Powered by Deep Web Technologies
Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE  

E-Print Network [OSTI]

1099 MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE in intensively (>80%) cultivated areas. From January 2001 to August 2002, we monitored movements of 77 (61 adult of seasonal migration, whereas crop emergence and harvest had minimal effects. Four deer (8%) dispersed a mean

2

Simulated impact of sensor field of view and distance on field measurements of bidirectional reflectance factors for row crops  

Science Journals Connector (OSTI)

Abstract It is well established that a natural surface exhibits anisotropic reflectance properties that depend on the characteristics of the surface. Spectral measurements of the bidirectional reflectance factor (BRF) at ground level provide us a method to capture the directional characteristics of the observed surface. Various spectro-radiometers with different field of views (FOVs) were used under different mounting conditions to measure crop reflectance. The impact and uncertainty of sensor FOV and distance from the target have rarely been considered. The issue can be compounded with the characteristic reflectance of heterogeneous row crops. Because of the difficulty of accurately obtaining field measurements of crop reflectance under natural environments, a method of computer simulation was proposed to study the impact of sensor FOV and distance on field measured BRFs. A Monte Carlo model was built to combine the photon spread method and the weight reduction concept to develop the weighted photon spread (WPS) model to simulate radiation transfer in architecturally realistic canopies. Comparisons of the Monte Carlo model with both field BRF measurements and the RAMI Online Model Checker (ROMC) showed good agreement. \\{BRFs\\} were then simulated for a range of sensor FOV and distance combinations and compared with the reference values (distance at infinity) for two typical row canopy scenes. Sensors with a finite FOV and distance from the target approximate the reflectance anisotropy and yield average values over FOV. Moreover, the perspective projection of the sensor causes a proportional distortion in the sensor FOV from the ideal directional observations. Though such factors inducing the measurement error exist, it was found that the BRF can be obtained with a tolerable bias on ground level with a proper combination of sensor FOV and distance, except for the hotspot direction and the directions around it. Recommendations for the choice of sensor FOV and distance are also made to reduce the bias from the real angular signatures in field BRF measurement for row crops.

Feng Zhao; Yuguang Li; Xu Dai; Wout Verhoef; Yiqing Guo; Hong Shang; Xingfa Gu; Yanbo Huang; Tao Yu; Jianxi Huang

2015-01-01T23:59:59.000Z

3

10-Yr. Transmission Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Marketing Rates Power Marketing Rates 10-Yr Transmission Plan 2012 Customer Meeting Announcement Agenda 120611 CRSP South Projects CRSP South PowerPoint Presentation CRSP South 2009-2011 Capitalized Execution CRSP North Projects CRSP North PowerPoint Presentation CRSP North 2009-2011 Capitalized Execution About Power Marketing Transmission Newsroom Business Policies Products Plan contents OASIS News features Careers No FEAR act Organization chart Plan processes Functions News releases Doing business Privacy policy History General power contract provisions OATT Revisions Fact sheets Energy Services Accessibility Financial information Rates and Repayment Interconnection Publications EPTC Adobe PDF Power projects EPAMP Infrastructure projects Federal Register Notices

4

Row fault detection system  

DOE Patents [OSTI]

An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

2012-02-07T23:59:59.000Z

5

" Row: NAICS Codes;" " Column...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving...

6

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

7

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

8

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

1.3. Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of...

9

Production Practices for Irrigated Crops on the High Plains.  

E-Print Network [OSTI]

of the farms are equipped with row-crop tractors. Some farmers who grow wheat extensively on heavy soils also own wheatland type tractors. Of the row-crop tractors in use, approximately 55 percent were equipped for 4-row work and 45 percent for 2-row work...). Prior to 1949, none of the cotton on cooperating farms was defoliated. Eleven percent of the acreage was defoliated during 1949 in preparation for machine stripping. Labor and Bower Requirements Cotton was produced entirely with row-crop tractors...

Bonnen, C. A.; McArthur, W. C.; Magee, A. C.; Hughes, W.F.

1953-01-01T23:59:59.000Z

10

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

","LPG and","(excluding Coal","RSE" " ","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Row" "End Use","(million kWh)","(million...

11

Elementary Row Operations and Row-Echelon Matrices  

E-Print Network [OSTI]

Feb 16, 2007 ... The first step in deriving systematic procedures for solving a linear system is to determine ..... Apply steps 2 through 5 to the submatrix consisting of the rows that lie ..... Many forms of technology have commands for performing.

PRETEX (Halifax NS) #1 1054 1999 Mar 05 10:59:16

2010-01-20T23:59:59.000Z

12

Evaluation of supply potential of energy crops in Japan considering cases of improvement of crop productivity  

Science Journals Connector (OSTI)

Energy crops are not presently major energy resources as energy crops are more expensive than fossil fuels at present. However, energy crops may become important energy resources in the future. In this study, the authors discuss the availability of energy crops in Japan. The supply potential of energy crops produced on unused arable land is estimated at 0.12EJyr?1 and that of secondary crops for bioenergy is estimated at 0.12EJyr?1 in Japan. However, it is difficult to utilize the supply potential considering the low food-self-sufficiency ratio and the high costs of crops in Japan. In addition, the authors analyze the supply potential of energy crops produced on surplus arable land in Japan in cases of biomass productivity increment. The supply potential of energy crops is formulated into 0.12A (EJyr?1), where A means the index of productivity increment ( A = 1.0 at present). On the other hand, in the case of every crop productivity increment, the supply potential of energy crops is formulated into 1.44A1.32 (EJyr?1). When it is assumed that the ratio is 2.0, the supply potential in the latter case is 1.44EJyr?1, which is equivalent to about 7% of the total primary energy supply in Japan. When it is assumed that the ratio is 2.0 in the latter case in the world, the supply potential of energy crops is 435EJyr?1, which exceeds the total primary energy supply in the world. It is difficult to improve the productivity of every crop. However, if the improvement is realized, energy crops will become one of the major energy resources in Japan and in the world.

Hiromi Yamamoto; Yukihiko Matsumura; Shigeki Sawayama

2005-01-01T23:59:59.000Z

13

Variable Row Spacing of Irrigated Cotton.  

E-Print Network [OSTI]

B-1 lr August 19; aria ble Row Spacing of Irrigated Cotton I as A&M University Texas Agricultural Experiment Station . H. 0. Kunkel, Acting Director, College Station, Texa! Summary Six years' research in the Trans-Pecos area with "variable... row spacing" (VRS), new irrigated cotton row-spacing patterns, is reported. The new system consists of alternate close and ~ricle spaced rows, with narrow irrigation furrows between the close row spacings only. The wide spac- ings serve as dry...

Longenecker, D. E.; Thaxton, E. L. Jr.; Hefner, J. J.; Lyerly, P. J.

1970-01-01T23:59:59.000Z

14

Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1400.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 +

15

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

16

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtHeating SPPurchasedEngyNrmlYrMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2193.0 + Sweden Building 05K0002 + 521.2 + Sweden Building 05K0003 + 498.4 + Sweden Building 05K0004 + 1869.0 + Sweden Building 05K0005 + 646.0 + Sweden Building 05K0006 + 1843.0 + Sweden Building 05K0007 + 1542.0 + Sweden Building 05K0008 + 898.0 + Sweden Building 05K0009 + 2313.0 + Sweden Building 05K0010 + 65.0 + Sweden Building 05K0011 + 1032.0 + Sweden Building 05K0012 + 1256.0 + Sweden Building 05K0013 + 1817.6002445 + Sweden Building 05K0014 + 162.0 + Sweden Building 05K0015 + 158.0 +

17

Property:Building/SPPurchasedEngyNrmlYrMwhYrLogs | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrLogs SPPurchasedEngyNrmlYrMwhYrLogs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrLogs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

18

Property:Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrNaturalGas SPPurchasedEngyNrmlYrMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

19

Property:Building/SPPurchasedEngyNrmlYrMwhYrWoodChips | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrWoodChips SPPurchasedEngyNrmlYrMwhYrWoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

20

Property:Building/SPPurchasedEngyNrmlYrMwhYrOther | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrOther SPPurchasedEngyNrmlYrMwhYrOther Jump to: navigation, search This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTotal SPPurchasedEngyNrmlYrMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003 + 872.1 + Sweden Building 05K0004 + 4466.9 + Sweden Building 05K0005 + 768.6 + Sweden Building 05K0006 + 3031.1 + Sweden Building 05K0007 + 3479.0 + Sweden Building 05K0008 + 1336.0 + Sweden Building 05K0009 + 4876.0 + Sweden Building 05K0010 + 131.52 + Sweden Building 05K0011 + 1501.0 + Sweden Building 05K0012 + 2405.65 + Sweden Building 05K0013 + 3436.6002445 + Sweden Building 05K0014 + 389.66 + Sweden Building 05K0015 + 270.0 +

22

Property:Building/SPPurchasedEngyNrmlYrMwhYrPellets | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrPellets SPPurchasedEngyNrmlYrMwhYrPellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

23

Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

24

Property:Building/SPPurchasedEngyNrmlYrMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTownGas SPPurchasedEngyNrmlYrMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

25

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtColg | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtColg SPPurchasedEngyNrmlYrMwhYrDstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 + 51.9 + Sweden Building 05K0004 + 908.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 345.0 + Sweden Building 05K0007 + 450.0 + Sweden Building 05K0008 + 123.0 + Sweden Building 05K0009 + 600.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 78.0 + Sweden Building 05K0012 + 340.0 + Sweden Building 05K0013 + 420.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

26

Installing a Subsurface Drip Irrigation System for Row Crops (Spanish)  

E-Print Network [OSTI]

retrolavados cuando est?n sucios, una condici?n que se indica con un aumento de presi?n de 10 psi. Los filtros de arena experimentan p?rdida de pre- si?n debido a la fricci?n dentro del filtro, siendo aproximadamente de 3 a 5 psi. La instalaci?n incor- recta...

Enciso, Juan

2004-09-07T23:59:59.000Z

27

Installing a Subsurface Drip Irrigation System for Row Crops  

E-Print Network [OSTI]

This publication describes the components of a subsurface drip irrigation system and the procedure for installing such a system. Each step is outlined and illustrated. Steps include tape injection, trenching, connecting drip lines, back-filling...

Enciso, Juan

2004-09-07T23:59:59.000Z

28

Minisymposia YR-ME1 ME3 1 Minisymposia YR-ME1 ME3  

E-Print Network [OSTI]

-free shape optimisation Abstract 11:00 ­ 11:20: Uwe Reuter, Zeeshan Mehmood (TU Dresden), Martin Liebscher-YR-ME2: Advanced material modeling strategies at different scales with application to production:20 ­ 10:40: Tuncay Yalcinkaya (European Commission - Joint Research Centre, Institute for Energy

Kohlenbach, Ulrich

29

Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and N2  

E-Print Network [OSTI]

219 Current biofuel feedstock crops such as corn lead to large environmental losses of N through biofuel crops established on a rich Mollisol soil. Reduced Nitrogen Losses after Conversion of Row Crop Agriculture to Perennial Biofuel Crops Candice M. Smith, Mark B. david,* Corey A. Mitchell, Michael d. Masters

DeLucia, Evan H.

30

" Row: NAICS Codes, Value of Shipments...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" "...

31

" Row: NAICS Codes, Value of Shipments...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" "...

32

" Row: Specific Energy-Management Activities...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS...

33

" Row: Specific Energy-Management Activities...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS...

34

" Row: General Energy-Management Activities...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in General Energy-Management Activities, 2010;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS...

35

Update rows? | OpenEI Community  

Open Energy Info (EERE)

Update rows? Update rows? Home > Groups > Databus Is it possible to update an existing row in a table? I'm thinking of the case of a table holding metadata about sensors. If the location changes, for example, can that row be changed/deleted/updated? thanks, Submitted by Hopcroft on 31 October, 2013 - 16:42 1 answer Points: 0 yes, it is done the same way you inserted the data, so just re-use your existing stuff and it will update. Deanhiller on 11 November, 2013 - 11:01 Groups Menu You must login in order to post into this group. Recent content Go to My Databus->Data Streams... yes, it is done the same way y... Update rows? How to use streaming chart? if you are an administrator, s... more Group members (7) Managers: Deanhiller Recent members: Bradmin Hopcroft Vikasgoyal

36

Update rows? | OpenEI Community  

Open Energy Info (EERE)

Update rows? Update rows? Home > Groups > Databus Is it possible to update an existing row in a table? I'm thinking of the case of a table holding metadata about sensors. If the location changes, for example, can that row be changed/deleted/updated? thanks, Submitted by Hopcroft on 31 October, 2013 - 16:42 1 answer Points: 0 yes, it is done the same way you inserted the data, so just re-use your existing stuff and it will update. Deanhiller on 11 November, 2013 - 11:01 Groups Menu You must login in order to post into this group. Recent content Go to My Databus->Data Streams... yes, it is done the same way y... Update rows? How to use streaming chart? if you are an administrator, s... more Group members (6) Managers: Deanhiller Recent members: Hopcroft Vikasgoyal Ksearight

37

Roswell International Air Center Airport (ROW) Pavement Condition and Analysis  

E-Print Network [OSTI]

Roswell International Air Center Airport (ROW) Pavement Condition and Analysis Submitted to: Jane M ................................................1. Conditions at Roswell International Air Center (ROW) 4 .................................Figure 1. Geographic Location of Roswell International Air Center (ROW) 4 ..............................Table 1

Cal, Mark P.

38

Mechanical performance of aquatic rowing and flying  

Science Journals Connector (OSTI)

...Anadromous and marine populations make...lift-based mechanism of propulsion (Thom & Swart 1940...suggested that rowing propulsion is more e cient than axial propulsion at slow speeds and...Laboratory comparisons of marine and freshwater turtles...

2000-01-01T23:59:59.000Z

39

BLM ROW Grant Template | Open Energy Information  

Open Energy Info (EERE)

Grant Template Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: BLM ROW Grant TemplateLegal Published NA Year Signed or Took Effect...

40

CSLC ROW Forms | Open Energy Information  

Open Energy Info (EERE)

Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: CSLC ROW FormsLegal Abstract The California State Lands Commission (CSLC)...

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " ",," ","Distillate"," "," ","Coal"," " " ",,,"Fuel Oil",,,"(excluding Coal" " ","Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)","RSE" " ","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Row"

42

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2002;" 8 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal","RSE" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Factors"

43

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" 2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

44

Stability of tube rows in crossflow. [LMFBR  

SciTech Connect (OSTI)

A mathematical model for the instability of tube rows subjected to crossflow is examined. The theoretical model, based on the fluid-force data for a pitch-to-diameter ratio of 1.33, provides additional insight into the instability phenomenon. Tests are also conducted for three sets of tube rows. The effects of mass ratio, tube pitch, damping, detuning and finned tubes are investigated. Theoretical results and experimental data are in good agreement.

Chen, S.S.; Jendrzejczyk, J.A.

1982-10-01T23:59:59.000Z

45

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" 1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

46

Optimal Cropping Strategies Considering Risk: Texas Trans-Pecos.  

E-Print Network [OSTI]

trials. The EPIC (Erosion Productivity Impact Calculator) generalized crop growth model, originally developed by the U.S. Department of Agricul ture (Williams et al., 1984a), was used to develop yield distribu tions for selected row crops and various... ous facets of this study. Their contributions added greatly to the depth and scope of this effort. Numerous other individuals contributed valuable time and energy. James (Jimmy) Williams of the U.S. Department of Agriculture, Blacklands Research...

Ellis, John R.; Lacewell, Ronald D.; Moore, Jaroy; Richardson, James

1990-01-01T23:59:59.000Z

47

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

48

Property:Geothermal/AnnualGenGwhYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenGwhYr AnnualGenGwhYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenGwhYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 1.6 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 21.2 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 1.5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 2.1 + Americulture Aquaculture Low Temperature Geothermal Facility + 5 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 1.9 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.5 +

49

Publications by Timothy Rowe February 25, 2008  

E-Print Network [OSTI]

Digital Library: www.DigiMorph.org High-Resolution X-ray CT Facility: www.ctlab.geo.utexas.edu Vertebrate: Digital Atlas of the Skull. CD-ROM (Second Edition, for Windows and Macintosh platforms), University.0, October 1994. Rowe, T., W. Carlson, and W. Bottorff. 1993. Thrinaxodon: Digital Atlas of the Skull. CD

Yang, Zong-Liang

50

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" 2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," "," "," ","Internal","Combustion","Engines"," Steam Turbines","Supplied","by Heat"," ",," "

51

File:UtilityROW.pdf | Open Energy Information  

Open Energy Info (EERE)

UtilityROW.pdf Jump to: navigation, search File File history File usage File:UtilityROW.pdf Size of this preview: 364 600 pixels. Go to page 1 2 3 Go next page next page...

52

Selecting Trees and Shrubs in Windbreaks Windbreaks are plantings of single or multiple rows of trees or shrubs that are established for one or more  

E-Print Network [OSTI]

include: wind protection, controlling blowing and drifting snow, wildlife habitat establishment, energy: There are opportunities for cost share and even annual land payments for the land planted to trees as windbreaks, wildlife Protection Crop, Soil Snow Distribution Farmstead, Livestock, Noise Wildlife (10 rows) Air Snow Accumulation

Amin, S. Massoud

53

file://C:\Documents%20and%20Settings\rma\My%20Documents\CSEQ\we  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis (http://cdiac.ornl.gov/programs/CSEQ/terrestrial/westpost2002/westpost2002.html). Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. Summary of agricultural experiments used in this study. Location *Crop or Tillage Prior history Duration (yr) **Treatment Depth (cm) ***∆SOC (g m -2 ) Ås, Norway N/A (low N) N/A 31 3 yr cereal-3 yr row crop vs. cereal 20 -199 Ås, Norway N/A (low N) N/A 31 2 yr ley-4 yr row crop vs. 3 yr cereal- 3 yr row crop 20 199 Ås, Norway N/A (low N) N/A 31 4 yr ley-2 yr row crop vs. 3 yr cereal- 3 yr row crop 20 881 Ås, Norway N/A (medium N) N/A 31 3 yr cereal-3 yr row crop vs. cereal 20 -171 Ås, Norway N/A (medium N) N/A 31 2 yr ley-4 yr row

54

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" 3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

55

chain 2chain 3 4row of 6 racks and 2 row of 5 racks  

E-Print Network [OSTI]

chain 1 chain 2chain 3 4row of 6 racks and 2 row of 5 racks chain 4 chain 10 6 5 4 3 2 1 chain 5 chain 6 f b fb f b b f f b b f 1 2 3 4 5 6 1 2 3 4 5 1:50 Rack A with 52 HU (2500*900*600) door door HV.0 1840.0 300.0 #12;chain 10 Layout of 2nd floorchain 4 chain 3 chain 2 chain 5 chain 6 chain 101:50 Rack

56

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2010;" 8 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2886,79,130,5211,69,868

57

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006;" 7 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)"

58

Level: National and Regional Data; Row: Values of Shipments and...  

Gasoline and Diesel Fuel Update (EIA)

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption...

59

Level: National and Regional Data; Row: Values of Shipments and...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Electricity Components; Unit: Million...

60

Level: National and Regional Data; Row: NAICS Codes, Value of...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

62

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

63

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

64

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

65

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

66

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

67

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

68

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

69

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

70

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

71

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;...

72

Level: National and Regional Data; Row: NAICS Codes, Value of...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

73

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

74

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

75

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

76

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

77

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

78

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

79

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

80

Level: National Data; Row: Specific Energy-Management Activities...  

U.S. Energy Information Administration (EIA) Indexed Site

be conducted in 2010 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006; Level: National Data; Row: Specific Energy-Management...

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Level: National Data; Row: Specific Energy-Management Activities...  

U.S. Energy Information Administration (EIA) Indexed Site

be fielded in 2015 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010; Level: National Data; Row: Specific Energy-Management...

82

NMSLO Affidavit of Completion of ROW Construction | Open Energy...  

Open Energy Info (EERE)

NMSLO Affidavit of Completion of ROW Construction (2007). Retrieved from "http:en.openei.orgwindex.php?titleNMSLOAffidavitofCompletionofROWConstruction&oldid72836...

83

Blower upkeep, energy savings estimated at $20,000/yr  

SciTech Connect (OSTI)

Vinyl chloride gas must be removed from operating vessels in a polymerization process at Occidental Chemical, Addis, LA. If left intact, the gases can polymerize and form deposits. Considered for this function were reciprocating and liquid ring type compressors. They were rejected, however, because of anticipated high valve maintenance and energy consumption. Since high reliability and leak-free performance are essential, two double-mechanical-sealed, positive displacement blowers were installed with water injection in 1980. The blowers are designed for those special applications where gas leak tightness is required or where continuous, high-pressure or vacuum, single-stage or two-stage is needed. The lobe-type blowers were selected by Occidental because they were considered to be best suited for the low-pressure differential operation. All internal surfaces are specially cleaned to reduce contamination and may be operated with non-hydrocarbon lubricants. A back-up seal on the drive shaft provides protection against leakage of process gas to the atmosphere. Maintenance and energy savings are estimated at $20,000/yr. The blowers were used with the water injection technique because previous experience vinyl chloride monomer indicated that there were major deposits inside the compressors and ring units. The blowers have provided contaminant-free (oil-free) monomer, and the water injection has prevented the polymerization material from sticking to the surfaces of the blowers. This has ensured practically trouble-free operation, and has greatly reduced maintenance and operation downtime, significantly reducing cost.

Diehl, R.; Powers, J.

1987-05-01T23:59:59.000Z

84

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

85

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S5.1. Selected Byproducts in Fuel Consumption, 1998;" S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

86

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

87

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

88

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

89

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

90

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

91

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,,"Sales and","Net Demand","RSE" "NAICS"," ",,,"Total Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

92

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Electricity: Components of Net Demand, 2002;" 1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases"," In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

93

Instability characteristics of fluidelastic instability of tube rows in crossflow  

SciTech Connect (OSTI)

An experimental study is reported to investigate the jump phenomenon in critical flow velocities for tube rows with different pitch-to-diameter ratios and the excited and intrinsic instabilities for a tube row with a pitch-to-diameter ratio of 1.75. The experimental data provide additional insights into the instability phenomena of tube arrays in crossflow. 9 refs., 10 figs.

Chen, S.S.; Jendrzejczyk, J.A.

1986-04-01T23:59:59.000Z

94

DEMONSTRATION RANK VIA THE SVD AND ROW ECHELON FORM  

E-Print Network [OSTI]

OUTLINES DEMONSTRATION RANK VIA THE SVD AND ROW ECHELON FORM TWO TWISTS AND A TEST NUMERICAL RANK VIA THE SVD AND ROW ECHELON FORM TWO TWISTS AND A TEST NUMERICAL RESULTS CONCLUSIONS GOAL rank construct a basis for the null space. LESLIE FOSTER MATHEMATICS SAN JOSE STATE UNIVERSITY FOSTER

Foster, Leslie

95

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

96

Wind Turbines Benefit Crops  

SciTech Connect (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2010-01-01T23:59:59.000Z

97

Irrigation of Forage Crops  

E-Print Network [OSTI]

. ?Consumptive use of water by major crops in Texas.? Texas Board of Water Engineers. Irrigation of Forage Crops Juan Enciso, Dana Porter, Guy Fipps and Paul Colaizzi* 2 waterrequirementshelpdeterminehowmany acrescanbeirrigatedwithaparticularcanal orwellcapacity...

Enciso, Juan; Porter, Dana; Fipps, Guy; Colaizzi, Paul

2004-06-10T23:59:59.000Z

98

Economic Implications of New Crops, Row Damming and Land Clearing in the Texas Winter Garden  

E-Print Network [OSTI]

The chief sources of groundwater for the Texas Winter Garden are the Carrizo (Dimmit, Zavala, Frio, and LaSalle Counties) and Edwards (Uvalde County) Aquifers. The major user of groundwater in the region is irrigation. However, insufficient aquifer...

Muncrief, G.E.; Lacewell, R. D.; Cornforth, G. C.; Pena, J. G.

99

Level: National Data; Row: General Energy-Management Activities...  

U.S. Energy Information Administration (EIA) Indexed Site

will be fielded in 2015 Table 8.1 Number of Establishments by Participation in General Energy-Management Activities, 2010; Level: National Data; Row: General Energy-Management...

100

Optimization Online - Simultaneous Column-and-Row Generation ...  

E-Print Network [OSTI]

Nov 14, 2010 ... Abstract: In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale...

Ibrahim Muter

2010-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

102

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2002;" 1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Row"

103

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)","RSE" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Row"

104

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

105

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

106

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" 4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

107

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002;" 4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

108

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

109

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

110

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

111

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S4.1. Offsite-Produced Fuel Consumption, 1998;" S4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

112

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption Ratios of Fuel, 1998;" 3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

113

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002;" 3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","RSE" "NAICS"," ","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Row"

114

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

115

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002;" 4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

116

Performance of late sown wheat crop under different planting geometries and irrigation regimes in arid climate  

Science Journals Connector (OSTI)

Proper orientation of plants in the field and management of soil moisture for appropriate utilization of land, water and environmental resources plays a significant role in the optimum development and functioning of vital plant organs. A two factor field experiment was conducted for two consecutive crop growth seasons viz. 200607 and 200708 at Research and Demonstration Farm, Regional Agricultural Economic Development Centre (RAEDC), Vehari, Pakistan to make a comparison of four different planting geometries viz. planting in 22cm apart rows under conventional, minimum and zero tillage, respectively and planting in 11cm apart rows under conventional tillage system. Wheat cultivar, Inqlab-91 was planted late in December. Crop was subjected to five irrigation levels in which irrigation was applied equivalent to 120%, 100%, 80%, 60% or 40% of ETo. Lower soil bulk density and penetration resistances at 1020cm soil depth were recorded with conventional tillage with either narrow or wider row spacing as compared to other planting geometries. The maximum values for LAI, LAD, TDM, productive tillers (m?2), 1000-grain weight and grain yield were recorded with planting geometry having 11cm apart rows under conventional tillage system along with irrigation level of 120% \\{ETo\\} that remained statistically at par with the same planting geometry subjected to the irrigation regime of 100% ETo. This planting geometry also resulted in minimum weed fresh biomass. It is concluded that late planted wheat crop planted in 11cm wide rows under conventional tillage irrigated @ 100% \\{ETo\\} may serve as an appropriate technology for enhancing the wheat productivity of late sown wheat crop under limited water supplies.

Hakoomat Ali; Nadeem Iqbal; Shakeel Ahmad; Ahmad Naeem Shahzad; Naeem Sarwar

2013-01-01T23:59:59.000Z

117

Crop Revenue Coverage (CRC)  

E-Print Network [OSTI]

Crop Revenue Coverage guarantees a stated amount of revenue based on commodity futures prices. This publication explains how CRC works and gives examples based on harvest price scenarios....

Stokes, Kenneth; Barnaby, G. A. Art; Waller, Mark L.; Outlaw, Joe

2008-10-17T23:59:59.000Z

118

Microsoft Word - CX_Memo_SchultzROW.docx  

Broader source: Energy.gov (indexed) [DOE]

2 2 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Brandee Shoemaker Project Manager - TERM-TPP-4 Proposed Action: Schultz-Raver No.1 Right-Of-Way (ROW) Marking Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine Maintenance Location: Kittitas County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to survey and mark the northern boundary of its transmission line ROW for the Schultz-Raver No.1 and Schultz-Echo Lake No.1 transmission line corridor in Kittitas County, WA. Due to high development pressure, a lack of visible signage, and incomplete county records, encroachments into the ROW have occurred in the

119

Improving Data Center Efficiency with Rack or Row Cooling Devices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

120

Improving Data Center Efficiency with Rack or Row Cooling Devices  

Broader source: Energy.gov (indexed) [DOE]

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

122

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

123

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010;" 1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)"

124

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " "," "," ","Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"," ","RSE"

125

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

126

Radioactivity in food crops  

SciTech Connect (OSTI)

Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

1983-05-01T23:59:59.000Z

127

U.S. gasoline price decreases for 17th week in a row (short version...  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline price decreases for 17th week in a row (short version) The U.S. average retail price for regular gasoline fell for the 17th week in a row to 2.04 a gallon on Monday....

128

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006;" 2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

129

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006;" 3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

130

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2010;" 3 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

131

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010;" 1.1 Electricity: Components of Net Demand, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",75652,21,5666,347,80993

132

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010;" 4 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

133

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006;" 4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

134

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006;" 4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

135

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

136

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006;" 1.1 Electricity: Components of Net Demand, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",73242,309,4563,111,78003

137

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2006;" 3 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

138

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010;" 2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

139

Neutron Capture Measurements and Resonance Analysis of Dysprosium Y.R. Kang,1  

E-Print Network [OSTI]

Neutron Capture Measurements and Resonance Analysis of Dysprosium Y.R. Kang,1 M.W. Lee,1 T.I. Ro,2 The electron linear accelerator facility at the Rensselaer Polytechnic Institute was used to measure neutron capture yields of dysprosium with the time-of-flight method in the neutron energy region from 10 eV to 1

Danon, Yaron

140

Wave Climate and Trends for the Gulf of Mexico: A 30-Yr Wave Hindcast  

Science Journals Connector (OSTI)

This paper describes wave climate and variability in the Gulf of Mexico based on a 30-yr wave hindcast. The North American Regional Reanalysis wind fields are employed to drive a third-generation spectral wave model with high spatial (0.0050.06)...

Christian M. Appendini; Alec Torres-Freyermuth; Paulo Salles; Jose Lpez-Gonzlez; E. Tonatiuh Mendoza

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Weed Management in Pulse Crops  

E-Print Network [OSTI]

During At harvest #12;GoldSky ­ Crop Rotation · 9 Months: alfalfa, barley, canola, chickpea, dry bean PEA CAMELINA CANOLA BARLEY GOLDSKY Crop Rotation Study #12;GoldSky Crop Rotation Study ­ Herbicide #12;0 10 20 30 40 50 60 70 80 90 Lentil Canola Camelina Barley Field Pea Oat VisualDamage(%) GoldSky 1

Maxwell, Bruce D.

142

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network [OSTI]

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

143

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006;" 1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

144

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

145

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

146

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2010;" 1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

147

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

148

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

149

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

150

Property:Building/SPPurchasedEngyForPeriodMwhYrWoodChips | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrWoodChips SPPurchasedEngyForPeriodMwhYrWoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

151

Property:Building/SPPurchasedEngyForPeriodMwhYrLogs | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrLogs SPPurchasedEngyForPeriodMwhYrLogs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrLogs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

152

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtColg | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtColg SPPurchasedEngyForPeriodMwhYrDstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 + 51.9 + Sweden Building 05K0004 + 908.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 345.0 + Sweden Building 05K0007 + 450.0 + Sweden Building 05K0008 + 123.0 + Sweden Building 05K0009 + 600.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 78.0 + Sweden Building 05K0012 + 340.0 + Sweden Building 05K0013 + 420.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

153

Property:Building/SPPurchasedEngyForPeriodMwhYrPellets | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrPellets SPPurchasedEngyForPeriodMwhYrPellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

154

Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

155

Property:Building/SPPurchasedEngyForPeriodMwhYrOther | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrOther SPPurchasedEngyForPeriodMwhYrOther Jump to: navigation, search This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

156

Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTotal SPPurchasedEngyForPeriodMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003 + 847.1 + Sweden Building 05K0004 + 4360.9 + Sweden Building 05K0005 + 727.6 + Sweden Building 05K0006 + 2915.1 + Sweden Building 05K0007 + 3385.0 + Sweden Building 05K0008 + 1282.0 + Sweden Building 05K0009 + 4739.0 + Sweden Building 05K0010 + 127.52 + Sweden Building 05K0011 + 1436.0 + Sweden Building 05K0012 + 2334.65 + Sweden Building 05K0013 + 3323.0 + Sweden Building 05K0014 + 381.66 + Sweden Building 05K0015 + 257.0 +

157

Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrElctrtyTotal SPPurchasedEngyForPeriodMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1399.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 + Sweden Building 05K0013 + 1199.0 + Sweden Building 05K0014 + 227.66 +

158

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtHeating SPPurchasedEngyForPeriodMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2067.0 + Sweden Building 05K0002 + 492.2 + Sweden Building 05K0003 + 473.4 + Sweden Building 05K0004 + 1763.0 + Sweden Building 05K0005 + 605.0 + Sweden Building 05K0006 + 1727.0 + Sweden Building 05K0007 + 1448.0 + Sweden Building 05K0008 + 844.0 + Sweden Building 05K0009 + 2176.0 + Sweden Building 05K0010 + 61.0 + Sweden Building 05K0011 + 967.0 + Sweden Building 05K0012 + 1185.0 + Sweden Building 05K0013 + 1704.0 + Sweden Building 05K0014 + 154.0 + Sweden Building 05K0015 + 145.0 +

159

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

160

Property:Building/SPPurchasedEngyForPeriodMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTownGas SPPurchasedEngyForPeriodMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrNaturalGas SPPurchasedEngyForPeriodMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

162

E-Print Network 3.0 - abdominal multi-detector row Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chest press Arm fly Arm extension Lateralraise... Low pulley Squat & Pull ups Hack Squat Iso-lateral Lateral Row Iso-lateral Horizontal Iso Source: Bordenstein, Seth -...

163

THE WHOLESOMENESS OF' OYSTERS AS FOOD By Henry C. Rowe  

E-Print Network [OSTI]

before the Fourth International Fishery Congress held at Washington, U. S. A., September 22 to 26, )908 results by patient labor, costly experiments, and large investment. Instead of having his crops produced and protected for him, as has been done for the fishers of swimming fish, he has paid large sums to the states

164

Texas Crop Profile: Potatoes  

E-Print Network [OSTI]

175 pounds of nitrogen, 80 pounds of phosphorus, and 80 pounds of potassium. Potassium is generally not needed in the High Plains, although many growers apply it. Texas Crop Profile P O T A T O E S E-19 3-00 Prepared by Kent D. Hall, Rodney L. Holloway..., following drag-off or after potato plants have fully emerged. Controls weeds by disrupting growth process during germination. Does not control established weeds. State Contacts Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

165

A 2700calyr BP extreme flood event revealed by sediment accumulation in Amazon floodplains  

Science Journals Connector (OSTI)

Abstract Climatic conditions are one of the most important factors affecting hydrological processes in fluvial systems. Higher discharges are responsible for higher erosion, greater transport, and also higher deposition. Consequently, sediment accumulation in Amazonia floodplain river-connected lakes can be directly related to hydrological patterns of the Amazon River mainstream. In this context, we analyzed five sediment cores taken in two floodplain systems situated in the lower Amazon River, to investigate sediment accumulation patterns during the Holocene. Our records show abrupt fluctuations in sedimentation rates in lakes that can reach more than 2cm/yr during some periods. We find that in all cores, sediment stratigraphy is characterized by packages of sediments of uniform age, which are typically 1080cm thick and present a variegated color. The 14C age of the upper package is about 2700calyr BP. During this abrupt event, sediment accumulation rates in floodplain lakes can be at least 200 times higher than those of normal periods. This sedimentation event is interpreted as being the consequence of one or several successive extreme floods. The 2700calyr BP event has been also observed in other sites in South America and other regions in the world, although different impacts can be observed in each system. This event probably corresponds to a conjunction of favorable conditions for extreme Amazon discharge associated with the Middle to Late Holocene increase of austral summer insolation and shifts of the Intertropical Convergence Zone (ITCZ) from northern to southern positions. In this context, a marked negative peak in solar irradiance at 2700calyrs BP seems to have provoked cooling on the continents and a southward shift of the ITCZ associated with a probable reduction in the Atlantic Meridian Overturning Circulation.

P. Moreira-Turcq; B. Turcq; L.S. Moreira; M. Amorim; R.C. Cordeiro; J.-L. Guyot

2014-01-01T23:59:59.000Z

166

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28 50 36 15 0 29 31131 Sugar Manufacturing 73 73 3 36 67 12 W 7 14 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 210 3115 Dairy Products 998 998 12 217 908

167

Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;  

Gasoline and Diesel Fuel Update (EIA)

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; 9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Total United States 311 Food 1,115 13,271 107,293.7 32,953 3.1 3112 Grain and Oilseed Milling 126 602 443,178.6 5,207 24.8 311221 Wet Corn Milling 14 59 270,262.7 982 18.3 31131 Sugar Manufacturing

168

Section 4.6 Rank The set of all linear combinations of the row vectors of a matrix A is called the row space of A and  

E-Print Network [OSTI]

Section 4.6 Rank The set of all linear combinations of the row vectors of a matrix A is called # of nonpivot columns of A. DEFINITION The rank of A is the dimension of the column space of A. rank A dim Col A # of pivot columns of A dim Row A . rank A dim Nul A N n # of pivot columns of A # of nonpivot columns

Belykh, Igor

169

Crop Science Minor To earn a Crop Science minor, students must complete the following courses to total 27 credits  

E-Print Network [OSTI]

) ____ CSS 320. Principles of Oil and Fiber Crop Production (1) ____ CSS 321 Ecology and Morphology (3) ____ CROP 300. Crop Production in Pacific Northwest) ____ CROP 310. Forage Production (4) ____ CROP 319.Principles of Field Crop

Grünwald, Niklaus J.

170

Horticultural & Forest crops 2014 Floral Crops: Diseases 5-1  

E-Print Network [OSTI]

Horticultural & Forest crops 2014 Floral Crops: Diseases 5-1 Diseases Chuan Hong, Plant Pathologist humidity, low light intensity, and frequent watering, are favorable for the development of fungal and bacterial diseases. If insects are uncontrolled in the greenhouse, viruses can become a major problem

Liskiewicz, Maciej

171

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

172

U.S. gasoline price decreases for 17th week in a row (long version...  

U.S. Energy Information Administration (EIA) Indexed Site

26, 2015 U.S. gasoline price decreases for 17th week in a row (long version) The U.S. average retail price for regular gasoline fell for the 17th week in a row to 2.04 a gallon on...

173

GRR/Section 3-AK-b - Right of Ways (ROWs) | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-AK-b - Right of Ways (ROWs) GRR/Section 3-AK-b - Right of Ways (ROWs) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-b - Right of Ways (ROWs) 03AKBRightOfWaysROWs.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKBRightOfWaysROWs.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Division of Mining Land and Water (ML&W) oversees land use within the state and issues right of ways, easements or permit to use state

174

GRR/Section 3-HI-e - Permit to Construct Upon a State Highway ROW | Open  

Open Energy Info (EERE)

GRR/Section 3-HI-e - Permit to Construct Upon a State Highway ROW GRR/Section 3-HI-e - Permit to Construct Upon a State Highway ROW < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-HI-e - Permit to Construct Upon a State Highway ROW 03HIEConstructionUponAStateHighwayROW.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Transportation Highways Division Regulations & Policies Hawaii Revised Statute Chapter 264 Hawaii Administrative Rules Title 19, Chapter 102 Hawaii Administrative Rules Title 19, Chapter 105 Triggers None specified Click "Edit With Form" above to add content 03HIEConstructionUponAStateHighwayROW.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

175

Smarter Cropping: Internet program helps farmers make decisions about crops  

E-Print Network [OSTI]

cotton. This Web-based decision support system, the Crop Weather Program for South Texas (CWP), is stationed out of the Texas AgriLife Research and Extension Center at Corpus Christi. The program provides easy access to his- torical and current... weather data as well as cal- culators and other tools that generate useful field-specific information about the crop and its environment, said Dr. Carlos J. Fern?ndez, associate professor and the Plant Physiology and Cropping Systems Program?s leader...

Wythe, Kathy

2009-01-01T23:59:59.000Z

176

Carbon sequestration in agricultural soils via cultivation of cover crops A meta-analysis  

Science Journals Connector (OSTI)

Abstract A promising option to sequester carbon in agricultural soils is the inclusion of cover crops in cropping systems. The advantage of cover crops as compared to other management practices that increase soil organic carbon (SOC) is that they neither cause a decline in yields, like extensification, nor carbon losses in other systems, like organic manure applications may do. However, the effect of cover crop green manuring on SOC stocks is widely overlooked. We therefore conducted a meta-analysis to derive a carbon response function describing SOC stock changes as a function of time. Data from 139 plots at 37 different sites were compiled. In total, the cover crop treatments had a significantly higher SOC stock than the reference croplands. The time since introduction of cover crops in crop rotations was linearly correlated with SOC stock change (R2=0.19) with an annual change rate of 0.320.08Mgha?1yr?1 in a mean soil depth of 22cm and during the observed period of up to 54 years. Elevation above sea level of the plot and sampling depth could be used as explanatory variables to improve the model fit. Assuming that the observed linear SOC accumulation would not proceed indefinitely, we modeled the average SOC stock change with the carbon turnover model RothC. The predicted new steady state was reached after 155 years of cover crop cultivation with a total mean SOC stock accumulation of 16.71.5Mgha?1 for a soil depth of 22cm. Thus, the C input driven SOC sequestration with the introduction of cover crops proved to be highly efficient. We estimated a potential global SOC sequestration of 0.120.03PgCyr?1, which would compensate for 8% of the direct annual greenhouse gas emissions from agriculture. However, altered N2O emissions and albedo due to cover crop cultivation have not been taken into account here. Data on those processes, which are most likely species-specific, would be needed for reliable greenhouse gas budgets.

Christopher Poeplau; Axel Don

2015-01-01T23:59:59.000Z

177

Global Paleoclimatic Data for 6000 Yr B.P. (1985) (NDP-011)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Paleoclimatic Data for 6000 Yr B.P. (1985) (NDP-011) DOI: 10.3334/CDIAC/cli.ndp011 data Data PDF PDF File Investigator T. Webb, III To determine regional and global climatic variations during the past 6000 years, pollen, lake level, and marine plankton data from 797 stations were compiled to form a global data set. Radiocarbon dating and dated tephras were used to determine the ages of the specimens. The data available for the pollen data are site number, site name, latitude, longitude, elevation, and percentages of various taxa. For lake-level data, the data are site number, site name, latitude, longitude, and lake-level status. And for marine plankton, the data are site number, site name, latitude, longitude, water depth, date, dating control code, depth of sample, interpolated age

178

J. Am. Chem. SOC.1994,116, 8733-8740 8733 Energetics of Third-Row Transition Metal Methylidene Ions  

E-Print Network [OSTI]

J. Am. Chem. SOC.1994,116, 8733-8740 8733 Energetics of Third-Row Transition Metal Methylidene Ions methylidene ions MCH2+ of the 5d transition series. On the basis of our calculations and available first- row (3d) and second-row (4d) transition metals. Indeed, recent gas-phase studies of the reactions

Goddard III, William A.

179

Level: National Data; Row: NAICS Codes; Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006; 3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 45 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 104 3116 Animal Slaughtering and Processing

180

Level: National Data; Row: Values of Shipments within NAICS Codes;  

Gasoline and Diesel Fuel Update (EIA)

3 Consumption Ratios of Fuel, 2010; 3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2 50-99 832.0 4.9 2.3 100-249 1,313.4 6.2 2.8 250-499 1,905.2 7.4 3.6 500 and Over 4,225.4 7.5 3.1 Total 1,449.6 6.4 2.8 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 576.6 5.9

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Level: National Data; Row: Values of Shipments within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006; 3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2 50-99 830.1 5.9 2.7 100-249 1,130.0 6.7 3.1 250-499 1,961.4 7.6 3.6 500 and Over 3,861.9 9.0 3.6 Total 1,278.4 6.9 3.1 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 979.3 10.3

182

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 28 31131 Sugar Manufacturing 73 73 3 36 67 12 11 W 11 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 207 3115 Dairy Products 998 998 12 217 908 161 W 0 79 3116 Animal Slaughtering and Processing

183

Level: National Data; Row: Employment Sizes within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006; 4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3 7.7 3.6 500-999 2,328.9 10.6 4.5 1000 and Over 1,415.5 5.7 2.5 Total 1,278.4 6.9 3.1 311 FOOD Employment Size Under 50 1,266.8 8.3 3.2 50-99 1,587.4 9.3 3.6 100-249 931.9 3.6 1.5 250-499 1,313.1 6.3

184

Crop Insurance Terms and Definitions  

E-Print Network [OSTI]

A&M System; and Extension Agricultural Economist, Kansas State University Agricultural Experiment Station and Cooperative Extension Service. The crop insurance industry is providing more and more risk management tools to help producers deal... for the insured crop. Coverage Levels and Price Elections Actual Production History (APH). A process used to determine production guarantees. Additional coverage. A level of coverage greater than catastrophic risk protection. Administrative fee. An amount...

Stokes, Kenneth; Waller, Mark L.; Outlaw, Joe; Barnaby, G. A. Art

2008-10-17T23:59:59.000Z

185

Analysis of conventional and plutonium recycle unit-assemblies for the Yankee (Rowe) PWR  

E-Print Network [OSTI]

An analysis and comparison of Unit Conventional UO2 Fuel-Assemblies and proposed Plutonium Recycle Fuel Assemblies for the Yankee (Rowe) Reactor has been made. The influence of spectral effects, at the watergaps -and ...

Mertens, Paul Gustaaf

1971-01-01T23:59:59.000Z

186

Row spacing effects on the canopy light extinction coefficient of upland cotton  

E-Print Network [OSTI]

Field experiments were conducted in 1998 and 1999 at the Stiles Farm, Thrall, Texas and the Blackland Research Center, Temple, Texas, respectively, to characterize the influence of row spacing, plant density and time of day on the extinction...

Steglich, Evelyn Marie

2012-06-07T23:59:59.000Z

187

E-Print Network 3.0 - alternate row placement Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov Summary: ,abk,imarkovg@cs.ucla.edu Abstract This work focuses on congestion-driven placement of standard cells into rows in...

188

U.S. gasoline prices decreases for 16th week in a row; breaking...  

U.S. Energy Information Administration (EIA) Indexed Site

18, 2015 U.S. gasoline prices decreases for 16th week in a row; breaking previous record set in 2008 (long version) The U.S. average retail price for regular gasoline fell 7.3...

189

U.S. gasoline prices decreases for 16th week in a row; breaking...  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline prices decreases for 16th week in a row; breaking previous record set in 2008 (short version) The U.S. average retail price for regular gasoline fell 7.3 cents from a week...

190

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

N7.1. Consumption Ratios of Fuel, 1998;" N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

191

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

192

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002;" 1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

193

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

194

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

195

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

196

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)","Factors"

197

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

198

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

199

An Economic Comparison of Conventional and Narrow-Row Cotton Production--Southern Plains of Texas.  

E-Print Network [OSTI]

JUN ~ 3 1977 Texas A&M University June 19' An Economic Comparison of Coventional and Narrow-Row -- Cotton Production-Southern High Plains of Texas The Texas Agricultural Experiment Station, J. E. Miller, Director' The Texas A&M University... interest in adopting narrow-row sys tems for cotton production in the Southern High Plains of Texas prompted an economic comparison of these new systems with conventional production sys tems for cotton. Previous experimental research in dicated...

Young, Kenneth B.; Adams, James R.

1977-01-01T23:59:59.000Z

200

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in Energy-Management Activity, 2002;" 1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS"," "," ",,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know","Factors"

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

202

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

203

States in Sb126 populated in the ? decay of 105-yr Sn126  

Science Journals Connector (OSTI)

The low-energy level structure of the odd-odd nucleus Sb126 has been investigated by studying the radioactive decay of 105-yr Sn126, using Ge(Li) and Si(Li) detectors. Based on conversion-electron and ?-ray singles data, ?-? and ?-e- prompt and delayed coincidence measurements, and complementary ?-ray energy and intensity balance arguments, a decay scheme for Sn126 has been deduced which accommodates all of the observed ?-ray transitions. The energies (keV), spins, and parities of the levels established in Sb126 are as follows: 0.0 [8-], 17.7 [5+], 40.4 [3-], 83.1 [4-, (3-)], 104.7 [3+], and 128.0 [2+]. The respective half-lives of these six states are: 12.4 day, 19.0 min, ?11 s, 5.1 ns, 553 ns, and 78.0 ns, the latter four values having been determined in the present investigation. The level assignments are discussed within the framework of the single-particle shell model and in relation to the proposed assignments of low-lying energy levels of neighboring odd-odd antimony isotopes.RADIOACTIVITY Sn126 [from U235(n,f)]; measured E?, I?, Ice, ?-?, ?-?, and e-? coin, level T12's; deduced ICC, ? multipolarities, Sb126 levels, J, ?; calculated ?-hindrance factors. Ge(Li), Si(Li) detectors; mass-separated source.

H. A. Smith; Jr.; M. E. Bunker; J. W. Starner; C. J. Orth; K. E. G. Lbner

1976-01-01T23:59:59.000Z

204

Fast Solar Wind and Geomagnetic Variability during the Descendant Phase of the 11?yr Solar Cycle  

Science Journals Connector (OSTI)

Solar activity and its consequences for the interplanetary space are governing and perturbing the Earths magnetosphere. The response of the terrestrial magnetosphere displayed as geomagnetic disturbances is measured by several geomagnetic indices. This paper analyses the geomagnetic variability during the descendant phases of the last four solar cycles (Nos. 2023) under the influence of the high speed streams of the solar wind. The descendant phases of the 11?yr solar cycle are complex intervals of the irrespective cycles during which two magnetic dipoles with opposite polarities are present on the Sun. The variability and statistics of the stream intensity and geomagnetic index Ap during the descendant phases revealed strong activity. The correlation between the geomagnetic indices and the stream intensity during the analyzed intervals was examined. The energy transfer from solar wind into the terrestrial magnetosphere during the main phase of some geomagnetic storm depends of the solar wind energy and magnetic fields (terrestrial and heliospheric) configuration which allows or not reconnections of these fields. Analysis of some geomagnetic storms during the descendant branch of solar cycle 23 put into evidence the main role of the B z component of heliospheric magnetic field in this transfer.

G. Maris; O. Maris

2011-01-01T23:59:59.000Z

205

Carbon sequestration by Miscanthus energy crops plantations in a broad range semi-arid marginal land in China  

Science Journals Connector (OSTI)

Abstract Carbon sequestration is an essential ecosystem service that second-generation energy crops can provide. To evaluate the ability of carbon sequestration of Miscanthus energy crops in the Loess Plateau of China, the yield and soil organic carbon (SOC) changes were measured for three Miscanthus species in the experimental field in Qingyang of the Gansu Province (QG). With the highest yield of the three species, Miscanthus lutarioriparius contributed to the largest increase of SOC, 0.57tha?1yr?1, comparing to the field left unplanted. Through modeling M. lutarioriparius yield across the Loess Plateau, an average increase of SOC was estimated at 0.46tha?1yr?1 for the entire region. Based on the measurements of SOC mineralization under various temperatures and moistures for soil samples taken from QG, a model was developed for estimating SOC mineralization rates across the Loess Plateau and resulted in an average of 1.11tha?1yr?1. Combining the estimates from these models, the average of net carbon sequestration was calculated at a rate of 9.13tha?1yr?1 in the Loess Plateau. These results suggested that the domestication and production of M. lutarioriparius hold a great potential for carbon sequestration and soil restoration in this heavily eroded region.

Jia Mi; Wei Liu; Wenhui Yang; Juan Yan; Jianqiang Li; Tao Sang

2014-01-01T23:59:59.000Z

206

Conservation tillage and cover cropping influence soil properties in San Joaquin Valley cotton-tomato crop  

E-Print Network [OSTI]

C) budget after 4 years of treatment* Nitrogen Crop CottonCottonCotton Cotton Tomato Tomato Tomato Tomato Carbon Crop Cotton

Veenstra, Jessica; Horwath, William; Mitchell, Jeffrey; Munk, Dan

2006-01-01T23:59:59.000Z

207

Crop responses to climatic variation  

Science Journals Connector (OSTI)

...Ort, D.R2004Rising atmospheric carbon dioxide: plants...improving crop yields in water-limited environments...Inanaga, S1999Rooting, water uptake and xylem structure...a stochastic weather generator in the development of...grain yield on limited water supplies. Agron. J...

2005-01-01T23:59:59.000Z

208

July 30, 2004 Crop Conditions  

E-Print Network [OSTI]

, Grapes, and Wine Tissue Analysis Grapes and Small Fruits Upcoming Meetings Crop Conditions: Apple harvest harvest management, increased fruit size, maintenance of fruit firmness, reduction of preharvest fruit drop, improved fruit quality, and enhanced storage potential. Rates of application are similar

Ginzel, Matthew

209

Multi-Dimensional Stiffness Characteristics of Double Row Angular Contact Ball Bearings and Their Role in Influencing Vibration Modes.  

E-Print Network [OSTI]

?? A new analytical stiffness model for the double row angular contact ball bearings is proposed since the current methods do not provide stiffness matrix (more)

Gunduz, Aydin

2012-01-01T23:59:59.000Z

210

Use the Acceptable Crop Price worksheet to determine breakeven prices for your crops. ACCEPTABLE PRICE WORKSHEET  

E-Print Network [OSTI]

Use the Acceptable Crop Price worksheet to determine breakeven prices for your crops. ACCEPTABLE PRICE WORKSHEET Prepared by: David Bau - Regional Extension Educator, Agricultural Business Management (August 2012) CROP INCOME EXAMPLE YOUR FARM EXAMPLE YOUR FARM (A) Crop Acres 400 400 176 46 (C) Price

Netoff, Theoden

211

Agronomy and Crop Sciences Organizations Hiring Students in Agronomy and Crop Sciences  

E-Print Network [OSTI]

Services Inc. Commodity Solutions Inc. Crop King Crop Production Services Crop Quest, Inc. Crop Tech Nebraska Farm Business Inc. Nemaha County Coop North Central Co-op Overland Missions Pontiac Flying LLC The University of Georgia University of Arkansas University of California, Berkeley University of Illinois

212

Review article Automated monitoring of greenhouse crops  

E-Print Network [OSTI]

of the greenhouse. Most of these sensors, such as thermistors and light meters, are reli- able, inexpensive, readilyReview article Automated monitoring of greenhouse crops David L. EHRETa*, Anthony LAUb, Shabtai and continuously detect crop stress, water use, growth and nutrition in greenhouse crops. Some of these techniques

Boyer, Edmond

213

GRR/Section 3-NV-c - Encroachment Permit for NDOT ROW | Open Energy  

Open Energy Info (EERE)

GRR/Section 3-NV-c - Encroachment Permit for NDOT ROW GRR/Section 3-NV-c - Encroachment Permit for NDOT ROW < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-NV-c - Encroachment Permit for NDOT ROW 03NVCEncroachment (1).pdf Click to View Fullscreen Contact Agencies Nevada Department of Transportation Regulations & Policies NRS Chapter 405 Control and Preservation of Public Highways Triggers None specified Click "Edit With Form" above to add content 03NVCEncroachment (1).pdf 03NVCEncroachment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Department of Transportation (NDOT) grants permits for permanent installations within State rights-of-way and in areas maintained by the

214

Microsoft Word - CX-Pearl-Keeler_ROW_Marking_10June2013  

Broader source: Energy.gov (indexed) [DOE]

Rick Teiper Rick Teiper Project Manager - TERM-TPP-4 Proposed Action: Pearl-Keeler Right-of-Way (ROW) Marking Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine Maintenance Location: Washington County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to survey and mark the Pearl-Keeler No. 1 transmission line ROW boundary in Washington County, Oregon. The installation of markers to demarcate BPA's ROW would prevent encroachment from homeowners and developers, ensure the safety of nearby residents, and allow for the continued safe maintenance and operation of BPA's transmission lines. The proposed Project would install yellow carsonite markers and monuments along an

215

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

216

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)","Factors"

217

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

218

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of ","Establishment-Paid","Activity Cost","RSE" "NAICS"," "," ",,,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","All","Some","None","Don't Know","Factors"

219

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

220

Rate-Harmonized Scheduling for Saving Energy Anthony Rowe Karthik Lakshmanan Haifeng Zhu Ragunathan (Raj) Rajkumar  

E-Print Network [OSTI]

Rate-Harmonized Scheduling for Saving Energy Anthony Rowe Karthik Lakshmanan Haifeng Zhu Ragunathan mode, substantially more energy savings can be obtained but it requires a significant amount of time such that processor idle times are lumped together. We next introduce the Energy-Saving Rate-Harmonized Scheduler

Rowe, Anthony

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SOUTHWEST COTTON HARVEST AID PERFORMANCE AND NARROW ROW OPTIONS Wayne Keeling  

E-Print Network [OSTI]

SOUTHWEST COTTON HARVEST AID PERFORMANCE AND NARROW ROW OPTIONS Wayne Keeling Texas Agricultural Experiment Station Lubbock, TX Abstract Cotton is produced in the Southwest (Texas and Oklahoma) under a wide in rainfall and availability of irrigation, yields may range from 1250 lb/A. Cotton is harvested

Mukhtar, Saqib

222

Rows of ATP Synthase Dimers in Native Mitochondrial Inner Membranes Nikolay Buzhynskyy,* Pierre Sens,y  

E-Print Network [OSTI]

Rows of ATP Synthase Dimers in Native Mitochondrial Inner Membranes Nikolay Buzhynskyy,* Pierre Marseille, France ABSTRACT The ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, andtheir

Sens, Pierre

223

Heat transfer from multiple row arrays of low aspect ratio pin fins Seth A. Lawson a,  

E-Print Network [OSTI]

Heat transfer from multiple row arrays of low aspect ratio pin fins Seth A. Lawson a, , Alan A 18 March 2011 Available online 5 May 2011 Keywords: Pin fins Heat transfer augmentation Array to enhance heat transfer. In modern gas turbines, for exam- ple, airfoils are designed with sophisticated

Thole, Karen A.

224

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

225

Japan may take nuclear option in fusion row By David Pilling in Tokyo  

E-Print Network [OSTI]

Japan may take nuclear option in fusion row By David Pilling in Tokyo Published: November 20 2004 the joint project, Japan's chief negotiator has warned. The European Union says it has the financial and scientific clout to build and run a reactor in France, without Japan's support. Tokyo says it will fund more

226

Fitting fertilisation in LCA: allocation to crops in a cropping plan  

Science Journals Connector (OSTI)

This article reflects some results of a study on life cycle assessment (LCA) for agricultural products, concerning specific features of agricultural production. Attention is given to the cultivation of crops in a crop rotation and the role of fertilisation. When carrying out an LCA for a single agricultural product one should be aware of the fact that arable crops are usually grown in a crop rotation system. So, it is important to show the cropping plan and to identify all activities that may be meant to benefit more than one crop, like fertilisation with phosphate, potassium and organic matter. Environmental impacts of the application of phosphate and potassium should be allocated to the crops according to the uptake and uptake efficiency per crop. Impacts caused by fertilisation with organic matter should be allocated according to the land use per crop.

H van Zeijts; H Leneman; A Wegener Sleeswijk

1999-01-01T23:59:59.000Z

227

THE SOLAR NEIGHBORHOOD. XXV. DISCOVERY OF NEW PROPER MOTION STARS WITH 0.''40 yr{sup -1} > {mu} {>=} 0.''18 yr{sup -1} BETWEEN DECLINATIONS -47{sup 0} AND 00{sup 0}  

SciTech Connect (OSTI)

We present 2817 new southern proper motion systems with 0.''40 yr{sup -1} > {mu} {>=} 0.''18 yr{sup -1} and declination between -47{sup 0} and 00{sup 0}. This is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion searches of the southern sky. We use the same photometric relations as previous searches to provide distance estimates based on the assumption that the objects are single main-sequence stars. We find 79 new red dwarf systems predicted to be within 25 pc, including a few new components of previously known systems. Two systems-SCR 1731-2452 at 9.5 pc and SCR 1746-3214 at 9.9 pc-are anticipated to be within 10 pc. We also find 23 new white dwarf (WD) candidates with distance estimates of 15-66 pc, as well as 360 new red subdwarf candidates. With this search, we complete the SCR sweep of the southern sky for stars with {mu} {>=} 0.''18 yr{sup -1} and R{sub 59F} {<=} 16.5, resulting in a total of 5042 objects in 4724 previously unreported proper motion systems. Here we provide selected comprehensive lists from our SCR proper motion search to date, including 152 red dwarf systems estimated to be within 25 pc (9 within 10 pc), 46 WDs (10 within 25 pc), and 598 subdwarf candidates. The results of this search suggest that there are more nearby systems to be found at fainter magnitudes and lower proper motion limits than those probed so far.

Boyd, Mark R. [Department of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Winters, Jennifer G.; Henry, Todd J.; Jao, Wei-Chun [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106 (United States); Finch, Charlie T. [U.S. Naval Observatory, Washington, DC 20392-5420 (United States); Subasavage, John P. [Cerro Tololo Inter-American Observatory, La Serena (Chile); Hambly, Nigel C., E-mail: boyd@chara.gsu.edu, E-mail: winters@chara.gsu.edu, E-mail: thenry@chara.gsu.edu, E-mail: jao@chara.gsu.edu, E-mail: finch@usno.navy.mil, E-mail: jsubasavage@ctio.noao.edu, E-mail: nch@roe.ac.uk [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

2011-07-15T23:59:59.000Z

228

Texas Crop Profile: Sweet Potatoes  

E-Print Network [OSTI]

is between 120 to 135 days. Texas Crop Profile S W E E T P O T A T O E S E-22 3-00 Prepared by Rodney L. Holloway, Kent D. Hall and Dudley T. Smith 1 In collaboration with James V. Robinson, George Philley and Marvin Baker 2 1 Extension Specialist, Extension... Command will not. Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843-2488 979-845-3849 rholloway@tamu.edu Kent D. Hall Extension Associate 2488 TAMU College Station, Texas 77843-2488 979-845-3849 kd-hall@tamu.edu Dudley Smith...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

229

Models to support cropping plan and crop rotation decisions. A review  

Science Journals Connector (OSTI)

Farmers must yearly allocate fields to different crops and choose crop management options. Far from being obvious, these decisions are critical because they modify farm productivity and profitability in the short...

Jrme Dury; Nomie Schaller; Frdrick Garcia

2012-04-01T23:59:59.000Z

230

CropEnergies | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: CropEnergies Place: Mannheim, Saxony-Anhalt, Germany Zip: 68165 Sector: Biofuels Product: A German biofuels company focused on bioethanol...

231

Short rotation Wood Crops Program  

SciTech Connect (OSTI)

This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

Wright, L.L.; Ehrenshaft, A.R.

1990-08-01T23:59:59.000Z

232

FIELD AND FORAGE CROPS Bioenergy Crops Miscanthus giganteus and Panicum virgatum  

E-Print Network [OSTI]

for petroleum-based energy (Mil- liken et al. 2007). Cultivating these biofuel crops species, it is likely that biofuel crops, as grown for ?eld cultivation, will suffer reduced damage from of these biofuel crops are new to large-scale cultivation, it is unknown what interactions between current insect

DeLucia, Evan H.

233

Using sludge on land raises more than crops  

SciTech Connect (OSTI)

Applying sludge to croplands has been one solution to the dilemma of accumulating sewage. At the present time, approximately 25 percent of all sludge disposal programs are conducted as land application, specifically land reclamation and agricultural utilization. The application of sludge to croplands is developing from a small and scattered program into a large-scaled program because of the prohibition of ocean dumping of sludge, increased costs for incineration of sludge and its pollution control, and an increasing national production of over 280 million tons/yr of wet sludge. Agricultural utilization of sewage sludge has several notable benefits including the recycling of essential and trace nutrients, improvement of marginal soil with organic matter, increased crop yield, and direct costs comparable to commercial fertilizers. However, cropland utilization of sewage sludge may involve risks if proper management is not followed. Besides the risk of metal contamination of soil and plants which has received considerable notoriety, the overall environmental impact of sludge application programs must also consider the public health hazards of nitrate (Ntheta/sub 3/) pollution and the spread of pathogenic (disease-causing) organisms, and any odor nuisance which may be associated with these programs.

Gerardi, M.H.

1982-09-01T23:59:59.000Z

234

Microsoft Word - CX-Rattlesnake-Garrison_ROW_Marking_06June2013  

Broader source: Energy.gov (indexed) [DOE]

6, 2013 6, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum P. Hastings Project Manager - TERM-TPP-4 Proposed Action: Rattlesnake-Garrison Right-of-Way Marking Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine Maintenance Location: Missoula County, Montana Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to survey and mark the Rattlesnake- Garrison transmission line right-of-way (ROW) boundary in Missoula County, Montana. The installation of signs to mark BPA's ROW would prevent encroachment from homeowners and developers, ensure the safety of nearby residents, and allow for the continued safe maintenance and operation of BPA's transmission lines.

235

Experiment and analysis of instability of tube rows subject to liquid crossflow. [LMFBR  

SciTech Connect (OSTI)

A tube array subjected to crossflow may become unstable by either one or both of the two basic mechanisms: velocity mechanism and displacement mechanism. The significance of these two mechanisms depends on the mass-damping parameter. The velocity mechanism is dominant for tube arrays with a low mass-damping parameter, and the displacement mechanism is dominant for tube arrays with a high mass-damping parameter. This report presents an experimental and analytical investigation of tube rows in liquid crossflow. The main objective is to verify a mathematical model and the transition between the two mechanisms at the intermediate values of mass-damping parameter. Tests of two tube rows are conducted to determine the critical flow velocity as a function of system damping. Experimental and analytical results are found to be in good agreement.

Chen, S.S.; Jendrzejczyk, J.A.

1981-09-01T23:59:59.000Z

236

Effect of plant density and row width on leaf area and yield of grain sorghum  

E-Print Network [OSTI]

of probability based on residual using Duncan's multiple range test. + Data was taken on 101. 6 cm. -wide rows only. LAI = LAH ~ 10, 000 m 2 29 3750 A A399 x Tx2536 B ATx318 x Tx2536 3600 3450 3300 eI 3150 4R 3000 2850 B A 2700 2550 2400 61... of probability based on residual using Duncan's multiple range test. + Data was taken on 101. 6 cm. -wide rows only. LAI = LAH ~ 10, 000 m 2 29 3750 A A399 x Tx2536 B ATx318 x Tx2536 3600 3450 3300 eI 3150 4R 3000 2850 B A 2700 2550 2400 61...

Duncan, Ronny R

2012-06-07T23:59:59.000Z

237

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

238

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

239

Safety Functions and Other Features of Remotely Operated Weapon Systems (ROWS)  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1047-2008 DOE-STD-1047-2008 August 2008 DOE STANDARD Safety Functions and Other Features of Remotely Operated Weapon Systems (ROWS) U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1047-2008 TABLE OF CONTENTS FOREWORD ....................................................................................................................... i 1. SCOPE AND PURPOSE .........................................................................................1 2. APPLICABILITY ....................................................................................................1 3. NORMATIVE REFERENCES................................................................................2

240

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" 11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)"

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

242

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " 7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(d)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"," "

243

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

244

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Reasons that Made Coal Unswitchable, 2006;" 2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Coal Consumed ","Unswitchable","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

245

More Than Child's Play How to Get N in a Row  

E-Print Network [OSTI]

More Than Child's Play How to Get N in a Row Games with Animals Hypercube Tic-Tac-Toe How to Win at Tic-Tac-Toe Norm Do Undoubtably, one of the most popular pencil and paper games in the world is tic tic-tac-toe), discover why snaky is so shaky, and see the amazing tic-tac-toe playing chicken! March

Do, Norman

246

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

247

File:Guidelines-for-leasing-row-tracts.pdf | Open Energy Information  

Open Energy Info (EERE)

Guidelines-for-leasing-row-tracts.pdf Guidelines-for-leasing-row-tracts.pdf Jump to: navigation, search File File history File usage Metadata File:Guidelines-for-leasing-row-tracts.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 23 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:06, 13 June 2013 Thumbnail for version as of 15:06, 13 June 2013 1,275 × 1,650, 2 pages (23 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file.

248

File:03AKBRightOfWaysROWs.pdf | Open Energy Information  

Open Energy Info (EERE)

AKBRightOfWaysROWs.pdf AKBRightOfWaysROWs.pdf Jump to: navigation, search File File history File usage Metadata File:03AKBRightOfWaysROWs.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 38 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:00, 3 July 2013 Thumbnail for version as of 12:00, 3 July 2013 1,275 × 1,650 (38 KB) Alevine (Talk | contribs) 09:55, 18 October 2012 Thumbnail for version as of 09:55, 18 October 2012 1,275 × 1,650 (53 KB) Jnorris (Talk | contribs) 10:36, 6 August 2012 Thumbnail for version as of 10:36, 6 August 2012 1,275 × 1,650 (34 KB) Jnorris (Talk | contribs)

249

File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf | Open Energy  

Open Energy Info (EERE)

CAAStateLandLeasingProcessAndLandAccessROWs.pdf CAAStateLandLeasingProcessAndLandAccessROWs.pdf Jump to: navigation, search File File history File usage File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 75 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:03, 29 November 2012 Thumbnail for version as of 16:03, 29 November 2012 1,275 × 1,650 (75 KB) Jnorris (Talk | contribs) 12:06, 12 September 2012 Thumbnail for version as of 12:06, 12 September 2012 1,275 × 1,650 (82 KB) Djenne (Talk | contribs) 15:45, 26 June 2012 Thumbnail for version as of 15:45, 26 June 2012 1,275 × 1,650 (75 KB) Jnorris (Talk | contribs) June 26th version

250

File:App Misc Easement ROW.pdf | Open Energy Information  

Open Energy Info (EERE)

App Misc Easement ROW.pdf App Misc Easement ROW.pdf Jump to: navigation, search File File history File usage Metadata File:App Misc Easement ROW.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 1.54 MB, MIME type: application/pdf, 4 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:36, 20 June 2013 Thumbnail for version as of 09:36, 20 June 2013 1,275 × 1,650, 4 pages (1.54 MB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file.

251

DisClose: Discovering Colossal Closed Itemsets via a Memory Efficient Compact Row-Tree  

SciTech Connect (OSTI)

Itemset mining has recently focused on discovery of frequent itemsets from high-dimensional datasets with relatively few rows and a larger number of items. With exponentially in-creasing running time as average row length increases, mining such datasets renders most conventional algorithms impracti-cal. Unfortunately, large cardinality closed itemsets are likely to be more informative than small cardinality closed itemsets in this type of dataset. This paper proposes an approach, called DisClose, to extract large cardinality (colossal) closed itemsets from high-dimensional datasets. The approach relies on a memory-efficient Compact Row-Tree data structure to represent itemsets during the search process. The search strategy explores the transposed representation of the dataset. Large cardinality itemsets are enumerated first followed by smaller ones. In addition, we utilize a minimum cardinality threshold to further reduce the search space. Experimental result shows that DisClose can complete the extraction of colossal closed itemsets in the considered dataset, even for low support thresholds. The algorithm immediately discovers closed itemsets without needing to check if each new closed itemset has previously been found.

Zulkurnain, Nurul F.; Keane, John A.; Haglin, David J.

2013-02-01T23:59:59.000Z

252

File:03HIEConstructionUponAStateHighwayROW.pdf | Open Energy Information  

Open Energy Info (EERE)

HIEConstructionUponAStateHighwayROW.pdf HIEConstructionUponAStateHighwayROW.pdf Jump to: navigation, search File File history File usage File:03HIEConstructionUponAStateHighwayROW.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 42 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:02, 23 October 2012 Thumbnail for version as of 13:02, 23 October 2012 1,275 × 1,650 (42 KB) Dklein2012 (Talk | contribs) 14:00, 24 July 2012 Thumbnail for version as of 14:00, 24 July 2012 1,275 × 1,650 (35 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup

253

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,," ",," " " "," ",,,,,,,,,,,,,,,,,"RSE" "NAICS"," ",,,,,,,,,,,,,,,,,"Row"

254

Effect of tillage systems, row configuration-spacing and plant population on soil physical properties, evapotranspiration and dryland sorghum yields  

E-Print Network [OSTI]

University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1981 Major Subject: Soil Science EFFECT OF TILLAGE SYSTEMS, ROW CONFIGURATION-SPACING AND PLANT POPULATION ON SOIL PHYSICAL PROPERTIES& EVAPOTRANSPIRATION... AND DRYLAND SORGHUM YIELDS A Thesis by JAIME ROEL SALINAS-GARCIA Approved as to style and content by: (Co-Chairman of Committ. ee) ( o-Chairman of Committee) (Member) (Head of Department) December 1981 ABSTRACT Effect of Tillage Systems, Row...

Salinas-Garcia, Jaime Roel

2012-06-07T23:59:59.000Z

255

Influence of row spacing, population density and irrigation on phenology, yield and fiber properties of three upland cotton varieties  

E-Print Network [OSTI]

INFLUENCE OF ROW SPACING, POPULATION DENSITY AND IRRIGATION ON PHENOLOGY, YIELD AND FIBER PROPERTIES OF THREE UPLAND COTTON VARIETIES A Thesis by WILLIAM DAVID HAMILTON Submitted to the Graduate College of Texas ASM University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major Subject: Agronomy INFLUENCE OF ROW SPACING, POPULATION DENSITY AND IRRIGATION ON PHENOLOGY, YIELD AND FIBER PROPERTIES OF THREE UPLAND COTTON VARIETIES A Thesis...

Hamilton, William David

2012-06-07T23:59:59.000Z

256

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...  

Broader source: Energy.gov (indexed) [DOE]

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

257

PETRO: Higher Productivity Crops for Biofuels  

SciTech Connect (OSTI)

PETRO Project: The 10 projects that comprise ARPA-Es PETRO Project, short for Plants Engineered to Replace Oil, aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

None

2012-01-01T23:59:59.000Z

258

Biomass yield and nitrogen content of annual energy/forage crops preceded by cover crops  

Science Journals Connector (OSTI)

Abstract In order to reduce input costs and improve sustainability of energy/forage crops in the northern Great Plains (NGP), preceding cover crops can be included into existing annual crop systems. The objective of the study was to determine biomass yield and quality of five annual energy/forage crops, grown after six different, leguminous and non-leguminous cover crop species. The experiment was conducted at two locations, Fargo and Prosper, ND, from 2010 to 2012. The experimental design was a randomized complete block with three replicates, in a split-plot arrangement where the preceding season's cover crop was the main plot and the forage crop was the sub-plot. Six cover crops, forage pea (Pisum sativum L.) cv. Arvika, Austrian winter pea (Pisum sativum ssp. arvense (L.) Poir), hairy vetch (Vicia villosa Roth.) forage radish (Raphanus sativus var. niger) cv. Daikon, turnip (Brassica rapa var. rapa) cv. Purple Top, and forage turnip (Brassica campestris x napus) cv. Pasja, were planted no-till on 8 to 9 August in 2010 and 2011 into oat (Avena sativa L.) residue. In the following spring, five energy/forage crops, maize (Zea mays L.), forage sorghum and sweet sorghum (Sorghum bicolor L.), oat, and barley (Hordeum vulgare L.) were planted no-till onto the winter-killed cover crops residue. Results across locations and years indicated forage pea and forage radish, produced the highest dry matter yield (3.3Mgha?1) in the fall. Total plant N content was 116kgNha?1 in forage peas and 76kgNha?1 in forage radish, respectively. Results across locations and years indicated all energy/forage crops had greater biomass yield, and total N content when preceded by a legume cover crop compared with a non-legume or the check, in the previous year. Forage sorghum had the highest average biomass yield among the five energy/forage crops, with 17.8Mgha?1, followed by sweet sorghum with 15.3Mgha?1. In conclusion, forage pea was the most suitable cover crop to provide additional N for the subsequent crops in the NGP. Forage sorghum and sweet sorghum can be considered as the most productive energy/forage crops, especially when preceded by a legume cover crop.

D.P. Samarappuli; B.L. Johnson; H. Kandel; M.T. Berti

2014-01-01T23:59:59.000Z

259

Crop Water Requirement and Water Use Efficiency  

Science Journals Connector (OSTI)

Water use efficiency is defined as ratio of yield to irrigation water requirement (De Pascale and Maggio 2005) WUE=yield/irrigation water requirement (kg crop/m3 irrigation water) ...

Christian von Zabeltitz

2011-01-01T23:59:59.000Z

260

Mycotoxins in Feed and Food Crops.  

E-Print Network [OSTI]

" , , ,., ":i: : ?. MYCOTOXINS IN FEED fu~D FOOD CROPS Prepared by James M. Armstrong, Extension Project Leader in Veterinary Medicine and Veterinarian (Livestock Health) John E. Bremer, Extension Agronomist Dennis B. Herd, Extension Beef Cattle...

Armstrong, James M.; Herb, Dennis B.; Bremer, John E.; Horne, C. Wendell; Thomas, William B.; Thornberry, Fred D.; Tripp, Leland D.; White, Thomas H.; Withers, Richard E.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Genetically Engineering Plants for Crop Improvement  

Science Journals Connector (OSTI)

...manipulating cellular metabolism, and this new research...engineered plants in the seed production and agrichemical...larger quantities of starch or specialized starches with various degrees...particular fatty acids in seed crops, and (iii...

CHARLES S. GASSER; ROBERT T. FRALEY

1989-06-16T23:59:59.000Z

262

Sugar crops as a solar energy converter  

Science Journals Connector (OSTI)

Biomass crops are renewable resources with multiple uses that can benefit mankind1. Current attention centers on replacement of petroleum as a principal source of energy for transportation applications. Fuels for...

E. S. Lipinsky; S. Kresovich

1982-01-01T23:59:59.000Z

263

Modelling the UK perennial energy crop market  

E-Print Network [OSTI]

Biomass produced from perennial energy crops, Miscanthus and willow or poplar grown as short-rotation coppice, is expected to contribute to UK renewable energy targets and reduce the carbon intensity of energy production. ...

Alexander, Peter Mark William

2014-11-27T23:59:59.000Z

264

Cross-Contamination of Crops in Horticulture  

Science Journals Connector (OSTI)

Like cross-contamination, coexistence is not new to horticulture. However, the advent of GM crops ... very far, whereas canola-rapeseed pollen is light and can travel long distances. There is...

Prof. Dane Scott

2014-04-01T23:59:59.000Z

265

Potential Yield Mapping of Dedicated Energy Crops  

Broader source: Energy.gov [DOE]

Breakout Session 1BIntegration of Supply Chains I: Breaking Down Barriers Potential Yield Mapping of Dedicated Energy Crops Chris Daly, Director, PRISM Climate Group, Oregon State University

266

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)"

267

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2006;" 1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",879.8,5,2.2 3112," Grain and Oilseed Milling",6416.6,17.5,5.7

268

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

269

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

270

" Row: General Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" 1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States"

271

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

272

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" 4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable Distillate","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

273

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(f)"

274

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

275

Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

Weaver, Phyllis C

2013-12-12T23:59:59.000Z

276

Effects of plant density and row spacing on the ratooning of sorghum (Sorghum bicolor (L.) Moench)  

E-Print Network [OSTI]

effect on percent of plants surviving 4 weeks after cutting at College Station. . 105 62. 64 65. Effect of row spacing on percent of surviving plants of ATx378 x TAM428 and ATx378 x Tx2536 at College Station, 4 weeks after cutting . . . . 106... TAM428 and ATx378 x Tx2536 4 weeks after cutting . . . . 110 Number of reporductive tillers per unit area in the ratoon at College Station Effect of population on number of reproductive tillers in the ratoon for the combined loca- t. 1ons . 111...

Priwin A., Ricardo A

2012-06-07T23:59:59.000Z

277

Influence of row spacing on performance of short-season cotton genotypes  

E-Print Network [OSTI]

. Hand har- vests were made at 121, 137, and 174 days after planting (DAP) on 1 Mention of commercial products or trade names is for identifica- tion only and does not imply endorsement by the author or Texas A&M University. 15 3-m row sections.../ha. Percentage maturity was determined at 121 ard 137 days after planting. At each date, differences among spacing treatments were non-significant. Genotype differences were significant at both dates; at 121 DAP, the long-season check variety (genotype 10...

Abreu, Jose?

2012-06-07T23:59:59.000Z

278

Risk in agriculture : a study of crop yield distributions and crop insurance  

E-Print Network [OSTI]

Agriculture is a business fraught with risk. Crop production depends on climatic, geographical, biological, political, and economic factors, which introduce risks that are quantifiable given the appropriate mathematical ...

Gayam, Narsi Reddy

2006-01-01T23:59:59.000Z

279

GPU video retargeting with parallelized SeamCrop  

Science Journals Connector (OSTI)

In this paper, we present a fast parallel algorithm for the retargeting of videos. It combines seam carving and cropping and is aimed for real-time adaptation of video streams. The basic idea is to first find an optimal cropping path over the whole sequence ... Keywords: GPU, SeamCrop, cropping, seam carving, video resizing, video retargeting

Johannes Kiess; Daniel Gritzner; Benjamin Guthier; Stephan Kopf; Wolfgang Effelsberg

2014-03-01T23:59:59.000Z

280

Determination of the Number of Tube Rows to Obtain Closure for Volume Averaging Theory Based Model of Fin-and-Tube Heat Exchangers  

E-Print Network [OSTI]

Fig. 3 Journal of Heat Transfer Grid system for 2-row caseDomain and Grid System. Since the fin-and- tube heat

Zhou, Feng; Hansen, Nicholas E; Geb, David J; Catton, Ivan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CropIrri: A DECISION SUPPORT SYSTEM FOR CROP IRRIGATION MANAGEMENT  

E-Print Network [OSTI]

: A field crop irrigation management decision-making system (CropIrri) was developed based on the soil water management model. The irrigation plan is made through predicating of soil water content in root zone-sowing and real-time irrigation management decision-making support, simulation of soil water dynamics in the root

282

The Potential for Pennsylvania Crops as Biofuels Higher energy costs over the past few years have created opportunities for the use of crops and crop residues  

E-Print Network [OSTI]

The Potential for Pennsylvania Crops as Biofuels Higher energy costs over the past few years have Potential for Pennsylvania Crops as Biofuels 2 Soybeans Soybean acreage is on the increase in Pennsylvania

Lee, Dongwon

283

GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW 03AKGUtilityPermitToConstructOnADOTROW (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Transportation and Public Facilities U S Army Corps of Engineers United States Coast Guard Bureau of Indian Affairs Bureau of Land Management Federal Aviation Administration Alaska Department of Natural Resources Regulations & Policies 11 AAC 195.010: Anadromous Fish 17 AAC 15.021: Application for Utility Permit Triggers None specified Click "Edit With Form" above to add content 03AKGUtilityPermitToConstructOnADOTROW (1).pdf

284

The formation of double-row oxide stripes during the initial oxidation of NiAl(100)  

SciTech Connect (OSTI)

The initial growth of ultrathin aluminum oxide film during the oxidation of NiAl(100) was studied with scanning tunneling microscopy. Our observations reveal that the oxide film grows initially as pairs of a double-row stripe structure with a lateral size equal to the unit cell of ?-Al{sub 2}O{sub 3}. These double-row stripes serve as the very basic stable building units of the ordered oxide phase for growing thicker bulk-oxide-like thin films. It is shown that the electronic properties of these ultrathin double-row stripes do not differ significantly from that of the clean NiAl surface; however, the thicker oxide stripes show a decreased conductivity.

Qin, Hailang; Zhou, Guangwen [Department of Mechanical Engineering and Multidisciplinary Program in Materials Science and Engineering, State University of New York, Binghamton, New York 13902 (United States)] [Department of Mechanical Engineering and Multidisciplinary Program in Materials Science and Engineering, State University of New York, Binghamton, New York 13902 (United States)

2013-08-28T23:59:59.000Z

285

Abstract People in developing countries mostly depend for their diet on special staple crops, so called orphan crops. These crops play a key role in food secu-  

E-Print Network [OSTI]

, including proven food or energy value and that the plant has been widely cultivated in the past83 Abstract People in developing countries mostly depend for their diet on special staple crops, so called orphan crops. These crops play a key role in food secu- rity since they are grown by many resource

Kuhlemeier, Cris

286

The Energy Crops Company | Open Energy Information  

Open Energy Info (EERE)

Crops Company Crops Company Jump to: navigation, search Name The Energy Crops Company Place Cobham, United Kingdom Zip KT11 2LA Sector Biomass Product Distributor of pellets and installer of biomass heating equipment in Surrey, UK. Coordinates 41.739891°, -79.322189° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.739891,"lon":-79.322189,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Top Crop Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Crop Wind Farm Crop Wind Farm Facility Top Crop Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Location Grundy/Livingston/La Salle Counties IL Coordinates 41.159826°, -88.637381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.159826,"lon":-88.637381,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Rank Name Peak Date Peak Location Bomb Peak Gradient Min Depth (Hr-Dy-Mn-Yr) (Lat, Lon) (Bergeron) (hPa/1000km) (hPa)  

E-Print Network [OSTI]

Rank Name Peak Date Peak Location Bomb Peak Gradient Min Depth (Hr-Dy-Mn-Yr) (Lat, Lon) (Bergeron, and northwest europe (Cambride Univ. Pr.). 1 #12;Figure S1(a): Evolution of 'Daria' (the top ranked storm arrow is approximately 50 m s-1). 2 #12;Figure S1(b): As for Figure S1(a) but for the storm ranked

Caballero, Rodrigo

289

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006; 6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487 32 345 -- Process Cooling and Refrigeration -- 206 * 1 32 * * -- Machine Drive

290

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

291

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

292

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

293

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 6.1 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 871.7 4.3 1.8 3112 Grain and Oilseed Milling 6,239.5 10.5 3.6 311221 Wet Corn Milling 28,965.0 27.1 12.6 31131 Sugar Manufacturing 7,755.9 32.6 13.4 3114 Fruit and Vegetable Preserving and Specialty Foods 861.3 4.8 2.2 3115 Dairy Products 854.8 3.5 1.1 3116 Animal Slaughtering and Processing 442.9 3.5 1.2 312

294

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006; 7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process 773,574 10 9 2,709 10 19 Process Heating

295

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006; 5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use 12,109 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process

296

Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 111 86 25 3112 Grain and Oilseed Milling 72 51 21 311221 Wet Corn Milling 55 42 13 31131 Sugar Manufacturing 7 3 4 3114 Fruit and Vegetable Preserving and Specialty Foods 13 13 0 3115 Dairy Products 0 0 0 3116 Animal Slaughtering and Processing 0 0 0 312 Beverage and Tobacco Products * * 0 3121 Beverages

297

Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2006; 3 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed Milling 2,845 2,819 0 27 311221 Wet Corn Milling 2,396 2,370 0 27 31131 Sugar Manufacturing 951 951 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 268 268 0 * 3115 Dairy Products 44 31 * Q 3116 Animal Slaughtering and Processing 17 0 0 17 312 Beverage and Tobacco Products 659 623 Q * 3121 Beverages 587 551 Q * 3122 Tobacco 72

298

E-Print Network 3.0 - agricultural crop residues Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that crop rotation makes intuitive sense and it works... will be necessary to minimize wind and water erosion. Crop ... Source: Brummer, E. Charles - Department of Crop and Soil...

299

EU, Japan call for dialogue amid row on breakthrough nuclear project The European Union and Japan each called Wednesday for dialogue among the six partners on  

E-Print Network [OSTI]

EU, Japan call for dialogue amid row on breakthrough nuclear project 01/12/2004 The European Union and Japan each called Wednesday for dialogue among the six partners on a multibillion-dollar nuclear energy project amid a deepening row over whether Japan or France will host the site. The EU, whose bid is backed

300

Author's personal copy Variable field-of-view machine vision based row guidance of an agricultural robot  

E-Print Network [OSTI]

robot Jinlin Xue a , Lei Zhang b , Tony E. Grift b, a College of Engineering, Nanjing Agricultural guidance Autonomous guidance Agricultural robot Fuzzy logic control a b s t r a c t A novel variable field-of-view machine vision method was developed allowing an agricultural robot to navigate between rows in cornfields

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Forelimb muscle function in pig-nosed turtles, Carettochelys insculpta: testing neuromotor conservation between rowing and flapping in swimming turtles  

Science Journals Connector (OSTI)

...In swimming turtles, propulsion is generated exclusively...hindlimbs, whereas all marine turtles (seven species...rowing and flapping propulsion in fishes. Integr...comparison of the swimming of marine and freshwater turtles...SD . 1987 Foreflipper propulsion in the California sea...

2013-01-01T23:59:59.000Z

302

Jeffrey R. Row Environment and Resource Studies, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1  

E-Print Network [OSTI]

, N2L 3G1 Website: http://jeffrow.ca · Email: jeff.row@me.com · Phone: 1-416-399-3066 1 Education 2006 and population structure of foxsnakes across spatial and temporal scales. 2003-2005 M.Sc. Biology, University (Lampropeltis triangulum). 1997-2001 B.Sc. Environmental Biology, Queen's University, Kingston, Ontario. 2

Row, Jeffrey R.

303

GM crop escapes into the American wild  

Science Journals Connector (OSTI)

... to Monsanto's Roundup herbicide (glyphosate), and one resistant to Bayer Crop Science's Liberty herbicide (gluphosinate). They also found some plants that were resistant to both herbicides, ... least one herbicide-resistant transgene (41% were resistant to Roundup and 40% resistant to Liberty). They also found two plants that contained both transgenes. ...

Natasha Gilbert

2010-08-06T23:59:59.000Z

304

Improving water use in crop production  

Science Journals Connector (OSTI)

...doi:10.1093/jexbot/49.suppl_1.453 . Ma, X , Fukushima, Y, Liu, C, Wu, X2003A hydrological model application...D2002Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci...

2008-01-01T23:59:59.000Z

305

Boosting Crop Yields with Plant Steroids  

Science Journals Connector (OSTI)

...hormones warrant better crops for the XXI century. Ann. Bot. (Lond.) 86 : 441-447...Peerbolte, R., Broekaert, W., and Van Camp, W. (2005). TraitMill: A discovery...stress. Biol. Plant. 48 : 407-411. Van Camp, W. (2005). Yield enhancement genes...

Cécile Vriet; Eugenia Russinova; Christophe Reuzeau

2012-03-20T23:59:59.000Z

306

Features . . . Cover Crop Value to Cotton  

E-Print Network [OSTI]

Features . . . Cotton Cover Crop Value to Cotton Cotton Price and Rotation 32:12 December 2008 #12;Cotton Price and Rotation Agronomy Notes Page 2 Cotton price has been low. Either peanut or soybean should be rotated with cotton, corn, or other grasses. However, with cotton

Watson, Craig A.

307

Boosting Crop Yields with Plant Steroids  

Science Journals Connector (OSTI)

...metabolism processes. Nutritional Quality of Crops and Medicinal Application...increase research efforts to engineer the phytosterol synthesis pathway...The nutritional and seed qualities also constitute important traits...content on the nutritional quality of seeds has yet to be determined...

Cécile Vriet; Eugenia Russinova; Christophe Reuzeau

2012-03-20T23:59:59.000Z

308

Managing water resources for crop production  

Science Journals Connector (OSTI)

...by a crop and these were converted into biomass using conversion co- efficients; ew...Measurements of transpiration from Eucal ptus plantation, India. . H drol. 130, 3748. Carter...competition for water while obtaining fuel wood that provides an immediate economic return...

1997-01-01T23:59:59.000Z

309

D1 Fuel Crops Ltd | Open Energy Information  

Open Energy Info (EERE)

D1 Fuel Crops Ltd Jump to: navigation, search Name: D1 Fuel Crops Ltd Place: London, United Kingdom Zip: SE1 2RE Product: London-based JV between BP and D1 oils focusing on the...

310

Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops  

Science Journals Connector (OSTI)

Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops ... Because of increasing demands for bioenergy, a considerable amount of land in the midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. ... The foliar carbon/nitrogen ratio (C/N) in these bioenergy crops at harvest is significantly higher than the ratios in replaced crops, such as corn or soybean. ...

Dong K. Woo; Juan C. Quijano; Praveen Kumar; Sayo Chaoka; Carl J. Bernacchi

2014-09-10T23:59:59.000Z

311

REGULAR ARTICLE Microbial community assimilation of cover crop  

E-Print Network [OSTI]

microenvironments in alternative and conventional cropping systems Angela Y. Y. Kong & Johan Six Received: 4 October dur- ing the cover crop growing season in long-term conventional (annual synthetic fertilizer (annual composted manure and cover crop additions) maize-tomato sys- tems (Zea mays L.- Lycopersicum

312

Agroecological zones and the assessment of crop production potential  

Science Journals Connector (OSTI)

...and the assessment of crop production potential M. V. K. Sivakumar...and sustainable agricultural production systems to feed the growing...Agroecological ones and crop production potential Table 3. Land use...perennial tree crops (palm oil, rubber, cocoa, coffee) AEZ4 cool...

1997-01-01T23:59:59.000Z

313

High Tunnel Crop Production Tips Lewis W. Jett  

E-Print Network [OSTI]

used for producing a diversity of horticulture crops including vegetables, fruits, herbs and flowers the crop from an erratic environment where extremes in temperature, wind, rainfall, pests and light tunnel? High tunnels used for growing horticulture crops commercially are typically 20-30 ft wide and 100

Goodman, Robert M.

314

Changes in bird community composition in response to growth changes in short-rotation woody crop plantings  

SciTech Connect (OSTI)

Hybrid poplar established as intensively managed short-rotation woody crops (SRWC) former agricultural lands can provide habitat for wildlife. Studies of bird use of SRWC for nesting and during fall migration have shown that the numbers and kinds of breeding birds using mature plantings of hybrid poplar are similar to natural-forested lands. In Minnesota, the number and species of breeding birds using habitat provided by clonal-trial plantings and young larger-scale plantings (12--64 ha) of hybrid poplar were initially most similar to those using grasslands and row-crops. As the plantings approached canopy closure, successional species became predominant. In the Pacific Northwest, breeding bird composition and density were very similar for mature plantings and forested areas; however, fall migrants were found primarily in forested areas. In the Southeast, preliminary comparisons of breeding bird use of plantings of sweetgum and sycamore with naturally regenerating forests of different ages and sizes and vegetation structure are showing no size effect on use. As with hybrid poplar, species use of the more mature plantings of sweetgum and sycamore was most similar to that of natural forests.

Tolbert, V.R. [Oak Ridge National Lab., TN (United States); Hanowski, J.; Christian, D. [Univ. of Minnesota, Duluth, MN (United States); Hoffman, W. [National Audubon Society, Tavernier, FL (United States); Schiller, A. [Clark Univ., Worcester, MA (United States). Graduate School of Geography; LIndberg, J. [Oak Ridge Inst. for Science and Education, TN (United States)

1997-10-01T23:59:59.000Z

315

CliCrop: a Crop Water-Stress and Irrigation Demand Model for an Integrated Global Assessment Model Approach  

E-Print Network [OSTI]

This paper describes the use of the CliCrop model in the context of climate change general assessment

Fant, C.A.

316

1132 WWW.CROPS.ORG CROP SCIENCE, VOL. 52, MAYJUNE 2012 While varying regionally, root-feeding plant-parasitic  

E-Print Network [OSTI]

approaches to managing nematode parasitic variability. H. Melakeberhan, Nematologist, Department1132 WWW.CROPS.ORG CROP SCIENCE, VOL. 52, MAY�JUNE 2012 RESEARCH While varying regionally, root and nematicides, developing nematode-resistant crops is a needed alternative management technology (Project GREEEN

Douches, David S.

317

International Crops Research Institute for the Semi Arid Tropics | Open  

Open Energy Info (EERE)

Crops Research Institute for the Semi Arid Tropics Crops Research Institute for the Semi Arid Tropics Jump to: navigation, search Name International Crops Research Institute for the Semi-Arid Tropics Place India Sector Biofuels Product Biofuels ( Academic / Research foundation ) References International Crops Research Institute for the Semi-Arid Tropics[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. International Crops Research Institute for the Semi-Arid Tropics is a company located in India . References ↑ "International Crops Research Institute for the Semi-Arid Tropics" Retrieved from "http://en.openei.org/w/index.php?title=International_Crops_Research_Institute_for_the_Semi_Arid_Tropics&oldid=347036

318

Japanese Sugar Cane as a Forage Crop.  

E-Print Network [OSTI]

AGRICULTURAL EXPERIMENT STAT10 N BULLETIN NO. 195 AUGUST, 1916 DIVISION OF AGRONOMY JAPANESE SUGAR CANE AS A FORAGE CROP BY A. H. LEIDIGH, B. S., Agronomist, IN CONSULTATION WITH G. T. McNESS, Superintendent, Substation No. 11, Nacogdoches, and H. H.... LAUDE, B. S., Superintendenr, Substation No. 4, Beaumont I POSTOFFICE: COLLEGE STATION, BRAZOS COUNTY, TEXAS AUSTIN, TEXAS VON BOECKMANN-JONES CO., PRINTERS 1916 AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, A. hq.. D. C. L...

Leidigh, A. H. (Arthur Henry); McNess, George Thomas; Laude, H. H. (Hilmer Henry)

1916-01-01T23:59:59.000Z

319

Onions and Bunch Crops at Beeville.  

E-Print Network [OSTI]

to market. IRRIGATION AND YIELD TEST. The purpose of this experiment was to determine the re la ti^ cost and yields of irrigated and unirrigated onion crops, with espc cia1 reference to the quantity, cost and value of water require( The plats employed... ....................................... Plant Seed Co ......... ........ Turnip Non Plus Ultra ............... Plant Seed Uo Early Short Top Long Scarlet ... Plant Seed Do ......... Long Black Spanish .................... Plant Seed Cc ......... Turnip Triumph...

Robertson, J. K.; Green, Edward C.

1904-01-01T23:59:59.000Z

320

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 879.8 5.0 2.2 3112 Grain and Oilseed Milling 6,416.6 17.5 5.7 311221 Wet Corn Milling 21,552.1 43.6 18.2 31131 Sugar Manufacturing 6,629.2 31.3 12.2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,075.3 5.5 2.8 3115 Dairy Products 956.3 4.3 1.3 3116 Animal Slaughtering and Processing 493.8 4.4 1.6 312

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components;  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006; 1.1 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 73,242 309 4,563 111 78,003 3112 Grain and Oilseed Milling 15,283 253 2,845 72 18,310 311221 Wet Corn Milling 6,753 48 2,396 55 9,142 31131 Sugar Manufacturing 920 54 951 7 1,919 3114 Fruit and Vegetable Preserving and Specialty Foo 9,720 1 268 13 9,976 3115 Dairy Products 10,079 0 44 0 10,123 3116 Animal Slaughtering and Processing 17,545 0 17 0 17,562 312 Beverage and Tobacco Products

322

Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,109 326 1,462 11,395 2,920 67 13 1,149 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 144 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 17 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 35 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 95

323

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments Economic Net Residual Distillate LPG and Coke and of Energy Sources Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,166 367 23 48 540 15 41 3 140 12 20-49 1,209 333 20 26 550 8 104 5 182 20 50-99 1,507 349 51 19 575 98 190 9 256 40 100-249 2,651 607 53 20 1,091 23 310 53 566 73 250-499 2,362 413 52 13 754 158 247 9 732 16 500 and Over

324

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

Gasoline and Diesel Fuel Update (EIA)

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7 1,668 W 3112 Grain and Oilseed Milling 602 602 9 201 490 286 30 0 165 W 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 29 0 31131 Sugar Manufacturing 73 73 3 36 67 13 11 7 15 0 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987

325

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

6 Electricity: Sales to Utility and Nonutility Purchasers, 2006; 6 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of Economic Sales and Utility Nonutility Characteristic(a) Transfers Offsite Purchaser(b) Purchaser(c) Total United States Value of Shipments and Receipts (million dollars) Under 20 28 28 0 20-49 307 227 80 50-99 2,218 1,673 545 100-249 2,647 1,437 1,210 250-499 3,736 2,271 1,464 500 and Over 10,814 5,665 5,149 Total 19,750 11,301 8,449 Employment Size Under 50 516 230 287 50-99 1,193 1,180 13 100-249 3,825 3,231 594 250-499 3,796 2,675 1,120 500-999 4,311 1,921 2,390

326

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2006; 4 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood Economic Total Onsite and Characteristic(a) Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,447 450 Q Q 20-49 5,220 5,106 29 Q 50-99 3,784 3,579 29 Q 100-249 17,821 17,115 484 222 250-499 28,464 27,202 334 927 500 and Over 86,249 85,028 106 1,114 Total 142,986 138,480 1,030 3,476 Employment Size Under 50 2,193 1,177 Q Q 50-99 6,617 6,438 13 166 100-249 12,403 12,039 266 98 250-499

327

Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006; 3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297 99 11,338 2,691 51 11,217 2,860 10 11,333 2,786 164 11,129 2,836 9 11,235 2,884 3112 Grain and Oilseed Milling 580 53 Q 499 38 5 532 42 W 533 W Q 533 44 5 530 45 311221 Wet Corn Milling 47 11 W 35 W W 43 W W 39 W 0 44 3 0 41 6 31131 Sugar Manufacturing

328

Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590 9,609 2,929 6,260 5,014 2,854 422 9,945 3,762 3112 Grain and Oilseed Milling 580 59 475 46 300 236 Q 154 398 28 446 95 Q 45 442 92 311221 Wet Corn Milling 47 9 34 4 36 W W 27 15 6 38 3 6 8 24 16 31131 Sugar Manufacturing 77

329

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes  

U.S. Energy Information Administration (EIA) Indexed Site

2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources Unit: Trillion Btu Economic Residual Distillate LPG and Coke and Characteristic(a) Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal Breeze Other(e) Total United States Value of Shipments and Receipts (million dollars) Under 20 47 0 3 5 Q 20 1 17 20-49 112 7 Q 20 1 12 1 64 50-99 247 29 Q 26 88 33 * 68 100-249 313 28 1 97 12 48 43 85 250-499 297 * * 121 154 3 5 13 500 and Over 2,547 * * 130 2,043 301 6 66 Not Ascertained (f) 3,399 0 0 0 0 0 0 3,399 Total 6,962 64 17 398 2,299 417 56 3,711 Employment Size Under 50 161 4 Q 48 15 19 0 64 50-99 390 41 1 97 145 27 1 77 100-249

330

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15 1,210 W 3112 Grain and Oilseed Milling 580 580 15 183 449 269 35 0 148 W 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 0 31131 Sugar Manufacturing 78 78 11 45 61 35 26 15 45 0 3114 Fruit and Vegetable Preserving and Specialty Food 1,125

331

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

3.3 Fuel Consumption, 2006; 3.3 Fuel Consumption, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,139 367 23 45 535 14 21 3 131 20-49 1,122 333 13 19 530 8 93 5 122 50-99 1,309 349 22 17 549 10 157 8 197 100-249 2,443 607 25 19 994 11 263 10 512 250-499 2,092 413 53 13 633 4 244 3 730 500 and Over 7,551 781 115 17 2,271 31 240 344 3,752 Total 15,657 2,851 251 129 5,512 79 1,016 374 5,445 Employment Size Under 50 1,103 334 10 45 550 10

332

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2006; 2 Consumption Ratios of Fuel, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value Economic per Employee of Value Added of Shipments Characteristic(a) (million Btu) (thousand Btu) (thousand Btu) Total United States Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2 50-99 830.1 5.9 2.7 100-249 1,130.0 6.7 3.1 250-499 1,961.4 7.6 3.6 500 and Over 3,861.9 9.0 3.6 Total 1,278.4 6.9 3.1 Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3 7.7 3.6 500-999 2,328.9

333

Generating crop calendars with Web search data  

Science Journals Connector (OSTI)

This paper demonstrates the potential of using Web search volumes for generating crop specific planting and harvesting dates in the USA integrating climatic, social and technological factors affecting crop calendars. Using Google Insights for Search, clear peaks in volume occur at times of planting and harvest at the national level, which were used to derive corn specific planting and harvesting dates at a weekly resolution. Disaggregated to state level, search volumes for corn planting generally are in agreement with planting dates from a global crop calendar dataset. However, harvest dates were less discriminatory at the state level, indicating that peaks in search volume may be blurred by broader searches on harvest as a time of cultural events. The timing of other agricultural activities such as purchase of seed and response to weed and pest infestation was also investigated. These results highlight the future potential of using Web search data to derive planting dates in countries where the data are sparse or unreliable, once sufficient search volumes are realized, as well as the potential for monitoring in real time the response of farmers to climate change over the coming decades. Other potential applications of search volume data of relevance to agronomy are also discussed.

Marijn van der Velde; Linda See; Steffen Fritz; Frank G A Verheijen; Nikolay Khabarov; Michael Obersteiner

2012-01-01T23:59:59.000Z

334

Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching  

DOE Patents [OSTI]

A stabilization and propulsion system are disclosed comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the superconducting magnets on the vehicle. 12 figs.

He, J.; Rote, D.M.

1996-05-21T23:59:59.000Z

335

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" 1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer Control","of Building-Wide","Environment(b)","or Major","Energy-Using","Equipment(c)","Waste","Heat","Recovery","Adjustable -","Speed","Motors","RSE"

336

Molybdenum uptake by forage crops grown on sewage sludge -- Amended soils in the field and greenhouse  

SciTech Connect (OSTI)

Molybdenum (Mo) is a plant-available element in soils that can adversely affect the health of farm animals. There is a need for more information on its uptake into forage crops from waste materials, such as sewage sludge, applied to agricultural land. Field and greenhouse experiments with several crops grown on long-term sewage sludge-amended soils as well as soils recently amended with dewatered (DW) and alkaline-stabilized (ALK) sludges indicated that Mo supplied from sludge is readily taken up by legumes in particular. Excessive uptake into red clover (Trifolium pratense L.) was seen in a soil that had been heavily amended with sewage sludge 20 yr earlier, where the soil contained about 3 mg Mo/kg soil, three times the background soil concentration. The greenhouse and field studies indicated that Mo can have a long residual availability in sludge-amended soils. The effect of sludge application was to decrease Cu to Mo ratios in legume forages, canola (Brassica napus var. napus) and soybeans [Glycine max (L.) Merr.] below the recommended limit of 2:1 for ruminant diets, a consequence of high bioavailability of Mo and low uptake of Cu added in sludge. Molybdenum uptake coefficients (UCs) for ALK sludge were higher than for DW sludge, presumably due to the greater solubility of Mo measured in the more alkaline sludges and soils. Based on these UCs, it is tentatively recommended that cumulative Mo loadings on forages grown on nonacid soils should not exceed 1.0 kg/ha from ALK sludge or 4.0 kg/ha from DW sludge.

McBride, M.B.; Richards, B.K.; Steenhuis, T.; Spiers, G.

2000-06-01T23:59:59.000Z

337

Biomass Crop Assistance Program (BCAP) | Open Energy Information  

Open Energy Info (EERE)

Biomass Crop Assistance Program (BCAP) Biomass Crop Assistance Program (BCAP) Jump to: navigation, search Tool Summary Name: Biomass Crop Assistance Program (BCAP) Agency/Company /Organization: United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Develop Finance and Implement Projects Resource Type: Guide/manual User Interface: Website Website: www.fsa.usda.gov/FSA/webapp?area=home&subject=ener&topic=bcap Cost: Free The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. Overview The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. The Biomass Crop

338

Weather-based forecasts of California crop yields  

SciTech Connect (OSTI)

Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

Lobell, D B; Cahill, K N; Field, C B

2005-09-26T23:59:59.000Z

339

Chengci Chen, Ph.D. Professor of Agronomy (Cropping Systems)  

E-Print Network [OSTI]

-based crop rotations. Agron. J. 104:215-224. Chen, C., G. Han, H. He, and M. Westcott. 2011. Yield, protein

Dyer, Bill

340

Agronomic Suitability of Bioenergy Crops in Mississippi  

SciTech Connect (OSTI)

In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ Which areas in the state are best for bioenergy crop production? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How much could these areas produce sustainably? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How can bioenergy crops impact carbon sequestration and carbon credits? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How will these crops affect fertilizer use and water quality? ???????????????????????????????¢?????????????

Lemus, Rocky; Baldwin, Brian; Lang, David

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modular Extrapolation Approach for Crop LCA MEXALCA: Global Warming Potential of Different Crops and its Relationship to the Yield  

Science Journals Connector (OSTI)

MEXALCA (Modular EXtrapolation of Agricultural LCA) extrapolates crop inventory data and impacts from an original country inventory to all producing countries worldwide. This allows estimates of worldwide mean...

Thomas Nemecek; Karin Weiler

2011-01-01T23:59:59.000Z

342

" Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components" ,,,,"Electricity","Electricity",,,"Natural Gas","Natural Gas",,,"Steam","Steam" " "," ",,,"from Only","from Both",,,"from Only","from Both",,,"from Only","from Both"," ",," "

343

Microsoft PowerPoint - 6_Rowe-Future Challenges for Global Fuel Cycle Material Accounting Final_Updated.pptx  

National Nuclear Security Administration (NNSA)

Future Challenges Future Challenges for Global Fuel Cycle Material Accounting Nathan Rowe Chris Pickett Oak Ridge National Laboratory Nuclear Materials Management & Safeguards System Users Annual Training Meeting May 20-23, 2013 St. Louis, Missouri 2 Future Challenges for Global Fuel Cycle Material Accounting Introduction * Changing Nuclear Fuel Cycle Activities * Nuclear Security Challenges * How to Respond? - Additional Protocol - State-Level Concept - Continuity of Knowledge * Conclusion 3 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Fuel Cycle Source: International Atomic Energy Agency (IAEA), Nuclear Fuel Cycle Information System (NFCIS) web site IAEA Safeguards Begins Here 4 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Weapons Cycle Conversion

344

2012 Cropping Strategies: Split-Pivot Systems to  

E-Print Network [OSTI]

;Cropping With Less Water Irrigating less vs. irrigating more efficiently-- Over the past 20 years what we it! #12;Do you need re-evaluate pre-plant irrigation? Water use efficiency of preplant irrigation the advantages of increased water use efficiency Once the crop is established, at some point we can

Behmer, Spencer T.

345

Chapter 4 - Production Technology for Bioenergy Crops and Trees  

Science Journals Connector (OSTI)

Abstract New technologies for producing energy crops and trees based on fundamental studies have been developed to improve self-sufficiency in food and feed supplies in addition to achieving sustainable natural resources. Energy crops and trees with improved leaf growth, light interception of crop canopy, photosynthetic rate, lodging resistance, and saccharification efficiency of lignocellulose, among many other traits, need to be explored. DNA marker-assisted selection using genome information has been developed as a powerful tool for breeding new bioenergy crops and trees. In this chapter, the concept and basic technologies for producing biomass from herbaceous energy crops and trees, ecophysiological characteristics for high yield and biomass production, genetic analyses of the traits responsible for biomass production, and molecular breeding for improving these traits are discussed. The definitions of herbaceous energy crops for the first and second generations, agronomy and breeding technology for these crops are explained. Recent studies on woody cell wall formation and genetic improvements associated with biomass saccharification in energy crops and woods are introduced.

Tadashi Hirasawa; Taiichiro Ookawa; Shinya Kawai; Ryo Funada; Shinya Kajita

2014-01-01T23:59:59.000Z

346

ECONOMIC IMPACT OF SPECIALTY CROP PRODUCTION AND PROCESSING IN WISCONSIN  

E-Print Network [OSTI]

1 ECONOMIC IMPACT OF SPECIALTY CROP PRODUCTION AND PROCESSING IN WISCONSIN Ashleigh Arledge Keene Applied Economics, University of Wisconsin, Madison, WI October 2010 Production and processing of which is exported to Asia. ECONOMIC IMPACT OF SPECIALTY CROPS Production and processing of Wisconsin

Radeloff, Volker C.

347

Energy Crops and their Implications on Surface Energy  

E-Print Network [OSTI]

Energy Crops and their Implications on Surface Energy and Water Balance Yang Song Rahul Barman Phenological differences Variation in water and thermal energy consumption #12;Objectives Examine potential crops on energy and water balance Temporal and spatial patterns of · Evapotranspiration · Radiation

Jain, Atul K.

348

Toward cropping systems that enhance productivity and sustainability  

Science Journals Connector (OSTI)

...readily available carbon and energy for Pythium species...California and tomatoes in Florida. Plant breeding...of food, fiber, and fuel crops globally...the same planting rate and date, crop rotation...save soil, time, and fuel. The availability of...

R. James Cook

2006-01-01T23:59:59.000Z

349

Water footprint assessment of crop production in Shaanxi, China  

E-Print Network [OSTI]

#12;i Water footprint assessment of crop production in Shaanxi, China Bachelor Thesis Civil, Yangling, China Keywords: Agricultural crops, water footprint, Shaanxi province, CROPWAT #12;ii #12;iii ABSTRACT The water footprint, introduced by professor A.Y. Hoekstra, is an indicator of freshwater use

Vellekoop, Michel

350

Translational genomics of Vegetable Crops Las Vegas, NV  

E-Print Network [OSTI]

Translational genomics of Vegetable Crops Las Vegas, NV July 21, 2005 David Francis and Allen Van Deynze At the recent ASHS meetings in Las Vegas, a workshop "Translational Genomics of Vegetable Crops interventions" (Minna and Gazdar, 1996). In applied plant science, "translational genomics" implies

Douches, David S.

351

Nebraska shows potential to produce biofuel crops | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops December 9, 2009 - 11:12am Addthis Joshua DeLung What are the key facts? Utilizing sites in Nevada that are currently used as buffers around roads for biofuel production instead could meet up to 22 percent of the state's energy requirements. That's 11 times the energy the state currently produces from biomass. Nebraska is known for its rolling cornfields in America's heartland, and agriculture is so thick in the state that people there can smell the fresh produce in the air. Many more in the U.S. might end up tasting the hearty vegetables as well. But one concern about new technologies that use crops for fuel is that those crops, and the land on which they're grown,

352

Crops reap benefits of Pantex irrigation system | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Crops reap benefits of Pantex irrigation system | National Nuclear Security Crops reap benefits of Pantex irrigation system | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Crops reap benefits of Pantex irrigation system Home > content > Crops reap benefits of Pantex irrigation system Crops reap benefits of Pantex irrigation system

353

Nebraska shows potential to produce biofuel crops | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops December 9, 2009 - 11:12am Addthis Joshua DeLung What are the key facts? Utilizing sites in Nevada that are currently used as buffers around roads for biofuel production instead could meet up to 22 percent of the state's energy requirements. That's 11 times the energy the state currently produces from biomass. Nebraska is known for its rolling cornfields in America's heartland, and agriculture is so thick in the state that people there can smell the fresh produce in the air. Many more in the U.S. might end up tasting the hearty vegetables as well. But one concern about new technologies that use crops for fuel is that those crops, and the land on which they're grown,

354

Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An  

E-Print Network [OSTI]

Bioenergy crop productivity and potential climate change mitigation from marginal lands bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops June 2014 Introduction Bioenergy, an important renewable energy produced from biological materials

Zhuang, Qianlai

355

May 27, 1996 Paul Gepts 1 The Crop of the DayThe Crop of the Day  

E-Print Network [OSTI]

://monsterbit.com/touch/greentea.html: Touchstone - Green tea http://newcrop.hort.purdue.edu/hort/newcrops/Crops/Tea: New Crops (Purdue U.): Tea million lbs. ­ green: 12 ­ oolong: 2 ­ jasmine: 0.5 Biggest suppliers? Argentina (33% of black tea), China. Three types of tea derived from Camellia sinensis: green, black, and oolong tea. ­ For green tea, leaves

Gepts, Paul

356

Lignin and carbon transformation in roots of maize and mixed perennial biofuel crops.  

E-Print Network [OSTI]

??Perennial species are being explored as biofuel crops alternative to maize. In this study, fertilized and unfertilized mixed perennial prairie crops were compared with a (more)

Rivas, Fritzie

2012-01-01T23:59:59.000Z

357

E-Print Network 3.0 - annual traditional crops Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What Will Change Supply... Demand of Biofuels? Traditional Crops Perennials Changing Markets Higher Market Values More Land Use 12... cropping land area of 3.7 billion...

358

E-Print Network 3.0 - affecting lilium crops Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production Summary: affect the quality of energy crops, and so do not need to be treated. Recycling wastewater and other... ways to increase biomass production from energy crops...

359

MODELING SITE SUITABILITY FOR ESTABLISHING DEDICATED ENERGY CROPS IN NORTHERN KENTUCKY.  

E-Print Network [OSTI]

??Dedicated energy crops have the potential to supply a sustainable biomass feedstock to support the bioenergy industry. However, a major constraint for promoting energy crops (more)

Nepal, Sandhya

2014-01-01T23:59:59.000Z

360

Canopy hot-spot as crop identifier  

SciTech Connect (OSTI)

Illuminating any reflective rough or structured surface by a directional light source results in an angular reflectance distribution that shows a narrow peak in the direction of retro-reflection. This is called the Heiligenschein or hot-spot of vegetation canopies and is caused by mutual shading of leaves. The angular intensity distribution of the hot-spot, its brightness and slope, are therefore indicators of the plant's geometry. We propose the use of hot-spot characteristics as crop identifiers in satellite remote sensing because the canopy hot-spot carries information about plant stand architecture that is more distinctive for different plant species than, for instance, their spectral reflectance characteristics. A simple three-dimensional Monte Carlo/ray tracing model and an analytic two-dimensional model are developed to estimate the angular distribution of the hot-spot as a function of the size of the plant leaves. The results show that the brightness-distribution and slope of the hot-spot change distinctively for different leaf sizes indicating a much more peaked maximum for the smaller leaves.

Gerstl, S.A.W.; Simmer, C.; Powers, B.J.

1986-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIS-0481: Engineered High Energy Crop Programs Programmatic Environmental  

Broader source: Energy.gov (indexed) [DOE]

1: Engineered High Energy Crop Programs Programmatic 1: Engineered High Energy Crop Programs Programmatic Environmental Impact Statement EIS-0481: Engineered High Energy Crop Programs Programmatic Environmental Impact Statement Summary This Programmatic EIS (PEIS) will evaluate the potential environmental impacts of implementing one or more programs to catalyze the deployment of engineered high energy crops (EHECs). A main component of the proposed EHEC programs would be providing financial assistance to funding recipients, such as research institutions, independent contract growers, or commercial entities, for field trials to evaluate the performance of EHECs. Confined field trials may range in size and could include development-scale (up to 5 acres), pilot-scale (up to 250 acres), or demonstration-scale (up to 15,000

362

Erratum to: Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplies  

Science Journals Connector (OSTI)

Two regrettable errors occurred in citing a critical funding source for the multi-location research summarized in the 2014 article entitled Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplie...

Douglas L. Karlen; Jane M. F. Johnson

2014-09-01T23:59:59.000Z

363

Reducing crop injury from soil-applied herbicides  

E-Print Network [OSTI]

the rotational crop can be seeded Labeled Rotation Restriction Herbicide Peas, Lentils, Chickpeas Canola, Mustard ­ Oilseeds = canola, flax, sunflower, camelina ­ Pulses = pea, lentil, chickpea, fenugreek ­ Cereals = spring

Maxwell, Bruce D.

364

Crop Rotation in the Blackland Region of Central Texas.  

E-Print Network [OSTI]

declining. The almost continuous cropping of these soils to cotton year after year without much, if any, effort being made to maintain or increase their productiveness by the use of fertilizers and manures, crop rotations, or the prevention of soil... washing, has resulted in a reduction in the productiveness of a region once thought to be inexhaustible in its fertility. The use of fertilizers has not been successful in restoring these soils to / their original productivness. Rotation or changing...

Reynolds, E. B. (Elbert Brunner); Killough, D. T. (David Thornton)

1927-01-01T23:59:59.000Z

365

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

366

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,,," " "NAICS" "Code(a)","Subsector and Industry","Establishments(b)","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know"

367

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3

368

Isotope and trace element evolution of the Naica aquifer (Chihuahua, Mexico) over the past 60,000yr revealed by speleothems  

Science Journals Connector (OSTI)

Abstract The espada speleothems of Cueva de las Espadas (Naica Mine, Chihuahua, Mexico) comprise a high-purity selenite core overlain by successive deposits of calcite, gypsum and aragonite. Gypsum precipitated under water from a hydrothermal solution (~58C) when the water table was above the cave level ca. 57ka, during the last glaciation, and some intervals during deglaciation and the Holocene. Aragonite was deposited at lower temperatures (~26C) in a perched lake occupying the cave bottom, when the water table dropped below the cave level during brief dry intervals during deglaciation and the early Holocene. The isotopic composition of gypsum water of crystallization shows that the deglaciationHolocene aquifer water was enriched in deuterium by 12.88.7 relative to water from the last glaciation. This is attributed to an increased relative moisture contribution from the Gulf of Mexico during deglaciation and the Holocene compared to the last glaciation. This indicates that drier conditions occurred in the Naica area during the Holocene than around 57ka. Furthermore, trace element analyses of gypsum served to deduce the circulation regime of the Naica aquifer during the past 60,000yr, and also suggest that higher aquifer recharge occurred during the last glaciation.

Fernando Gzquez; Jos-Mara Calaforra; Heather Stoll; Laura Sanna; Paolo Forti; Stein-Erik Lauritzen; Antonio Delgado; Fernando Rull; Jess Martnez-Fras

2013-01-01T23:59:59.000Z

369

ROW BY ROW METHODS FOR SEMIDEFINITE PROGRAMMING ...  

E-Print Network [OSTI]

Apr 28, 2009 ... form a positive definite mm matrix M, where m is the number of constraints in ..... partition the vertices of a graph into two sets so that the sum of the ...... were written in C Language MEX-files in MATLAB (Release 7.3.0), and...

2009-04-28T23:59:59.000Z

370

, 20130345, published 23 June 20143692014Phil. Trans. R. Soc. B Sebastien Renaut, Heather C. Rowe, Mark C. Ungerer and Loren H. Rieseberg  

E-Print Network [OSTI]

, Mark C. Ungerer and Loren H. Rieseberg retrotransposons in hybrid sunflowers transcriptional activity of long terminal repeat Genomics of homoploid hybrid speciation: diversity and Supplementary data ml http.royalsocietypublishing.org Research Cite this article: Renaut S, Rowe HC, Ungerer MC, Rieseberg LH. 2014 Genomics of homoploid hybrid

Rieseberg, Loren

371

Abstract: Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header  

Broader source: Energy.gov [DOE]

This abstract highlights a project that will develop a single pass cut and chip harvesting system for short rotation woody crops that will improve the harvesting and logistic costs of processing woody crops.

372

Using Legumes to Enhance Sustainability of Sorghum Cropping Systems in the East Texas Pineywoods Ecoregion: Impacts on Soil Nitrogen, Soil Carbon, and Crop Yields  

E-Print Network [OSTI]

bicolor (L.) Moench], high-biomass sorghum [Sorghum bicolor (L.) Moench], and annual forage cropping systems. These studies quantified legume soil moisture usage and C and N contributions to the soil and subsequent crop yields in East Texas. Primary...

Neely, Clark B

2013-05-03T23:59:59.000Z

373

Exploration of regional and global costsupply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios  

Science Journals Connector (OSTI)

We explored the production cost of energy crops at abandoned agricultural land and at rest land at a regional and a global level to the year 2050 using four different land-use scenarios. The estimations were based on grid cell data on the productivity of short-rotation crops on the available land over time and assumptions regarding the capital and the labour input required to reach these productivity levels. It was concluded that large amounts of grown biomass at abandoned agricultural land and rest land, 130270EJyr?1 (about 4070% of the present energy consumption) may be produced at costs below $2GJ?1 by 2050 (present lower limit of cost of coal). Interesting regions because of their low production cost and significant potentials are the Former USSR, Oceania, Eastern and Western Africa and East Asia. Such low costs presume significant land productivity improvements over time and cost reductions due to learning and capital-labour substitution. An assessment of biomass fuel cost, using the primary biomass energy costs, showed that the future costs of biomass liquid fuels may be in the same order of the present diesel production costs, although this may change in the long term. Biomass-derived electricity costs are at present slightly higher than electricity baseload costs and may directly compete with estimated future production costs of fossil fuel electricity with CO2 sequestration. The present world electricity consumption of around 20PWhyr?1 may be generated in 2050 at costs below $45MWh?1 in A1 and B1 and below $55MWh?1 in A2 and B2. At costs of $60MWh?1, about 18 (A2) to 53 (A1)PWhyr?1 can be produced.

Monique Hoogwijk; Andr Faaij; Bert de Vries; Wim Turkenburg

2009-01-01T23:59:59.000Z

374

Interactive Crop Management in the Community Earth System Model (CESM1): Seasonal Influences on LandAtmosphere Fluxes  

Science Journals Connector (OSTI)

The Community Earth System Model, version 1 (CESM1) is evaluated with two coupled atmosphereland simulations. The CTRL (control) simulation represents crops as unmanaged grasses, while CROP represents a crop managed simulation that includes ...

Samuel Levis; Gordon B. Bonan; Erik Kluzek; Peter E. Thornton; Andrew Jones; William J. Sacks; Christopher J. Kucharik

2012-07-01T23:59:59.000Z

375

Toward cropping systems that enhance productivity and sustainability  

Science Journals Connector (OSTI)

...today's global commodity markets, farm businesses have had...related crops, such as different market classes of wheat and barley. The efficiencies...little as one-fourth as much diesel fuel (?5 liters/tonne...four times the amount of diesel must be visualized in terms...

R. James Cook

2006-01-01T23:59:59.000Z

376

LIBERTY TOLERANT COTTON: WEED CONTROL AND CROP TOLERANCE Brent Burns  

E-Print Network [OSTI]

LIBERTY TOLERANT COTTON: WEED CONTROL AND CROP TOLERANCE Brent Burns Texas Tech University Lubbock Acres planted with herbicide-tolerant cotton varieties have steadily increased since their introduction in 1995. Recently, the bar gene was introduced into Coker 312 cotton plants for tolerance to Liberty

Mukhtar, Saqib

377

Crop Production Variability and U.S. Ethanol Mandates  

E-Print Network [OSTI]

projection model Iowa State University and the University of Missouri FASOM Forest and Agricultural Sector Optimization Model GAMS General Algebraic Modeling System GDP Gross Domestic Product GHG Greenhouse Gas NASS National Agricultural Statistics... Figure 11. 2015 U.S. corn price given 2012 drought sensitivity to marginal decreases in crop ethanol mandates ............................................................... 65 Figure 12. An empirical distribution of yearly corn production...

Jones, Jason P.

2014-07-08T23:59:59.000Z

378

The 2008 Farm Bill What's In It For Specialty Crops  

E-Print Network [OSTI]

million per year for grants in FY 2008-12. Priority areas: ­ Plant health and production and plant and Education ­ Transport of biofuels ­ Export of agricultural products · Beginning Farmer and Rancher. · Agricultural Competitiveness ­ Improving crop and animal agriculture; enhancing farm productivity and income

379

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network [OSTI]

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

380

Production Methods and New Markets for Texas Florist Crops.  

E-Print Network [OSTI]

OF PRODUCTION: 6 weeks at 56 = 306. 30d + 4 = 7.54 per market-pak. Add cost of seedlings and market-pak.. MARKET ACCEPTANCE: Excellent. NAME OF CROP: Heliotrope (Heliotropium arbores- cens). PRODUCTION AND MARKETING PERIOD: Spring months. METHOD...

Sorensen, H. B.; DeWerth, A.F.; Jensen, E. R.

1958-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Cover Cropping -Concepts and Application Friday, March 16, 2012  

E-Print Network [OSTI]

Conservation Association 689 River Road, Charlestown, NH Please join us for a free farmer-to-farmer educational. This workshop will feature Dr. Eric Sideman from the Maine Organic Farmers & Gardeners' Association (MOFGA) presenting on the principles of effective crop rotations. This will be followed by two local farmers, Pooh

New Hampshire, University of

382

Miscanthus: A Promising Biomass Crop EMILY A. HEATON,*,1  

E-Print Network [OSTI]

University, Ames, IA, USA { Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA { Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana

David, Mark B.

383

MODELING PHOTOSYNTHESIS OF HETEROGENEOUS ROSE CROP CANOPIES IN THE GREENHOUSE  

E-Print Network [OSTI]

MODELING PHOTOSYNTHESIS OF HETEROGENEOUS ROSE CROP CANOPIES IN THE GREENHOUSE Soo-Hyung Kim and J. Heinrich Lieth Department of Environmental Horticulture University of California Davis, CA 95616-8587, USA training system ("bent canopy") is widely used in greenhouse rose production. The bent canopy consists

Lieth, J. Heinrich

384

Control Strategies for Late Blight in the Alaska Potato Crop  

E-Print Network [OSTI]

Control Strategies for Late Blight in the Alaska Potato Crop PMC-00339 Late blight is a devastating disease of both tomatoes and potatoes that is occasionally found in Alaska. There is no "cure" for the disease and there are very few re- sistant varieties of potatoes, so disease management strategies

Wagner, Diane

385

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format  

Broader source: Energy.gov [DOE]

This abstract from AGCO presents the project objectives for the integration of advanced logistical systems and focused bioenergy harvesting technologies that supply crop residues and energy crops in a large bale format.

386

Research and adoption of biotechnology strategies could improve California fruit and nut crops  

E-Print Network [OSTI]

of Production for Selected Fruit and Tree Nuts, by State,production of top 10 woody fruit and nut crops, 2010. Cropsfor top 10 California woody fruit and nut crops, 2010 Grape*

Haroldsen, Victor M; Paulino, Gabriel; Chi-ham, Cecilia; Bennett, Alan B

2012-01-01T23:59:59.000Z

387

Demonstration Systems of Cooking Gas Produced by Crop Straw Gasifier for Villages  

Science Journals Connector (OSTI)

Several demonstration systems were designed, built, tested and put into use in order to develop a new way of producing cooking gas from crop straw for villages by biomass gasification technology. A type of crop s...

L. Sun; Z. Z. Gu; D. Y. Guo; M. Xu

1997-01-01T23:59:59.000Z

388

CROP SCIENCE, VOL. 51, JANUARYFEBRUARY 2011 323 Turfgrass quality is evaluated by integrating factors of can-  

E-Print Network [OSTI]

area index; NDVI, normalized difference vegetation index. Published in Crop Sci. 51:323­332 (2011). doiCROP SCIENCE, VOL. 51, JANUARY­FEBRUARY 2011 323 RESEARCH Turfgrass quality is evaluated

389

A Chimney of Low Height to Diameter Ratio for Solar Crops Dryer  

Science Journals Connector (OSTI)

Sabah, Malaysia is rich with solar energy where the daily mean daylight is ... sunlight can be used effectively in a suitable solar crops drying system. Solar crops dryer with mechanical system is an ... Mechanic...

S. Kumaresan; M. M. Rahman; C. M. Chu

2013-01-01T23:59:59.000Z

390

Introduction The bioenergy industry is pursuing low-input crops to be  

E-Print Network [OSTI]

1 Introduction The bioenergy industry is pursuing low-input crops to be grown on marginal lands the unintentional introduction and spread of potentially invasive species. Background Information The bioenergy- generation bioenergy crops are grown specifically for biomass pro- duction. Therefore, bioenergy crops

Liskiewicz, Maciej

391

SUMMARY OF CHANGES FOR THE CENTRAL AND SOUTHERN POTATO CROP PROVISIONS (09-0284)  

E-Print Network [OSTI]

SUMMARY OF CHANGES FOR THE CENTRAL AND SOUTHERN POTATO CROP PROVISIONS (09-0284) The following, New Mexico, it has been included in the Northern Potato Crop Provisions. Language has been added to allow the inclusion of other states or counties to the Central and Southern Potato Crop Provisions

Goodman, Robert M.

392

RESEARCH ARTICLE Increase in crop damage caused by wild boar (Sus scrofa L.)  

E-Print Network [OSTI]

RESEARCH ARTICLE Increase in crop damage caused by wild boar (Sus scrofa L.): the "refuge effect /Published online: 14 October 2011 Abstract The occurrence of crop damage by wild boars raised dramatically, including hunting, can play a relevant role in causing crop damage. We studied a Mediterranean area

Boyer, Edmond

393

Age-Dependent Demographic Rates of the Bioenergy Crop Miscanthus 3 giganteus  

E-Print Network [OSTI]

grass Miscanthus 3 giganteus is currently being planted as a bioenergy crop in the north central region renewable energy production (Genovesi 2011; Raghu et al. 2006). Biofuels, produced from crops, are a sourceAge-Dependent Demographic Rates of the Bioenergy Crop Miscanthus 3 giganteus in Illinois David P

Sims, Gerald K.

394

Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock  

SciTech Connect (OSTI)

Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] canola [Brassica napus]; corn [Zea mays L.] soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

Gregg, Jay S.; Izaurralde, Roberto C.

2010-08-26T23:59:59.000Z

395

The energy production rate density of cosmic rays in the local universe is $\\sim10^{44-45}\\rm erg~Mpc^{-3}~yr^{-1}$ at all particle energies  

E-Print Network [OSTI]

The energy output (per logarithmic interval of particle energies) of Cosmic Rays (CRs) with energies $10{\\rm GeV}\\lesssim\\varepsilon_p\\lesssim100{\\rm GeV}$ is $\\sim 10^{47}\\rm erg$ per solar mass of star$-$formation, based on the CR production rate in the Milky Way and in starburst galaxies, implying a generation rate of $\\varepsilon_p^2Q\\sim 10^{45}\\rm erg~Mpc^{-3}~yr^{-1}$ in the local universe. It is only $\\sim 10$ times larger than the output, $\\varepsilon_p^2 Q=0.5\\pm0.2\\times 10^{44}\\rm erg~Mpc^{-3}~yr^{-1}$, of Ultra High Energy CRs (UHECRs) at energies $10^{10.5}{\\rm GeV}<\\varepsilon_p<10^{12}\\rm GeV$ (obtained assuming they are mostly protons), which in turn is comparable to the lower limit of $\\varepsilon_p^2 Q\\ge 0.5\\times 10^{44}\\rm erg~Mpc^{-3}~yr^{-1}$ of high energy CRs with $10^6{\\rm GeV}\\lesssim\\varepsilon_p\\lesssim 10^{8}\\rm GeV$ implied by the saturation of the Waxman-Bahcall bound by the neutrino excess recently discovered by IceCube. These similarities are consistent with a flat pro...

Katz, Boaz; Thompson, Todd; Loeb, Abraham

2013-01-01T23:59:59.000Z

396

Investigation of management strategies for the production of sweet sorghum as a bioenergy crop and preservation of crop residue by the ensiling process.  

E-Print Network [OSTI]

??The objective of this project was to investigate management practices for sweet sorghum as a bioenergy crop in Iowa and its storability as an ensiled (more)

Cogdill, Todd Joseph

2008-01-01T23:59:59.000Z

397

Evaluation of switchgrass as a sustainable bioenergy crop in Texas  

SciTech Connect (OSTI)

Switchgrass (Panicum virgatum L.) has been selected as a model herbaceous biomass feedstock by the U.S. Department of Energy. Texas A&M University/The Texas Agricultural Experiment Station was selected as one of three Regional Switchgrass Cultivar and Management Testing Centers in 1992 by Oak Ridge National Laboratory. Research in Texas encompasses (1) evaluating switchgrass germplasm at six locations, (2) determining defoliation, fertility, and row spacing response of switchgrass, (3) selecting for differential crown node evaluation and reduced seed dormancy in Alamo switchgrass, (4) basic studies on switchgrass morphology, and (5) response of switchgrass to land application of municipal and agricultural wastes. Research locations span a north-south range of 725 km. We report on results from Objective 1 in this paper. Alamo switchgrass has been one of the best performing cultivars at all locations with yields ranging from 8 to 20 Mg of dry biomass ha{sup -1}. Increased production of Alamo in response to N fertilizer was quadratic at Stephenville and linear at Beeville to the highest N rate used of 200 kg ha{sup -1}. There was a small response to 20 kg ha{sup -1} of P{sub 2}O{sub 5} in 1992 at Stephenville, but no response in later years or at Beeville. Row spacing has not had a consistent effect on switchgrass yield. Harvest frequency studies have shown that total seasonal yields are decreased as harvest frequency increases. We have made progress in selecting populations for enhanced and reduced crown node (subcoleoptile internode) elevation and in reduced post harvest seed dormancy.

Sanderson, M.A. [Texas A& M Univ. Agricultural Research and Extension Center, Stephenville, TX (United States); Hussey, M.A. [Texas A& M Univ. Agricultural Research and Extension Center, College Station, TX (United States); Ocumpaugh, W.R. [Texas A& M Univ. Agricultural Research and Extension Center, Beeville, TN (United States)

1995-11-01T23:59:59.000Z

398

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

Establishment","Onsite","per Establishment" "Code(a)","Subsector and Industry","(million sq ft)","(counts)","(sq ft)","(counts)","(counts)" ,,"Total United...

399

Rowing: A Similarity Analysis  

Science Journals Connector (OSTI)

...diseases. More recently, lysozyme and immunoglobulin G have been found in cerumen and were highly associated with the dry-type cerumen (7). Since these immunological factors are also found in the secretions of the breast and axillary apocrine...

Thomas A. McMahon

1971-07-23T23:59:59.000Z

400

Top Crop Wind Farm (Phase II) | Open Energy Information  

Open Energy Info (EERE)

(Phase II) (Phase II) Jump to: navigation, search Name Top Crop Wind Farm (Phase II) Facility Top Crop Wind Farm (Phase II) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Location Grundy County IL Coordinates 41.202313°, -88.530078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.202313,"lon":-88.530078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Biomethane production from different crop systems of cereals in Northern Italy  

Science Journals Connector (OSTI)

Abstract Global warming is linked to the reduction of green house gas emissions (GHG). The anaerobic digestion of animal manure and energy crops is a promising way of reducing GHG emissions. The increasing number of biogas plants involves a high consumption of energy crops and the needed of big agricultural area. In Italy, cereals silages are the main feedstock for biogas production and are commonly grown under two different crop systems: single crop (only maize) and double crops (maize later winter cereals). In this paper we present the results of experimental field tests carried out by monitoring the anaerobic biomethane potential (BMP) of different cereals silages commonly grown in the Padanian Plan. A laboratory device has been developed to measure the specific biomethane production of the different cereal silages. The different energy crops have been evaluated, in single and double crop systems, expressing the biomethane production per hectare. The maize hybrids show higher specific biomethane potentials respect to winter cereals. Maize FAO class 700 achieves the highest production per hectare as a single crop. Nevertheless, the highest biomethane productions per hectare are reached with double crop system in particular when maize FAO class 500 follows triticale (+12% respect the best single crop system).

Marco Negri; Jacopo Bacenetti; Massimo Brambilla; Andrea Manfredini; Andrea Cantore; Stefano Bocchi

2014-01-01T23:59:59.000Z

402

An overview of biofuels from energy crops: Current status and future prospects  

Science Journals Connector (OSTI)

Abstract Energy crops constitute significant potential for meeting the future energy need worldwide. In addition, agricultural lands offer an alternative to the agriculture which is referred to as energy farming. The studies on energy crops in biofuel production show that they are quite an economical and environmentally beneficial way of sustainable energy production. Today most of the developed countries use staples such as corn, sugar beet, soybean, rapeseed, and wheat in order to obtain energy. Moreover, bioethanol is mostly produced from sugarcane and corn and biodiesel from oilseed plants. Therefore, these produced raw materials compete with food and feed production. Consequently, the use of those energy crops which are used as food products for biofuel production is an important issue which must be considered in terms of the current food safety. Some energy crops, such as miscanthus, switchgrass and sweet sorghum, that are called C4 crops, can grow with high biomass yield even in infertile land. Thus, these crops are used in energy farming a new type of agriculture. Furthermore, C4-type crops possess the features of resistance to aridity, high photosynthetic yield and a high rate of CO2 capture when compared with C3 crops. In conclusion, C4 crops tend to produce more biomass than C3 crops. Therefore, these crops are investigated, focused on, and elaborated on in this paper. This study aims to present a comprehensive review on the production of biofuels from lignocellulosic agricultural products and promising energy crops. Thus, the energy crops to be used as raw materials for biofuels today and in the future are investigated. In addition, it is intended to highlight the energy crops used as staples by discussing them in detail for biofuel production. The energy crops which are promising in biofuel production, particularly non-staple miscanthus and sorghum, are presented in detail as they are non-food crops and have a high yield. Furthermore, the energy crops used as raw materials for bioenergy today and their potential are compared both worldwide and in Turkey.

Gnnur Koar; Nilgn Civa?

2013-01-01T23:59:59.000Z

403

Transgenic crops get a test in the wild  

SciTech Connect (OSTI)

A novel British research program called PROSAMO - Planned Release of Selected and Modified Organisms - has just produced its first batch of results on the ecological behavior of a genetically manipulated variety of oil seed rape (known to Americans as canola). As expected, the preliminary data indicate that these plants do not outgrow their competitors in the wild, nor is there any evidence that they pass on their foreign genes to other species. PROSAMO is moving on to test other crops with other foreign genes. If these results are as reassuring, scientists around the world will have solid evidence with which to soothe fears.

Cherfas, J.

1991-02-22T23:59:59.000Z

404

Economic analysis of wind-powered crop drying. Final report  

SciTech Connect (OSTI)

Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in crop drying. Drying of corn, soybeans, rice, peanuts, tobacco, and dehydrated alfalfa were addressed.

Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

1980-03-01T23:59:59.000Z

405

Modeling the effects of spatial agronomic inputs on crop yield  

E-Print Network [OSTI]

of fertilizers, if calculated on a, spatial This thesis follows the style I' or 7'rnnsactions of the ASAE. basis, could be used to minimize low yield zones, optimize crop response, and provide a degree of environmental protection (Buchholz and Wollenhaupt... (Shearer and Ilohnes, 1990). 22 Maximal Correlation Coegci ent is calculated according to fr4 = (Second largest eigenvalue of Q) (15) where ~ p(i, k)p(i, )) p*( )ps(k) The mean and range of the measures compose the 28 textural features. Although...

McCauley, James Darrell

2012-06-07T23:59:59.000Z

406

Ocean Sequestration of Crop Residue Carbon: Recycling Fossil Fuel Carbon Back to Deep Sediments  

Science Journals Connector (OSTI)

burial of crop residues in the deep ocean (hereafter, CROPS: Crop Residue Oceanic Permanent Sequestration). ... As long as fuels exist with higher energy yield-to-carbon content (E/C) ratios than biomass, it will always be more energy efficient and less carbon polluting to sequester the biomass in the deep oceans, and use those fuels with higher E/C ratios for power generation, rather than to burn biomass for power generation. ...

Stuart E. Strand; Gregory Benford

2009-01-12T23:59:59.000Z

407

Sustainable Food & Bioenergy Systems Program-Sustainable Crop Production Option 2014-2015 Catalog  

E-Print Network [OSTI]

Sustainable Food & Bioenergy Systems Program- Sustainable Crop Production Option 2014-2015 Catalog SFBS 146 Intro to Sustainable Food & Bioenergy Systems ................................ S

Dyer, Bill

408

E-Print Network 3.0 - aestivum cropping system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sites Distances between sites 0881 0882 crop 0880 area "ha system... with reduced chemical inputs "integrated farming system where winter oilseed rape "Brassica napus...

409

Biomass crops can be used for biological disinfestation and remediation of soils and water  

E-Print Network [OSTI]

liquid biofuels from biomass: The writings on the walls. Newreduced feed intake. Biomass crop sustainability flexibilityMC, et al. 2009. Cali- fornia biomass resources, potentials,

Stapleton, James J; Banuelos, Gary

2009-01-01T23:59:59.000Z

410

Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels  

E-Print Network [OSTI]

need to know ? Biomass and Bioenergy 14: 307315. 3. Hincheewoody crops for bioenergy and biofuels applications. Incoppices in Germany. GCB Bioenergy 5. Sims RE, Venturi P (

Hart, Quinn James

2014-01-01T23:59:59.000Z

411

Monitoring Droughts and Impacts on Crop Yield in Ukraine from Weather and Satellite Data  

Science Journals Connector (OSTI)

The Ukrainian Hydrometcenter monitors agrometeorological conditions in Ukraine, regularly observing the state of microclimate, soil moisture, crops, and pastures in a timely and objective manor. The information i...

Tatyana Adamenko; Anatoly Prokopenko

2011-01-01T23:59:59.000Z

412

Switchgrass is a promising, high-yielding crop for California biofuel  

E-Print Network [OSTI]

al. 2008. Net energy of cellulosic ethanol from switchgrass.cellulosic ethanol has higher productivity and net energyenergy crops (biofuels). gasoline contains about 6% ethanol

2011-01-01T23:59:59.000Z

413

Switchgrass as a High-Potential Energy Crop | Department of Energy  

Energy Savers [EERE]

Draft Programmatic Environmental Impact Statement Biomass Program Peer Review Sustainability Platform Potential Yield Mapping of Dedicated Energy Crops Bioenergy Home About...

414

Microbial Diversity-Based Novel Crop Protection Products  

SciTech Connect (OSTI)

Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine, in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.

Pioneer Hi-Bred International Inc.; DuPont Experimental Station; Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser; Herrmann, Rafael; Presnail, James; Torok, Tamas; Yalpani, Nasser

2007-05-10T23:59:59.000Z

415

Genomics and molecular breeding in lesser explored pulse crops: Current trends and future opportunities  

Science Journals Connector (OSTI)

Abstract Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields.

Abhishek Bohra; Uday Chand Jha; P.B. Kavi Kishor; Shailesh Pandey; Narendra P. Singh

2014-01-01T23:59:59.000Z

416

Weekly Weather and Crop Bulletin | Open Energy Information  

Open Energy Info (EERE)

Weekly Weather and Crop Bulletin Weekly Weather and Crop Bulletin Jump to: navigation, search Tool Summary Name: Weekly Weather and Crop Bulletin Agency/Company /Organization: United States Department of Agriculture, National Oceanic and Atmospheric Administration (NOAA) Sector: Land Focus Area: Agriculture Topics: GHG inventory, Resource assessment Resource Type: Maps Website: usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1393 UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Latin America and Caribbean" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Western Asia & North Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., Northern America, "South Asia" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

417

Evaluating Trees as Energy Crops in Napa Dean R. Donaldson and Richard B. Standiford2  

E-Print Network [OSTI]

of the interest in growing trees as an energy crop in Napa County has come from individuals owning small farms in California, June 14-16, 1983, Sacramento, California. 2 Farm Advisor (Napa County) and ForestryEvaluating Trees as Energy Crops in Napa County1 Dean R. Donaldson and Richard B. Standiford2

Standiford, Richard B.

418

Bioenergy crop greenhouse gas mitigation potential under a range of management practices  

E-Print Network [OSTI]

Bioenergy crop greenhouse gas mitigation potential under a range of management practices T A R A W been proposed as viable bioenergy crops because of their potential to yield harvest- able biomass-senescence harvests are a more effective means than maximizing yield potential. Keywords: bioenergy, feedstocks, GHG

DeLucia, Evan H.

419

Specialty Crop Profile: Anthony Bratsch, Extension Specialist, Vegetables and Small Fruit  

E-Print Network [OSTI]

Specialty Crop Profile: Pawpaw Anthony Bratsch, Extension Specialist, Vegetables and Small Fruit Introduction Pawpaw (Asimina spp.) is a native fruit crop that is in the beginning phases of domestication.S. The pawpaw is the largest edible tree fruit native to the United States. It is the only temperate member

Liskiewicz, Maciej

420

Influence of biofuel crops on mosquito production and oviposition site selection  

E-Print Network [OSTI]

Influence of biofuel crops on mosquito production and oviposition site selection E P H A N T U S J of biofuels production may cause unintended land-use changes and potentially alter ecosystem services and Miscanthus) biofuel crops on production and oviposition site selection by two vector mosquitoes, the yellow

Allan, Brian

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Influence of habitat and landscape perenniality on insect natural enemies in three candidate biofuel crops  

E-Print Network [OSTI]

biofuel crops Ben P. Werling a, , Timothy D. Meehan b , Claudio Gratton b , Douglas A. Landis April 2011 Accepted 22 June 2011 Available online 28 June 2011 Keywords: Biofuels Biodiversity Biological control Land use change a b s t r a c t Cultivation of biofuel crops could change agricultural

Landis, Doug

422

The Effect of Cropping Upon the Active Potash of the Soil.  

E-Print Network [OSTI]

-efficient of correlation (r) between the potash removed by the crops and the active potash lost from the soil, calculated from Table 3, is ,722 -L .016. This is a high correlation and shows a high relation between the pat- ash removed by crops and the 'active potash...

Fraps, G. S. (George Stronach)

1924-01-01T23:59:59.000Z

423

Tea Oil Camellia: a New Edible Oil Crop for the United States John M. Ruter  

E-Print Network [OSTI]

1 Tea Oil Camellia: a New Edible Oil Crop for the United States© John M. Ruter The University@uga.edu INTRODUCTION Camellia oleifera has been cultivated in China as a source of edible oil. oleifera as a commercial oil seed crop for the southeast (Ruter, 2002). Considerable research is being

Radcliffe, David

424

Assessment of the broadleaf crops leaf area index product from the Terra MODIS instrument  

E-Print Network [OSTI]

the cultivated area (52%). The major con- centrations of this biome class are in Asia (39%), North America (22Assessment of the broadleaf crops leaf area index product from the Terra MODIS instrument Bin Tan a) and fraction vegetation absorbed photosynthetically active radiation (FPAR) products for broadleaf crops

Myneni, Ranga B.

425

Miscanthus: a fastgrowing crop for biofuels and chemicals production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Correspondence to: Nicolas Brosse, Laboratoire d'Etude et de Recherche sur le MAteriau Bois, Faculté des Sciences et Techniques, Université de Lorraine, Bld des Aiguillettes, F-54500 Vandoeuvre-lès-Nancy, France. E-mail: Nicolas.Brosse@lermab.uhp-nancy.fr © 2012 Society of Chemical Industry and John Wiley & Sons, Ltd 1 Miscanthus: a fast- growing crop for biofuels and chemicals production Nicolas Brosse, Université de Lorraine, Vandoeuvre-lès-Nancy, France Anthony Dufour, CNRS, Université de Lorraine, Nancy, France Xianzhi Meng, Qining Sun, and Arthur Ragauskas, Georgia Institute of Technology, Atlanta, GA, USA Received February 9, 2012; revised April 17, 2012; accepted April 18, 2012 View online at Wiley Online Library (wileyonlinelibrary.com); DOI: 10.1002/bbb.1353;

426

Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irrigating with Treated Oil and Gas Product Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT Prepared By Terry Brown, Jeffrey Morris, Patrick Richards and Joel Mason Western Research Institute October 1, 2008 to September 1, 2010 DOE Award Number: DE-NT0005681 Report Issued December, 2010 Western Research Institute 365 N 9 th Street Laramie WY 82072 ii DOE DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

427

Microsoft Word - S07963_MND 5yr  

Office of Legacy Management (LM)

Community Notification and Involvement Community Notification and Involvement This page intentionally left blank U.S. Department of Energy Mound, Ohio, Third Five-Year Review September 2011 Doc. No. S07963 Page C-1 Mound, Ohio, Third Five-Year Review U.S. Department of Energy Doc. No. S07963 September 2011 Page C-2 U.S. Department of Energy Mound, Ohio, Third Five-Year Review September 2011 Doc. No. S07963 Page C-3 Mound, Ohio, Third Five-Year Review U.S. Department of Energy Doc. No. S07963 September 2011 Page C-4 U.S. Department of Energy Mound, Ohio, Third Five-Year Review September 2011 Doc. No. S07963 Page C-5 Mound, Ohio, Third Five-Year Review U.S. Department of Energy Doc. No. S07963 September 2011 Page C-6 U.S. Department of Energy Mound, Ohio, Third Five-Year Review

428

Microsoft Word - S07963_MND 5yr  

Office of Legacy Management (LM)

Site Inspection Checklist Site Inspection Checklist This page intentionally left blank Institutional Controls U.S. Department of Energy Mound, Ohio, Third Five-Year Review September 2011 Doc. No. S07963 Page B-1 Site Inspection Checklist I. SITE INFORMATION Site name: Mound Plant Site Date of inspection: April 12, 2011 Location and Region: Miamisburg, OH (Region 5) EPA ID: OH6890008984 Agency, office, or company leading the Five-Year Review: US Department of Energy Weather/temperature: Partly Cloudy - 50's Remedy Includes: (Check all that apply) □ Landfill cover/containment □ Monitored natural attenuation □ Access controls □ Groundwater containment X Institutional controls □ Vertical barrier walls □ Groundwater pump and treatment □ Surface water collection and treatment

429

Microsoft Word - S07963_MND 5yr  

Office of Legacy Management (LM)

Third Five-Year Review for the Third Five-Year Review for the Mound, Ohio, Site Miamisburg, Ohio September 2011 LMS/MND/S07963 This page intentionally left blank This page intentionally left blank U.S. Department of Energy Mound, Ohio, Third Five-Year Review September 2011 Doc. No. S07963 Page i Contents Abbreviations ................................................................................................................................ vii Executive Summary ....................................................................................................................... ix Five-Year Review Summary Form ................................................................................................ xi 1.0 Introduction ............................................................................................................................1

430

Microsoft Word - S07963_MND 5yr  

Office of Legacy Management (LM)

Site Inspection Photographs Site Inspection Photographs This page intentionally left blank U.S. Department of Energy Mound, Ohio, Third Five-Year Review September 2011 Doc. No. S07963 Page A-i Contents 1.0 Parcel 6, 7, and 8 Remedy Wells and Seeps ..................................................................... A-1 2.0 OU-1 (Parcel 9) Wells ....................................................................................................... A-6 3.0 OU-1 Photographs ........................................................................................................... A-11 4.0 Phase I Remedy Wells and Seeps ................................................................................... A-13 5.0 Other Site Inspection Photos-T Building Inspection .................................................... A-18

431

A comparison of GHG emissions from UK field crop production under selected arable systems with reference to disease control  

Science Journals Connector (OSTI)

Crop disease not only threatens global food security by reducing crop production at a time of growing demand, but also contributes to greenhouse gas (GHG) emissions by reducing efficiency of N fertiliser ... oper...

Robert R. Carlton; Jon S. West; Pete Smith

2012-05-01T23:59:59.000Z

432

Impact of Interspecific Hybridization between Crops and Weedy Relatives on the Evolution of Flowering Time in Weedy Phenotypes  

E-Print Network [OSTI]

A. Means Transgenic type Overall Crop F1 Backcross Expectedas seed parents for the F1 and backcross types. B. napusTransgenic type Overall Crop F1 Backcross Total number of

Vacher, Corinne; Kossler, Tanya M.; Hochberg, Michael E.; Weis, Arthur E.

2011-01-01T23:59:59.000Z

433

Biodiesel is produced from a wide variety of oilseed crops. In Europe, canola is the major biodiesel crop while in the U.S. soybeans dominates. Montana State University and USDA researchers have  

E-Print Network [OSTI]

Technology Biodiesel is produced from a wide variety of oilseed crops. In Europe, canola is the major biodiesel crop while in the U.S. soybeans dominates. Montana State University and USDA researchers to work for a broad range of oilseed plants including biodiesel and cereal crops. Increased oil

Maxwell, Bruce D.

434

Photo Credit: Mike Kuhman Sign-up for the USDA Crop Disaster Program anticipated in March 2005  

E-Print Network [OSTI]

, a problem with sign- up dates for the Noninsured Crop Disaster Assistance Program was addressed. The USDA by damaging weather. The Crop Disaster Program, or CDP, is fully funded under this legislation the Noninsured Crop Disaster Assistance Program, or NAP. However, these assistance programs are different

Florida, University of

435

Each cotton season presents it own unique challenges. Crop management decisions are largely based on current conditions  

E-Print Network [OSTI]

Each cotton season presents it own unique challenges. Crop management decisions are largely based of the early growth and development of a cotton crop can provide an objective gauge to evaluate this crop's progress, regardless of the season's challenges. Compared to most plants, cotton's early season growth

Mukhtar, Saqib

436

CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation  

E-Print Network [OSTI]

CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA, wGreat Lakes Bioenergy Research Center be invoked in the first year by conversion of grasslands to biofuel crops. Keywords: bioenergy crops, carbon

Chen, Jiquan

437

Potential of crop residue in India as a source of energy  

Science Journals Connector (OSTI)

Here is given an estimate of crop residue production and different recycling options as a source of renewable energy. India produces 388 Tg crop residues but only 182 Tg equivalent to 2818 PJ is usable. Recycling as manure can replace 15% of 595 PJ national fertiliser energy. Recycling in digester can produce 20.32 billion m³ biogas. It can be converted into 182 Tg of biocoal generating 156??258.3 billion unit (kWh) electricity. It can lead to 16 billion dm³ ethanol productions. Having less environmental consequences, different recycling options can make the crop residue an environmentally sound sustainable energy system.

Apurba Sarkar

2007-01-01T23:59:59.000Z

438

Experimental approaches for evaluating the invasion risk of biofuel crops  

Science Journals Connector (OSTI)

There is growing concern that non-native plants cultivated for bioenergy production might escape and result in harmful invasions in natural areas. Literature-derived assessment tools used to evaluate invasion risk are beneficial for screening, but cannot be used to assess novel cultivars or genotypes. Experimental approaches are needed to help quantify invasion risk but protocols for such tools are lacking. We review current methods for evaluating invasion risk and make recommendations for incremental tests from small-scale experiments to widespread, controlled introductions. First, local experiments should be performed to identify conditions that are favorable for germination, survival, and growth of candidate biofuel crops. Subsequently, experimental introductions in semi-natural areas can be used to assess factors important for establishment and performance such as disturbance, founder population size, and timing of introduction across variable habitats. Finally, to fully characterize invasion risk, experimental introductions should be conducted across the expected geographic range of cultivation over multiple years. Any field-based testing should be accompanied by safeguards and monitoring for early detection of spread. Despite the costs of conducting experimental tests of invasion risk, empirical screening will greatly improve our ability to determine if the benefits of a proposed biofuel species outweigh the projected risks of invasions.

S Luke Flory; Kimberly A Lorentz; Doria R Gordon; Lynn E Sollenberger

2012-01-01T23:59:59.000Z

439

Power Lines and Crops Can Be Good Neighbors  

SciTech Connect (OSTI)

Two of the Pacific Northwests greatest economic assets are its wealth of agriculture and its clean and reliable electricity fueled largely by hydropower. Sometimes the two intersect. Transmission lines carrying electricity to the regions farms, businesses and homes must, of necessity, span large areas where people grow crops and orchards. To ensure a safe and reliable flow of electricity across these expanses, trees and other vegetation must be managed to certain standards. At the same time, the Bonneville Power Administration which owns and operates three-quarters of the regions high-voltage transmission recognizes the importance of our regions agricultural bounty. We are committed to working with individuals and agricultural communities to facilitate ongoing land-use activities in transmission rights-of-way as long as those uses are compatible with transmission safety and reliability standards. Our goal with vegetation management is to keep you and your property safe while protecting the reliability of our regions electricity system. By working together, BPA and landowners can protect the system and public safety.

none,

2010-08-01T23:59:59.000Z

440

Unsound science? Transatlantic regulatory disputes over GM crops  

Science Journals Connector (OSTI)

In the risk debate over genetically modified (GM) crops, Europe's regulatory delays have often been branded as ''political'', i.e. not based on science. Yet the US slogan ''sound science'' tends to conceal value-laden features of safety claims, their weak scientific basis, their normative framing and their socio-political influences. By contrast a ''precautionary approach'' can more readily identify scientific unknowns to be investigated, while acknowledging the agricultural-environmental values which inform risk assessment. These issues underlie transatlantic regulatory disputes over insect-protected Bt maize. In both the USA and Europe, public protest has stimulated risk-assessment research on broader cause-effect pathways, as well as more stringent regulation. For harm to non-target insects, however, new evidence of risk has been disparaged as unsound. It has been criticized on various grounds, which could apply just as well to evidence of safety; thus double standards have served to protect safety claims. And non-target harm is deemed acceptable through unsubstantiated comparisons to agrochemical usage. In these ways, ''sound science'' operates as an ideology, pre-empting debate on the framing of scientific uncertainty. The real choice is not between ''science versus politics'', but rather between ways of linking them.

Les Levidow; Susan Carr

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

THE SOLAR NEIGHBORHOOD. XXVII. DISCOVERY OF NEW PROPER MOTION STARS WITH {mu} {>=} 0.''18 yr{sup -1} IN THE SOUTHERN SKY WITH 16.5 < R{sub 59F} {<=} 18.0  

SciTech Connect (OSTI)

Here we present 1584 new southern proper motion systems with {mu} {>=} 0.''18 yr{sup -1} and 16.5 > R{sub 59F} {>=} 18.0. This search complements the six previous SuperCOSMOS-RECONS (SCR) proper motion searches of the southern sky for stars within the same proper motion range, but with R{sub 59F} {<=} 16.5. As in previous papers, we present distance estimates for these systems and find that three systems are estimated to be within 25 pc, including one, SCR 1546-5534, possibly within the RECONS 10 pc horizon at 6.7 pc, making it the second nearest discovery of the searches. We find 97 white dwarf candidates with distance estimates between 10 and 120 pc, as well as 557 cool subdwarf candidates. The subdwarfs found in this paper make up nearly half of the subdwarf systems reported from our SCR searches and are significantly redder than those discovered thus far. The SCR searches have now found 155 red dwarfs estimated to be within 25 pc, including 10 within 10 pc. In addition, 143 white dwarf candidates and 1155 cool subdwarf candidates have been discovered. The 1584 systems reported here augment the sample of 4724 systems previously discovered in our SCR searches and imply that additional systems fainter than R{sub 59F} = 18.0 are yet to be discovered.

Boyd, Mark R.; Henry, Todd J.; Jao, Wei-Chun [Georgia State University Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Subasavage, John P. [Cerro Tololo Inter-American Observatory, La Serena (Chile); Hambly, Nigel C., E-mail: boyd@chara.gsu.edu, E-mail: thenry@chara.gsu.edu, E-mail: jao@chara.gsu.edu, E-mail: jsubasavage@ctio.noao.edu, E-mail: nch@roe.ac.uk [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, Scotland (United Kingdom)

2011-09-15T23:59:59.000Z

442

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Broader source: Energy.gov (indexed) [DOE]

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

443

Miscanthus: A Review of European Experience with a Novel Energy Crop  

SciTech Connect (OSTI)

Miscanthus is a tall perennial grass which has been evaluated in Europe over the past 5-10 years as a new bioenergy crop. The sustained European interest in miscanthus suggests that this novel energy crop deserves serious investigation as a possible candidate biofuel crop for the US alongside switchgrass. To date, no agronomic trials or trial results for miscanthus are known from the conterminous US, so its performance under US conditions is virtually unknown. Speculating from European data, under typical agricultural practices over large areas, an average of about 8t/ha (3t/acre dry weight) may be expected at harvest time. As with most of the new bioenergy crops, there seems to be a steep ''learning curve.'' Establishment costs appear to be fairly high at present (a wide range is reported from different European countries), although these may be expected to fall as improved management techniques are developed.

Scurlock, J.M.O.

1999-02-01T23:59:59.000Z

444

Crop Residue Removal for Bioenergy Reduces Soil Carbon Pools: How Can We Offset Carbon Losses?  

Science Journals Connector (OSTI)

Crop residue removal for bioenergy can deplete soil organic carbon (SOC) ... been, however, widely discussed. This paper reviews potential practices that can be used to offset the SOC lost with residue removal. Literature

Humberto Blanco-Canqui

2013-03-01T23:59:59.000Z

445

Novel enabling technologies of gene isolation and plant transformation for improved crop protection  

SciTech Connect (OSTI)

Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

Torok, Tamas

2013-02-04T23:59:59.000Z

446

Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index  

Science Journals Connector (OSTI)

Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of ...

Jeffrey A. Andresen; Robert F. Dale; Jerald J. Fletcher; Paul V. Preckel

1989-01-01T23:59:59.000Z

447

Crop water stress under climate change uncertainty : global policy and regional risk  

E-Print Network [OSTI]

Fourty percent of all crops grown in the world today are grown using irrigation, and shifting precipitation patterns due to climate change are viewed as a major threat to food security. This thesis examines, in the framework ...

Gueneau, Arthur

2012-01-01T23:59:59.000Z

448

Climate change effects on winter chill for fruit crops in Germany  

E-Print Network [OSTI]

Dormancy release in deciduous fruit trees. Hortic Rev 7:239effects on winter chill for fruit crops in Germany Abstracteffects of climate change on fruit production in Germany,

Luedeling, Eike; Blanke, Michael; Gebauer, Jens

2009-01-01T23:59:59.000Z

449

Versatility Versus Specialization in Cultivation and Harvesting for Crops and in Livestock Production [and Discussion  

Science Journals Connector (OSTI)

...J. A. Howard Agriculture sets difficult problems for the engineer because, although it is a vast industry in many countries...nevertheless, an important constituent of the improving quality of life. The problems in harvesting such crops are often acutely...

1973-01-01T23:59:59.000Z

450

Bacteriological quality of crops irrigated with wastewater in the Xochimilco plots, Mexico City, Mexico.  

Science Journals Connector (OSTI)

...MICROBIOL. BACTERIOLOGICAL QUALITY OF WASTEWATER-IRRIGATED CROPS...L. 1976. Bacteriological quality assessment offresh marketed...wastewater. U.S. Army Corps of Engineers, CRREL, Hanover, N.H...Administration. 1968. Water Quality Criteria Report of the National...

I Rosas; A Bez; M Coutio

1984-05-01T23:59:59.000Z

451

Evaluation of Salmonella disinfection strategies for pre-slaughter broiler crop decontamination  

E-Print Network [OSTI]

The purpose of the following studies was to evaluate selected potential decontamination methods for ability to reduce the incidence of Salmonella recovery from broiler crops during pre-slaughter feed withdrawal. The efficacy of prolonged lactose...

Barnhart, Eric Thomas

2012-06-07T23:59:59.000Z

452

Effects of Oilseed Meals on the Germination, Growth, and Survival of Crop and Weed Species  

E-Print Network [OSTI]

Oilseed crops are being widely evaluated for potential biodiesel production. Seed meal (SM) remaining after extracting oil may have use as a bioherbicide or organic fertilizer. Brassicaceae SM often contains glucosinolates that can hydrolyze...

Rothlisberger, Katie Lynn

2012-02-14T23:59:59.000Z

453

Fuzzy PROMETHEE for the Environmental Quality Assessment of Energy Dedicated Crops  

Science Journals Connector (OSTI)

Energy crops are positioned as the most promising renewable energy sources. They are specifically targeted at the production of biofuels (solid, liquid and gaseous) and for the development of vegetal products ...

Fausto Cavallaro; Luigi Ciraolo

2012-01-01T23:59:59.000Z

454

Assessing Carbon and Nitrogen Partition in Kharif Crops for Their Carbon Sequestration Potential  

Science Journals Connector (OSTI)

A pot culture experiment was conducted to identify carbon sequestration potential among the crops such as maize, ... millet, finger millet and rice through estimating carbon (C) and nitrogen (N) partition ... C:N...

S. K. Kushwah; M. L. Dotaniya; A. K. Upadhyay

2014-06-01T23:59:59.000Z

455

Long-term tillage, cropping sequence, and nitrogen fertilization effects on soil carbon and nitrogen dynamics  

E-Print Network [OSTI]

Management practices that may increase soil organic matter (SOM) storage include conservation tillage, especially no till (NT), enhanced cropping intensity, and fertilization. My objectives were to evaluate management effects on labile [soil...

Dou, Fugen

2006-08-16T23:59:59.000Z

456

South Carolina Pest Management Handbook for Field Crops -2013 TOBACCO HARVEST MANAGEMENT  

E-Print Network [OSTI]

South Carolina Pest Management Handbook for Field Crops - 2013 265 TOBACCO HARVEST MANAGEMENT ahead to determine if chemical will cause yellowing. Mix in 40-60 gal water/A and apply at 40-60 psi

Stuart, Steven J.

457

Climate change effects on winter chill for fruit crops in Germany  

E-Print Network [OSTI]

chill for fruit crops in Germany Abstract To quantify thechange on fruit production in Germany, this study aimed atof typical winter chill in Germany around 2010, as well as

Luedeling, Eike; Blanke, Michael; Gebauer, Jens

2009-01-01T23:59:59.000Z

458

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Broader source: Energy.gov (indexed) [DOE]

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

459

Crop insurance as a form of disaster relief: an analysis of the alternatives  

E-Print Network [OSTI]

farmers with an adequate risk management tool despite major' reforms in 1980. Since the program has not accomplished its objectives, Congress has enacted ad hoc disaster programs that have caused major budgetary outlays in the 1980's. The 1990 Farm Bill... inequity between program and non-program crops, possibility that producers could be discriminated against on the basis of extreme risk, possibility of refusing coverage to innovative producers by allowing a crop unimportant to the economy of a specific...

Crenwelge, Cheryl

2012-06-07T23:59:59.000Z

460

Effect of Potassium on Uptake of 137Cs in Food Crops Grown on Coral Soils: Annual Crops at Bikini Atoll  

SciTech Connect (OSTI)

In 1954 a radioactive plume from the thermonuclear device code named BRAVO contaminated the principal residential islands, Eneu and Bikini, of Bikini Atoll (11{sup o} 36 minutes N; 165{sup o} 22 minutes E), now part of the Republic of the Marshall Islands. The resulting soil radioactivity diminished greatly over the three decades before the studies discussed below began. By that time the shorter-lived isotopes had all but disappeared, but strontium-90 ({sup 90}Sr), and cesium-137, ({sup 137}Cs) were reduced by only one half-life. Minute amounts of the long-lived isotopes, plutonium-239+240 ({sup 239+240}Pu) and americium-241 ({sup 241}Am), were present in soil, but were found to be inconsequential in the food chain of humans and land animals. Rather, extensive studies demonstrated that the major concern for human health was {sup 137}Cs in the terrestrial food chain (Robison et al., 1983; Robison et al., 1997). The following papers document results from several studies between 1986 and 1997 aimed at minimizing the {sup 137}Cs content of annual food crops. The existing literature on radiocesium in soils and plant uptake is largely a consequence of two events: the worldwide fallout of 1952-58, and the fallout from Chernobyl. The resulting studies have, for the most part, dealt either with soils containing some amount of silicate clays and often with appreciable K, or with the short-term development of plants in nutrient cultures.

Stone, E R; Robinson, W

2002-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Assessment of G3(MP2)//B3 theory including a pseudopotential for molecules containing first-, second-, and third-row representative elements  

SciTech Connect (OSTI)

G3(MP2)//B3 theory was modified to incorporate compact effective potential (CEP) pseudopotentials, providing a theoretical alternative referred to as G3(MP2)//B3-CEP for calculations involving first-, second-, and third-row representative elements. The G3/05 test set was used as a standard to evaluate the accuracy of the calculated properties. G3(MP2)//B3-CEP theory was applied to the study of 247 standard enthalpies of formation, 104 ionization energies, 63 electron affinities, 10 proton affinities, and 22 atomization energies, comprising 446 experimental energies. The mean absolute deviations compared with the experimental data for all thermochemical results presented an accuracy of 1.4 kcal mol{sup ?1} for G3(MP2)//B3 and 1.6 kcal mol{sup ?1} for G3(MP2)//B3-CEP. Approximately 75% and 70% of the calculated properties are found with accuracy between 2 kcal mol{sup ?1} for G3(MP2)//B3 and G3(MP2)//B3-CEP, respectively. Considering a confidence interval of 95%, the results may oscillate between 4.2 kcal mol{sup ?1} and 4.6 kcal mol{sup ?1}, respectively. The overall statistical behavior indicates that the calculations using pseudopotential present similar behavior with the all-electron theory. Of equal importance to the accuracy is the CPU time, which was reduced by between 10% and 40%.

Rocha, Carlos Murilo Romero; Morgon, Nelson Henrique; Custodio, Rogrio, E-mail: roger@iqm.unicamp.br [Instituto de Qumica, Universidade Estadual de Campinas, Baro Geraldo, P.O. Box 6154, 13083-970 Campinas, So Paulo (Brazil)] [Instituto de Qumica, Universidade Estadual de Campinas, Baro Geraldo, P.O. Box 6154, 13083-970 Campinas, So Paulo (Brazil); Pereira, Douglas Henrique [Instituto de Qumica, Universidade Estadual de Campinas, Baro Geraldo, P.O. Box 6154, 13083-970 Campinas, So Paulo (Brazil) [Instituto de Qumica, Universidade Estadual de Campinas, Baro Geraldo, P.O. Box 6154, 13083-970 Campinas, So Paulo (Brazil); Departamento de Cincias Exatas e Biotecnolgicas, Universidade Federal do Tocantins, Campus de Gurupi, 77410-530 Gurupi, Tocantins (Brazil)

2013-11-14T23:59:59.000Z

462

LCA of cropping systems with different external input levels for energetic purposes  

Science Journals Connector (OSTI)

Biofuels could become increasingly important for agriculture; however there is growing concern regarding the possible environmental drawbacks due to the risks of increased inputs during crop cultivation. These risks need to be evaluated in order to assess the best management practices. In this study, a life cycle assessment (LCA) was carried out: (i) to evaluate the environmental impacts of three cropping systems characterized by different external input levels (low S1, medium S2 and high S3) applied to sunflower and maize, both in rotation with wheat, in a Mediterranean region; (ii) to estimate the environmental benefits of the optimization of cropping systems for energy management. Outputinput ratio, net energy balance, global warming potential (GWP), eutrophication potential (EP) and acidification potential (AP) were used as LCA impact categories. Data from cropping systems (external input and crop yields) were collected from a long-term experiment carried out in the coastal plain of Tuscany; data regarding fertilizers, machinery and pesticide production were taken from literature. The results obtained showed S1 with the highest outputinput ratios and the lowest impact for the selected impact categories. The other cropping systems S2 and S3 showed limited differences between them for all the impact categories evaluated. Fertilizer use and application, irrigation and machinery use caused most of the environmental impacts and energy consumption. The allocation procedure, showing residues as co-products, had a strong influence on the overall efficiency of agricultural systems.

Pietro Goglio; Enrico Bonari; Marco Mazzoncini

2012-01-01T23:59:59.000Z

463

Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass  

SciTech Connect (OSTI)

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

Kang, Shujiang [ORNL; Kline, Keith L [ORNL; Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Dr Jeff A [ORNL; Post, Wilfred M [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL

2013-01-01T23:59:59.000Z

464

A National Assessment of Promising Areas for Switchgrass, Hybrid Poplar, or Willow Energy Crop Production  

SciTech Connect (OSTI)

The objective of this paper is to systematically assess the cropland acreage that could support energy crops and the expected farm gate and delivered prices of energy crops. The assessment is based on output from two modeling approaches: (1) the Oak Ridge County-Level Energy Crop (ORECCL) database (1996 version) and (2) the Oak Ridge Integrated Bioenergy Analysis System (ORIBAS). The former provides county-level estimates of suitable acres, yields, and farmgate prices of energy crops (switchgrass, hybrid poplar, willow) for all fifty states. The latter estimates delivered feedstock prices and quantities within a state at a fine resolution (1 km2) and considers the interplay between transportation costs, farmgate prices, cropland density, and facility demand. It can be used to look at any type of feedstock given the appropriate input parameters. For the purposes of this assessment, ORIBAS has been used to estimate farmgate and delivered switchgrass prices in 11 states (AL, FL, GA, IA, M N, MO, ND, NE, SC, SD, and TN). Because the potential for energy crop production can be considered from several perspectives, and is evolving as policies, economics and our basic understanding of energy crop yields and production costs change, this assessment should be viewed as a snapshot in time.

Graham, R.L.; Walsh, M.E.

1999-02-01T23:59:59.000Z

465

Potential producers and their attitudes toward adoption of biomass crops in central Florida  

SciTech Connect (OSTI)

A recent study by the University of Florida, Center for Biomass Programs (1996) showed that biomass crops have potential as a new agricultural commodity in central Florida. Both herbaceous and woody biomass crops have high yields, and weather and soil conditions are favorable. In the Polk County area over 40,371 ha (100,000 A) of phosphate-mined land and about 161,486 ha (400,000 A) of pastureland may be available for biomass production at low opportunity cost. Phosphate land is owned by a few mining companies while pastureland is owned by or rented to cattlemen. Infrastructure for large-scale crop production, such as in the Midwest United States, does not presently exist in central Florida. Personal interviews were conducted with phosphate company managers and a mail survey was conducted with 940 landowners, with at least 16 ha (40 A) of agricultural land. Data were gathered related to decision making factors in growing biomass and other new crops. Results suggested that economic factors, particularly availability of an established market and an assured high return per acre were considered the most important factors. Lack of familiarity with new crops was an important barrier to their adoption. Potential net returns and production costs were considered the most important information needed to make decisions about growing biomass crops.

Rahmani, M.; Hodges, A.W. [Univ. of Florida, Gainesville, FL (United States); Stricker, J.A. [Univ. of Florida, Bartow, FL (United States)

1996-12-31T23:59:59.000Z

466

Cooperative Fertilizer Experiments with Cotton, Corn, Sweet Potatoes and Irish Potatoes, 1908-1917.  

E-Print Network [OSTI]

STATION. If the rows are four feet apart, use four rows 280 feet long, or eight rows 140 feet long, or sixteen rows 70 feet long. For potatoes, tomatoes, onions, or similar crops, use an area of land equivalent to one-twentieth acre for each plot... or application of fertilizer. If the rows are four feet apart, use two rows 280 feet long, or four rows 140 feet long, or eight rows 70 feet long. If the rows are two feet apart, the number of rows for each ap- plication of fertilizer should be double...

Fraps, G. S. (George Stronach)

1918-01-01T23:59:59.000Z

467

Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner  

SciTech Connect (OSTI)

Purpose: The aim of this study was to evaluate radiation dose to patients undergoing computed tomography coronary angiography (CTCA) for prospectively gated axial (PGA) technique and retrospectively gated helical (RGH) technique. Methods: Radiation doses were measured for a 320-detector row CT scanner (Toshiba Aquilion ONE) using small sized silicon-photodiode dosimeters, which were implanted at various tissue and organ positions within an anthropomorphic phantom for a standard Japanese adult male. Output signals from photodiode dosimeters were read out on a personal computer, from which organ and effective doses were computed according to guidelines published in the International Commission on Radiological Protection Publication 103. Results: Organs that received high doses were breast, followed by lung, esophagus, and liver. Breast doses obtained with PGA technique and a phase window width of 16% at a simulated heart rate of 60 beats per minute were 13 mGy compared to 53 mGy with RGH technique using electrocardiographically dependent dose modulation at the same phase window width as that in PGA technique. Effective doses obtained in this case were 4.7 and 20 mSv for the PGA and RGH techniques, respectively. Conversion factors of dose length product to the effective dose in PGA and RGH were 0.022 and 0.025 mSv mGy{sup -1} cm{sup -1} with a scan length of 140 mm. Conclusions: CTCA performed with PGA technique provided a substantial effective dose reduction, i.e., 70%-76%, compared to RGH technique using the dose modulation at the same phase windows as those in PGA technique. Though radiation doses in CTCA with RGH technique were the same level as, or some higher than, those in conventional coronary angiography (CCA), the use of PGA technique reduced organ and effective doses to levels less than CCA except for breast dose.

Seguchi, Shigenobu; Aoyama, Takahiko; Koyama, Shuji; Fujii, Keisuke; Yamauchi-Kawaura, Chiyo [Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan) and Department of Medical Technology, Nagoya Daini Red Cross Hospital, Myouken-chou, Showa-ku, Nagoya 466-8650 (Japan); Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan); Section of Radiological Protection, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan)

2010-11-15T23:59:59.000Z

468

Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock  

SciTech Connect (OSTI)

For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ags ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.

Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

2007-04-01T23:59:59.000Z

469

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

SciTech Connect (OSTI)

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

470

Regulating the Regulators: The Increased Role for the Federal Judiciary in Monitoring the Debate over Genetically Modified Crops  

E-Print Network [OSTI]

crops: soy, corn, and canola. 5 1 In 1996, three millionall soy, corn, cotton, and canola sold in the United States

Denton, Blake

2007-01-01T23:59:59.000Z

471

EFFICACY AND TIMING OF FUNGICIDES, BACTERICIDES, AND BIOLOGICALS for DECIDUOUS TREE FRUIT, NUT, STRAWBERRY, AND VINE CROPS 2010  

E-Print Network [OSTI]

cane and leafspot Phomopsis fruit rot and dieback PowderyStrawberry Pome and stone fruit crops including almond;BIOLOGICALS for DECIDUOUS TREE FRUIT, NUT, STRAWBERRY, AND

Adaskaveg, James E; Gubler, W D; Michailides, Themis J.; Holtz, Brent A.

2010-01-01T23:59:59.000Z

472

Katherine Rowe September 29, 2006  

E-Print Network [OSTI]

as a parking/traffic area and to manage stormwater. Components & Function There are several types of porous of open-graded gravel and crushed stone (EPA, Sept. 1999). This base serves as a reservoir for stormwater from moving into the soil bed. Essentially, "porous pavement infiltrates and treats rainwater where

Rosemond, Amy Daum

473

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

474

Improving the Way We Harvest & Deliver Biofuels Crops | Department of  

Broader source: Energy.gov (indexed) [DOE]

Improving the Way We Harvest & Deliver Biofuels Crops Improving the Way We Harvest & Deliver Biofuels Crops Improving the Way We Harvest & Deliver Biofuels Crops May 24, 2013 - 9:40am Addthis The self-propelled baler collects and packages bales of feedstock on-site that can be immediately loaded and sent to a biorefinery for use. | Photo courtesy of Antares Group. The self-propelled baler collects and packages bales of feedstock on-site that can be immediately loaded and sent to a biorefinery for use. | Photo courtesy of Antares Group. The bale picking truck follows the self-propelled baler, picking up and packaging the bales into packs before transferring them to an attached flatbed. | Photo courtesy of Antares Group. The bale picking truck follows the self-propelled baler, picking up and packaging the bales into packs before transferring them to an attached

475

Efficiency assessment of using satellite data for crop area estimation in Ukraine  

Science Journals Connector (OSTI)

Abstract The knowledge of the crop area is a key element for the estimation of the total crop production of a country and, therefore, the management of agricultural commodities markets. Satellite data and derived products can be effectively used for stratification purposes and a-posteriori correction of area estimates from ground observations. This paper presents the main results and conclusions of the study conducted in 2010 to explore feasibility and efficiency of crop area estimation in Ukraine assisted by optical satellite remote sensing images. The study was carried out on three oblasts in Ukraine with a total area of 78,500km2. The efficiency of using images acquired by several satellite sensors (MODIS, Landsat-5/TM, AWiFS, LISS-III, and RapidEye) combined with a field survey on a stratified sample of square segments for crop area estimation in Ukraine is assessed. The main criteria used for efficiency analysis are as follows: (i) relative efficiency that shows how much time the error of area estimates can be reduced with satellite images, and (ii) cost-efficiency that shows how much time the costs of ground surveys for crop area estimation can be reduced with satellite images. These criteria are applied to each satellite image type separately, i.e., no integration of images acquired by different sensors is made, to select the optimal dataset. The study found that only MODIS and Landsat-5/TM reached cost-efficiency thresholds while AWiFS, LISS-III, and RapidEye images, due to its high price, were not cost-efficient for crop area estimation in Ukraine at oblast level.

Francisco Javier Gallego; Nataliia Kussul; Sergii Skakun; Oleksii Kravchenko; Andrii Shelestov; Olga Kussul

2014-01-01T23:59:59.000Z

476

African Crop Science Journal, Vol. 22, No. 1, pp. 59 -67 ISSN 1021-9730/2014 $4.00 Printed in Uganda. All rights reserved 2014, African Crop Science Society  

E-Print Network [OSTI]

in Uganda. All rights reserved © 2014, African Crop Science Society MORPHOLOGICAL DIVERSITY OF TROPICAL, Makerere University, P. O. Box 7062, Kampala, Uganda 1 National Crops Resources Research Institute, Namulonge, P. O. Box 7081, Kampala, Uganda 2 University of California, Department of Plant Sciences/MS1

Gepts, Paul

477

Biodiesel is produced from a wide variety of oilseed crops. In Europe, canola is the major biodiesel crop while in the U.S. soybeans dominate. Montana State University researchers have developed a  

E-Print Network [OSTI]

Technology Biodiesel is produced from a wide variety of oilseed crops. In Europe, canola is the major biodiesel crop while in the U.S. soybeans dominate. Montana State University researchers have plants used for biodiesel. Seed oil content increases are induced by puroindoline genes which promote

Maxwell, Bruce D.

478

HorTICULTUrAL & ForEST CroPS 2014 Commercial Small Fruit: Diseases and Insects 2-1  

E-Print Network [OSTI]

HorTICULTUrAL & ForEST CroPS 2014 Commercial Small Fruit: Diseases and Insects 2-1 Diseases in commercial small fruit crops is obtained only through the judicious use of pesticides combined with sound-picking), and resistant varieties. Organically approved tools listed in this guide for small fruit insect pests include

Liskiewicz, Maciej

479

Changes in Root Surface Area, Nutrient Absorption Activity, and Root Carbohydrate Concentration during Crop Cycles of Rosa hybrida  

E-Print Network [OSTI]

Shields Ave., Davis, CA 95616, USA 2 Protected Horticulture Experiment Station National Horticulture over such crop cycles under conditions of high or low light. A sequential harvest experiment. Plant RSA did not change significantly during the high light crop cycle and averaged 14400 cm2 plant-1

Lieth, J. Heinrich

480

Linkages among climate change, crop yields and MexicoUS cross-border migration  

E-Print Network [OSTI]

Linkages among climate change, crop yields and Mexico­US cross-border migration Shuaizhang Fenga assumed, with other factors held constant, by approximately the year 2080, climate change is estimated perspective given that many regions, espe- cially developing countries, are expected to experience significant

Oppenheimer, Michael

Note: This page contains sample records for the topic "yr row crop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Persistence of seeds from crops of conventional and herbicide tolerant oilseed rape (Brassica napus)  

Science Journals Connector (OSTI)

...modified Herbicide Tolerance project (BRIGHT) (Sweet et al...glufosinate (Bayer Crop. Science, Liberty Link) and by conventional...for the first 2 years of the project. The appropriate herbicide...regulatory constraints on the BRIGHT project meant that at most sites all...

2005-01-01T23:59:59.000Z

482

Ecological Modelling 120 (1999) 349358 Use of artificial neural networks for predicting rice crop  

E-Print Network [OSTI]

Ecological Modelling 120 (1999) 349­358 Use of artificial neural networks for predicting rice crop of artificial neural networks (ANN) in predicting presence or absence of flamingo damages from 11 variables B.V. All rights reserved. Keywords: Flamingos; Rice; Damage; Artificial neural networks; Prediction

Lek, Sovan

483

crop science, vol. 51, septemberoctober 2011 Along-term challenge faced by upland cotton (Gossypium  

E-Print Network [OSTI]

crop science, vol. 51, september­october 2011 ReseaRch Along-term challenge faced by upland cotton by a fundamental shift in the cotton fiber market from a primarily domestically con- sumed product to one in which nearly two-thirds of the U.S. cot- ton is now exported. Since the international cotton fiber market

Chee, Peng W.

484

1900 CROP SCIENCE, VOL. 44, NOVEMBERDECEMBER 2004 Reducing the Genetic Vulnerability of Cotton  

E-Print Network [OSTI]

1900 CROP SCIENCE, VOL. 44, NOVEMBER­DECEMBER 2004 Reducing the Genetic Vulnerability of Cotton. Lloyd May, and C. Wayne Smith change in cotton yields has steadily declined since 1985. The u.s. cotton (Gossypium spp.) production system By 1998, absolute cotton yields (not just the rate ofexemplifies

Chee, Peng W.

485

South Carolina Pest Management Handbook for Field Crops -2013 WEED CONTROL IN COTTON  

E-Print Network [OSTI]

South Carolina Pest Management Handbook for Field Crops - 2013 63 WEED CONTROL IN COTTON Mike Marshall, Extension Weed Specialist Preplant Burndown Herbicides for Weed Management in Cotton Herbicide is required before cotton planting. In general, CLARITY is less effective than 2,4-D LVE on cutleaf

Stuart, Steven J.

486

South Carolina Pest Management Handbook for Field Crops -2014 WEED CONTROL IN COTTON  

E-Print Network [OSTI]

South Carolina Pest Management Handbook for Field Crops - 2014 70 WEED CONTROL IN COTTON Mike Marshall, Extension Weed Specialist Preplant Burndown Herbicides for Weed Management in Cotton Herbicide is required before cotton planting. In general, CLARITY is less effective than 2,4-D LVE on cutleaf

Duchowski, Andrew T.

487

Price vs. weather shock hedging for cash crops: ex ante evaluation for cotton  

E-Print Network [OSTI]

Price vs. weather shock hedging for cash crops: ex ante evaluation for cotton producers in Cameroon, we assess the risk mitigation capac- ity of weather index-based insurance for cotton farmers. We. Second, in accordance with the existing agronomical literature we find that the length of the cotton

Paris-Sud XI, Université de

488

Aspects of Applied Biology 112, 2011 Biomass and Energy Crops IV  

E-Print Network [OSTI]

, biomass yields, bioenergy Introduction The United States'Energy Independence and SecurityAct of 2007 (EISA; Fargione et al., 2008). Producing more corn-based ethanol may increase food prices due to changing market dynamics. Alternative bioenergy options include non-food biomass feedstock from perennial crops and more

Weiblen, George D

489

Climate change impacts on crop yield and quality with CO2 fertilization in China  

Science Journals Connector (OSTI)

...change impacts on crop yield and quality with CO2 fertilization in China...elevated CO2 on processing quality characteristics of two winter...experiment system. In Proc. World Engineers' Convention. vol. E, agricultural...1996Changes in wheat grain quality due to doubling the level of...

2005-01-01T23:59:59.000Z

490

LCA Applied to Perennial Cropping Systems: a Review Focused on the Farm Stage C. Bessou 1  

E-Print Network [OSTI]

1 LCA Applied to Perennial Cropping Systems: a Review Focused on the Farm Stage C. Bessou 1 , C for bioenergy and have been, notably to this end, the subject of several LCA-based studies mostly focusing classified into three categories according to the comprehensiveness of the LCA study and depending on whether

Boyer, Edmond

491

LCA Applied to Perennial Cropping Systems: a Review Focused on the Farm Stage C. Bessou 1  

E-Print Network [OSTI]

1 LCA Applied to Perennial Cropping Systems: a Review Focused on the Farm Stage C. Bessou 1 , C, notably to this end, the subject of several LCA-based studies mostly focusing on energy and GHG balances according to the comprehensiveness of the LCA study and depending on whether they were peer-reviewed or not

492

Title: Crop genetic diversity benefits farmland biodiversity in cultivated fields1 Carole Chateila, b  

E-Print Network [OSTI]

genetic diversity benefits farmland biodiversity in cultivated fields1 2 Authors3 Carole Chateila, b11 marine (IMBE), UMR CNRS 7263 - IRD 237, Campus St-Jérôme, Case 421, 13397 Marseille12 Cedex 20 whether increasing crop genetic diversity benefited farmland biodiversity in5 bread wheat (Triticum

Paris-Sud XI, Université de

493

Characterization of forest crops with a range of nutrient and water treatments using AISA Hyperspectral Imagery.  

SciTech Connect (OSTI)

This research examined the utility of Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for estimating the biomass of three forest crops---sycamore, sweetgum and loblolly pine--planted in experimental plots with a range of fertilization and irrigation treatments on the Savannah River Site near Aiken, South Carolina.

Gong, Binglei; Im, Jungho; Jensen, John, R.; Coleman, Mark; Rhee, Jinyoung; Nelson, Eric

2012-07-01T23:59:59.000Z

494

Modelling the perennial energy crop market: the role of spatial diffusion  

Science Journals Connector (OSTI)

...k is greater than the annual biomass energy demand, Dk , to operate plant...provide a consistent price for biomass energy. LHV, also known as net calorific...consistent net caloric value for biomass energy of 3.97 GJ1. Energy crop farm...

2013-01-01T23:59:59.000Z

495

Bioenergy Feedstock Potential from Short-Rotation Woody Crops in a Dryland Environment  

Science Journals Connector (OSTI)

Bioenergy Feedstock Potential from Short-Rotation Woody Crops in a Dryland Environment ... Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia ... Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia ...

R. J. Harper; S. J. Sochacki; K. R. J. Smettem; N. Robinson

2009-08-28T23:59:59.000Z

496

Solutions for elephant Loxodonta africana crop raiding in northern Botswana: moving away from symptomatic approaches  

E-Print Network [OSTI]

Solutions for elephant Loxodonta africana crop raiding in northern Botswana: moving away from Conflict between people and elephants in Africa is widespread yet many solutions target the symptoms of the problem need to be examined. Here we examine factors underlying spatial use by elephants and people along

Pretoria, University of

497

Early detection of oil-induced stress in crops using spectral and thermal  

E-Print Network [OSTI]

such as drought, herbicide application, and volatile hydrocarbon and heavy metal pollution cause changes Zealand, Blenheim, P.O. Box 331, New Zealand Abstract. Oil pollution is a major source of environmental of crops for the early detection of stress caused by oil pollution. In a glasshouse, pot-grown maize

Blackburn, Alan

498

Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model  

E-Print Network [OSTI]

Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model S.Lehuger@art.admin.ch. Fax: (+41) 44 377 72 01. Phone: (+41) 44 377 75 13. hal-00414342,version2-1Sep2010 #12;Abstract Carbon and measuring land-atmosphere carbon exchanges from arable lands are important tasks to predict the influence

Boyer, Edmond

499

Effect of a Legume Cover Crop on Carbon Storage and Erosion in an Ultisol under Maize  

E-Print Network [OSTI]

143 CHAPTER 10 Effect of a Legume Cover Crop on Carbon Storage and Erosion in an Ultisol under...........................................................................................145 10.2.3 Carbon and Nitrogen Determination, and Other Analyses......................................145 10.2.4 Determinations of Runoff, Soil Losses, and Eroded Carbon

500

Applications of Copulas to Analysis of Efficiency of Weather Derivatives as Primary Crop Insurance Instruments  

E-Print Network [OSTI]

insurance. It is also a matter of common knowledge that weather is an important production factor and at the same time one of the greatest sources of risk in agriculture. Hence introduction of crop insurance contracts, based on weather indexes, might be a...

Filonov, Vitaly

2012-10-19T23:59:59.000Z