Powered by Deep Web Technologies
Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

YUCCA MOUNTAIN PROJECT - A BRIEFING --  

SciTech Connect (OSTI)

This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

NA

2003-08-05T23:59:59.000Z

2

1. INTRODUCTION 1.1. Yucca Mountain Project  

E-Print Network [OSTI]

1. INTRODUCTION 1.1. Yucca Mountain Project The Yucca Mountain site in Nevada has been designated as United States choice for nuclear waste repository. Yucca Mountain is in a remote dry area, on federal has been made to characterize the nature of the discontinuities of the Yucca Mountain proposed nuclear

Maerz, Norbert H.

3

Tunneling progress on the Yucca Mountain Project  

SciTech Connect (OSTI)

The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation.

Hansmire, W.H. [Parsons Brinckerhoff, Las Vegas, NV (United States); Munzer, R.J. [Kiewit Construction Co., Las Vegas, NV (United States)

1996-06-01T23:59:59.000Z

4

Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977--March 1997  

SciTech Connect (OSTI)

This report consists of a listing of Lawrence Livermore National Laboratory`s research items on the Yucca Mountain Project.

NONE

1997-03-01T23:59:59.000Z

5

The Yucca Mountain Project drift scale test  

SciTech Connect (OSTI)

The Yucca Mountain Project is currently evaluating the coupled thermal-mechanical-hydrological-chemical (TMHC) response of the potential repository host rock through an in situ thermal testing program. A drift scale test (DST) was constructed during 1997 and heaters were turned on in December 1997. The DST includes nine canister-sized containers with thirty operating heaters each located within the heated drift (HD) and fifty wing heaters located in boreholes in both ribs with a total power output of nominally 210kW. A total of 147 boreholes (combined length of 3.3 km) houses most of the over 3700 TMHC sensors connected with 201 km of cabling to a central data acquisition system. The DST is located in the Exploratory Studies Facility in a 5-m diameter drift approximately 50 m in length. Heating will last up to four years and cooling will last another four years. The rock mass surrounding the DST will experience a harsh thermal environment with rock surface temperatures expected to reach a maximum of about 200 C. This paper describes the process of designing the DST. The first 38 m of the 50-m long Heated Drift (HD) is dedicated to collection of data that will lead to a better understanding of the complex coupled TMHC processes in the host rock of the proposed repository. The final 12 m is dedicated to evaluating the interactions between the heated rock mass and cast-in-place (CIP) concrete ground support systems at elevated temperatures. In addition to a description of the DST design, data from site characterization, and a general description of the analyses and analysis approach used to design the test and make pretest predictions are presented. Test-scoping and pretest numerical predictions of one way thermal-hydrologic, thermal-mechanical, and thermal-chemical behaviors have been completed (TRW, 1997a). These analyses suggest that a dry-out zone will be created around the DST and a 10,000 m{sup 3} volume of rock will experience temperatures above 100 C. The HD will experience large stress increases, particularly in the crown of the drift. Thermoelastic displacements of up to about 16 mm are predicted for some thermomechanical gages. Additional analyses using more complex models will be performed during the conduct of the DST and the results compared with measured data.

Finley, R.E. [Sandia National Labs., Albuquerque, NM (United States); Blair, S.C. [Lawrence Livermore National Labs., CA (United States); Boyle, W.J. [Dept. of Energy, Las Vegas, NV (United States)] [and others

1998-06-01T23:59:59.000Z

6

Volcanism Studies: Final Report for the Yucca Mountain Project  

SciTech Connect (OSTI)

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

7

Implementation of NUREG-1318 guidance within the Yucca Mountain Project  

SciTech Connect (OSTI)

The US Department of Energy`s Yucca Mountain Project is implementing a quality assurance program that fulfills the requirements of the US Nuclear Regulatory Commission (NRC). Additional guidance for this program was provided in NUREG 1318, ``Technical Position on Items and Activities in the High-Level Waste Geologic Repository Program Subject to Quality Assurance Requirements`` for identification of items and activities important to public radiological safety and waste isolation. The process and organization for implementing this guidance is discussed. 3 refs., 2 figs.

La Monica, L.B.; Waddell, J.D.; Hardin, E.L.

1990-04-01T23:59:59.000Z

8

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect (OSTI)

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

9

Transportation cask decontamination and maintenance at the potential Yucca Mountain repository; Yucca Mountain Site characterization project  

SciTech Connect (OSTI)

This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described.

Hartman, D.J.; Miller, D.D. [Bechtel National, Inc., San Francisco, CA (United States); Hill, R.R. [Sandia National Labs., Albuquerque, NM (United States)

1992-04-01T23:59:59.000Z

10

Public Interaction and Educational Outreach on the Yucca Mountain Project  

SciTech Connect (OSTI)

In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public, which in turn resulted in thousands of comments on various aspects of the program. These comments were considered in the development of the EIS and weighed in the Secretary of Energy's decision to recommend the site.

A. Benson; Y. Riding

2002-11-14T23:59:59.000Z

11

Repository-relevant testing applied to the Yucca Mountain Project  

SciTech Connect (OSTI)

A repository environment poses a challenge to developing a testing program because of the diverse nature of conditions that may exist at a given time during the life of the repository. A starting point is to identify whether any potential waste-water contact modes are particularly deleterious to the waste form performance, and whether any interactions between materials present in the waste package environment need to be accounted for during modeling the waste form reaction. The Unsaturated Test method in one approach that has been developed by the Yucca Mountain Project (YMP) to investigate the above issues, and a description of results that have been obtained during the testing of glass and unirradiated UO{sub 2} are the subject of this report. 10 refs., 7 figs., 4 tabs.

Bates, J.K.; Gerding, T.J.; Veleckis, E.

1989-04-01T23:59:59.000Z

12

Scenarios constructed for basaltic igneous activity at Yucca Mountain and vicinity; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Basaltic volcanism has been identified as a possible future event initiating a release of radionuclides from a potential repository at the proposed Yucca Mountain high-level waste repository site. The performance assessment method set forth in the Site Characterization Plan (DOE, 1988) requires that a set of scenarios encompassing all significant radionuclide release paths to the accessible environment be described. This report attempts to catalogue the details of the interactions between the features and processes produced by basaltic volcanism in the presence of the presumed groundwater flow system and a repository structure, the engineered barrier system (EBS), and waste. This catalogue is developed in the form of scenarios. We define a scenario as a well-posed problem, starting from an initiating event or process and proceeding through a logically connected and physically possible combination or sequence of features, events, and processes (FEPs) to the release of contaminants.

Barr, G.E.; Dunn, E.; Dockery, H.; Barnard, R. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Valentine, G.; Crowe, B. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States)

1993-08-01T23:59:59.000Z

13

MISTY ECHO Tunnel Dynamics Experiment--Data report: Volume 1; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Tunnel damage resulting from seismic loading is an important issue for the Yucca Mountain nuclear waste repository. The tunnel dynamics experiment was designed to obtain and document ground motions, permanent displacements, observable changes in fracture patterns, and visible damage at ground motion levels of interest to the Yucca Mountain Project. Even though the maximum free-field loading on this tunnel was 28 g, the damage observed was minor. Fielding details, data obtained, and supporting documentation are reported.

Phillips, J.S.; Luke, B.A.; Long, J.W.; Lee, J.G.

1992-04-01T23:59:59.000Z

14

Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement  

SciTech Connect (OSTI)

The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

NONE

1994-03-31T23:59:59.000Z

15

Yucca Mountain Site Characterization Project technical data catalog quarterly supplement  

SciTech Connect (OSTI)

The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with t requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to@ previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

NONE

1995-03-31T23:59:59.000Z

16

Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995  

SciTech Connect (OSTI)

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it.

NONE

1996-08-01T23:59:59.000Z

17

Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1  

SciTech Connect (OSTI)

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

Stephan, P.M. [ed.

1995-01-01T23:59:59.000Z

18

Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update  

SciTech Connect (OSTI)

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

NONE

1995-03-01T23:59:59.000Z

19

Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update  

SciTech Connect (OSTI)

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

Stephan, P.M. [ed.

1996-01-01T23:59:59.000Z

20

Yucca Mountain Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yucca Mountain Engineering Based on the success of the National Spent Nuclear Fuel Program, INL secured a lead role to provide engineering design and operations support for the...

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nye County Nevada Perspectives on the State of the Yucca Mountain Project - 12388  

SciTech Connect (OSTI)

Responding to the Department of Energy decision to try to withdraw the Yucca Mountain license application and the Administration actions to close down the Yucca Mountain project, Nye County undertook a number of activities to articulate its support for continuing the Yucca Mountain project. The activities included responding to inquiries from federal agencies, including investigations undertaken by the Government Accountability Office addressing other potential uses for the Yucca Mountain site, responding to a Draft Environmental Impact Statement on the possible use of Yucca Mountain for disposal of Greater than Class C wastes, testifying in hearings, and interacting with the President's Blue Ribbon Commission on America's Nuclear Future. The paper summarizes Nye County's position on the Yucca Mountain repository, Nye County's perspectives on the various activities that were developed and considered by the Government Accountability Office, Nye County's concerns with the use of the Nevada National Security Site for Disposal of Greater than Class C Low-Level Radioactive Wastes, testimony of Nye County officials expressing local community support for the Yucca Mountain project, and Nye County's perspectives on recommendations provided by the Blue Ribbon Commission to move the nation's high-level radioactive waste disposal programs forward without consideration of the role Yucca Mountain could have served in those recommendations. Nye County believes that every effort should be made to, at a minimum, fund the Nuclear Regulatory Commission to complete the license application review. Then, if Congress does decide to change the Nuclear Waste Policy Act, there will be valuable information available to support new policy development. This administration contends that Congressional language associated with the FY2010 and FY2011 appropriations and authorization process is sufficient evidence of its intent to terminate the Yucca Mountain repository program. The appropriation process needs to be explicit that, absent explicit language to the contrary, the Nuclear Waste Policy Act stands. It also should include language that requires the Department of Energy to preserve all necessary records until the Nuclear Waste Policy Act is amended or rescinded by specific Congressional action. (authors)

Lacy, Darrell; Voegele, Michael; Jaszczak, Casmier [Nye County Nuclear Waste Repository Project Office (United States)

2012-07-01T23:59:59.000Z

22

Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)  

SciTech Connect (OSTI)

This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

Bowker, L.M.; Espinosa, M.L.; Klein, S.H. [comps.

1995-11-01T23:59:59.000Z

23

Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)  

SciTech Connect (OSTI)

This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

Ruhala, E.R.; Klein, S.H. [comps.

1997-06-01T23:59:59.000Z

24

Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview  

SciTech Connect (OSTI)

The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

2005-01-14T23:59:59.000Z

25

Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4  

SciTech Connect (OSTI)

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

NONE

1992-06-01T23:59:59.000Z

26

Repository relevant testing applied to the Yucca Mountain Project  

SciTech Connect (OSTI)

The tuff beds of Yucca Mountain, Nevada, are currently being investigated as a site for the disposal of high-level nuclear waste in an underground repository. If this site is found suitable, the repository would be located in the unsaturated zone above the water table, and a description of the site and the methodology of assessing the performance of the repository are described in the Site Characterization Plan (SCP). While many factors are accounted for during performance assessment, an important input parameter is the degradation behavior of the waste forms, which may be either spent fuel or reprocessed waste contained in a borosilicate glass matrix. To develop the necessary waste form degradation input, the waste package environment needs to be identified. This environment will change as the waste decays and also is a function of the repository design which has not yet been finalized. At the present time, an exact description of the waste package environment is not available. The SCP does provide an initial description of conditions that can be used to guide waste form evaluation. However, considerable uncertainty exists concerning the conditions under which waste form degradation and radionuclide release may occur after the waste package containment barriers are finally breached. The release conditions that are considered to be plausible include (1) a {open_quotes}bathtub{close_quotes} condition in which the waste becomes fully or partially submerged in water that enters the breached container and accumulates to fill the container up to the level of the breach opening, (2) a {open_quotes}wet drip{close_quotes} or {open_quotes}trickle through{close_quotes} condition in which the waste form is exposed to dripping water that enters through the top and exits the bottom of a container with multiple holes, and (3) a {open_quotes}dry{close_quotes} condition in which the waste form is exposed to a humid air environment.

Bates, J.K.; Woodland, A.B.; Wronkiewicz, D.J.; Cunnane, J.C.

1990-10-01T23:59:59.000Z

27

Independent management and financial review, Yucca Mountain Project, Nevada. Final report, Appendix  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act of 1982 (Public Law 97-425), as amended by Public Law 100-203, December 22, 1987, established the Office of Civilian Radioactive Waste Management (OCRWM) within the Department of Energy (DOE), and directed the Office to investigate a site at Yucca Mountain, Nevada, to determine if this site is suitable for the construction of a repository for the disposal of high level nuclear waste. Work on site characterization has been under way for several years. Thus far, about $1.47 billion have been spent on Yucca Mountain programs. This work has been funded by Congressional appropriations from a Nuclear Waste Fund to which contributions have been made by electric utility ratepayers through electric utilities generating power from nuclear power stations. The Secretary of Energy and the Governor of the State of Nevada have appointed one person each to a panel to oversee an objective, independent financial and management evaluation of the Yucca Mountain Project. The Requirements for the work will include an analysis of (1) the Yucca Mountain financial and, contract management techniques and controls; (2) Project schedules and credibility of the proposed milestones; (3) Project organizational effectiveness and internal planning processes, and (4) adequacy of funding levels and funding priorities, including the cost of infrastructure and scientific studies. The recipient will provide monthly progress report and the following reports/documents will be presented as deliverables under the contract: (1) Financial and Contract Management Preliminary Report; (2) Project Scheduling Preliminary Report; (3)Project Organizational Effectiveness Preliminary Report; (4) Project Funding Levels and Funding Priorities Preliminary Report; and (5) Final Report.

NONE

1995-07-15T23:59:59.000Z

28

Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

1992-01-01T23:59:59.000Z

29

SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT  

SciTech Connect (OSTI)

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

FV PERRY, GA CROWE, GA VALENTINE AND LM BOWKER

1997-09-23T23:59:59.000Z

30

Classification and grading of design products for the Yucca Mountain project  

SciTech Connect (OSTI)

The US Department of Energy faces some unique challenges in its site characterization effort to determine if Yucca Mountain is suitable to house this nation`s first high-level radioactive waste repository. Facilities are being designed and constructed for both surface-based testing (SBT), which includes drilling a number of test holes and excavating trenches and test pits into the mountain, and the Exploratory Studies Facility (ESF), which will be an extensive underground test laboratory. During construction and testing, the Yucca Mountain Project (YMP) must ensure that the ability to safely store waste for 10,000 yr is not compromised. The YMP has initiated a determination of {open_quotes}important to waste isolation{close_quotes} (ITWI) effort to determine which items and activities are important to the gathering of valid test data and which could have an effect on the natural barriers. Concerns include the potential effects of changing the site`s normal water patterns, introducing foreign materials, damaging the unexcavated rock, etc. The project has now entered into the phase in which the design organizations perform detailed QA classification analyses on their designs and a YMP assessment team reviews those analyses. Raytheon Services Nevada has been responsible for designing, classifying, and grading SBT and the initial ESF systems.

DeKlever, R.C.; Bullock, R.L. [Raytheon Services Nevada, Las Vegas (United States); Verna, B.J. [Department of Energy, Washington, DC (United States)

1993-12-01T23:59:59.000Z

31

Status of volcanism studies for the Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

1995-02-01T23:59:59.000Z

32

Data Qualification Report: Precipitation Chloride Data for Use on the Yucca Mountain Project  

SciTech Connect (OSTI)

The data covered by this qualification report have been cited in analysis/model reports (AMRs) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high level nuclear waste. Those analyses cited both qualified and unqualified hydrochemical data. This report evaluates unqualified precipitation chloride data based on the pedigree of the data and within the context of supporting analyses on the Yucca Mountain Project (YMP). The following AMRs use the unqualified chloride data considered in this report: (1) AMR S0040, ''Geochemical and Isotopic Constraints on Groundwater Flow Directions, Mixing and Recharge at Yucca Mountain'' (ANL-NBS-HS-000021) (Kwicklis 2000)--an analysis of groundwater recharge rates, flow directions and velocities, and mixing proportions of water from different source areas based on groundwater geochemical and isotopic data. (2) AMR U0085, ''Analysis of Geochemical Data for the Unsaturated Zone'' (ANL-NBS-HS-000017) (Fabryka-Martin 2000)--identifies fluid geochemical parameters for the unsaturated zone, local precipitation, and surface water; discusses the occurrence and origins of fracture minerals; and presents a thermal history of the unsaturated zone. These data are being evaluated for inclusion in technical products to include AMRs and Process Modeling Reports (PMRs) that support the Site Recommendation and that may also be used to support the License Application. A finding that the precipitation chloride data are qualified means that the data are adequate for generalized use and can be appropriately used in a wide variety of applications, so long as consideration is given to limitations on the accuracy, precision and representativeness of the data for an intended use in a technical product.

C. Wilson

2000-09-30T23:59:59.000Z

33

Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form  

SciTech Connect (OSTI)

Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

Keiser, D.D.

1996-11-01T23:59:59.000Z

34

Yucca Mountain and The Environment  

SciTech Connect (OSTI)

The Yucca Mountain Project places a high priority on protecting the environment. To ensure compliance with all state and federal environmental laws and regulations, the Project established an Environmental Management System. Important elements of the Environmental Management System include the following: (1) monitoring air, water, and other natural resources; (2) protecting plant and animal species by minimizing land disturbance; (3) restoring vegetation and wildlife habitat in disturbed areas; (4) protecting cultural resources; (5) minimizing waste, preventing pollution, and promoting environmental awareness; and (6) managing of hazardous and non-hazardous waste. Reducing the impacts of Project activities on the environment will continue for the duration of the Project.

NA

2005-04-12T23:59:59.000Z

35

Statement of Charles G. Groat Director, U.S. Geological Survey, U.S. Depa...rce and Agency Organization, On The Yucca Mountain Project, April 5, 2005 Congressional Testimony, 2005  

E-Print Network [OSTI]

Organization, On The Yucca Mountain Project, April 5, 2005 Congressional Testimony, 2005 Statement of Charles G on Government Reform, Subcommittee on the Federal Workforce and Agency Organization On The Yucca Mountain's (DOE) Yucca Mountain Project. Let me emphasize from the outset how seriously USGS takes this situation

Torgersen, Christian

36

Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977 through March 1998  

SciTech Connect (OSTI)

This bibliography contains 685 citations published from September, 1977 through March, 1998, describing site characterization activities and research projects related to the radioactive waste disposal facilities being planned for Yucca Mountain, Nevada. An additional 35 citations are listed for reports in progress.

NONE

1998-03-01T23:59:59.000Z

37

YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982  

SciTech Connect (OSTI)

For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

NA

2002-03-26T23:59:59.000Z

38

Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

NONE

1992-01-01T23:59:59.000Z

39

Determining importance and grading of items and activities for the Yucca Mountain Project  

SciTech Connect (OSTI)

Raytheon Services Nevada (RSN), in support of the Department of Energy`s (DOE) Yucca Mountain Project, has been responsible for the Title 2 designs of the initial structures, systems, and components for the Exploratory Studies Facility (ESF), and the creation of the design output documents for the Surface-Based Testing (SBT) programs. The ESF and SBT programs are major scientific contributors to the overall site characterization program which will determine the suitability of Yucca Mountain to contain a proposed High Level Nuclear Waste (HLNW) repository. Accurate, traceable and objective characterization and testing documentation that is germane to the protection of public health and safety, and the environment, and that satisfies all the requirements of 10 CFR Part 60(1), must be established, evaluated and accepted. To assure that these requirements are satisfied, specific design functions and products, including items and activities depicted within respective design output documents, are subjected to the requirements of an NRC and DOE-approved Quality Assurance (QA) program. An evaluation (classification) is applied to these items and activities to determine their importance to radiological safety (ITS) and waste isolation (ITWI). Subsequently, QA program controls are selected (grading) for the items and activities. RSN has developed a DOE-approved classification process that is based on probabilistic risk assessment (PRA) techniques and that uses accident/impact scenarios. Results from respective performance assessment and test interference evaluations are also integrated into the classification analyses for various items. The methodology and results of the RSN classification and grading processes, presented herein, relative to ESF and SBT design products, demonstrates a solid, defensible methodological basis for classification and grading.

DeKlever, R. [Raytheon Services Nevada, Las Vegas, NV (United States); Verna, B. [Dept. of Energy, Las Vegas, NV (United States)

1993-12-31T23:59:59.000Z

40

Getting Beyond Yucca Mountain - 12305  

SciTech Connect (OSTI)

The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However, the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track requires, among other things, new principles for siting-principles based on partnership between the federal implementing agency and prospective host states. These principles apply to the task of developing an integrated waste management strategy, to interactions between the federal government and prospective host states for consolidated storage and disposal facilities, and to the logistically and politically complicated task of transportation system design. Lessons from the past 25 years, in combination with fundamental parameters of the nuclear waste management task in the US, suggest new principles for partnership outlined in this paper. These principles will work better if well-grounded and firm guidelines are set out beforehand and if the challenge of maintaining competence, transparency and integrity in the new organization is treated as a problem to be addressed rather than a result to be expected. (authors)

Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 89706 (United States); Williams, James M. [Western Interstate Energy Board, Denver, CO 80202 (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

E-Print Network 3.0 - assessment yucca mountain Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

site-suitability hypothesis may... Yucca Mountain are not well suited for quantitative risk assessment. . . . Any projections of the rates... problematic in the Yucca ......

42

Technical data base quarterly report, April--June 1992; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

The acquisition and development of technical data are activities that provide the information base from which the Yucca mountain Site will be characterized and may P-ventually be licensed as a high-level waste repository. The Project Technical Data Base (TDB) is the repository for the regional and site-specific technical data required in intermediate and license application analyses and models. The TDB Quarterly Report provides the mechanism for identifying technical data currently available from the Project TDB. Due to the variety of scientific information generated by YMP activities, the Project TDB consists of three components, each designed to store specific types of data. The Site and Engineering Properties Data Base (SEPDB) maintains technical data best stored in a tabular format. The Geographic Nodal Information Study and Evaluation System (GENISES), which is the Geographic Information System (GIS) component of the Project TDB, maintains spatial or map-like data. The Geologic and Engineering Materials Bibliography of Chemical Species (GEMBOCHS) data base maintains thermodynamic/geochemical data needed to support geochemical reaction models involving the waste package and repository geochemical environment. Each of these data bases are addressed independently within the TDB Quarterly Report.

NONE

1992-09-01T23:59:59.000Z

43

Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

1992-01-01T23:59:59.000Z

44

Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

Russell, E.W.; Clarke, W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Domian, H.A. [Babcock and Wilcox Co., Lynchburg, VA (United States)] [Babcock and Wilcox Co., Lynchburg, VA (United States); Madson, A.A. [Kaiser Engineers California Corp., Oakland, CA (United States)] [Kaiser Engineers California Corp., Oakland, CA (United States)

1991-08-01T23:59:59.000Z

45

Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 1, Introduction, history, and current candidates  

SciTech Connect (OSTI)

The purpose of the Yucca Mountain Site Characterization Project is to evaluate Yucca Mountain for its suitability as a potential site for the nation`s first high-level nuclear waste repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) has been occupied for a number of years with developing and evaluating the performance of waste packages for the potential repository. In recent years this work has been carried out under the guidance of and in collaboration with the Management and Operating contractor for the Civilian Radioactive Waste Management System, TRW Environmental Safety Systems, Inc., which in turn reports to the Office of Civilian Radioactive Waste Management of the US Department of Energy. This report summarizes the history of the selection and characterization of materials to be used in the engineered barrier system for the potential repository at Yucca Mountain, describes the current candidate materials, presents a compilation of their properties, and summarizes available corrosion data and modeling. The term ``engineered materials`` is intended to distinguish those materials that are used as part of the engineered barrier system from the natural, geologic materials of the site.

Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

1995-08-01T23:59:59.000Z

46

Yucca Mountain Project - Argonne National Laboratory annual progress report, FY 1994  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period October 1993-September 1994. Studies have been performed to evaluate the performance of nuclear waste glass and spent fuel samples under unsaturated conditions (low volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with simulated waste glasses have been in progress for over eight years and demonstrate that actinides from initially fresh glass surfaces will be released as a result of the spallation of reacted glass layers from the surface, as the small volume of water passes over the waste form. Studies are also underway to evaluate the performance of spent fuel samples and unirradiated UO{sub 2} in projected repository conditions. Tests with UO{sub 2} have been ongoing for nine years and show that the oxidation of UO{sub 2} occurs rapidly, and the resulting paragenetic sequence of secondary phases that form on the sample surface is similar to that observed in natural analogues. The reaction of spent fuel samples under conditions similar to those used with UO{sub 2} have been in progress for nearly two years, and the results suggest that spent fuel follows the same reaction progress as UO{sub 2}. The release of individual fission products and transuranic elements was not congruent, with the release being controlled by the formation of small particles or colloids that are suspended in solution and transported away from the waste form. The reaction progress depends on the composition of the spent fuel samples used and, likely, on the composition of the groundwater that contacts the waste form.

Bates, J.K.; Fortner, J.A.; Finn, P.A.; Wronkiewicz, D.J.; Hoh, J.C.; Emery, J.W.; Buck, E.C.; Wolf, S.F.

1995-02-01T23:59:59.000Z

47

A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

48

Mineralogy, petrology and whole-rock chemistry of selected mechanical test samples of Yucca Mountain tuffs; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Petrologic, bulk chemical and mineralogic data are presented for 19 samples of tuffaceous rocks from core holes UE-25a{number_sign}1, USW G-1, USW GU-3, and USW G-4 at Yucca Mountain, Nevada. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy, and devitrified tuffs. Data include hand sample and thin section descriptions (with modal analyses for which uncertainties are estimated), and major element analyses with uncertainty estimates. No uncertainties were estimated for qualitative mineral identifications by X-ray diffraction. 5 refs., 1 fig., 4 tabs.

Connolly, J.R. [New Mexico Univ., Albuquerque, NM (United States)

1991-12-01T23:59:59.000Z

49

Moving Beyond the Yucca Mountain  

E-Print Network [OSTI]

as a repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. The act alsoMoving Beyond the Yucca Mountain Viability Assessment U.S. Nuclear Waste Technical Review Board April 1999 A Report to the U.S. Congress and the Secretary of Energy #12;Nuclear Waste Technical Review

50

Abstract--The U. S. Department of Energy (DOE) is studying Yucca Mountain, Nevada, to determine the mountain's suitability  

E-Print Network [OSTI]

183 Abstract--The U. S. Department of Energy (DOE) is studying Yucca Mountain, Nevada, to determine in the Yucca Mountain Project area. Fifty- seven study plots were established on disturbances in four pri- mary plans for site-specific disturbances at Yucca Mountain. In 1979, the Department of Energy identified

51

Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)  

SciTech Connect (OSTI)

The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, calcium ions, and galvanic coupling to less noble metals are further considered. It is concluded that, as far as materials degradation is concerned, the materials and design adopted in the U.S. Yucca Mountain Project will provide sufficient safety margins within the 10,000-years regulatory period.

F. Hua; P. Pasupathi; N. Brown; K. Mon

2005-09-19T23:59:59.000Z

52

A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson  

E-Print Network [OSTI]

A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson Zhiming model calculations for radionuclide transport in the unsaturated zone at Yucca Mountain. The model developed by the Yucca Mountain Project based on calibrations to site data. The particle-tracking technique

Lu, Zhiming

53

DATA QUALIFICATION REPORT: MAJOR ION AND PH DATA FOR USE ON THE YUCCA MOUNTAIN PROJECT  

SciTech Connect (OSTI)

This data qualification report uses technical assessment and corroborating data methods according to Attachment 2 of AP-SIII.2Q, Rev. 0, ICN 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', to qualify major ion and pH data. This report was prepared in accordance with Data Qualification Plan TDP-NBS-GS-00003 1, Revision 2. Additional reports will be prepared to address isotopic and precipitation-related data. Most of the data considered in this report were acquired and developed by the U.S. Geological Survey (USGS). The data qualification team considers the sampling and analytical protocols employed by the USGS over the time period of data acquisition to be state-of-the-art. The sample collection methodologies have evolved with no significant change that could affect the quality of the data considered in this report into the currently used Hydrologic Procedures that support the Yucca Mountain Project-approved USGS Quality Assurance Program Plan. Consequently, for USGS data, the data collection methods, documentation, and results are reasonable and appropriate in view of standard practice at the time the data were collected. A small number of data sets were collected by organizations other than the USGS and were reviewed along with the other major ion and pH data using corroborating data methods. Hydrochemical studies reviewed in this qualification report indicate that the extent and quality of corroborating data are sufficient to support qualification of both USGS and non-USGS major ion and pH data for generalized hydrochemical studies. The corroborating data included other major ion and pH data, isotope data, and independent hydrological data. Additionally, the analytical adequacy of the major ion data was supported by a study of anion-cation charge balances. Charge balance errors for USGS and non-USGS data were under 10% and acceptable for all data. This qualification report addresses the specific major ion data sets selected to support the hydrochemical studies in Analysis/Model Report (AMR) S0040 and pH data used in AMRs U0100 and U0085. Based on a preponderance of evidence, these data are recommended to be qualified for inclusion in technical products in support of the Site Recommendation for generalized uses as described in this report.

C. WILSON; D.M. JENKINS; T. STEINBORN; R. WEMHEUER

2000-08-23T23:59:59.000Z

54

Data Qualification Report: Pore Water Data for Use on the Yucca Mountain Project  

SciTech Connect (OSTI)

Pore water data associated with Data Tracking Number (DTN) No.LL990702804244.100 are referenced in the Analysis and Model Reports (AMRs) prepared to support the Site Recommendation in determining the suitability of the Yucca Mountain, Nevada as a repository for high-level nuclear waste. It has been determined, in accordance with procedure AP-3.15Q Rev. 1, ICN 1, ''Managing Technical Product Inputs'', Attachment 6 , that the DTN-referenced data are used in AMRs that provide a direct calculation of ''Principal Factors'' for the Post-closure Safety Case or Potentially Disruptive Processes or Events. Therefore, in accordance with the requirements of procedure AP-SIII.2Q, Rev 0, ICN 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', Section 5.3.1 .a, a Data Qualification Report has been prepared for submittal to the Assistant Manager, Office of Project Execution for concurrence. This report summarizes the findings of the Data Qualification Team assembled to evaluate unqualified ''pore water data'' represented by DTN No. LL990702804244.100. This DTN is currently used in the following AMRs: Drift-Scale Coupled Processes (DST and THC Seepage) Models (CRWMS M&O 2000a), Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier (CRWMS M&O 2000b), and Engineered Barrier System: Physical and Chemical Environment Model (CRWMS M&O 2000c). Mineral composition of pore water submitted to the Technical Data Management System (TDMS) using the subject DTN were acquired data from the analysis pore water samples sent to Lawrence Livermore National Laboratory's (LLNL) by UFA Ventures, Inc. and analyzed by LLNL's Analytical Sciences/Analytical and Nuclear Chemistry Division (ASD). The purpose and scope of the AMRs that reference the subject DTN and the potential application of pore water data is described below. These AMRs use only that data associated with the specific samples: ESF-HD-PERM-1, ESF-HD-PERM-2, and ESF-HD-PERM-3. The data for these samples represents a subset of the data identified as DTN No. LL990702804244.100.

H. Miller; R. Monks; C. Warren; W. Wowak

2000-06-09T23:59:59.000Z

55

Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary  

SciTech Connect (OSTI)

This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1995-05-01T23:59:59.000Z

56

Conceptual, experimental and computational approaches to support performance assessment of hydrology and chemical transport at Yucca Mountain; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

The authors of this report have been participating in the Sandia National Laboratory`s hydrologic performance assessment of the Yucca Mountain, Nevada, since 1983. The scope of this work is restricted to the unsaturated zone at Yucca Mountain and to technical questions about hydrology and chemical transport. The issues defined here are not to be confused with the elaborate hierarchy of issues that forms the framework of the US Department of Energy plans for characterizing the site (DOE, 1989). The overall task of hydrologic performance assessment involves issues related to hydrology, geochemistry, and energy transport in a highly heterogeneous natural geologic system which will be perturbed in a major way by the disposal activity. Therefore, a rational evaluation of the performance assessment issues must be based on an integrated appreciation of the aforesaid interacting processes. Accordingly, a hierarchical approach is taken in this report, proceeding from the statement of the broad features of the site that make it the site for intensive studies and the rationale for disposal strategy, through the statement of the fundamental questions that need to be answered, to the identification of the issues that need resolution. Having identified the questions and issues, the report then outlines the tasks to be undertaken to resolve the issues. The report consists essentially of two parts. The first part deals with the definition of issues summarized above. The second part summarizes the findings of the authors between 1983 and 1989 under the activities of the former Nevada Nuclear Waste Storage Investigations (NNWSI) and the current YMP.

Narasimhan, T.N.; Wang, J.S.Y. [Lawrence Berkeley Lab., CA (United States)

1992-07-01T23:59:59.000Z

57

MRS system study for the repository: Yucca Mountain Site Characterization Project; Volume 2  

SciTech Connect (OSTI)

The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), has initiated a waste management system study to identify the impacts of the presence or absence of a monitored retrievable storage facility (hereinafter referred to as ``MRS``) on system costs and program schedules. To support this study, life-cycle cost estimates and construction schedules have been prepared for the surface and underground facilities and operations geologic nuclear waste repository at Yucca Mountain, Nye County, Nevada. Nine different operating scenarios (cases) have been identified by OCRWM for inclusion in this study. For each case, the following items are determined: the repository design and construction costs, operating costs, closure and decommissioning costs, required staffing, construction schedules, uncertainties associated with the costs and schedules, and shipping cask and disposal container throughputs. This document contains A-D.

Sinagra, T.A. [Bechtel National, Inc., San Francisco, CA (USA); Harig, R. [Parsons, Brinckerhoff, Quade and Douglas, Inc., San Francisco, CA (USA)

1990-12-01T23:59:59.000Z

58

Yucca Mountain Archival Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Archival Documents Yucca Mountain Archival Documents From the Former Office of Civilian Radioactive Waste Management President Obama and the Department of Energy are working to...

59

Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1  

SciTech Connect (OSTI)

The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute {alpha} grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase ({alpha} and {beta}) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase {alpha} and near-{alpha} (Ti Gr 12) alloys.

Gdowski, G.E.

1997-12-01T23:59:59.000Z

60

Statement from Ward Sproat on Yucca Mountain, Director of the...  

Energy Savers [EERE]

Ward Sproat on Yucca Mountain, Director of the Office of Civilian Radioactive Waste Management Statement from Ward Sproat on Yucca Mountain, Director of the Office of Civilian...

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389  

SciTech Connect (OSTI)

As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

2012-07-01T23:59:59.000Z

62

Identification of structures, systems, and components important to safety at the potential repository at Yucca Mountain; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This study recommends which structures, systems, and components of the potential repository at Yucca Mountain are important to safety. The assessment was completed in April 1990 and uses the reference repository configuration in the Site Characterization Plan Conceptual Design Report and follows the methodology required at that time by DOE Procedure AP6.10-Q. Failures of repository items during the preclosure period are evaluated to determine the potential offsite radiation doses and associated probabilities. Items are important to safety if, in the event they fail to perform their intended function, an accident could result which causes a dose commitment greater than 0.5 rem to the whole body or any organ of an individual in an unrestricted area. This study recommends that these repository items include the structures that house spent fuel and high-level waste, the associated filtered ventilation exhaust systems, certain waste- handling equipment, the waste containers, the waste treatment building structure, the underground waste transporters, and other items listed in this report. This work was completed April 1990. 27 refs., 7 figs., 9 tabs.

Hartman, D.J.; Miller, D.D. [Bechtel National, Inc., San Francisco, CA (United States); Klamerus, L.J. [Sandia National Labs., Albuquerque, NM (United States)

1991-10-01T23:59:59.000Z

63

Yucca Mountain project : FY 2006 annual report for waste form testingactivities.  

SciTech Connect (OSTI)

This report describes the experimental work performed at Argonne National Laboratory (Argonne) during fiscal year (FY 2006) under the Bechtel SAIC Company, LLC (BSC) Memorandum Purchase Order (MPO) contract number B004210CM3X. Because this experimental work is focused on the dissolution and precipitation behavior of neptunium, the report also includes, or incorporates by reference, earlier results that are relevant to presenting a more complete understanding of the likely behavior of neptunium under experimental conditions relevant to the Yucca Mountain repository. Important results relevant to the technical bases, validations, and conservatisms in current source term models are summarized. The CSNF samples were observed to corrode following the general contour of the surface rather than via (for instance) grain boundary attack. This supports the current approach of estimating the effective surface area of corroding CSNF based on the geometric surface area of fuel pellet fragments. It was observed that the neptunium and plutonium concentrations in corroded CSNF samples were somewhat higher at and near the corrosion front (i.e., at the interface between the alteration product ''rind'' layer and the underlying fuel) than in the bulk fuel. The neptunium and plutonium at the corrosion front and in the uranyl alteration layer were found to be in the quadravalent (4+) oxidation state. The uranyl phases that constitute most of the alteration rind were depleted in neptunium relative to the bulk fuel: neptunium concentrations in the uranyl alteration rind were less than 20% of that in the parent fuel. Homogeneous precipitation tests have shown that solids precipitate from a 1 x 10{sup -4} M Np(V) solution over the temperature range of 200-280 C, but no evidence was found that any solids precipitated from the same solution at 150 C through 289 days. The solids formed in the homogeneous precipitation tests were predominantly a Np(IV)-bearing phase, probably NpO{sub 2}. The presence of UO{sub 2} resulted in the rapid precipitation at room temperature of similar amounts of Np(IV)- and Np(V)-bearing phases, probably NpO{sub 2} and Np{sub 2}O{sub 5}. Although the UO{sub 2} is presumed to act as a reducing agent for Np(V) that leads to the precipitation of a Np(IV)-bearing phase, the observed formation of a Np(V)-bearing phase suggests that the UO{sub 2} also catalyzes Np{sub 2}O5 precipitation under these test conditions.

Ebert, W. L.; Fortner, J. A.; Guelis, A. V.; Cunnane, J. C.

2006-11-01T23:59:59.000Z

64

Going Beyond 10,000 Years at Yucca Mountain P.F. Peterson, W.E. Kastenberg  

E-Print Network [OSTI]

Going Beyond 10,000 Years at Yucca Mountain P.F. Peterson, W.E. Kastenberg University of California the federal government's Yucca Mountain (YM) nuclear waste repository project. The successful challenge at Yucca Mountain Currently, the best available understanding of potential long-term performance at YM

65

Yucca Mountain Climate Technical Support Representative  

SciTech Connect (OSTI)

The primary objective of Project Activity ORD-FY04-012, ďYucca Mountain Climate Technical Support Representative,Ē was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

66

Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document.

Sobolik, S.R.; Fewell, M.E.

1993-12-01T23:59:59.000Z

67

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

68

DOE Petitions for NRC Review in Yucca Mountain Proceeding | Department...  

Broader source: Energy.gov (indexed) [DOE]

Petitions for NRC Review in Yucca Mountain Proceeding DOE Petitions for NRC Review in Yucca Mountain Proceeding April 12, 2010 - 10:16am Addthis The United States Department of...

69

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect (OSTI)

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

70

Climate Change at Yucca Mountain: Lessons from Earth History  

E-Print Network [OSTI]

9 Climate Change at Yucca Mountain: Lessons from Earth History MaryLynn Musgrove and Daniel P. Schrag Yucca Mountain's suitability as a nuclear waste repository stems largely from its very dry climate the climate and hydrologic conditions at Yucca Mountain will be stable enough beyond the next ten millennia so

Schrag, Daniel

71

TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA  

E-Print Network [OSTI]

TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA Eugene Smith 1 The determination of volcanic risk to the proposed high- level nuclear waste repository at Yucca Mountain requires, then volcanism in the future may not be a significant threat to Yucca Mountain. On the other hand, if melting

Conrad, Clint

72

Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report  

SciTech Connect (OSTI)

An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

1995-12-01T23:59:59.000Z

73

YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM  

SciTech Connect (OSTI)

The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

G. Housley; C. Shelton-davis; K. Skinner

2005-08-26T23:59:59.000Z

74

Sorption of radionuclides on Yucca Mountain tuffs  

SciTech Connect (OSTI)

A substantial database of sorption coefficients for important radionuclides on Yucca Mountain tuffs has been obtained by Los Alamos National Laboratory over the past ten years. Current sorption studies are focussed on validation questions and augmentation of the existing database. Validation questions concern the effects of the use of crushed instead of solid rock samples in the batch experiments, the use of oversaturated stock solutions, and variations in water/rock ratios. Sorption mechanisms are also being investigated. Database augmentation activities include determination of sorption coefficients for elements with low sorption potential, sorption on psuedocolloids, sorption on fracture lining minerals, and sorption kinetics. Sorption can provide an important barrier to the potential migration of radionuclides from the proposed repository within Yucca Mountain to the accessible environment. In order to quantify this barrier, sorption coefficients appropriate for the Yucca Mountain groundwater system must be obtained for each of the important radionuclides in nuclear waste. Los Alamos National Laboratories has conducted numerous batch (crushed-rock) sorption experiments over the past ten years to develop a sorption coefficient database for the Yucca Mountain site. In the present site characterization phase, the main goals of the sorption test program will be to validate critical sorption coefficients and to augment the existing database where important data are lacking. 11 refs., 1 fig., 3 tabs.

Meijer, A.; Triay, I.; Knight, S.; Cisneros, M.

1989-11-01T23:59:59.000Z

75

Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices  

SciTech Connect (OSTI)

This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1995-05-01T23:59:59.000Z

76

Rail Access to Yucca Mountain: Critical Issues  

SciTech Connect (OSTI)

The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area.

Halstead, R. J.; Dilger, F.; Moore, R. C.

2003-02-25T23:59:59.000Z

77

Predicting the Future at Yucca Mountain  

SciTech Connect (OSTI)

This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years.

J. R. Wilson

1999-07-01T23:59:59.000Z

78

Two Independent Assessments Find the Department of Energy's Yucca...  

Broader source: Energy.gov (indexed) [DOE]

Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on...

79

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

80

Yucca Mountain Press Conference | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department ofEnergy IsTestimonials WorkerDepartmentHouseYucca Mountain Press

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Yucca Mountain Biological Resources Monitoring Program; Progress report, October 1992--December 1993  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) from October 1992 through December 1993 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

NONE

1994-05-01T23:59:59.000Z

82

Yucca Mountain drift scale test progress report  

SciTech Connect (OSTI)

The Drift Scale Test (DST) is part of the Exploratory Studies Facility (ESF) Thermal Test being conducted underground at the potential high-level nuclear waste repository at Yucca Mountain, Nevada. The purpose of the ESF Thermal Test is to acquire a more in-depth understanding of the coupled thermal, mechanical, hydrological, and chemical processes likely to be encountered in the rock mass surrounding the potential geological repository at Yucca Mountain. These processes are monitored by a multitude of sensors to measure the temperature, humidity, gas pressure, and mechanical displacement, of the rock formation in response to the heat generated by the heaters. In addition to collecting passive monitoring data, active hydrological and geophysical testing is also being carried out periodically in the DST. These active tests are intended to monitor changes in the moisture redistribution in the rock mass, to collect water and gas samples for chemical and isotopic analysis, and to detect microfiacturing due to heating. On December 3, 1998, the heaters in the DST were activated. The planned heating phase of the DST is 4 years, and the cooling phase following the power shutoff will be of similar duration. The present report summarizes interpretation and analysis of thermal, hydrological, chemical, and geophysical data for the first 6 months; it is the first of many progress reports to be prepared during the DST.

Apps, J.; Birkholzer, J.T.; Peterson,J.E.; Sonnenthal, E.; Spycher, N.; Tsang, Y.W.; Williams, K.H.

1999-01-01T23:59:59.000Z

83

Repository site data report for unsaturated tuff, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

1985-11-01T23:59:59.000Z

84

List of Yucca Mountain Archival Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10, 2004 EIS-0250-SA-01: Supplement Analysis Geologic Repository for the Disposal of Spent Nuclear and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada March...

85

Viability Assessment of a Repository at Yucca Mountain  

Broader source: Energy.gov [DOE]

The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution.

86

Expert judgment in assessing radwaste risks: What Nevadans should know about Yucca Mountain; [Final report  

SciTech Connect (OSTI)

For phenomena characterized by accurate and largely complete data, quantitative risk assessment (QRA) provides extraordinarily valuable and objective information. However, with phenomena for which the data, models, or probabilities are incomplete or uncertain, QRA may be less useful and more questionable, because its conclusions are typically empirically and theoretically underdetermined. In the face of empirical or theoretical underdetermination, scientists often are forced to make a number of methodological value judgments and inferences about how to estimate and evaluate the associated risks. The purpose of this project is to evaluate instances of methodological value judgments and invalid or imprecise inferences that have occurred in the QRA done for the proposed Yucca Mountain high-level radioactive waste facility. We shall show (1) that questionable methodological value judgments and inferences have occurred in some Yucca Mountain QRA`S; (2) that questionable judgments and inferences, similar to those in the Yucca Mountain studies, have occurred in previous QRA`s done for other radiation-related facilities and have likely caused earlier QRA`s to err in specific ways; and (3) that, because the value judgments and problems associated with some Yucca Mountain QRA`s include repetitions of similar difficulties in earlier studies, therefore the QRA conclusions of some Yucca Mountain analyses are, at best, uncertain.

Shrader-Frechette, K. [University of South Florida, Tampa, FL (United States)

1992-06-01T23:59:59.000Z

87

Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada  

SciTech Connect (OSTI)

In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

1995-12-31T23:59:59.000Z

88

Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.  

SciTech Connect (OSTI)

The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

2006-03-01T23:59:59.000Z

89

Site environmental report for calendar year 1996: Yucca Mountain site, Nye County, Nevada  

SciTech Connect (OSTI)

The environmental program established by the Yucca Mountain Site Characterization Office (YMSCO) has been designed and implemented to protect, maintain, and restore environmental quality, minimize potential threats to the environment and the public, and comply with environmental policies and US Department of Energy (DOE) Orders. In accordance with DOE Order 5400.1, General Environmental Protection Program (DOE, 1990a), to be superseded by DOE Order 231.1 (under review), the status of the Yucca Mountain Site Characterization Project (YMP) environmental program has been summarized in this annual Site Environmental Report (SER) to characterize performance, document compliance with environmental requirements, and highlight significant programs and efforts during calendar year 1996.

NONE

1997-11-01T23:59:59.000Z

90

Geophysical characterization of mineral and energy resources at Yucca Mountain and vicinity, Nevada  

SciTech Connect (OSTI)

This report was prepared for the Yucca Mountain Project (Department of Energy) as part of the study of the mineral and energy resource potential of the site (Activity 8.3.1.9.2.1.5) under the Human Interference part of the program. Most of the 1991 geophysical scoping activities in the Mineral Resources Study were involved with the acquisition and evaluation of existing data. This report presents an overview of how geophysical data (existing and planned) will aid in the evaluation of the potential for mineral and energy resource potential at Yucca Mountain and vicinity.

Langenheim, V.E.; Oliver, H.W. [Geological Survey, Menlo Park, CA (United States); Hoover, D.B. [Geological Survey, Denver, CO (United States)

1991-12-31T23:59:59.000Z

91

Yucca Mountain - U.S. Department of Energy's Brief in Support...  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw Yucca Mountain - U.S. Department of Energy's...

92

Yucca Mountain - U.S. Department of Energy's Response to the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Yucca Mountain - U.S. Department of Energy's Response to the Motion for RecusalDisqualification Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal...

93

Preliminary conceptual model for mineral evolution in Yucca Mountain  

SciTech Connect (OSTI)

A model is presented for mineral alteration in Yucca Mountain, Nevada, that suggests that the mineral transformations observed there are primarily controlled by the activity of aqueous silica. The rate of these reactions is related to the rate of evolution of the metastable silica polymorphs opal-CT and cristobalite assuming that a{sub SiO{sub 2(aq)}} is fixed at the equilibrium solubility of the most soluble silica polymorph present. The rate equations accurately predict the present depths of disappearance of opal-CT and cristobalite. The rate equations have also been used to predict the extent of future mineral alteration that may result from emplacement of a high-level nuclear waste repository in Yucca Mountain. Relatively small changes in mineralogy are predicted, but these predictions are based on the assumption that emplacement of a repository would not increase the pH of water in Yucca Mountain nor increase its carbonate content. Such changes may significantly increase mineral alteration. Some of the reactions currently occurring in Yucca Mountain consume H{sup +} and CO{sub 3}{sup 2{minus}}. Combining reaction rate models for these reactions with water chemistry data may make it possible to estimate water flux through the basal vitrophyre of the Topopah Spring Member and to help confirm the direction and rate of flow of groundwater in Yucca Mountain.

Duffy, C.J.

1993-12-01T23:59:59.000Z

94

Effect of viscoelastic postseismic relaxation on estimates of interseismic crustal strain accumulation at Yucca Mountain,  

E-Print Network [OSTI]

of interseismic crustal strain accumulation at Yucca Mountain, Nevada William C. Hammond,1 Corné Kreemer,1 March 2010. [1] We estimate the longterm crustal strain rate at Yucca Mountain (YM), Nevada from GPS crustal strain accumulation at Yucca Mountain, Nevada, Geophys. Res. Lett., 37, L06307, doi:10.1029/2010GL

Tingley, Joseph V.

95

Dynamic rupture through a branched fault2 configuration at Yucca Mountain and resulting3  

E-Print Network [OSTI]

Dynamic rupture through a branched fault2 configuration at Yucca Mountain and resulting3 ground analyses. This is motivated by the normal faults in the vicinity10 of Yucca Mountain, NV, a potential site fault12 located approximately 1 km west of the crest of Yucca Mountain, is the13 most active

Dmowska, Renata

96

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada  

E-Print Network [OSTI]

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada Roland Gritto, Valeri A in the proposed nuclear waste repository area at Yucca Mountain, Nevada. A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca Mountain ridge and inside the Exploratory Study Facility (ESF

Korneev, Valeri A.

97

Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain  

E-Print Network [OSTI]

1 Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain Benchun Duan1 and Steven investigate physical3 limits at Yucca Mountain, Nevada, and assess sensitivities due to uncertainties in fault (e.g.,28 Bommer, 2002; Bommer et al., 2004).29 The 1998 PSHA for Yucca Mountain, a potential high

Duan, Benchun

98

Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network  

E-Print Network [OSTI]

Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN June 2006; published 19 July 2006. [1] Data from BARGEN GPS stations around Yucca Mountain (YM) have at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network, Geophys. Res. Lett., 33

Blewitt, Geoffrey

99

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground Motions  

E-Print Network [OSTI]

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground of Yucca Mountain, Nevada, a potential site for a high-level radioactive waste repository. The Solitario km away from the SCF beneath the crest of Yucca Mountain, causing the repository site to experience

100

Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada  

E-Print Network [OSTI]

Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada for a Crater Flat cation-leaching curve. This curve differs somewhat from a previous Yucca Mountain curve­10 from a previous ``surficial deposits'' stratigraphy used in the Yucca Mountain area. Although

Dorn, Ron

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain  

E-Print Network [OSTI]

Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain by Benchun Duan and Steven at Yucca Mountain, Nevada, and assess sensitivities due to uncertainties in fault geometry, off-fault rock ground-motion parameters (e.g., Bommer, 2002; Bommer et al., 2004). The 1998 PSHA for Yucca Mountain

Duan, Benchun

102

Limited hydrologic response to Pleistocene climate change in deep vadose zones --Yucca Mountain, Nevada  

E-Print Network [OSTI]

Limited hydrologic response to Pleistocene climate change in deep vadose zones -- Yucca Mountain paleohydrogeology paleoclimate U-series dating secondary ion mass spectrometry Yucca Mountain Understanding to Pleistocene climate change within a deep vadose zone in the eastern Mojave Desert at Yucca Mountain, Nevada

Reiners, Peter W.

103

Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain  

SciTech Connect (OSTI)

This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

2006-02-14T23:59:59.000Z

104

Yucca Mountain biological resources monitoring program; Annual report FY92  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

NONE

1993-02-01T23:59:59.000Z

105

The vegetation of Yucca Mountain: Description and ecology  

SciTech Connect (OSTI)

Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

NONE

1996-03-29T23:59:59.000Z

106

Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

NONE

1992-01-01T23:59:59.000Z

107

Dialogs on the Yucca Mountain controversy. Special report No. 5  

SciTech Connect (OSTI)

The recent, 1992, report prepared by the Panel on Coupled Hydrologic/Tectonic/Hydrothermal Systems at Yucca Mountain for the National Research Council of the National Academy of Sciences, entitled Ground Water at Yucca Mountain: How High Can It Rise? has generated critical reviews by Somerville et al. (1992) and by Archambeau (1992). These reviews were submitted as reports to the Nuclear Waste Project Office, State of Nevada by Technology and Resource Assessment Corporation under Contract No. 92/94.0004. A copy of the review report by C. B. Archambeau was also sent to Dr. Frank Press, President of the National Academy of Sciences, along with a cover letter from Dr. Archambeau expressing his concerns with the NRC report and his suggestion that the Academy President consider a re-evaluation of the issues covered by the NRC report. Dr. Press responded in a letter to Dr. Archambeau in February of this year which stated that, based on his staff recommendations and a review report by Dr. J. F. Evernden of the United States Geological Survey, he declined to initiate any further investigations and that, in his view, the NRC report was a valid scientific evaluation which was corroborated by Evernden`s report. He also enclosed, with his letter, a copy of the report he received from his staff. In March of this year Dr. Archambeau replied to the letter and NRC staff report sent by Dr. Press with a detailed point-by-point rebuttal of the NRC staff report to Press. Also, in March, a critical review of Dr. Evernden`s report by M. Somerville was submitted to the Nuclear Waste Project Office of the State of Nevada and this report, along with the earlier review of the NRC report by Somerville et al., was included as attachments to the letter sent to Dr. Press.

Archambeau, C.B.; Szymanski, J.S.

1993-03-01T23:59:59.000Z

108

HEFF---A user`s manual and guide for the HEFF code for thermal-mechanical analysis using the boundary-element method; Version 4.1: Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

The HEFF Code combines a simple boundary-element method of stress analysis with the closed form solutions for constant or exponentially decaying heat sources in an infinite elastic body to obtain an approximate method for analysis of underground excavations in a rock mass with heat generation. This manual describes the theoretical basis for the code, the code structure, model preparation, and step taken to assure that the code correctly performs its intended functions. The material contained within the report addresses the Software Quality Assurance Requirements for the Yucca Mountain Site Characterization Project. 13 refs., 26 figs., 14 tabs.

St. John, C.M.; Sanjeevan, K. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)

1991-12-01T23:59:59.000Z

109

Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report. Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves prediction of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from the USW NRG-717A borehole drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. USW NRG-7/7A was drilled to a depth of 1,513.4 feet through five thermal/mechanical units of Paintbrush tuff and terminating in the tuffaceous beds of the Calico IEUS. The thermal/mechanical stratigraphy was defined by Orfiz et al. to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy is presented. The tuff samples in this study have a wide range of welding characteristics, and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

Martin, R.J.; Boyd, P.J.; Noel, J.S. [New England Research, Inc. White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

1995-05-01T23:59:59.000Z

110

The Proposed Yucca Mountain Repository From A Corrosion Perspective  

SciTech Connect (OSTI)

Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective.

J.H. Payer

2005-03-10T23:59:59.000Z

111

Preparing to Submit a License Application for Yucca Mountain  

SciTech Connect (OSTI)

In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

W.J. Arthur; M.D. Voegele

2005-03-14T23:59:59.000Z

112

Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office  

SciTech Connect (OSTI)

Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.

King, Michael J; Bredehoeft, John D., Dr.

2010-09-03T23:59:59.000Z

113

The Effects of Site Characterization Activities on the Abundance of Ravens (Corvus corax) in the Yucca Mountain Area  

SciTech Connect (OSTI)

In response to the Nuclear Waste Policy Act of 1982 and the Nuclear Waste Policy Amendments Act of 1987, the U.S. Department of Energy (DOE) developed and is implementing the Yucca Mountain Site Characterization Project. Raven abundance was measured from August 1991 through August 1995 along treatment and control routes to evaluate whether site characterization activities resulted in increased raven abundance at Yucca Mountain. This study fulfills the requirement set forth in the incidental take provisions of the Biological Opinion that DOE monitor the abundance of ravens at Yucca Mountain. Ravens were more abundant at Yucca Mountain than in the control area, and raven abundance in both areas increased over time. However, the magnitude of differences between Yucca Mountain and control surveys did not change over time, indicating that the increase in raven abundance observed during this study was not related to site characterization activities. Increases over time on both Yucca Mountain and control routes are consistent with increases in raven abundance in the Mojave Desert reported by the annual Breeding Bird Survey of the US. Fish and Wildlife Service. Evidence from the Desert Tortoise Monitoring Program at Yucca Mountain suggests that ravens are not a significant predator of small tortoises in this locale. Carcasses of small tortoises (less than 110 mm in length) collected during the study showed little evidence of raven predation, and 59 radiomarked hatchlings that were monitored on a regular basis were not preyed upon by ravens. Overall, no direct evidence of raven predation on tortoises was observed during this study. Small tortoises are probably encountered so infrequently by ravens that they are rarely exploited as a food source. This is likely due to the relatively low abundance of both desert tortoises and ravens in the Yucca Mountain area.

P.E. Lederle

1998-05-08T23:59:59.000Z

114

Uranium and Neptunium Desorption from Yucca Mountain Alluvium  

SciTech Connect (OSTI)

Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

2006-03-16T23:59:59.000Z

115

Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

NONE

1995-07-01T23:59:59.000Z

116

Dialogs on the Yucca Mountain controversy. Special report No. 10  

SciTech Connect (OSTI)

In an attempt to resolve the controversial issue of tectonic and hydrologic stability of the Yucca Mountain region, the National Academy of Sciences established a Panel on Coupled Hydrologic/Tectonic/HydrothermaI Systems. The Panel has recently released it`s findings in a report entitled Ground Water at Yucca Mountain: How High Can It Rise? The representation of data and the scientific validity of this report was the subject of comprehensive evaluations and reviews which has led to correspondence between Dr. Charles Archarnbeau and Dr. Frank Press, the President of the National Academy of Sciences. All such correspondence prior to April 9, 1993 is covered by TRAC Special Report No. 5, {open_quotes}Dialogs on the Yucca Mountain Controversy.{close_quotes} The present report represents a continuation of the dialog between Dr. Archambeau and Dr. Press; specifically the letter from Dr. Press to Dr. Archambeau dated April 9, 1993 and Archambeau`s response to Press, dated August 19, 1993. In addition to the correspondence between Press and Archambeau, a series of recent reports by other investigators, referred to in the correspondence from Archambeau, are included in this report and document new data and inferences of importance for resolution of the question of suitability of the Yucca Mountain site as a high level nuclear waste repository. These reports also demonstrate that other scientists, not previously associated with the government`s program at Yucca Mountain or the National Academy review of an aspect of that program, have arrived at conclusions that are different than those stated by the Academy review and DOE program scientists.

Schluter, C.M.; Szymanski, J.S.

1993-08-01T23:59:59.000Z

117

Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7  

SciTech Connect (OSTI)

In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences` National Research Council released its report entitled ``Ground Water at Yucca Mountain: How High Can It Rise?`` which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities.

NONE

1992-12-01T23:59:59.000Z

118

Prepared in cooperation with the Inyo County, California, Yucca Mountain Repository Assessment Office  

E-Print Network [OSTI]

Prepared in cooperation with the Inyo County, California, Yucca Mountain Repository Assessment County, California, Yucca Mountain Repository Assessment Office #12;U.S. Department of the Interior KEN Office Geologic Map of the southern Funeral Mountains including nearby Groundwater Discharge Sites

Fleskes, Joe

119

Determination of HEat Capacity of Yucca Mountain Strtigraphic Layers  

SciTech Connect (OSTI)

The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial variability in the horizontal direction within each layer.

T. Hadgu; C. Lum; J.E. Bean

2006-06-20T23:59:59.000Z

120

Vertical Variability in Saturated Zone Hydrochemistry Near Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain facies that has moved through clay-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel.

G. Patterson; P. Striffler

2007-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ground water of Yucca Mountain: How high can it rise?; Final report  

SciTech Connect (OSTI)

This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

NONE

1992-12-31T23:59:59.000Z

122

Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States)

1991-12-01T23:59:59.000Z

123

Evaluating the Long-Term Safety of a Repository at Yucca Mountain  

SciTech Connect (OSTI)

Regulations require that the repository be evaluated for its health and safety effects for 10,000 years for the Site Recommendation process. Regulations also require potential impacts to be evaluated for up to a million years in an Environmental Impact Statement. The Yucca Mountain Project is in the midst of the Site Recommendation process. The Total System Performance Assessment (TSPA) that supports the Site Recommendation evaluated safety for these required periods of time. Results showed it likely that a repository at this site could meet the licensing requirements promulgated by the Nuclear Regulatory Commission. The TSPA is the tool that integrates the results of many years of scientific investigations with design information to allow evaluations of potential far-future impacts of building a Yucca Mountain repository. Knowledge created in several branches of physics is part of the scientific basis of the TSPA that supports the Site Recommendation process.

Abe Van Luik

2009-07-17T23:59:59.000Z

124

Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, August 1993 to February 1994  

SciTech Connect (OSTI)

Yucca Mountain, Nevada, is being investigated as a potential site for a high-level radioactive waste repository. This report summarizes the lithologic logging of new and existing boreholes at Yucca Mountain that was done from August 1993 to February 1994 by the Rock Characteristics Section, Yucca Mountain Project Branch, US Geological Survey (USGS). Units encountered during logging include Quaternary-Tertiary alluvium/colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, Tertiary Calico Hills Formation and Tertiary Prow Pass Tuff. We present criteria used for recognition of stratigraphic contacts, logging results as tables of contact depths for core from neutron (UZN) boreholes and graphical lithologic logs for core from non-UZN boreholes, and descriptions of several distinctive nonwelded tuffs recognized in the PTn hydrogeologic unit of the Paintbrush Group.

Geslin, J.K.; Moyer, T.C.; Buesch, D.C.

1995-05-01T23:59:59.000Z

125

Step-Wise Repository Licensing-Implementing the Scientific and Legislative Vision for the Next Phase of the Yucca Mountain Project  

SciTech Connect (OSTI)

International scientific consensus backing geologic disposal as the preferred method of long term management of used nuclear fuel and defense high level radioactive waste has existed since the 1950s. Furthermore, many believe that geologic disposal programs should be implemented in a staged or 'step-wise' approach. These principles have also been at the root of US waste management policy for which a regulatory framework for site selection, and the licensing of a site once selected, is set forth in a series of legislation. The US program has now matured to the point where these regulatory components are now in place. Sufficient data has also been gathered and evaluated to support a site recommendation decision. This decision--on whether or not to proceed with a repository site at Yucca Mountain, Nevada - is about to be put before the US President and Congress. If made in the affirmative, the decision would initiate the next phase in the US disposal process as originally envisioned by Congress--a three-step repository licensing process (Construction, Operation, & Closure). This paper explores the many facets of the licensing process that may lie ahead. Approaches that could be deployed to effectively implement this process are discussed and opportunities to optimize the process, by capitalizing on its evolutionary nature to assure that the best available science is always applied to the protection of public health and safety, are identified. Focus is also placed on a key prerequisite to the accomplishment of this goal--the definition of the level to which post closure repository performance must be addressed at each stage of the licensing process.

McCullum, R.; Kessler, J. H.; Eyre, M. L.

2002-02-27T23:59:59.000Z

126

Nuclear Waste Technical Review Board Thermal-Response Evaluation of Yucca Mountain  

E-Print Network [OSTI]

Nuclear Waste Technical Review Board Thermal-Response Evaluation of Yucca Mountain During of the thermal response of the proposed Yucca Mountain repository for various thermal loadings. The U. S. Nuclear Waste Technical Review Board (NWTRB) staff has developed calculation tools that allow performing

127

Calculations supporting evaluation of potential environmental standards for Yucca Mountain  

SciTech Connect (OSTI)

The Energy Policy Act of 1992, Section 801 (US Congress, 1992) provides for the US Environmental Protection Agency (EPA) to contract the National Academy of Sciences (NAS) to conduct a study and provide findings and recommendations on reasonable standards for the disposal of high-level wastes at the Yucca Mountain site. The NAS study is to provide findings and recommendations which include, among other things, whether a health-based standard based on dose to individual members of the public from releases to the accessible environment will provide a reasonable standard for the protection of the health and safety of the public. The EPA, based upon and consistent with the findings and recommendations of the NAS, is required to promulgate standards for protection of the public from releases from radioactive materials stored or disposed of in a repository at the Yucca Mountain site. This document presents a number of different ``simple`` analyses of undisturbed repository performance that are intended to provide input to those responsible for setting appropriate environmental standards for a potential repository at the Yucca Mountain site in Nevada. Each of the processes included in the analyses has been simplified to capture the primary significance of that process in containing or isolating the waste from the biosphere. In these simplified analyses, the complex waste package interactions were approximated by a simple waste package ``failure`` distribution which is defined by the initiation and rate of waste package ``failures``. Similarly, releases from the waste package and the engineered barrier system are controlled by the very near field environment and the presence and rate of advective and diffusive release processes. Release was approximated by either a simple alteration-controlled release for the high solubility radionuclides and either a diffusive or advective-controlled release for the solubility-limited radionuclides.

Duguid, J.O.; Andrews, R.W.; Brandstetter, E.; Dale, T.F.; Reeves, M. [INTERA, Inc., Las Vegas, NV (United States)

1994-04-01T23:59:59.000Z

128

Evidence for Gropun-Water Stratification Near Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

K. Futa; B.D. Marshall; Z.E. Peterman

2006-03-24T23:59:59.000Z

129

Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991; Volume 2  

SciTech Connect (OSTI)

This report consists of Yucca Mountain Project bibliographies. It is the appendix to a report that summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada`s Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona.

Fowler, C.S. [Cultural Resources Consultants Ltd., Reno, NV (United States)

1991-10-15T23:59:59.000Z

130

Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis  

SciTech Connect (OSTI)

Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

1994-12-31T23:59:59.000Z

131

Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste  

SciTech Connect (OSTI)

Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

J.S. Stuckless; D. O'Leary

2006-09-25T23:59:59.000Z

132

Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository  

SciTech Connect (OSTI)

The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

Kessler, John H. [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States); Kemeny, John [University of Arizona, Tucson AZ 85721 (United States); King, Fraser [Integrity Corrosion Consulting, Ltd., 6732 Silverview Drive NW, Calgary, Alberta (Canada); Ross, Alan M. [Alan M. Ross and Associates, 1061 Gray Fox Circle Pleasanton, CA 94566 (Canada); Ross, Benjamen [Disposal Safety, Inc., Bethesda, MD 20814 (United States)

2006-07-01T23:59:59.000Z

133

Cost-Effective Cementitious Material Compatible with Yucca Mountain Repository Geochemistry  

SciTech Connect (OSTI)

The current plans for the Yucca Mountain (YM) repository project (YMP) use steel structures to stabilize the disposal drifts and connecting tunnels that are collectively over 100 kilometers in length. The potential exist to reduce the underground construction cost by 100s of millions of dollars and improve the repository's performance. These economic and engineering goals can be achieved by using the appropriate cementitious materials to build out these tunnels. This report describes the required properties of YM compatible cements and reviews the literature that proves the efficacy of this approach. This report also describes a comprehensive program to develop and test materials for a suite of underground construction technologies.

Dole, LR

2004-12-17T23:59:59.000Z

134

Site characterization progress report: Yucca Mountain, Nevada. Number 15, April 1--September 30, 1996  

SciTech Connect (OSTI)

During the second half of fiscal year 1996, activities at the Yucca Mountain Site Characterization Project (Project) supported the objectives of the revised Program Plan released this period by the Office of Civilian Radioactive Waste Management of the US Department of Energy (Department). Outlined in the revised plan is a focused, integrated program of site characterization, design, engineering, environmental, and performance assessment activities that will achieve key Program and statutory objectives. The plan will result in the development of a license application for repository construction at Yucca Mountain, if the site is found suitable. Activities this period focused on two of the three near-term objectives of the revised plan: updating in 1997 the regulatory framework for determining the suitability of the site for the proposed repository concept and providing information for a 1998 viability assessment of continuing toward the licensing of a repository. The Project has also developed a new design approach that uses the advanced conceptual design published during the last reporting period as a base for developing a design that will support the viability assessment. The initial construction phase of the Thermal Testing Facility was completed and the first phase of the in situ heater tests began on schedule. In addition, phase-one construction was completed for the first of two alcoves that will provide access to the Ghost Dance fault.

NONE

1997-04-01T23:59:59.000Z

135

A comparison of two potential repositories: The Waste Isolation Pilot Plant and Yucca Mountain  

SciTech Connect (OSTI)

Two repositories in the same country, yet Congress and the DOE manage them differently. While Congress encumbers WIPP with unanticipated oversight and inappropriate regulations, Congress streamlines the commercial repository program and promises improved regulations for Yucca Mountain. While DOE encouraged science at the expense of the WIPP infrastructure, DOE postponed its scientific investigations at Yucca Mountain and constructed an infrastructure, large enough to support an ambitious program that was never realized. Somewhere between WIPP and Yucca Mountain lies an ideal repository program. A program where consistent national policy promotes progress; where lucid regulations inspire confidence; where science and infrastructure are balanced; and where oversight groups do not become the tail that wags the dog. Neither WIPP nor Yucca Mountain are ideal programs, but each has its advantages that approach the ideal. Consistent national policy would steer the ideal repository program in a predictable direction. Here Yucca Mountain has the advantage. Successive legislation has streamlined the siting process and promises better regulations. From the beginning, the ideal program would know its regulators and regulations. Again, Yucca Mountain has the advantage. More familiar with regulators and regulations, the Yucca Mountain program had the foresight not to declare HLW to be hazardous and subject to dual regulations. The ideal program would equitably balance its science and infrastructure. Here neither program has the advantage and could possibly represent extremes. The WIPP`s emphasis on scientific investigations left it with little or no infrastructure to deal with regulations and oversight. A regulatory infrastructure, for example, could have forewarned WIPP that its in situ tests were not relevant to the regulations. On the opposite extreme, the Yucca Mountain`s emphasis on infrastructure left it with less money for scientific investigations.

Pflum, C.G.

1994-07-11T23:59:59.000Z

136

Illuminating the Decision Path: The Yucca Mountain Site Recommendation  

SciTech Connect (OSTI)

On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context.

Knox, E.; Slothouber, L.

2003-02-25T23:59:59.000Z

137

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect (OSTI)

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

138

Calcite deposits in drill cores USW G-2 and USW GU-3/G-3 at Yucca Mountain, Nevada: Preliminary report  

SciTech Connect (OSTI)

Yucca Mountain is being studied as a potential site for deep geologic disposal of high-level radioactive waste. Should a repository be developed at Yucca Mountain, the preferred location is within the upper unsaturated tuffaceous volcanic rocks. In this location, one factor of concern is the amount and rate of aqueous transport through the unsaturated rocks toward the underlying saturated intervals. Calcite, one of the most recently-formed minerals at Yucca Mountain, is of minor abundance in the unsaturated rocks but is widely distributed. Studies of calcite ages, isotopic systematics, chemistry and petrography could lead to a better understanding of transport processes at Yucca Mountain.

Vaniman, D.T.

1994-04-01T23:59:59.000Z

139

Diet of desert tortoises at Yucca Mountain, Nevada, and implications for habitat reclamation  

SciTech Connect (OSTI)

The diet of desert tortoises at Yucca Mountain was assessed during 1992 to 1995 using a combination of feeding observations and scat analysis. Feeding observation data (1993 through 1995) showed that tortoises fed on a wide variety of items. The most frequently eaten items were forbs and annual grasses. These two forage groups comprised more than 90% of all bites taken. Analysis of scat (1992 and 1993) also showed that grasses and forbs were the most common groups, making up more than 80% of the composition of scat. Yearly differences between proportions of species in the diet were observed and were most likely attributable to differences in plant productivity, which is linked to rainfall patterns. Non-native species were an important component of the diet in all years, accounting for 13 to 50% of all bites observed and 6 to 24% of scat contents. A list of all items encountered in the diet is provided. To facilitate reclamation of desert tortoise habitat disturbed by the Yucca Mountain Site Characterization Project, native forage species that should be included in reclamation seed mixes, when feasible, were identified. Although shrubs make up only a small proportion of the diet, they should also be included in reclamation efforts because they provide habitat structure. Tortoise cover sites, and microhabitats amenable to seed germination and seedling establishment. In addition, non-native species should not be planted on reclaimed sites and, if necessary, sites should be recontoured and soil compaction reduced prior to planting.

Rakestraw, D.L.; Holt, E.A.; Rautenstrauch, K.R.

1995-12-01T23:59:59.000Z

140

A Fruit of Yucca Mountain: The Remote Waste Package Closure System  

SciTech Connect (OSTI)

Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary, mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storageóregardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the systemís features and concepts may benefit other remote nuclear applications.

Kevin Skinner; Greg Housley; Colleen Shelton-Davis

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)  

SciTech Connect (OSTI)

In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

1996-09-01T23:59:59.000Z

142

Impact of Quaternary Climate on Seepage at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Uranium-series ages, oxygen-isotopic compositions, and uranium contents were determined in outer growth layers of opal and calcite from 0.5- to 3-centimeter-thick mineral coatings hosted by lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a permanent repository for high-level radioactive waste. Micrometer-scale growth layering in the minerals was imaged using a cathodoluminescence detector on a scanning electron microscope. Determinations of the chemistry, ages, and delta oxygen-18 values of the growth layers were conducted by electron microprobe analysis and secondary ion mass spectrometry techniques at spatial resolutions of 1 to about 20 micrometers ({micro}m) and 25 to 40 micrometers, respectively. Growth rates for the last 300 thousand years (k.y.) calculated from about 300 new high-resolution uranium-series ages range from approximately 0.5 to 1.5 {micro}m/k.y. for 1- to 3-centimeter-thick coatings, whereas coatings less than about I-centimeter-thick have growth rates less than 0.5 {micro}m/k.y. At the depth of the proposed repository, correlations of uranium concentration and delta oxygen-18 values with regional climate records indicate that unsaturated zone percolation and seepage water chemistries have responded to changes in climate during the last several hundred thousand years.

J.F. Whelan; J.B. Paces; L.A. Neymark; A.K. Schmitt; M. Grove

2006-03-17T23:59:59.000Z

143

PORE-WATER ISOTOPIC COMPOSITION AND UNSATURATED-ZONE FLOW, YUCCA MOUNTAIN, NEVADA  

SciTech Connect (OSTI)

Site characterization at Yucca Mountain, Nevada, the site of a potential high-level radioactive waste repository, has included studies of recharge, flow paths, percolation flux, perched water bodies, and chemical compositions of the water in the thick unsaturated zone (UZ). Samples of pore water from cores of two recently drilled boreholes, USW SD-6 near the ridge top of Yucca Mountain and USW WT-24 north of Yucca mountain, were analyzed for isotopic compositions as part of a study by the US Geological Survey (USGS), in cooperation with the US Department of Energy, under Interagency Agreement DE-AI08-97NV12033. The purpose of this report is to interpret {sup 14}C, {delta}{sup 13}C, {sup 3}H, {delta}D and {delta}{sup 18}O isotopic compositions of pore water from the core of boreholes USW SD-6 and USW WT-24 in relation to sources of recharge and flow paths in the UZ at Yucca Mountain. Borehole designation USW SD-6 and USW WT-24 subsequently will be referred to as SD-6 and WT-24. The sources of recharge and flow paths are important parameters that can be used in a UZ flow model, total system performance assessment (TSPA), and the license application (LA) for the potential repository at Yucca Mountain.

C. Yang

2000-10-23T23:59:59.000Z

144

Simulated effects of changes in the infiltration rate and the hydraulic conductivity structure on the location and configuration of the water table at Yucca Mountain, Nevada  

E-Print Network [OSTI]

which define the head over individual elements in a piecewise fashion (Wang and Anderson, 1982) . THE COMPUTER PROGRAM Introduction to FREESURF I Mathematical modeling of the ground water flow system at Yucca Mountain was undertaken using the finite... conditions at Yucca Mountain. The effect of increased infiltration within the Yucca Mountain block was also examined. The region of flow defined for Yucca Mountain was numerically modeled using a finite element model known as FREESURF I. Neither...

Jasek, Noreen Ann

1991-01-01T23:59:59.000Z

145

Site characterization progress report: Yucca Mountain, Nevada. October 1, 1996--March 31, 1997  

SciTech Connect (OSTI)

The report is the sixteenth in a series issued approximately every six months to report progress and results of site characterization activities being conducted to evaluate Yucca Mountain as a possible geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. This report highlights work started, in progress, and completed during the reporting period. In addition, this report documents and discusses changes to the Office of Civilian Radioactive Waste Management (OCRWM) Site Characterization Program (Program) resulting from the ongoing collection and evaluation of site information, systems analyses, development of repository and waste package designs, and results of performance assessment activities. Details on the activities summarized can be found in the numerous technical reports cited throughout the progress report. Yucca Mountain Site Characterization Project (Project) activities this period focused on implementing the near-term objectives of the revised Program Plan issued last period. Near-term objectives of the revised Program Plan include updating the US Department of Energy`s (DOE) repository siting guidelines to be consistent with a more focused performance-driven program; supporting an assessment in 1998 of the viability of continuing with actions leading to the licensing of a repository; and if the site is suitable, submittal of a Secretarial site recommendation to the President in 2001 and license application the US Nuclear Regulatory Commission (NRC) in 2002. During this reporting period, the Project developed and baselined its long-range plan in December 1996. That revision reflected the detailed fiscal year (FY) 1997 work scope and funding plan previously baselined at the end of FY 1996. Site characterization activities have been focused to answer the major open technical issues and to support the viability assessment.

NONE

1997-10-01T23:59:59.000Z

146

Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1996  

SciTech Connect (OSTI)

The US Geological Survey, in support of the US Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1996. Data collected prior to 1996 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals in support of US Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992--96. At two water-supply wells and a nearby observation well, median water levels for calendar year 1996 were slightly lower (0.3 to 0.4 foot) than for the respective baseline periods. At four other wells in Jackass Flats, median water levels for 1996 were unchanged, slightly lower (0.2 foot), and slightly higher (0.2 and 0.7 foot) than for the respective baseline periods.

LaCamera, R.J.; Locke, G.L.

1997-12-31T23:59:59.000Z

147

Natural Analoges as a Check of Predicted Drift Stability at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Calculations made by the U.S. Department of Energy's Yucca Mountain Project as part of the licensing of a proposed geologic repository (in southwestern Nevada) for the disposal of high-level radioactive waste, predict that emplacement tunnels will remain open with little collapse long after ground support has disintegrated. This conclusion includes the effects of anticipated seismic events. Natural analogues cannot provide a quantitative test of this conclusion, but they can provide a reasonableness test by examining the natural and anthropogenic examples of stability of subterranean openings. Available data from a variety of sources, combined with limited observations by the author, show that natural underground openings tend to resist collapse for millions of years and that anthropogenic subterranean openings have remained open from before recorded history through today. This stability is true even in seismically active areas. In fact, the archaeological record is heavily skewed toward preservation of underground structures relative to those found at the surface.

J. Stuckless

2006-03-10T23:59:59.000Z

148

Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9  

SciTech Connect (OSTI)

In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

NONE

1994-02-01T23:59:59.000Z

149

K/AR dating of clinoptilolite, mordenite, and associated clays from Yucca Mountains, Nevada  

SciTech Connect (OSTI)

Zeolites are abundant in the geologic record in both continental and marine environments. The purpose of the present study is to evaluate the utility of K-bearing zeolites for dating by the K/Ar method to determine the time of zeolite diagenesis at Yucca Mountain, Nevada (Fig. 1). At Yucca Mountain, K-rich clinoptilolite and possibly mordenite are the only potentially K/Ar dateable secondary minerals present in the zeolite-rich tuffs except for some illite/smectites ({ge}10% illite layers) associated with these minerals. Direct dating of K-rich clinoptilolite, the most abundant zeolite in the altered tuffs, is important to delineate zeolite chronology as part of the site characterization of Yucca Mountain.

WoldeGabriel, G.

1993-07-01T23:59:59.000Z

150

The origin and history of alteration and carbonatization of the Yucca Mountain ignimbrites. Volume I  

SciTech Connect (OSTI)

This document contains Volume I of the report entitled The Origin and History of Alteration and Carbonatization of the Yucca Mountain Ignimbrites by Jerry S. Szymanski and a related correspondence with comments by Donald E. Livingston. In the Great Basin, the flow of terrestrial heat through the crust is affected in part by the flow of fluids. At Yucca Mountain, the role of fluids in crustal heat transport is manifested at the surface by youthful calcretes, sinters, bedrock veins, hydrothermal eruption breccias and hydrothermal alteration. This report discusses evidence for recent metasomatism high in the stratigraphic section at Yucca Mountain. Over the last several hundred years, episodes of calcite emplacement contemporaneous with local mafic volcanism have occurred at intervals that are not long in comparison with the isolation time required for a High-Level Radioactive Waste repository.

Szymanski, J.S.

1992-04-01T23:59:59.000Z

151

Secondary plant succession on disturbed sites at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

1994-12-01T23:59:59.000Z

152

Evaluation of past and future alterations in tuff at Yucca Mountain, Nevada, based on the clay mineralogy of drill cores USW G-1, G-2, and G-3  

SciTech Connect (OSTI)

The tuffs at Yucca Mountain in south-central Nevada are being studied by the Yucca Mountain Project (YMP) to determine their suitability for a high-level radioactive waste repository. For predictive purposes, it is important to understand the alteration history of Yucca Mountain and to know how the minerals in Yucca Mountain tuffs respond to changing conditions such as elevated temperatures. The clay mineralogy of these tuffs has been examined using x-ray powder diffraction, and approximation temperatures of alteration have been determined using available clay mineral data and fluid inclusion analyses. Also, several illites from drill holes USW G-1 and G-2 have been dated using K/Ar techniques, yielding ages of about 11 Myr. The clay mineral in Yucca Mountain tuffs are predominantly interstratified illite/smectites, with minor amounts of chloride, kaolinite, and interstratified chlorite/smectite at depth in USW G-1 and G-2. The reactions observed for these illite/smectites are similar to those observed in pelitic rocks. With depths, the illite/smectites transform from random interstratifications (R = 0) through ordered intermediates (R = 1) to illite in USW G-2 and to Kalkberg (R {ge} 3) interstratifications in USW G-1. The illite/smectites in USW G-3 have not significantly transformed. It appears that the illites in deeper rock results from hydrothermal and diagenetic reactions of earlier-formed smectites. These data demonstrate that the rocks at depth in the northern end of Yucca Mountain were significantly altered about 11 Myr ago. Both clay mineralogy and fluid inclusions suggest that the rocks at depth in USW G-2 have been subjected to postdepositional temperatures of at least 275{degree}C, those in USW G-1 have reached 200{degree}C, and USW G-3 rocks probably have not exceeded 100{degree}C. 64 refs., 9 figs., 3 tabs.

Bish, D.L.

1989-03-01T23:59:59.000Z

153

Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction  

SciTech Connect (OSTI)

Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

R.A. Levich; J.S. Stuckless

2006-09-25T23:59:59.000Z

154

Use of Integrated Decay Heat Limits to Facilitate Spent Nuclear Fuel Loading to Yucca Mountain  

SciTech Connect (OSTI)

As an alternative to the use of the linear loading or areal power density (APD) concept, using integrated decay heat limits based on the use of mountain-scale heat transfer analysis is considered to represent the thermal impact from the deposited spent nuclear fuel (SNF) to the Yucca Mountain repository. Two different integrated decay heat limits were derived to represent both the short-term (up to 50 years from the time of repository closure) and the long-term decay heat effect (up to 1500 years from the time of repository closure). The derived limits were found to appropriately represent the drift wall temperature limit (200 deg. C) and the midway between adjacent drifts temperature limit (96 deg. C) as long as used fuel is uniformly loaded into the mountain. These limits can be a useful practical guide to facilitate the loading of used fuel into Yucca Mountain. (authors)

Li, Jun; Yim, Man-Sung; McNelis, David [Department of Nuclear Engineering, North Carolina State University (United States); Piet, Steven [Idaho National Laboratory (United States)

2007-07-01T23:59:59.000Z

155

Burnup Credit Approach Used in the Yucca Mountain License Application  

SciTech Connect (OSTI)

The United States Department of Energy has submitted a license application (LA) for construction authorization of a deep geologic repository at Yucca Mountain, Nevada. The license application is currently under review by the United States Nuclear Regulatory Commission (NRC). This paper will describe the methodology and approach used in the LA to address the issue of criticality and the role of burnup credit during the postclosure period. The most significant and effective measures for prevention of criticality in the repository include multiple redundant barriers that act to isolate fissionable material from water (which can act as a moderator, corrosive agent, and transporter of fissile material); inherent geometry of waste package internals and waste forms; presence of fixed neutron absorbers in waste package internals; and fuel burnup for commercial spent nuclear fuel. A probabilistic approach has been used to screen criticality from the total system performance assessment. Within the probabilistic approach, criticality is considered an event, and the total probability of a criticality event occurring within 10,000 years of disposal is calculated and compared against the regulatory criterion. The total probability of criticality includes contributions associated with both internal (within waste packages) and external (external to waste packages) criticality for each of the initiating events that could lead to waste package breach. The occurrence of and conditions necessary for criticality in the repository have been thoroughly evaluated using a comprehensive range of parameter distributions. A simplified design-basis modeling approach has been used to evaluate the probability of criticality by using numerous significant and conservative assumptions. Burnup credit is used only for evaluations of in-package configurations and uses a combination of conservative and bounding modeling approximations to ensure conservatism. This paper will review the NRC regulatory criteria relevant to postclosure criticality, explain the role of criticality within the overall repository performance assessment, describe the strategy for preventing criticality via design features and waste form properties, and discuss the numerous considerations relevant to criticality and burnup credit for spent nuclear fuel disposed of in a geologic repository, with emphasis on the burnup credit approach and analyses.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2010-01-01T23:59:59.000Z

156

Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006  

SciTech Connect (OSTI)

This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report.

Smith, Ken

2007-11-26T23:59:59.000Z

157

Modeling Temporal-Spatial Earthquake and Volcano Clustering at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The proposed national high-level nuclear repository at Yucca Mountain is close to Quaternary faults and cinder cones. The frequency of these events is low, with indications of spatial and temporal clustering, making probabilistic assessments difficult. In an effort to identify the most likely intrusion sites, we based a 3D finite element model on the expectation that faulting and basalt intrusions are primarily sensitive to the magnitude and orientation of the least principal stress in extensional terranes. We found that in the absence of fault slip, variation in overburden pressure caused a stress state that preferentially favored intrusions at Crater Flat. However, when we allowed central Yucca Mountain faults to slip in the model, we found that magmatic clustering was not favored at Crater Flat or in the central Yucca Mountain block. Instead, we calculated that the stress field was most encouraging to intrusions near fault terminations, consistent with the location of the most recent volcanism at Yucca Mountain, the Lathrop Wells cone. We found this linked fault and magmatic system to be mutually reinforcing in the model in that dike inflation favored renewed fault slip.

T. Parsons; G.A. Thompson; A.H. Cogbill

2006-05-31T23:59:59.000Z

158

Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3  

SciTech Connect (OSTI)

In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

NONE

1986-05-01T23:59:59.000Z

159

Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2  

SciTech Connect (OSTI)

In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

NONE

1986-05-01T23:59:59.000Z

160

Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1  

SciTech Connect (OSTI)

In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

NONE

1986-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE`s Yucca Mountain studies: What are they? Why are they being done?  

SciTech Connect (OSTI)

This booklet is about the disposal of high-level nuclear waste in the United States. It is intended for readers who do not have a technical background. It discusses why scientists and engineers think high-level nuclear waste may be disposed of safely underground. It also describes why Yucca Mountain, Nevada, is being studied and provides basic information about those studies.

NONE

1990-12-01T23:59:59.000Z

162

Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain, Nevada  

E-Print Network [OSTI]

Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain was heated to replicate the effects of long-term storage of decaying nuclear waste and to study the effects for the long- term storage of high-level nuclear waste from reactors and decom- missioned atomic weapons

Snieder, Roel

163

Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV  

SciTech Connect (OSTI)

This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

I. Wong

2004-11-05T23:59:59.000Z

164

Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991; Volume 1  

SciTech Connect (OSTI)

This report summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada`s Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona.

Fowler, C.S. [Cultural Resources Consultants Ltd., Reno, NV (United States)

1991-10-15T23:59:59.000Z

165

A revised Litostragraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada  

SciTech Connect (OSTI)

An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain.

R.W. Spengler; F.M. Byers; R.P. Dickerson

2006-03-24T23:59:59.000Z

166

WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY  

SciTech Connect (OSTI)

One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable materials, such as hydrotalcite, do not have sufficient affinity to be useful getters. Despite these problems, the great increase in the repository performance and corresponding decrease in uncertainty promised by a useful getter has generated significant interest in these materials. This report is the result a workshop sponsored by the Office of Civilian Radioactive Waste Management and Office of Science and Technology and International of the DOE to assess the state of research in this field.

K.C. Holt

2006-03-13T23:59:59.000Z

167

Multiscale Thermohydrologic Model Supporting the Licence Application for the Yucca Mountain Repository  

SciTech Connect (OSTI)

The MultiScale ThermoHydrologic Model (MSTHM) predicts thermal-hydrologic (TH) conditions within emplacement tunnels (drifts) and in the adjoining host rock at Yucca Mountain, Nevada, which is the proposed site for a radioactive waste repository in the US. Because these predictions are used in the performance assessment of the Yucca Mountain repository, they must address the influence of variability and uncertainty of the engineered- and natural-system parameters that significantly influence those predictions. Parameter-sensitivity studies show that the MSTHM predictions adequately propagate the influence of parametric variability and uncertainty. Model-validation studies show that the influence of conceptual-model uncertainty on the MSTHM predictions is insignificant compared to that of parametric uncertainty, which is propagated through the MSTHM.

T.A> Buscheck; Y. Sun; Y. Hao

2006-03-28T23:59:59.000Z

168

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index  

SciTech Connect (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

NONE

1988-12-01T23:59:59.000Z

169

Mineralogical Charecteristics of Yucca Mountain Alluvium and Effects on Neptunium (V) Sorption  

SciTech Connect (OSTI)

Saturated alluvium is expected to serve as an important natural barrier to radionuclide transport at Yucca Mountain, the proposed geological repository for disposal of high-level nuclear wastes. {sup 237}Np(V) (half-life = 2.4 x 10{sup 5} years) has been identified as one of the radionuclides that could potentially contribute the greatest dose to humans because of its relatively high solubility and weak adsorption to volcanic tuffs under oxidizing conditions. The previous studies suggested that the mineralogical characteristics of the alluvium play an important role in the interaction between Np(V) and the alluvium. The purpose of this study is to further evaluate the mineralogical basis for Neptunium (V) sorption by saturated alluvium located down-gradient of Yucca Mountain.

M. Ding; S.J. Chipera; P.W. Reimus

2006-09-05T23:59:59.000Z

170

Motion to Withdraw from Yucca Mountain application | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMayCrossColoradoMotion to Withdraw from Yucca

171

TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM  

SciTech Connect (OSTI)

The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

NA

2005-10-25T23:59:59.000Z

172

Strontium isotope geochemistry of soil and playa deposits near Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The isotopic composition of strontium contained in the carbonate fractions of soils provides an excellent tracer which can be used to test models for their origin. This paper reports data on surface coatings and cements, eolian sediments, playas and alluvial fan soils which help to constrain a model for formation of the extensive calcretes and fault infilling in the Yucca Mountain region. The playas contain carbonate with a wide range of strontium compositions; further work will be required to fully understand their possible contributions to the pedogenic carbonate system. Soils from an alluvial fan to the west of Yucca Mountain show that only small amounts of strontium are derived from weathering of silicate detritus. However, calcretes from a fan draining a carbonate terrane have strontium compositions dominated locally by the limestone strontium component. Although much evidence points to an eolian source for at least some of the strontium in the pedogenic carbonates near Yucca Mountain, an additional component or past variation of strontium composition in the eolian source is required to model the pedogenic carbonate system.

Marshall, B.D.; Mahan, S.A.

1994-12-31T23:59:59.000Z

173

Mineralogy of drill hole UE-25p#1 at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Drill hole UE-25p{number_sign}1 is located east of the candidate repository block at Yucca Mountain, Nevada, and as such provides information on the geology of the accessible environment. The hole was drilled to a depth of 1807 m (5923 ft) and is unique in that it penetrates tuffs that are older than any volcanic units previously encountered in drill holes at Yucca Mountain. In addition, it is the only hole drilled to date that penetrates the base of the tuff sequence and enters the underlying Paleozoic dolomite basement. We have examined the mineralogy of drill cuttings, core, and sidewall samples from drill hole UE-25p{number_sign}1 is similar to that in the other drill holes examined at Yucca Mountain. The only significant differences in mineralogy from other drill holes include the presence of dolomite in the Paleozoic carbonate rocks and the occurrence of up to 3% laumontite, a Ca-zeolite, in four samples of the Lithic Ridge Tuff. 15 refs., 5 figs., 4 tabs.

Chipera, S.J.; Bish, D.L.

1988-05-01T23:59:59.000Z

174

Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding  

SciTech Connect (OSTI)

The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories.

Pruess, K.

1998-08-01T23:59:59.000Z

175

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982  

Broader source: Energy.gov [DOE]

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

176

Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

SciTech Connect (OSTI)

The Proposed Action addressed in this EIS is to construct, operate and monitor, and eventually close a geologic repository at Yucca Mountain in southern Nevada for the disposal of spent nuclear fuel and high-level radioactive waste currently in storage at 72 commercial and 5 DOE sites across the United States. The EIS evaluates (1) projected impacts on the Yucca Mountain environment of the construction, operation and monitoring, and eventual closure of the geologic repository; (2) the potential long-term impacts of repository disposal of spent nuclear fuel and high-level radioactive waste; (3) the potential impacts of transporting these materials nationally and in the State of Nevada; and (4) the potential impacts of not proceeding with the Proposed Action.

N /A

1999-08-13T23:59:59.000Z

177

Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada; Iterative Performance Assessment, Phase 2  

SciTech Connect (OSTI)

Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 {times} 200 km) and subregional (50 {times} 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved.

Ahola, M.; Sagar, B. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1992-10-01T23:59:59.000Z

178

The following changes to the EIA in the Yucca Mountain Rule Docket (A-95-12, V-B-2) were made in this document to correct typographical and other minor errors in the text.  

E-Print Network [OSTI]

The following changes to the EIA in the Yucca Mountain Rule Docket (A-95-12, V-B-2) were made Radiation Protection Standards for Yucca Mountain, Nevada" Pg. ii Item 4.1 changed to read, "Performance Standards with Expected Values of TSPA-SR Calculations for a Repository at Yucca Mountain for Nominal

179

Multiple-point statistical prediction on fracture networks at Yucca Mountain  

SciTech Connect (OSTI)

In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

2009-05-01T23:59:59.000Z

180

Origins of secondary silica within Yucca Mountain, Nye County, southwestern Nevada  

SciTech Connect (OSTI)

The accuracy of predictions of the hydrologic response of Yucca Mountain to future climate depends largely on how well relations between past climate and hydrology can be resolved. To advance this reconstruction, secondary minerals in and near Yucca Mountain, deposited by ground waters that originated both as surficial recharge at Yucca Mountain and from regional aquifers, are being studied to determine past ground-water sources and chemistries. Preliminary data on stable oxygen isotopes indicate that, although silica (opal, quartz, and chalcedony) and calcite and have formed in similar settings and from somewhat similar fluids, the authors have found no compelling evidence of coprecipitation or formation from identical fluids. If verified by further analyses, this precludes the use of silica-calcite mineral pairs for precise geothermometry. The preliminary data also indicate that opal and calcite occurrences in pedogenic and unsaturated-zone settings are invariably compatible with formation under modern ambient surface or subsurface temperatures. Silica and calcite stable-isotope studies are being integrated with soil geochemical modeling. This modeling will define the soil geochemical condition (climate) leading to opal or calcite deposition and to the transfer functions that may apply at the meteorologic soil unsaturated-zone interfaces. Additional study of pedogenic and unsaturated-zone silica is needed to support these models. The hypothesis that the transformation of vapor-phase tridymite to quartz requires saturated conditions is being tested through stable oxygen-isotope studies of lithophysal tridymite/quartz mixtures. Should this hypothesis be verified, mineralogic analysis by X-ray diffraction theoretically would permit reconstruction of past maximum water-table elevations.

Moscati, R.J.; Whelan, J.F.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Yucca Mountain Waste Package Closure System Robotic Welding and Inspection System  

SciTech Connect (OSTI)

The Waste Package Closure System (WPCS), for the closure of radioactive waste in canisters for permanent storage of spent nuclear fuel (SNF) and high-level waste in the Yucca Mountain Repository was designed, fabricated, and successfully demonstrated at the Idaho National Laboratory (INL). This article focuses on the robotic hardware and tools necessary to remotely weld and inspect the closure lid welds. The system was operated remotely and designed for use in a radiation field, due to the SNF contained in the waste packages being closed.

C. I. Nichol; D. P. Pace; E. D. Larsen; T. R. McJunkin; D. E. Clark; M. L. Clark; K. L. Skinner; A. D. Watkins; H. B. Smartt

2011-10-01T23:59:59.000Z

182

A FRAMEWORK FOR THE ANALYSIS OF LOCALIZED CORROSION AT THE PROPOSED YUCCA MOUNTAIN REPOSITORY  

SciTech Connect (OSTI)

Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository: (1) the most likely degradation process; (2) controls the delay time for radionuclide transport from the waste package; and (3) determines when packages will be penetrated and the shape size and distribution of those penetrations. In this presentation a framework for the analysis of localized corrosion is presented and demonstrated for a scenario: (1) water chemistry of mixed salt solutions (sodium chloride-potassium nitrate); and (2) time-temperature-relative humidity profiles for a hot, mid and cool temperature waste package.

Dr. J.H. Payer

2006-04-18T23:59:59.000Z

183

Strategic Basis for License Application Planning for a Potential Yucca Mountain Repository  

SciTech Connect (OSTI)

If Yucca Mountain, Nevada is designated as the site for development of a geologic repository for disposal of spent nuclear fuel and high-level radioactive waste, the Department of Energy (DOE) must obtain Nuclear Regulatory Commission (NRC) approval first for repository construction, then for an operating license, and, eventually, for repository closure and decommissioning. The licensing criteria defined in Code of Federal Regulations, Title 10, Part 63 (10 CFR Part 63) establish the basis for these NRC decisions. Submittal of a license application (LA) to the NRC for authorization to construct a repository at the Yucca Mountain site is, at this point, only a potential future action by the DOE. The policy process defined in the Nuclear Waste Policy Act (NWPA), as amended, for recommendation and designation of Yucca Mountain as a repository site makes it difficult to predict whether or when the site might be designated. The DOE may only submit a LA to the NRC if the site designation takes effect. In spite of this uncertainty, the DOE must take prudent and appropriate action now, and over the next several years, to prepare for development and timely submittal of a LA. This is particularly true given the need for the DOE to develop, load, and certify the operation of its electronic information system to provide access to its relevant records as part of the licensing support network (LSN) in compliance with NRC requirements six months prior to LA submittal. The DOE must also develop a LA, which is a substantially different document from those developed to support a Site Recommendation (SR) decision. The LA must satisfy NRC licensing criteria and content requirements, and address the acceptance criteria defined by the NRC in its forthcoming Yucca Mountain Review Plan (YMRP). The content of the LA must be adequate to facilitate NRC acceptance and docketing for review, and the LA and its supporting documents must provide the documented basis for the NR C findings required for a construction authorization. The LA must also support a licensing proceeding before an Atomic Safety and Licensing Board panel prior to NRC action on any decision to authorize construction. The DOE has established a strategic basis for planning that is intended to provide the framework for development of an integrated plan for activities leading to preparation and submittal of a LA.

Newberry, C. M.; Brocoum, S. J.; Gamble, R. P.; Murray, R. C.; Cline, M.

2002-02-26T23:59:59.000Z

184

Geochemistry of Natural Components in the Near-Field Environment, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage, and pore water. The chemical compositions of these components have been determined for assessing possible chemical and mineralogical reactions that may occur after nuclear waste is emplaced. The rock hosting the proposed repository is relatively uniform as shown by a mean coefficient of variation (CV) of 9 percent for major elements. In contrast, compositional variations of dust (bulk and water-soluble fractions), pore water, and seepage are large with mean CVs ranging from 28 to 64 percent. (authors)

Peterman, Zell E. [Yucca Mountain Project Branch, U.S. Geological Survey, MS 963 Box 25046 Denver Federal Center, 6th and Kipling Sts., Denver, CO, 80225 (United States); Oliver, Thomas A. [c/o U.S. Geological Survey, S.M. Stoller Corporation, MS 421 Box 25046 Denver Federal Center, Denver, CO, 80225 (United States)

2007-07-01T23:59:59.000Z

185

Alternative configurations for the waste-handling building at the Yucca Mountain Repository  

SciTech Connect (OSTI)

Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared.

NONE

1990-08-01T23:59:59.000Z

186

Site environmental report for calendar year 1994, Yucca Mountain Site, Nye County, Nevada.  

SciTech Connect (OSTI)

The Yucca Mountain Site Characterization office has established an environmental program to ensure that facilities are operated in order to protect, maintain, and restore environmental quality, minimize potential threats to the environment and the public, and comply with environmental policies and US DOE orders. The status of the environmental program has been summarized in this annual report to characterize performance, confirm compliance with environmental requirements, and highlight significant programs and efforts during CY 1994. Monitoring, archaeology, groundwater, ecosystems, tortoise conservation, waste minimization, etc., are covered.

NONE

1995-06-01T23:59:59.000Z

187

Current Status and Potential Impacts Regarding the Proposed Development of a Rail Line to the Yucca Mountain Nuclear Waste Repository  

SciTech Connect (OSTI)

This paper provides a description of the current status regarding the proposed development of a rail line to the Yucca Mountain Nuclear Waste Repository in Nye County, Southern Nevada, which includes potential impacts analyzed during the National Environmental Policy Act (NEPA) process, and the subsequent creation of an Environmental Impact Statement (EIS) for the rail line. Potential impacts are addressed within the context of impacts to natural and human environmental resources found within the geographic area of the proposed federal project. Potential impacts to these resources have been fully analyzed in the Rail Alignment Draft EIS (DEIS). This paper includes a summary of the potential impacts analyzed in the DEIS. Examples of potential impacts include land use conflicts, air quality, water use, and impacts to biological and cultural resources, among others. In conclusion: Based on its obligations under the NWPA and its decision to select the mostly rail scenario for the transportation of spent nuclear fuel and high-level radioactive waste, DOE needs to ship these materials by rail in Nevada to a repository at Yucca Mountain. DOE prepared the Rail Alignment EIS to provide the background, data, information, and analyses to help decision makers and the public understand the potential environmental impacts that could result from constructing and operating a railroad for shipment of spent nuclear fuel, high-level radioactive waste, and other materials from an existing rail line in Nevada to a repository at Yucca Mountain. This railroad would consist of a rail line, railroad operations support facilities, and other related infrastructure. DOE will use the Rail Alignment EIS to decide whether to construct and operate the proposed railroad, and if so, to: - Select a rail alignment (Caliente rail alignment or Mina rail alignment) in which to construct the railroad; - Select the common segments and alternative segments within either a Caliente rail alignment or a Mina rail alignment. The Department would use the selected common segments and alternative segments to identify the public lands to be included in right-of-way applications; - Decide where to construct proposed railroad operations support facilities; - Decide whether to restrict use of the rail line to DOE trains, or whether to allow commercial shippers to operate over the rail line; and - Determine what mitigation measures to implement. (authors)

Lanthrum, G. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, DC (United States); Gunnerson, J. [Booz Allen Hamilton, Las Vegas, NV (United States)

2008-07-01T23:59:59.000Z

188

Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range  

SciTech Connect (OSTI)

Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Wernicke, B.P. [California Inst. of Tech., Pasadena, CA (United States). Div. of Geological and Planetary Sciences

1996-03-01T23:59:59.000Z

189

Department of Energy Files Motion to Withdraw Yucca Mountain License  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S.Development ProjectsCompleted Demo Project

190

Coupled In-Rock and In-Drift Hydrothermal Model Stuudy For Yucca Mountain  

SciTech Connect (OSTI)

A thermal-hydrologic-natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rockmass in the proposed Yucca Mountain repository. The multi-physics problem is solved with MULTIFLUX in which a lumped-parameter computational fluid dynamics model is iterated with TOUGH2. The solution includes natural convection, conduction, and radiation for heat as well as moisture convection and diffusion for moisture transport with half waste package scale details in the drift, and mountain-scale heat and moisture transport in the porous and fractured rock-mass. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2 based, integrated model are presented.

G. Danko; J. Birkholzer; D. Bahrami

2006-12-18T23:59:59.000Z

191

Modeling studies of gas movement and moisture migration at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Modeling studies on moisture redistribution processes that are mediated by gas phase flow and diffusion have been carried out. The problem addressed is the effect of a lowered humidity of the soil gas at the land surface on moisture removal from Yucca Mountain, the potential site for a high-level nuclear waste repository. At the land surface, humid formation gas contacts much drier atmospheric air. Near this contact, the humidity of the soil gas may be considerably lower than at greater depth, where the authors expect equilibrium with the liquid phase and close to 100% humidity. The lower relative humidity of the soil gas may be modeled by imposing, at the land surface, an additional negative capillary suction corresponding to vapor pressure lowering according to Kelvin`s Equation, thus providing a driving force for the upward movement of moisture in both the vapor and liquid phases. Sensitivity studies show that moisture removal from Yucca Mountain arising from the lowered-relative-humidity boundary condition is controlled by vapor diffusion. There is much experimental evidence in the soil literature that diffusion of vapor is enhanced due to pore-level phase change effects by a few orders of magnitude. Modeling results presented here will account for this enhancement in vapor diffusion.

Tsang, Y.W.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

192

Site characterization progress report: Yucca Mountain, Nevada, October 1, 1993--March 31, 1994  

SciTech Connect (OSTI)

This report is the tenth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Also included in this report are descriptions of activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies. The Executive Summary is intended to provide a summary of major decisions, activities, accomplishments, and issues of interest during the reporting period. Chapter 1, Introduction, provides background information to assist the reader in understanding the current status of the program. Chapter 2 provides specific detailed discussions of activities conducted during the current reporting period and has two major divisions. Section 2.1, Preparatory Activities, provides information on select preparatory activities necessary to conduct site characterization and design activities. Sections 2.2 through 2.8 provide specific details on studies and activities conducted during the reporting period and follow the original structure of the Department`s 1988 Site Characterization Plan. Chapter 3 contains the current summary schedule, while Chapter 4 provides a description of the program outreach, including activities during the reporting period, in both the international program and public outreach. Chapter 5 presents an epilogue of significant events that occurred after the end of the reporting period.

NONE

1994-10-01T23:59:59.000Z

193

Mechanical defradation of Emplacement Drifts at Yucca Mountain- A Modeling Case Study. Part I: Nonlithophysal Rock  

SciTech Connect (OSTI)

This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation.

M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

2006-07-05T23:59:59.000Z

194

Site environmental report for calendar year 1997, Yucca Mountain Site, Nye County, Nevada  

SciTech Connect (OSTI)

This document is the seventh annual Site Environmental Report (SER) submitted by the Yucca Mountain Site Characterization Office (YMSCO) to describe the environmental program implemented by the US Department of Energy (DOE) at Yucca Mountain. As prescribed by the Nuclear Waste Policy Act (NWPA, 1982), this program ensures that site characterization activities are conducted in a manner that minimizes any significant adverse impacts to the environment and complies with all applicable laws and regulations. The most recent guidelines for the preparation of the SER place major emphasis on liquid and gaseous emissions of radionuclides, pollutants or hazardous substances; human exposure to radionuclides; and trends observed by comparing data collected over a period of years. To date, the YMP has not been the source of any radioactive emissions or been responsible for any human exposure to radionuclides. Minuscule amounts of radioactivity detected at the site are derived from natural sources or from dust previously contaminated by nuclear tests conducted in the past at the NTS. Because data for only a few years exist for the site, identification of long-term trends is not yet possible. Despite the lack of the aforementioned categories of information requested for the SER, the YMP has collected considerable material relevant to this report. An extensive environmental monitoring and mitigation program is currently in place and is described herein. Also, as requested by the SER guidelines, an account of YMP compliance with appropriate environmental legislation is provided.

NONE

1998-10-01T23:59:59.000Z

195

DOE Marks Milestone in Submitting Yucca Mountain License Application |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclear Plants | Department ofThisProject

196

Deep Vs Profiling Along the Top of Yucca Mountain Using a Vibroseis Source and Surface Waves  

SciTech Connect (OSTI)

Yucca Mountain, Nevada, was approved as the site for development of the geologic repository for high-level radioactive waste and spent nuclear fuel in the United States. The U.S. Department of Energy has been conducting studies to characterize the site and assess its future performance as a geologic repository. As part of these studies, a program of deep seismic profiling, to depths of 200 m, was conducted along the top of Yucca Mountain to evaluate the shear-wave velocity (V{sub s}) structure of the repository block. The resulting V{sub s} data were used as input into the development of ground motions for the preclosure seismic design of the repository and for postclosure performance assessment. The noninvasive spectral-analysis-of-surface-waves (SASW) method was employed in the deep profiling. Field measurements involved the use of a modified Vibroseis as the seismic source. The modifications allowed the Vibroseis to be controlled by a signal analyzer so that slow frequency sweeps could be performed while simultaneous narrow-band filtering was performed on the receiver outputs. This process optimized input energy from the source and signal analysis of the receiver outputs. Six deep V{sub s} profiles and five intermediate-depth (about 100 m) profiles were performed along the top of Yucca Mountain over a distance of about 5 km. In addition, eleven shallower profiles (averaging about 45-m deep) were measured using a bulldozer source. The shallower profiles were used to augment the deeper profiles and to evaluate further the near-surface velocity structure. The V{sub s} profiles exhibit a strong velocity gradient within 5 m of the surface, with the mean V{sub s} value more than doubling. Below this depth, V{sub s} gradually increases from a mean value of about 900 to 1000 m/s at a depth of 150 m. Between the depths of 150 and 210 m, V{sub s} increases more rapidly to about 1350 m/s, but this trend is based on limited data. At depths less than 50 m, anisotropy in V{sub s} was measured for surveys conducted parallel and perpendicular to the mountain crest, with the velocity parallel to the crest about 200 m/s higher. In the 5- to 50-m depth range, the average coefficient of variation (COV) of all data is about 0.25. Below 75 m, where the data set is smaller and includes measurements only parallel to the crest, the average COV decreases to a value of about 0.11.

K. Stokoe; B. Rosenblad; I. Wong; J. Bay; P. Thomas; W. Silva

2004-03-16T23:59:59.000Z

197

Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2003 to September 30, 2004  

SciTech Connect (OSTI)

This report describes the seismicity and earthquake monitoring activities within the Yucca Mountain region during fiscal year 2004 (FY2004 - October 1, 2003, through September 30, 2004) based on operation of the Southern Great Basin Digital Seismic Network (SGBDSN). Network practices and earthquake monitoring conducted at the Nevada Seismological Laboratory (NSL) under DOE directives for prior fiscal years are covered in similar yearly reports (see references). Real-time systems, including regional data telemetry and data management at NSL, provide for the automatic determination of earthquake locations and magnitudes and notification of important earthquakes in the region to UNR staff and DOE management. All waveform and meta-data, including automatic locations, phase arrival information, and analyst reviewed information, are managed through a relational database system allowing quick and reliable evaluation and analysis of ongoing earthquake activity near Yucca Mountain. This network, which contains weak-motion and strong-motion instrumentation, addresses the seismic hazard of the Yucca Mountain area by providing accurate earthquake magnitudes for earthquake recurrence estimates, spatial hypocentral control to very low magnitudes for identifying and assessing active faults and verifying tectonic models, true ground motions over the complete range of expected earthquake amplitudes for developing predictive models, and earthquake source information for characterizing active faulting. The Nevada Seismological Laboratory operated a 30-station monitoring network within a ring of approximately 50 km radius around Yucca Mountain during FY2004. This year showed the second-lowest seismic moment rate in the NTS and Yucca Mountain region for any fiscal year reporting period since prior to the 1992 M 5.6 Little Skull Mountain (LSM) earthquake. A total of 2180 earthquakes were located for FY2004. The largest event during FY2004 was M 2.99 and there were only 12 earthquakes greater than M 2.00. This is the second year since the LSM event that no M ? 3.00 earthquake was recorded within 65 km of Yucca Mountain. (FY2003 was the first.) For FY2004, focal mechanisms were developed for 24 earthquakes. These focal mechanisms show predominantly strike-slip motion with a tension axis oriented WNW-ESE. Four earthquakes in FY2004 were within 10 km of Yucca Mountain, all having M < 0. A total of 31 earthquakes have occurred in this immediate zone around Yucca Mountain since the digital network operations started in October 1995. Activity in the Death Valley area was monitored by several analog stations still maintained in conjunction with the Yucca Mountain monitoring. There is continuing aftershock activity in the zone of the 1993 M 6.1 Eureka Valley and 1999 M 5.6 Scottyís Junction earthquakes. Overall, the seismicity level of the Death Valley area is significantly greater than that in the vicinity of Yucca Mountain.

von Seggern, David; Smith, Ken

2007-10-15T23:59:59.000Z

198

ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA  

SciTech Connect (OSTI)

The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.

C. Harrington

2004-10-25T23:59:59.000Z

199

Environmental Impacts of Transportation to the Potential Repository at Yucca Mountain  

SciTech Connect (OSTI)

The Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada analyzes a Proposed Action to construct, operate, monitor, and eventually close a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. As part of the Proposed Action, the EIS analyzes the potential impacts of transporting commercial and DOE spent nuclear fuel and high-level radioactive waste to Yucca Mountain from 77 sites across the United States. The analysis includes information on the comparative impacts of transporting these materials by truck and rail and discusses the impacts of building a rail line or using heavy-haul trucks to move rail casks from a mainline railroad in Nevada to the site. This paper provides an overview of the analyses and the potential impacts of these transportation activities. The potential transportation impacts were looked at from two perspectives: transportation of spent nuclear fuel and high-level radioactive waste by legal-weight truck or by rail on a national scale and impacts specific to Nevada from the transportation of these materials from the State borders to the Yucca Mountain site. In order to address the range of impacts that could result from the most likely modes, legal-weight truck and rail, the EIS employed two analytical scenarios--mostly legal-weight truck and mostly rail. Estimated national transportation impacts were based on 24 years of transportation activities. Approximately 8 fatalities could occur from all causes in the nationwide general population from incident-free transportation activities of the mostly legal-weight truck scenario and about 4 from the mostly rail scenario. The analysis examined the radiological consequences under the maximum foreseeable accident scenario and also overall accident risk. The overall accident risk over the 24 year period would be about 0.0002 latent cancer fatality for the mostly legal-weight truck scenario and about 0.0005 latent cancer fatality for the mostly rail scenario. The maximum reasonably foreseeable accident scenario resulted in 0.55 latent cancer fatality for the legal-weight truck case and 5 latent cancer fatalities in the case of mostly rail. The EIS also analyzed the impacts associated with the transportation of spent nuclear fuel and high-level radioactive waste in the State of Nevada. This included: constructing a branch rail line and using it to ship waste to the repository; upgrading highways in Nevada for use by heavy-haul trucks; constructing and operating an intermodal transfer station; and transporting personnel and materials to support construction and operation of the repository.

R.L. Sweeney; R. Best; P. Bolton; P. Adams

2002-01-03T23:59:59.000Z

200

Yucca Mountain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2 ContinuingYanYoussef

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2002, to September 30, 2003  

SciTech Connect (OSTI)

Earthquake activity in the Yucca Mountain from October 1, 2002 through September 30, 2003 (FY03) is assessed and compared with previous activity in the region. FY03 is the first reporting year since the 1992 M 5.6 Little Skull Mountain earthquake with no earthquakes greater than M 3.0 within 65 km of Yucca Mountain. In addition, FY03 includes the fewest number of earthquakes greater than M 2.0 in any reporting year since the LSM event. With 3075 earthquakes in the catalog, FY03 represents the second largest number of earthquakes (second to FY02) since FY96 when digital seismic network operations began. The largest event during FY03 was M 2.78 in eastern NTS and there were only 8 earthquakes greater than M 2.0.

Smith, Ken; von Seggern, David

2007-12-04T23:59:59.000Z

202

Site characterization progress report: Yucca Mountain, Nevada, October 1, 1994--March 31, 1995, Number 12. Nuclear Waste Policy Act (Section 113)  

SciTech Connect (OSTI)

During the first half of fiscal year 1995, most activities at the Yucca Mountain Site Characterization Project were directed at implementing the Program Plan developed by the Office of Civilian Radioactive Waste Management. The Plan is designed to enable the Office to make measurable and significant progress toward key objectives over the next five years within the financial resources that can be realistically expected. Activities this period focused on the immediate goal of determining by 1998 whether Yucca Mountain, Nevada, is technically suitable as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Work on the Project advanced in several critical areas, including programmatic activities such as issuing the Program Plan, completing the first technical basis report to support the assessment of three 10 CFR 960 guidelines, developing the Notice of Intent for the Environmental Impact Statement, submitting the License Application Annotated Outline, and beginning a rebaselining effort to conform with the goals of the Program Plan. Scientific investigation and analysis of the site and design and construction activities to support the evaluation of the technical suitability of the site also advanced. Specific details relating to all Project activities and reports generated are presented in this report.

NONE

1995-08-01T23:59:59.000Z

203

Charecterization of Seepage in the Exploratory Studies Facility, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Following a 5-month period of above-average precipitation during the winter of 2004-2005, water was observed seeping into the South Ramp section of the Exploratory Studies Facility of the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. Samples of the seepage were collected and analyzed for major ions, trace metals, and delta deuterium and delta oxygen-18 values in an effort to characterize the water and assess the interaction of seepage with anthropogenic materials used in the construction of the proposed repository. As demonstrated by the changes in the chemistry of water dripping from a rock bolt, interaction of seepage with construction materials can alter solution chemistry and oxidation state.

T.A. Oliver; J.F. Whelan

2006-03-20T23:59:59.000Z

204

Initial Process and Expected Outcomes for Preliminary Identification of Routes to Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing and implementing a safe, secure and efficient transportation system to ship spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from commercial and DOE sites to the proposed Yucca Mountain repository. The Office of Logistics Management (OLM) within OCRWM has begun to work with stakeholders to identify preliminary national suites of highway and rail routes that could be used for future shipments OLM is striving to develop a planning-basis set of routes that will support long-lead time logistical analyses (i.e., five or more years before shipment). The results will represent a starting point for discussions between DOE and corridor jurisdictions, and for shipping arrangements between DOE and carriers. This fulfills a recommendation of the National Academy of Sciences report on SNF and HLW transportation that 'DOE should identify and make public its suite of preferred highway and rail routes for transporting spent fuel and high level waste to a federal repository as soon as practicable to support State, Tribal and local planning, especially for emergency responder preparedness'. OLM encourages and supports participation of program stakeholders in a process to identify suites of national routes. The principal objective is to identify preliminary suites of national routes that reflect responsible consideration of the interests of a broad cross-section of stakeholders. This will facilitate transportation planning activities to help meet program goals, including providing an advanced planning framework for State and Tribal authorities; supporting a pilot program for providing funding under Section 180(c) of the Nuclear Waste Policy Act; allowing sufficient time for security and operational reviews in advance of shipments to Yucca Mountain; and supporting utility planning and readiness for transportation operations. Concepts for routing and routing criteria have been considered by several state regional groups supported by cooperative agreements with OLM. OCRWM is also working with other Federal agencies, transportation service providers and others involved in the transportation industry to ensure the criteria are consistent with operating practices and regulations. These coordination efforts will ensure the experience, knowledge, and expertise of those involved are considered in the process to identify the preliminary national suites of routes. This paper describes the current process and timeline for preliminary identification and analyses of routes. In conclusion: The path toward developing a safe, secure, and efficient transportation system for shipments of SNF and HLW to Yucca Mountain will require the participation of many interested parties. Real cooperative planning is sometimes challenging, and requires a commitment from all involved parties to act in good faith and to employ their best efforts in developing mutually beneficial solutions. Identifying routes to the proposed repository at Yucca Mountain, and engaging in planning and preparedness activities with affected jurisdictions and other stakeholders, will take time. OCRWM is committed to a cooperative approach that will ultimately enhance safety, security, efficiency and public confidence. (authors)

Thrower, A. [Office of Civilian Radioactive Waste Management, Office of Logistics Management, U.S. Department of Energy, Washington, DC (United States); Best, R. [JAI Corporation, Washington, DC (United States); Finewood, L. [Booz Allen Hamilton, Washington, DC (United States)

2008-07-01T23:59:59.000Z

205

Yucca Mountain transportation routes: Preliminary characterization and risk analysis; Volume 1, Research report  

SciTech Connect (OSTI)

In this study, rail and highway routes which may be used for shipments of high-level nuclear waste to a proposed repository at Yucca Mountain, Nevada are characterized. This characterization facilitates three types of impact analysis: comparative study, limited worst-case assessment, and more sophisticated probabilistic risk assessment techniques. Data for relative and absolute impact measures are provided to support comparisons of routes based on selected characteristics. A worst-case scenario assessment is included to determine potentially critical and most likely places for accidents or incidents to occur. The assessment facilitated by the data in this study is limited because impact measures are restricted to the identification of potential areas or persons affected. No attempt is made to quantify the magnitude of these impacts. Most likely locations for accidents to occur are determined relative to other locations within the scope of this study. Independent factors and historical trends used to identify these likely locations are only proxies for accident probability.

Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R. [Nevada Univ., Las Vegas, NV (United States). Transportation Research Center

1991-05-31T23:59:59.000Z

206

A floristic survey of Yucca Mountain and vicinity, Nye County, Nevada  

SciTech Connect (OSTI)

A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994, and from March to October 1995. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas. Collection data accompanying these specimens were entered into that herbarium`s electronic data base. Combined results from this survey and the works of other investigators reveal the presence of a total of 375 specific and intraspecific taxa within the area these allocated to 179 genera and 54 families. No taxon currently listed as threatened or endangered under the Endangered Species Act was encountered during this study. Several candidate species for listing under this Act were present, and distributional data for these were recorded. No change in the status of these candidate species is recommended as the result of this study.

Niles, W.E.; Leary, P.J.; Holland, J.S.; Landau, F.H.

1995-12-01T23:59:59.000Z

207

Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain Repository  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives set forward by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection Agency (EPA). The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. As additional site and design information is generated, performance assessment analyses can be revised to become more representative of the expected conditions and remove some of the conservative assumptions necessitated by the incompleteness of site and design data. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993. These analyses have been documented in Barnard, Eslinger, Wilson and Andrews.

NONE

1995-11-01T23:59:59.000Z

208

Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain repository  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives of the US NRC and the US EPA. The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). Total system performance assessments require the explicit quantification of the relevant processes and process interactions. In addition assessments are useful to help define the most significant processes, the information gaps and uncertainties and therefore the additional information required for more robust and defensible assessment of the overall performance. The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993.

Atkins, J.E.; Lee, J.H.; Lingineni, S.; Mishra, S; McNeish, J.A.; Sassani, D.C.; Sevougian, S.D.

1995-11-01T23:59:59.000Z

209

Paleohydrologic investigations in the vicinity of Yucca Mountain: Late Quaternary paleobotanical and polynological records  

SciTech Connect (OSTI)

The primary objective of this research in the vicinity of the proposed Yucca Mountain Nuclear Waste Repository is the detection of episodes of increased runoff and groundwater discharge in this presently arid area. Ancient, inactive spring deposits in nearby valley bottoms (Haynes, 1967; Quade, 1986; Quade and Pratt, 1989), evidence for perennial water in presently dry canyons (Spaulding, 1992), and recent claims for extraordinary increases in precipitation during the last glacial age (Forester, 1994), provide good reason to further investigate both lowland spring-discharge habitats, and upland drainages. The ultimate purpose is to assess the long-term variability of the hydrologic system in the vicinity of Yucca Mountain in response to naturally occurring climatic changes. The data generated in the course of this study are derived from radiocarbon dated packrat (Neotoma) middens. This report presents the results of an initial assessment of the hydrologic stability of the candidate area based on a limited suite of middens from localities that, on geomorphic and hydrologic grounds, could have been close to ancient stream-side or spring environments. Paleoclimatic reconstructions are another means of studying the long-term climatic hydrologic stability of the Candidate Area include, and are also generated from packrat midden data. A different flora characterized the Candidate Area during the last glacial age in response to a cooler and wetter climate, and the plant species that comprised this flora can be used to reconstruct specific components of past climatic regimes. Thus, a secondary objective of this study is to compare the plant macrofossil data generated in this study to other records from the Candidate Area (Spaulding, 1985; Wigand, 1990) to determine if these new data are consistent with prior reconstructions. 66 refs., 4 figs., 13 tabs.

Spaulding, W.G.

1994-10-05T23:59:59.000Z

210

Yucca Mountain: How Do Global and Federal Initiatives Impact Clark County's Nuclear Waste Program?  

SciTech Connect (OSTI)

Since 1987, Clark County has been designated by the U.S. Department of Energy (DOE) as an 'Affected Unit of Local Government' (AULG). The AULG designation is an acknowledgement by the federal government that activities associated with the Yucca Mountain proposal could result in considerable impacts on Clark County residents and the community as a whole. As an AULG, Clark County is authorized to identify 'any potential economic, social, public health and safety, and environmental impacts of a repository', 42 U.S.C. Section 10135(c)(1)(B)(i) under provisions of the Nuclear Waste Policy Act Amendments (NWPAA). Clark County's oversight program contains key elements of (1) technical and scientific analysis (2) transportation analysis (3) impact assessment and monitoring (4) policy and legislative analysis and monitoring, and (5) public outreach. Clark County has conducted numerous studies of potential impacts, many of which are summarized in Clark County's Impact Assessment Report that was submitted DOE and the President of the United States in February 2002. Given the unprecedented magnitude and duration of DOE's proposal, as well as the many unanswered questions about the transportation routes, number of shipments, and the modal mix that will ultimately be used, impacts to public health and safety and security, as well as socioeconomic impacts, can only be estimated. In order to refine these estimates, Clark County Comprehensive Planning Department's Nuclear Waste Division updates, assesses, and monitors impacts on a regular basis. Clark County's Impact Assessment program covers not only unincorporated Clark County but all five jurisdictions of Las Vegas, North Las Vegas, Henderson, Mesquite, and Boulder City as well as tribal jurisdictions that fall within Clark County's geographic boundary. National and global focus on nuclear power and nuclear waste could have significant impact on the Yucca Mountain Program, and therefore, Clark County's oversight of that program. (authors)

Navis, I.; McGehee, B. [Clark County Department of Comprehensive Planning - Nuclear Waste Division, Las Vegas, NV (United States)

2008-07-01T23:59:59.000Z

211

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain††for the disposal of spent nuclear fuel and high-level...

212

Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository  

SciTech Connect (OSTI)

Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

Inyo County

2006-07-26T23:59:59.000Z

213

Final Systems Development Report for the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, NV  

SciTech Connect (OSTI)

The Systems Development Report represents the third major step in the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mound Nevada. The first of these steps was to forge a Research Design that would serve as a guide for the overall research process. The second step was the construction of the Base Case, the purpose of which was to describe existing conditions in Clark County in the specified analytic areas of Economic-Demographic/Fiscal, Emergency Planning and Management, Transportation and Sociocultural analysis. The base case description will serve as a basis for assessing changes in these topic areas that might result from the Yucca Mountain project. These changes will be assessed by analyzing conditions with and without repository development in the county. Prior to performing such assessments, however, the snapshot type of data found in the base case must be operationalized or systematized to allow for more dynamic data utilization. In other words, a data system that can be used to analyze the consequences of the introduction of different variables (or variable values) in the Clark County context must be constructed. Such a system must be capable of being updated through subsequent data collection and monitoring efforts to both provide a rolling base case and supply information necessary to construct trend analyses. For example, during the Impact Assessment phase of the study process, the without repository analysis is accomplished by analyzing growth for the county given existing conditions and likely trends. These data are then compared to the with Yucca Mountain project conditions anticipated for the county. Similarly, once the emergency planning management and response needs associated with the repository are described, these needs will be juxtaposed against existing (and various future) capacity(ies) in order to determine the nature and magnitude of impacts in this analytic area. Analogous tasks will be performed for the other analytic areas detailed in the Base Case and outlined below.

NONE

1992-06-18T23:59:59.000Z

214

Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

2009-04-02T23:59:59.000Z

215

Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

2008-08-01T23:59:59.000Z

216

Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

2008-08-01T23:59:59.000Z

217

Improving Communications with Tribes along U.S. Department of Energy Shipping Routes: Preparing for Yucca Mountain  

SciTech Connect (OSTI)

This paper describes efforts by the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) to initiate, coordinate, and improve communications with Native American Tribes along potential shipping routes to the geologic repository at Yucca Mountain, Nevada. The Office of National Transportation (ONT) within OCRWM is taking a collaborative approach that builds upon past working relationships between DOE and Tribal Nations. This paper focuses on those relationships, vehicles such as the Tribal Topic Group of the DOE Transportation External Coordination Working Group (TEC), and other recent interactions that ONT has been pursuing to strengthen existing partnerships and build new ones. It also offers lessons learned and goals for the future as ONT looks ahead to ensure appropriate coordination with Tribes on future shipments to Yucca Mountain. (authors)

Jones, J. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Office of National Transportation, 1000 Independence Avenue, SW, Washington, DC 20585 (United States); Portner, W. E. [Science Applications International Corporation, 2109 Air Park Drive, SE, Albuquerque, NM 87106 (United States); Patric, J. [Booz Allen Hamilton, 955 L'Enfant Plaza North, SW, Washington, DC 20024 (United States)

2006-07-01T23:59:59.000Z

218

Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7  

SciTech Connect (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

NONE

1988-12-01T23:59:59.000Z

219

Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Crater Flat, Nye County, Nevada  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) (cover page figure) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

2008-08-01T23:59:59.000Z

220

Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Crater Flat, Nye County, Nevada  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) (cover page figure) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

J. Engelbrecht; I. Kavouras; D. Campbell; S.Campbell; S. Kohl; D. Shafer

2009-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

J. Engelbrecht; I. Kavouras; D Campbell; S. Campbell; S. Kohl, D. Shafer

2008-08-01T23:59:59.000Z

222

Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

2009-04-02T23:59:59.000Z

223

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2  

SciTech Connect (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

NONE

1988-12-01T23:59:59.000Z

224

Risk Insights Associated with Incident-Free Transportation of Spent Nuclear Fuel To Yucca Mountain Using RADTRAN 5.5  

SciTech Connect (OSTI)

The Yucca Mountain Final Environmental Impact Statement (YM EIS)[1] included an analysis of the environmental impacts associated with the transport of spent nuclear fuel (SNF) from multiple locations across the US to Yucca Mountain for incident-free and accident conditions. While the radiological risks contained in the YM EIS were calculated to be small, it is important to recognize the many conservatisms that were utilized to calculate these risks. This paper identifies conservative assumptions associated with the YM EIS calculation of incident free transportation risk, and provides an estimate of incident free transportation risk using more realistic assumptions. While it is important to use conservative assumptions in the evaluation of the environmental impacts associated with the proposed repository, it is equally important that the public and decision makers understand the conservative nature of the results presented. This paper will provide that perspective regarding the incident free transportation impacts and summarizes the results of a more detailed EPRI report on this subject, 'Assessment of Incident Free Transport Risk for Transport of Spent Nuclear Fuel to Yucca Mountain Using RADTRAN 5.5'. [2] (authors)

Supko, E.M. [Energy Resources International, Inc., 101518 St., NW, Suite 650, Washington, DC 20036 (United States); Kessler, J.H. [Electric Power Research Institute, 1300 West W.T. Harris Blvd., Charlotte NC 28262 (United States)

2006-07-01T23:59:59.000Z

225

Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada  

SciTech Connect (OSTI)

In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada.

Sweeney, Robin L,; Lechel, David J.

2003-02-25T23:59:59.000Z

226

Use of Irrigation to Extend the Seeding Window for Final Reclamation at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The U.S. Department of Energy has implemented a program to investigate the feasibility of various techniques for reclaiming lands disturbed during site characterization at Yucca Mountain. As part of this program, two studies were conducted in 1997 to assess the effects of combinations of seeding date (date that seeds are planted) and supplemental irrigation on densities of native plant species at Yucca Mountain. Study objectives were to (1) determine whether the traditional seeding window (October-December) could be extended through combinations of seeding date and irrigation date, (2) determine which combination of seeding date and irrigation was most successful, and (3) assess the effects of irrigation versus natural precipitation on seedling establishment. In the first study, a multi-species seed mix of 16 native species was sown into plots on four dates (12/96, 2/97, 3/97, and 4/97). Irrigation treatments were control (no irrigation) or addition of 80 mm of supplemental water applied over a one month period. Plant densities were sampled in August and again in October, 1997. In the second study, Larrea tridentata and Lycium andersonii, two species that are common at Yucca Mountain, but difficult to establish from seed, were sown together into plots in January and August, 1997. Half the plots were irrigated with approximately 250 mm of water between August 18 and September 11, while the remaining plots received no irrigation (control). Plant densities were sampled in October, 1997. The August census for the multi-species mix study showed irrigated plots that were sown in February, March and April had higher plant densities and more species than plots that were not irrigated. Irrigation had no effect on plant densities on plots that were seeded in December. Plots were used again in October following 18 mm of precipitation in September. Densities of three species, Ambrosia dumosa, Hymenoclea salsola, and L. tridentata, (warm-season species) were lower on irrigated plots sown in December, February, and March, and showed no response to irrigation on plots sown in April. Therefore, early spring irrigation did not facilitate establishment of warm-season species. These results suggest that these species are dependent upon precipitation while temperatures are warm in late summer or fall. However, control plots that were seeded in December had acceptable densities of these species. A more practical approach might be to avoid irrigation costs by seeding in December and waiting for fall precipitation. The remaining species (cool-season species) showed an opposite response to supplemental water with greater densities on irrigated plots sown in February, March, and April, and no response to irrigation on plots sown in December. While these results show that irrigation can extend the seeding window for cool-season species should it be necessary, it was also apparent that if seeds are sown by late December, irrigation is not necessary to achieve acceptable plant densities.

TRW Environmental Safety

2000-08-01T23:59:59.000Z

227

Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management  

SciTech Connect (OSTI)

The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

Bullard, K.L.

1994-08-01T23:59:59.000Z

228

EA-1746: Blue Mountain Geothermal Development Project, Humboldt...  

Broader source: Energy.gov (indexed) [DOE]

December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain...

229

Significance of apparent discrepanices in water ages derived from atmospheric radionuclides at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Cosmogenic {sup 36}Cl and {sup 14}C produced in the atmosphere are being used to estimate water residence times in the unsaturated zone at Yucca Mountain. Results thus far show a systematic discordance in that {sup 14}C-based ages are generally one to two orders of magnitude younger than {sup 36}Cl-based ages. This lack of concordance probably arises from one or more of the following reasons: (1) different transport mechanisms, e.g., vapor transport for {sup 14}C; (2) different magnitudes and timing of bomb-pulse signals; (3) mixing of waters from different flow paths; and (4) possibly inadequate methods for correcting for the effect of sample contamination by carbon or chlorine from sources other than the infiltrating water. Preliminary numerical simulation results using the FEHMN code suggest that spatial variation in infiltration rates can enhance lateral flow and mixing that leads to discordance in apparent ages depending on the dating technique. Examples are presented to show that disparate radiometric ages are inevitable and to be expected where mixing of waters of markedly different ages occurs.

Liu, B.; Fabryka-Martin, J.; Wolfsberg, A.; Robinson, B. [Los Alamos National Lab., NM (United States); Sharma, P. [Purdue Univ., Lafayette, IN (United States). Dept. of Physics

1995-02-23T23:59:59.000Z

230

Natural convection in tunnels at Yucca Mountain and impact on drift seepage  

SciTech Connect (OSTI)

The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

Halecky, N.; Birkholzer, J.T.; Peterson, P.

2010-04-15T23:59:59.000Z

231

A floristic survey of Yucca Mountain and vicinity, Nye County, Nevada  

SciTech Connect (OSTI)

A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas. Collection data accompanying these specimens were entered into that herbarium`s electronic data base. Combined results from this survey and the works of other investigators reveal the presence of a total of 325 specific and intraspecific taxa within the area, these allocated to 162 genera and 53 families. Owing to drought conditions prevalent throughout the area, the annual floristic component was largely absent during the period of study, and it is likely much under-represented in the tabulation of results. No taxon currently listed as threatened or endangered under the Endangered Species Act was encountered during this study. Several candidate species for listing under this Act were present, and distributional data for these were recorded. No change in the status of these candidate species is recommended as the result of this survey.

Niles, W.E.; Leary, P.J.; Holland, J.S.; Landau, F.H.

1994-12-01T23:59:59.000Z

232

Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository  

SciTech Connect (OSTI)

Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. The new information incorporated in TSPA 1993 includes (1) revised estimates of radionuclide solubilities (and their thermal and geochemical dependency), (2) thermal and geochemical dependency of spent fuel waste alteration and glass dissolution rates, (3) new distribution coefficient (k{sub d}) estimates, (4) revised estimates of gas-phase velocities and travel times, and (5) revised hydrologic modeling of the saturated zone which provides updated estimates of the advective flux through the saturated zone.

Andrews, R.W.; Dale, T.F.; McNeish, J.A.

1994-03-01T23:59:59.000Z

233

Chlorine-36 investigations of groundwater infiltration in the Exploratory Studies Facility at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Chlorine-36, including the natural cosmogenic component and the component produced during atmospheric nuclear testing in the 1950`s and 1960`s (bomb pulse), is being used as an isotopic tracer for groundwater infiltration studies at Yucca Mountain, a potential nuclear waste repository. Rock samples have been collected systematically in the Exploratory Studies Facility (ESF), and samples were also collected from fractures, faults, and breccia zones. Isotopic ratios indicative of bomb-pulse components in the water ({sup 36}Cl/Cl values > 1,250 x 10{sup {minus}15}), signifying less than 40-yr travel times from the surface, have been detected at a few locations within the Topopah Spring Tuff, the candidate host rock for the repository. The specific features associated with the high {sup 36}Cl/Cl values are predominantly cooling joints and syngenetic breccias, but most of the sites are in the general vicinity of faults. The non-bomb pulse samples have {sup 36}Cl/Cl values interpreted to indicate groundwater travel times of at least a few thousand to possibly several hundred thousand years. Preliminary numerical solute-travel experiments using the FEHM (Finite Element Heat and Mass transfer) code demonstrate consistency between these interpreted ages and the observed {sup 36}Cl/Cl values but do not validate the interpretations.

Levy, S.S.; Fabryka-Martin, J.T.; Dixon, P.R.; Liu, B.; Turin, H.J.; Wolfsberg, A.V.

1997-12-01T23:59:59.000Z

234

Smectite dehydration and stability: Applications to radioactive waste isolation at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Montmorillonite-beidellite smectites are present in amounts up to 50% in the rocks directly underlying the potential high-level radioactive waste repository horizon at Yucca Mountain, Nevada. The thermal reactions of concern include reversible collapse/expansion of the smectite layers due to loss/gain of interlayer water;irreversible collapse due to loss of interlayer water and migration of interlayer cations into the 2:1 silicate layers;irreversible reduction of the osmotic swelling ability through reaction in a steam atmosphere;and inhomogeneous transformation of the smectite into an interstratified illite/smectite. Reversible collapse should be of minor importance because any thermally driven collapse will be reversed when water is introduced and temperatures go down. The amounts of smectite in the potential repository horizon itself are probably insufficient to give rise to rock strength problems due to reversible collapse. The irreversible reduction of somotic selling capacity in a steam environment may be significant in the rocks near the repository horizon. This effect on naturally occurring Na-rich smectites would probably increase permeabilitie shut would also provide for increased cation exchange by the smectite. 60 refs., 9 figs.

Bish, D.L.

1988-03-01T23:59:59.000Z

235

Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)  

SciTech Connect (OSTI)

Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during Pleistocene and Holocene times; these paleoseismic studies form the basis for evaluating the potential for future earthquakes and fault displacements. Thermoluminescence and U-series analyses were used to date the surficial materials involved in the Quaternary faulting events. The rate of erosional downcutting of bedrock on the ridge crests and hillslopes of Yucca Mountain, being of particular concern with respect to the potential for breaching of the proposed underground storage facility, was studied by using rock varnish cation-ratio and {sup 10}Be and {sup 36}Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time.

W.R. Keefer; J.W. Whitney; D.C. Buesch

2006-09-25T23:59:59.000Z

236

EIS-0250-S1: Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Broader source: Energy.gov [DOE]

The Proposed Action defined in the Yucca Mountain FEIS is to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain to dispose of spent nuclear fuel and high-level radioactive waste. The Proposed Action includes transportation of these materials from commercial and DOE sites to the repository.

237

Influence of faults on groundwater flow and transport at YuccaMountain, Nevada  

SciTech Connect (OSTI)

Numerical simulations of groundwater flow at Yucca Mountain, Nevada are used to investigate how faults influence groundwater flow pathways and regional-scale macrodispersion. The 3-D model has a unique grid block discretization that facilitates the accurate representation of the complex geologic structure present in faulted formations. Each hydrogeologic layer is discretized into a single layer of irregular and dipping grid blocks, and faults are discretized such that they are laterally continuous and varied in displacement varies along strike. In addition, the presence of altered fault zones is explicitly modeled, as appropriate. Simulations show that upward head gradients can be readily explained by the geometry of hydrogeologic layers, the variability of layer permeabilities, and the presence of permeable fault zones or faults with displacement only, not necessarily by upwelling from a deep aquifer. Large-scale macrodispersion results from the vertical and lateral diversion of flow near the contact of high- and low-permeability layers at faults, and from upward flow within high-permeability fault zones. Conversely, large-scale channeling can occur as a result of groundwater flow into areas with minimal fault displacement. Contaminants originating at the water table can flow in a direction significantly different from that of the water table gradient, and isolated zones of contaminants can occur at the water table downgradient. By conducting both 2-D and 3-D simulations, we show that the 2-D cross-sectional models traditionally used to examine flow in faulted formations may not be appropriate. In addition, the influence of a particular type of fault cannot be generalized; depending on the location where contaminants enter the saturated zone, faults may either enhance or inhibit vertical dispersion.

Cohen, Andrew J.B.; Sitar, Nicholas

1999-10-07T23:59:59.000Z

238

Parameter Selection for Department of Energy Spent Nuclear Fuel to be Used in the Yucca Mountain License Application  

SciTech Connect (OSTI)

This report contains the chemical, physical, and radiological parameters that were chosen to represent the U.S. Department of Energy spent nuclear fuel in the Yucca Mountain license application. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data are reported for representative fuels and bounding fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported were not generated under any quality assurance program.

D. L. Fillmore

2003-10-01T23:59:59.000Z

239

EFFECTS OF MINERALOGY, GRAIN SIZE, AND SOLUTION COMPOSITION ON LITHIUM SORPTION TO SATURATED ALLUVIUM SOUTH OF YUCCA MOUNTAIN, NEVADA  

SciTech Connect (OSTI)

Lithium is used frequently as a surrogate for cationic radionuclides such as NpO{sub 2}{sup +} in field and laboratory settings. Current plans include the use of Li{sup +} as a reactive tracer in field tracer testing in the saturated alluvium south of Yucca Mountain, NV, site of a potential high-level nuclear waste. Characterization of the alluvial material for grain size, mineralogy, cation exchange capacity (CEC), and surface area yields data that is compared with lithium batch sorption as a first step in inferring radionuclide transport behavior. This research will be used to help assess performance of the potential repository.

E. SULLIVAN; P. REIMUS; ET AL

2001-05-01T23:59:59.000Z

240

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this environmental impact statement (EIS) is to provide information on potential environmental impacts that could result from a Proposed Action to construct, operate and monitor, and eventually close a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nye County, Nevada. The EIS also provides information on potential environmental impacts from an alternative referred to as the No-Action Alternative, under which there would be no development of a geologic repository at Yucca Mountain.

N /A

2002-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A model of the large hydraulic gradient at Yucca Mountain, Nevada Test Site, based on hydraulic conductivity contrasts between Cenozoic and Paleozoic rocks  

E-Print Network [OSTI]

A MODEL OF THE LARGE HYDRAULIC GRADIENT AT YUCCA MOUNTAIN, NEVADA TEST SITE, BASED ON HYDRAULIC CONDUCTIVITY CONTRASTS BETWEEN CENOZOIC AND PALEOZOIC ROCKS A Thesis ERIC WILLIAM STROM Submitted to the Offic of Graduate Studies of Texas A.... 4m W&~~ &&go~'~o~~i gp ??g Y, ) 4r y. odtli' ~ 6. A MODEL OF THE LARGE HYDRAULIC GRADIENT AT YUCCA MOUNTAIN, NEVADA TEST SITE, BASED ON HYDRAULIC CONDUCTIVITY CONTRASTS BETWEEN CENOZOIC AND PALEOZOIC ROCKS A Thesis ERIC WILLIAM STROM...

Strom, Eric William

1993-01-01T23:59:59.000Z

242

Application of natural analogues in the Yucca Mountain project - overview  

E-Print Network [OSTI]

Mill Tailing Recovery Act (UMTRA) site, a fraction of thetransported as colloids UMTRA plumes Ė weak to no uranium

Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

243

Probable maximum flood control; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.

DeGabriele, C.E.; Wu, C.L. [Bechtel National, Inc., San Francisco, CA (United States)

1991-11-01T23:59:59.000Z

244

Implementation of NUREG 1318 guidance within the Yucca Mountain Project  

SciTech Connect (OSTI)

This paper discusses the implementation of a quality assurance program that fulfills the requirements of the U.S. Nuclear Regulatory Commission (NRC). Additional guidance for this program was provided in NUREG 1318, Technical Position on Items and Activities in the High-Level Waste Geologic Repository Program Subject to Quality Assurance Requirements for the identification of items and activities important to public radiological safety and waste isolation for placement on a Q-List and Quality Activities List and also for graded application of QA measures. The process and organization for implementing this guidance is discussed.

La Monica, L.B.; Waddell, J.D.; Hardin, E.L. [Science Applications International Corp., Las Vegas, NV (USA)

1990-10-01T23:59:59.000Z

245

Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test  

SciTech Connect (OSTI)

This paper presents results from a coupled thermal, hydrological and mechanical analysis of thermally-induced permeability changes during heating and cooling of fractured volcanic rock at the Drift Scale Test at Yucca Mountain, Nevada. The analysis extends the previous analysis of the four-year heating phase to include newly available data from the subsequent four year cooling phase. The new analysis of the cooling phase shows that the measured changes in fracture permeability follows that of a thermo-hydro-elastic model on average, but at several locations the measured permeability indicates (inelastic) irreversible behavior. At the end of the cooling phase, the air-permeability had decreased at some locations (to as low as 0.2 of initial), whereas it had increased at other locations (to as high as 1.8 of initial). Our analysis shows that such irreversible changes in fracture permeability are consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). These data are important for bounding model predictions of potential thermally-induced changes in rock-mass permeability at a future repository at Yucca Mountain.

Rutqvist, Jonny; Rutqvist, J.; Freifeld, B.; Tsang, Y.W.; Min, K.B.; Elsworth, D.

2008-06-01T23:59:59.000Z

246

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2  

SciTech Connect (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

NONE

1988-01-01T23:59:59.000Z

247

NRC staff site characterization analysis of the Department of Energy`s Site Characterization Plan, Yucca Mountain Site, Nevada  

SciTech Connect (OSTI)

This Site Characterization Analysis (SCA) documents the NRC staff`s concerns resulting from its review of the US Department of Energy`s (DOE`s) Site Characterization Plan (SCP) for the Yucca Mountain site in southern Nevada, which is the candidate site selected for characterization as the nation`s first geologic repository for high-level radioactive waste. DOE`s SCP explains how DOE plans to obtain the information necessary to determine the suitability of the Yucca Mountain site for a repository. NRC`s specific objections related to the SCP, and major comments and recommendations on the various parts of DOE`s program, are presented in SCA Section 2, Director`s Comments and Recommendations. Section 3 contains summaries of the NRC staff`s concerns for each specific program, and Section 4 contains NRC staff point papers which set forth in greater detail particular staff concerns regarding DOE`s program. Appendix A presents NRC staff evaluations of those NRC staff Consultation Draft SCP concerns that NRC considers resolved on the basis of the SCP. This SCA fulfills NRC`s responsibilities with respect to DOE`s SCP as specified by the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18. 192 refs., 2 tabs.

NONE

1989-08-01T23:59:59.000Z

248

Drift design methodology and preliminary application for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Excavation stability in an underground nuclear waste repository is required during construction, emplacement, retrieval (if required), and closure phases to ensure worker health and safety, and to prevent development of potential pathways for radionuclide migration in the post-closure period. Stable excavations are developed by appropriate excavation procedures, design of the room shape, design and installation of rock support reinforcement systems, and implementation of appropriate monitoring and maintenance programs. In addition to the loads imposed by the in situ stress field, the repository drifts will be impacted by thermal loads developed after waste emplacement and, periodically, by seismic loads from naturally occurring earthquakes and underground nuclear events. A priori evaluation of stability is required for design of the ground support system, to confirm that the thermal loads are reasonable, and to support the license application process. In this report, a design methodology for assessing drift stability is presented. This is based on site conditions, together with empirical and analytical methods. Analytical numerical methods are emphasized at this time because empirical data are unavailable for excavations in welded tuff either at elevated temperatures or under seismic loads. The analytical methodology incorporates analysis of rock masses that are systematically jointed, randomly jointed, and sparsely jointed. In situ thermal and seismic loads are considered. Methods of evaluating the analytical results and estimating ground support requirements for all the full range of expected ground conditions are outlines. The results of a preliminary application of the methodology using the limited available data are presented. 26 figs., 55 tabs.

Hardy, M.P. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States); Bauer, S.J. [Sandia National Labs., Albuquerque, NM (United States)

1991-12-01T23:59:59.000Z

249

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada  

E-Print Network [OSTI]

north of the repository site. This study investigates the cause of the steep gradient, based on the possible influence by Paleozoic rocks under the Yucca Mountain area. A quasi-three dimensional, steady-state, finite-difference model of the groundwater...

Lee, Si-Yong

1994-01-01T23:59:59.000Z

250

Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI); Final report, January 1, 1987--June 30, 1988: Volume 1  

SciTech Connect (OSTI)

This report provides a summary of progress for the project ``Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)`` for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion.

NONE

1988-10-01T23:59:59.000Z

251

Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain  

SciTech Connect (OSTI)

The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

1993-01-01T23:59:59.000Z

252

Drilling, logging, and testing information from borehole UE-25 UZ{number_sign}16, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Borehole UE-25 UZ{number_sign}16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includes drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994.

Thamir, F.; Thordarson, W.; Kume, J.; Rousseau, J. [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch; Long, R. [Dept. of Energy, Las Vegas, NV (United States); Cunningham, D.M. Jr. [Science Applications International Corp., Las Vegas, NV (United States)

1998-09-01T23:59:59.000Z

253

Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied.

Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

1993-12-31T23:59:59.000Z

254

A preliminary investigation of the structure of southern Yucca Flat, Massachusetts Mountain, and CP basin, Nevada Test Site, Nevada, based on geophysical modeling.  

SciTech Connect (OSTI)

New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

Geoffrey A. Phelps; Leigh Justet; Barry C. Moring, and Carter W. Roberts

2006-03-17T23:59:59.000Z

255

Research Summary Youth mountain biking at Bedgebury Active England project  

E-Print Network [OSTI]

and personal challenge. There were strong connections between youth mountain biking identities and the use) Lifestyle, identity and young people's experiences of mountain biking. Forestry Commission Research Note 7Research Summary Youth mountain biking at Bedgebury Active England project In 2005/6, the Forestry

256

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5  

SciTech Connect (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

NONE

1988-12-01T23:59:59.000Z

257

DOE/NV/26383-LTR2008-01 Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

2009-04-02T23:59:59.000Z

258

Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

NONE

1992-06-18T23:59:59.000Z

259

Performance prediction of mechanical excavators from linear cutter tests on Yucca Mountain welded tuffs; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

The performances of mechanical excavators are predicted for excavations in welded tuff. Emphasis is given to tunnel boring machine evaluations based on linear cutting machine test data obtained on samples of Topopah Spring welded tuff. The tests involve measurement of forces as cutters are applied to the rock surface at certain spacing and penetrations. Two disc and two point-attack cutters representing currently available technology are thus evaluated. The performance predictions based on these direct experimental measurements are believed to be more accurate than any previous values for mechanical excavation of welded tuff. The calculations of performance are predicated on minimizing the amount of energy required to excavate the welded tuff. Specific energy decreases with increasing spacing and penetration, and reaches its lowest at the widest spacing and deepest penetration used in this test program. Using the force, spacing, and penetration data from this experimental program, the thrust, torque, power, and rate of penetration are calculated for several types of mechanical excavators. The results of this study show that the candidate excavators will require higher torque and power than heretofore estimated.

Gertsch, R.; Ozdemir, L. [Colorado School of Mines, Golden, CO (United States). Earth Mechanics Inst.

1992-09-01T23:59:59.000Z

260

A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository  

SciTech Connect (OSTI)

The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as well as non-radioactive traffic fatalities. The Yucca Mountain EIS Transportation Database was developed using Microsoft Access 97{trademark} software and the Microsoft Windows NT{trademark} operating system. The database consists of tables for storing data, forms for selecting data for querying, and queries for retrieving the data in a predefined format. Database queries retrieve records based on input parameters and are used to calculate incident-free and accident doses using unit risk factors obtained from RADTRAN results. The next section briefly provides some background that led to the development of the database approach used in preparing the Yucca Mountain DEIS. Subsequent sections provide additional details on the database structure and types of impacts calculated using the database.

Ralph Best; T. Winnard; S. Ross; R. Best

2001-08-17T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes is such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.

Karasaki, K. [Lawrence Berkeley Lab., CA (United States); Galloway, D. [Geological Survey, Sacramento, CA (United States)

1991-06-01T23:59:59.000Z

262

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1  

SciTech Connect (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

NONE

1988-01-01T23:59:59.000Z

263

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4  

SciTech Connect (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

264

Evaluating the Potential Impact of Using the Transport, Aging and Disposal (TAD) Canister on Yucca Mountain Pre-Closure Operations  

SciTech Connect (OSTI)

The development and preliminary use of an integrated model to explore the impact of various operational scenarios of the pre-closure waste management system of Yucca Mountain (YM) is described. The capabilities of the model are illustrated by applying it to a simplified operational scenario using Transport, Aging, and Disposal (TAD) Canisters. The application uses existing data on spent nuclear fuel to model the effect on above ground aging at YM by varying four parameters: (1) utility loading behavior, (2) thermal limit for transportation casks, (3) thermal limit for emplacement, and (4) emplacement capacity at YM. Results show that the thermal limit for emplacement is the most important parameter with respect to above ground aging demands at YM. Transportation heat limit is also important, but less so if the capacity of YM is expanded or if older fuel is sent first. Easing the constraint of the emplacement limit, if feasible, would be a preferable method of reducing aging demands, especially under an expanded emplacement capacity. Consequently, there may be incentive for Department of Energy (DOE) to either specify a lower transportation limit or a higher emplacement limit if it wishes to reduce the potential demands on the Aging Facility at YM. (authors)

Spradley, L. [Research Assistant, Civil and Environmental Engineering, Vanderbilt University, VU Station, Nashville, TN (United States); Abkowitz, M. [Civil and Environmental Engineering, Vanderbilt University (United States); Clarke, J.H. [Civil and Environmental Engineering, Vanderbilt University (United States)

2008-07-01T23:59:59.000Z

265

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7  

SciTech Connect (OSTI)

The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

266

Parametric Analyses of Alternative Flow Models at Yucca Mountain, Nevada Calibrations and Controls - State of Nevada-Funded Research  

SciTech Connect (OSTI)

The controls on the potentiometric surface and temperature distribution at Yucca Mountain have long been thought to be related to major fault zones. The exact way the faults influence these distributions has been somewhat elusive. The parametric studies discussed in this paper show that the fault zone x, y and z permeability tensors, as well as the alignment of the fault zone in relation to the flow field (1), are major contributing factors in the pressure and temperature distributions. A series of runs were conducted for the State of Nevada with a 3-dimensional model utilizing the AT2VOC version of the A-TOUGH code (2),(3). The runs were conducted under steady state conditions and utilized fully coupled heat and flow conditions. The model setup and boundary conditions are fully described. Comparisons were done with varying degrees of anisotropic permeability ratios in the fault zones. The resulting temperature and pressure profiles are compared. The model, while simple, allowed us to examine the relationship of the head and temperature distributions to the position and permeability of major fault zones. It is our conclusion that the major faults included in this model do significantly affect the observed head and temperature distributions. Performance Assessments currently may not reflect actual doses at the Compliance boundary due to the potential for radionuclide flow to be captured in the Ghost Dance Fault and be transported primarily south with little dilution and dispersion.

Lehman, L.; Brown, T. P.

2002-02-26T23:59:59.000Z

267

Applications of isotope geochemistry to the reconstruction of Yucca Mountain, Nevada, paleohydrology -- Status of investigations: June 1996  

SciTech Connect (OSTI)

Tunneling of the Exploratory Studies Facility has offered the opportunity to sample and examine occurrences of secondary mineralization found in the unsaturated-zone tuffs of Yucca Mountain, nevada. Petrographic and paragenetic analyses, calcite and silica-phase stable isotopic analyses, and preliminary strontium tracer isotope and radiocarbon age analyses of these samples indicate that (1) an early stage of secondary mineralization consisting largely of chalcedony and quartz, but possibly with or slightly preceded by calcite, probably formed at warmer than ambient temperatures; (2) later secondary mineralization consisting of calcite and opal appears completely consistent with formation from percolation of surface infiltration whose solute load and carbon isotopic compositions reflect passage through the overlying soils; (3) based on textural studies, all unsaturated-zone secondary mineral occurrences exposed within the Exploratory Studies Facility tunnel, with the exception of the vapor-phase assemblages that formed at high temperatures during cooling of the tuffs, probably formed in unsaturated settings; and (4) calcite radiocarbon ages, based on preliminary results, have not been compromised by post-depositional exchange with carbon-bearing water and gases in the unsaturated zone.

Whelan, J.F.; Moscati, R.J.; Allerton, S.B.M.; Marshall, B.D.

1998-11-01T23:59:59.000Z

268

Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for radioactive waste at Yucca Mountain, Nevada.  

SciTech Connect (OSTI)

The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three conceptual entities: a probability space that characterizes aleatory uncertainty; a function that predicts consequences for individual elements of the sample space for aleatory uncertainty; and a probability space that characterizes epistemic uncertainty. These entities and their use in the characterization, propagation and analysis of aleatory and epistemic uncertainty are described and illustrated with results from the 2008 YM PA.

Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

2010-10-01T23:59:59.000Z

269

Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain  

SciTech Connect (OSTI)

Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)] [KMI, Inc., Albuquerque, NM (United States)

1993-02-01T23:59:59.000Z

270

Two Approaches to the Geologic Disposal of Long-Lived Nuclear Waste: Yucca Mountain, Nevada and the Waste Isolation Pilot Plant, Carlsbad, New Mexico  

SciTech Connect (OSTI)

A key component of the US energy program is to provide for the safe and permanent isolation of spent nuclear fuel and long-lived radioactive waste produced through programs related to national defense and the generation of electric power by nuclear utilities. To meet this challenge, the US Department of Energy (DOE) has developed a multi-faceted approach to the geologic disposal of long-lived nuclear wastes. Two sites are being developed or studied as current or potential deep geologic repositories for long lived radioactive wastes, the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico and Yucca Mountain, Nevada.

Levich, R. A.; Patterson, R. L.; Linden, R. M.

2002-02-26T23:59:59.000Z

271

Progress report on the scientific investigation program for the Nevada Yucca Mountain site, September 15, 1988--September 30, 1989; Nuclear Waste Policy Act (Section 113), Number 1  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain in southern Nevada. This report is the first of a series of reports that will hereafter be issued at intervals of approximately 6-months during site characterization. The DOE`s plans for site characterization are described in the Site Characterization Plan (SCP) for the Yucca Mountain site. The SCP has been reviewed and commented on by the NRC, the State of Nevada, the affected units of local government, other interested parties, and the public. More detailed information on plans for site characterization is being presented in study plans for the various site characterization activities. This progress report presents short summaries of the status of site characterization activities and cites technical reports and research products that provide more detailed information on the activities. The report provides highlights of work started during the reporting period, work in progress, and work completed and documented during the reporting period. In addition, the report is the vehicle for discussing major changes, if any, to the DOE`s site characterization program resulting from ongoing collection and evaluation of site information; the development of repository and waste-package designs; receipt of performance-assessment results; and changes, if any, that occur in response to external comments on the site characterization programs. 80 refs.

NONE

1990-02-01T23:59:59.000Z

272

MECHANICAL DEGRADATION OF EMPLACEMENT DRIFTS AT YUCCA MOUNTAIN - A CASE STUDY IN ROCK MECHANICS, PART 1: NONLITHOPHYSAL ROCK, PART 2: LITHOPHYSAL ROCK  

SciTech Connect (OSTI)

This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for a US high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation throughout the regulatory period for repository performance.

M. Lin, D. Kicker, B. Damjanac, M. Board, and M. Karakouzian

2006-02-27T23:59:59.000Z

273

Potential for the localized corrosion of alloy 22 Waste Packages in Multiple-Salt Deliquescent Brines in the Yucca Mountain Repository  

SciTech Connect (OSTI)

It has been postulated that the deliquescence of multiple-salt systems in dust deposits and the consequent localized corrosion in high-temperature brines could lead to premature failure of the Alloy 22 waste packages in the Yucca Mountain repository. EPRI has developed a decision tree approach to determine if the various stages leading to waste package failure are possible and whether the safety of the repository system could be compromised as a result. Through a series of arguments, EPRI has shown that it is highly unlikely that the multiple-salt deliquescent brines will form in the first place and, even if they did, that they would not be thermodynamically stable, that the postulated brines are not corrosive and would not lead to the initiation of localized corrosion of Alloy 22, that even if localized corrosion did initiate that the propagation would stifle and cease long before penetration of the waste package outer barrier, and that even if premature waste package failures did occur from this cause that the safety of the overall system would not be compromised. EPRI concludes, therefore, that the postulated localized corrosion of the waste packages due to high-temperature deliquescent brines is neither a technical nor a safety issue of concern for the Yucca Mountain repository. (authors)

King, F. [Integrity Corrosion Consulting, Ltd., Calgary, AB (Canada); Arthur, R.; Apted, M. [Monitor Scientific LLC, Denver, CO (United States); Kessler, J.H. [Electric Power Research Institute, Charlotte, NC (United States)

2007-07-01T23:59:59.000Z

274

Three-dimensional numerical modeling of the influence of faults on groundwater flow at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Numerical simulations of groundwater flow at Yucca Mountain, Nevada are used to investigate how the faulted hydrogeologic structure influences groundwater flow from a proposed high-level nuclear waste repository. Simulations are performed using a 3-D model that has a unique grid block discretization to accurately represent the faulted geologic units, which have variable thicknesses and orientations. Irregular grid blocks enable explicit representation of these features. Each hydrogeologic layer is discretized into a single layer of irregular and dipping grid blocks, and faults are discretized such that they are laterally continuous and displacement varies along strike. In addition, the presence of altered fault zones is explicitly modeled, as appropriate. The model has 23 layers and 11 faults, and approximately 57,000 grid blocks and 200,000 grid block connections. In the past, field measurement of upward vertical head gradients and high water table temperatures near faults were interpreted as indicators of upwelling from a deep carbonate aquifer. Simulations show, however, that these features can be readily explained by the geometry of hydrogeologic layers, the variability of layer permeabilities and thermal conductivities, and by the presence of permeable fault zones or faults with displacement only. In addition, a moderate water table gradient can result from fault displacement or a laterally continuous low permeability fault zone, but not from a high permeability fault zone, as others postulated earlier. Large-scale macrodispersion results from the vertical and lateral diversion of flow near the contact of high and low permeability layers at faults, and from upward flow within high permeability fault zones. Conversely, large-scale channeling can occur due to groundwater flow into areas with minimal fault displacement. Contaminants originating at the water table can flow in a direction significantly different than that of the water table gradient, and isolated zones of contaminants will occur at the water table downgradient. This behavior is not predicted by traditional models of contaminant transport. In addition, the influence of a particular type of fault cannot be generalized; depending on the location where contaminants enter the saturated zone, faults may either enhance of inhibit vertical dispersion.

Cohen, Andrew J.B.

1999-06-01T23:59:59.000Z

275

Bald Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitasUSFWSBay HotMountain Geothermal

276

Comments on: Yucca Mountain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysis of Parton

277

Yucca Mountain - SRSCRO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers atWorkingTechnologiesYour Career

278

Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project  

SciTech Connect (OSTI)

The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

Deanna Gilliland; Matthew Usher

2011-12-31T23:59:59.000Z

279

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

280

Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area  

SciTech Connect (OSTI)

Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nationís first permanent geologic repository for spent nuclear fuel and highlevel radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effectiveporosity values for HGUs along these pathways are one of several parameters that determine possible radionuclide travel times between the NTS and proposed YM withdrawal areas. Values and uncertainties of HGU porosities are quantified through evaluation of existing site effective-porosity data and expert professional judgment and are incorporated in the model through Monte Carlo simulations to estimate mean travel times and uncertainties. The simulations are based on two steady-state flow scenarios, the pre-pumping (the initial stress period of the DVRFS model), and the 1998 pumping (assuming steady-state conditions resulting from pumping in the last stress period of the DVRFS model) scenarios for the purpose of long-term prediction and monitoring. The pumping scenario accounts for groundwater withdrawal activities in the Amargosa Desert and other areas downgradient of YM. Considering each detonation in a clustered region around Pahute Mesa (in the NTS operational areas 18, 19, 20, and 30) under the water table as a particle, those particles from the saturated zone detonations were tracked forward using MODPATH to identify hydraulically downgradient groundwater discharge zones and to determine the particles from which detonations will intercept the proposed YM withdrawal area. Out of the 71 detonations in the saturated zone, the flowpaths from 23 of the 71 detonations will intercept the proposed YM withdrawal area under the pre-pumping scenario. For the 1998 pumping scenario, the flowpaths from 55 of the 71 detonations will intercept the proposed YM withdrawal area. Three different effective-porosity data sets compiled in support of regional models of groundwater flow and contaminant transport developed for the NTS and the proposed YM repository are used. The results illustrate that mean minimum travel time from underground nuclear testing areas on the NTS to the proposed YM repository area can vary from just over 700 to nearly 700,000 years, depending on the locations of the underground detonations, the pumping scenarios considered, and the effective-porosity value distributions used. Groundwater pumping scenarios are found to significantly impact minimum particle travel time from the NTS to the YM area by altering flowpath geometry. Pumping also attracts many more additional groundwater flowpaths from the NTS to the YM area. The sensitivity analysis further illustrates that for both the pre-pumping and 1998 pumping scenarios, the uncertainties in effective-porosity values for five of the 27 HGUs considered account for well over 90 percent of the effective-porosity-related travel time uncertainties for the flowpaths having the shortest mean travel times to YM.

J. Zhu; K. Pohlmann; J. Chapman; C. Russell; R.W.H. Carroll; D. Shafer

2009-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Uncertainty and sensitivity analysis in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada.  

SciTech Connect (OSTI)

Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, an extensive performance assessment (PA) for the YM repository was completed in 2008 [1] and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository [2]. This presentation provides an overview of the conceptual and computational structure of the indicated PA (hereafter referred to as the 2008 YM PA) and the roles that uncertainty analysis and sensitivity analysis play in this structure.

Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

2010-05-01T23:59:59.000Z

282

Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study; Progress report, January 1, 1991--June 30, 1991  

SciTech Connect (OSTI)

Studies continue on the use of organic acids as tracers in hydrology studies of Yucca Mountain. Work performed during this time period has been concentrated in three main areas: the familiarization with, and optimization of, the LC-MS hardware and data system; the initial development of soil column test procedures, which are used for evaluation of both the columns themselves and the tracer compounds; and continuation of the batch sorption and degradation studies for the potential tracers. All three of these tasks will continue, as the addition of new tracer compounds, analytical information, and equipment will necessitate further evaluation of existing methods and procedures. Also included in this report is the final report on an information system.

Stetzenbach, K.J.

1991-12-31T23:59:59.000Z

283

Commentary on the state of knowledge of the origins of the Yucca Mountain calcite veins. Special report number 17, Contract number 94/96.0003  

SciTech Connect (OSTI)

This report is a compilation of papers and a letter providing technical information on the origin and geochemistry of calcite veins and calcretes in the vicinity of the Yucca Mountain repository. The information is presented to demonstrate that these deposits may be ``thermogenic`` in origin with some alteration by pedogenic processes. The papers present isotope ratios of uranium, strontium, and carbon to support the claims for a hydrothermal source. The letter provides a critical review of a previous paper presented at the 64th Advisory Committee on Nuclear Waste. The report makes an attempt to emphasize the need to review this possible origin because it has dramatic implications on the geologic history, paleo-ground water levels, and integrity of the repository.

Archambeau, C.

1994-08-01T23:59:59.000Z

284

Status of aeromagnetic survey coverage of Yucca Mountain and vicinity to a radius of about 140 kilometers, southwestern Nevada and southeastern California, 1992  

SciTech Connect (OSTI)

Fifty aeromagnetic surveys in the southwestern part of Nevada and the southeastern part of California have been evaluated to assess the quality and coverage of aeromagnetic data within 140 kilometers (km) of a potential nuclear waste repository at Yucca Mountain, Nevada. The compilation shows that all the study area is covered by aeromagnetic surveys, but in some areas, particularly in the Death Valley region, new surveys flown with closer flight line spacing and lower elevations than the existing coverage are needed. In addition, the California part of the study area needs to be analytically continued downward to 305 meters (m) above ground level to provide a consistent data set for interpretation of subsurface geologic structures.

Sikora, R.F.; Ponce, D.A.; Oliver, H.W.

1993-12-31T23:59:59.000Z

285

White Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview,Geothermal Project Jump to: navigation, search

286

Management of the Gemini 8M Telescopes Project R. Kurz, M. Mountain  

E-Print Network [OSTI]

of the project. The Gemini Science Committee (GSC) is responsible for scientific oversight and advice. The GSCManagement of the Gemini 8­M Telescopes Project R. Kurz, M. Mountain Gemini Telescopes Project, 950 Project Richard Kurz and Matt Mountain Gemini 8­M Telescopes Project 950 N. Cherry Avenue, Tucson, AZ

287

Drum Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville,Massachusetts:DraxProject Jump to: navigation,

288

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 8, Part B: Chapter 8, Sections 8.3.5 through 8.3.5.20  

SciTech Connect (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 68 figs., 102 tabs.

NONE

1988-12-01T23:59:59.000Z

289

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 8, Part B: Chapter 8, Sections 8.4 through 8.7; Glossary and Acronyms  

SciTech Connect (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Section 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 88 figs., 42 tabs.

NONE

1988-12-01T23:59:59.000Z

290

EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor  

Broader source: Energy.gov [DOE]

This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

291

Progress report No. 2 on the Scientific Investigation Program for the Nevada Yucca Mountain Site, October 1, 1989--March 31, 1990  

SciTech Connect (OSTI)

In accordance with the requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982 (Pub. L. No. 97-425), as amended, the US Department of Energy (DOE) has prepared this report on the progress of scientific investigation activities at Yucca Mountain in southern Nevada for October 1, 1989, through March 31, 1990. This report is the second of a series of reports that are issued at intervals of approximately six months during the period of scientific investigation. The progress report presents short summaries of the status of scientific investigation activities and cites technical reports and research products that provide more detailed information on the activities. The report provides highlights of work started during the reporting period, work in progress, and work completed and documented during the reporting period. In addition, the report is the vehicle for discussing major changes, if any, to the DOE`s scientific investigation program. The progress report conveys information in a convenient summary form to be used for informational purposes only. It is not intended to be the mechanism for controlling and documenting technical or policy positions regarding changes in schedules or the technical program. Such changes are controlled through rigorous DOE change-control procedures. The progress report only describes such approval changes. 49 refs., 3 tabs.

NONE

1990-12-31T23:59:59.000Z

292

Illustration of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high level radioactive waste repository at Yucca Mountain, Nevada.  

SciTech Connect (OSTI)

A deep geologic repository for high level radioactive waste is under development by the U.S. Department of Energy at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the U.S. Environmental Protection Agency (EPA) has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the U.S. Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This presentation describes and illustrates how general and typically nonquantitive statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI).

Helton, Jon Craig (Arizona State University, Tempe, AZ); Sallaberry, Cedric J. PhD. (.; .)

2007-04-01T23:59:59.000Z

293

A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain  

SciTech Connect (OSTI)

A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1993-07-01T23:59:59.000Z

294

Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository, B00000000-01717-2200-00099, Rev. 01  

SciTech Connect (OSTI)

Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during the site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. A parallel effort was conducted by Sandia National Laboratories and is reported in Wilson et al. (1994, in press).

Andrews, R.W.; Dale, T.F.; McNeish, J.A. [INTERA, Inc., Las Vegas, NV (United States)

1994-03-01T23:59:59.000Z

295

Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX)  

E-Print Network [OSTI]

Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX) for BC and Metro.thegoodman.com November 10, 2014 #12;SCHOOL OF PUBLIC POLICY Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX) for BC and Metro Vancouver ii Table of Contents 1 Executive Summary

296

A VAX/VMS mapped section/virtual memory utility package: Yucca Mountain Project  

SciTech Connect (OSTI)

A VAX/VMS Mapped Section/Virtual Memory Utility Package is a collection of FORTRAN subprograms that allocate virtual memory and, optionally, map that memory to a file. The subprograms use VMS system services and run-time libraries for allocating and mapping memory; therefore, the utility package is system dependent and functional on that platform only. FORTRAN-77 is one of the most widely used languages for computer programming. Languages have been developed in the past few decades that provide more powerful tools than FORTRAN and overcome some of its limitations. Two limitations addressed by this paper which have been a source of frustration to many programmers are that (1) FORTRAN does not provide dynamic array allocation and (2) FORTRAN file input-output is very slow. The solutions presented here are for the VAX/VMS operating system and use system services that are not part of the standard FORTRAN language description. Also discussed in this paper are dynamic array allocation, mapped sections of the program memory, and support modules. 3 refs.

Yarrington, L.

1990-02-01T23:59:59.000Z

297

Yucca Mountain Project Integrated Data System (IDS); Final report, October 1, 1989--December 31, 1990  

SciTech Connect (OSTI)

This final report for LANL Subcontract 9-XS8-2604-1 includes copies of all formal letters, memorandums, and reports provided by CAG to support the IDS effort in the LANL Test Managers Office, Las Vegas, Nevada from October 1, 1989 through the end of the contract on December 31, 1990. The material is divided into two sections; the Functional Requirements Document (FRD) and other reports, letters, and memorandums. All documents are arranged in chronological order with most recent last. Numerous draft copies of the FRD were prepared and cover sheets for all drafts are included. The complete text of only the last version supplied (July 27, 1990) is included in this document.

NONE

1991-05-23T23:59:59.000Z

298

Documentation and verification of STRES3D, Version 4.0; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

STRES3D is a thermomechanical analysis code for predicting transient temperatures, stresses and displacements in an infinite and semi-infinite, conducting, homogeneous, elastic medium. The heat generated at the sources can be constant or decay exponentially with time. Superposition is used to integrate the effect of heat sources distributed in space and time to simulate the thermomechanical effect of placement of heat generating nuclear waste canisters in an underground repository. Heat sources can be defined by point, lines or plates with numerical integration of the kernal point source solution used to develop the line and plate sources. STRES3D is programmed using FORTRAN77 and is suitable for use on micro or larger computer systems.

Asgian, M.I.; St. John, C.M.; Hardy, M.P.; Goodrich, R.R. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)] [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)

1991-12-01T23:59:59.000Z

299

Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 2, Design data  

SciTech Connect (OSTI)

This is Volume 2 of the Engineered Materials Characterization Report which presents the design data for candidate materials needed in fabricating different components for both large and medium multi-purpose canister (MPC) disposal containers, waste packages for containing uncanistered spent fuel (UCF), and defense high-level waste (HLW) glass disposal containers. The UCF waste package consists of a disposal container with a basket therein. It is assumed that the waste packages will incorporate all-metallic multibarrier disposal containers to accommodate medium and large MPCs, ULCF, and HLW glass canisters. Unless otherwise specified, the disposal container designs incorporate an outer corrosion-allowance metal barrier over an inner corrosion-resistant metal barrier. The corrosion-allowance barrier, which will be thicker than the inner corrosion-resistant barrier, is designed to undergo corrosion-induced degradation at a very low rate, thus providing the inner barrier protection from the near-field environment for a prolonged service period.

Konynenburg, R.A.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Roy, A.K. [B and W Fuel Co., Lynchburg, VA (United States); Jones, D.A. [Nevada Univ., Reno, NV (United States)

1995-08-01T23:59:59.000Z

300

Yucca Mountain Project Document Suspension, OAS-M-08-07 | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the ChallengeWorkshopXcelEnergyYourPlan

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vendor Assessment for the Waste Package Closure System (Yucca Mountain Project)  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) has been tasked with developing, designing, constructing, and operating a full-scale prototype of the work package closure system. As a precursor to developing the conceptual design, all commercially available equipment was assessed to identify any existing technology gaps. This report presents the results of that assessment for all major equipment.

Shelton-Davis, C.V.

2003-09-26T23:59:59.000Z

302

Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test  

SciTech Connect (OSTI)

We analyzed a data set of thermally induced changes in fractured rock permeability during a four-year heating (up to 200 C) and subsequent four-year cooling of a large volume, partially saturated and highly fractured volcanic tuff at the Yucca Mountain Drift Scale Test, in Nevada, USA. Permeability estimates were derived from about 700 pneumatic (air-injection) tests, taken periodically at 44 packed-off borehole intervals during the heating and cooling cycle from November 1997 through November 2005. We analyzed air-permeability data by numerical modeling of thermally induced stress and moisture movements and their impact on air permeability within the highly fractured rock. Our analysis shows that changes in air permeability during the initial four-year heating period, which were limited to about one order of magnitude, were caused by the combined effects of thermal-mechanically-induced stress on fracture aperture and thermal-hydrologically-induced changes in fracture moisture content. At the end of the subsequent four-year cooling period, air-permeability decreases (to as low as 0.2 of initial) and increases (to as high as 1.8 of initial) were observed. By comparison to the calculated thermo-hydro-elastic model results, we identified these remaining increases or decreases in air permeability as irreversible changes in intrinsic fracture permeability, consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). In this paper, we discuss the possibility that such fracture asperity shortening and associated decrease in fracture permeability might be enhanced by dissolution of highly stressed surface asperities over years of elevated stress and temperature.

Rutqvist, J.; Freifeld, B.; Min, K.-B.; Elsworth, D.; Tsang, Y.

2008-06-01T23:59:59.000Z

303

A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY  

SciTech Connect (OSTI)

The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft{reg_sign} Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft{reg_sign} Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the queries provide a straight-forward means used to verify results. Another advantage of using the MS Access database was the ability to develop query hierarchies using nested queries. Calculations were broken into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing unit risk factors calculated using RADTRAN IV to produce radiological impacts. Through the use of queries, impacts by origin, mode, fuel type or many other parameters can be obtained. The paper will show both the flexibility of the assessment tool and the ease it provides for verifying results.

NA

2001-02-15T23:59:59.000Z

304

The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository  

SciTech Connect (OSTI)

Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The model also considered different accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. To capture the all of the complexities of the transportation analysis, a Microsoft{reg_sign} Access database was created. In the Microsoft{reg_sign} Access approach the data is placed in individual tables and equations are developed in queries to obtain the overall impacts. While the query might be applied to thousands of table entries, there is only one equation for a particular impact. This greatly simplifies the validation effort. Furthermore, in Access, data in tables can be linked automatically using query joins. Another advantage built into MS Access is nested queries, or the ability to develop query hierarchies. It is possible to separate the calculation into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing the state and mode specific accident rate to produce accidents by state. One of the biggest advantages of the nested queries is in validation. Temporarily restricting the query to one origin, one shipment, or one state and validating that the query calculation is returning the expected result allows simple validation. The paper will show the flexibility of the assessment tool to consider a wide variety of impacts. Through the use of pre-designed queries, impacts by origin, mode, fuel type or many other parameters can be obtained.

McSweeney; Thomas; Winnard; Ross; Steven B.; Best; Ralph E.

2001-02-06T23:59:59.000Z

305

Kinetic measurements on the silicates of the Yucca Mountain potential repository. Final report for October 1994--September 1995  

SciTech Connect (OSTI)

This Final Report includes a summary and discussion of results obtained under this project on the solubilities in subcritical aqueous solutions of Mont St. Hilaire analcime, Wikieup analcime, and Castle Creek Na-clinoptilolite. Also included here are the methods and results of hydrothermal flow-through experiments designed to measure the rates of Na-clinoptilolite dissolution and precipitation at 125{degree}C. In this report, high-temperature solubility measurements made in our lab are integrated and discussed along with the low-temperature measurements made at Yale University. The final report prepared by the group at Yale University (Lasaga et al.) includes a synthesis of dissolution rate measurements made between 25{degree} and 125{degree}C on the Na-clinoptilolite.

Barnes, H.L.; Wilkin, R.T. [Pennsylvania State Univ., University Park, PA (United States). Ore Deposits Research Section

1995-08-01T23:59:59.000Z

306

Scenarios constructed for the effects of tectonic processes on the potential nuclear waste repository at Yucca Mountain  

SciTech Connect (OSTI)

A comprehensive collection of scenarios is presented that connect initiating tectonic events with radionuclide releases by logical and physically possible combinations or sequences of features, events and processes. The initiating tectonic events include both discrete faulting and distributed rock deformation developed through the repository and adjacent to it, as well as earthquake-induced ground motion and changes in tectonic stress at the site. The effects of these tectonic events include impacts on the engineered-barrier system, such as container rupture and failure of repository tunnels. These effects also include a wide range of hydrologic effects such as changes in pathways and flow rates in the unsaturated and saturated zones, changes in the water-table configuration, and in the development of perched-water systems. These scenarios are intended go guide performance-assessment analyses and to assist principal investigators in how essential field, laboratory, and calculational studies are used. This suite of scenarios will help ensure that all important aspects of the system disturbance related to a tectonic scenario are captured in numerical analyses. It also provides a record of all options considered by project analysts to provide documentation required for licensing agreement. The final portion of this report discusses issues remaining to be addressed with respect to tectonic activity. 105 refs.

Barr, G.E.; Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States); Fridrich, C. [Geological Survey, Lakewood, CO (United States)

1996-10-01T23:59:59.000Z

307

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act  

SciTech Connect (OSTI)

Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

NONE

1988-01-01T23:59:59.000Z

308

E-Print Network 3.0 - aqueous solution yucca Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a repository at Yucca Mountain. An important part of the Board's mission Source: U.S. Nuclear Waste Technical Review Board Collection: Fission and Nuclear Technologies ;...

309

Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and  

E-Print Network [OSTI]

designed to measure the strain rate across the region around Yucca Mountain. The LSM earthquake complicates parameters; 7260 Seismology: Theory and modeling; KEYWORDS: InSAR, joint inversion, seismic, Yucca Mountain 1. Introduction [2] Yucca Mountain, a proposed long-term (103 ­105 years) disposal site for high-level radioactive

310

Information Request Yucca Mountain Site  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting Thomas F.Needs for Energy, 2008 TO:

311

Yucca Mountain | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee onsupports high impactSinceDr. VirginiaFuel assembly for

312

Precipitation-Front Modeling: Issues Relating to Nucleation and Metastable Precipitation in the Planned Nuclear Waste Repository at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The focus of the presentation is on certain aspects concerning the kinetics of heterogeneous reactions involving the dissolution and precipitation of unstable and metastable phases under conditions departing from thermodynamic equilibrium. These aspects are particularly relevant to transient thermal-hydrological-chemical (THC) processes that will occur as a result of the emplacement of radioactive waste within the Yucca Mountain Repository. Most important of these is a phenomenon commonly observed in altering soils, sediments and rocks, where less stable minerals precipitate in preference to those that are more stable, referred to as the Ostwald Rule of Stages, or the Ostwald Step Rule. W. Ostwald (1897) described the phenomenon characterizing his rule (as cited in Schmeltzer et al., 1998), thus: ''...in the course of transformation of an unstable (or metastable) state into a stable one the system does not go directly to the most stable conformation (corresponding to the modification with the lowest free energy) but prefers to reach intermediate stages (corresponding to other metastable modifications) having the closest free energy to the initial state''. This phenomenon is so widespread in natural geochemical systems, particularly under hydrothermal or low temperature conditions, that few geochemical parageneses involving the subcritical aqueous phase can be described without invoking the Ostwald Rule of Stages. Commonly observed systems where this phenomenon occurs include carbonates, silica, clay minerals, iron and manganese oxides, iron sulfides and zeolites (Morse and Casey, 1988). Simulations involving natural or anthropogenically modified reactive chemical transport must therefore be consistent with field observations describable by the Ostwald Rule. Geochemists have long been familiar with the Ostwald Rule, but, with one exception (Steefel and Van Cappellen, 1990), have not incorporated the underlying chemical principles justifying the Rule in reactive chemical transport simulations, other than through arbitrary fixes involving the suppression of the thermodynamically more stable phases, and by prohibiting the re-dissolution of minerals. Another issue relating to mineral metastability is the contribution of interfacial free energy to the total free energy of a geochemical system. The interfacial free energy contribution is trivial for crystal sizes in excess of 1 micrometer. However, the alteration of soils and sediments entails both the dissolution of finely crystalline products of diagenesis and heterogeneous nucleation and precipitation of new phases. The latter phases are commonly microcrystalline or amorphous, with substantial contributions of surface free energy to the total Gibbs free energy of the phase. Such contributions must be taken into account when modeling the chemical evolution of such systems, as they stabilize metastable phases and can modify aqueous species concentrations by up to two orders of magnitude. This condition is especially relevant to anthropogenically driven geochemical processes involving extreme levels of supersaturation where nucleation processes are dominant. Furthermore, by a process known as Ostwald Ripening, larger crystallites, usually possess a lower surface free energy contribution, and being more stable, destabilize smaller coexisting crystallites of the same phase, leading to a decreased crystal size distribution, and the growth of progressively fewer crystals.

Apps, J.A.; Sonnenthal, E.L.

2004-04-01T23:59:59.000Z

313

Timber Mountain Precipitation Monitoring Station  

SciTech Connect (OSTI)

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

314

Drum Mountain Geothermal Project (3) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirect EnergyOrganization ofVirginiaYouProject (3)

315

Measured solubilities and speciations of neptunium, plutonium, and americium in a typical groundwater (J-13) from the Yucca Mountain region; Milestone report 3010-WBS 1.2.3.4.1.3.1  

SciTech Connect (OSTI)

Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, {sup 241}Am{sup 3+}/Nd{sup 3+}, and {sup 243}Am{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at three different temperatures (25{degree}, 60{degree}, and 90{degree}C) and pH values (5.9, 7.0, and 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations decreased with increasing temperature and showed no trend with pH. The americium solutions showed no clear solubility trend with increasing temperature and increasing pH.

Nitsche, H.; Gatti, R.C.; Standifer, E.M. [and others] [Lawrence Berkeley Lab., CA (United States)

1993-07-01T23:59:59.000Z

316

Use of the iterative solution method for coupled finite element and boundary element modeling; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver.

Koteras, J.R.

1993-07-01T23:59:59.000Z

317

Processes, mechanisms, parameters, and modeling approaches for partially saturated flow in soil and rock media; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This report discusses conceptual models and mathematical equations, analyzes distributions and correlations among hydrological parameters of soils and tuff, introduces new path integration approaches, and outlines scaling procedures to model potential-driven fluid flow in heterogeneous media. To properly model the transition from fracture-dominated flow under saturated conditions to matrix-dominated flow under partially saturated conditions, characteristic curves and permeability functions for fractures and matrix need to be improved and validated. Couplings from two-phase flow, heat transfer, solute transport, and rock deformation to liquid flow are also important. For stochastic modeling of alternating units of welded and nonwelded tuff or formations bounded by fault zones, correlations and constraints on average values of saturated permeability and air entry scaling factor between different units need to be imposed to avoid unlikely combinations of parameters and predictions. Large-scale simulations require efficient and verifiable numerical algorithms. New path integration approaches based on postulates of minimum work and mass conservation to solve flow geometry and potential distribution simultaneously are introduced. This verifiable integral approach, together with fractal scaling procedures to generate statistical realizations with parameter distribution, correlation, and scaling taken into account, can be used to quantify uncertainties and generate the cumulative distribution function for groundwater travel times.

Wang, J.S.Y.; Narasimhan, T.N. [Lawrence Berkeley Lab., CA (United States)

1993-06-01T23:59:59.000Z

318

Total System Performance Assessment Code (TOSPAC); Volume 2, User`s guide: Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

TOSPAC is a computer program that calculates partially saturated groundwater flow with the transport of water-soluble contaminants. TOSPAC Version 1 is restricted to calculations involving one-dimensional, vertical columns of one or more media. TOSPAC was developed to help answer questions surrounding the burial of toxic wastes in arid regions. Burial of wastes in arid regions is attractive because of generally low population densities and little groundwater flow, in the unsaturated zone, to disturb the waste. TOSPAC helps to quantify groundwater flow and the spread of contamination, offering an idea of what could happen in the distant future. Figure 1.1 illustrates the problem TOSPAC was designed to investigate. For groundwater flow, TOSPAC can provide saturations, velocities, and and travel tunes for water in the rock matrix or the fractures in the unsaturated zone. TOSPAC can determine how hydrologic conditions vary when the rate of infiltration changes. For contaminant transport, TOSPAC can compute how much of a contaminant is dissolved in the water and how it is distributed. TOSPAC can determine how fast the solute is moving and the shape of the concentration front. And TOSPAC can be used to investigate how much of the contaminant remains in the inventory of a repository, how much is adsorbed onto the soil or rock matrix, and how much reaches the water table. Effective use of TOSPAC requires knowledge in a number of diverse disciplines, including real groundwater flow and transport, the mathematical models of groundwater flow and transport, real-world data required for the models, and the numerical solution of differential equations. Equally important is a realization of the limitations intrinsic to a computer model of complex physical phenomena. This User`s Guide not only describes the mechanics of executing TOSPAC on a computer, but also examines these other topics.

Gauthier, J.H.; Dudley, A.L; Skinner, L.H. [Spectra Research Inst., Albuquerque, NM (United States); Wilson, M.L.; Peters, R.R. [Sandia National Labs., Albuquerque, NM (United States)

1992-07-01T23:59:59.000Z

319

Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report  

SciTech Connect (OSTI)

This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

Guy Cerimele

2011-09-30T23:59:59.000Z

320

E-Print Network 3.0 - aquifer beneath yucca Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science 33 THE U.S. CONGRESS THE U.S. SECRETARY OF ENERGY Summary: recent geo- logic time, the water table beneath Yucca Mountain has risen one or more times... oc-...

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

United States Environmental Protection Agency | Office of Air and Radiation (6608J) | EPA 402-F-05-028 | October 2005 www.epa.gov/radiation/yucca  

E-Print Network [OSTI]

for the disposal of spent nuclear fuel and high-level radioactive waste. The Yucca Mountain facility will only of a nuclear waste facility. Passed legislation instructing the EPA to establish standards for a Yucca Mountain and Federal Facilities with Spent Nuclear Fuel and High Level Nuclear Waste. #12;

322

Yucca MountainTransportation: Private Sector Perspective  

Broader source: Energy.gov (indexed) [DOE]

Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC)...

323

Testimony of Greg Friedman Yucca Mountain  

Office of Environmental Management (EM)

disposal becomes more challenging day by day. The United States has announced plans to dismantle a significant part of its nuclear weapons stockpile with the unavoidable reality...

324

Testimony of Greg Friedman Yucca Mountain  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlow Room AirNEPATerri T.Thomas

325

Microsoft Word - Yucca Mountain Press Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping RichlandScatteringWater Vapor Continuum in1 WorkFor ImmediateFOR

326

The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia  

SciTech Connect (OSTI)

This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

Neeraj Gupta

2009-01-07T23:59:59.000Z

327

Summary - Plutonium Preparation Project at the Savannah River...  

Office of Environmental Management (EM)

3. An alternate waste disposition path that is in compliance with the current Yucca Mountain plutonium license requirements should be developed for the 5MT proposed to...

328

EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California  

Broader source: Energy.gov [DOE]

The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

329

Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment  

SciTech Connect (OSTI)

The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

Not Available

1994-02-01T23:59:59.000Z

330

Communications Between the Board and the OCRWM  

E-Print Network [OSTI]

Project Manager, Yucca Mountain Site Characterization Office; February 7, 2000. Subject: The DOE's proposed environmental impact statement for a geologic repository at Yucca Mountain, Nevada. · Letter from

331

Remote geologic structural analysis of Yucca Flat  

SciTech Connect (OSTI)

The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

Foley, M.G.; Heasler, P.G.; Hoover, K.A. (Pacific Northwest Lab., Richland, WA (United States)); Rynes, N.J. (Northern Illinois Univ., De Kalb, IL (United States)); Thiessen, R.L.; Alfaro, J.L. (Washington State Univ., Pullman, WA (United States))

1991-12-01T23:59:59.000Z

332

Remote geologic structural analysis of Yucca Flat  

SciTech Connect (OSTI)

The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

Foley, M.G.; Heasler, P.G.; Hoover, K.A. [Pacific Northwest Lab., Richland, WA (United States); Rynes, N.J. [Northern Illinois Univ., De Kalb, IL (United States); Thiessen, R.L.; Alfaro, J.L. [Washington State Univ., Pullman, WA (United States)

1991-12-01T23:59:59.000Z

333

The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report  

SciTech Connect (OSTI)

A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The screening method was also useful in identifying unnecessary items that were not significant given the site-specific geology and proposed scale of the Ohio River Valley CO{sub 2} Storage Project. Overall, the FEP database approach provides a comprehensive methodology for assessing potential risk for a practical CO{sub 2} storage application. An integrated numerical fate and transport model was developed to enable risk and consequence assessment at field scale. Results show that such an integrated modeling effort would be helpful in meeting the project objectives (such as site characterization, engineering, permitting, monitoring and closure) during different stages. A reservoir-scale numerical model was extended further to develop an integrated assessment framework which can address the risk and consequence assessment, monitoring network design and permitting guidance needs. The method was used to simulate sequestration of CO{sub 2} in moderate quantities at the Mountaineer Power Plant. Results indicate that at the relatively low injection volumes planned for pilot scale demonstration at this site, the risks involved are minor to negligible, owing to a thick, low permeability caprock and overburden zones. Such integrated modeling approaches coupled with risk and consequence assessment modeling are valuable to project implementation, permitting, monitoring as well as site closure.

Neeraj Gupta

2008-03-31T23:59:59.000Z

334

Bulletin of the Seismological Society of America, 91, 6, pp. 15951606, December 2001 The 1992 Little Skull Mountain Earthquake Sequence,  

E-Print Network [OSTI]

(NTS) approximately 20 km from Yucca Mountain, a potential site for a high-level radioactive waste Little Skull Mountain Earthquake Sequence, Southern Nevada Test Site by Kenneth D. Smith, James N. Brune Skull Mountain, Nevada, 29 June 1992 earth- quake occurred in the southwest portion of Nevada Test Site

Sheehan, Anne F.

335

Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.  

SciTech Connect (OSTI)

In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

2006-01-26T23:59:59.000Z

336

Deep Resistivity Structure of Rainier Mesa-Shoshone Mountain, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. During 2005, the U.S. Geological Survey (USGS), funded by the DOE and NNSA-NSO, collected and processed data from twenty-six Magnetotelluric (MT) and Audio-Magnetotelluric (AMT) sites at the Nevada Test Site. Data stations were located in and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend to the west the hydrogeologic study that was conducted in Yucca Flat in 2003. This work has helped to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU Ė late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale(Bechtel Nevada, 2006)) in the Yucca Flat area and west towards Shoshone Mountain in the south, east of Buckboard Mesa, and onto Rainier Mesa in the north. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology within the region. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit (UCCU) are generally characterized in the upper 5 km. The interpretation is not well determined where conductive TCU overlies conductive Chainman Shale, where resistive Eleana Formation overlies resistive LCA units, or where resistive VTA rock overlies units of the Eleana Formation. The nature of the volcanic units in the west has been refined as are large and small fault structures such as the CP Thrust Fault, the Carpetbag Fault, and the Yucca Fault that cross Yucca Flat. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit and areas to the west and in understanding the effects on ground-water flow in the area.

Theodore H. Asch; Brian D. Rodriguez; Jay A. Sampson; Jackie M. Williams; Maryla Deszcz-Pan

2006-12-12T23:59:59.000Z

337

INTER-MOUNTAIN BASINS MIXED SALT DESERT SCRUB extent exaggerated for display  

E-Print Network [OSTI]

INTER-MOUNTAIN BASINS MIXED SALT DESERT SCRUB R.Rondeau extent exaggerated for display ATRIPLEX., Lycium ssp., Suaeda spp., Yucca glauca, and Tetradymia spinosa. Dwarf- shrubs include Gutierrezia and Holmgren 1984). Forb cover is generally sparse. Perennial forbs that might occur include INTER-MOUNTAIN

338

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network [OSTI]

that the heat and mass transfer of the open in-drift can beheat transfer processes[26, 33], in both the fractured rock and the openheat transfer coefficient, hc eff , as described in Appendix A.2.1. For our case, modeling convection in open

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

339

List of Yucca Mountain Archival Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. October 12, 2007 EIS-0250-S1: DOE Notice of Availability of the...

340

Identification of subsurface microorganisms at Yucca Mountain; Fourth quarterly report  

SciTech Connect (OSTI)

Bacteria isolated from water samples collected in a series of ground water springs have been isolated, enumerated, and identified from twenty six sites. Ten sites were sampled in Death Valley, California and sixteen sites were sampled in Ash Meadows, Nevada. Replicate samples were collected and tested from four locations. All water samples were collected in conjunction with the HRC chemistry group conducting ground water fingerprinting studies. The protocol for collection of samples, as described in the 3rd quarterly report, specified aseptic collection in sterile screw-capped containers and transportation on ice to the HRC microbiology laboratory. All samples were inoculated by spread plating onto R2A (Difco Laboratories, Detroit, MI) bacterial culture medium. the R2A plates were then incubated at 28{degrees} for 5--7 days and colonies wee counted with the aid of a grid template and magnifying lens.

Stetzenbach, L.D.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

New Yucca Mountain Repository Design to be Simpler, Safer and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Audit Report: OAS-L-07-08 USA RS Basic Contract - Contract No.: DE-RW0000005 EIS-0250: Notice of Intent to Prepare a Supplement to the Final Environmental Impact Statement...

342

Department of Energy Files Motion to Withdraw Yucca Mountain...  

Office of Environmental Management (EM)

nuclear waste repository, the President directed Secretary Chu to establish the Blue Ribbon Commission on America's Nuclear Future to conduct a comprehensive review of...

343

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network [OSTI]

material from nuclear weapons decommissioning, byproductsnuclear fuel, defense waste from weapons decommissioning,

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

344

area yucca mountain: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This procedure leads to extremely high ground-motion estimates, a potential high- level radioactive waste storage site, is reported in Stepp et al. (2001) as mostly Duan, Benchun...

345

analysis yucca mountain: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a high-level waste repository. The draft documents appear to discuss the affected environment and potential impacts that would be associated with the proposed actions as...

346

Yucca Mountain Science and Engineering Report | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the

347

DOE Announces Yucca Mountain License Application Schedule | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of Energy 2010 Federal Energy

348

DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE Challenge HomeEnergy Theof Energy Today,

349

April 25, 1997: Yucca Mountain exploratory drilling | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access toEnergy 5 BTOof Energy

350

February 14, 2002: Yucca Mountain | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &ofDepartment of Energy OnDramatic energy and cost14,

351

Technical Report Confirms Reliability of Yucca Mountain Technical Work |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at YoungSuspect|THEofEnergy- 2012 |

352

Two Independent Assessments Find the Department of Energy's Yucca Mountain  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of Energy

353

The National Repository at Yucca Mountain, Russ Dyer  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnology ValidationMilestone The Manhattan

354

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network [OSTI]

in Engineering Ė Nuclear Engineering in the GRADUATEDoctor of Philosophy in Nuclear Engineering Departmentof Nuclear Engineering University of California, Berkeley

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

355

Mountain Home Well - Photos  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

356

Deep Resistivity Structure of Yucca Flat, Nevada Test Site, Nevada.  

SciTech Connect (OSTI)

The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian Ė Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault structures such as the CP Thrust fault, the Carpetbag fault, and the Yucca fault that cross Yucca Flat are also discernable as are other smaller faults. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development.

Theodore H. Asch, Brian D. Rodriguez; Jay A. Sampson; Erin L. Wallin; and Jackie M. Williams.

2006-09-18T23:59:59.000Z

357

USING HYPERSPECTRAL IMAGERY TO ASSIST FEDERAL FOREST MONITORING AND RESTORATION PROJECTS IN THE SOUTHERN ROCKY MOUNTAINS, COLORADO  

E-Print Network [OSTI]

Hyperspectral imagery and the corresponding ability to conduct analysis below the pixel level have tremendous potential to aid in landcover monitoring. During large ecosystem restoration projects, being able to monitor ...

Wamser, William Kyle

2012-12-31T23:59:59.000Z

358

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect (OSTI)

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

359

E-Print Network 3.0 - absorption spectroscopy measurements Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A partial sampling of these techniques includes: Absorption spectroscopy Atomic absorption... spectroscopy Auger electron ... Source: Yucca Mountain Project, US...

360

E-Print Network 3.0 - atomic spectroscopy study Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A partial sampling of these techniques includes: Absorption spectroscopy Atomic absorption... spectroscopy Atomic emission ... Source: Yucca Mountain Project,...

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - atomic fluorescence spectroscopy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

total reflectance... increasing. A partial sampling of these techniques includes: Absorption spectroscopy Atomic ... Source: Yucca Mountain Project, US EPA Collection:...

362

Microsoft PowerPoint - Vicksburg District Federal Power Projects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1 ll Rotor...

363

Mountainous | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr Geothermal ProjectMountainous Jump to: navigation,

364

A Mountain-Scale Monitoring Network for Yucca Mountain Performance Confirmation  

E-Print Network [OSTI]

technology advances, it will also be possible to install improved fiber-optic sensors without the need for drilling a new

Freifeld, Barry; Tsang, Yvonne

2006-01-01T23:59:59.000Z

365

JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

Biffle, J.H.

1993-02-01T23:59:59.000Z

366

JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

Biffle, J.H.; Blanford, M.L.

1994-05-01T23:59:59.000Z

367

Communication Between U.S. Nuclear Waste Technical Review Board  

E-Print Network [OSTI]

. Russell Dyer, Project Manager, Yucca Mountain Site Characterization Office, to Jared L. Cohon; January 24, 2002. Subject: Fluid inclusions in mineral deposits at Yucca Mountain · Letter from Jared L. Cohon

368

Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

John McCord; Marutzky, Sam

2004-12-01T23:59:59.000Z

369

POTENTAIL HABITAT MOUNTAIN PLOVERS  

E-Print Network [OSTI]

) is endemic to the Western Great Plains and Colorado Plateau (Mengel, 1970). The bird has become of greater cover of yucca and cholla on hills characterize the area bordered by the solar evaporation ponds

370

Executive Profile Safely Delivering the U.S. Department of Energy's Vision for the East Tennessee Technology Park Mission  

E-Print Network [OSTI]

Mountain Project. As part of the Yucca Mountain team, Tony provided human resources, procurement, contracts Manager USA Repository Services Yucca Mountain Senior Vice President & Chief Financial Officer URS Power. Before becoming UCOR Business Manager, Tony managed all business services for the $2.5 billion Yucca

Sibille, Etienne

371

Reno, NV, 1976). 38. M. C. Reheis and R. Kihl, J. Geophys. Res. 100,  

E-Print Network [OSTI]

of the Yucca Mountain Unsaturated and Sat- urated Zone Hydrology to Climate Change, 1996 Milestone report 3GCA102M (U.S. Geological Sur- vey­Yucca Mountain Project Branch, Las Vegas, NV, 1997). 42. J. M. Barnola National Laboratory. Part of this work was supported and managed by DOE's Yucca Mountain Site

372

Abstract--An all-day tour to observe arid land reclamation on the Nevada Test Site was conducted in conjunction with the  

E-Print Network [OSTI]

participants were introduced to the U. S. Department of En- ergy reclamation programs for the Yucca Mountain of Energy must study and characterize Yucca Mountain, Nevada, as a potential site for long-term underground-disturbance conditions. The Reclamation Program of the Yucca Mountain Project Since limited information exists pertaining

373

State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992  

SciTech Connect (OSTI)

The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities: (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

NONE

1992-12-31T23:59:59.000Z

374

Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project  

SciTech Connect (OSTI)

Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

1995-07-01T23:59:59.000Z

375

Mountain Home Well - Borehole Geophysics Database  

SciTech Connect (OSTI)

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

2012-11-11T23:59:59.000Z

376

Mountain Home Well - Borehole Geophysics Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

377

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network [OSTI]

in 1992 by the National Academy Press in a report titled Ground Water at Yucca Mountain--How High Can of affiliation with the Yucca Mountain Project, and their lack of previous involvement in evaluating Mr General's office on possible future upwelling of water into the proposed nuclear waste repository at Yucca

378

State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, October 1--December 31, 1991  

SciTech Connect (OSTI)

The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities. (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State. (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987. (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State. (4) Work closely and consult with affected local governments and State agencies. (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

NONE

1991-12-31T23:59:59.000Z

379

Microsoft PowerPoint - 1_JAMES_ANDERSON_UPDATED_2014-5-14 NMMSS Users Annual Training Meeting - Yucca - Andersen.pptx  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca Mountain License Application NMMSS USERS

380

Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region  

E-Print Network [OSTI]

In Santa Barbara County, Santa Maria Pacific (an exploration and production company) is expanding their cyclic steam project in a diatomite reservoir. The hilly or mountainous topography and cut and fill restrictions have interfered with the company...

Powell, Richard

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

andes mountain region: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

steam project in a diatomite reservoir. The hilly or mountainous topography and cut and fill restrictions have interfered with the company... Powell, Richard 2012-10-19 10 Peer...

382

7-16-09_Final_Testimony_(kouts).pdf  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Department's FY 2010 budget request announces the Administration's intended termination of the Yucca Mountain repository project and includes the funding needed to explore...

383

E-Print Network 3.0 - airborne occupational exposure Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Airborne Emissions . . . 8... -6 9-3. Normalized Impacts from One Year of Exposure to Fugitive Airborne Emissions . . ... Source: Yucca Mountain Project, US EPA Collection:...

384

E-Print Network 3.0 - active site characterization Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transuranic (TRU) waste generator sites operating... sites (Condition 2) and ... Source: Yucca Mountain Project, US EPA Collection: Environmental Sciences and Ecology 3...

385

E-Print Network 3.0 - approved site treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRU waste characterization... program. The revisions to 40 CFR 194.8 also ... Source: Yucca Mountain Project, US EPA Collection: Environmental Sciences and Ecology 2 Woodland...

386

E-Print Network 3.0 - abandoned shafts Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wastes of EPA concern from... this report and study are from abandoned conventional open-pit and underground uranium mines, and include Source: Yucca Mountain Project, US EPA...

387

E-Print Network 3.0 - actinide thermodynamic predictions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brine: LCO-ACP-08, ... Source: Yucca Mountain Project, US EPA Collection: Environmental Sciences and Ecology 6 PHYSICAL PROPERTIES OF METALLIC MAGNETIC COMPOUNDS : 5f-BAND...

388

E-Print Network 3.0 - aerated treatment pond Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

process can potentially... to surface water Discharge to Publicly Owned Treatment Works Solid waste disposal Solid waste ... Source: Yucca Mountain Project, US EPA...

389

E-Print Network 3.0 - alpha emitters ii Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exceeded... toxicity alpha ... Source: Yucca Mountain Project, US EPA Collection: Environmental Sciences and Ecology 22 Fabrication and Characterization of Porous Metal Emitters...

390

E-Print Network 3.0 - allowable trupact-ii payload Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with > 1 wt% Special... . After defining and evaluating the container geometries, loading ... Source: Yucca Mountain Project, US EPA Collection: Environmental Sciences and...

391

HOW MANY DID YOU SAY? HISTORICAL AND PROJECTED SPENT NUCLEAR FUEL SHIPMENTS IN THE UNITED STATES, 1964 - 2048  

SciTech Connect (OSTI)

No comprehensive, up-to-date, official database exists for spent nuclear fuel shipments in the United States. The authors review the available data sources, and conclude that the absence of such a database can only be rectified by a major research effort, similar to that carried out by Oak Ridge National Laboratory (ORNL) in the early 1990s. Based on a variety of published references, and unpublished data from the U.S. Nuclear Regulatory Commission (NRC), the authors estimate cumulative U.S. shipments of commercial spent fuel for the period 1964-2001. The cumulative estimates include quantity shipped, number of cask-shipments, and shipment-miles, by truck and by rail. The authors review previous estimates of future spent fuel shipments, including contractor reports prepared for the U.S. Department of Energy (DOE), NRC, and the State of Nevada. The DOE Final Environmental Impact Statement (FEIS) for Yucca Mountain includes projections of spent nuclear fuel and high-level radioactive was te shipments for two inventory disposal scenarios (24 years and 38 years) and two national transportation modal scenarios (''mostly legal-weight truck'' and ''mostly rail''). Commercial spent fuel would compromise about 90 percent of the wastes shipped to the repository. The authors estimate potential shipments to Yucca Mountain over 38 years (2010-2048) for the DOE ''mostly legal-weight truck'' and ''mostly rail'' scenarios, and for an alternative modal mix scenario based on current shipping capabilities of the 72 commercial reactor sites. The cumulative estimates of future spent fuel shipments include quantity shipped, number of cask-shipments, and shipment-miles, by legal-weight truck, heavy-haul truck, rail and barge.

Halstead, Robert J.; Dilger, Fred

2003-02-27T23:59:59.000Z

392

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the Yucca Mountain Site Characterization Project Requirements Document (YMP RD) (YMP 2001a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2001-06-26T23:59:59.000Z

393

Three-Dimensional Radionuclide Transport Through the Unsaturated Zone of the Yucca Mountain Site 3 Colloids  

SciTech Connect (OSTI)

The authors investigated colloid transport in the unsaturated fractured zone by means of three-dimensional site-scale numerical model under present-day climate infiltration, considering varying colloid diameters, kinetic declogging, and filtration. The radionuclide transport model was used to simulate continuous release of colloids into fractures throughout the proposed repository, in which any components of engineered barrier system such as waste package or drip shield were not considered. the results of the study indicate the importance of subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The simulations indicate that (1) colloid transport is not significantly affected by varying the filtration parameters, (2) travel time to the water table decreases with the colloid size, (3) larger colloids show little retardation whereas very small ones are retarded significantly, and (4) fracture filtration can have an impact on transport. Because of uncertainties in the fundamentals of colloid transport and an extremely conservative approach (based on an improbably adverse worst-case scenario), caution should be exercised in the analysis and interpretation of the 3-D simulation results. The results discussed here should be viewed as an attempt to identify and evaluate the mechanisms, processes, and geological features that control colloidal transport.

G. J. Moridis; Y. Seol

2007-01-26T23:59:59.000Z

394

Multiphysics processes in partially saturated fracture rock: Experiments and models from Yucca Mountain  

E-Print Network [OSTI]

of underground compressed air energy storage in lined rockunderground compressed air energy storage [Rutqvist et al. ,

Rutqvist, J.

2014-01-01T23:59:59.000Z

395

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network [OSTI]

heat flow simulations use the 3-D thermal model grid (Figuremodel grid, which is used for gas flow and ambient heat flowgrid showing a smaller model domain, used for modeling gas and heat

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

396

Board Oversight of the DOE's Scientific and Technical Activities at Yucca Mountain  

E-Print Network [OSTI]

- structing a mined geologic repository for the perma- nent disposal of spent nuclear fuel and high will be transported with the percolating water to the 3 Chapter 1 Board Oversight of the DOE's Scientific of alternating welded and nonwelded tuffs of the mid-Miocene Age, about 10 to 13 million years old. The block

397

An analysis of the connectivity of two-dimensional fracture patterns at Yucca Mountain, Nevada  

E-Print Network [OSTI]

for geometric analysis. Since connectivity is a complex function of fracture size and density, the orientation, length, trace center coordinates, and trace length censoring, as well as the number of intersections and their coordination numbers, were... of fractures to be modelled is conducive to extensive sampling, a deterministic approach can be utilized in which a numerical modeling method is used to simulate flow through individual fracture elements. More often, the number of fractures or the size...

Meinardus, Hans Wolfgang

1991-01-01T23:59:59.000Z

398

DOE to Send Proposed Yucca Mountain Legislation to Congress | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergyWeapons Stockpile |Energy

399

DOE to Send Proposed Yucca Mountain Legislation to Congress | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergyWeapons Stockpile

400

Yucca Mountain - The Department of Energy's Status Report on Its Archiving  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the ChallengeWorkshopXcelEnergyYourPlan |

Note: This page contains sample records for the topic "yucca mountain project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Does Not Oppose Petitions to Intervene in Yucca Mountain NRC Proceeding  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE Challenge HomeEnergy TheofEM Deputy Assistant|

402

New Yucca Mountain Repository Design to be Simpler, Safer and More  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarketsMillion DOEEnergyCost-Effective |

403

Remarks by Rick McLeod Yucca Mountain Blue Ribbon Panel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051 Modification MOThe Case FederalRick

404

Statement from Ward Sproat on Yucca Mountain, Director of the Office of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the AmericasDOE-STD-3020-2005Code ofandtheCivilian Radioactive Waste

405

DEC03t933 OSTl STREAMFLOW AND SELECTED PRECIPITATION DATA FOR YUCCA MOUNTAIN AND VICINITY,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy,Converting to5994 ApprovedReport

406

Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof| Department ofDepartmentLieve Laurens standardsDepartment

407

Yucca Mountain - U.S. Department of Energy's Reply to the Responses to the  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof| Department ofDepartmentLieve Laurens standardsDepartmentMotion to Withdraw

408

Yucca Mountain - U.S. Department of Energy's Response to the Motion for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof| Department ofDepartmentLieve Laurens standardsDepartmentMotion to

409

Joint NEA-IAEA International Peer Review of the Yucca Mountain...  

Broader source: Energy.gov (indexed) [DOE]

time (age), sources of dissolved salts and geochemical evolution, and the application of uranium decay methods for dating fracture minerals and determining the timing of recent...

410

A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada  

SciTech Connect (OSTI)

The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive confining units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.

NSTec Geotechnical Sciences Group

2007-03-01T23:59:59.000Z

411