVELOPMENT

    SciTech Connect (OSTI)

    Barrett, L. H.

    2002-02-25

    After more than 20 years of carefully planned and reviewed scientific field work by the U.S. Department of Energy, the U.S. Geological Survey, and numerous other organizations, Secretary of Energy Abraham concluded in January that the Yucca Mountain site is suitable, within the meaning of the Nuclear Waste Policy Act, for development as a permanent nuclear waste and spent fuel repository. In February, the Secretary recommended to the President that the site be developed for licensed disposal of these wastes, and the President transmitted this recommendation to Congress. This paper summarizes key technical and national interest considerations that provided the basis for the recommendation. It also discusses the program's near-term plans for repository development if Congress designates the site.

  12. Distribution of fast hydrologic paths in the unsaturated zone at Yucca Mountain

    SciTech Connect (OSTI)

    Fabryka-Martin, J.T.; Wolfsberg, A.V.; Levy, S.S.; Roach, J.L.; Winters, S.T.; Wolfsberg, L.E.; Elmore, D.; Sharma, P.

    1998-12-31

    Development and testing of conceptual flow and transport models for hydrologic systems are strengthened when natural environmental tracers are incorporated into the process. One such tracer is chlorine-36 ({sup 36}Cl, half-life, 301,000 years), a radioactive isotope produced in the atmosphere and carried underground with percolating groundwater. High concentrations of this isotope were also added to meteoric water during a period of global fallout from atmospheric testing of nuclear devices, primarily in the 1950s. This bomb-pulse signal has been used to test for the presence of fast transport paths in the unsaturated zone at Yucca Mountain and to provide the basis for a conceptual model for their distribution. Yucca Mountain is under investigation by the US Department of Energy as a potential site at which to host an underground high-level radioactive waste repository. Under wetter climatic conditions, fast-flow pathways will respond quickly to increases in infiltration and have the potential to become seeps in the tunnel drifts. The {sup 36}Cl data are also being used in numerical flow and transport models to establish lower bounds on infiltration rates, estimate ground water ages, and establish bounding values for hydrologic flow parameters governing fracture transport.

  13. Modeling studies of gas movement and moisture migration at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Tsang, Y.W.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Modeling studies on moisture redistribution processes that are mediated by gas phase flow and diffusion have been carried out. The problem addressed is the effect of a lowered humidity of the soil gas at the land surface on moisture removal from Yucca Mountain, the potential site for a high-level nuclear waste repository. At the land surface, humid formation gas contacts much drier atmospheric air. Near this contact, the humidity of the soil gas may be considerably lower than at greater depth, where the authors expect equilibrium with the liquid phase and close to 100% humidity. The lower relative humidity of the soil gas may be modeled by imposing, at the land surface, an additional negative capillary suction corresponding to vapor pressure lowering according to Kelvin`s Equation, thus providing a driving force for the upward movement of moisture in both the vapor and liquid phases. Sensitivity studies show that moisture removal from Yucca Mountain arising from the lowered-relative-humidity boundary condition is controlled by vapor diffusion. There is much experimental evidence in the soil literature that diffusion of vapor is enhanced due to pore-level phase change effects by a few orders of magnitude. Modeling results presented here will account for this enhancement in vapor diffusion.

  14. Temperature Effects on seepage Fluid Compositions at Yucca Mountain

    SciTech Connect (OSTI)

    Nicolas Spycher; Eric Sonnenthal

    2001-06-01

    This project investigated the effect of two repository operating temperature modes on coupled thermal, hydrological, and chemical processes around potential nuclear waste-emplacement tunnels (drifts) at Yucca Mountain, Nevada. The main objective of this study was to evaluate the composition of fluids (water and gas) that could enter the drifts, because these data directly relate to the performance of waste canisters and other in-drift engineered systems over the life of the potential repository. Multicomponent reactive transport simulations were performed using TOUGHREACT, initially written by T. Xu and K. Pruess at LBNL and modified here to handle high-temperature and boiling environments. Two repository operating temperature modes were investigated: (1) a ''high-temperature'' mode, which considered a short preclosure ventilation period (50 years) and gave rise to above-boiling temperatures in rocks around the drift for hundreds of years, and (2) a ''low-temperature'' mode with a smaller heat load and longer preclosure ventilation (300 years), yielding temperatures at the surface of the waste package below 85 C (a design threshold) and thus below boiling conditions. Simulations under ambient conditions (no heat load) were also conducted to serve as a baseline for comparing results of thermal-loading simulations.

  15. Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview

    SciTech Connect (OSTI)

    Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

    2005-01-14

    The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

  16. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    SciTech Connect (OSTI)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  17. Criteria for the recognition of pedogenic/supergene and nonpedogenic/hypogene deposits and their relationship to the origin of calcite/opal deposits at Yucca Mountain. Special report No. 14

    SciTech Connect (OSTI)

    Hill, C.A.; Schluter, C.M.; Monger, H.C.

    1993-10-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this report is to try and establish criteria for the recognition of pedogenic/supergene deposits of calcite/opal versus non-pedogenic/hypogene deposits of calcite/opal. Far from being of esoteric concern, this subject is of paramount importance to the pedogenic-hypogene debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site.

  18. Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada

    SciTech Connect (OSTI)

    Sweeney, Robin L,; Lechel, David J.

    2003-02-25

    In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada.

  19. Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 1

    SciTech Connect (OSTI)

    Wilson, M.L.; Gauthier, J.H.; Barnard, R.W.; Barr, G.E.; Dockery, H.A.; Dunn, E.; Eaton, R.R.; Guerin, D.C.; Lu, N.; Martinez, M.J.

    1994-04-01

    Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.

  20. Expert judgment in assessing radwaste risks: What Nevadans should know about Yucca Mountain; [Final report

    SciTech Connect (OSTI)

    Shrader-Frechette, K.

    1992-06-01

    For phenomena characterized by accurate and largely complete data, quantitative risk assessment (QRA) provides extraordinarily valuable and objective information. However, with phenomena for which the data, models, or probabilities are incomplete or uncertain, QRA may be less useful and more questionable, because its conclusions are typically empirically and theoretically underdetermined. In the face of empirical or theoretical underdetermination, scientists often are forced to make a number of methodological value judgments and inferences about how to estimate and evaluate the associated risks. The purpose of this project is to evaluate instances of methodological value judgments and invalid or imprecise inferences that have occurred in the QRA done for the proposed Yucca Mountain high-level radioactive waste facility. We shall show (1) that questionable methodological value judgments and inferences have occurred in some Yucca Mountain QRA`S; (2) that questionable judgments and inferences, similar to those in the Yucca Mountain studies, have occurred in previous QRA`s done for other radiation-related facilities and have likely caused earlier QRA`s to err in specific ways; and (3) that, because the value judgments and problems associated with some Yucca Mountain QRA`s include repetitions of similar difficulties in earlier studies, therefore the QRA conclusions of some Yucca Mountain analyses are, at best, uncertain.

  1. Geology of the USW SD-7 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-09-01

    The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations of the Crater Flat Group, The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through interpretation of down-hole geophysical logs.

  2. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  3. The origin and history of alteration and carbonatization of the Yucca Mountain ignimbrites. Volume I

    SciTech Connect (OSTI)

    Szymanski, J.S.

    1992-04-01

    This document contains Volume I of the report entitled The Origin and History of Alteration and Carbonatization of the Yucca Mountain Ignimbrites by Jerry S. Szymanski and a related correspondence with comments by Donald E. Livingston. In the Great Basin, the flow of terrestrial heat through the crust is affected in part by the flow of fluids. At Yucca Mountain, the role of fluids in crustal heat transport is manifested at the surface by youthful calcretes, sinters, bedrock veins, hydrothermal eruption breccias and hydrothermal alteration. This report discusses evidence for recent metasomatism high in the stratigraphic section at Yucca Mountain. Over the last several hundred years, episodes of calcite emplacement contemporaneous with local mafic volcanism have occurred at intervals that are not long in comparison with the isolation time required for a High-Level Radioactive Waste repository.

  4. 9 M.y. record of southern Nevada climate from Yucca Mountain secondary minerals

    SciTech Connect (OSTI)

    Whelan, J.F.; Moscati, R.J.

    1998-12-01

    Yucca Mountain, Nevada, is presently the object of intense study as a potential permanent repository for the Nation`s high-level radioactive wastes. The mountain consists of a thick sequence of volcanic tuffs within which the depth to water table ranges from 500 to 700 meters below the land surface. This thick unsaturated zone (UZ), which would host the projected repository, coupled with the present day arid to semi-arid climate, is considered a favorable attribute of the site. Evaluation of the site includes defining the relation between climate variability, as the input function or driver of site- and regional-scale ground-water flow, and the possible future transport and release of radionuclides to the accessible environment. Secondary calcite and opal have been deposited in the UZ by meteoric waters that infiltrated through overlying soils and percolated through the tuffs. The oxygen isotopic composition ({delta}{sup 18}O values) of these minerals reflect contemporaneous meteoric waters and the {delta}{sup 13}C values reflect soil organic matter, and hence the resident plant community, at the time of infiltration. Recent U/Pb age determinations of opal in these occurrences, coupled with the {delta}{sup 13}C values of associated calcite, allow broadbrush reconstructions of climate patterns during the past 9 M.y.

  5. Thrust faults of southern Diamond Mountains, central Nevada: Implications for hydrocarbons in Diamond Valley and at Yucca Mountain

    SciTech Connect (OSTI)

    French, D.E.

    1993-04-01

    Overmature Mississippian hydrocarbon source rocks in the southern Diamond Mountains have been interpreted to be a klippe overlying less mature source rocks and represented as an analogy to similar conditions near Yucca Mountain (Chamberlain, 1991). Geologic evidence indicates an alternative interpretation. Paleogeologic mapping indicates the presence of a thrust fault, referred to here as the Moritz Nager Thrust Fault, with Devonian rocks emplaced over Permian to Mississippian strata folded into an upright to overturned syncline, and that the overmature rocks of the Diamond Mountains are in the footwall of this thrust. The upper plate has been eroded from most of the Diamond Mountains but remnants are present at the head of Moritz Nager Canyon and at Sentinel Mountain. Devonian rocks of the upper plate comprised the earliest landslide megabreccia. Later, megabreccias of Pennsylvanian and Permian rocks of the overturned syncline of the lower plate were deposited. By this interpretation the maturity of lower-plate source rocks in the southern Diamond Mountains, which have been increased by tectonic burial, is not indicative of conditions in Diamond Valley, adjacent to the west, where upper-plate source rocks might be present in generating conditions. The interpretation that overmature source rocks of the Diamond Mountains are in a lower plate rather than in a klippe means that this area is an inappropriate model for the Eleana Range near Yucca Mountain.

  6. Determining importance and grading of items and activities for the Yucca Mountain Project

    SciTech Connect (OSTI)

    DeKlever, R.; Verna, B.

    1993-12-31

    Raytheon Services Nevada (RSN), in support of the Department of Energy`s (DOE) Yucca Mountain Project, has been responsible for the Title 2 designs of the initial structures, systems, and components for the Exploratory Studies Facility (ESF), and the creation of the design output documents for the Surface-Based Testing (SBT) programs. The ESF and SBT programs are major scientific contributors to the overall site characterization program which will determine the suitability of Yucca Mountain to contain a proposed High Level Nuclear Waste (HLNW) repository. Accurate, traceable and objective characterization and testing documentation that is germane to the protection of public health and safety, and the environment, and that satisfies all the requirements of 10 CFR Part 60(1), must be established, evaluated and accepted. To assure that these requirements are satisfied, specific design functions and products, including items and activities depicted within respective design output documents, are subjected to the requirements of an NRC and DOE-approved Quality Assurance (QA) program. An evaluation (classification) is applied to these items and activities to determine their importance to radiological safety (ITS) and waste isolation (ITWI). Subsequently, QA program controls are selected (grading) for the items and activities. RSN has developed a DOE-approved classification process that is based on probabilistic risk assessment (PRA) techniques and that uses accident/impact scenarios. Results from respective performance assessment and test interference evaluations are also integrated into the classification analyses for various items. The methodology and results of the RSN classification and grading processes, presented herein, relative to ESF and SBT design products, demonstrates a solid, defensible methodological basis for classification and grading.

  7. Use of Integrated Decay Heat Limits to Facilitate Spent Nuclear Fuel Loading to Yucca Mountain

    SciTech Connect (OSTI)

    Li, Jun; Yim, Man-Sung; McNelis, David; Piet, Steven

    2007-07-01

    As an alternative to the use of the linear loading or areal power density (APD) concept, using integrated decay heat limits based on the use of mountain-scale heat transfer analysis is considered to represent the thermal impact from the deposited spent nuclear fuel (SNF) to the Yucca Mountain repository. Two different integrated decay heat limits were derived to represent both the short-term (up to 50 years from the time of repository closure) and the long-term decay heat effect (up to 1500 years from the time of repository closure). The derived limits were found to appropriately represent the drift wall temperature limit (200 deg. C) and the midway between adjacent drifts temperature limit (96 deg. C) as long as used fuel is uniformly loaded into the mountain. These limits can be a useful practical guide to facilitate the loading of used fuel into Yucca Mountain. (authors)

  8. DOE/NV/26383-LTR2008-01 Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  9. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Ho, Chih-Hsiang

    1994-10-17

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP).

  10. A revised Litostragraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    SciTech Connect (OSTI)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-03-24

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain.

  11. Potential increases in natural radon emissions due to heating of the Yucca Mountain rock mass

    SciTech Connect (OSTI)

    Pescatore, C.; Sullivan, T.M.

    1992-02-01

    Heating of the rock mass by the spent fuel in the proposed repository at Yucca Mountain will cause extra amounts of natural radon to diffuse into the fracture system and to migrate faster to the accessible environment. Indeed, free-convection currents due to heating will act to shorten the radon travel times and will cause larger releases than would be possible under undistributed conditions. To estimate the amount of additional radon released due to heating of the Yucca Mountain rock mass, we obtain an expression for the release enhancement factor, E. This factor is defined as the ratio between the total flux of radon at the surface of the mountain before and after closure of the repository assuming the only cause of disturbance to be the heating of the rock mass. With appropriate approximations and using a heat load representative of that expected at Yucca Mountain, the present calculations indicate that the average enhancement factor over the first 10,000 years will be 4.5 as a minimum. These calculations are based on the assumption that barometric pumping does not significantly influence radon release. The latter assumption will need to be substantiated.

  12. Evidence for an unsaturated-zone origin of secondary minerals in Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Whelan, Joseph F.; Roedder, Edwin; Paces, James B.

    2001-04-29

    The unsaturated zone (UZ) in Miocene-age welded tuffs at Yucca Mountain, Nevada, is under consideration as a potential site for the construction of a high-level radioactive waste repository. Secondary calcite and silica minerals deposited on fractures and in cavities in the UZ tuffs are texturally, isotopically, and geochemically consistent with UZ deposition from meteoric water infiltrating at the surface and percolating through the UZ along fractures. Nonetheless, two-phase fluid inclusions with small and consistent vapor to liquid (V:L) ratios that yield consistent temperatures within samples and which range from about 35 to about 80 C between samples have led some to attribute these deposits to formation from upwelling hydrothermal waters. Geochronologic studies have shown that calcite and silica minerals began forming at least 10 Ma and continued to form into the Holocene. If their deposition were really from upwelling water flooding the UZ, it would draw into question the suitability of the site as a waste repository.

  13. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  14. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991; Volume 1

    SciTech Connect (OSTI)

    Fowler, C.S.

    1991-10-15

    This report summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada`s Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona.

  15. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    SciTech Connect (OSTI)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, calcium ions, and galvanic coupling to less noble metals are further considered. It is concluded that, as far as materials degradation is concerned, the materials and design adopted in the U.S. Yucca Mountain Project will provide sufficient safety margins within the 10,000-years regulatory period.

  16. Mineralogical Charecteristics of Yucca Mountain Alluvium and Effects on Neptunium (V) Sorption

    SciTech Connect (OSTI)

    M. Ding; S.J. Chipera; P.W. Reimus

    2006-09-05

    Saturated alluvium is expected to serve as an important natural barrier to radionuclide transport at Yucca Mountain, the proposed geological repository for disposal of high-level nuclear wastes. {sup 237}Np(V) (half-life = 2.4 x 10{sup 5} years) has been identified as one of the radionuclides that could potentially contribute the greatest dose to humans because of its relatively high solubility and weak adsorption to volcanic tuffs under oxidizing conditions. The previous studies suggested that the mineralogical characteristics of the alluvium play an important role in the interaction between Np(V) and the alluvium. The purpose of this study is to further evaluate the mineralogical basis for Neptunium (V) sorption by saturated alluvium located down-gradient of Yucca Mountain.

  17. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    SciTech Connect (OSTI)

    K.C. Holt

    2006-03-13

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable materials, such as hydrotalcite, do not have sufficient affinity to be useful getters. Despite these problems, the great increase in the repository performance and corresponding decrease in uncertainty promised by a useful getter has generated significant interest in these materials. This report is the result a workshop sponsored by the Office of Civilian Radioactive Waste Management and Office of Science and Technology and International of the DOE to assess the state of research in this field.

  18. Yucca Mountain Project Document Suspension, OAS-M-08-07 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy or Energy's Office of Civilian Radioaztivc Waste Management (OCRWM) is preparing to obtain a license from the Nuclear Regulatory Commission to construct a permanent repository at Yucca Mountain for the disposal of high-level radioactive waste and spent nuclear fuel. In December 2005, OCRWM identified design process inadequacies and suspended the appro\lal of new7 documents 'important to waste isolation' or safety analysis that were subject to quality assurance procedures. Waste

  19. Factors Affecting the Disposal Capacity of a Repository at Yucca Mountain

    SciTech Connect (OSTI)

    Nutt, W.M.; Peters, M.T.; Wigeland, R.A.; Kouts, C.; Kim, D.; Gomberg, S.

    2007-07-01

    The development of a repository at Yucca Mountain is proceeding in accordance with the Nuclear Waste Policy Act (NWPA). The current design of the proposed repository emplaces 63,000 metric tons of heavy metal (MTHM) of commercial spent nuclear fuel and 7,000 MTHM-equivalent of Department of Energy-owned spent nuclear fuel and high level nuclear waste. Efforts are underway to complete the pre-closure and postclosure safety analyses in accordance with 10 CFR 63. This will be included in a license application for construction of the repository that is currently planned to be submitted to the U.S. Nuclear Regulatory Commission (NRC) no later than June of 2008. The Global Nuclear Energy Partnership (GNEP) aims to 'recycle nuclear fuel using new proliferation-resistant technologies to recover more energy and reduce waste'. The Nation's decision to choose to recycle spent nuclear fuel in an advanced nuclear fuel cycle, such as that being considered under the GNEP, would present the opportunity to change the current approach for managing and disposing nuclear waste. The total amount of waste that could be disposed in a repository at Yucca Mountain would be a key component of a new waste management strategy should a decision be made in the future to utilize the proposed Yucca Mountain repository to dispose of wastes generated under the GNEP. (authors)

  20. Geology of the USW SD-12 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-11-01

    Drill hole USW SD-12 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the {open_quotes}Systematic Drilling Program,{close_quotes} as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-12 drill hole is located in the central part of the potential repository area, immediately to the west of the Main Test Level drift of the Exploratory Studies Facility and slightly south of midway between the North Ramp and planned South Ramp declines. Drill hole USW SD-12 is 2166.3 ft (660.26 m) deep, and the core recovered essentially complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. A virtually complete section of the Calico Hills Formation was also recovered, as was core from the entire Prow Pass Tuff formation of the Crater Flat Group.

  1. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    SciTech Connect (OSTI)

    NA

    2005-10-25

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

  2. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Waters, A.C.; Carroll, P.R. (eds.)

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima`s zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff.

  3. Deep Resistivity Structure of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Theodore H. Asch, Brian D. Rodriguez; Jay A. Sampson; Erin L. Wallin; and Jackie M. Williams.

    2006-09-18

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian – Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault structures such as the CP Thrust fault, the Carpetbag fault, and the Yucca fault that cross Yucca Flat are also discernable as are other smaller faults. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development.

  4. Milestones for Selection Characterization and Analysis of the Performance of a Repository for Spent Nuclear Fuel and HIh-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2015-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis throu gh 2009 of the performance of a repository for spent nuclear fuel and high - level radi oactive waste at Yucca Mou ntain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and an alogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment - specific laboratory experiments, in - situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site - specific characterization . The current sixth period beyond 2010 represents a new effort to set waste management policy in the United States. Because the relationship is important to understanding the evolution of the Yucca Mountain Project , the tabulation also shows the interaction between the policy realm and technical realm using four broad categories of events : (a ) R egulatory requirements and related federal policy in laws and court decisions, (c ) Presidential and agency directives, (c) technical milestones of implemen ting institutions, and (d ) critiques of the Yucca Mountai n P roject and pertinent national and world events related to nuclear energy and radioactive waste. Preface The historical progression of technical milestones for the Yucca Mountain Project was originally developed for 10 journal articles in a special issue of Reliability Engineering System Safe ty on the performance assessment for the Yucca Mountain license application [ 1 - 10 ] . The listing of mile stones , a distinct feature of those articles, has been collected and tabulated here. A lthough a brief description is presented here (based on the summaries in the 10 journal articles) , t he emphasis remains on the tab ulation because of its usefulness in pro viding a comprehensive but concise history of the Yucca Mountain Project . T he tabulation presented here is more elaborate than originally presented in that many of the interactions that occurred between the technical realm and policy realm can be depicted in separate columns . The usefulness of the milestones table is due in part to L.A. Connolly, for editorial and reference support, and S.K. Best, Raytheon, and L. May s, Sandia National Laboratories ( SNL ) , for illustration support. Reviewers P.N. Swift, SNL , and K. Gupta, University of Oklahoma, helped improve the discussion. The historical perspective presented is that of the author and is not necessarily held by reviewers, Sandia National Laboratories , and the US Department of Energy. As a historic perspect ive, the author is reporting on the work of others; however, any interpretative erro r s of the documentation are those of the author alone. The characterization and modeling of the Yucca Mountain disposal system required numerous participants with expertise in many areas of science a nd technology, as evident from the extensive reference list. Their d iligent efforts are generally acknowledged here and through the many references to their impressive work , but the 10 journal articles acknowledge by name many of the numerous participants that contributed to the Yucca Mountain Project .

  5. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    SciTech Connect (OSTI)

    Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

    2009-05-01

    In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  6. Origins of secondary silica within Yucca Mountain, Nye County, southwestern Nevada

    SciTech Connect (OSTI)

    Moscati, R.J.; Whelan, J.F.

    1996-09-01

    The accuracy of predictions of the hydrologic response of Yucca Mountain to future climate depends largely on how well relations between past climate and hydrology can be resolved. To advance this reconstruction, secondary minerals in and near Yucca Mountain, deposited by ground waters that originated both as surficial recharge at Yucca Mountain and from regional aquifers, are being studied to determine past ground-water sources and chemistries. Preliminary data on stable oxygen isotopes indicate that, although silica (opal, quartz, and chalcedony) and calcite and have formed in similar settings and from somewhat similar fluids, the authors have found no compelling evidence of coprecipitation or formation from identical fluids. If verified by further analyses, this precludes the use of silica-calcite mineral pairs for precise geothermometry. The preliminary data also indicate that opal and calcite occurrences in pedogenic and unsaturated-zone settings are invariably compatible with formation under modern ambient surface or subsurface temperatures. Silica and calcite stable-isotope studies are being integrated with soil geochemical modeling. This modeling will define the soil geochemical condition (climate) leading to opal or calcite deposition and to the transfer functions that may apply at the meteorologic soil unsaturated-zone interfaces. Additional study of pedogenic and unsaturated-zone silica is needed to support these models. The hypothesis that the transformation of vapor-phase tridymite to quartz requires saturated conditions is being tested through stable oxygen-isotope studies of lithophysal tridymite/quartz mixtures. Should this hypothesis be verified, mineralogic analysis by X-ray diffraction theoretically would permit reconstruction of past maximum water-table elevations.

  7. A FRAMEWORK FOR THE ANALYSIS OF LOCALIZED CORROSION AT THE PROPOSED YUCCA MOUNTAIN REPOSITORY

    SciTech Connect (OSTI)

    Dr. J.H. Payer

    2006-04-18

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository: (1) the most likely degradation process; (2) controls the delay time for radionuclide transport from the waste package; and (3) determines when packages will be penetrated and the shape size and distribution of those penetrations. In this presentation a framework for the analysis of localized corrosion is presented and demonstrated for a scenario: (1) water chemistry of mixed salt solutions (sodium chloride-potassium nitrate); and (2) time-temperature-relative humidity profiles for a hot, mid and cool temperature waste package.

  8. Yucca Mountain Waste Package Closure System Robotic Welding and Inspection System

    SciTech Connect (OSTI)

    C. I. Nichol; D. P. Pace; E. D. Larsen; T. R. McJunkin; D. E. Clark; M. L. Clark; K. L. Skinner; A. D. Watkins; H. B. Smartt

    2011-10-01

    The Waste Package Closure System (WPCS), for the closure of radioactive waste in canisters for permanent storage of spent nuclear fuel (SNF) and high-level waste in the Yucca Mountain Repository was designed, fabricated, and successfully demonstrated at the Idaho National Laboratory (INL). This article focuses on the robotic hardware and tools necessary to remotely weld and inspect the closure lid welds. The system was operated remotely and designed for use in a radiation field, due to the SNF contained in the waste packages being closed.

  9. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    SciTech Connect (OSTI)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  10. Coupled In-Rock and In-Drift Hydrothermal Model Stuudy For Yucca Mountain

    SciTech Connect (OSTI)

    G. Danko; J. Birkholzer; D. Bahrami

    2006-12-18

    A thermal-hydrologic-natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rockmass in the proposed Yucca Mountain repository. The multi-physics problem is solved with MULTIFLUX in which a lumped-parameter computational fluid dynamics model is iterated with TOUGH2. The solution includes natural convection, conduction, and radiation for heat as well as moisture convection and diffusion for moisture transport with half waste package scale details in the drift, and mountain-scale heat and moisture transport in the porous and fractured rock-mass. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2 based, integrated model are presented.

  11. A Fruit of Yucca Mountain: The Remote Waste Package Closure System

    SciTech Connect (OSTI)

    Kevin Skinner; Greg Housley; Colleen Shelton-Davis

    2011-11-01

    Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary, mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.

  12. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

  13. Chemical analyses of rocks, minerals, and detritus, Yucca Mountain--Preliminary report, special report No. 11

    SciTech Connect (OSTI)

    Hill, C.A.; Livingston, D.E.

    1993-09-01

    This chemical analysis study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. This report is preliminary in the sense that more chemical analyses may be needed in the future and also in the sense that these chemical analyses should be considered as a small part of a much larger geological data base. The interpretations discussed herein may be modified as that larger data base is examined and established. All of the chemical analyses performed to date are shown in Table 1. There are three parts to this table: (1) trace element analyses on rocks (limestone and tuff) and minerals (calcite/opal), (2) rare earth analyses on rocks (tuff) and minerals (calcite/opal), and (3) major element analyses + CO{sub 2} on rocks (tuff) and detritus sand. In this report, for each of the three parts of the table, the data and its possible significance will be discussed first, then some overall conclusions will be made, and finally some recommendations for future work will be offered.

  14. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2003 to September 30, 2004

    SciTech Connect (OSTI)

    von Seggern, David; Smith, Ken

    2007-10-15

    This report describes the seismicity and earthquake monitoring activities within the Yucca Mountain region during fiscal year 2004 (FY2004 - October 1, 2003, through September 30, 2004) based on operation of the Southern Great Basin Digital Seismic Network (SGBDSN). Network practices and earthquake monitoring conducted at the Nevada Seismological Laboratory (NSL) under DOE directives for prior fiscal years are covered in similar yearly reports (see references). Real-time systems, including regional data telemetry and data management at NSL, provide for the automatic determination of earthquake locations and magnitudes and notification of important earthquakes in the region to UNR staff and DOE management. All waveform and meta-data, including automatic locations, phase arrival information, and analyst reviewed information, are managed through a relational database system allowing quick and reliable evaluation and analysis of ongoing earthquake activity near Yucca Mountain. This network, which contains weak-motion and strong-motion instrumentation, addresses the seismic hazard of the Yucca Mountain area by providing accurate earthquake magnitudes for earthquake recurrence estimates, spatial hypocentral control to very low magnitudes for identifying and assessing active faults and verifying tectonic models, true ground motions over the complete range of expected earthquake amplitudes for developing predictive models, and earthquake source information for characterizing active faulting. The Nevada Seismological Laboratory operated a 30-station monitoring network within a ring of approximately 50 km radius around Yucca Mountain during FY2004. This year showed the second-lowest seismic moment rate in the NTS and Yucca Mountain region for any fiscal year reporting period since prior to the 1992 M 5.6 Little Skull Mountain (LSM) earthquake. A total of 2180 earthquakes were located for FY2004. The largest event during FY2004 was M 2.99 and there were only 12 earthquakes greater than M 2.00. This is the second year since the LSM event that no M ? 3.00 earthquake was recorded within 65 km of Yucca Mountain. (FY2003 was the first.) For FY2004, focal mechanisms were developed for 24 earthquakes. These focal mechanisms show predominantly strike-slip motion with a tension axis oriented WNW-ESE. Four earthquakes in FY2004 were within 10 km of Yucca Mountain, all having M < 0. A total of 31 earthquakes have occurred in this immediate zone around Yucca Mountain since the digital network operations started in October 1995. Activity in the Death Valley area was monitored by several analog stations still maintained in conjunction with the Yucca Mountain monitoring. There is continuing aftershock activity in the zone of the 1993 M 6.1 Eureka Valley and 1999 M 5.6 Scotty’s Junction earthquakes. Overall, the seismicity level of the Death Valley area is significantly greater than that in the vicinity of Yucca Mountain.

  15. STRONTIUM ISOTOPE EVOLUTION OF PORE WATER AND CALCITE IN THE TOPOPAH SPRING TUFF, YUCCA MOUNTAIN , NEVADA

    SciTech Connect (OSTI)

    B.D. Marshall; K. Futa

    2001-02-07

    Yucca Mountain, a ridge of Miocene volcanic rocks in southwest Nevada, is being characterized as a site for a potential high-level radioactive waste repository. One issue of concern for the future performance of the potential repository is the movement of water in and around the potential repository horizon. Past water movement in this unsaturated zone is indicated by fluid inclusions trapped in calcite coatings on fracture footwall surfaces and in some lithophysal cavities. Some of the fluid inclusions have homogenization temperatures above the present-day geotherm (J.F. Whelan, written communication), so determining the ages of the calcite associated with those fluid inclusions is important in understanding the thermal history of the potential repository site. Calcite ages have been constrained by uranium-lead dating of silica polymorphs (opal and chalcedony) that are present in most coatings. The opal and chalcedony ages indicate that deposition of the calcite and opal coatings in the welded part of the Topopah Spring Tuff (TSw hydrogeologic unit) spanned nearly the entire history of the 12.8-million-year-old rock mass at fairly uniform overall long-term rates of deposition (within a factor of five). Constraining the age of a layer of calcite associated with specific fluid inclusions is complicated. Calcite is commonly bladed with complex textural relations, and datable opal or chalcedony may be millions of years older or younger than the calcite layer or may be absent from the coating entirely. Therefore, a more direct method of dating the calcite is presented in this paper by developing a model for strontium evolution in pore water in the TSw as recorded by the strontium coprecipitated with calcium in the calcite. Although the water that precipitated the calcite in fractures and cavities may not have been in local isotopic equilibrium with the pore water, the strontium isotope composition of all water in the TSw is primarily controlled by water-rock interaction in the overlying nonwelded and essentially unfractured Paintbrush Group tuffs (PTn). The method of dating secondary minerals from known strontium evolution rates in rocks cannot be used in this study because it assumes the water that deposited the minerals was in isotopic equilibrium with the rock, which is not the case for the pore water in the TSw. Therefore, the evolution of the strontium isotope composition of the water that deposited the calcite, as recorded by the strontium coprecipitated with calcium in the calcite, was used to develop a model for determining the age of the calcite.

  16. Yucca Mountain transportation routes: Preliminary characterization and risk analysis; Volume 2, Figures [and] Volume 3, Technical Appendices

    SciTech Connect (OSTI)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-05-31

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history.

  17. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2002, to September 30, 2003

    SciTech Connect (OSTI)

    Smith, Ken; von Seggern, David

    2007-12-04

    Earthquake activity in the Yucca Mountain from October 1, 2002 through September 30, 2003 (FY03) is assessed and compared with previous activity in the region. FY03 is the first reporting year since the 1992 M 5.6 Little Skull Mountain earthquake with no earthquakes greater than M 3.0 within 65 km of Yucca Mountain. In addition, FY03 includes the fewest number of earthquakes greater than M 2.0 in any reporting year since the LSM event. With 3075 earthquakes in the catalog, FY03 represents the second largest number of earthquakes (second to FY02) since FY96 when digital seismic network operations began. The largest event during FY03 was M 2.78 in eastern NTS and there were only 8 earthquakes greater than M 2.0.

  18. Charecterization of Seepage in the Exploratory Studies Facility, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    T.A. Oliver; J.F. Whelan

    2006-03-20

    Following a 5-month period of above-average precipitation during the winter of 2004-2005, water was observed seeping into the South Ramp section of the Exploratory Studies Facility of the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. Samples of the seepage were collected and analyzed for major ions, trace metals, and delta deuterium and delta oxygen-18 values in an effort to characterize the water and assess the interaction of seepage with anthropogenic materials used in the construction of the proposed repository. As demonstrated by the changes in the chemistry of water dripping from a rock bolt, interaction of seepage with construction materials can alter solution chemistry and oxidation state.

  19. Natural Analoges as a Check of Predicted Drift Stability at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    J. Stuckless

    2006-03-10

    Calculations made by the U.S. Department of Energy's Yucca Mountain Project as part of the licensing of a proposed geologic repository (in southwestern Nevada) for the disposal of high-level radioactive waste, predict that emplacement tunnels will remain open with little collapse long after ground support has disintegrated. This conclusion includes the effects of anticipated seismic events. Natural analogues cannot provide a quantitative test of this conclusion, but they can provide a reasonableness test by examining the natural and anthropogenic examples of stability of subterranean openings. Available data from a variety of sources, combined with limited observations by the author, show that natural underground openings tend to resist collapse for millions of years and that anthropogenic subterranean openings have remained open from before recorded history through today. This stability is true even in seismically active areas. In fact, the archaeological record is heavily skewed toward preservation of underground structures relative to those found at the surface.

  20. Thermal and seismic impacts on the North Ramp at Yucca Mountain

    SciTech Connect (OSTI)

    Lin, M.; Hardy, M.P.; Jung, J.

    1994-12-31

    The impacts of thermal and seismic loads on the stability of the Exploratory Studies Facility North Ramp at Yucca Mountain were assessed using both empirical and analytical approaches. This paper presents the methods and results of the analyses. Thermal loads were first calculated using the computer code STRES3D. This code calculates the conductive heat transfer through a semi-infinite elastic, isotropic, homogeneous solid and the resulting thermally-induced stresses. The calculated thermal loads, combined with simulated earthquake motion, were then modeled using UDEC and DYNA3D, numerical codes with dynamic simulation capabilities. The thermal- and seismic-induced yield zones were post-processed and presented for assessment of damage. Uncoupled bolt stress analysis was also conducted to evaluate the seismic impact on the ground support components.

  1. Thermal and seismic impacts on the North Ramp at Yucca Mountain

    SciTech Connect (OSTI)

    Lin, M.; Hardy, M.P.; Jung, J.

    1994-05-01

    The impacts of thermal and seismic loads on the stability of the Exploratory Studies Facility North Ramp at Yucca Mountain were assessed using both empirical and analytical approaches. This paper presents the methods and results of the analyses. Thermal loads were first calculated using the computer code STRES3D. This code calculates the conductive heat transfer through a semi-infinite elastic, isotropic, homogeneous solid and the rafts thermally-induced stresses. The calculated thermal loads, combined with simulated earthquake motion, were then modeled using UDEC and DYNA3D, numerical codes with dynamic simulation capabilities. The thermal- and seismic-induced yield zones were post-processed and presented for assessment of damage. Uncoupled bolt stress analysis was also conducted to evaluate the seismic impact on the ground support components.

  2. EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain  for the disposal of spent nuclear fuel and high-level...

  3. U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada.  The 2007 total system life...

  4. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect (OSTI)

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  5. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Karasaki, K. [Lawrence Berkeley Lab., CA (United States); Galloway, D. [Geological Survey, Sacramento, CA (United States)

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes is such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.

  6. U-Pb Ages of Secondary Silica at Yucca Mountain, Nevada: Implications for the Paleohydrology of the Unsaturated Zone

    SciTech Connect (OSTI)

    L.A. Neymark; Y. Amelin; J.B. Paces; Z.E. Peterman

    2001-08-20

    U, Th, and Pb isotopes were analyzed in layers of opal and chalcedony from individual millimeter- to centimeter-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of {sup 206}Pb/{sup 204}Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotopes in opal samples at Yucca Mountain are complicated by the incorporation of excess {sup 234}U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the {sup 207}Pb/{sup 235}U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, {sup 207}Pb/{sup 235}U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. {sup 234}U and {sup 230}Th in most silica layers deeper in the coatings are in secular equilibrium with {sup 238}U, which is consistent with their old age and closed system behavior during the past 0.5 m.y. U-Pb ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average depositional rates of 1 to 5 mm/m.y. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long-term hydrologic stability over the past 10 m.y. despite significant climate variations. U-Pb ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from fractures in the welded part of the overlying Tiva Canyon Tuff indicate larger long-term average depositional rates up to 23 mm/m.y. and an absence of recently deposited materials (ages of outermost layers are 3-5 Ma). These differences between the characteristics of the coatings for samples from the shallower and deeper parts of the UZ may indicate that the nonwelded tuffs (PTn), located between the welded parts of the Tiva Canyon and Topopah Spring Tuffs, play an important role in moderating UZ flow.

  7. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    SciTech Connect (OSTI)

    Locke, Glenn L. [US Geological Survey, Carson City, NV (United States); La Camera, Richard J. [US Geological Survey, Carson City, NV (United States)

    2003-12-31

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992–2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985–93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3–2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  8. An Updated Site Scale Saturated Zone Ground Water Transport Model...

    Office of Scientific and Technical Information (OSTI)

    An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water ...

  9. Natural convection in tunnels at Yucca Mountain and impact on drift seepage

    SciTech Connect (OSTI)

    Halecky, N.; Birkholzer, J.T.; Peterson, P.

    2010-04-15

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  10. U.S. DEPARTMENT OF ENERGY EXPERIENCE IN CREATING AND COMMUNICATING THE CASE FOR THE SAFETY OF A POTENTIAL YUCCA MOUNTAIN REPOSITORY

    SciTech Connect (OSTI)

    W.J. Boyle; A.E. Van Luik

    2005-08-30

    Experience gained by the U.S. Department of Energy (the Department) in making the recommendation for the development of the Yucca Mountain site as the nation's first high-level waste and spent nuclear fuel repository is useful for creating documents to support the next phase in the repository program, the licensing phase. The experience that supported the successful site-recommendation process involved a three-tiered approach. First, was making a highly technical case for regulatory compliance. Second, was making a broader case for safety in an Environmental Impact Statement. And third, producing plain language brochures, made available to the public in hard copy and on the Internet, to explain the Department's action and its legal and scientific bases. This paper reviews lessons learned from this process, and makes suggestions for the next stage of the repository program: licensing.

  11. Environmental impact of Yucca Mountain repository after Urex+1a separation

    SciTech Connect (OSTI)

    Djokic, Denia; Ahn, Joonhong

    2007-07-01

    The environmental impact of Yucca Mountain Repository (YMR), expressed as the radiotoxicity of radionuclides released from failed waste packages, has been evaluated for the case of partitioning and vitrification the 63,000 MT of commercial spent nuclear fuel (CSNF) currently designated for disposal. A parametric study on the effect of fuel cycle parameters on environmental impact has also been conducted. CSNF inventory has been evaluated by using ORIGEN2. UREX+1a separation is considered as the base case, and the removal of individual nuclide groups has also been investigated. Of particular interest is the effect of Cs/Sr removal on the waste loading of a canister. An existing waste-conditioning model for high-level liquid waste (HLLW) solidification with borosilicate glass is used to determine the composition and waste loading of a vitrified waste canister by a set of waste loading constraints. A previously developed release model has been applied to evaluate the environmental impact of the vitrified waste packages in YMR. Numerical results show that while the removal of Tc and Cs/Sr does not have an effect on the environmental impact profile, it is linearly sensitive to separation efficiency of actinides. The uncertainty associated with the environmental impact resulting from the uncertainties of radionuclide solubility values has been computed. It was determined that in the case of U, TRU, Tc, and Cs/Sr inventory reduction by a factor of 100 and subsequent vitrification, the repository footprint would decrease by a factor of 3.4, implying that 3.4 times more electricity generation could be accommodated while the environmental impact is up to a factor of 100 smaller than the direct disposal case. (authors)

  12. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  13. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    SciTech Connect (OSTI)

    Z.E. Peterman; P.L. Cloke

    2000-12-13

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO{sub 2}, 76.29; Al{sub 2}O{sub 3}, 12.55; FeO, 0.14; Fe{sub 2}O{sub 3}, 0.97; MgO, 0.13; CaO, 0.50; Na{sub 2}O, 3.52; K{sub 2}O, 4.83; TiO{sub 2}, 0.11; and MnO, 0.07.

  14. Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste Rob P. Rechard a,n , Geoff A. Freeze b , Frank V. Perry c a Nuclear Waste Disposal Research & Analysis, Sandia National Laboratories, P.O. Box 5800, Albuquerque 87185-0747, NM, USA b Applied Systems Analysis & Research, Sandia National Laboratories, P.O. Box 5800, Albuquerque 87185-0747, NM, USA c Earth and Environmental Sciences Division, Los Alamos National

  15. Mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Bish, D.L.; Chipera, S.J.

    1986-09-01

    The mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 was previously determined using qualitative and semiquantitative techniques, and most of the available data were neither complete nor accurate. New quantitative x-ray diffraction data were obtained for rocks from all three of these drill holes at Yucca Mountain, Nevada. These quantitative analyses employed both external and internal standard x-ray powder diffraction methods and permitted the precise determination of all phases commonly found in the tuffs at Yucca Mountain, including glass and opal-CT. These new data supplant previous analyses and include numerous additional phases. New findings of particular importance include better constraints on the distribution of the more soluble silica polymorphs, cristobalite and opal-CT. Opal-CT was associated solely with clinoptilolite-bearing horizons, and cristobalite disappearance coincided with the appearance of analcime in USW G-1. Unlike previous analyses, we identified significant amounts of smectite in drill hole J-13. We found no evidence to support previous reports of the occurrence of erionite or phillipsite in these drill holes.

  16. Volcanic episodes near Yucca Mountain as determined by paleomagnetic studies as Lathrop Wells, Crater Flat, and Sleeping Butte, Nevada

    SciTech Connect (OSTI)

    Champion, D.E.

    1991-12-31

    It has been suggested that mafic volcanism in the vicinity of Yucca Mountain, Nevada, is both recent (20 ka) and a product of complex {open_quotes}polycyclic{close_quotes} eruptions. This pattern of volcanism, as interpreted by some workers at the Lathrop Wells volcanic complex, comprises a sequence of numerous small-volume eruptions that become more tephra-producing over time. Such sequences are thought to occur over timespans as long as 100,000 years. However, paleomagnetic studies of the tephra and lava flows from mafic volcanoes near Yucca Mountain fail to find evidence of repeated eruptive activity over timespans of 10{sup 3} to 10{sup 5} years, even though samples have been taken that represent approximately 95% of the products of these volcanoes. Instead, the eruptions seem to have occurred as discrete episodes at each center and thus can be considered to be {open_quotes}monogenetic.{close_quotes} Dates of these episodes have been obtained by the proven radiometric-geochronometer methods of K-Ar or {sup 40}Ar/{sup 39}Ar dating.

  17. Viability Assessment of a Repository at Yucca Mountain. Volume 3: Total System Performance Assessment

    SciTech Connect (OSTI)

    1998-12-01

    This volume reports the development of TSPA for the VA. This first section defines the general process involved in developing any TSPA, it describes the overall TSPA process as implemented by programs in the US and elsewhere in the world, and discusses the acceptability of TSPA as a process or tool for analyzing a nuclear waste repository system. Section 2 discusses the more specific use of the TSPA process for the TSPA-VA for Yucca Mountain, including goals, approach, and methods. It also includes a very brief synopsis of TSPA-VA results. Section 3 briefly discusses each of the component models that comprise the TSPA-VA. Each TSPA component model represents a discrete set of processes. The TSPA-VA components are: unsaturated zone flow, thermal hydrology, near- field geochemical environment, waste package degradation, waste form alteration and mobilization, unsaturated zone transport, saturated zone flow and transport, and biosphere. For each of these components, this section introduces the conceptualization of each individual process, describes the data sources, and discusses model parameter development and computer methods used to simulate each component. Section 4 explains the mechanics of how the individual TSPA components were combined into a ''base case'' and then provides the ''expected value'' results of a deterministic base case analysis. Section 4 also contains a description of the probabilistic analyses and results that help determine the relative importance of the various TSPA components and the data used to describe the components. Section 5 addresses sensitivity studies run for each of the TSPA components to understand how uncertainty in various parameters within a component change the TSPA results. Section 6 presents the findings of the sensitivity studies run on the various components in Section 5, and prioritizes the findings of the entire set of uncertainty and sensitivity studies of the components relative to each other. Section 6 also discusses the DOE assessment of potential activities to increase the confidence in future TSPAs based on the results of TSPA-VA, gives a synopsis of the insights provided by the TSPA Peer Review Panel, includes a discussion of comments received by DOE from NRC, and closes with concluding remarks.

  18. Deep Resistivity Structure of Rainier Mesa-Shoshone Mountain, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Theodore H. Asch; Brian D. Rodriguez; Jay A. Sampson; Jackie M. Williams; Maryla Deszcz-Pan

    2006-12-12

    The U. S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. During 2005, the U.S. Geological Survey (USGS), funded by the DOE and NNSA-NSO, collected and processed data from twenty-six Magnetotelluric (MT) and Audio-Magnetotelluric (AMT) sites at the Nevada Test Site. Data stations were located in and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend to the west the hydrogeologic study that was conducted in Yucca Flat in 2003. This work has helped to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale(Bechtel Nevada, 2006)) in the Yucca Flat area and west towards Shoshone Mountain in the south, east of Buckboard Mesa, and onto Rainier Mesa in the north. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology within the region. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit (UCCU) are generally characterized in the upper 5 km. The interpretation is not well determined where conductive TCU overlies conductive Chainman Shale, where resistive Eleana Formation overlies resistive LCA units, or where resistive VTA rock overlies units of the Eleana Formation. The nature of the volcanic units in the west has been refined as are large and small fault structures such as the CP Thrust Fault, the Carpetbag Fault, and the Yucca Fault that cross Yucca Flat. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit and areas to the west and in understanding the effects on ground-water flow in the area.

  19. Isotope Geochemistry of Calcite Coatings and the Thermal History of the Unsaturated Zone at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    B.D. Marshall; J.F. Whelan

    2000-07-27

    Calcite and opal coatings found on fracture footwalls and lithophysal cavity bottoms in the volcanic section at Yucca Mountain (exposed in a tunnel) contain a record of gradual chemical and isotopic changes that have occurred in the unsaturated zone. The thin (less than 6 cm) coatings are composed primarily of calcite, opal, chalcedony, and quartz. Fluid inclusions in calcite that homogenize at greater than ambient temperatures provide impetus for geochronologic studies in order to determine the thermal history. In the welded Topopah Spring Tuff (12.7 Ma), U-Pb ages of opal and chalcedony layers provide evidence of a long history of deposition throughout the past 10 m.y. However, these ages can constrain the ages of associated calcite layers only in samples with an easily interpretable microstratigraphy. Strontium isotope ratios in calcite increase with microstratigraphic position from the base up to the outermost surface of the coatings. The strontium incorporated in these coatings records the systematic change in pore-water isotopic composition due to water-rock interaction primarily in the overlying nonwelded tuffs. A one-dimensional advection-reaction model simulates strontium isotope ratios measured in pore water extracted from core in three vertical boreholes adjacent to the tunnel. By calculating the strontium isotope compositions of the rocks at various past times, the model predicts a history of the strontium isotope ratios in the water that matches the record in the calcite and therefore provides approximate ages. Oxygen isotope ratios measured in calcite gradually increase with decreasing model strontium age. Assuming that the oxygen isotope ratio of the percolating water was relatively constant, this trend indicates a gradual cooling of the rocks over millions of years, in agreement with thermal modeling of magma beneath the 12-Ma Timber Mountain caldera just north of Yucca Mountain. This model predicts that temperatures significantly exceeding current geotherm values occurred prior to 6 Ma. We find no evidence for Quaternary or recent thermal perturbations to the cooling rocks.

  20. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez; and Theodore H. Asch.

    2006-11-03

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas of the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west towards Shoshone Mountain, to Buckboard Mesa in the south, and onto Rainier Mesa in the north. Subsequent interpretation will include a three-dimensional (3-D) character analysis and a two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for the twenty-six stations shown in figure 1. No interpretation of the data is included here.

  1. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

    SciTech Connect (OSTI)

    King, Michael J; Bredehoeft, John D., Dr.

    2010-09-03

    Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.

  2. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  3. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-01-01

    The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

  4. Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Michael B. Heiser; Clark B. Millet

    2005-10-01

    This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 × 10-ft) and Concept B (2 × 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 × 17.5-ft) canister (also called the “super canister”), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine "as-is" would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years.

  5. Estimation of host rock thermal conductivities using thetemperature data from the drift-scale test at Yucca Mountain,Nevada

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2003-11-25

    A large volume of temperature data has been collected from a very large, underground heater test, the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST was designed to obtain thermal, hydrological, mechanical, and chemical (THMC) data in the unsaturated fractured rock of Yucca Mountain. Sophisticated numerical models have been developed to analyze the collected THMC data. In these analyses, thermal conductivities measured from core samples have been used as input parameters to the model. However, it was not known whether these core measurements represented the true field-scale thermal conductivity of the host rock. Realizing these difficulties, elaborate, computationally intensive geostatistical simulations have also been performed to obtain field-scale thermal conductivity of the host rock from the core measurements. In this paper, we use the temperature data from the DST as the input (instead of the measured core-scale thermal conductivity values) to develop an estimate of the field-scale thermal conductivity values. Assuming a conductive thermal regime, we develop an analytical solution for the temperature rise in the host rock of the DST; and using a nonlinear fitting routine, we obtain a best-fit estimate of field-scale thermal conductivity for the DST host rock. The temperature data collected from the DST shows clear evidence of two distinct thermal regimes: a zone below boiling (wet) and a zone above boiling (dry). We obtain estimates of thermal conductivity for both the wet and dry zones. We also analyze the sensitivity of these estimates to the input heating power of the DST.

  6. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.

  7. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  8. Dialogs by Jerry Szymanski regarding the Yucca Mountain controversy from December, 1990 to March, 1991: Volume 3. Special report number 9, Contract number 92/94.0004

    SciTech Connect (OSTI)

    1993-07-01

    This report is a critical review of a US Geological Survey (USGS) paper regarding the origin of the Yucca Mountain calcite-opaline silica deposits. The report is in the form of a letter to the original authors in the USGS detailing the criticism regarding the origin of calcitic veins in the Yucca Mountain region. The USGS paper contributed most of these calcrete deposits to meteoric dissolution and precipitation mechanisms while the author presents his case for hydrothermal and magmatic origins. The paper presents strong isotopic characterization of these deposits to demonstrate a volcanic influence or source of this mineralization. Strontium, uranium, and carbon isotopes are graphed and compared from the numerous geologic and ground water samples available.

  9. Dialogs by Jerry Szymanski regarding the Yucca Mountain controversy from December, 1990 to March, 1991: Volume 2. Special report number 9, Contract number 92/94.0004

    SciTech Connect (OSTI)

    1993-07-01

    This report is a compilation of materials used as part of the Penrose Conference of Bodega Bay, California and the NRC/NAS panel field trip (April 23--25, 1991). The document contains extensive graphs on the hydrologic and geologic systems of the Yucca Mountain region. It outlines and diagrams hydrologic issues relative to geothermal gradients, geochemical pathways, hydraulic gradients, ground water chemistry, and ground water flow models. Specific anomalies in regards to geology or hydrology are addressed as separate issues.

  10. Response to"Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky

    SciTech Connect (OSTI)

    Houseworth, J.E.; Hardin, E.

    2008-11-17

    This paper presents a rebuttal to Dublyansky (2007), which misrepresents technical issues associated with hydrothermal activity at the proposed Yucca Mountain nuclear waste repository and their importance to the long-term performance of the repository. In this paper, questions associated with hydrothermal activity are reviewed and the justification for exclusion of hydrothermal activity from performance assessment is presented. The hypothesis that hydrothermal upwelling into the present-day unsaturated zone has occurred at Yucca Mountain is refuted by the unambiguous evidence that secondary minerals and fluid inclusions in the unsaturated zone formed in an unsaturated environment from downward percolating meteoric waters. The thermal history at Yucca Mountain, inferred from fluid inclusion and isotopic data, is explained in terms of the tectonic extensional environment and associated silicic magmatism. The waning of tectonic extension over millions of years has led to the present-day heat flux in the Yucca Mountain region that is below average for the Great Basin. The long time scales of tectonic processes are such that any effects of a resumption of extension or silicic magmatism on hydrothermal activity at Yucca Mountain over the 10,000-year regulatory period would be negligible. The conclusion that hydrothermal activity was incorrectly excluded from performance assessment as asserted in Dublyansky (2007) is contradicted by the available technical and regulatory information.

  11. Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2007-01-15

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.

  12. Calcite Fluid Inclusion, Paragenetic, and Oxygen Isotopic Records of Thermal Event(s) at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    B. Peterman; R. Moscati

    2000-08-10

    Yucca Mountain, Nevada, is under consideration as a potential high-level radioactive waste repository situated above the water table in 12.7 Ma tuffs. A wealth of textural and geochemical evidence from low-temperature deposits of calcite and silica, indicates that their genesis is related to unsaturated zone (UZ) percolation and that the level of the potential repository has never been saturated. Nonetheless, some scientists contend that thermal waters have periodically risen to the surface depositing calcite and opal in the tuffs and at the surface. This hypothesis received some support in 1996 when two-phase fluid inclusions (FIs) with homogenization temperatures (Th) between 35 and 75 C were reported from UZ calcite. Calcite deposition likely followed closely on the cooling of the tuffs and continues into the present. The paragenetic sequence of calcite and silica in the UZ is early stage calcite followed by chalcedony and quartz, then calcite with local opal during middle and late stages. Four types of FIs are found in calcite assemblages: (1) all-liquid (L); (2) all-vapor (V); (3) 2-phase with large and variable V:L ratios; and (4) a few 2-phase with small and consistent V:L ratios. Late calcite contains no FI assemblages indicating elevated depositional temperatures. In early calcite, the Th of type 4 FIs ranges from {approx} 40 to {approx} 85 C. Such temperatures (sub-boiling) and the assemblage of FIs are consistent with deposition in the UZ. Some delta 18O values < 10 permil in early calcite support such temperatures. Type 4 FIs, however, seem to be restricted to the early calcite stage, during which either cooling of the tuffs or regional volcanism were possible heat sources. Nonetheless, at present there is no compelling evidence of upwelling water as a source for the calcite/opal deposits.

  13. Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for radioactive waste at Yucca Mountain, Nevada.

    SciTech Connect (OSTI)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-10-01

    The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three conceptual entities: a probability space that characterizes aleatory uncertainty; a function that predicts consequences for individual elements of the sample space for aleatory uncertainty; and a probability space that characterizes epistemic uncertainty. These entities and their use in the characterization, propagation and analysis of aleatory and epistemic uncertainty are described and illustrated with results from the 2008 YM PA.

  14. Microsoft Word - Yucca PCard Report.doc

    Office of Environmental Management (EM)

    AAAAAAAAAAAAAAAAA Inspection Report Yucca Mountain Project Purchase Card Programs INS-O-09-04 August 2009 U.S. Department of Energy Office of Inspector General Office of Inspections MEMORANDUM FOR DIRECTOR, OFFICE OF CILIVIAN RADIOACTIVE WASTE MANAGEMENT FROM: Herbert Richardson Principal Deputy Inspector General SUBJECT: INFORMATION: Inspection Report on "Yucca Mountain Purchase Card Programs" BACKGROUND Yucca Mountain Project (Project) is the Nation's first proposed storage facility

  15. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    SciTech Connect (OSTI)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses technical assessment and corroboration to evaluate the original subject DTN. Rael (1999) provides many technical details of the technical assessment and corroboration methods and partially satisfies the intent of the qualification plan for this analysis. Rael presents a modified method based on Nelson (1996) to recompute porosity and porosity-derived values and uses some of the same inputs. Rael's (1999) intended purpose was to document porosity output relatively free of biases introduced by differing computational methods or parameter selections used for different boreholes. The qualification report necessarily evaluates the soundness of the pre-Process Validation and Re-engineering (PVAR) analyses and methodology, as reported in Rael (1999).

  16. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-06-27

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Security Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NFO for closure of CAU 104 · The transfer of CAU 104 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  17. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    SciTech Connect (OSTI)

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  18. Uncertainty and sensitivity analysis in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada.

    SciTech Connect (OSTI)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-05-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, an extensive performance assessment (PA) for the YM repository was completed in 2008 [1] and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository [2]. This presentation provides an overview of the conceptual and computational structure of the indicated PA (hereafter referred to as the 2008 YM PA) and the roles that uncertainty analysis and sensitivity analysis play in this structure.

  19. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  1. Mineralogic Zonation Within the Tuff Confining Unit, Yucca Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Lance Prothro

    2005-09-01

    Recently acquired mineralogic data from drill hole samples in Yucca Flat show that the tuff confining unit (TCU) can be subdivided into three mineralogic zones based on the relative abundances of primary and secondary mineral assemblages. These zones are (1) an upper zone characterized by the abundance of the zeolite mineral clinoptilolite with lesser amounts of felsic and clay minerals; (2) a middle zone with felsic minerals dominant over clinoptilolite and clay minerals; and (3) a basal argillic zone where clay minerals are dominant over felsic minerals and clinoptilolite. Interpretation of the mineralogic data, along with lithologic, stratigraphic, and geophysical data from approximately 500 drill holes, reveals a three-layer mineralogic model for the TCU that shows all three zones are extensive beneath Yucca Flat. The mineralogic model will be used to subdivide the TCU in the Yucca Flat hydrostratigraphic framework model, resulting in a more accurate and versatile framework model. In addition, the identification of the type, quantity, and distribution of minerals within each TCU layer will permit modelers to better predict the spatial distribution and extent of contaminant transport from underground tests in Yucca Flat, at both the level of the hydrologic source term and the corrective action unit.

  2. EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor

    Broader source: Energy.gov [DOE]

    This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2013-11-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  4. Measured solubilities and speciations of neptunium, plutonium, and americium in a typical groundwater (J-13) from the Yucca Mountain region; Milestone report 3010-WBS 1.2.3.4.1.3.1

    SciTech Connect (OSTI)

    Nitsche, H.; Gatti, R.C.; Standifer, E.M.

    1993-07-01

    Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, {sup 241}Am{sup 3+}/Nd{sup 3+}, and {sup 243}Am{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at three different temperatures (25{degree}, 60{degree}, and 90{degree}C) and pH values (5.9, 7.0, and 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations decreased with increasing temperature and showed no trend with pH. The americium solutions showed no clear solubility trend with increasing temperature and increasing pH.

  5. Preliminary gravity inversion model of basins east of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Geoffrey A. Phelps; Carter W. Roberts, and Barry C. Moring

    2006-03-17

    The Yucca Flat eastern extension study area, a 14 kilometer by 45 kilometer region contiguous to Yucca Flat on the west and Frenchman Flat on the south, is being studied to expand the boundary of the Yucca Flat hydrogeologic model. The isostatic residual gravity anomaly was inverted to create a model of the depth of the geologic basins within the study area. Such basins typically are floored by dense pre-Tertiary basement rocks and filled with less-dense Tertiary volcanic and sedimentary rocks and Quaternary alluvium, a necessary condition for the use of gravity modeling to predict the depth to the pre-Tertiary basement rocks within the basins. Three models were created: a preferred model to represent the best estimate of depth to pre-Tertiary basement rocks in the study area, and two end-member models to demonstrate the possible range of solutions. The preferred model predicts shallow basins, generally less than 1,000m depth, throughout the study area, with only Emigrant Valley reaching a depth of 1,100m. Plutonium valley and West Fork Scarp Canyon have maximum depths of 800m and 1,000m, respectively. The end-member models indicate that the uncertainty in the preferred model is less than 200m for most of the study area.

  6. Review of radionuclide source terms used for performance-assessment analyses; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Barnard, R.W.

    1993-06-01

    Two aspects of the radionuclide source terms used for total-system performance assessment (TSPA) analyses have been reviewed. First, a detailed radionuclide inventory (i.e., one in which the reactor type, decay, and burnup are specified) is compared with the standard source-term inventory used in prior analyses. The latter assumes a fixed ratio of pressurized-water reactor (PWR) to boiling-water reactor (BWR) spent fuel, at specific amounts of burnup and at 10-year decay. TSPA analyses have been used to compare the simplified source term with the detailed one. The TSPA-91 analyses did not show a significant difference between the source terms. Second, the radionuclides used in source terms for TSPA aqueous-transport analyses have been reviewed to select ones that are representative of the entire inventory. It is recommended that two actinide decay chains be included (the 4n+2 ``uranium`` and 4n+3 ``actinium`` decay series), since these include several radionuclides that have potentially important release and dose characteristics. In addition, several fission products are recommended for the same reason. The choice of radionuclides should be influenced by other parameter assumptions, such as the solubility and retardation of the radionuclides.

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  8. Completion Report for the Well ER-6-2 Site Corrective Action Unit 97: Yucca Flat - Climax Mine

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-03-01

    Well ER-6-2 and its satellite hole, Well ER-6-2 No.1, were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. Well ER-6-2 was drilled in two stages in 1993 and 1994; the satellite hole, Well ER-6-2 No.1 was drilled nearby in 1993 but was abandoned. The wells were drilled as part of a hydrogeologic investigation program for the Yucca Flat-Climax Mine Corrective Action Unit Number 97, in the northeastern portion of the Nevada Test Site. The wells are located in Yucca Flat, within Area 6 of the Nevada Test Site. The wells provided information regarding the radiological and hydrogeological environment in a potentially down-gradient position from tests conducted in northern and central Yucca Flat. Construction of Well ER-6-2 began with a 1.2-meter-diameter surface conductor hole, which was drilled and cased off to a depth of 30.8 meters below the surface. A 50.8-centimeter diameter surface hole was then rotary drilled to the depth of 578.5 meters and cased off to the depth of 530.4 meters. The hole diameter was then reduced to 27.0 centimeters, and the borehole was advanced to a temporary depth of 611.4 meters. The borehole was conventionally cored to a total depth of 1,045 meters with a diameter of 14.0 centimeters. Borehole sloughing required cementing and re-drilling of several zones. The open-hole completion accesses the lower carbonate aquifer, the CP thrust fault, and the upper clastic confining unit. A fluid level depth of 543.2 meters was most recently measured in the open borehole in September 2007. No radionuclides were encountered during drilling. The satellite hole Well ER-6-2 No.1 was drilled approximately 15.2 meters north of Well ER-6-2 on the same drill pad. This was planned to be used as an observation well during future hydrologic testing at Well ER-6-2; however, the satellite hole was abandoned at the depth of 399 meters due to stuck drill pipe, and was subsequently cemented to the surface. Detailed lithologic descriptions with stratigraphic assignments in this report are based on composite drill cuttings samples collected every 3 meters, cores taken between the depths of 619.3 and 1,042.4 meters, and geophysical log data. Stratigraphic assignments within the Paleozoic section are based on paleontological analyses. The well was collared in alluvium and at 30.8 meters penetrated Paleozoic carbonate rocks. These consisted of dolostone with minor shale and limestone of the Bonanza King Formation, and limestone with minor quartzite, sandstone, and dolostone assigned to the Guilmette Formation. The borehole reached total depth in a shale unit assigned to the Chainman Shale. The units below the Bonanza King Formation are overturned due to faulting and folding and, therefore, are stratigraphically upside-down.

  9. Final 2014 Site-Wide Environmental Assessment - South Table Mountain Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Site-Wide Environmental Assessment U.S. Department of Energy National Renewable Energy Laboratory South Table Mountain Campus Golden, Colorado DOE/EA-1968 December 2014 Department of Energy Golden Field Office 15013 Denver West Parkway Golden, Colorado 80401 FINDING OF NO SIGNIFICANT IMPACT SITE-WIDE ENVIRONMENTAL ASSESSMENT U.S. DEPARTMENT OF ENERGY NATIONAL RENEWABLE ENERGY LABORATORY SOUTH TABLE MOUNTAIN CAMPUS GOLDEN, COLORADO DOE/EA-1968 AGENCY: U.S. Department of Energy (DOE),

  10. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    SciTech Connect (OSTI)

    John McCord; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

  11. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    SciTech Connect (OSTI)

    Devgun, Jas S.

    2013-07-01

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  12. Environmental Regulatory Compliance Plan for Site Characterization; Yucca Mountain Site, Nevada Research and Development Area, Nevada: Revision 1

    SciTech Connect (OSTI)

    1988-12-01

    The DOE is committed to conduct its operations in an environmentally safe and sound manner, and will comply with applicable environmental statutes and regulations. These objectives are described in DOE Order 5400.1 (Environmental Protection Program Requirements). This document -- the Environmental Regulatory Compliance Plan (ERCP) -- is one method of implementing the policy set forth in DOE Order 5400.1 and the NWPA. The ERCP describes the plan by which the DOE will comply with applicable Federal environmental statutes and regulations. The ERCP also discusses how DOE will address State and local environmental statutes and regulations. 180 refs., 27 figs., 1 tab.

  13. Well ER-6-1 Tracer Test Analysis: Yucca Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Greg Ruskauff

    2006-09-01

    The ER-6-1 multiple-well aquifer test-tracer test (MWAT-TT) investigated groundwater flow and transport processes relevant to the transport of radionuclides from sources on the Nevada Test Site (NTS) through the lower carbonate aquifer (LCA) hydrostratigraphic unit (HSU). The LCA, which is present beneath much of the NTS, is the principal aquifer for much of southern Nevada. This aquifer consists mostly of limestone and dolomite, and is pervasively fractured. Groundwater flow in this aquifer is primarily in the fractures, and the hydraulic properties are primarily related to fracture frequency and fracture characteristics (e.g., mineral coatings, aperture, connectivity). The objective of the multiple-well aquifer test (MWAT) was to determine flow and hydraulic characteristics for the LCA in Yucca Flat. The data were used to derive representative flow model and parameter values for the LCA. The items of specific interest are: Hydraulic conductivity; Storage parameters; Dual-porosity behavior; and Fracture flow characteristics. The objective of the tracer transport experiment was to evaluate the transport properties and processes of the LCA and to derive representative transport parameter values for the LCA. The properties of specific interest are: Effective porosity; Matrix diffusion; Longitudinal dispersivity; Adsorption characteristics; and Colloid transport characteristics. These properties substantially control the rate of transport of contaminants in the groundwater system and concentration distributions. To best support modeling at the scale of the corrective action unit (CAU), these properties must be investigated at the field scale. The processes represented by these parameters are affected by in-situ factors that are either difficult to investigate at the laboratory scale or operate at a much larger scale than can be reproduced in the laboratory. Measurements at the field scale provide a better understanding of the effective average parameter values. The scale of this tracer test is still small compared to the scale of a CAU, but is of sufficient scale to be generally representative of the processes that affect in-situ transport. The scale of the tracer test undertaken is limited by the rate of transport in the formation and the resultant time frame required for completing such a test. The measurements at the field scale will provide information for relating laboratory measurements for transport processes to the larger scale. This report describes the analysis of the tracer test data and development of a conceptual model of transport in the LCA in Yucca Flat.

  14. Scenarios constructed for the effects of tectonic processes on the potential nuclear waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    Barr, G.E.; Borns, D.J.; Fridrich, C.

    1996-10-01

    A comprehensive collection of scenarios is presented that connect initiating tectonic events with radionuclide releases by logical and physically possible combinations or sequences of features, events and processes. The initiating tectonic events include both discrete faulting and distributed rock deformation developed through the repository and adjacent to it, as well as earthquake-induced ground motion and changes in tectonic stress at the site. The effects of these tectonic events include impacts on the engineered-barrier system, such as container rupture and failure of repository tunnels. These effects also include a wide range of hydrologic effects such as changes in pathways and flow rates in the unsaturated and saturated zones, changes in the water-table configuration, and in the development of perched-water systems. These scenarios are intended go guide performance-assessment analyses and to assist principal investigators in how essential field, laboratory, and calculational studies are used. This suite of scenarios will help ensure that all important aspects of the system disturbance related to a tectonic scenario are captured in numerical analyses. It also provides a record of all options considered by project analysts to provide documentation required for licensing agreement. The final portion of this report discusses issues remaining to be addressed with respect to tectonic activity. 105 refs.

  15. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    SciTech Connect (OSTI)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-10-02

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units. 1 plate

  16. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    SciTech Connect (OSTI)

    J.M. Fenelon

    2005-10-05

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

  17. DOE Files Report Confirming Intent to Preserve and Archive Yucca...

    Broader source: Energy.gov (indexed) [DOE]

    Energy filed today a report with the NRC detailing the extensive steps it is taking to preserve and protect its document collection created in connection with the Yucca Mountain...

  18. Geochemical and Isotopic Evaluation of Groundwater Movement in Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Farnham, Irene

    2006-02-01

    This report describes the results of a comprehensive geochemical evaluation of the groundwater flow system in the Yucca Flat/Climax Mine Corrective Action Unit (CAU). The main objectives of this study are to identify probable pathways for groundwater flow within the study area and to develop constraints on groundwater transit times between selected data collection sites. This work provides an independent means of testing and verifying predictive flow models being developed for this CAU using finite element methods. The Yucca Flat/Climax Mine CAU constitutes the largest of six underground test areas on the Nevada Test Site (NTS) specified for remedial action in the ''Federal Facility Agreement and Consent Order''. A total of 747 underground nuclear detonations were conducted in this CAU. Approximately 23 percent of these detonations were conducted below or near the water table, resulting in groundwater contamination in the vicinity and possibly downgradient of these underground test locations. Therefore, a rigorous evaluation of the groundwater flow system in this CAU is necessary to assess potential long-term risks to the public water supply at downgradient locations.

  19. A G E N D A Press Conference Savannah River Site Community Reuse Organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A G E N D A Press Conference Savannah River Site Community Reuse Organization Yucca Mountain - Savannah River Site National Press Club, Washington, DC Zenger Room, 13 th Floor April 28, 2010, 11 a.m. EST * Welcome & Opening Remarks on ce ce in rs rn Rick McLeod, Executive Director, SRS Community Reuse Organization * Remarks by David Jameson, Chairman, SRS Community Reuse Organizati President, Greater Aiken, SC, Chamber of Commerce * Remarks by Sue Parr, Co-Chair, SRSCRO Yucca Mountain Task

  20. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

  1. Uranium, thorium isotopic analyses and uranium-series ages of calcite and opal, and stable isotopic compositions of calcite from drill cores UE25a No. 1, USW G-2 and USW G-3/GU-3, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Szabo, B.J.; Kyser, T.K.

    1985-12-31

    Fracture and cavity filling calcite and opal in the unsaturated zone of three drill cores at Yucca Mountain were analyzed for uranium and stable isotope contents, and were dated by the uranium-series method. Stable isotope data indicate that the water from which the calcite precipitated was meteoric in origin. The decrease in {sup 18}O and increase in {sup 13}C with depth are interpreted as being due to the increase in temperature in drill holes corresponding to an estimated maximum geothermal gradient of 43{sup 0} per km. Of the eighteen calcite and opal deposits dated, four of the calcite and all four of the opal deposits yield dates older than 400,000 years and ten of the remaining calcite deposits yield dates between 26,000 and 310,000 years. The stable isotope and uranium data together with the finite uranium-series dates of precipitation suggest a complex history of fluid movements, rock and water interactions, and episodes of fracture filling during the last 310,000 years. 10 refs., 7 figs., 4 tabs.

  2. Corrective Action Decision Document/Closure Report for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Sloop, Christy

    2013-04-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 569: Area 3 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 569 comprises the following nine corrective action sites (CASs): • 03-23-09, T-3 Contamination Area • 03-23-10, T-3A Contamination Area • 03-23-11, T-3B Contamination Area • 03-23-12, T-3S Contamination Area • 03-23-13, T-3T Contamination Area • 03-23-14, T-3V Contamination Area • 03-23-15, S-3G Contamination Area • 03-23-16, S-3H Contamination Area • 03-23-21, Pike Contamination Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 569 based on the implementation of the corrective actions listed in Table ES-2.

  3. Corrective Action Investigation Plan for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nevada with ROTCs 1, 2, and 3 (Revision 0, September 2000)

    SciTech Connect (OSTI)

    Andrews, Robert; Marutzky, Sam

    2000-09-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate Corrective Action Alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 97 under the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 97, collectively known as the Yucca Flat/Climax Mine CAU, consists of 720 Corrective Action Sites (CASs). The Yucca Flat/Climax Mine CAU extends over several areas of the NTS and constitutes one of several areas used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. Based on site history, the Yucca Flat underground nuclear tests were conducted in alluvial, volcanic, and carbonate rocks; whereas, the Climax Mine tests were conducted in an igneous intrusion located in northern Yucca Flat. Particle-tracking simulations performed during the regional evaluation indicate that the local Climax Mine groundwater flow system merges into the much larger Yucca Flat groundwater flow systems during the 1,000-year time period of interest. Addressing these two areas jointly and simultaneously investigating them as a combined CAU has been determined the best way to proceed with corrective action investigation (CAI) activities. The purpose and scope of the CAI includes characterization activities and model development conducted in five major sequential steps designed to be consistent with FFACO Underground Test Area Project's strategy to predict the location of the contaminant boundary, develop and implement a corrective action, and close each CAU. The results of this field investigation will support a defensible evaluation of CAAs in the subsequent corrective action decision document.

  4. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  5. Mountain-Scale Coupled Processes (TH/THC/THM)

    SciTech Connect (OSTI)

    P. Dixon

    2004-02-09

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The Mountain-Scale THM Model focuses on evaluating the changes in 3-D UZ flow fields arising out of thermal stress and rock deformation during and after the thermal periods.

  6. DOE Makes Filing with NRC in Support OF Authority to Withdraw Yucca Application

    Broader source: Energy.gov [DOE]

    DOE today urged the NRC to conclude that DOE has the legal authority to withdraw the pending Yucca Mountain license application.  DOE argued that the NRC should review and reverse the contrary...

  7. DOE Replies Support NRC Commissioners and Authority to Withdraw Yucca Application

    Broader source: Energy.gov [DOE]

    In a reply brief filed with the NRC today, DOE explained that the arguments that it lacked authority to withdraw the pending Yucca Mountain license application are uniformly without merit. DOE's...

  8. Microsoft Word - IG-0708 -Yucca Rpt- FINAL Nov 10-05.doc

    Office of Environmental Management (EM)

    F U.S. Department of Energy Office of Inspector General Office of Inspections and Special Inquiries Inspection Report Quality Assurance Weaknesses in the Review of Yucca Mountain Electronic Mail for Relevancy to the Licensing Process DOE/IG-0708 November 2005 QUALITY ASSURANCE WEAKNESSES IN THE REVIEW OF YUCCA MOUNTAIN ELECTRONIC MAIL FOR RELEVANCY TO THE LICENSING PROCESS TABLE OF CONTENTS OVERVIEW Introduction and Objectives...................................... 1 Observations and

  9. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  10. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) to the dose-based final action level (FAL). The presence of TED exceeding the FAL is considered a radiological contaminant of concern (COC). Anything identified as a COC will require corrective action. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters will be used to measure external radiological dose. Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plume, it was determined that the releases from the nuclear tests are co-located and will be investigated concurrently. A field investigation will be performed to define areas where TED exceeds the FAL and to determine whether other COCs are present at the site. The investigation will also collect information to determine the presence and nature of contamination associated with migration and excavation, as well as any potential releases discovered during the investigation. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  11. Corrective Action Investigation Plan for Corrective Action Unit 571: Area 9 Yucca Flat Plutonium Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Bailey, Bernadine; Matthews, Patrick

    2013-07-01

    CAU 571 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 571, which comprises the following corrective action sites (CASs): • 09-23-03, Atmospheric Test Site S-9F • 09-23-04, Atmospheric Test Site T9-C • 09-23-12, Atmospheric Test Site S-9E • 09-23-13, Atmospheric Test Site T-9D • 09-45-01, Windrows Crater These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on March 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (now the Nevada Field Office). The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 571. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 571 CASs are from nuclear testing activities. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary exceeds the final action level (FAL) and requires corrective action. The presence and nature of contamination outside the default contamination boundaries at CAU 571 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based FAL. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Chemical contamination will be evaluated by comparing soil sample results to the FAL. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  12. Corrective Action Investigation Plan for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-08-01

    CAU 570 comprises the following six corrective action sites (CASs): • 02-23-07, Atmospheric Test Site - Tesla • 09-23-10, Atmospheric Test Site T-9 • 09-23-11, Atmospheric Test Site S-9G • 09-23-14, Atmospheric Test Site - Rushmore • 09-23-15, Eagle Contamination Area • 09-99-01, Atmospheric Test Site B-9A These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 570. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The presence and nature of contamination at CAU 570 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed near the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  13. Unclassified Sources Term and Radionuclide Data for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Revision 2

    SciTech Connect (OSTI)

    Peter Martian

    2009-08-01

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for CAU 97: Yucca Flat/Climax Mine. The total residual inventory of radionuclides associated with one or more tests is known as the radiologic source term (RST). The RST is comprised of radionuclides in water, glass, or other phases or mineralogic forms. The hydrologic source term (HST) of an underground nuclear test is the portion of the total RST that is released into the groundwater over time following the test. In this report, the HST represents radionuclide release some time after the explosion and does not include the rapidly evolving mechanical, thermal, and chemical processes during the explosion. The CAU 97: Yucca Flat/Climax Mine has many more detonations and a wider variety of settings to consider compared to other CAUs. For instance, the source term analysis and evaluation performed for CAUs 101 and 102: Central and Western Pahute Mesa and CAU 98: Frenchman Flat did not consider vadose zone attenuation because many detonations were located near or below the water table. However, the large number of Yucca Flat/Climax Mine tests and the location of many tests above the water table warrant a more robust analysis of the unsaturated zone. The purpose of this report is to develop and document conceptual models of the Yucca Flat/Climax Mine HST for use in implementing source terms for the Yucca Flat/Climax Mine models. This document presents future plans to incorporate the radionuclide attenuation mechanisms due to unsaturated/multiphase flow and transport within the Yucca Flat CAU scale modeling. The important processes that influence radionuclide migration for the unsaturated and saturated tests in alluvial, volcanic, and carbonate settings are identified. Many different flow and transport models developed by Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), including original modeling of multiphase flow and transport by the Stoller-Navarro Joint Venture (SNJV), are integrated to form a general understanding of how the RST relates to the HST. This report is unlike the Frenchman Flat source term analysis because it does not calculate the HST for each test. Instead, this work only identifies the important processes that must be considered when the CAU-transport modeling is performed.

  14. Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-09-01

    Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): • 02-23-04, Atmospheric Test Site - Whitney • 02-23-05, Atmospheric Test Site T-2A • 02-23-06, Atmospheric Test Site T-2B • 02-23-08, Atmospheric Test Site T-2 • 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU 105 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted after the plan is approved.

  15. Corrective Action Investigation Plan for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews; Christy Sloop

    2012-02-01

    Corrective Action Unit (CAU) 569 is located in Area 3 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 569 comprises the nine numbered corrective action sites (CASs) and one newly identified site listed below: (1) 03-23-09, T-3 Contamination Area (hereafter referred to as Annie, Franklin, George, and Moth); (2) 03-23-10, T-3A Contamination Area (hereafter referred to as Harry and Hornet); (3) 03-23-11, T-3B Contamination Area (hereafter referred to as Fizeau); (4) 03-23-12, T-3S Contamination Area (hereafter referred to as Rio Arriba); (5) 03-23-13, T-3T Contamination Area (hereafter referred to as Catron); (6) 03-23-14, T-3V Contamination Area (hereafter referred to as Humboldt); (7) 03-23-15, S-3G Contamination Area (hereafter referred to as Coulomb-B); (8) 03-23-16, S-3H Contamination Area (hereafter referred to as Coulomb-A); (9) 03-23-21, Pike Contamination Area (hereafter referred to as Pike); and (10) Waste Consolidation Site 3A. Because CAU 569 is a complicated site containing many types of releases, it was agreed during the data quality objectives (DQO) process that these sites will be grouped. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the DQOs developed on September 26, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 569. The presence and nature of contamination at CAU 569 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. A field investigation will be performed to define any areas where TED exceeds the FAL and to determine whether contaminants of concern are present at the site from other potential releases. The presence and nature of contamination from other types of releases (e.g., excavation, migration, and any potential releases discovered during the investigation) will be evaluated using soil samples collected from biased locations indicating the highest levels of contamination. Appendix A provides a detailed discussion of the DQO methodology and the objectives specific to each study group.

  16. Unclassified Source Term and Radionuclide Data for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Peter Martian

    2009-05-01

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for CAU 97: Yucca Flat/Climax Mine. The total residual inventory of radionuclides associated with one or more tests is known as the radiologic source term (RST). The RST is comprised of radionuclides in water, glass, or other phases or mineralogic forms. The hydrologic source term (HST) of an underground nuclear test is the portion of the total RST that is released into the groundwater over time following the test. In this report, the HST represents radionuclide release some time after the explosion and does not include the rapidly evolving mechanical, thermal, and chemical processes during the explosion. The CAU 97: Yucca Flat/Climax Mine has many more detonations and a wider variety of settings to consider compared to other CAUs. For instance, the source term analysis and evaluation performed for CAUs 101 and 102: Central and Western Pahute Mesa and CAU 98: Frenchman Flat did not consider vadose zone attenuation because many detonations were located near or below the water table. However, the large number of Yucca Flat/Climax Mine tests and the location of many tests above the water table warrant a more robust analysis of the unsaturated zone.

  17. Environmental assessment, Deaf Smith County site, Texas

    SciTech Connect (OSTI)

    Not Available

    1986-05-01

    The Nuclear Waste Policy Act of 1982 (42 USC sections 10101-10226) requires the environmental assessment of a proposed site to include a statement of the basis for nominating a site as suitable for characterization. Volume 2 provides a detailed statement evaluating the site suitability of the Deaf Smith County Site under DOE siting guidelines, as well as a comparison of the Deaf Smith County Site to the other sites under consideration. The evaluation of the Deaf Smith County Site is based on the impacts associated with the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The second part of this document compares the Deaf Smith County Site to Davis Canyon, Hanford, Richton Dome and Yucca Mountain. This comparison is required under DOE guidelines and is not intended to directly support subsequent recommendation of three sites for characterization as candidate sites. 259 refs., 29 figs., 66 refs. (MHB)

  18. Analysis of Well ER-6-2 Testing, Yucca Flat FY 2004 Testing Program, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Greg Ruskauff

    2005-07-01

    This report documents the analysis of data collected for Well ER-6-2 during fiscal year (FY) 2004 Yucca Flat well development and testing program (herein referred to as the ''testing program''). Participants in Well ER-6-2 field development and hydraulic testing activities were: Stoller-Navarro Joint Venture (SNJV), Bechtel Nevada (BN), Desert Research Institute (DRI), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), U.S. Geological Survey (USGS), and the University of Nevada, Las Vegas-Harry Reid Center (UNLV-HRC). The analyses of data collected from the Well ER-6-2 testing program were performed by the SNJV.

  19. Finding of No Significant Impact and Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FINDING OF NO SIGNIFICANT IMPACT AND FINAL ENVIRONMENTAL ASSESSMENT OF THREE SITE DEVELOPMENT PROJECTS AT THE NATIONAL RENEWABLE ENERGY LABORATORY SOUTH TABLE MOUNTAIN SITE July 2007 U . S . D e p a r t m e n t o f E n e r g y G o l d e n F i e l d O f f i c e N a t i o n a l R e n e w a b l e E n e r g y L a b o r a t o r y 1 6 1 7 C o l e B o u l e v a r d G o l d e n , C o l o r a d o 8 0 4 0 1 DOE/EA-1573 Final Environmental Assessment of Three Site Development Projects at the National

  20. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2006-06-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling data that is completed in two parts: the first addressing the groundwater flow model, and the second the transport model. (2) Development of a groundwater flow model. (3) Development of a groundwater transport model. This report presents the results of the first part of the first step, documenting the data compilation, evaluation, and analysis for the groundwater flow model. The second part, documentation of transport model data will be the subject of a separate report. The purpose of this document is to present the compilation and evaluation of the available hydrologic data and information relevant to the development of the Yucca Flat/Climax Mine CAU groundwater flow model, which is a fundamental tool in the prediction of the extent of contaminant migration. Where appropriate, data and information documented elsewhere are summarized with reference to the complete documentation. The specific task objectives for hydrologic data documentation are as follows: (1) Identify and compile available hydrologic data and supporting information required to develop and validate the groundwater flow model for the Yucca Flat/Climax Mine CAU. (2) Assess the quality of the data and associated documentation, and assign qualifiers to denote levels of quality. (3) Analyze the data to derive expected values or spatial distributions and estimates of the associated uncertainty and variability.

  1. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Progress report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Stetzenbach, K.; Farnham, I.

    1994-12-31

    The bromide anion has been used extensively as a tracer for mapping the flow of groundwater. It has proven to be both a safe and reliable groundwater tracer. The goal in this study is to find several tracing compounds with characteristics similar to the bromide anion to be used in multiple well tracing tests. Four groups of fluorinated organic acids were selected as candidates for groundwater tracers. These groups include fluorinated benzoic acids (FBA), fluorinated salicylic acids (FSA), fluorinated toluic acids (FTA), and fluorinated cinnamic acids (FCA). These compounds have been shown to move readily with the flow of water and do not adsorb to soil. They are also non-toxic. In this study, the retention of the fluorinated organic acids on to a soil column is compared to that of the bromide ion. The time required for the elution of each analyte from the soil column is measured using a UV-Vis detector. The soils consist of the light, medium, and dark tuffs used in the batch study. The work performed during this quarter consists of the continuation of the batch studies for the fluorinated benzoic acids and column studies for several potential tracer compounds.

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    USE CAO Carlsbad Area Office, Carlsbad, NM (United States) USE YMP Yucca Mountain Site Characterization Office, Las Vegas, NV (United States) USE YMP Yucca Mountain Site, Las...

  3. Microsoft PowerPoint - 1_JAMES_ANDERSON_UPDATED_2014-5-14 NMMSS Users Annual Training Meeting - Yucca - Andersen.pptx

    National Nuclear Security Administration (NNSA)

    Restart of the Review of the Yucca Mountain License Application NMMSS USERS ANNUAL TRAINING MEETING DENVER, CO MAY 14, 2014 JAMES ANDERSEN DEPUTY DIRECTOR DIVISION OF FUEL CYCLE SAFETY AND SAFEGUARDS OFFICE OF NUCLEAR MATERIAL SAFETY AND SAFEGUARDS Overview * Background * NRC Current Activities * Yucca Mountain Safety Evaluation Report * Environmental Impact Statement Supplement 2 Background: NWPA * Assigned responsibilities to Department of Energy (DOE), Environmental Protection Agency (EPA),

  4. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    SciTech Connect (OSTI)

    B. Faybishenko

    2006-09-11

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

  5. External Peer Review Team Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Marutzky, Sam J.; Andrews, Robert

    2015-01-01

    The peer review team commends the Navarro-Intera, LLC (N-I), team for its efforts in using limited data to model the fate of radionuclides in groundwater at Yucca Flat. Recognizing the key uncertainties and related recommendations discussed in Section 6.0 of this report, the peer review team has concluded that U.S. Department of Energy (DOE) is ready for a transition to model evaluation studies in the corrective action decision document (CADD)/corrective action plan (CAP) stage. The DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) clarified the charge to the peer review team in a letter dated October 9, 2014, from Bill R. Wilborn, NNSA/NFO Underground Test Area (UGTA) Activity Lead, to Sam J. Marutzky, N-I UGTA Project Manager: “The model and supporting information should be sufficiently complete that the key uncertainties can be adequately identified such that they can be addressed by appropriate model evaluation studies. The model evaluation studies may include data collection and model refinements conducted during the CADD/CAP stage. One major input to identifying ‘key uncertainties’ is the detailed peer review provided by independent qualified peers.” The key uncertainties that the peer review team recognized and potential concerns associated with each are outlined in Section 6.0, along with recommendations corresponding to each uncertainty. The uncertainties, concerns, and recommendations are summarized in Table ES-1. The number associated with each concern refers to the section in this report where the concern is discussed in detail.

  6. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    John McCord

    2007-09-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

  7. Addendum for the Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0 (page changes)

    SciTech Connect (OSTI)

    John McCord

    2007-05-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: • Plate 4: Disregard the repeat of legend text ‘Drill Hole Name’ and ‘Drill Hole Location’ in the lower left corner of the map. • Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. • Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted.

  8. Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTCs 1 and 2

    SciTech Connect (OSTI)

    Andrews, Robert

    2013-09-01

    The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

  9. Analysis of Hydraulic Responses from the ER-6-1 Multiple-Well Aquifer Test, Yucca Flat FY 2004 Testing Program, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Greg Ruskauff

    2005-06-01

    This report documents the interpretation and analysis of the hydraulic data collected for the Fiscal Year (FY) 2004 Multiple-Well Aquifer Test-Tracer Test (MWAT-TT) conducted at the ER-6-1 Well Cluster in Yucca Flat Corrective Action Unit (CAU) 97, on the Nevada Test Site (NTS). The MWAT-TT was performed to investigate CAU-scale groundwater flow and transport processes related to the transport of radionuclides from sources on the NTS through the Lower Carbonate Aquifer (LCA) Hydrostratigraphic Unit (HSU). The ER-6-1 MWAT-TT was planned and executed by contractor participants for the Underground Test Area (UGTA) Project of the Environmental Restoration (ER) program of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Participants included Stoller-Navarro Joint Venture (SNJV), the Environmental Engineering Services Contractor; Bechtel Nevada (BN); the Desert Research Institute (DRI); Los Alamos National Laboratory; and the University of Nevada, Las Vegas-Harry Reid Center. The SNJV team consists of the S.M. Stoller Corporation, Navarro Research and Engineering, Battelle Memorial Institute, INTERA Inc., and Weston Solutions, Inc. The MWAT-TT was implemented according to the ''Underground Test Area Project, ER-6-1 Multi-Well Aquifer Test - Tracer Test Plan'' (SNJV, 2004a) issued in April 2004. The objective of the aquifer test was to determine flow processes and local hydraulic properties for the LCA through long-term constant-rate pumping at the well cluster. This objective was to be achieved in conjunction with detailed sampling of the composite tracer breakthrough at the pumping well, as well as with depth-specific sampling and logging at multiple wells, to provide information for the depth-discrete analysis of formation hydraulic properties, particularly with regard to fracture properties.

  10. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle DE-EE0005767 TIAX LLC and Green Mountain Coffee (field test site)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dieckmann, TIAX LLC, Principal Investigator (Presenter) U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle DE-EE0005767 TIAX LLC and Green Mountain Coffee (field test site) July 1, 2013 - January 30, 2017 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective ď‚— Primary objective - develop scroll expander

  11. Completion Report for Well ER-12-4, Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain (includes Errata Sheet)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-05-01

    Well ER-12-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in May 2005, as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit in the north-central portion of the Nevada Test Site. The well is located on Rainier/Aqueduct Mesa, northwest of Yucca Flat, within Area 12 of the Nevada Test Site. The well provided information regarding the radiological and physical environment near underground nuclear tests conducted in U12t Tunnel, information on the pre-Tertiary rocks in the area, and depth to the regional water table.

  12. A PFUZLIMIK4RY ASSESSMENT OF EARTHQUAKE GROUND SHAKING HAZARD AT YUCCA

    National Nuclear Security Administration (NNSA)

    PFUZLIMIK4RY ASSESSMENT OF EARTHQUAKE GROUND SHAKING HAZARD AT YUCCA MOUNTAIN, NEVADA ,03 IMPLICATIONS TO THE LAS VEGAS REGION . - - Ivan G. Wong, Woodward-Clyde Federal Services, 500 12th Street, Suite 200, Oakland, CA 94607 Silvio K. Pezzopane, US. Geological Survey, Box 25046, Denver, CO 80225 Norm A. Abrahamson, I52 Dracena Ave., Piedmont, CA 9461 1 Robert K. Green and Joseph 1 . Sun, Woodward-Clyde Consultants, 500 12th Street, Suite 200, Oakland, CA 94607 Richard C. Quittmeyer,

  13. DOE Petitions for NRC Review in Yucca Mountain Proceeding

    Broader source: Energy.gov [DOE]

    The United States Department of Energy today filed with the Nuclear Regulatory Commission a petition requesting that the Commission review and reverse an order by the NRC’s Atomic Safety and...

  14. DOE Marks Milestone in Submitting Yucca Mountain License Application

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced submittal of a license application (LA) to the U.S. Nuclear Regulatory Commission (NRC) seeking authorization to construct...

  15. Design methodology for rock excavations at the Yucca Mountain project

    SciTech Connect (OSTI)

    Alber, M.; Bieniawski, Z.T.

    1993-12-31

    The problems involved in the design of the proposed underground repository for high-level nuclear waste call for novel design approaches. Guidelines for the design are given by the Mission Plan Amendment in which licensing and regulatory aspects have to be satisfied. Moreover, systems engineering was proposed, advocating a top-down approach leading to the identification of discrete, implementable system elements. These objectives for the design process can be integrated in an engineering design methodology. While design methodologies for some engineering disciplines are available, they were of limited use for rock engineering because of the inherent uncertainties about the geologic media. Based on the axiomatic design approach of Suh, Bieniawski developed a methodology for design in rock. Design principles and design stages are clearly stated to assist in effective decision making. For overall performance goals, the domain of objectives is defined through components (DCs) - representing a design solution - satisfy the FRs, resulting in discrete, independent functional relations. Implementation is satisfied by evaluation and optimization of the design with respect to the constructibility of the design components.

  16. Statement from Ward Sproat on Yucca Mountain, Director of the...

    Broader source: Energy.gov (indexed) [DOE]

    "We are pleased with the Nuclear Regulatory Commission's (NRC) Pre-license Application Presiding Officer Board's ruling today to uphold DOE's Licensing Support Network (LSN)...

  17. DOE to Send Proposed Yucca Mountain Legislation to Congress

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - Secretary of Energy Samuel W. Bodman announced today he will send to the U.S. Congress a legislative proposal to enhance the nation's ability to manage and dispose of commercial...

  18. Department of Energy Files Motion to Withdraw Yucca Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and March 26th. The motion can be found at the following link: DOE Motion to Withdraw (.pdf). Media contact(s): (202) 586-4940 Addthis Related Articles Statement of Department of...

  19. DOE Defends Its Motion to Withdraw Yucca Mountain Application

    Broader source: Energy.gov [DOE]

    Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the...

  20. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations shown in figure 1. No interpretation of the data is included here.

  1. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Sites at McGee Mountain, Nevada

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: To evaluate the cost-effectiveness of two innovative technologies in early-stage geothermal exploration:a) shallow (2m) survey; b) hydroprobe; and Identify a geothermal resource at the project site.

  2. BLUE MOUNTAIN | Department of Energy

    Energy Savers [EERE]

    BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN PROJECT SUMMARY In September 2010, the Department of Energy issued a $98.5 million partial loan guarantee under the Financial Institution Partnership Program (FIPP) to finance Blue Mountain, a geothermal power plant. The plant is currently harnessing renewable energy by tapping into an

  3. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    SciTech Connect (OSTI)

    Lomenick, T.F.

    1996-03-01

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee.

  4. Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model

    SciTech Connect (OSTI)

    Brian A. Ebel; John R. Nimmo

    2009-09-11

    Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.

  5. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  6. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  7. Final predictions of ambient conditions along the east-west crossdrift using the 3-D UZ site-scale model. Level 4 milestoneSP33ABM4.

    SciTech Connect (OSTI)

    Ritcey, A.C.; Sonnenthal, E.L.; Wu, Y.S.; Haukwa, C.; Bodvarsson,G.S.

    1998-03-01

    In 1998, the Yucca Mountain Site Characterization Project (YMP) is expected to continue construction of an East-West Cross Drift. The 5-meter diameter drift will extend from the North Ramp of the Exploratory Studies Facility (ESF), near Station 19+92, southwest through the repository block, and over to and through the Solitario Canyon Fault. This drift is part of a program designed to enhance characterization of Yucca Mountain and to complement existing surface-based and ESF testing studies. The objective of this milestone is to use the three-dimensional (3-D) unsaturated zone (UZ) site-scale model to predict ambient conditions along the East-West Cross Drift. These predictions provide scientists and engineers with a priori information that can support design and construction of the East-West Cross Drift and associated testing program. The predictions also provide, when compared with data collected after drift construction, an opportunity to test and verify the calibration of the 3-D UZ site-scale model.

  8. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

  9. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    SciTech Connect (OSTI)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  10. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    SciTech Connect (OSTI)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.

  11. Yucca Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yucca Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1141743, -116.432235 Show Map Loading map... "minzoom":false,"mapp...

  12. Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et...

    Open Energy Info (EERE)

    will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these...

  13. Audit Report: IG-0664 | Department of Energy

    Energy Savers [EERE]

    4 Audit Report: IG-0664 September 27, 2004 Property Disposals at the Yucca Mountain Project Yucca Mountain is located on the western edge of the Navada Test Site, approximately 100 miles northwest of Las Vegas, Nevada. In 1977, the Department of Energy (Department) began studying Yucca Mountain to determine the possibly of constructing a geologic reposiory for spent nuclear fuel and high-level radioactive waste. In July 2002, the multi-billion dollor Yucca Mountain Project was designated to be

  14. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    SciTech Connect (OSTI)

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  15. DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -

    Office of Legacy Management (LM)

    CO 06 Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive

  16. King Mountain | Open Energy Information

    Open Energy Info (EERE)

    Mountain Jump to: navigation, search Name King Mountain Facility King Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  17. BLUE MOUNTAIN | Department of Energy

    Energy Savers [EERE]

    BLUE MOUNTAIN BLUE MOUNTAIN PDF icon DOE-LPO_Project-Posters_GEO_Blue-Mountain.pdf More Documents & Publications ORMAT NEVADA GRANITE RELIABLE USG OREGON

  18. EA-1968: Site-Wide Environmental Assessment of the U.S. Department of Energy National Renewable Energy Laboratory (NREL) South Table Mountain (STM) Campus, Golden, Colorado

    Broader source: Energy.gov [DOE]

    DOE is preparing a Site-Wide Environmental Assessment to analyze the potential environmental impacts of possible site operations and improvements over the next five to ten years at DOE’s STM campus of NREL and nearby leased support facilities in Golden, Colorado. This proposed action would support DOE’s mission to research, develop, and deploy energy efficiency and renewable energy technologies and would consist of: • Research, routine laboratory, and site operation enhancements • New building construction and modifications of existing buildings • Infrastructure and utilities upgrades and enhancements

  19. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    SciTech Connect (OSTI)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).

  20. J

    National Nuclear Security Administration (NNSA)

    16,1997 Prepared for: U.S. Department of Energy Yucca Mountain Site Characterization ... of the Nevada Test Site, where typical wind patterns could carry airborne particulate ...

  1. Air-injection field tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    of prototype tests conducted in preparation for site characterization of the potential nuclear-waste repository site at Yucca Mountain, Nevada, air-injection tests were...

  2. Jemez Mountains Headwaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jemez Mountains Headwaters Jemez Mountains Headwaters Rainfall in the Jemez Mountains flows to the Valles Caldera and eastward onto Laboratory lands. August 1, 2013 Rafts full of people and equipment on the banks of the Rio Grande near Otowi Bridge Water sampling trip embarks downstream from Otowi Bridge onto the Rio Grande. RELATED IMAGES http://farm4.staticflickr.com/3782/9573883786_60ba7b82e3_t.jpg Enlarge

  3. Mountainous | Open Energy Information

    Open Energy Info (EERE)

    Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous...

  4. Back The Pico Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores...

  5. Potential long-term chemical effects of diesel fuel emissions on a mining environment: A preliminary assessment based on data from a deep subsurface tunnel at Rainer Mesa, Nevada test site

    SciTech Connect (OSTI)

    Meike, A.; Bourcier, W.L.; Alai, M.

    1995-09-01

    The general purpose of the Yucca Mountain Site Characterization Project (YMSCP) Introduced Materials Task is to understand and predict potential long-term modifications of natural water chemistry related to the construction and operation of a radioactive waste repository that may significantly affect performance of the waste packages. The present study focuses on diesel exhaust. Although chemical information on diesel exhaust exists in the literature, it is either not explicit or incomplete, and none of it establishes mechanisms that might be used to predict long-term behavior. In addition, the data regarding microbially mediated chemical reactions are not well correlated with the abiotic chemical data. To obtain some of the required long-term information, we chose a historical analog: the U12n tunnel at Rainier Mesa, Nevada Test Site. This choice was based on the tunnel`s extended (30-year) history of diesel usage, its geological similarity to Yucca Mountain, and its availability. The sample site within the tunnel was chosen based on visual inspection and on information gathered from miners who were present during tunnel operations. The thick layer of dark deposit at that site was assumed to consist primarily of rock powder and diesel exhaust. Surface samples and core samples were collected with an intent to analyze the deposit and to measure potential migration of chemical components into the rock. X-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM) with energy dispersive spectra (EDS) analysis, secondary-ion mass spectrometry (SIMS), and Fourier transform infrared (FTIR) analysis were used to measure both spatial distribution and concentration for the wide variety of chemical components that were expected based on our literature survey.

  6. EA-1968: Final Site-Wide Environmental Assessment

    Broader source: Energy.gov [DOE]

    National Renewable Energy Laboratory (NREL) South Table Mountain (STM) Campus Site-Wide Environmental Assessment, Golden, Colorado

  7. Introduction Yucca Lady, a World War II Boeing-17G Flying Fortress Army Air Force serial number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Lady, a World War II Boeing-17G Flying Fortress Army Air Force serial number 44-83575, was flown to the Nevada Test Site (now known as the Nevada National Security Site - NNSS) in 1952, where she was instrumented and subjected to three atmospheric nuclear tests as part of the Operation Tumbler-Snapper -- Vulnerability of Parked Aircraft to Atomic Bombs series, conducted in April and May 1952. The project would determine the effects of a nuclear device detonated above an airfield,

  8. Microsoft Word - Chemetall Foote_Kings Mountain and Silver Peak...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    footprint of the transportation sector. 3.2.2 Solid and Hazardous Wastes 3.2.2.1 Affected Environment 3.2.2.1.1 Kings Mountain The major materials used at the site include sand...

  9. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Stahl, D.; Svinicki, K.

    1996-07-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository.

  10. U.S. Department of Energy Awards Contracts for Waste Storage Canisters for Yucca Mountain

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Areva Federal Services and NAC International have been awarded contracts for the design, licensing, and demonstration of...

  11. DOE to Send Proposed Yucca Mountain Legislation to Congress | Department of

    Energy Savers [EERE]

    Energy April 4, 2006 - 10:03am Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that on Wednesday, April 5, he will send to the U.S. Congress a legislative proposal to enhance the nation's ability to manage and dispose of spent nuclear fuel and high-level radioactive waste. Submission of this legislation fulfills a commitment contained in President Bush's Fiscal Year 2007 budget. "We need to ensure a strong and diversified energy mix to fuel our nation's

  12. Vendor Assessment for the Waste Package Closure System (Yucca Mountain Project)

    SciTech Connect (OSTI)

    Shelton-Davis, C.V.

    2003-09-26

    The Idaho National Engineering and Environmental Laboratory (INEEL) has been tasked with developing, designing, constructing, and operating a full-scale prototype of the work package closure system. As a precursor to developing the conceptual design, all commercially available equipment was assessed to identify any existing technology gaps. This report presents the results of that assessment for all major equipment.

  13. Yucca Mountain Project Integrated Data System (IDS); Final report, October 1, 1989--December 31, 1990

    SciTech Connect (OSTI)

    1991-05-23

    This final report for LANL Subcontract 9-XS8-2604-1 includes copies of all formal letters, memorandums, and reports provided by CAG to support the IDS effort in the LANL Test Managers Office, Las Vegas, Nevada from October 1, 1989 through the end of the contract on December 31, 1990. The material is divided into two sections; the Functional Requirements Document (FRD) and other reports, letters, and memorandums. All documents are arranged in chronological order with most recent last. Numerous draft copies of the FRD were prepared and cover sheets for all drafts are included. The complete text of only the last version supplied (July 27, 1990) is included in this document.

  14. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Marshall, Brian D.; Futa, Kiyoto

    2001-04-29

    Pore water in the Topopah Spring Tuff has a narrow range of {delta}{sup 87}Sr values that can be calculated from the {delta}{sup 87}Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of {delta}{sup 87}Sr in the pore water through time; this approximates the variation of {delta}{sup 87}Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model.

  15. Remarks by Rick McLeod Yucca Mountain Blue Ribbon Panel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WE TRUST THAT YOU WILL NOT ALLOW NUCLEAR WASTE TO CONTINUE TO BE A POLITICAL FOOTBALL....ONCE AGAIN KICKED DOWN THE ROAD FOR FUTURE GENERATIONS... BUT WILL WORK DILIGENTLY...

  16. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive confining units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.

  17. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  18. Rocky Mountain Institute | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name: Rocky Mountain Institute Address: 1820 Folsom Street Place: Boulder, Colorado Zip: 80302...

  19. Mountain Home Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Turtle Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turtle Mountain Wind Farm Jump to: navigation, search Name Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  1. Mountain View Grand | Open Energy Information

    Open Energy Info (EERE)

    Mountain View Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  2. Kibby Mountain II | Open Energy Information

    Open Energy Info (EERE)

    Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under...

  3. Mcgee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Redirect page Jump to: navigation, search REDIRECT McGee Mountain Geothermal Area Retrieved from "http:...

  4. Mountaineer Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial...

  5. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    SciTech Connect (OSTI)

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.

  6. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  7. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  8. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  9. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  10. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  11. Determination of Importance Evaluation for the ESF Enhanced Charcterization of the Repository Block Cross Drift

    SciTech Connect (OSTI)

    S. Goodin

    2002-01-09

    The objective of this DIE is to determine whether the ECRB-Cross-Drift-related activities, as identified in Section 6.0, could potentially impact (1) Yucca Mountain Site Characterization Project (YMP) testing or (2) the waste isolation capabilities of a potential repository at the Yucca Mountain site. Any controls necessary to limit such potential impacts are also identified herein.

  12. BLM Battle Mountain District Office | Open Energy Information

    Open Energy Info (EERE)

    Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name: BLM Battle Mountain District Office Abbreviation: Battle Mountain Address: 50...

  13. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  14. Laurel Mountain | Open Energy Information

    Open Energy Info (EERE)

    Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington...

  15. Georgia Mountain | Open Energy Information

    Open Energy Info (EERE)

    Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351, -73.067991 Show Map Loading map... "minzoom":false,"map...

  16. Nevada National Security Site Groundwater Program Welcomes Peer Review Team

    Broader source: Energy.gov [DOE]

    Recently, an independent peer review team was invited to assess the groundwater characterization program at the Nevada National Security Site (NNSS). This nationally recognized group of experts, from various external organizations, will examine the computer modeling approach developed to better understand how historic underground nuclear testing in Yucca Flat affected the groundwater.

  17. EA-1956: Site-Wide Environmental Assessment for the Divestiture...

    Office of Environmental Management (EM)

    Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming EA-1956: Site-Wide Environmental Assessment...

  18. Sand Mountain Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Sand Mountain Electric Coop Jump to: navigation, search Name: Sand Mountain Electric Coop Place: Alabama Phone Number: Rainsville Area: 256---638---2153; Henagar Area:...

  19. Rocky Mountain Humane Investing | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain Humane Investing Jump to: navigation, search Name: Rocky Mountain Humane Investing Place: Allenspark, Colorado Zip: 80510 Product: Allenspark-based investment...

  20. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  1. Maine Mountain Power | Open Energy Information

    Open Energy Info (EERE)

    Maine Mountain Power Jump to: navigation, search Name: Maine Mountain Power Place: Yarmouth, Maine Zip: 4096 Sector: Wind energy Product: Wind farm development company focused on...

  2. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  3. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and...

  4. BRMF Georgia Mountain Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BRMF Georgia Mountain Biofuels Jump to: navigation, search Name: BRMFGeorgia Mountain Biofuels Place: Clayton, Georgia Product: Biodiesel plant developer in Georgia. References:...

  5. Mountain Parks Electric, Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Mountain Parks Electric, Inc Place: Colorado Website: www.mpei.com Facebook: https:www.facebook.comMountainParksElectric Outage Hotline: (970) 887-3378...

  6. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  7. Criteria for Selection of Seed Motions to Envelop Design Response...

    Office of Environmental Management (EM)

    typical of a Savannah River Site (SRS) profile * Layered alluvial site typical of the Test Reactor Area (TRA) of INL * A deep stiff site typical of the Yucca Mountain project...

  8. Preliminary Notice of Violation, Rocky Mountain Remediation Services- EA-97-04

    Broader source: Energy.gov [DOE]

    Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04)

  9. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  10. Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada

    SciTech Connect (OSTI)

    J.M. Williams; B.D. Rodriguez, and T. H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.

  11. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect (OSTI)

    MacDougall, H R; Scully, L W; Tillerson, J R

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  12. King Mountain Wind Ranch I | Open Energy Information

    Open Energy Info (EERE)

    Mountain Wind Ranch I Jump to: navigation, search Name King Mountain Wind Ranch I Facility King Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Armenia Mountain Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility...

  14. Air-injection field tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    preparation for site characterization of the potential nuclear-waste repository site at Yucca Mountain, Nevada, air-injection tests were conducted in the welded tuffs in G-Tunnel...

  15. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Topical report YMP/TR-003-NP

    SciTech Connect (OSTI)

    1996-10-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) proposes to use for preclosure seismic design of structures, systems, and components (SSCs) of the proposed geologic repository operations area that are important to safety. Title 10 of the Code of Federal Regulations, Part 60 (10 CFR 60), Disposal of High-Level Radioactive Wastes in Geologic Repositories, states that for a license to be issued for operation of a high-level waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public. Section 60.131 (b)(1) requires that SSCs important to safety be designed so that natural phenomena and environmental conditions anticipated at the geologic repository operations area will not interfere with necessary safety functions. Among the natural phenomena specifically identified in the regulation as requiring safety consideration are the hazards of ground shaking and fault displacement due to earthquakes.

  16. Approach to compliance with the NRC substantially complete containment requirement at the potential repository at Yucca Mountain

    SciTech Connect (OSTI)

    Stahl, D.; Nesbit, S.P.; Berkowitz, L.

    1995-12-01

    An approach to compliance with the U.S. Nuclear Regulatory Commission (NRC) substantially complete containment (SCC) requirement found in the Title 10 Part 60 of the Code of Federal Regulations (CFR) was developed by the Department of Energy (DOE). The approach is consistent with the regulation and is based on a new performance goal of a mean waste-package lifetime well in excess of 1,000 years. The NRC considers that achieving the DOE goal would be a reasonable implementation of the SCC requirement. The NRC has asked several additional questions. The DOE has responded to these questions and the DOE and the NRC are engaged in an ongoing dialog to resolve them.

  17. U.S. Department of Energy Moves Forward with Final Performance Requirements for Yucca Mountain Canister System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Washington, D.C. - The U.S. Department of Energy (DOE) today announced the release of final performance requirements for the Transportation, Aging and Disposal (TAD) canister for disposal of spent...

  18. Selected ground-water data for Yucca Mountain Region, Southern Nevada and Eastern California, through December 1997

    SciTech Connect (OSTI)

    La Camera, Richard J.; Locke, Glenn L.; Munson, Rodney H.

    1999-07-30

    Data on ground-water levels, discharges, and withdrawals from a variety of ground-water sources in the study area are reported for calendar year 1997.

  19. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.

  20. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all.

  1. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized by the SZ site-scale flow model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for groundwater management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model and provides information useful to estimation of the magnitude and direction of lateral groundwater flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment (TSPA).

  2. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Aeromagnetic Survey Activity...

  3. Ute Mountain Ute Tribe Community-Scale Solar Feasibility Study

    SciTech Connect (OSTI)

    Rapp, Jim; Knight, Tawnie

    2014-01-30

    Parametrix Inc. conducted a feasibility study for the Ute Mountain Ute Tribe to determine whether or not a community-scale solar farm would be feasible for the community. The important part of the study was to find where the best fit for the solar farm could be. In the end, a 3MW community-scale solar farm was found best fit with the location of two hayfield sites.

  4. Ute Mountain Tribe- 1994 Project

    Broader source: Energy.gov [DOE]

    The Ute Mountain Ute tribe in southwestern Colorado brings in considerable income from its cattle-ranching operation, with a herd of nearly 2,000 head. Since annual rainfall is only 10-15 inches and the only stream is dry part of the year, the tribe must rely on groundwater for cattle watering.

  5. Ute Mountain Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Ute Mountain Ute Tribe has the renewable resources and the opportunity to become a national leader in renewable energy production through its local and commercial-scale solar developments due to its proximity to key interconnections in the Four Corners area and interest from various companies that can fund such projects.

  6. EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory

    Broader source: Energy.gov [DOE]

    ThIs EA evaluates the potential environmental impact of a DOE proposal that consists of three site development projects at the National Renewable Energy Laboratory’s (NREL) South Table Mountain ...

  7. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size About Us About Hanford Cleanup Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense Nuclear Facilities Safety Board Hanford History Hanford Site Wide Programs DOE Human Resources Management

  8. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  9. Field air injection tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    part of a series of prototype tests conducted in preparation for site characterization at Yucca Mountain, air-injection tests were conducted in the welded tuffs in G-Tunnel at the...

  10. 2014 NREL South Table Mountain Campus Site-Wide Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Control Commission Regulations 5 Code of Colorado Regulations (CCR) 1001-1 ... Health and Safety Colorado Boiler and Pressure Vessel Regulations 7 CCR 1101-5 Water ...

  11. White Mountain Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: White Mountain Group, LLC Place: Delaware Product: The company has entered an agreement with Australian Biodiesel Group for a share...

  12. Mountain Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Delhi (NCT), India Sector: Hydro Product: Delhi-based investment vehicle set-up to invest specifically in Indian small hydro power generation assets. References: Mountain...

  13. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (DB2) was drilled and completed in 2004.9 Information from these two wells showed that geothermal energy could be commercially produced at Blue Mountain. Geothermal production...

  14. Geothermal Energy Resource Investigations, Chocolate Mountains...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,...

  15. Squirrel Mountain Valley, California: Energy Resources | Open...

    Open Energy Info (EERE)

    Squirrel Mountain Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6232866, -118.4098058 Show Map Loading map......

  16. Green Mountain Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Green Mountain Energy Company Place: Texas Website: www.greenmountainenergy.com Twitter: @GreenMtnEnergy Facebook: https:...

  17. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for its commercial and industrial customers in Idaho to retrofit existing facilities with more efficient equipment. Full details are available on the...

  18. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's wattsmart Program includes incentives and technical assistance for lighting, HVAC and other equipment upgrades that increase energy efficiency in commercial and industrial...

  19. International Centre for Integrated Mountain Development (ICIMOD...

    Open Energy Info (EERE)

    Centre for International Mountain Development (ICIMOD) Resource Type Training materials, Lessons learnedbest practices Website http:www.icimod.org Country Afghanistan,...

  20. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's wattsmart Business Program provides extensive incentives and for lighting, HVAC, food service, agricultural, and compressed air equipment. Full details are available on the...

  1. West Mountain Energy Capital | Open Energy Information

    Open Energy Info (EERE)

    Energy Capital Jump to: navigation, search Name: West Mountain Energy Capital Place: Salisbury, Connecticut Zip: 6070 Sector: Renewable Energy Product: Provides renewable resource...

  2. Green Mountain Power Corp | Open Energy Information

    Open Energy Info (EERE)

    from Town of Readsboro, Vermont (Utility Company)) Jump to: navigation, search Name: Green Mountain Power Corp Place: Vermont Service Territory: Vermont Phone Number:...

  3. Mountain Island Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Mountain Island Energy, LLC Place: Soda Springs, Idaho Zip: 83276 Product: Energy and mining development company focused on next generation "clean technology". References:...

  4. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in their homes. Full details are available on the program website.

  5. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers to increase the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program...

  6. Site Feeds - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Feeds Site Feeds Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Hanford RSS Feeds Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size RSS Feed Links Site News RSS Did You Know RSS What's New RSS Event Calendar RSS Recent Videos RSS Press Releases RSS What is a feed? A feed is a document that contains summaries of web content with web links to the original versions. It may be viewed with a feed reader or news aggregator. If you

  7. Comparison of CFD Natural Convection and Conduction-only Models for Heat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer in the Yucca Mountain Project Drifts (Technical Report) | SciTech Connect Comparison of CFD Natural Convection and Conduction-only Models for Heat Transfer in the Yucca Mountain Project Drifts Citation Details In-Document Search Title: Comparison of CFD Natural Convection and Conduction-only Models for Heat Transfer in the Yucca Mountain Project Drifts Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  8. Timeline of Events: 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Timeline of Events: 2002 May 24, 2002: May 24, 2002: President Bush and President Vladimir Putin of Russia sign agreement to reduce each country's nuclear arsenal to between 1,700 and 2,200 warhead. Read more February 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain Secretary Abraham formally recommends to President Bush that the Yucca Mountain site in Nevada be developed as the nation's first long-term geologic repository for high-level radioactive waste. Read more July 22, 2002:

  9. Mountain

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel (B100) production by Petroleum Administration for Defense District (PADD)" ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  10. Kibby Mountain Phase I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Kibby Mountain Phase I Wind Farm Jump to: navigation, search Name Kibby Mountain Phase I Wind Farm Facility Kibby Mountain Phase I Sector Wind energy Facility Type Commercial Scale...

  11. Woodward Mountain I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain I & II Wind Farm Jump to: navigation, search Name Woodward Mountain I & II Wind Farm Facility Woodward Mountain Wind Ranch I and II Sector Wind energy Facility Type...

  12. Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility Facility Mountain Spa...

  13. Turtle Mountain Community College Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Facility Status In Service Owner Turtle Mountain Community College Developer Distributed Gen Energy Purchaser Turtle Mountain Community College Location St. John ND Coordinates...

  14. Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  15. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Jemez Mountain...

  16. City of Kings Mountain, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Kings Mountain, North Carolina (Utility Company) Jump to: navigation, search Name: City of Kings Mountain Place: North Carolina Phone Number: 704.730.2125 Website:...

  17. Buffalo Mountain Wind Energy Center I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Buffalo Mountain Wind Energy Center I Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind...

  18. Buffalo Mountain Wind Energy Center II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Buffalo Mountain Wind Energy Center II Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind...

  19. Mountain View Power Partners III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    III Wind Farm Jump to: navigation, search Name Mountain View Power Partners III Wind Farm Facility Mountain View Power Partners III Sector Wind energy Facility Type Commercial...

  20. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Blue Mountain...

  1. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  2. Mountain View Power Partners II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Mountain View Power Partners II Wind Farm Facility Mountain View Power Partners II Sector Wind energy Facility Type Commercial Scale...

  3. Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Chocolate Mountains Area...

  4. Ground Magnetics At Chocolate Mountains Area (Alm, Et Al., 2010...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Chocolate Mountains Area (Alm,...

  5. Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Blue Mountain Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski,...

  6. Dongbai Mountain Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name: Dongbai Mountain Wind Power Co Ltd Place: Zhejiang Province, China Sector: Wind energy Product: Dongyang-based...

  7. Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...

    Open Energy Info (EERE)

    the Blue Mountain geothermal system integrating data from previous studies. References James E. Faulds, Glenn Melosh (2008) A Preliminary Structural Model for the Blue Mountain...

  8. Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE GTP) Exploration...

  9. Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Mcgee Mountain Area (DOE GTP) Exploration Activity...

  10. Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Mcgee Mountain Area (DOE GTP) Exploration Activity...

  11. Compound and Elemental Analysis At Mcgee Mountain Area (DOE GTP...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Mcgee Mountain Area (DOE GTP)...

  12. Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Exploration...

  13. Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration...

  14. Turtle Mountain Band of Chippewa Indians - Development of a Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turtle Mountain Band of Chippewa Indians "First Steps to Implement Strategic Energy Plan" Turtle Mountain Band of Chippewa Indians "First Steps to Implement Strategic Energy Plan" ...

  15. Muon Simulation at the Daya Bay SIte

    SciTech Connect (OSTI)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  16. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    SciTech Connect (OSTI)

    Caskey, S.J.

    1991-08-01

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

  17. EA-1440-S1: Final Supplement to the Site-Wide Environmental Assessment |

    Office of Environmental Management (EM)

    Department of Energy 40-S1: Final Supplement to the Site-Wide Environmental Assessment EA-1440-S1: Final Supplement to the Site-Wide Environmental Assessment National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory The Department of Energy (DOE) is proposing an action consisting of three site development projects at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site at Golden, Colorado:

  18. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  19. PIA - Rocky Mountain OTC GSS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Mountain OTC GSS PIA - Rocky Mountain OTC GSS PIA - Rocky Mountain OTC GSS PDF icon PIA - Rocky Mountain OTC GSS More Documents & Publications PIA - WEB Unclassified Business Operations General Support System Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - Bonneville Power Adminstration Ethics Helpline

  20. EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing

    Office of Environmental Management (EM)

    County, NV | Department of Energy 46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain Geothermal Development Project, Humboldt and Pershing Counties, Nevada

  1. Approach, methods and results of an individual elicitation for the volcanism expert judgment panel

    SciTech Connect (OSTI)

    Crowe, B.M.

    1996-06-01

    Probabilistic volcanic hazard assessment (PVHA) of future magnetic disruption of the Yucca Mountain site was completed as a participating member of the volcanism export judgment panel conducted by Geomatrix Consultants for the Department of Energy. The purpose of this summary is to describe the data assumptions, methods, and results of the elicitation and to contrast this assessment with past volcanism studies conducted for the Yucca Mountain Project.

  2. Audit Report: OAS-L-07-08 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Audit Report: OAS-L-07-08 February 27, 2007 Design of the Engineered Barrier System at the Yucca Mountain Site PDF icon Audit Report: OAS-L-07-08 More Documents & Publications Gregory H. Friedman: Before the Subcommittee on Environment and the Economyof the Committee on Energy and Commerce U.S. House of Representatives Audit Report: IG-0664 Yucca Mountain Project Document Suspension, OAS-M-08-07

  3. Special Report: OAS-SR-10-02 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Special Report: OAS-SR-10-02 July 29, 2010 Resolution of Questioned, Unresolved and Potentially Unallowable Costs Incurred in Support of the YuccaMountain Project The Nuclear Waste Policy Act Amendments of 1987 designated Yucca Mountain in Southwestern Nevada as the site for a national geologic repository for high-level nuclear waste. The Department of Energy assigned management of the program to the Office of Civilian Nuclear Waste Management (OCRWM). Bechtel SAIC Company, LLC (BSC) was the

  4. untitled

    Broader source: Energy.gov (indexed) [DOE]

    Media Contact: FOR IMMEDIATE RELEASE Craig Stevens (202) 586-4940 New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective WASHINGTON, DC - The U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today instructed its managing contractor to devise a plan to operate the Yucca Mountain repository as a primarily "clean" or non-contaminated facility. Operating the site "clean" will improve the safety, operation, and

  5. TDR-MIS-CRW-00000X REV 00

    National Nuclear Security Administration (NNSA)

    QA: N/A Yucca Mountain Project Site Environmental Report for the Yucca Mountain Project Calendar Year 2005 PGM-MGR-EC-000007 REV 00 October 2006 U.S. Department of Energy Office of Civilian Radioactive Waste Management Las Vegas, Nevada DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their

  6. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    SciTech Connect (OSTI)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for subsequent modeling studies at Climax. The objectives of the Climax Mine sub-CAU work are to (1) provide simulated heads and groundwater flows for the northern boundaries of the Yucca Flat-Climax Mine CAU model, while incorporating alternative conceptualizations of the hydrogeologic system with their associated uncertainty, and (2) provide radionuclide fluxes from the three tests in the Climax stock using modeling techniques that account for groundwater flow in fractured granite. Meeting these two objectives required two different model scales. The northern boundary groundwater fluxes were addressed using the Death Valley Regional Flow System (DVRFS) model (Belcher, 2004) developed by the U.S. Geological Survey as a modeling framework, with refined hydrostratigraphy in a zone north of Yucca Flat and including Climax stock. Radionuclide transport was simulated using a separate model confined to the granite stock itself, but linked to regional groundwater flow through boundary conditions and calibration targets.

  7. Rocky Mountain Power | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho; it is headquartered in Salt Lake...

  8. Rocky Mountain Power- wattsmart New Homes Program

    Broader source: Energy.gov [DOE]

    The Rocky Mountain Power ENERGY STAR New Homes program offers cash incentives to contractors who build energy-efficient homes. To qualify for this incentive, the new home must meet the Version 2.5...

  9. Mountain Wind | Open Energy Information

    Open Energy Info (EERE)

    It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.1 Based on assertions that the site is near Fort Bridger, its...

  10. EA-1968: Draft Site-Wide Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    68: Draft Site-Wide Environmental Assessment EA-1968: Draft Site-Wide Environmental Assessment National Renewable Energy Laboratory's South Table Mountain (STM) Campus, Golden, Colorado DOE is preparing a Site-Wide Environmental Assessment to assess the potential environmental impacts of potential activities and improvements over the next five to ten years to the NREL's South Table Mountain campus and nearby leased support facilities in Golden, Colorado. This proposed action would support DOE's

  11. EA-1956: Draft Site-Wide Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    Draft Site-Wide Environmental Assessment EA-1956: Draft Site-Wide Environmental Assessment Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming DOE issued a Draft EA to assess potential environmental impacts of the proposed discontinuation of DOE operations at, and the proposed divestiture of, the Rocky Mountain Oilfield Testing Center (RMOTC) and Naval Petroleum Reserve Number 3 (NPR-3). PDF

  12. Native Americans and state and local governments

    SciTech Connect (OSTI)

    Rusco, E.R.

    1991-10-01

    Native Americans` concerns arising from the possibility of establishment of a nuclear repository for high level wastes at Yucca Mountain fall principally into two main categories. First, the strongest objection to the repository comes from traditional Western Shoshones. Their objections are based on a claim that the Western Shoshones still own Yucca Mountain and also on the assertion that putting high level nuclear wastes into the ground is a violation of their religious views regarding nature. Second, there are several reservations around the Yucca Mountain site that might be affected in various ways by building of the repository. There is a question about how many such reservations there are, which can only be decided when more information is available. This report discusses two questions: the bearing of the continued vigorous assertion by traditionalist Western Shoshones of their land claim; and the extent to which Nevada state and local governments are able to understand and represent Indian viewpoints about Yucca Mountain.

  13. Building America Whole-House Solutions for New Homes: Pine Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Pine Mountain Builders, Pine Mountain, Georgia Case study of Pine Mountain Builders who worked with Building America research ...

  14. Inquiry Report: I01IG001

    Broader source: Energy.gov [DOE]

    Review of Alleged Conflicts of Interest Involving a Legal Services Contract for the Yucca Mountain Project

  15. Unclassified Source Term and Radionuclide Data for Corrective Action Unit 98: Frenchman Flat Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Farnham, Irene

    2005-09-01

    Frenchman Flat is one of several areas of the Nevada Test Site (NTS) used for underground nuclear testing (Figure 1-1). These nuclear tests resulted in groundwater contamination in the vicinity of the underground test areas. As a result, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently conducting a corrective action investigation (CAI) of the Frenchman Flat underground test areas. Since 1996, the Nevada Division of Environmental Protection (NDEP) has regulated NNSA/NSO corrective actions through the ''Federal Facility Agreement and Consent Order'' ([FFACO], 1996). Appendix VI of the FFACO agreement, ''Corrective Action Strategy'', was revised on December 7, 2000, and describes the processes that will be used to complete corrective actions, including those in the Underground Test Area (UGTA) Project. The individual locations covered by the agreement are known as corrective action sites (CASs), which are grouped into corrective action units (CAUs). The UGTA CASs are grouped geographically into five CAUs: Frenchman Flat, Central Pahute Mesa, Western Pahute Mesa, Yucca Flat/Climax Mine, and Rainier Mesa/Shoshone Mountain (Figure 1-1). These CAUs have distinctly different contaminant source, geologic, and hydrogeologic characteristics related to their location (FFACO, 1996). The Frenchman Flat CAU consists of 10 CASs located in the northern part of Area 5 and the southern part of Area 11 (Figure 1-1). This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for Frenchman Flat, CAU 98. The methodology used to estimate hydrologic source terms (HSTs) for the Frenchman Flat CAU is also documented. The HST of an underground nuclear test is the portion of the total inventory of radionuclides that is released over time into the groundwater following the test. The total residual inventory of radionuclides associated with one or more tests is known as the radiologic source term (RST). The RST is comprised of radionuclides in water, glass, or other phases or mineralogic forms. This evaluation was conducted in support of the development of a CAU contaminant transport model for the Frenchman Flat CAU.

  16. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  17. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  18. City of White Mountain, Alaska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of White Mountain, Alaska (Utility Company) Jump to: navigation, search Name: City of White Mountain Place: Alaska Phone Number: 907-638-2230 Outage Hotline: 907-638-2230...

  19. City of Mountain Iron, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Mountain Iron, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Iron Place: Minnesota Phone Number: (218)748-7570 Website: www.mtniron.com...

  20. Rich Mountain Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Rich Mountain Elec Coop, Inc Jump to: navigation, search Name: Rich Mountain Elec Coop, Inc Place: Arkansas Phone Number: 1-877-828-4074 Website: www.rmec.com Outage Hotline:...

  1. Mountain Electric Coop, Inc (North Carolina) | Open Energy Information

    Open Energy Info (EERE)

    Mountain Electric Coop, Inc (North Carolina) Jump to: navigation, search Name: Mountain Electric Coop, Inc Place: North Carolina Phone Number: 423-733-0159 or 423-772-3521 or...

  2. Green Mountain Energy Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Green Mountain Energy Wind Farm II Facility AMP-OhioGreen Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  3. Green Mountain Energy Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Green Mountain Energy Wind Farm I Facility AMP-OhioGreen Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  4. Mountain View Power Partners I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind...

  5. Geothermal Literature Review At White Mountains Area (Goff &...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details...

  6. GreenMountain Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 94107 Product: Consulting firm specializing in clean technology product design and manufacturing development. References: GreenMountain Engineering,...

  7. Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979) Exploration Activity...

  8. Modeling-Computer Simulations At White Mountains Area (Goff ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity...

  9. Alternative Fuels Data Center: Smoky Mountains Leads the Way in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Implementing Alternative Fuels Smoky Mountains Leads the Way in Implementing Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Smoky Mountains Leads the Way in Implementing Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Smoky Mountains Leads the Way in Implementing Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Smoky Mountains Leads the Way in Implementing Alternative Fuels on Google Bookmark Alternative Fuels Data

  10. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  11. Y-12 and the Great Smoky Mountains National Park Â… a grand partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnership Since 1996, hundreds of Y-12 employees and their friends and family as well as many Oak Ridge National Laboratory employees, family and friends have routinely spent a Saturday in the mountains in support of Y-12's Help the Smokies program. The teams have worked at least one Saturday a year and sometimes more to improve picnic areas and campsites, including making sites more accessible to those with disabilities. Improvements include constructing a shelter and greenhouse, installing

  12. ARM - Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSites Assets and Locations ARM Aerial Facility ARM's site in the sky Eastern North Atlantic Beginning in late 2013 on Graciosa Island in the Azores Mobile Facilities Providing portability, flexibility, and accessibility North Slope of Alaska Providing high-latitude data Southern Great Plains The first ARM site in north-central Oklahoma Tropical Western Pacific Improving circulation models for climate research Virtual Tour Visit ARM sites... virtually! Sites The ARM Climate Research Facility

  13. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence: Supplement LLNL Subcontract #B568621 Lightning Protection at the Yucca Mountain Waste Storage Facility

    SciTech Connect (OSTI)

    Uman, M A

    2008-10-09

    The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.

  14. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository; [Final report

    SciTech Connect (OSTI)

    Freudenburg, W.R.; Carter, L.F.; Willard, W.; Lodwick, D.G.; Hardert, R.A.; Levine, A.G.; Kroll-Smith, S.; Couch, S.R.; Edelstein, M.R.

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed.

  15. Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.

    SciTech Connect (OSTI)

    Ebert, W. E.

    2006-01-31

    The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass degradation model developed for use in repository licensing, and HLW glass can be used as a surrogate for both CWF and MWF in performance assessment calculations. Test results indicate that the radionuclide release from CWF and MWF is adequately described by other relevant performance assessment models, such as the models for the solution chemistries in breached waste packages, dissolved concentration limits, and the formation of radionuclide-bearing colloids.

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Did You Know Did You Know Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Did You Know Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Close Did you know.... Close

  17. TRACKING SITE

    Energy Science and Technology Software Center (OSTI)

    003235MLTPL00 AASG Geothermal Data submissions tracking application and site.  https://github.com/usgin/aasgtrack 

  18. Rocky Mountain Research Station and LANL build

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tech tool predicts fire behavior in bark beetle-ravaged forests August 9, 2012 Rocky Mountain Research Station and LANL build better computer models LOS ALAMOS, N. M. and FORT COLLINS, CO., August 9, 2012-Fire fighters facing fast-moving wildfires need better tools to predict erratic fire behavior, especially in forests with dead trees caused by massive outbreaks of bark beetles whose predations create an abundance of dead fuel and changes in the tree canopy structure. Tools typically available

  19. White Mountain Apache Tribe- 2002 Project

    Broader source: Energy.gov [DOE]

    The project will involve an examination of the feasibility of a cogeneration facility at the Fort Apache Timber Company (FATCO), an enterprise of the White Mountain Apache Tribe. FATCO includes a sawmill and a remanufacturing operation that process timber harvested on the tribe's reservation. The operation's main facility is located in the reservation's largest town, Whiteriver. In addition, the tribe operates an ancillary facility in the town of Cibeque on the reservation's west side.

  20. NREL: Wind Research - Field Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC