Powered by Deep Web Technologies
Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Design scoping study of the 12T Yin-Yang magnet system for the Tandem Mirror Next Step (TMNS). Final report  

Science Conference Proceedings (OSTI)

The overall objective of this engineering study was to determine the feasibility of designing a Yin-Yang magnet capable of producing a peak field in the windings of 12T for the Tandem Mirror Next Step (TMNS) program. As part of this technical study, a rough order of magnitude (ROM) cost estimate of the winding for this magnet was undertaken. The preferred approach to the winding design of the TMNS plug coil utilizes innovative design concepts to meet the structural, electrical and thermodynamic requirements of the magnet system. Structurally, the coil is radially partitioned into four sections, preventing the accumulation of the radial loads and reacting them into the structural case. To safely dissipate the 13.34 GJ of energy stored in each Yin-Yang magnet, the winding has been electrically subdivided into parallel or nested coils, each having its own power supply and protection circuitry. This arrangement effectively divides the total stored energy of the coils into manageable subsystems. The windings are cooled with superfluid helium II, operated at 1.8K and 1.2 atmospheres. The superior cooling capabilities of helium II have enabled the overall winding envelope to be minimized, providing a current density of 2367 A/CM/sup 2/, excluding substructure.

Not Available

1981-09-01T23:59:59.000Z

2

Geometry and heterogeneous effects on the neutronic performance of a Yin Yang mirror-reactor blanket  

SciTech Connect

From 5th symposium on engineering problems of fusion research; Princeton, New Jersey, USA (6 Nov 1973). Two-dimensional models and Monte Carlo neutron transport techniques were used to calculate the tritium breeding and energy generation in a mirror-reactor blanket. Results indicate that blanket performance should be quite insensitive to variations in overall geometry as long as there are no large neutron-leakage paths. Injection and leakage penetration can be accommodated as long as the first-wall peneiration area subtends less than 25% of the first wall's spherical area. Heterogeneous and streaming effects in a tubular blanket can be important, but are negligible for closely packed arrays of tubes. The one-dimensional homogeneous spherical-shell model appears to be a useful tool for predicting performance of a tubular blanket conforming to the YinYang mirror geometry. (auth)

Lee, J.D.

1973-10-17T23:59:59.000Z

3

On the Solution of Elliptic Problems on Overset/Yin–Yang Grids  

Science Conference Proceedings (OSTI)

The heterogeneity and the singularity of the grid are major factors in the weak scalability of longitude–latitude grid–based atmospheric models on massively parallel machines. Overset grids and, in particular, the Yin–Yang grid, are potential ...

M. Zerroukat; T. Allen

2012-08-01T23:59:59.000Z

4

Dynamical Core of an Atmospheric General Circulation Model on a Yin–Yang Grid  

Science Conference Proceedings (OSTI)

The three-dimensional dynamical core of an atmospheric general circulation model employing Yin–Yang grid is developed and examined. Benchmark test cases based on the shallow-water model configuration are first performed to examine the validity of ...

Yuya Baba; Keiko Takahashi; Takeshi Sugimura; Koji Goto

2010-10-01T23:59:59.000Z

5

A Multimoment Finite-Volume Shallow-Water Model on the Yin–Yang Overset Spherical Grid  

Science Conference Proceedings (OSTI)

A numerical model for shallow-water equations has been built and tested on the Yin–Yang overset spherical grid. A high-order multimoment finite-volume method is used for the spatial discretization in which two kinds of so-called moments of the ...

Xingliang Li; Dehui Chen; Xindong Peng; Keiko Takahashi; Feng Xiao

2008-08-01T23:59:59.000Z

6

Photo of the Week: The Mirror Fusion Test Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Mirror Fusion Test Facility The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory. This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an

7

Fatty Acids in Health Promotion and Disease CausationChapter 26 The Opposing Effects of Dietary Omega-3 and trans Fatty Acids on Health: A Yin-Yang Effect at the Molecular Level?  

Science Conference Proceedings (OSTI)

Fatty Acids in Health Promotion and Disease Causation Chapter 26 The Opposing Effects of Dietary Omega-3 and trans Fatty Acids on Health: A Yin-Yang Effect at the Molecular Level? Health Nutrition Biochemistry eChapters Health - Nutritio

8

Progress on the conceptual design of a mirror hybrid fusion--fission reactor  

SciTech Connect

A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel. (MOW)

Moir, R.W.; Lee, J.D.; Burleigh, R.J.

1975-06-25T23:59:59.000Z

9

The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group  

SciTech Connect

Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

2008-10-24T23:59:59.000Z

10

Design studies of mirror machine reactors  

SciTech Connect

An overview is presented of a mirror fusion reactor design study. The general methodology used in the study is discussed, the reactor is described, and some design alternatives to the present approach are enumerated. The system chosen for this design study is a mirror machine with direct conversion using D- T fuel. The nominal power output is 200 MW. The coil geometry is the Yin Yang, minimum B with a vacuum mirror ratio of 3. The coil is of particular utility because of its simple conductor shapes and because the two separate conductors, by proper B-field biasing, allow the charged particles to escape preferentially through one mirror only and through a relatively small window'' of that mirror. This is necessary for direct converter economy. (auth)

Werner, R.W.; Carlson, G.A.; Hovingh, J.; Lee, J.D.; Peterson, M.A.

1973-12-01T23:59:59.000Z

11

Electrons Confined with an Axially Symmetric Magnetic Mirror Field  

Science Conference Proceedings (OSTI)

Low energy non-neutral electron plasmas were confined with an axially symmetric magnetic mirror field and an electrostatic potential to investigate the basic confinement properties of a simple magnetic mirror trap. As expected the confinement time became longer as a function of the mirror ratio. The axial electrostatic oscillations of a confined electron plasma were also observed. Obtained results suggested an improved scheme to accumulate low energy charged particles with the use of a magnetic mirror field, which would enable the investigation of electron-positron plasmas.

Higaki, H.; Ito, K.; Kira, K.; Okamoto, H. [Graduate School of Advanced Sciences of Matter, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

2008-08-08T23:59:59.000Z

12

Ground State Magnetic Moments of Mirror Nuclei Studied at NSCL  

E-Print Network (OSTI)

Progress in the measurement of the ground state magnetic moments of mirror nuclei at NSCL is presented. The systematic trend of the spin expectation value $$ and the linear behavior of $\\gamma_p$ versus $\\gamma_n$, both extracted from the magnetic moments of mirror partners, are updated to include all available data.

P. F. Mantica; K. Minamisono

2009-01-22T23:59:59.000Z

13

Magnetic mirror fusion systems: Characteristics and distinctive features  

SciTech Connect

A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power.

Post, R.F.

1987-08-10T23:59:59.000Z

14

Magnetic moments of T=3/2 mirror pairs  

Science Conference Proceedings (OSTI)

We predict values of the magnetic moments of T=3/2 proton-rich fp-shell nuclei in the mass range A=43-53, by using known values for their neutron-rich mirrors together with shell-model estimates for small quantities. We extend the analysis to those T=3/2 sd-shell mirror pairs for which both the T{sub z}=-3/2 and T{sub z}=+3/2 magnetic moments have been measured. We find that these obey the same linear relation as previously deduced for T=1/2 mirror pairs.

Perez, S. M. [Department of Physics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa); iThemba LABS, P. O. Box 722, Somerset West 7129 (South Africa); Richter, W. A. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Brown, B. A. [Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Horoi, M. [Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859 (United States)

2010-12-15T23:59:59.000Z

15

MFTF-. cap alpha. +T end plug magnet design  

SciTech Connect

The conceptual design of the end-plug magnets for MFTF-..cap alpha..+T is described. MFTF-..cap alpha..+ T is a near-term upgrade of MFTF-B, which features new end plugs to improve performance. The Fusion Engineering Design Center has performed the engineering design of MFTF-..cap alpha..+T under the overall direction of Lawrence Livermore National Laboratory. Each end plug consists of two Yin-Yang pairs, each with approx.2.5:1 mirror ratio and approx.5-T peak field on axis; two transition coils; and a recircularizing solenoid. This paper describes the end-plug magnet system functional requirements and presents a conceptual design that meets them. The peak field at the windings of the end-plug coils is approx.6-T. These coils are designed using the NbTi MFTF-B conductor and cooled by a 4.2K liquid helium bath. All the end-plug magnets are designed to operate in the cryostable mode with adequate quench protection for safety. Shielding requirements are stated and a summary of heat loads is provided. Field and force calculations are discussed. The field on axis is shown to meet the functional requirements. Force resultants are reported in terms of winding running loads and resultant coil forces are also given. The magnet structural support is described. A trade study to determine the optimum end-cell coil internal nuclear shield thickness and the resulting coil size based on minimizing the end-cell life cycle cost is summarized.

Srivastava, V.C.; O'Toole, J.A.

1983-01-01T23:59:59.000Z

16

Magnetic fusion energy. [Lectures on status of tokamak and magnetic mirror research  

SciTech Connect

A brief review of fusion research during the last 20 years is given. Some highlights of theoretical plasma physics are presented. The role that computational plasma physics is playing in analyzing and understanding the experiments of today is discussed. The magnetic mirror program is reviewed. (MOW)

McNamara, B.

1977-06-14T23:59:59.000Z

17

Reconstruction of Neutral Hydrogen Density Profiles in HANBIT Magnetic Mirror Device Using Bayesian Probability Theory  

SciTech Connect

Hydrogen is the main constitute of plasmas in HANBIT magnetic mirror device, therefore, measurement of the emission from excited levels of hydrogen atoms is an important diagnostic tool. From the emissivity of H{sub {alpha}} radiation one can derive quantities such as the neutral hydrogen density and the source rate. An unbiased and consistent probability theory based approach within the framework of Bayesian inference is applied to the reconstruction of H{sub {alpha}} emissivity profiles and hydrogen neutral density profiles in HANBIT magnetic mirror device.

Yoon, J.-S.; Seo, D.-C.; Na, H.-K.; Yoon, S.-W. [Korea Basic Science Institute (Korea, Republic of)

2005-01-15T23:59:59.000Z

18

Plasma wall charge-exchange interactions in the 2XIIB magnetic mirror experiment  

SciTech Connect

Plasma-wall interactions by charge-exchange wall bombardment in the 2XIIB magnetic mirror experiment are discussed. Experimental measurements are modeled with a time-dependent, radial density buildup calculation. A low-density plasma sufficient to help shield the hot interior plasma from cold-gas erosion, as required by the model, is measured.

Stallard, B.W.; Coensgen, F.H.; Cummins, W.F.; Gormezano, C.; Logan, B.G.; Molvik, A.W.; Nexsen, W.E.; Simonen, T.C.; Turner, W.C.

1976-01-01T23:59:59.000Z

19

The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant  

SciTech Connect

Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

Simonen, T

2008-12-23T23:59:59.000Z

20

Isorotation and differential rotation in a magnetic mirror with imposed E Multiplication-Sign B rotation  

SciTech Connect

Doppler spectroscopy of helium impurities in the Maryland Centrifugal Experiment reveals the simultaneous existence of isorotating and differentially rotating magnetic surfaces. Differential rotation occurs at the innermost surfaces and is conjectured to cause plasma voltage oscillations of hundreds of kilohertz by periodically changing the current path inductance. High-speed images show the periodic expulsion of plasma near the mirror ends at the same frequencies. In spite of this, the critical ionization velocity limit is exceeded, with respect to the vacuum field definition, for at least 0.5 ms.

Romero-Talamas, C. A.; Elton, R. C.; Young, W. C.; Reid, R.; Ellis, R. F. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

2012-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Magnetic mirror fusion-fission early history and applicability to other systems  

Science Conference Proceedings (OSTI)

In the mid 1970s to mid 1980s the mirror program was stuck with a concept, the Standard Mirror that was Q {approx} 1 where Q=P{sub fusion}/P{sub injection}. Heroic efforts were put into hybridizing thinking added energy and fuel sales would make a commercial product. At the same time the tokamak was thought to allow ignition and ultrahigh Q values of 20 or even higher. There was an effort to use neutral beams to drive the tokamak just like the mirror machines were driven in which case the Q value plunged to a few, however this was thought to be achievable decades earlier than the high Q versions. Meanwhile current drive and other features of the tokamak have seen the projected Q values come down to the range of 10. Meanwhile the mirror program got Q enhancement into high gear and various tandem mirrors projected Q values up towards 10 and with advanced features over 10 with axi-symmetric magnets (See R. F. Post papers), however the experimental program is all but non-existent. Meanwhile, the gas dynamic trap mirror system which is present day state-of-the-art can with low risk produce Q of {approx}0.1 useful for a low risk, low cost neutron source for materials development useful for the development of materials for all fusion concepts (see Simonen white paper: 'A Physics-Based Strategy to Develop a Mirror Fusion-Fission Hybrid' and D.D. Ryutov, 'Axisymmetric MHD-stable mirror as a neutron source and a driver for a fusion-fission hybrid'). Many early hybrid designs with multi-disciplinary teams were carried out in great detail for the mirror system with its axi-symmetric blanket modules. It is recognized that most of these designs are adaptable to tokamak or inertial fusion geometry. When Q is low (1 to 2) economics gives a large economic penalty for high recirculating power. These early studies covered the three design types: Power production, fuel production and waste burning. All three had their place but power production fell away because every study showed fusion machines that were extensively studied by multidisciplinary teams came up with power costs much higher than for existing fission plants except in very large sizes (3 GWe). There was lots of work on waste burning - Ted Parrish - comes to mind. However, fuel production along with power production became nearly everyone's goals. First, fast-fission blankets were favored but later to enhance safety, fission-suppressed blankets came into vogue. Both fuel producing and waste burning hybrid studies were terminated with the advent of accidents, high interest rates, rising 'green like' movement and cheap natural gas for power production. For waste burning and fast-fission fuel producing designs, the blanket energy multiplication was about 10 and economics was OK relative to recirculating power for Q over 2. For fission-suppressed fuel producers, where the blanket multiplication is under 2, the Q needed was over 5. In the mirror program we came at this problem by trying to find a product for mirror fusion technology. We hoped we had a product and studied and promoted it. There was no market pull and when the mirror program collapsed in the US, so did both hybrid programs for mirrors and tokamaks and IFE by the mid 1980s. Today, the problem of what to do with wastes that were supposed to be accepted by the government appears to be a high value market pull. It remains to be shown if fusion neutrons can be generated at low enough cost so that economics will not be a showstopper. For burning only the minor actinides, the economics will be the most favorable. Burning the Pu as well will lower the number of fission reactors supported by each burner fusion machine and hurt economics of the system. The fuel-producing role of fusion to fuel fission reactors remains an important possible use of fusion especially in the early stages of fusion development. It is not clear that burning fission wastes in a fusion machine is more appropriate than burning these wastes in specially designed fission machines. Fusion can produce U-233 along with over 2.4%U-232 making the material large

Moir, R

2009-08-24T23:59:59.000Z

22

Magnetoelastic instabilities and vibrations of superconducting-magnet systems  

SciTech Connect

This report describes the research accomplished under Depatment of Energy/NSF grants associated with the structural design of superconducting magnets for magnetic fusion reactors. The main results pertain to magnetomechanical instabilities in toroidal and poloidal field magnets for proposed fusion reactors. One major accomplishment was the building and testing of a 1/75th scale superconducting structural model of a 16 coil Tokamak reactor. Using this model the buckling of toroidal and poloidal field coils under different constraints was observed. A series of dynamic tests were performed, including the effect of currents on natural frequencies, poloidal-toroidal coil interaction, and buckling induced superconducting-normal quench of the coils. The stability of poloidal coils in a toroidal magnet field were investigated with the 16 coil torus. A superconducting poloidal coil was observed to become statically unstable or buckle as the current approached a certain value. Magnetoelastic buckling of other magnet systems such as a yin-yang pair of magnets, Ioffe coils, and discrete coil solenoids were also studied.

Moon, F.C.

1982-03-01T23:59:59.000Z

23

Plasma confinement apparatus using solenoidal and mirror coils  

DOE Patents (OSTI)

A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

Fowler, T. Kenneth (Walnut Creek, CA); Condit, William C. (Livermore, CA)

1979-01-01T23:59:59.000Z

24

Mirror fusion--fission hybrids  

SciTech Connect

The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described.

Lee, J.D.

1978-05-01T23:59:59.000Z

25

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 8, 2013 August 8, 2013 Audit Report: OAS-M-13-06 Lawrence Livermore National Laboratory's Use of Time and Materials Subcontracts July 22, 2013 EIS-0431: DOE Notice of Availability of Draft Environmental Impact Statement Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, Kern County, CA July 19, 2013 This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory.

26

LLNL-TR-408176 The Axisymmetric Tandem Mirror: A  

E-Print Network (OSTI)

LLNL-TR-408176 The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror of Magnetic Mirror Status #12;Berkeley Workshop Participants Others Interested David Baldwin, LLNL/GA Rick, LLNL George Miley, U. Illinois Ron Cohen, LLNL Gary Porter, LLNL Don Correll, LLNL John Santarius, U

27

Switchable Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Switchable Mirrors Switchable Mirrors Speaker(s): Ronald Griessen Date: July 17, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Thomas Richardson Switchable mirrors based on rare earth hydrides were discovered in my laboratory in 1994. PhD student J.N. Huiberts observed a reversible metal-to-insulator transition when a thin film (150 to 500 nm) of yttrium or lanthanum coated with a thin layer of palladium was exposed to hydrogen gas. The transition accompanies conversion of a metallic dihydride phase to a semiconducting trihydride. Since then, our group has carried out fundamental research that has elucidated many important aspects of switchable mirror phenomena. This talk will include demonstrations of the spectacular changes in optical properties in rare earth hydride films, and

28

Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides  

E-Print Network (OSTI)

-leaved pseudoginseng Sichuan, China Panax vietnamensis Ha et Grushv. Bamboo ginseng Vietnamese Ginseng Panax zingiberensis C.Y. Wu and K.M. Feng Ginger ginseng Ginger-like Pseudo-ginseng Yunnan, China [References: 5, 8, 9, MULTILINGUAL MULTISCRIPT PLANT NAME DATABASE... -http://www.plantnames.unimelb.edu.au/Sorting/Panax.html#bipinnatifidus and Ginseng: A Concise Handbook. Edited by James A, Duke. Reference Publications, Inc. 1989. Michigan, USA]Page 3 of 21 (page number not for citation purposes) Finally, these ECs...

Yue, Patrick Ying Kit; Mak, Nai Ki; Cheng, Yuen Kit; Leung, Kar Wah; Ng, Tzi Bun; Fan, Tai-Ping; Yeung, Hin Wing; Wong, Ricky Ngok Shun

2007-05-15T23:59:59.000Z

29

Alpha Channeling in Mirror Machines  

SciTech Connect

Because of their engineering simplicity, high-?, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

Fisch N.J.

2005-10-19T23:59:59.000Z

30

Mirror Advanced Reactor Study (MARS)  

DOE Green Energy (OSTI)

Progress in a two year study of a 1200 MWe commercial tandem mirror reactor (MARS - Mirror Advanced Reactor Study) has reached the point where major reactor system technologies are identified. New design features of the magnets, blankets, plug heating systems and direct converter are described. With the innovation of radial drift pumping to maintain low plug density, reactor recirculating power fraction is reduced to 20%. Dominance of radial ion and impurity losses into the halo permits gridless, circular direct converters to be dramatically reduced in size. Comparisons of MARS with the Starfire tokamak design are made.

Logan, B.G.

1983-03-28T23:59:59.000Z

31

Photo of the Week: Inside the Tandem Mirror Experiment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inside the Tandem Mirror Experiment Inside the Tandem Mirror Experiment Photo of the Week: Inside the Tandem Mirror Experiment December 28, 2012 - 2:22pm Addthis This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at both ends of a central magnetic tube. Very hot and dense plasmas inside each mirror enhanced the confinement of another plasma inside the central tube, where the bulk of the fusion would occur. | Photo courtesy of Lawrence Livermore National Laboratory. This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at

32

New electrochromic mirror systems  

New electrochromic mirror systems ... recorded using a fiber optic spectrometer (Ocean Optics). ... transmittance modulation of infrared light could lead

33

Development of mirror specifications  

DOE Green Energy (OSTI)

The work performed by PNL for Sandia Laboratories under a contract titled Survey and Analysis of Mirror Silvering Technology and Heliostat Glass Evaluation is described. The primary purpose for the work was to develop specifications that will enhance the durability and lifetime of heliostat mirrors. The contract was initiated with a technical survey of the present commercial silvered glass mirror industry and an analytical investigation of the degradation phenomena experienced by the heliostat mirrors at Sandia's Livermore test facility. The main thrust was to evaluate the present methods of silver deposition and protection in order to recommend a specification for the heliostat mirror silvering process that would extend the lifetime of the Barstow mirror field. In addition, several advanced concepts for enhancing mirror lifetime were investigated. Technical and measurement support for evaluation of the Barstow heliostat glass and updating the glass specification was also provided. (WHK)

Lind, M.A.

1979-09-01T23:59:59.000Z

34

Tandem mirror plasma confinement apparatus  

DOE Patents (OSTI)

Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

Fowler, T. Kenneth (Walnut Creek, CA)

1978-11-14T23:59:59.000Z

35

Rf heating of mirrors  

SciTech Connect

A brief overview is presented of potential uses for rf heating of plasmas in mirror devices. While some discussion relating to past experiments is given, the main emphasis is devoted to a review of potential experiments in presently existing devices, and devices under construction or planning. Some predictions are made for plasmas in mirror reactors.

Porkolab, M.

1980-04-09T23:59:59.000Z

36

Lithium-Based Electrochromic Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Based Electrochromic Mirrors Title Lithium-Based Electrochromic Mirrors Publication Type Conference Paper LBNL Report Number LBNL-52870 Year of Publication 2003 Authors...

37

Mirror plasma apparatus  

DOE Patents (OSTI)

A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

Moir, Ralph W. (Livermore, CA)

1981-01-01T23:59:59.000Z

38

Mirror Modes in the Heliosheath  

SciTech Connect

Mirror mode (MM) structures are identified in the Voyager 1 heliosheath magnetic field data. Their characteristics are: (1) quasiperiodic structures with a typical scale size of {approx}57 {rho}{sub p}(proton gyroradii), (2) little or no angular changes across the structures ({approx}3 deg. longitude and {approx}3 deg. latitude), and (3) a lack of sharp boundaries at the magnetic dip edges. It is proposed that the pickup of interstellar neutrals in the upstream region of the termination shock (TS) is the likely cause of MM instability during intervals when the IMF is nearly orthogonal to the solar wind flow direction. Concomitant (quasiperpendicular) shock compression of the MM structures at the TS and additional injection of pickup ions (PUIs) throughout the heliosheath will enhance MM growth.

Tsurutani, B. T. [Jet Propulsion Lab., Calif. Inst. Tech., Pasadena, CA (United States); Guarnieri, F. L. [UNIVAP, Sao Jose dos Campos, SP (Brazil); Echer, E. E. [INPE, Sao Jose dos Campos, SP (Brazil); Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Verkhoglyadova, O. P. [CSPAR, Univ. Alabama, Huntsville, AL (United States)

2011-01-04T23:59:59.000Z

39

Are mirror planets opaque?  

E-Print Network (OSTI)

Over the last few years, many close orbiting ($\\sim 0.05$ A.U.) large mass planets ($\\sim M_{J}$) of nearby stars have been discovered. Their existence has been inferred from tiny Doppler shifts in the light from the star and in one case a transit has been observed. Because ordinary planets are not expected to be able to form this close to ordinary stars due to the high temperatures, it has been speculated that the close-in large planets are in fact exotic heavenly bodies made of mirror matter. We show that the accretion of ordinary matter onto the mirror planet (from e.g.the solar wind from the host star) should make the mirror planet opaque to ordinary radiation with an effective radius ($R_p$) large enough to explain the measured size of the transiting close-in extrasolar planet, HD209458b. Furthermore we obtain the rough prediction that $R_{p} \\propto \\sqrt{{T_s\\over M_p}}$ (where $T_s$, is the surface temperature of the ordinary matter in the mirror planet and $M_p$ is the mass of the mirror planet) which will be tested in the near future as more transiting planets are found. We also show that the mirror world interpretation of the close-in extra solar planets explains the low albedo of $\\tau$ Boo b because the large estimated mass of $\\tau$ Boo b ($\\sim 7M_J$) implies a small effective radius of $R_p \\approx 0.5R_J$ for $\\tau$ Boo.

R. Foot

2001-01-04T23:59:59.000Z

40

Mechanical-engineering aspects of mirror-fusion technology  

DOE Green Energy (OSTI)

The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design.

Fisher, D.K.; Doggett, J.N.

1982-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Durable metallized polymer mirror  

DOE Patents (OSTI)

A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

1994-11-01T23:59:59.000Z

42

Coil system for a mirror-based hybrid reactor  

SciTech Connect

Two different superconducting coil systems for the SFLM Hybrid study - a quadrupolar mirror based fusion-fission reactor study - are presented. One coil system is for a magnetic field with 2 T at the midplane and a mirror ratio of four. This coil set consists of semiplanar coils in two layers. The alternative coil system is for a downscaled magnetic field of 1.25 T at the midplane and a mirror ratio of four, where a higher {beta} is required to achieve sufficient the neutron production. This coil set has one layer of twisted 3D coils. The 3D coils are expected to be considerably cheaper than the semiplanar, since NbTi superconductors can be used for most coils instead of Nb3Sn due to the lower magnetic field.

Hagnestal, A.; Agren, O.; Moiseenko, V. E. [Uppsala University, Angstroem laboratory, Division of Electricity, Box 534, SE-751 21 Uppsala (Sweden); Institute of Plasma Physics, National Science Center 'Kharkov Institute of Physics and Technology', Akademichna st. 1, 61108 Kharkiv (Ukraine)

2012-06-19T23:59:59.000Z

43

Applying Alpha-Channeling to Mirror Machines  

SciTech Connect

The ?-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic ?- particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefi t open-ended fusion devices. Here, the fundamental theory and practical aspects of ?- channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the ?-channeling mechanism. For practical implementation of the ? -channeling effect in mirror geometry, suitable contained weakly-damped modes are identifi ed. In addition, the parameter space of candidate waves for implementing the ? -channeling effect can be signi cantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the ?-channeling wave to the fuel ions.

A.I. Zhmoginov and N.J. Fisch

2012-03-16T23:59:59.000Z

44

Variable focal length deformable mirror  

DOE Patents (OSTI)

A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

Headley, Daniel (Albuquerque, NM); Ramsey, Marc (Albuquerque, NM); Schwarz, Jens (Albuquerque, NM)

2007-06-12T23:59:59.000Z

45

Alignment mirror mechanisms for space use  

Science Conference Proceedings (OSTI)

The paper describes an optical Alignment Mirror Mechanism (AMM), and discusses its control scheme. The mirror's angular positioning accuracy requirement is ± 0.2 arc-sec. This requires the mirror's linear positioning actuators to have a positioning accuracy ...

Bruno M. Jau; Colin M. McKinney; Robert F. Smythe; Dean Palmer

2011-03-01T23:59:59.000Z

46

Heliostat mirror survey and analysis  

DOE Green Energy (OSTI)

The mirrors used on concentrating solar systems must be able to withstand severe and sustained environmental stresses for long periods of time if they are to be economically acceptable. Little is known about how commercially produced wet process silvered second surface mirrors will withstand the test of time in solar applications. Field experience in existing systems has shown that the performance of the reflective surface varies greatly with time and is influenced to a large extent by the construction details of the mirror module. Degradation of the reflective layer has been seen that ranges from non-observable to severe. The exact mechanisms involved in the degradation process are not well understood from either the phenomenological or microanalytical points of view and are thus subject to much debate. The three chapters of this report summarize the work recently performed in three general areas that are key to understanding and ultimately controlling the degradation phenomena. These areas are: a survey of the present commercial mirroring industry, the microanalytical examination of numerous degraded and nondegraded mirrors, and an investigation of several novel techniques that might be used to extend the life of heliostat mirrors. Appendices include: (a) list of mirror manufacturers and (b) recommended specifications for second surface silvered mirrors for central receiver heliostat applications. (WHK)

Lind, M.A.; Buckwalter, C.Q.; Daniel, J.L.; Hartman, J.S.; Thomas, M.T.; Pederson, L.R.

1979-09-01T23:59:59.000Z

47

Electrons and Mirror Symmetry  

SciTech Connect

The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

Kumar, Krishna (University of Massachusetts, Amherst)

2007-04-04T23:59:59.000Z

48

Axisymmetric Magnetic Mirror Fusion-Fission Hybrid  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

R. W. Moir; N. N. Martovetsky; A. W. Molvik; D. D. Ryutov; T. C. Simonen

49

Dielectric Coatings for IACT Mirrors  

E-Print Network (OSTI)

Imaging Atmospheric Cherenkov Telescopes for very-high energy gamma-ray astronomy need mirror with high reflectance roughly in the wavelength between 300 and 550 nm. The current standard reflective layer of such mirrors is aluminum. Being permanently exposed to the environment they show a constant degradation over the years. New and improved dielectric coatings have been developed to enhance their resistance to environmental impact and to extend their possible lifetime. In addition, these customized coatings have an increased reflectance of over 95% and are designed to significantly lower the night-sky background contribution. The development of such coatings for mirrors with areas up to 2 m2 and low application temperatures to suite the composite materials used for the new mirror susbtrates of the Cherenkov Telescope Array (CTA) and the results of extensive durability tests are presented.

Förster, A; Chadwick, P; Held, M

2013-01-01T23:59:59.000Z

50

Machine Protection System for the Stepper Motor Actuated SyLMAND Mirrors  

SciTech Connect

SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, consists of a dedicated X-ray lithography beamline on a bend magnet port, and process support laboratories in a clean room environment. The beamline includes a double mirror system with flat, chromium-coated silicon mirrors operated at varying grazing angles of incidence (4 mrad to 45 mrad) for spectral adjustment by high energy cut-off. Each mirror can be independently moved by two stepper motors to precisely control the pitch and vertical position. We present in this paper the machine protection system implemented in the double mirror system to allow for safe operation of the two mirrors and to avoid consequences of potential stepper motor malfunction.

Subramanian, V. R.; Dolton, W.; Wells, G.; Hallin, E. [Canadian Light Source, 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada); Achenbach, S. [Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9 (Canada); TRLabs, 111-116 Research Dr., Saskatoon, SK S7N 3R3 (Canada); Karlsruhe Institute of Technology, Postfach 3640, D-76021 Karlsruhe (Germany); Klymyshyn, D. M. [Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9 (Canada); TRLabs, 111-116 Research Dr., Saskatoon, SK S7N 3R3 (Canada); Augustin, M. [Karlsruhe Institute of Technology, Postfach 3640, D-76021 Karlsruhe (Germany)

2010-06-23T23:59:59.000Z

51

Streaming-plasma measurements in the Baseball II-T mirror experiment  

SciTech Connect

The warm plasma from a deuterium-loaded titanium washer gun, streaming along magnetic-field lines through the steady-state magnetic well of Baseball II, has been examined for its suitability in this experimental situation as a target plasma for hot-ion buildup experiments and for microinstability control. The gun was positioned near the magnetic axis outside the mirror region. Measurements were made with gridded, end-loss detectors placed outside the opposite mirror, a microwave interferometer, a beam-attenuation detector, and other diagnostics.

Damm, C.C.; Foote, J.H.; Futch, A.H.; Goodman, R.K.; Hornady, R.S.; Osher, J.E.; Porter, G.D.

1977-05-09T23:59:59.000Z

52

arXiv.org help - arXiv mirror sites  

NLE Websites -- All DOE Office Websites (Extended Search)

mirror sites arXiv mirror sites Set of flags, one for each mirror site China France Germany India Japan Spain United Kingdom USA mirror hosted by LANL Main site at Cornell...

53

Mirror Confinement Systems: project summaries  

SciTech Connect

This report contains descriptions of the projects supported by the Mirror Confinement Systems (MCS) Division of the Office of Fusion Energy. The individual project summaries were prepared by the principal investigators, in collaboration with MCS staff office, and include objectives and milestones for each project. In addition to project summaries, statements of Division objectives and budget summaries are also provided.

1980-07-01T23:59:59.000Z

54

CubeSat deformable mirror demonstration  

E-Print Network (OSTI)

The goal of the CubeSat Deformable Mirror Demonstration (DeMi) is to characterize the performance of a small deformable mirror over a year in low-Earth orbit. Small form factor deformable mirrors are a key technology needed ...

Cahoy, Kerri

55

LITHIUM-BASED ELECTROCHROMIC MIRRORS  

NLE Websites -- All DOE Office Websites (Extended Search)

870 870 rd Presented at the 203 Meeting of the Electrochemical Society, April 28-30, 2003 in Paris, France and published in the Proceedings. Lithium-Based Electrochromic Mirrors Thomas J. Richardson and Jonathan L. Slack Lawrence Berkeley National Laboratory April 2003 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson* and Jonathan L. Slack Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA

56

Feasibility Studies of Alpha-Channeling in Mirror Machines  

SciTech Connect

The linear magnetic trap is an attractive concept both for fusion reactors and for other plasma applications due to its relative engineering simplicity and high-beta operation. Applying the ?- channeling technique to linear traps, such as mirror machines, can benefit this concept by efficiently redirecting ? particle energy to fuel ion heating or by otherwise sustaining plasma confinement, thus increasing the effective fusion reactivity. To identify waves suitable for ?-channeling a rough optimization of the energy extraction rate with respect to the wave parameters is performed. After the optimal regime is identified, a systematic search for modes with similar parameters in mirror plasmas is performed, assuming quasi-longitudinal or quasi-transverse wave propagation. Several modes suitable for ? particle energy extraction are identified for both reactor designs and for proof- of-principle experiments.

A. I. Zhmoginov and N. J. Fisch

2010-03-19T23:59:59.000Z

57

Temperature Anisotropy in a Shocked Plasma: Mirror-Mode Instabilities in the Heliosheath  

E-Print Network (OSTI)

We show that temperature anisotropies induced at a shock can account for interplanetary and planetary bow shock observations. Shocked plasma with enhanced plasma beta is preferentially unstable to the mirror mode instability downstream of a quasi-perpendicular shock and to the firehose instability downstream of a quasi-parallel shock, consistent with magnetic fluctuations observed downstream of a large variety of shocks. Our theoretical analysis of the solar wind termination shock suggests that the magnetic holes observed by Voyager 1 in the heliosheath are produced by the mirror mode instability. The results are also of astrophysical interest, providing an energy source for plasma heating.

Liu, Y; Belcher, J W; Kasper, J C

2007-01-01T23:59:59.000Z

58

Mirror Development for the Cherenkov Telescope Array  

E-Print Network (OSTI)

The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Micha?owski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wi?niewski, ?; Wörnlein, A; Yoshida, T

2013-01-01T23:59:59.000Z

59

Passivation coating for flexible substrate mirrors  

DOE Patents (OSTI)

A protective diffusion barrier for metalized mirror structures is provided by a layer of coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, light-weight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention. 13 figs.

Tracy, C.E.; Benson, D.K.

1988-10-19T23:59:59.000Z

60

Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection  

SciTech Connect

In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

Moiseenko, V. E.; Agren, O. [Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', Akademichna St. 1, 61108 Kharkiv (Ukraine); Uppsala University, Angstroem Laboratory, Division of Electricity, Box 534, SE-7512 Uppsala (Sweden)

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Process for preparing improved silvered glass mirrors  

DOE Patents (OSTI)

Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

Buckwalter, C.Q. Jr.

1980-01-28T23:59:59.000Z

62

Tandem mirror technology demonstration facility  

Science Conference Proceedings (OSTI)

This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

Not Available

1983-10-01T23:59:59.000Z

63

magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

I I Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs MAGNETS PART II January 10, 1997 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

64

Antihydrogen and mirror-trapped antiproton discrimination: Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap  

E-Print Network (OSTI)

Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.

C. Amole; G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; A. Deller; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; R. Hydomako; L. Kurchaninov; S. Jonsell; N. Madsen; S. Menary; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; D. M. Silveira; C. So; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele

2012-01-18T23:59:59.000Z

65

Concentrating Solar Power: Energy from Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Mirror mirror on the wall, what's the Mirror mirror on the wall, what's the greatest energy source of all? The sun. Enough energy from the sun falls on the Earth everyday to power our homes and businesses for almost 30 years. Yet we've only just begun to tap its potential. You may have heard about solar electric power to light homes or solar thermal power used to heat water, but did you know there is such a thing as solar thermal-electric power? Electric utility companies are using mirrors to concentrate heat from the sun to produce environmentally friendly electricity for cities, especially in the southwestern United States. The southwestern United States is focus- ing on concentrating solar energy because it's one of the world's best areas for sun- light. The Southwest receives up to twice the sunlight as other regions in the coun-

66

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

for Passive Passive Solar Heating Applications StephenHEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS StephenMIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS Stephen

Selkowitz, S.

2011-01-01T23:59:59.000Z

67

Production of field-reversed mirror plasma with a coaxial plasma gun  

SciTech Connect

The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

Hartman, Charles W. (Alamo, CA); Shearer, James W. (Livermore, CA)

1982-01-01T23:59:59.000Z

68

Present status of mirror stability theory  

SciTech Connect

A status report of microinstability as it applies to 2XIIB and MX theory for mirror machines is presented. It is shown that quasilinear computations reproduce many of the parameters observed in the 2XIIB experiment. In regard to large mirror machines, there are presented detailed calculations of the linear theory of the drift cyclotron loss-cone mode, with inhomogeneous geometry and nonlinear diffusive effects. Further, the stability of a mirror machine to the Alfven ion-cyclotron instability is assessed, and the Baldwin- Callen diffusion is estimated for a spatially varying plasma. (auth)

Baldwin, D. E.; Berk, H. L.; Byers, J. A.

1976-02-11T23:59:59.000Z

69

Mirror Advanced Reactor Study interim design report  

DOE Green Energy (OSTI)

The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

Not Available

1983-04-01T23:59:59.000Z

70

Conformance and mirroring for timed asychronous circuits  

Science Conference Proceedings (OSTI)

Conformance has been used as a correctness criterion for asynchronous circuits. In the case of untimed systems, conformance of an implementation to a specification is equivalent to the failure-freeness between the implementation and the mirror of the ...

Bin Zhou; Tomohiro Yoneda; Bernd-Holger Schlingloff

2001-01-01T23:59:59.000Z

71

Neutron diagnostics for mirror hybrids  

SciTech Connect

Fusion-fission (FuFi) hybrids will need instrumentation to diagnose the deuteriumtritium plasma, whose 14-MeV neutron emission is the driver of the sub-critical fission core. While the fission neutron yield rate (Y{sub fi} and hence power P{sub fi}) can be monitored with standard instrumentation, fusion plasmas in hybrids require special diagnostics where the determination of Y{sub th} ({proportional_to}P{sub fu}) is a challenge. Information on Y{sub fu} is essential for assessing the fusion plasma performance which together with Y{sub fi} allows for the validation of the neutron multiplication factor (k) of the subcritical fission core. Diagnostics for hybrid plasmas are heuristically discussed with special reference to straight field line mirror (SFLM). Relevant DT plasma experience from JET and plans for ITER in the main line of fusion research were used as input. It is shown that essential SFLM plasma information can potentially be obtained with proposed instrumentation, but the state of the hybrid plasma must be predictably robust as derived from fully diagnosed dedicated experiments without interface restrictions of the hybrid application.

Kaellne, Jan; Noack, Klaus; Agren, Olov; Gorini, Giuseppe; Tardocchi, Marco; Grosso, Giovanni [Department of Engineering Sciences, Uppsala University, Box 256, SE-751 21 Uppsala (Sweden); Universita degli Studi di Milano - Bicocca, Dip. di Fisica 'G. Occhialini', Piazza della Scienza 3, 20126, Milan (Italy)

2012-06-19T23:59:59.000Z

72

Motorized control for mirror mount apparatus  

DOE Patents (OSTI)

A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

Cutburth, Ronald W. (Tracy, CA)

1989-01-01T23:59:59.000Z

73

Technology of direct conversion for mirror reactor end-loss plasma  

DOE Green Energy (OSTI)

Design concepts are presented for plasma direct convertors (PDC) intended primarily for use on the end-loss plasma from tandem-mirror reactors. Recent experimental results confirm most of these design concepts. Both a one-stage and a two-stage PDC were tested in reactor-like conditions using a 100-kV, 6-kW ion beam. In a separate test on the end of the TMX machine, a single stage PDC recovered 79 W for a net efficiency of 50%. Tandem mirror devices are well suited to PDC. The high minimum energy of the end-loss ions, the magnetic expansion outside the mirrors, and the vacuum conditions in the end tanks required by the confined plasma, all preexist. The inclusion of a PDC is therefore a rather small addition. These facts and the scale parameters for a PDC are discussed.

Barr, W.L.; Moir, R.W.

1980-10-07T23:59:59.000Z

74

Rigid laser mirror mount and protection assembly  

SciTech Connect

A mounting assembly for supporting a Brewster window and mirror to intercept a laser beam at the end of a gas laser envelope includes an elongated tubular member having one end opening into the gas laser envelope and an opposite end closed by the Brewster window. A rigid housing supporting the mirror is joined to the tubular member close to the end having the Brewster window by a flexible sealed joint that permits limited movement of the housing relative to the tubular member generally along the length of the tubular member while inhibiting flow of contaminants from the exterior into the passage formed by the rigid housing between the Brewster window and mirror. A seal is placed between the rigid housing and mirror to inhibit flow of such contaminants into the passage from the mirror location. A mounting structure joins the rigid housing to the gas laser envelope to secure them together and includes an adjustment mechanism that permits the housing to be moved relative to the envelope for adjusting the angular orientation of the supported mirror relative to the intercepted laser beam.

Mohler, G.E.

1984-03-27T23:59:59.000Z

75

Some applications of mirror-generated electric potentials to alternative fusion concepts  

Science Conference Proceedings (OSTI)

Transient electrical potentials can be generated in plasmas by utilizing impulsive mirror-generated forces acting on the plasma electrons together with ion inertia to cause momentary charge imbalance. In the Mirrortron such potentials are generated by applying a rapidly rising (tens of nanoseconds) localized mirror field to the central region of a hot-electron plasma confined between static mirrors. Because of the loss-cone nature of the electron distribution the sudden appearance of the pulsed mirror tends to expel electrons, whereas the ion density remains nearly constant. The quasi-neutrality condition then operates to create an electrical potential the equipotential surfaces of which can be shown theoretically to be congruent with surfaces of constant B. An alternative way of generating transient potentials is to apply a pulse of high-power microwaves to a plasma residing on a magnetic field with a longitudinal gradient. This technique resembles one employed in the Pleiade experiments. At gigawatt power levels, such as those produced by a Free Electron Laser, the production of very high transient potentials is predicted. Fusion-relevant applications of these ideas include heavy-ion drivers for inertial fusion, and the possibility of employing these techniques to enhance the longitudinal confinement of fusion plasmas in multiple-mirror systems. 23 refs., 3 figs.

Post, R.F.

1990-09-24T23:59:59.000Z

76

Advances in Tandem Mirror fusion power reactors  

DOE Green Energy (OSTI)

The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

Perkins, L.J.; Logan, B.G.

1986-05-20T23:59:59.000Z

77

Tandem-mirror program: status and projection  

SciTech Connect

Construction of MFTF-B is scheduled for completion in 1985. Results of experiments in TMX-U and MFTF-B will permit the design of the D-T burning tandem-mirror next-step facility (TMNS) in which physics issues will not be at issue. TMNS will be a facility for engineering research and development. The end cells of TMNS are expected to be appropriate for a tandem-mirror demonstration fusion reactor (TMR), construction of which should begin about 1986 for operation in the 1990's.

Van Atta, C.M.

1981-03-12T23:59:59.000Z

78

Ultra-Thin Highly Deformable Composite Mirrors John Steeves  

E-Print Network (OSTI)

primary mirrors consisting of a silicon carbide structure supporting a precision optical face-sheet, whose-thin carbon-fiber shell bonded to a piezo-ceramic active layer coated with patterned electrodes. Mirrors based

Pellegrino, Sergio

79

An Advanced Fast Steering Mirror for optical communication  

E-Print Network (OSTI)

I describe in this thesis the design, fabrication, assembly, and testing of an Advanced Fast Steering Mirror (AFSM) for precision optical platforms. The AFSM consists of a mirror driven in two rotational axes by normal ...

Kluk, Daniel Joseph

2007-01-01T23:59:59.000Z

80

Blackbody radiation drag on a relativistically moving mirror  

E-Print Network (OSTI)

We compute the drag force on a mirror moving at relativistic velocity relative to blackbody radiation background.

N. R. Balasanyan; V. E. Mkrtchian

2009-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Edge diagnostics for tandem mirror machines  

SciTech Connect

The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed.

Allen, S.L.

1984-09-14T23:59:59.000Z

82

An Intelligent Chilled Mirror Humidity Instrument  

Science Conference Proceedings (OSTI)

An intelligent, chilled mirror humidity instrument has been designed for use on buoys and ships. Our design goal is for the instrument to make high-quality dewpoint temperature measurements for a period of up to one year from an unattended ...

David S. Hosom; Gennaro H. Crescenti; Clifford L. Winget; Sumner Weisman; Donald P. Doucet; James F. Price

1991-08-01T23:59:59.000Z

83

LLNL-PRES-407935 Mirror Status Workshop  

E-Print Network (OSTI)

LLNL-PRES-407935 Mirror Status Workshop September 8-9, 2008 Lawrence Berkeley National Laboratory; #12; #12; #12;LLNL-PRES-406923 Comments-9 September 2008 R. F. Post, LLNL MW08-01 #12;The Kinetic Stabilizer concept allows the use of axisymmetric

84

Method for making mirrored surfaces comprising superconducting material  

DOE Patents (OSTI)

Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

Early, J.T.; Hargrove, R.S.

1989-12-12T23:59:59.000Z

85

Verifying Mirror Technology for NGST with a Space-Qualified, Cryogenic 3.5 M Mirror  

E-Print Network (OSTI)

The lightweighting and surface accuracy targeted for NGST's 8 m primary mirror has been demonstrated in a 0.5 m prototype. Now a second, 2 m prototype weighing 40 kg in total is being fabricated at the University of Arizona under the NGST NMSD program. It will be tested in cryogenic operation in spring 1999. A third, advanced mirror system demonstrator (AMSD) is needed, the full size of an NGST segment, for flight qualification, including launch survival and extremely high reliability. The 3.5 m mirror, 1/6 the weight of HST's primary, would be made with a 2 mm thick glass face-sheet attached by adjustable screws to a carbon composite support. It would be figured as a fast telescope primary, and fully tested cryogenically to verify closed loop figure stability with simulated infrared starlight. If started in early 1999, this could be completed in 2001. Construction of the NGST mirror panels could then be undertaken on the basis of proven technology, and in time for a 2007 launch. With a diameter of 3.5 m and a weight of only 140 kg, the mirror could be incorporated into a telescope and launched to a high orbit by the Shuttle or number of other vehicles. Such a space mission would complement those already planned for scaled down tests of the unfolding of the NGST mirror segments (NEXUS) and the sunshade (ISIS). Much would be learned by running the mirror at cryogenic temperature, with a new infrared array to make preliminary observations in the 2 - 4 microns dark sky window, and a CCD to check optical image quality. This mission would be independent of the NGST, but would lay the scientific groundwork for the much more powerful telescope, as well as giving practical experience of mirror operation.

Roger Angel; Jim Burge

1998-08-11T23:59:59.000Z

86

Mirrors for synchrotron-radiation beamlines  

Science Conference Proceedings (OSTI)

The authors consider the role of mirrors in synchrotron-radiation beamlines and discuss the optical considerations involved in their design. They discuss toroidal, spherical, elliptical, and paraboloidal mirrors in detail with particular attention to their aberration properties. They give a treatment of the sine condition and describe its role in correcting the coma of axisymmetric systems. They show in detail how coma is inevitable in single-reflection, grazing-incidence systems but correctable in two-reflection systems such as those of the Wolter type. In an appendix, they give the theory of point aberrations of reflectors of a general shape and discuss the question of correct naming of aberrations. In particular, a strict definition of coma is required if attempts at correction are to be based on the sine condition.

Howells, M.R.

1993-09-01T23:59:59.000Z

87

Fiber optics welder having movable aligning mirror  

SciTech Connect

A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

Higgins, Robert W. (Los Alamos, NM); Robichaud, Roger E. (Jemez Springs, NM)

1981-01-01T23:59:59.000Z

88

Magnetic chicane for terahertz management  

DOE Patents (OSTI)

The introduction of a magnetic electron beam orbit chicane between the wiggler and the downstream initial bending dipole in an energy recovering Linac alleviates the effects of radiation propagated from the downstream bending dipole that tend to distort the proximate downstream mirror of the optical cavity resonator.

Benson, Stephen (Yorktown, VA); Biallas, George Herman (Yorktown, VA); Douglas, David (Yorktown, VA); Jordan, Kevin Carl (Newport News, VA); Neil, George R. (Williamsburg, VA); Michelle D. Shinn (Newport News, VA); Willams, Gwyn P. (Yorktown, VA)

2010-12-28T23:59:59.000Z

89

Mirror Film Company Has 'Concentrated' Plans for Expansion | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion September 10, 2010 - 1:19pm Addthis Lorelei Laird Writer, Energy Empowers In concentrating solar power, glass is king-but it's fighting to hold on to its crown. The reflectivity of glass mirrors makes them a great choice for focusing sunlight onto a heat generator. However, the glass mirrors can be expensive and heavy -- reducing their ability to compete with conventional energy sources. ReflecTech Inc. has an option: a silvered polymer-based film that does the same job, but with half the weight and cost. Using that film, the company can make 100,000 square feet of mirror panels per year at its factory in Arvada, Colo. Through an Advanced Manufacturing 48C tax credit through the Recovery Act,

90

Intelligent mirror monitor and controller for synchrotron radiation beam lines  

SciTech Connect

A microprocessor-based, stand-alone mirror monitor and control system has been developed for synchrotron radiation beam lines. The operational requirements for mirror position and tilt angle, including the parameters for controlling the number of steps, direction, speed and acceleration of the driving motors, may be programmed into EPROMS. The instruction sequence to carry out critical motions will be stored in a program buffer. A manual control knob is also provided to fine tune the mirror position if desired. A synchronization scheme for the height and tilt motions maintains a fixed mirror angle during insertion. Absolute height and tilt angle are displayed. Electronic (or programmable) tilt angle limits are provided to protect against damage from misalignment of high power beams such as focussed wiggler beams. A description of mirror drives with a schematic diagram is presented. Although the controller is made for mirror movers, it can be used in other applications where multiple stepping motors perform complex synchronized motions.

Xu, X.L.; Yang, J.

1983-01-01T23:59:59.000Z

91

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

deposition rates and production costs were reviewed todiscussion of heat mirror production cost Most of our effortcoating plastic film. Production costs for coating glass

Selkowitz, S.

2011-01-01T23:59:59.000Z

92

Nondispersive neutron focusing method beyond the critical angle of mirrors  

DOE Patents (OSTI)

This invention extends the Kirkpatrick-Baez (KB) mirror focusing geometry to allow nondispersive focusing of neutrons with a convergence on a sample much larger than is possible with existing KB optical schemes by establishing an array of at least three mirrors and focusing neutrons by appropriate multiple deflections via the array. The method may be utilized with supermirrors, multilayer mirrors, or total external reflection mirrors. Because high-energy x-rays behave like neutrons in their absorption and reflectivity rates, this method may be used with x-rays as well as neutrons.

Ice, Gene E. (Oak Ridge, TN)

2008-10-21T23:59:59.000Z

93

Tandem mirror reactor as a synthetic fuel producer  

DOE Green Energy (OSTI)

A scoping design is reported of a fusion reactor based on tandem mirror physics coupled to thermochemical processes for the production of hydrogen.

Werner, R.W.

1980-01-01T23:59:59.000Z

94

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Data Tools & Models ... Oil production growth in the Bakken shale play mirrors somewhat the growth in natural gas production ... U.S. Department of Energy USA.gov

95

Characterizing solar mirror materials using portable reflectometers  

DOE Green Energy (OSTI)

Currently available portable instrumentation for hemispherical and specular reflectance measurements of solar mirror materials is discussed. Particular attention is given to the wavelength dependence of the measurement spectrum, which in most cases does not approximate a solar spectral distribution, and to other limitations of each instrument. Because a portable instrument is not available that can determine the solar averaged specular reflectance from a single measurement, two procedures are recommended for obtaining a reasonable estimate for this quantity using the existing portable equipment. Finally, future developments in this area are briefly discussed.

Pettit, R.B.

1982-09-01T23:59:59.000Z

96

Wave-Driven Rotation In Centrifugal Mirrors  

SciTech Connect

Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-03-28T23:59:59.000Z

97

Flute instability in the tandem mirror with the divertor/dipole regions  

Science Conference Proceedings (OSTI)

The numerical simulation is performed in GAMMA10 A-divertor magnetic configuration, which is a candidate of remodeled device of the GAMMA10 tandem mirror [M. Inutake et al., Phys. Rev. Lett. 55, 939 (1985)]. Both divertor and dipole regions are included in the numerical calculation, which is a new point. The electron short circuit effect along x-point, therefore, is not assumed so that it is not used the boundary condition of the electrostatic perturbations being zero at the separatrix on which the magnetic field lines pass through x-point. The simulation results reveal that the dipole field plays a role of a good magnetic field line curvature to the GAMMA10 A-divertor, and so the flute modes are stabilized without help of electron short circuit effects.

Katanuma, I.; Masaki, S.; Sato, S.; Sekiya, K.; Ichimura, M.; Imai, T. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

2011-11-15T23:59:59.000Z

98

Six Conjectures in Quantum Physics and Computational Neuroscience  

Science Conference Proceedings (OSTI)

A paradox on Hilbert's problem 6 is identified. To avoid the paradox, equilibrium-based YinYang bipolar sets and bipolar dynamic logic (BDL) are introduced. Bipolar quantum entanglement is defined. BDL leads to a bipolar axiomatization for physics. Applicability ... Keywords: YinYang Bipolar Dynamic Logic (BDL), Bipolar Universal Modus Ponens (BUMP), Axiomatization for Physics, Bipolar Quantum Entanglement, Computational Neuroscience

Wen-Ran Zhang

2009-02-01T23:59:59.000Z

99

EUV testing of multilayer mirrors: critical issues  

DOE Green Energy (OSTI)

Recently, while performing extensive EUV irradiation endurance testing on Ru-capped multilayer mirrors in the presence of elevated partial pressures of water and hydrocarbons, NIST has observed that the amount of EUV-induced damage actually decreases with increasing levels of water vapor above {approx} 5 x 10{sup -7} Torr. It is thought that the admitted water vapor may interact with otherwise stable, condensed carbonaceous species in an UHV vacuum system to increase the background levels of simple gaseous carbon-containing molecules. Some support for this hypothesis was demonstrated by observing the mitigating effect of very small levels of simple hydrocarbons with the intentional introduction of methyl alcohol in addition to the water vapor. It was found that the damage rate decreased by at least an order of magnitude when the partial pressure of methyl alcohol was just one percent of the water partial pressure. These observations indicate that the hydrocarbon components of the vacuum environment under actual testing conditions must be characterized and controlled to 10{sup -11} Torr or better in order to quantify the damage caused by high levels of water vapor. The possible effects of exposure beam size and out-of-band radiation on mirror lifetime testing will also be discussed.

Hill, S B; Ermanoski, I; Grantham, S; Tarrio, C; Lucatorto, T B; Madey, T E; Bajt, S; Chandhok, M; Yan, P; Wood, O; Wurn, S; Edwards, N V

2006-02-24T23:59:59.000Z

100

Atomic hydrogen density measurements in the Tara tandem mirror experiment  

DOE Green Energy (OSTI)

Neutral and plasma density have been measured in the north well of the central cell of the Tara tandem mirror (Nucl. Fusion {bold 22}, 549 (1982)). The electron plasma density and temperature on the magnetic axis were measured by Thomson scattering to be about 3{times}10{sup 12} cm{sup {minus}3} and 70 eV, respectively. The corresponding axial neutral hydrogen density was found to be 1 {times}10{sup 9} cm{sup {minus}3}, while near the plasma edge at {ital r}=15 cm it reached 1{times}10{sup 10} cm{sup {minus}3}. The fill gas density at {ital r}{ge}22.5 cm was {approx}10{sup 11} cm{sup {minus}3}. Additional information from secondary electron detectors was used to estimate the radial ion temperature distribution, which was found to have about the same width, 12 cm, as the plasma density. The resulting ion pressure profile is peaked compared to the electron pressure profile. Charge exchange losses in the well are found to have a maximum at a radius equal to half the {ital e}-folding distance of the plasma density and ion temperature distributions.

Guss, W.C.; Yao, X.Z.; Pocs, L.; Mahon, R.; Casey, J.; Horne, S.; Lane, B.; Post, R.S.; Torti, R.P. (Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (USA))

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Octupole coil configuration for the Tandem Mirror Experiment Upgrade (TMX-U)  

Science Conference Proceedings (OSTI)

The octupole plug concept offers the attractive possibility of reducing the length of the plug and transition sections in tandem mirror reactors. In the Tandem Mirror Experiment Upgrade (TMX-U), we are designing an octupole plug-transition that will replace our current quadrupole plug-transition. The reduction in length is made possible by the more nearly circular plasma cross section throughout the plug and transition sections. The principal physics of the design is the magnetohydrodynamic (MHD) stabilization of the core plasma in the plug by a hot electron ring in the mantle region surrounding the core. This hot electron mantle is MHD stable because of the good curvature field lines provided by the octupole. The positive radial pressure gradient in the hot electron mantle in turn stabilizes the core's plasma. Each octupole set consists of six coils replacing the transition and plug sets in the existing TMX-U experiment. The central cell coils will remain unchanged. Five of the coils for each of the new sets will be fabricated, while one, the 6-T mirror coil, will be reused from TMX-U. This paper will elaborate on the design configuration of the magnets. In particular, the configuration provides for adequate neutral beam lines-of-sight, and access for 0.615 MW of electron-cyclotron resonant heating (ECRH) on each end.

Wong, R.L.; Calderon, M.O.; Felker, B.; Jackson, M.C.; Pedrotti, L.R.

1985-11-14T23:59:59.000Z

102

Shima-uta : of windows, mirrors, and the adventures of a traveling song  

E-Print Network (OSTI)

5. “Shima-Uta” as Window, “Shima-Uta” as Mirror . . . 5.1.THESIS “SHIMA-UTA:” OF WINDOWS, MIRRORS, AND THE ADVENTURESDIEGO “SHIMA-UTA:” OF WINDOWS, MIRRORS, AND THE ADVENTURES

Alarcón-Jiménez, Ana-María

2009-01-01T23:59:59.000Z

103

Magic mirror: a new VR platform design and its applications  

Science Conference Proceedings (OSTI)

This paper describes a case study of VR platform Magic Mirror and its applications that are economic in development process and cost, flexible by contents and installation conditions, and that has business potential for consumer market. Magic Mirror ... Keywords: IR, VR, composition, distant learning, interaction, tangible interface, vision tracking

Ig-Jae Kim; Hyun Jin Lee; Hyoung-Gon Kim

2004-09-01T23:59:59.000Z

104

Metaphor or diagram?: comparing different representations for group mirrors  

Science Conference Proceedings (OSTI)

This paper aims at answering the question how ambient displays can be used as group mirrors to support collaborative (learning) activities. Our research question is to what extent the type of feedback representation affects collaborative processes. Two ... Keywords: ambient display, collaborative learning, group mirror, metaphor

Sara Streng; Karsten Stegmann; Heinrich Hußmann; Frank Fischer

2009-11-01T23:59:59.000Z

105

Minimum-mirror-area single-stage solar concentrators  

SciTech Connect

A means of generating a comcentrating mirror of minimum size for a given average flux-concentration output is outlined. The method is useful for acceptance angles typical of those required for tilting and tracking solar concentrators and can result in substantial cost savings when expensive mirrors (i.e.,glass) are used. Comparisons are made with compound parabolic concentrators.

Mills, D.; Harting, E.; Giutronich, J.E.; Cellich, W.; Morton, A.; Walker, I.

1980-12-01T23:59:59.000Z

106

Lower Cost CPV 3-Sun Mirror Modules  

SciTech Connect

In a series of patent applications filed between 2002 and 2005, JX Crystals Inc described a evolutionary lower-cost low-concentration planar solar photovoltaic module that uses multiple linear rows of silicon cells and standard one-sun circuit laminations incorporating glass and EVA weather proofing encapsulations. The three novel features that we described are interdependent and integrated together to yield lower cost PV modules. These 3 novel features are: (1) The use of rows of linear mirrors or linear Fresnel lenses aligned with the cell rows and concentrating the sunlight onto the cell rows. (2) The addition of a thin aluminum sheet heat spreader on the back of the circuit lamination to spread the heat away from the cell rows so that the cell operating temperature remains acceptably low. (3) The incorporation of slots in the back of the aluminum sheet heat spreader to accommodate the differences in thermal expansion between the silicon cells, the glass, and the aluminum so that the circuit interconnectivity is maintained over time. Various embodiments of this planar linear concentrator panel are shown in figures 1 to 5. Figures 1 and 2 show the original planar linear concentrator module concept from July of 2002 with either mirrors (figure 1) or linear Fresnel lenses (figure 2). The idea was expanded in 2003 with the idea of an aluminum sheet heat spreader added to the back of a standard PV circuit lamination as shown in figure 3. In 2003, we also transitioned from half cells to third cells using SunPower cells as shown in figure 4. JX Crystals Inc then received funding for the 3-sun PV mirror module concept from the Shanghai Science and Technology Commission in 2003 and from the Shanghai Flower Port and the Shanghai Import and Export Trading Company in 2005. This funding led to a 800 panel pilot production run of our JX Crystals designed 3-sun module in 2006. 672 of these panels were installed in a 100 kW demonstration and an additional 24 panels were installed in a second 4 kW demonstration both at the Flower Port in Shanghai. Both of these systems were completed in 2006. Our 3-sun PV Panel concept has been described previously (see references 1, 2, & 3 available at www.jxcrystals.com under publication tab). We are now interested in bringing this potentially lower cost 3-sun technology back to the US. For any new technology, three issues need to be addressed. They are performance, durability, and cost. These topics are addressed in the next 3 sections.

Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Huang, H, [JX Crystals, Inc.; Gehl, Anthony C [ORNL; Maxey, L Curt [ORNL

2007-01-01T23:59:59.000Z

107

Coating thermal noise of a finite-size cylindrical mirror  

E-Print Network (OSTI)

Thermal noise of a mirror is one of the limiting noise sources in the high precision measurement such as gravitational-wave detection, and the modeling of thermal noise has been developed and refined over a decade. In this paper, we present a derivation of coating thermal noise of a finite-size cylindrical mirror based on the fluctuation-dissipation theorem. The result agrees to a previous result with an infinite-size mirror in the limit of large thickness, and also agrees to an independent result based on the mode expansion with a thin-mirror approximation. Our study will play an important role not only to accurately estimate the thermal-noise level of gravitational-wave detectors but also to help analyzing thermal noise in quantum-measurement experiments with lighter mirrors.

Kentaro Somiya; Kazuhiro Yamamoto

2009-03-17T23:59:59.000Z

108

Silicon nitride protective coatings for silvered glass mirrors  

DOE Patents (OSTI)

A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

Tracy, C.E.; Benson, D.K.

1984-07-20T23:59:59.000Z

109

Background-reducing X-ray multilayer mirror  

DOE Patents (OSTI)

Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

Bloch, Jeffrey J. (Los Alamos, NM); Roussel-Dupre' , Diane (Los Alamos, NM); Smith, Barham W. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

110

Background-reducing x-ray multilayer mirror  

DOE Patents (OSTI)

This invention is comprised of a background-reducing x-ray multilayer mirror. A multiple-layer ``wavetrap`` deposited over the surface of a layered synthetic microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 {Angstrom} wavelengths have been optimized, while that at 304 {Angstrom} has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, their number and distance for the ``wavetrap.``

Bloch, J.J.; Roussel-Dupre, D.; Smith, B.W.

1990-08-03T23:59:59.000Z

111

Engineering and manufacturing of ITER first mirror mock-ups  

SciTech Connect

Most of the ITER optical diagnostics aiming at viewing and monitoring plasma facing components will use in-vessel metallic mirrors. These mirrors will be exposed to a severe plasma environment and lead to an important tradeoff on their design and manufacturing. As a consequence, investigations are carried out on diagnostic mirrors toward the development of optimal and reliable solutions. The goals are to assess the manufacturing feasibility of the mirror coatings, evaluate the manufacturing capability and associated performances for the mirrors cooling and polishing, and finally determine the costs and delivery time of the first prototypes with a diameter of 200 and 500 mm. Three kinds of ITER candidate mock-ups are being designed and manufactured: rhodium films on stainless steel substrate, molybdenum on TZM substrate, and silver films on stainless steel substrate. The status of the project is presented in this paper.

Joanny, M.; Travere, J. M.; Salasca, S.; Corre, Y. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Marot, L. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Thellier, C.; Gallay, G.; Cammarata, C.; Passier, B.; Ferme, J. J. [SESO, 305 Rue Louis Armand CS 30504, 13593 Aix-en-Provence Cedex 3 (France)

2010-10-15T23:59:59.000Z

112

Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror  

DOE Patents (OSTI)

A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

Lerner, Scott A. (Corvalis, OR)

2006-01-10T23:59:59.000Z

113

Spin Chains as Perfect Quantum State Mirrors  

E-Print Network (OSTI)

Quantum information transfer is an important part of quantum information processing. Several proposals for quantum information transfer along linear arrays of nearest-neighbor coupled qubits or spins were made recently. Perfect transfer was shown to exist in two models with specifically designed strongly inhomogeneous couplings. We show that perfect transfer occurs in an entire class of chains, including systems whose nearest-neighbor couplings vary only weakly along the chain. The key to these observations is the Jordan-Wigner mapping of spins to noninteracting lattice fermions which display perfectly periodic dynamics if the single-particle energy spectrum is appropriate. After a half-period of that dynamics any state is transformed into its mirror image with respect to the center of the chain. The absence of fermion interactions preserves these features at arbitrary temperature and allows for the transfer of nontrivially entangled states of several spins or qubits.

Peter Karbach; Joachim Stolze

2005-01-03T23:59:59.000Z

114

Contained Modes In Mirrors With Sheared Rotation  

SciTech Connect

In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

Abraham J. Fetterman and Nathaniel J. Fisch

2010-10-08T23:59:59.000Z

115

Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade  

Science Conference Proceedings (OSTI)

The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs.

Ress, D.B.

1988-06-01T23:59:59.000Z

116

Quantum dissipative effects in graphene-like mirrors  

E-Print Network (OSTI)

We study quantum dissipative effects due to the accelerated motion of a single, imperfect, zero-width mirror. It is assumed that the microscopic degrees of freedom on the mirror are confined to it, like in plasma or graphene sheets. Therefore, the mirror is described by a vacuum polarization tensor $\\Pi_{\\alpha\\beta}$ concentrated on a time-dependent surface. Under certain assumptions about the microscopic model for the mirror, we obtain a rather general expression for the Euclidean effective action, a functional of the time-dependent mirror's position, in terms of two invariants that characterize the tensor $\\Pi_{\\alpha\\beta}$. The final result can be written in terms of the TE and TM reflection coefficients of the mirror, with qualitatively different contributions coming from them. We apply that general expression to derive the imaginary part of the `in-out' effective action, which measures dissipative effects induced by the mirror's motion, in different models, in particular for an accelerated graphene sheet.

C. D. Fosco; F. C. Lombardo; F. D. Mazzitelli; M. L. Remaggi

2013-07-02T23:59:59.000Z

117

Gamma-ray Bursts Produced by Mirror Stars  

E-Print Network (OSTI)

I argue that cosmic Gamma-ray Bursts (GRB) may be produced by collapses or mergers of stars made of `mirror' matter. The mirror neutrinos (which are sterile for our matter) produced at these events can oscillate into ordinary neutrinos. The annihilations or decays of the latter create an electron-positron plasma and subsequent relativistic fireball with a very low baryon load needed for GRBs. The concept of mirror matter is able to explain several key problems of modern astrophysics: neutrino anomalies, the missing mass, MACHO microlensing events and GRBs. Thus this concept becomes very appealing and should be considered quite seriously and attentively.

S. Blinnikov

1999-02-21T23:59:59.000Z

118

Summary of the MARS tandem-mirror reactor design  

SciTech Connect

A recently completed two-year study of a commercial tandem-mirror reactor design (Mirror Advanced Reactor Study (MARS)) is briefly reviewed. The end plugs are designed for trapped-particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24 T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted. General characteristics of the MARS tandem mirror and STARFIRE tokamak reactor design are compared. A design of an upgrade of MFTF-B incorporating many of the MARS features is discussed.

Logan, B.G.

1983-09-01T23:59:59.000Z

119

A DATA-DRIVEN MODEL FOR THE GLOBAL CORONAL EVOLUTION  

Science Conference Proceedings (OSTI)

This work is devoted to the construction of a data-driven model for the study of the dynamic evolution of the global corona that can respond continuously to the changing of the photospheric magnetic field. The data-driven model consists of a surface flux transport (SFT) model and a global three-dimensional (3D) magnetohydrodynamic (MHD) coronal model. The SFT model is employed to produce the global time-varying and self-consistent synchronic snapshots of the photospheric magnetic field as the input to drive our 3D numerical global coronal AMR-CESE-MHD model on an overset grid of Yin-Yang overlapping structure. The SFT model and the 3D global coronal model are coupled through the boundary condition of the projected characteristic method. Numerical results of the coronal evolution from 1996 September 4 to October 29 provide a good comparison with multiply observed coronal images.

Feng Xueshang; Jiang Chaowei; Xiang Changqing [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Zhao Xuepu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Wu, S. T., E-mail: fengx@spaceweather.ac.cn, E-mail: cwjiang@spaceweather.ac.cn, E-mail: cqxiang@spaceweather.ac.cn, E-mail: xpzhao@sun.stanford.edu, E-mail: wus@uah.edu [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2012-10-10T23:59:59.000Z

120

Is There a Switchable Mirror in Your Future?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is There a Switchable Mirror in Your Future? Is There a Switchable Mirror in Your Future? Speaker(s): Thomas Richardson Date: February 10, 2005 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Venkat Srinivasan Electrochromic devices (switchable mirrors) that exhibit large dynamic ranges for reflectance in the visible and infrared regimes can now be made using a variety of materials. Devices incorporating these films can be used to improve energy efficiency in buildings and vehicles by controlling the flow of heat not only through windows and skylights, but also through opaque roof and wall panels. Switchable mirrors based on three completely different chemical reactions have been developed at LBNL. The best known example utilizes conversion of a thin metal film to an insulating and transparent metal hydride by either direct exposure to hydrogen gas

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SLAC National Accelerator Laboratory - K-B Mirrors Harness X...  

NLE Websites -- All DOE Office Websites (Extended Search)

B Mirrors Harness X-rays for Science By Mike Ross October 11, 2011 Up close, they look simple as can be: a pair of metal bars, each with one side polished to a brilliant shine. One...

122

Windows and mirrors needed for a laser-driven photoneutralizer  

SciTech Connect

Rough estimates of the neutral fraction obtainable from a photoneutralizer and of the power required to operate it are presented as functions of the window and mirror performance. More precise information will become available in the future.

Fink, J.H.

1983-06-22T23:59:59.000Z

123

Trapped Ion Imaging with a High Numerical Aperture Spherical Mirror  

E-Print Network (OSTI)

Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.

G Shu; M R Dietrich; N Kurz; B B Blinov

2009-01-29T23:59:59.000Z

124

Trapped Ion Imaging with a High Numerical Aperture Spherical Mirror  

E-Print Network (OSTI)

Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.

Shu, G; Kurz, N; Blinov, B B

2009-01-01T23:59:59.000Z

125

Lightweight diaphragm mirror module system for solar collectors  

DOE Patents (OSTI)

A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

Butler, B.L.

1984-01-01T23:59:59.000Z

126

Lightweight diaphragm mirror module system for solar collectors  

DOE Patents (OSTI)

A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

Butler, Barry L. (Golden, CO)

1985-01-01T23:59:59.000Z

127

Wavefront control in space with MEMS deformable mirrors  

E-Print Network (OSTI)

To meet the high contrast requirement of 1 × 10[superscript ?10] to image an Earth-like planet around a Sun-like star, space telescopes equipped with coronagraphs require wavefront control systems. Deformable mirrors (DMs) ...

Cahoy, Kerri L.

128

Aerosols: Smoke and Mirrors of the Climate System  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols: Smoke and Mirrors of the Climate System Speaker(s): Dr. Harshvardhan Date: May 16, 2011 - 3:00pm Location: 90-3075 Seminar HostPoint of Contact: Surabi Menon Solid and...

129

Durable Corrosion and Ultraviolet-Resistant Silver Mirror  

DOE Patents (OSTI)

A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

Jorgensen, G. J.; Gee, R.

2006-01-24T23:59:59.000Z

130

Kinetic effects on ballooning modes in mirror machines  

SciTech Connect

A general procedure for examining the influence of kinetic effects on the stability of magnetohydrodynamic ballooning modes in mirror machines is presented. In particular, the basic kinetic ballooning mode equation for a nonaxisymmetric, arbitrary beta system with anisotropic pressure is derived. Considering a long-thin equilibrium typical of the tandem mirror, it is shown that this governing eigenmode equation reduces to a simple form independent of wave-particle resonant effects.

Tang, W.M.; Catto, P.J.

1981-07-01T23:59:59.000Z

131

Switchable Mirrors Based on Nickel-Magnesium Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Switchable Mirrors Based on Nickel-Magnesium Films Switchable Mirrors Based on Nickel-Magnesium Films Title Switchable Mirrors Based on Nickel-Magnesium Films Publication Type Journal Article LBNL Report Number LBNL-47180 Year of Publication 2001 Authors Richardson, Thomas J., Jonathan L. Slack, Robert D. Armitage, Robert Kostecki, Baker Farangis, and Michael D. Rubin Journal Applied Physics Letters Volume 78 Pagination 3047 Call Number LBNL-47180 Abstract An electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin, magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on cathodic polarization in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction, and to protect the metal surface against oxidation.

132

Whisper gallery mirrors reflectivities from 100 [angstrom] to 500 [angstrom  

SciTech Connect

We have examined optical constants and predicted reflectivities of candidate surface coatings for whisper gallery mirrors in the extreme ultraviolet (100 [Angstrom] to 500 [Angstrom]). Previous work of Vinogradov and coworkers have identified the spectral regime near 100-150 [Angstrom] as particularly promising due to the high whisper gallery mirror reflectivities of the noble metals in the vicinity of their Cooper minima in this regime. We confirm this basic result using newer optical data, and we have sought surface materials which would extend the range over which the whisper gallery mirrors may be used: between 100 to 500 [Angstrom]. We find that substantial whisper gallery mirror reflectivities (near or greater than 50%) are predicted for a variety of elements, and that the TE peak reflection is larger than TM peak reflection by on the order of 10%. However, most of the elements which do reflect well have surfaces that are vulnerable to oxygen contamination, which seriously degrades mirror performance. A cryogenic mirror design using a dynamic solid rare gas surface which has the potential to defeat such surface contaminations is described: it has peak reflectivity of more than 50% centered near 280 [Angstrom]. 8 figs, 18 refs.

Hung, Tsen-Yu; Hagelstein, P.L.

1990-01-01T23:59:59.000Z

133

Whisper gallery mirrors reflectivities from 100 {angstrom} to 500 {angstrom}  

Science Conference Proceedings (OSTI)

We have examined optical constants and predicted reflectivities of candidate surface coatings for whisper gallery mirrors in the extreme ultraviolet (100 {Angstrom} to 500 {Angstrom}). Previous work of Vinogradov and coworkers have identified the spectral regime near 100-150 {Angstrom} as particularly promising due to the high whisper gallery mirror reflectivities of the noble metals in the vicinity of their Cooper minima in this regime. We confirm this basic result using newer optical data, and we have sought surface materials which would extend the range over which the whisper gallery mirrors may be used: between 100 to 500 {Angstrom}. We find that substantial whisper gallery mirror reflectivities (near or greater than 50%) are predicted for a variety of elements, and that the TE peak reflection is larger than TM peak reflection by on the order of 10%. However, most of the elements which do reflect well have surfaces that are vulnerable to oxygen contamination, which seriously degrades mirror performance. A cryogenic mirror design using a dynamic solid rare gas surface which has the potential to defeat such surface contaminations is described: it has peak reflectivity of more than 50% centered near 280 {Angstrom}. 8 figs, 18 refs.

Hung, Tsen-Yu; Hagelstein, P.L.

1990-12-31T23:59:59.000Z

134

Evaluation of solar mirror figure by moire contouring  

DOE Green Energy (OSTI)

Moire topography is applied to the figure assessment of solar mirrors. The technique is demonstrated on component facets of a six-meter diameter, four-meter focal length, parabolic dish collector. The relative ease of experimental implementation and subsequent data analysis suggests distinct advantages over the more established laser ray trace or BCS/ICS technique for many applications. The theoretical and experimental considerations necessary to fully implement moire topography on mirror surfaces are detailed. A procedure to de-specularize the mirror is demonstrated which conserves the surface morphology without damaging the reflective surface. The moire fringe patterns observed for the actual mirror facets are compared with theoretical contours generated for representative dish facets using a computer simulation algorithm. A method for evaluating the figure error of the real facet is presented in which the error parameter takes the form of an average absolute deviation of the surface slope from theoretical. The experimental measurement system used for this study employs a 200 line/inch Ronchi transmission grating. The mirror surface is illuminated by a collimated beam at 60/sup 0/. The fringe observation is performed normal to the grating. These parameters yield contour intervals for the fringe patterns of 0.073 mm. The practical considerations for extending the techniques to higher resolution are discussed.

Griffin, J.W.; Lind, M.A.

1980-06-01T23:59:59.000Z

135

Casimir Momentum of a Chiral Molecule in a Magnetic Field  

E-Print Network (OSTI)

In a classical description, a neutral, polarizable object acquires a kinetic momentum when exposed to crossed electric and magnetic fields. In the presence of only a magnetic field no such momentum exists classically, although it is symmetry-allowed for an object lacking mirror symmetry. We perform a full QED calculation to show that the quantum vacuum coupled to a chiral molecule provides a kinetic "Casimir" momentum directed along the magnetic field, proportional to its rotatory power and the fine structure constant.

Manuel Donaire; Bart van Tiggelen; Geert L. J. A. Rikken

2013-04-24T23:59:59.000Z

136

Thermal characteristics of a classical solar telescope primary mirror  

E-Print Network (OSTI)

We present a detailed thermal and structural analysis of a 2m class solar telescope mirror which is subjected to a varying heat load at an observatory site. A 3-dimensional heat transfer model of the mirror takes into account the heating caused by a smooth and gradual increase of the solar flux during the day-time observations and cooling resulting from the exponentially decaying ambient temperature at night. The thermal and structural response of two competing materials for optical telescopes, namely Silicon Carbide -best known for excellent heat conductivity and Zerodur -preferred for its extremely low coefficient of thermal expansion, is investigated in detail. The insight gained from these simulations will provide a valuable input for devising an efficient and stable thermal control system for the primary mirror.

Banyal, Ravinder K

2011-01-01T23:59:59.000Z

137

Switchable mirrors based on nickel-magnesium films  

DOE Green Energy (OSTI)

A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

2001-01-16T23:59:59.000Z

138

Towards all-optical optomechanics: An optical spring mirror  

E-Print Network (OSTI)

The dominant hurdle to the operation of optomechanical systems in the quantum regime is the coupling of the vibrating element to a thermal reservoir via mechanical supports. Here we propose a scheme that uses an optical spring to replace the mechanical support. We show that the resolved-sideband regime of cooling can be reached in a configuration using a high-reflectivity disk mirror held by an optical tweezer as one of the end-mirrors of a Fabry-Perot cavity. We find a final phonon occupation number of the trapped mirror ${\\bar n}$= 0.14 for reasonable parameters, well within the quantum regime. This demonstrates the promise of dielectric disks attached to optical springs for the observation of quantum effects in macroscopic objects.

S. Singh; G. A. Phelps; D. S. Goldbaum; E. M. Wright; P. Meystre

2010-05-19T23:59:59.000Z

139

A Single Atom as a Mirror of an Optical Cavity  

E-Print Network (OSTI)

By tightly focussing a laser field onto a single cold ion trapped in front of a far-distant dielectric mirror, we could observe a quantum electrodynamic effect whereby the ion behaves as the optical mirror of a Fabry-P\\'erot cavity. We show that the amplitude of the laser field is significantly altered due to a modification of the electromagnetic mode structure around the atom in a novel regime in which the laser intensity is already changed by the atom alone. e propose a direct application of this system as a quantum memory for single photons.

G. Hétet; L. Slodi?ka; M. Hennrich; R. Blatt

2011-05-10T23:59:59.000Z

140

ATLAS and CMS hints for a mirror Higgs boson  

Science Conference Proceedings (OSTI)

ATLAS and CMS have provided hints for the existence of a Higgs-like particle with mass of about 144 GeV with production cross section into standard decay channels which is about 50% that of the standard model Higgs boson. We show that this 50% suppression is exactly what the mirror matter model predicts when the two scalar mass eigenstates, each required to be maximal admixtures of a standard and mirror-Higgs boson, are separated in mass by more than their decay widths but less than the experimental resolution. We discuss prospects for the future confirmation of this interesting hint for nonstandard Higgs physics.

Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R. [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 (Australia)

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The hybrid reactor project based on the straight field line mirror concept  

SciTech Connect

The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with 'semi-poor' plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Q{sub r} = P{sub fis}/P{sub fus}>>1. The upper bound on Q{sub r} is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Q{sub r} Almost-Equal-To 150, corresponding to a neutron multiplicity of k{sub eff}=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement T{sub e} Almost-Equal-To 10 keV for a fusion reactor. Power production in the SFLM seems possible with Q Almost-Equal-To 0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on the implications of the geometry for possible diagnostics. Reactor safety issues are addressed and a vertical orientation of the device could assist passive coolant circulation. Specific attention is put to a device with a 25 m long confinement region and 40 cm plasma radius in the mid-plane. In an optimal case (k{sub eff}= 0.97) with a fusion power of only 10 MW, such a device may be capable of producing a power of 1.5 GW{sub th}.

Agren, O.; Noack, K.; Moiseenko, V. E.; Hagnestal, A.; Kaellne, J.; Anglart, H. [Uppsala University, Angstroem Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', 61108 Kharkiv (Ukraine); Uppsala University, Angstroem Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Royal Institute of Technology, Nuclear Reactor Technology, SE 100 44 Stockholm (Sweden)

2012-06-19T23:59:59.000Z

142

Integrated modeling and design of lightweight, active mirrors for launch survival and on-orbit performance  

E-Print Network (OSTI)

Lightweight, active mirrors are an enabling technology for large aperture, space-based optical systems. These mirrors have the potential to improve the optical resolution and sensitivity beyond what is currently possible. ...

Cohan, Lucy Elizabeth

2010-01-01T23:59:59.000Z

143

A color spatial display based on a Raster framebuffer and varifocal mirror  

E-Print Network (OSTI)

A very simple 30 color display has been constructed. It consists of a 20 display viewed in a rapidly vibrating varifocal mirror. The changing focal length of the mirror is responsible for providing the depth; when the ...

Carson, Kenneth M

1985-01-01T23:59:59.000Z

144

Floer cohomology in the mirror of the projective plane and a binodal cubic curve  

E-Print Network (OSTI)

We construct a family of Lagrangian submanifolds in the Landau-Ginzburg mirror to the projective plane equipped with a binodal cubic curve as anticanonical divisor. These objects correspond under mirror symmetry to the ...

Pascaleff, James Thomas

2011-01-01T23:59:59.000Z

145

Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature  

E-Print Network (OSTI)

Mirror thermal noise is and will remain one of the main limitations to the sensitivity of gravitational wave detectors based on laser interferometers. We report about projected mirror thermal noise due to losses in the mirror coatings and substrates. The evaluation includes all kind of thermal noises presently known. Several of the envisaged substrate and coating materials are considered. The results for mirrors operated at room temperature and at cryogenic temperature are reported.

Janyce Franc; Nazario Morgado; Raffaele Flaminio; Ronny Nawrodt; Iain Martin; Liam Cunningham; Alan Cumming; Sheila Rowan; James Hough

2009-12-01T23:59:59.000Z

146

Transparent heat mirrors for passive solar heating applications  

DOE Green Energy (OSTI)

Recent progress in the development of transparent heat mirror coatings for energy-efficient windows and passive solar applications is reviewed. It appears that cost-efficient coatings promising savings of 25 to 75%, depending upon application, may be available to window manufacturers and homeowners in the next one to three years. Performance, applications, and limitations are discussed.

Selkowitz, S.

1978-03-01T23:59:59.000Z

147

EFFECT OF TIN BOMBARDMENT AND DEPOSITION ON COLLECTOR MIRROR  

E-Print Network (OSTI)

Ultraviolet (EUV) reflective properties of candidate mirror materials is a critical issue for the commercial regarding optics lifetime during EUV source operation. Two types of Sn exposures were performed in IMPACT due to vapor condensation, while the energetic source simulates bombardment due to energetic ions

Harilal, S. S.

148

Mirror stability of a hot electron ring plasma  

SciTech Connect

The free energy associated with the anisotropy in the velocity space of a microwave-heated hot electron distribution can drive the mirror mode unstable. The real frequency of this instability is of the same order as the diamagnetic drift frequency of the hot electrons.

Tsang, K.T.

1983-01-01T23:59:59.000Z

149

Thermal instability of thermonuclear plasma in a mirror field  

SciTech Connect

In this paper, the thermal stability of a thermonuclear plasma in a mirror reactor is obtained by a simple model. The effect of the loss of thermonuclear alpha particles due to collisional pitch-angel scattering into loss cones is included in this analysis. The effect of the collisional loss is significant, and it has a stabilizing effect on the thermal instability.

Mizuno, N. (Nihon Univ., Tokyo (Japan). Coll. of Science and Engineering)

1990-11-01T23:59:59.000Z

150

Thin?film conducting microgrids as transparent heat mirrors  

Science Conference Proceedings (OSTI)

A new type of transparent heat mirror for solar?energy applications has been fabricated by chemically etching a Sn?doped In2O3 film to form a transparent conducting microgrid. For square openings 2.5 ?m on a side

John C. C. Fan; Frank J. Bachner; R. A. Murphy

1976-01-01T23:59:59.000Z

151

Alpha Channeling in Mirror Machines N. J. Fisch  

E-Print Network (OSTI)

.20.ÿj, 52.55.Jd, 52.55.Pi Because of their engineering simplicity, high-#12;, and steady-state operation- state operation [9]. These effects would lower significantly the cost of electricity by tokamak fusion through uses of rf heating. Coupling rf power into the mirror tends to pump-out plasma [3,4], but it might

152

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

153

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

154

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

155

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

156

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

157

Lasers without Mirrors, Designed by Supercomputer - NERSC SCience News  

NLE Websites -- All DOE Office Websites (Extended Search)

Lasers without Lasers without Mirrors, Designed by Supercomputer Lasers without Mirrors, Designed by Supercomputer October 14, 2009 | Tags: Lasers, Life Sciences, Materials Science Contact: Ji Qiang | Lawrence Berkeley National Laboratory | JQiang@lbl.gov John Corlett | Lawrence Berkeley National Laboratory, Center for Beam Physics | JNCorlett@lbl.gov Sometimes it takes a big machine to understand the tiniest details. That's the case with free electron lasers (FELs). The powerful X-rays they generate can probe matter directly at the level of atomic interactions and chemical-bond formation, letting scientists observe such phenomena as chemical reactions in trace elements, electric charges in photosynthesis and the structure of microscopic machines. FELs have the potential to

158

Standardization of Solar Mirror Reflectance Measurements - Round Robin Test: Preprint  

DOE Green Energy (OSTI)

Within the SolarPaces Task III standardization activities, DLR, CIEMAT, and NREL have concentrated on optimizing the procedure to measure the reflectance of solar mirrors. From this work, the laboratories have developed a clear definition of the method and requirements needed of commercial instruments for reliable reflectance results. A round robin test was performed between the three laboratories with samples that represent all of the commercial solar mirrors currently available for concentrating solar power (CSP) applications. The results show surprisingly large differences in hemispherical reflectance (sh) of 0.007 and specular reflectance (ss) of 0.004 between the laboratories. These differences indicate the importance of minimum instrument requirements and standardized procedures. Based on these results, the optimal procedure will be formulated and validated with a new round robin test in which a better accuracy is expected. Improved instruments and reference standards are needed to reach the necessary accuracy for cost and efficiency calculations.

Meyen, S.; Lupfert, E.; Fernandez-Garcia, A.; Kennedy, C.

2010-10-01T23:59:59.000Z

159

Shielding of mirror FERF plasma by arc discharges  

SciTech Connect

The feasibility of shielding a mirror-confined fusion plasma against erosion by incident neutrals with a plasma blanket generated by an array of hollow-cathode arc discharges was studied. Such a plasma blanket could also be used for linetying stabilization of a single mirror confined plasma as well as to provide a warm plasma stream for stabilization of microinstabilities. The requirements for the plasma blanket are dependent on the parameter ..gamma.., the ratio of the actual cross-field diffusion coefficient to the classical value. The power requirement compares favorably with power loss due to change exchange without shielding. More importantly, the blanket permits a relaxation of vacuum requirements to prevent erosion of the hot plasma by background neutrals.

Woo, J.T.

1976-12-08T23:59:59.000Z

160

Near-field enhancement of metal nano-particle based on the light focusing by the micro-parabolic mirror  

E-Print Network (OSTI)

Near-field enhancement of metal nano-particle based on the light focusing by the micro-parabolic mirror , , , , Abstract We propose to use a micro-parabolic mirror, in order to improve the near- parabolic mirror, the mirror-reflected light can be efficiently transformed into the near-field of the nano

Park, Namkyoo

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wave-driven Rotation in Supersonically Rotating Mirrors  

SciTech Connect

Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

A. Fetterman and N.J. Fisch

2010-02-15T23:59:59.000Z

162

Simulation of Alpha-Channeling in Mirror Machines  

SciTech Connect

Applying ?-channeling techniques to mirror machines can significantly increase their effective reactivity, thus making open configurations more advantageous for practical fusion. A large fraction of ? particle energy can be extracted using rf waves. Effects employed to cool ? particles can also in principle be used to heat the fusion ions; the possibility to design a configuration of rf waves which could be used to perform both tasks is demonstrated.

A.I. Zhmoginov, N.J. Fisch

2008-03-17T23:59:59.000Z

163

Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind  

Science Conference Proceedings (OSTI)

The proton temperature anisotropy in the solar wind is known to be constrained by the theoretical thresholds for pressure-anisotropy-driven instabilities. Here, we use approximately 1x10{sup 6} independent measurements of gyroscale magnetic fluctuations in the solar wind to show for the first time that these fluctuations are enhanced along the temperature anisotropy thresholds of the mirror, proton oblique firehose, and ion cyclotron instabilities. In addition, the measured magnetic compressibility is enhanced at high plasma beta (beta{sub ||} > or approx. 1) along the mirror instability threshold but small elsewhere, consistent with expectations of the mirror mode. We also show that the short wavelength magnetic fluctuation power is a strong function of collisionality, which relaxes the temperature anisotropy away from the instability conditions and reduces correspondingly the fluctuation power.

Bale, S. D. [Physics Department and Space Sciences Laboratory, University of California, Berkeley, California (United States); Kasper, J. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts (United States); Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa (United States); Quataert, E. [Physics Department and Astronomy Department, University of California, Berkeley, California (United States); Salem, C.; Sundkvist, D. [Space Sciences Laboratory, University of California, Berkeley, California (United States)

2009-11-20T23:59:59.000Z

164

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site |  

Open Energy Info (EERE)

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Author U.S. Geological Survey Published U.S. Geological Survey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site [Internet]. 2013. U.S. Geological Survey. [cited 2013/10/16]. Available from: http://water.usgs.gov/ogw/bgas/toxics/ml_bips.html Retrieved from "http://en.openei.org/w/index.php?title=Borehole_Imaging_of_In_Situ_Stress_Tests_at_Mirror_Lake_Research_Site&oldid=688729"

165

Mirror mounts designed for the Advanced Photon Source SRI-CAT  

SciTech Connect

Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National laboratory, has many advantages. A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows one to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper.

Shu, D.; Benson, C.; Chang, J. [and others

1997-09-01T23:59:59.000Z

166

Development of mirror manipulator for hard-x-ray nanofocusing at sub-50-nm level  

Science Conference Proceedings (OSTI)

X-ray focusing using Kirkpatrick-Baez (KB) mirrors is promising owing to their capability of highly efficient and energy-tunable focusing. We report the development of a mirror manipulator which enables KB mirror alignment with a high degree of accuracy. Mirror alignment tolerances were estimated using two types of simulators. On the basis of the simulation results, the mirror manipulator was developed to achieve an optimum KB mirror setup. As a result of focusing tests at BL29XUL of SPring-8, the beam size of 48x36 nm{sup 2} (VxH) was achieved in the full width at half maximum at an x-ray energy of 15 keV. Spatial resolution tests showed that a scanning x-ray microscope equipped with the KB focusing system could resolve line-and-space patterns of 80 nm linewidth in a high visibility of 60%.

Matsuyama, S.; Mimura, H.; Yumoto, H.; Hara, H.; Yamamura, K.; Sano, Y.; Endo, K.; Mori, Y.; Yabashi, M.; Nishino, Y.; Tamasaku, K.; Ishikawa, T.; Yamauchi, K. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); SPring-8/Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Mikazuki, Hyogo 679-5148 (Japan); SPring-8/RIKEN, 1-1-1 Kouto, Mikazuki, Hyogo 679-5148 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2006-09-15T23:59:59.000Z

167

Deployable telescope having a thin-film mirror and metering structure  

Science Conference Proceedings (OSTI)

A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

Krumel, Leslie J. (Cedar Crest, NM); Martin, Jeffrey W. (Albuquerque, NM)

2010-08-24T23:59:59.000Z

168

Measurement and modeling of mirror distortion in a high power FEL  

Science Conference Proceedings (OSTI)

Mirror heating in a high power FEL can alter the optical mode and affect the gain of the laser. This can lead to a large reduction of the laser power from ideal values. Measurements of the power and mode size in the Jefferson Lab IR Demo laser have shown clear evidence of mirror distortion at high average power leading (up to 17 kW incident on the mirrors and over 40 W absorbed per mirror). The measurements and comparisons with modeling will be presented. Both steady state and transient analyses and measurements are considered.

Benson, S.; Neil, G.; Michelle D. Shinn

2000-01-01T23:59:59.000Z

169

Underwater Mirror Exposure to Free-Ranging Naïve Atlantic Spotted Dolphins (Stenella frontalis) in the Bahamas  

E-Print Network (OSTI)

Vocalizations and associated underwater behavior of free-Comparative Psychology Underwater Mirror Exposure to Free-frontalis) has been studied underwater in the Bahamas. We

Delfour, Fabienne; Herzing, Denise

2013-01-01T23:59:59.000Z

170

Quantum state transfer between a Bose-Einstein condensate and an optomechanical mirror  

E-Print Network (OSTI)

In this paper we describe a scheme for state transfer between a trapped atomic Bose condensate and an optomechanical end-mirror mediated by a cavity field. Coupling between the mirror and the cold gas arises from the fact that the cavity field can produce density oscillations in the gas which in turn acts as an internal Bragg mirror for the field. After adiabatic elimination of the cavity field we find that the hybrid system of the gas and mirror is described by a beam splitter Hamiltonian that allows for state transfer, but only if the quantum nature of the cavity field is retained.

S. Singh; H. Jing; E. M. Wright; P. Meystre

2012-02-28T23:59:59.000Z

171

Producing thermochemical hydrogen with the tandem-mirror reactor  

SciTech Connect

Fusion power holds the promise to supply not only electricity but also fuels to meet the balance of our energy needs. A new integrated power and breeding blanket design is described for tandem mirror reactors. The blanket incorporates features that make it suitable for synthetic fuel production. In particular, it is matched to the thermal and electrical power requirements of the General Atomic water-splitting process for production of hydrogen. Some improvements to the high temperature chemical process steps are described. These improvements are expected to allow production of hydrogen at about $13/GJ wholesale, including financing costs, capital amortization, and profit.

Werner, R.W.; Hickman, R.G.

1982-05-07T23:59:59.000Z

172

HEPDATA: High Energy Physics Reaction Database (SLAC Mirror)  

DOE Data Explorer (OSTI)

HEPDATA: Reaction Data Database contains numerical values of HEP scattering data such as total and differential cross sections, fragmentation functions, structure functions, and polarisation measurements, from a wide range of experiments. It is compiled by the Durham Database Group (UK) with help from the COMPAS group (Russia,) and is updated at regular intervals.[copied from http://www.slac.stanford.edu/spires/hepdata/index.html] While DOE does not fund this resource, the database does contain data generated by various DOE groups. SLAC hosts the mirror of the Durham database on its website in California.

173

Effect of hydrogen-switchable mirrors on the Casimir force  

E-Print Network (OSTI)

We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a Hydrogen Switchable Mirror (HSM). HSMs are shiny metals that can become transparent by hydrogenation. In spite of such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials.

Davide Iannuzzi; Mariangela Lisanti; Federico Capasso

2004-03-19T23:59:59.000Z

174

Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors  

SciTech Connect

As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effect desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.

Redmond, James M.; Barney, Patrick S.; Henson, Tammy D.

1999-07-28T23:59:59.000Z

175

Transparent heat mirrors for solar-energy applications  

SciTech Connect

Transparent heat-mirror films, which transmit solar radiation but reflect ir thermal radiation, have potentially important applications in solar/thermal/electric conversion, solar heating, solar photovoltaic conversion, and window insulation. We have used rf sputtering to prepare two types of films: TiO/sub 2//Ag/TiO/sub 2/ and Sn-doped In/sub 2/O/sub 3/. To characterize the properties of heat-mirror films for solar-energy collection, we define the parameters ..cap alpha../sub eff/, the effective solar absorptivity, and epsilon/sub eff/, the effective ir emissivity. For our Sn-doped In/sub 2/O/sub 3/ films, ..cap alpha../sub eff//epsilon/sub eff/ is comparable to the values of ..cap alpha../epsilon reported for the leading selective absorbers. Even higher values of ..cap alpha../sub eff//epsilon/sub eff/ are obtained for the TiO/sub 2//Ag/TiO/sub 2/ films.

Fan, J.C.C.; Bachner, F.J.

1976-04-01T23:59:59.000Z

176

Mirror alignment and focus of point-focus solar concentrators  

DOE Green Energy (OSTI)

Distributed point-focusing solar concentrators are being developed for dish-Stirling systems and other applications. Many of these concentrators make use of faceted mirrors that have to be accurately aligned. Some of the solar concentrator designs use stretched-membrane facets that also require focusing. Accurate mirror alignment and focus of faceted solar concentrators have two benefits. First, the concentration ratio of the concentrator/receiver (collector) system is improved with accurate alignment and focus. The receiver aperture diameter can therefore be smaller, thereby reducing thermal losses from the receiver and improving the overall efficiency of the collector. Second, and perhaps more importantly, flux intensities on the receiver can be sensitive to facet alignment and focus. In this paper, the theory and practical application of an alignment and focusing technique are presented. In the technique, light from an artificial source is reflected from the concentrator`s facets to a target. From basic geometric principles, the shape and location of the reflected light on the target can be predicted. Alignment is accomplished by adjusting the facets aim so that the reflected image falls on the predetermined location. To focus a stretched-membrane facet, the reflected image size is adjusted to match that of the target. The governing equations used to draw the alignment targets are developed and the practical application of the technique to the alignment and focus of the Cummins Power Generation, Inc. CPG-460 are presented. Alignment uncertainty associated with this technique on the CPG-460 is also discussed.

Diver, R.B.

1994-11-01T23:59:59.000Z

177

Evaluation of cellular glasses for solar mirror panel applications  

DOE Green Energy (OSTI)

An analytic technique is developed to compare the structural and environmental performance of various materials considered for backing of second surface glass solar mirrors. Metals, ceramics, dense molded plastics, foamed plastics, forest products and plastic laminates are surveyed. Cellular glass is determined to be a prime candidate due to its low cost, high stiffness-to-weight ratio, thermal expansion match to mirror glass, evident minimal environmental impact and chemical and dimensional stability under conditions of use. While applications could employ this material as a foam core or compressive member of a composite material system, the present analysis addresses the bulk material only, allowing a basis for simple extrapolations. The current state of the art and anticipated developments in cellular glass technology are discussed. Material properties are correlated to design requirements using a Weibull weakest link statistical method appropriate for describing the behavior of such brittle materials. A mathematical model is presented which suggests a design approach which allows minimization of life cycle cost; given adequate information for a specific aplication, this would permit high confidence estimates of the cost/performance factor. A mechanical and environmental testing program is outlined, designed to providea material property basis for development of cellular glass hardware, together with methodology for collecting lifetime predictive data required by the mathematical treatment provided herein. Preliminary material property data from measurements is given.

Giovan, M.; Adams, M.

1979-06-15T23:59:59.000Z

178

Superconducting Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

magnet technology has allowed physicists to attain higher energies in circular accelerators. One can obtain higher magnetic fields because there is no resistance in a...

179

Wind buffeting effects on the Gemini 8m primary mirrors M. K. Cho1,2  

E-Print Network (OSTI)

Wind buffeting effects on the Gemini 8m primary mirrors M. K. Cho1,2 , L. Stepp1 , and S. Kim3 and Mechanical Engineering, University of Arizona, 1130 N. Mountain, Tucson, AZ 85721 #12;Wind buffeting effects mirror distortion caused by wind pressure variations. To quantify telescope wind loading effects

180

Studies in tandem mirror theory. Paper IAEA-CN-38/F-4  

SciTech Connect

This paper discusses the formation, maintenance, and microstability of thermal barriers, which have been introduced as a means for improving tandem mirror reactor performance at reduced technological demands. It also describes calculations of tandem mirror central-cell ..beta.. limits due to MHD ballooning modes.

Baldwin, D.E.; Cohen, R.H.; Cutler, T.A.

1980-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SOME ASPECTS OF HIGH TEMPERATURE PLASMA RESEARCH WITH THE MIRROR MACHINE  

SciTech Connect

The major effort of the Livermore Mirror Machine group is directed toward study of plasma stabllity and confinement in mirror geometries. The status and radial density distribution and diffusion of confined plasma are briefly summarized. The ALICE Experiment (Adiabatic Lowenergy Injection and Capture Experiment) is discussed in some detnil. (W.D.M.)

Post, R.F.

1960-01-20T23:59:59.000Z

182

GDT-based neutron source with multiple-mirror end plugs  

SciTech Connect

We present a new linear trap to be built at the Budker Institute. It combines gasdynamictype central cell with sloshing ions for beam fusion and the multiple-mirror end plugs for improved axial confinement. Thus it is designed as an efficient neutron source and a testbed for future development of mirror-based fusion reactors.

Beklemishev, A.; Anikeev, A.; Burdakov, A.; Ivanov, A.; Ivanov, I.; Postupaev, V.; Sinitsky, S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

2012-06-19T23:59:59.000Z

183

Open-ended magnetic confinement systems for fusion  

Science Conference Proceedings (OSTI)

Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ``closed`` and `open``. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research.

Post, R.F.; Ryutov, D.D.

1995-05-01T23:59:59.000Z

184

Galactic structure explained with dissipative mirror dark matter  

E-Print Network (OSTI)

Dissipative dark matter, such as mirror dark matter and related hidden sector dark matter candidates, requires an energy source to stabilize dark matter halos in spiral galaxies. It has been proposed previously that supernovae could be the source of this energy. Recently, it has been argued that this mechanism might explain two galactic scaling relations inferred from observations of spiral galaxies. One of which is that $\\rho_0 r_0$ is roughly constant, and another relates the galactic luminosity to $r_0$. [$\\rho_0$ is the dark matter central density and $r_0$ is the core radius.] Here we derive equations for the heating of the halo via supernova energy, and the cooling of the halo via thermal bremsstrahlung. These equations are numerically solved to obtain constraints on the $\\rho_0, \\ r_0$ parameters appropriate for spiral galaxies. These constraints are in remarkable agreement with the aforementioned scaling relations.

R. Foot

2013-04-17T23:59:59.000Z

185

All solid-state SBS phase conjugate mirror  

DOE Patents (OSTI)

A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

Dane, Clifford B. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

1999-01-01T23:59:59.000Z

186

A dark matter scaling relation from mirror dark matter  

E-Print Network (OSTI)

Mirror dark matter, and other similar dissipative dark matter candidates, need an energy source to stabilize dark matter halos in spiral galaxies. It has been suggested previously that ordinary supernovae can potentially supply the required energy. By matching the energy supplied to the halo from supernovae to that lost due to radiative cooling, we here derive a rough scaling relation, $R_{SN} \\propto \\rho_0 r_0^2$ ($R_{SN}$ is the supernova rate and $\\rho_0, \\ r_0$ the dark matter central density and core radius). Such a relation is consistent with dark matter properties inferred from studies of spiral galaxies with halo masses larger than $3\\times 10^{11} M_\\odot$. We speculate that other observed galaxy regularities might be explained within the framework of such dissipative dark matter.

R. Foot

2013-03-07T23:59:59.000Z

187

Mirror Advanced Reactor Study (MARS): executive summary and overview  

DOE Green Energy (OSTI)

Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (<10 W/cm/sup 2/), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li/sub 17/Pb/sub 83/) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000/sup 0/C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter.

Logan, B.G.; Perkins, L.J.; Gordon, J.D.

1984-07-01T23:59:59.000Z

188

Magnetic Measurement Results of the LCLS Undulator Quadrupoles  

Science Conference Proceedings (OSTI)

This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

Anderson, S

2011-08-18T23:59:59.000Z

189

TeV Scale Quantum Gravity and Mirror Supernovae as Sources of Gamma Ray Bursts  

E-Print Network (OSTI)

Mirror matter models have been suggested recently as an explanation of neutrino puzzles and microlensing anomalies. We show that mirror supernovae can be a copious source of energetic gamma rays if one assumes that the quantum gravity scale is in the TeV range. We show that under certain assumptions plausible in the mirror models, the gamma energies could be degraded to the 10 MeV range (and perhaps even further) so as to provide an explanation of observed gamma ray bursts. This mechanism for the origin of the gamma ray bursts has the advantage that it neatly avoids the ``baryon load problem''.

R. N. Mohapatra; S. Nussinov; V. L. Teplitz

1999-09-22T23:59:59.000Z

190

Heavy-atom neutral beams for tandem-mirror end plugs  

DOE Green Energy (OSTI)

The advantages of neutral beams with Z greater than or equal to 3 formed from negative ions, accelerated to 0.5 to 1.0 MeV/amu, and neutralized with high efficiency, are investigated for use in tandem mirror reactor end plugs. These beams can produce Q's of 20 to 30, and thus can replace the currently proposed 200 to 500 keV neutral proton beams presently planned for tandem mirror reactors. Thus, these Z greater than or equal to 3 neutral beams increase the potential attractiveness of tandem mirror reactors by offering a substitute for difficult high energy neutral hydrogen end plug beams.

Post, D.E.; Grisham, L.R.; Santarius, J.F.; Emmert, G.A.

1981-05-01T23:59:59.000Z

191

Magnetic Storms  

Science Conference Proceedings (OSTI)

... magnetic reversal. As there is no predictive science of geomagnetism, we currently lack even simple forecasts. Our scientific ...

2010-10-05T23:59:59.000Z

192

Magnetic Imaging  

Science Conference Proceedings (OSTI)

... data-storage and permanent magnets with increased energy products, in ... Optimization of future materials, including improved yields, requires an ...

2012-10-02T23:59:59.000Z

193

Magnetic Properties  

Science Conference Proceedings (OSTI)

...Since the discovery of high-temperature superconductors in 1986 (Ref 10), the demonstration of magnetic flux exclusion

194

Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles  

DOE Green Energy (OSTI)

This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

Werner, R.W.; Ribe, F.L.

1981-01-21T23:59:59.000Z

195

Design of a small fast steering mirror for airborne and aerospace applications  

E-Print Network (OSTI)

This thesis presents the analysis and design of a small advanced fast steering mirror (sAFSM) for airborne and aerospace platforms. The sAFSM provides feedback-controlled articulation of two rotational axes for precision ...

Boulet, Michael Thomas

2008-01-01T23:59:59.000Z

196

Optical-level structural modelling of membrane mirrors for spaceborne telescopes  

E-Print Network (OSTI)

The astronomy and Earth observation communities desire ever-larger space telescopes, but launch costs limit mass and technology limits size. Current research in large aperture mirrors largely supports deployed rigid optics, ...

De Blonk, Brett Jeffrey, 1971-

2003-01-01T23:59:59.000Z

197

Microfabricated surface ion trap on a high-finesse optical mirror  

E-Print Network (OSTI)

A novel approach to optics integration in ion traps is demonstrated based on a surface electrode ion trap that is microfabricated on top of a dielectric mirror. Additional optical losses due to fabrication are found to be ...

Herskind, Peter F.

198

The Behavior of the Snow White Chilled-Mirror Hygrometer in Extremely Dry Conditions  

Science Conference Proceedings (OSTI)

The Snow White hygrometer, made by Meteolabor AG, Switzerland, is a new chilled-mirror instrument using a thermoelectric Peltier cooler to measure atmospheric water vapor. Its performance under dry conditions is evaluated in simultaneous ...

H. Vömel; M. Fujiwara; M. Shiotani; F. Hasebe; S. J. Oltmans; J. E. Barnes

2003-11-01T23:59:59.000Z

199

Method for pulse control in a laser including a stimulated brillouin scattering mirror system  

DOE Patents (OSTI)

A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

Dane, C. Brent (Livermore, CA); Hackel, Lloyd (Livermore, CA); Harris, Fritz B. (Rocklin, CA)

2007-10-23T23:59:59.000Z

200

Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same  

DOE Patents (OSTI)

A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

Dane, C. Brent (Livermore, CA); Hackel, Lloyd (Livermore, CA); Harris, Fritz B. (Rocklin, CA)

2007-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of metrology instruments for grazing incidence mirrors  

Science Conference Proceedings (OSTI)

The effective utilization of synchrotron radiation (SR) from high-brightness sources requires the use of optical components with very smooth surfaces and extremely precise shapes. Most manufacturers are not capable of measuring the figure and finish quality of the aspheric optics required for use in grazing incidence beam lines. Over the past several years we have developed measurement techniques and metrology instrumentation that have allowed us to measure the surface profile and roughness of large cylinder optics, up to one meter in length. Based on our measurements and feedback, manufacturers have been able to advance the state-of-the-art in mirror fabrication and are now able to produce acceptable components. Our analysis techniques enable designers to write meaningful specifications and predict the performance of real surfaces in their particular beamline configurations. Commercial instruments are now available for measuring surface microroughness with spatial periods smaller than about one millimeter. No commercial instruments are available for measuring the surface figure on cylindrical aspheres over long spatial periods, from one millimeter up to one meter. For that reason we developed a Long Trace Profiler (LTP) that measures surface profile over the long period range in a non-contact manner to extremely high accuracy. Examples of measured surfaces and data analysis techniques will be discussed, and limitations on the quality of optical surfaces related to intrinsic material properties will also be discussed. 15 refs., 14 figs., 2 tabs.

Takacs, P.Z. (Brookhaven National Lab., Upton, NY (USA)); Church, E.L. (Army Research and Development Command, Dover, NJ (USA)); Qian, Shi-nan (China Univ. of Science and Technology, Hefei, AH (China). Hefei National Synchrotron Radiation Lab.); Liu, Wuming (Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics)

1989-10-01T23:59:59.000Z

202

Electric and magnetic response to the continuum for A=7 isobars in a dicluster model  

E-Print Network (OSTI)

Mirror isobars $^7$Li and $^7$Be are investigated in a dicluster model. The magnetic dipole moments and the magnetic dipole response to the continuum are calculated in this framework. The magnetic contribution is found to be small with respect to electric dipole and quadrupole excitations even at astrophysical energies, at a variance with the case of deuteron. Energy weighted molecular sum rules are evaluated and a formula for the molecular magnetic dipole sum rule is found which matches the numerical calculations. Cross-sections for photo-dissociation and radiative capture as well as the S-factor for reactions of astrophysical significance are calculated with good agreement with known experimental data.

A. Mason; R. Chatterjee; L. Fortunato; A. Vitturi

2008-06-25T23:59:59.000Z

203

The kinetic stabilizer: a route to simpler tandem mirror systems  

SciTech Connect

As we enter the new millennium there is a growing urgency to address the issue of finding long-range solutions to the world's energy needs. Fusion offers such a solution, provided economically viable means can be found to extract useful energy from fusion reactions. While the magnetic confinement approach to fusion has a long and productive history, to date the mainline approaches to magnetic confinement, namely closed systems such as the tokamak, appear to many as being too large and complex to be acceptable economically, despite the impressive progress that has made toward the achievement of fusion-relevant confinement parameters. Thus there is a growing feeling that it is imperative to search for new and simpler approaches to magnetic fusion, ones that might lead to smaller and more economically attractive fusion power plants.

Post, R F

2001-02-02T23:59:59.000Z

204

LCLS X-ray mirror measurements using a large aperture visible light interferometer  

Science Conference Proceedings (OSTI)

Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior to installation to meet this intent. This paper describes how a 300 mm aperture phasing interferometer was calibrated to LCLS) at Stanford Linear Accelerator Center. Measuring focus mirrors with an interferometer requires additional calibration, because high fringe density introduces systematic errors from the interferometer's imaging optics. This paper describes how these errors can be measured and corrected. The calibration approaches described here apply equally well to interferometers larger than 300 mm aperture, which are becoming more common in optics laboratories. The objective of this effort was to install LCLS flats with < 10 nm of spherical curvature, and < 2 nm rms a-sphere. The objective was met by measuring the mirrors after fabrication, coating and mounting, using a 300 mm aperture phasing interferometer calibrated to an accuracy < 1 nm. The key to calibrating the interferometer accurately was to sample the error using independent geometries that are available. The results of those measurements helped identify and reduce calibration error sources. The approach used to measure flats applies equally well to focus mirrors, provided an additional calibration is performed to measure the error introduced by fringe density. This calibration has been performed on the 300 mm aperture interferometer, and the measurement correction was evaluated for a typical focus mirror. The 300 mm aperture limitation requires stitching figure measurements together for many X-ray mirrors of interest, introducing another possible error source. Stitching is eliminated by applying the calibrations described above to larger aperture instruments. The authors are presently extending this work to a 600 mm instrument. Instruments with 900 mm aperture are now becoming available, which would accommodate the largest mirrors of interest.

McCarville, T; Soufli, R; Pivovaroff, M

2011-03-02T23:59:59.000Z

205

Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators  

SciTech Connect

This paper compares the gain that can be achieved with a one- or two-stage concentrator, when the first stage is a Fresnel lens or a parabolic mirror, as a function of the luminosity of the concentrator. The results show that the achievable gain using a parabolic mirror is greater than that obtained using a flat or roof lens but is lower than that obtained using a curved lens.

Lorenzo, E.; Luque, A.

1982-05-15T23:59:59.000Z

206

Demonstration of a 17 cm robust carbon fiber deformable mirror for adaptive optics  

Science Conference Proceedings (OSTI)

Carbon-fiber reinforced polymer (CFRP) composite is an attractive material for fabrication of optics due to its high stiffness-to-weight ratio, robustness, zero coefficient of thermal expansion (CTE), and the ability to replicate multiple optics from the same mandrel. We use 8 and 17 cm prototype CFRP thin-shell deformable mirrors to show that residual CTE variation may be addressed with mounted actuators for a variety of mirror sizes. We present measurements of surface quality at a range of temperatures characteristic of mountaintop observatories. For the 8 cm piece, the figure error of the Al-coated reflective surface under best actuator correction is {approx}43 nm RMS. The 8 cm mirror has a low surface error internal to the outer ring of actuators (17 nm RMS at 20 C and 33 nm RMS at -5 C). Surface roughness is low (< 3 nm P-V) at a variety of temperatures. We present new figure quality measurements of the larger 17 cm mirror, showing that the intra-actuator figure error internal to the outer ring of actuators (38 nm RMS surface with one-third the actuator density of the 8 cm mirror) does not scale sharply with mirror diameter.

Ammons, S M; Hart, M; Coughenour, B; Romeo, R; Martin, R; Rademacher, M

2011-09-12T23:59:59.000Z

207

Quasi-equilibrium electron density along a magnetic field line  

SciTech Connect

A methodology is developed to determine the density of high-energy electrons along a magnetic field line for a low-{beta} plasma. This method avoids the expense and statistical noise of traditional particle tracking techniques commonly used for high-energy electrons in bombardment plasma generators. By preserving the magnetic mirror and assuming a mixing timescale, typically the elastic collision frequency with neutrals, a quasi-equilibrium electron distribution can be calculated. Following the transient decay, the analysis shows that both the normalized density and the reduction fraction due to collision converge to a single quasi-equilibrium solution.

Mao, Hann-Shin; Wirz, Richard [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095 (United States)

2012-11-26T23:59:59.000Z

208

Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Extreme magnetic fields (>2 tesla), especially when combined with temperature, are being shown to revolutionize materials processing and ...

209

Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescopes  

E-Print Network (OSTI)

We report on the microscopic surface structure of carbon-fiber-reinforced silicon carbide (C/SiC) composite mirrors that have been improved for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and other cooled telescopes. The C/SiC composite consists of carbon fiber, silicon carbide, and residual silicon. Specific microscopic structures are found on the surface of the bare C/SiC mirrors after polishing. These structures are considered to be caused by the different hardness of those materials. The roughness obtained for the bare mirrors is 20 nm rms for flat surfaces and 100 nm rms for curved surfaces. It was confirmed that a SiSiC slurry coating is effective in reducing the roughness to 2 nm rms. The scattering properties of the mirrors were measured at room temperature and also at 95 K. No significant change was found in the scattering properties through cooling, which suggests that the microscopic surface structure is stable with changes in temperature down to cryogenic values. The C/SiC mirror with the SiSiC slurry coating is a promising candidate for the SPICA telescope.

Keigo Enya; Takao Nakagawa; Hidehiro Kaneda; Takashi Onaka; Tuyoshi Ozaki; Masami Kume

2007-07-10T23:59:59.000Z

210

Testing the mirror world hypothesis for the close-in extrasolar planets  

E-Print Network (OSTI)

Because planets are not expected to be able to form close to stars due to the high temperatures, it has been suggested that the observed close orbiting ($\\sim 0.05$ AU) large mass planets ($\\sim M_J$) might be mirror worlds -- planets composed predominately of mirror matter. The accretion of ordinary matter onto the mirror planet (from e.g. the solar wind from the host star) will make the mirror planet opaque to ordinary radiation with an effective radius $R_p$. It was argued in a previous paper, astro-ph/0101055, that this radius was potentially large enough to explain the measured size of the first transiting close-in extrasolar planet, HD209458b. Furthermore, astro-ph/0101055, made the rough prediction: $R_p \\propto \\sqrt{{T_s \\over M_p}}$, where $T_s$ is the surface temperature of the ordinary matter in the mirror planet and $M_p$ is the mass of the planet (the latter dependence being the more robust prediction). We compare this prediction with the recently discovered transiting planets, OGLE-TR-56b and OGLE-TR-113b.

R. Foot

2004-06-10T23:59:59.000Z

211

Magnetic instabilities in collisionless astrophysical rotating plasma with anisotropic pressure  

Science Conference Proceedings (OSTI)

A technique is developed for analytical study of instabilities in collisionless astrophysical rotating plasma with anisotropic pressure that may lead to magnetic turbulence. Description is based on a pair of equations for perturbations of the radial magnetic field and the sum of magnetic field and perpendicular plasma pressures. From these equations, a canonical second-order differential equation for the perturbed radial magnetic field is derived and, subsequently, the dispersion relation for local perturbations. The paper predicts two varieties of hybrid instabilities due to the effects of differential plasma rotation and pressure anisotropy: The rotational-firehose and rotational-mirror ones. When the gravitation force is weak compared with the perpendicular pressure gradient, a new family of instabilities (the pressure-gradient-driven) is revealed.

Mikhailovskii, A. B.; Pustovitov, V. D.; Erokhin, N. N. [Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); Lominadze, J. G. [Kharadze Abastumani National Astrophysical Observatory, 2a, Kazbegi Ave., Tbilisi 0160 (Georgia); Nodia Institute of Geophysics, 1, Aleksidze Str., Tbilisi 0193 (Georgia); Smolyakov, A. I. [Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Churikov, A. P. [Syzran Branch of Samara Technical University, 45, Sovetskaya Str., Syzran, Samara Region 446001 (Russian Federation)

2008-06-15T23:59:59.000Z

212

Superconducting Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

Mit Hilfe der Technologie supraleitender Magnete lassen sich in Mit Hilfe der Technologie supraleitender Magnete lassen sich in Ringbeschleunigern höhere Energien erreichen. Weil supraleitende Spulen keinen elektrischen Widerstand aufweisen, können damit stärkere Magnetfelder erzeugt werden. In normal leitenden Elektromagneten wird - wegen des elektrischen Widerstands der Drähte - die Spule aufgeheizt. Auf diese Weise geht sehr viel Energie in Form von Wärme verloren, was die Energiekosten dieser Magnete in die Höhe treibt. Supraleitende Spulen erlauben es, Magnete grosser Feldstärke unter günstigen Bedingungen zu betreiben und damit die Energiekosten zu senken. Durch den Einbau supraleitender Spulen in den Ringbeschleuniger von Fermilab konnte dessen Energie verdoppelt werden.Auch der im Bau befindliche "Large Hadron Collider" am CERN wird supraleitende Magnete

213

Magnetic nanotubes  

DOE Patents (OSTI)

A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

2010-11-16T23:59:59.000Z

214

Metrology for x-ray telescope mirrors in a vertical configuration  

Science Conference Proceedings (OSTI)

Mirrors used in x-ray telescope systems for observations outside of the earth`s atmosphere are usually made of several thin nested shells, each formed by a pair of paraboloidal and hyperboloidal surfaces. The thin shells are very susceptible to self-weight deflection caused by gravity and are nearly impossible to test by conventional interferometric techniques. The metrology requirements for these mirrors are extremely challenging. This paper presents a prototype of a Vertical Scanning Long Trace Profiler (VSLTP) which is optimized to measure the surface figure of x-ray telescope mirrors in a vertical orientation. The optical system of the VSLTP is described. Experimental results from measurements on an x-ray telescope mandrel and tests of the accuracy and repeatability of the prototype VSLTP are presented. The prototype instrument has achieved a height measurement accuracy of about 50 nanometers with a repeatability of better than 20 nanometers, and a slope measurement accuracy of about 1 microradian.

Li, Haizhang; Li, Xiaodan; Grindel, M.W.

1995-09-01T23:59:59.000Z

215

Method of bonding silver to glass and mirrors produced according to this method  

DOE Patents (OSTI)

A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

1984-07-31T23:59:59.000Z

216

Safety and power multiplication aspects of mirror fusion-fission hybrids  

SciTech Connect

Recently, in a research project at Uppsala University a simplified neutronic model for a straight field line mirror hybrid has been devised and its most important operation parameters have been calculated under the constraints of a fission power production of 3 GW and that the effective multiplication factor k{sub eff} does not exceed 0.95. The model can be considered as representative for hybrids driven by other types of mirrors too. In order to reduce the demand on the fusion power of the mirror, a modified option of the hybrid has been considered that generates a reduced fission power of 1.5 GW with an increased maximal value k{sub eff}=0.97. The present paper deals with nuclear safety aspects of this type of hybrids. It presents and discusses calculation results of reactivity effects as well as of driver effects.

Noack, Klaus; Agren, Olov; Kaellne, Jan; Hagnestal, Anders; Moiseenko, Vladimir E. [Uppsala University, Angstroem Laboratory, Division of Electricity, Box 534, SE-751 21 Uppsala (Sweden); Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', Akademichna St. 1, 61108 Kharkiv (Ukraine)

2012-06-19T23:59:59.000Z

217

Effect of imperfect Faraday mirrors on security of a Faraday-Michelson quantum cryptography system  

E-Print Network (OSTI)

The one-way Faraday-Michelson system is a very useful practical quantum cryptography system where Faraday mirrors(FMs) play an important role. In this paper we analyze the security of this system against imperfect FMs. We consider the security loophole caused by the imperfect FMs in Alice's and Bob's security zones. Then we implement a passive Faraday mirror attack in this system. By changing the values of the imperfection parameters of Alice's FMs, we calculate the quantum bit error rate between Alice and Bob induced by Eve and the probability that Eve obtains outcomes successfully. It is shown that the imperfection of one of Alice's two FMs makes the system sensitive to the attack. At last we give a modified key rate as a function of the Faraday mirror imperfections. The security analysis indicates that both Alice's and Bob's imperfect FMs can compromise the secure key.

Wang Weilong; Gao Ming; Ma Zhi

2013-10-29T23:59:59.000Z

218

Cooling of a mirror in cavity optomechanics with a chirped pulse  

SciTech Connect

We investigate the response of a harmonically confined mirror to an optical pulse in cavity optomechanics. We show that when the pulsed coupling strength takes the form of a chirped pulse, thermal fluctuations of the mirror can be significantly transferred to the cavity field. In addition, the frequency modulation of the pulse could enable a better cooling performance by suppressing the sensitivity of the dependence of detuning and pulse areas. Using numerical investigations, we find that the pulsed cooling is mainly limited by the cavity-field decay rate.

Liao, Jie-Qiao; Law, C. K. [Department of Physics and Institute of Theoretical Physics, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region (China)

2011-11-15T23:59:59.000Z

219

Nuclear Magnetic Resonance Laboratory  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance Laboratory. ... A 600 MHz Nuclear Magnetic Resonance Spectrometer. Analytical Data Compilation Reference Materials. ...

2012-10-01T23:59:59.000Z

220

Learning About Magnets!  

NLE Websites -- All DOE Office Websites (Extended Search)

the the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a force that can "attract" or "repel" other magnets and magnetic materials, like iron or nickel. What is a Magnet? This bar magnet is a permanent magnet. Permanent magnets can be found in the Earth as rocks and metals. Magnets have

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA  

SciTech Connect

Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 Multiplication-Sign 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.

Jiang Chaowei; Feng Xueshang; Xiang Changqing, E-mail: cwjiang@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

2012-08-10T23:59:59.000Z

222

Mirrored arbiter architecture: a network architecture for large scale multiplayer games  

Science Conference Proceedings (OSTI)

Massively Multiplayer games become increasingly popular. Different multiplayer games are implemented on top of different network architectures based on the characteristics of the games. Typically, multiplayer games run on Client-Server (CS), Peer-to-Peer ... Keywords: interest management techniques, massively multiplayer games, mirrored-arbiter architecture, multicast

Lan Yang; Peerapong Sutinrerk

2007-07-01T23:59:59.000Z

223

Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescopes  

E-Print Network (OSTI)

We report on the microscopic surface structure of carbon-fiber-reinforced silicon carbide (C/SiC) composite mirrors that have been improved for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and other cooled telescopes. The C/SiC composite consists of carbon fiber, silicon carbide, and residual silicon. Specific microscopic structures are found on the surface of the bare C/SiC mirrors after polishing. These structures are considered to be caused by the different hardness of those materials. The roughness obtained for the bare mirrors is 20 nm rms for flat surfaces and 100 nm rms for curved surfaces. It was confirmed that a SiSiC slurry coating is effective in reducing the roughness to 2 nm rms. The scattering properties of the mirrors were measured at room temperature and also at 95 K. No significant change was found in the scattering properties through cooling, which suggests that the microscopic surface structure is stable with changes in temperature down to cryogenic values. The C/SiC ...

Enya, Keigo; Kaneda, Hidehiro; Onaka, Takashi; Ozaki, Tuyoshi; Kume, Masami

2007-01-01T23:59:59.000Z

224

Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System  

DOE Green Energy (OSTI)

GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described.

Brown, L.C.

1983-04-01T23:59:59.000Z

225

The cylindrical parabolic mirror as reflector for solar collectors. Efficiencies and optimization  

DOE Green Energy (OSTI)

After introducing the concentration ratio and intercept factor of focusing collectors with parabolic cylinder mirrors, the energy balance equations were derived to determine the efficiencies under steady state conditions. The components of the collector were varied and optimized with respect to maximum efficiency. The dynamic behavior of the collector was calculated and the average efficiencies compared with the efficiencies in the steady state condition.

Koehne, R.

1976-10-27T23:59:59.000Z

226

ALPHA CHANNELING IN MIRROR MACHINES AND IN TOKAMAKS Nathaniel J. Fisch  

E-Print Network (OSTI)

Particles by Waves," Nuclear Fusion 34, 1541 (1994). [4] N. J. FISCH, "Theory of RF Current-Drive," Reviews as a way of achieving considerably higher performance in tokamak fusion reactors, and similar possibilities might be expected in mirror reactors. I. Introduction In tokamaks, operation in the hot ion mode, where

227

ver the last few years, the helical mirror or "spinner" has become a popular decora-  

E-Print Network (OSTI)

is a good teaching tool. To facilitate student exploration, we suggest some questions and provide brief is for the convex (concave) cross section. For distant objects (dobj >> f ), the magnitudes of both magnifications in the denominator means that more distant objects are less magnified, which also occurs for other magnifying mirrors

DeWeerd, Alan

228

kMemvisor: flexible system wide memory mirroring in virtual environments  

Science Conference Proceedings (OSTI)

Today's commercial cloud service providers require the availability with an annual uptime percentage at least 99.95\\%. While memory errors become norms instead of exceptions with the increasing memory's density and capacity in cloud applications. Thus, ... Keywords: flexible memory mirroring, system-wide high availability

Bin Wang; Zhengwei Qi; Haibing Guan; Haoliang Dong; Wei Sun; Yaozu Dong

2013-06-01T23:59:59.000Z

229

Supernova explosions, 511 keV photons, gamma ray bursts and mirror matter  

E-Print Network (OSTI)

There are three astroparticle physics puzzles which fire the imagination: the origin of the ``Great Positron Producer'' in the galactic bulge, the nature of the gamma-ray bursts central engine and the mechanism of supernova explosions. We show that the mirror matter model has the potential to solve all three of these puzzles in one beautifully simple strike.

R. Foot; Z. K. Silagadze

2004-04-27T23:59:59.000Z

230

Neutrino magnetic moment in a magnetized plasma  

E-Print Network (OSTI)

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08T23:59:59.000Z

231

The dual-mirror Small Size Telescope for the Cherenkov Telescope Array  

E-Print Network (OSTI)

In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These will allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{\\deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana, Italy/INAF), GATE (Gamma-ray Telescope Elements, France/Paris Observ.) and CHEC (Compact High Energy Camera, universities in UK, US and Japan) which are merging their efforts in order to finalize an end-to-end design that will be constructed for CTA. A number of prototype structures and cameras are being developed in order to investigate various alternative designs. In this contribution, these designs are presented, along with the technological solutions under study.

G. Pareschi; G. Agnetta; L. A. Antonelli; D. Bastieri; G. Bellassai; M. Belluso; C. Bigongiari; S. Billotta; B. Biondo; G. Bonanno; G. Bonnoli; P. Bruno; A. Bulgarelli; R. Canestrari; M. Capalbi; P. Caraveo; A. Carosi; E. Cascone; O. Catalano; M. Cereda; P. Conconi; V. Conforti; G. Cusumano; V. De Caprio; A. De Luca; A. Di Paola; F. Di Pierro; D. Fantinel; M. Fiorini; D. Fugazza; D. Gardiol; M. Ghigo; F. Gianotti; S. Giarrusso; E. Giro; A. Grillo; D. Impiombato; S. Incorvaia; A. La Barbera; N. La Palombara; V. La Parola; G. La Rosa; L. Lessio; G. Leto; S. Lombardi; F. Lucarelli; M. C. Maccarone; G. Malaguti; G. Malaspina; V. Mangano; D. Marano; E. Martinetti; R. Millul; T. Mineo; A. MistÒ; C. Morello; G. Morlino; M. R. Panzera; G. Rodeghiero; P. Romano; F. Russo; B. Sacco; N. Sartore; J. Schwarz; A. Segreto; G. Sironi; G. Sottile; A. Stamerra; E. Strazzeri; L. Stringhetti; G. Tagliaferri; V. Testa; M. C. Timpanaro; G. Toso; G. Tosti; M. Trifoglio; P. Vallania; S. Vercellone; V. Zitelli; For The Astri Collaboration; J. P. Amans; C. Boisson; C. Costille; J. L. Dournaux; D. Dumas; G. Fasola; O. Hervet; J. M. Huet; P. Laporte; C. Rulten; H. Sol; A. Zech; For The Gate Collaboration; R. White; J. Hinton; D. Ross; J. Sykes; S. Ohm; J. Schmoll; P. Chadwick; T. Greenshaw; M. Daniel; G. Cotter; G. S. Varner; S. Funk; J. Vandenbroucke; L. Sapozhnikov; J. Buckley; P. Moore; D. Williams; S. Markoff; J. Vink; D. Berge; N. Hidaka; A. Okumura; H. Tajima; For The Chec Collaboration; For The Cta Consortium

2013-07-18T23:59:59.000Z

232

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

233

Magnetization Characterization Laboratory  

Science Conference Proceedings (OSTI)

... use of magnetic materials for motors, generators, transformers ... all depend on the specific magnetic characteristics of ... For example, a magnet used in ...

2012-10-23T23:59:59.000Z

234

MAGNETIC GRID  

DOE Patents (OSTI)

An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

Post, R.F.

1960-08-01T23:59:59.000Z

235

Questions about Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

off just the north (or just the south) end of a magnet? Are magnets stronger than gravity? Hold a magnet in the air. Place a nail against it. The magnet holds the nail up...

236

Modeling and optimization of operating parameters for a test-cell option of the Fusion Power Demonstration-II tandem mirror design  

SciTech Connect

Models of tandem mirror devices operated with a test-cell insert have been used to calculate operating parameters for FPD-II+T, an upgrade of the Fusion Power Demonstration-II device. Two test-cell configurations were considered, one accommodating two 1.5 m blanket test modules and the other having four. To minimize the cost of the upgrade, FPD-II+T utilizes the same coil arrangement and machine dimensions outside of the test cell as FPD-II, and the requirements on the end cell systems have been held near or below those for FPD-II. The maximum achievable test cell wall loading found for the short test-cell was 3.5 MW/m/sup 2/ while 6.0 MW/m/sup 2/ was obtainable in the long test-cell configuration. The most severe limitation on the achievable wall loading is the upper limit on test-cell beta set by MHD stability calculations. Modification of the shape of the magnetic field in the test-cell by improving the magnet design could raise this beta limit and lead to improved test-cell performance.

Haney, S.W.; Fenstermacher, M.E.

1985-04-03T23:59:59.000Z

237

Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings  

Science Conference Proceedings (OSTI)

Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Maxey, L Curt [ORNL; Gehl, Anthony C [ORNL; Hurt, Rick A [ORNL; Boehm, Robert F [ORNL

2008-01-01T23:59:59.000Z

238

Amazing Mirrors and Superlative Supercomputers | U.S. DOE Office of Science  

Office of Science (SC) Website

Amazing Amazing Mirrors and Superlative Supercomputers News Featured Articles 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.29.11 Amazing Mirrors and Superlative Supercomputers Argonne's Mira will accelerate scientific discoveries and societal benefits. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Mira--Argonne's IBM Blue Gene/Q Courtesy of Argonne National Laboratory Argonne National Laboratory's IBM Blue Gene/Q supercomputer, Mira, is an engineering marvel whose unique architecture and capabilities will be thoroughly explored as soon as it goes online in 2012. Supported by the

239

Study And Comparison Of Silver Mirrors Deposited On Different Substrates By Electron-Beam Gun Method  

SciTech Connect

Choosing the right substrate is one of the important factors for improving quality parameters of thin films such as adhesion between layers and substrates. The selected substrate should have proper physical and chemical compatibility with deposited thin film. In this paper, we have been investigated four different types of high reflective laser mirrors that were produced in similar conditions on four different kinds of substrates including copper, stainless steel, brass, and nickel. We used electron-beam gun method for deposition of silver layers. At the end we compared theoretical results with practical results that were yielded by laser damage threshold test. It was shown that brass is the best choice for silver metal mirrors as a substrate.

Asl, Jahanbakhsh Mashaiekhy; Shafieizadeh, Zahra; Sabbaghzadeh, Jamshid; Anaraki, Mahdi [Iranian National Center for Laser Science and Technology, PO Box 14665-576, Tehran (Iran, Islamic Republic of)

2010-12-23T23:59:59.000Z

240

Use of a mirror as the first optical component for an undulator beamline at the APS  

SciTech Connect

In the design of Sector II of the Synchrotron Radiation Instrumentation (SRI) CAT, an x-ray mirror with multiple coatings is chosen as the first optical component of the undulator beamline. Two significant advantages of using the mirror are: A significant reduction in the peak radiation heat flux and total power on the downstream monochromator, and (2) availability of the wide-bandpass undulator spectrum between 0--30 key to experimental stations with substantially reduced radiation shielding requirements. The second advantage also allows us to place the monochromator outside the first optics enclosure (FOE) at a large distance from the source to further reduce the peak heat flux on the monochromator. The combined effect is that the inclined crystal monochromator may not be necessary, and a multilayer monochromator can be used because the expected heat fluxes are less than the value that has been demonstrated for those monochromators.

Yun, W.; Khounsary, A.; Lai, B.; Gluskin, E.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature  

E-Print Network (OSTI)

Increasing requirements in the sensitivity of interferometric measurements is a common feature of several research fields, from gravitational wave detection to quantum optics. This motivates refined studies of high reflectivity mirrors and of noise sources that are tightly related to their structure. In this work we present an experimental characterization of photothermal and thermo-refractive effects in high reflectivity mirrors, i.e., of the variations in the position of their effective reflection plane due to weak residual power absorption. The measurements are performed by modulating the impinging power in the range 10 Hz $\\div$ 100 kHz. The experimental results are compared with an expressly derived theoretical model in order to fully understand the phenomena and exploit them to extract useful effective thermo-mechanical parameters of the coating. The measurements are extended at cryogenic temperature, where most high sensitivity experiments are performed (or planned in future versions) and where characterizations of dielectric film coatings are still poor.

Alessandro Farsi; Mario Siciliani de Cumis; Francesco Marino; Francesco Marin

2011-09-21T23:59:59.000Z

242

Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature  

E-Print Network (OSTI)

Increasing requirements in the sensitivity of interferometric measurements is a common feature of several research fields, from gravitational wave detection to quantum optics. This motivates refined studies of high reflectivity mirrors and of noise sources that are tightly related to their structure. In this work we present an experimental characterization of photothermal and thermo-refractive effects in high reflectivity mirrors, i.e., of the variations in the position of their effective reflection plane due to weak residual power absorption. The measurements are performed by modulating the impinging power in the range 10 Hz $\\div$ 100 kHz. The experimental results are compared with an expressly derived theoretical model in order to fully understand the phenomena and exploit them to extract useful effective thermo-mechanical parameters of the coating. The measurements are extended at cryogenic temperature, where most high sensitivity experiments are performed (or planned in future versions) and where charact...

Farsi, Alessandro; Marino, Francesco; Marin, Francesco

2011-01-01T23:59:59.000Z

243

Optical performance of the TBC-2 solar collector before and after the 1993 mirror lustering  

DOE Green Energy (OSTI)

In 1993, the mirror facets of one of Sandia`s point-focusing solar collectors, the Test Bed Concentrator {number_sign}2 (TBC-2), were reconditioned. The concentrator`s optical performance was evaluated before and after this operation. This report summarizes and compares the results of these tests. The tests demonstrated that the concentrator`s total power and peak flux were increased while the overall flux distribution in the focal plane remained qualitatively the same.

Houser, R.; Strachan, J. [Sandia National Labs., Albuquerque, NM (United States). Solar Thermal Test Dept.

1995-02-01T23:59:59.000Z

244

Parabolic lithium mirror for a laser-driven hot plasma producing device  

DOE Patents (OSTI)

A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.

Baird, James K. (Clinton, TN)

1979-06-19T23:59:59.000Z

245

Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen  

Science Conference Proceedings (OSTI)

This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

Werner, R.W. (ed.)

1982-11-01T23:59:59.000Z

246

Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL  

Science Conference Proceedings (OSTI)

Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.

Soufli, R; Robinson, J C; Spiller, E; Baker, S L; Dollar, F J; Gullikson, E M

2006-02-22T23:59:59.000Z

247

Advanced ultraviolet-resistant silver mirrors for use in solar reflectors  

DOE Patents (OSTI)

A silver mirror construction that maintains a high percentage of hemispherical reflectance throughout the UV and visible spectrum when used in solar reflectors, comprising:a) a pressure sensitive adhesive layer positioned beneath a silver overlay;b) a polymer film disposed on the silver overlay;c) an adhesive layer positioned on the polymer film; andd) a UV screening acrylic film disposed on the adhesive layer.

Jorgensen, Gary J. (Pine, CO); Gee, Randy (Arvada, CO)

2009-11-03T23:59:59.000Z

248

magnets2  

NLE Websites -- All DOE Office Websites (Extended Search)

II II Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs MAGNETS PART II January 10, 1997 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

249

Optical losses of solar mirrors due to atmospheric contamination at Liberal, Kansas and Oologah, Oklahoma  

DOE Green Energy (OSTI)

An assessment is presented of the effect of outdoor exposure on mirrors located at two sites selected for potential solar cogeneration/repowering facilities: Liberal, Kansas and Oologah, Oklahoma. Mirror coupons were placed on tracking heliostat simulators located in the proposed heliostat fields and were removed periodically. The spectral hemispherical and diffuse reflectances of these coupons were measured. Representative samples were analyzed for the chemical composition of the dust particulates using SEM/EDX. Other samples were washed with a high pressure spray and recharacterized to determine the effects of the residual dust. Average specular reflectance losses over the entire test period (up to 504 days) were 6 to 12%, with a range of 1 to 30%. Specular reflectance losses varied widely from day to day depending on local weather conditions. The losses due to scattering were 2 to 5 times greater than the losses due to absorptance. The average degradation rate over the first thirty days was an order of magnitude larger than the average degradation rate over the entire sampling period. Specular reflectance loss rates averaged 0.5% per day and greater between periods of natural cleaning. The chemical composition of the dust on the mirrors was characteristic of the indigenous soil, with some samples also showing the presence of sulfur and chlorine, possibly from cooling tower drift.

Dake, L.S.; Lind, M.A.

1981-09-01T23:59:59.000Z

250

Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)  

DOE Green Energy (OSTI)

This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

2011-09-01T23:59:59.000Z

251

Magnetic fusion 1985: what next  

SciTech Connect

Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion.

Fowler, T.K.

1985-03-01T23:59:59.000Z

252

Magnetic Reconnection  

SciTech Connect

We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

Masaaki Yamada, Russell Kulsrud and Hantao Ji

2009-09-17T23:59:59.000Z

253

Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror  

Science Conference Proceedings (OSTI)

At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry currently under development at the ALS.

Yuan, Sheng Sam; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory; Macdougall, James; Mochi, Iacopo; Warwick, Tony

2010-09-15T23:59:59.000Z

254

Magnet cold mass high load supports thermal response and performance design correlation  

SciTech Connect

Through General Dynamics Convair Division's experience in the design, detail analysis, and manufacturing of structural supports for superconducting magnet cryostats suspended in a vacuum enclosure, a data base, well suited for the development of correlations of pertinent thermal performance criteria for stainless steel supports, has been created. The thermal requirements of these supports in fusion applications are well defined for the Mirror Fusion Test Facility (MFTF) and have been analyzed in detail for cool-down response and steady-state performance, using Convair's THERMAL ANALYZER computer program. From the output of these thermal conditioning simulations, correlations were developed for magnet LHe heating from supports in terms of strut geometric parameters.

Jones, G.R.; Christensen, E.H.

1984-09-01T23:59:59.000Z

255

Superconducting magnet  

DOE Patents (OSTI)

A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

Satti, John A. (Naperville, IL)

1980-01-01T23:59:59.000Z

256

Magnet innovations for linacs  

Science Conference Proceedings (OSTI)

It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs.

Halbach, K.

1986-06-01T23:59:59.000Z

257

Comparison of the effect of outdoor exposure on the optical properties of solar mirrors and transparent encapsulant materials  

DOE Green Energy (OSTI)

The effects of outdoor exposure on solar mirrors and transparent encapsulant materials are assessed and compared. The encapsulant materials tested included glasses, polymers and silicones. Samples of the materials were placed on stationary exposure racks in six locations that represented urban, desert, oceanside and high altitude mountain areas. Samples were removed periodically for optical characterizations. The spectral hemispherical and diffuse reflectance of the mirror samples and the spectral hemispherical transmittance and diffuse reflectance of the encapsulant materials was measured. The relative normal hemispherical transmittance of the encapsulant materials was measured. Correlations between the glass and mirror data showed that the average diffuse reflectance losses were six times larger for the mirrors than for the glass samples. The average specular reflectance losses for the mirror samples were seven times as large as the average hemispherical transmittance losses for the glass samples. These correlations may enable one to predict the performance of mirrors made using the other encapsulant materials for superstrates. It was found that the urban and oceanside sites were the dirtiest, while the desert and mountain sites were the cleanest. Average specular reflectance losses varied from 4% at the cleanest site to 50% at the dirtiest site. The range in hemispherical transmittance losses for the encapsulant materials varied between 0% and 6%. At one site, the average daily specular reflectance losses were .04% for the mirror samples and average daily hemispherical transmittance losses were about .01% for the glass samples. The polymer materials degraded somewhat more rapidly than the glasses, and the silicones irreversible degraded too rapidly and severely to be useful for either photovoltaic or solar thermal applications.

Dake, L.S.; Lind, M.A.; Maag, C.R.

1981-09-01T23:59:59.000Z

258

Effect of soiling on solar mirrors and techniques used to maintain high reflectivity  

DOE Green Energy (OSTI)

Solar mirrors are used to concentrate low-level solar radiation to power levels which are practical and efficient for consumption. Any interference with the collection of that energy not only decreases the power level but also increases the cost of the energy available from a solar power system. One of the most immediate and drastic effects of outdoor exposure is the reflectance loss due to the accumulation of foreign particles on the mirror surface. Specular reflectance losses as great as 25% have been observed for mirrors exposed for only a few weeks. The effect of the deposited particles is to reduce the reflected energy by both absorbing and scattering light. The degree to which the particles reduce the collection of reflected energy depends on their composition, number and size distribution. An additional factor is the optics of the collection system. The angular acceptance aperture of the system, defined as the angle subtended by the receiver at the concentrator surface, determines the relative importance of the scattering due to dust accumulation. For flat plate thermal and photovoltaic collectors which have essentially a 180/sup 0/ angular acceptance aperture, scattering of the incident light is not critical but absorption can be an important factor in the loss of energy. For concentrating collection systems, such as line focus collectors and central receivers, angular acceptance apertures of a few degrees make scattering at the concentrator surface much more important and can result in severe energy losses. Results of a study of each of these areas are presented and discussed. (WHK)

Roth, E.P.; Pettit, R.B.

1980-06-01T23:59:59.000Z

259

Surface Roughness of Stainless Steel Bender Mirrors for FocusingSoft X-rays  

Science Conference Proceedings (OSTI)

We have used polished stainless steel as a mirror substrate to provide focusing of soft x-rays in grazing incidence reflection. The substrate is bent to an elliptical shape with large curvature and high stresses in the substrate require a strong elastic material. Conventional material choices of silicon or of glass will not withstand the stress required. The use of steel allows the substrates to be polished and installed flat, using screws in tapped holes. The ultra-high-vacuum bender mechanism is motorized and computer controlled. These mirrors are used to deliver focused beams of soft x-rays onto the surface of a sample for experiments at the Advanced Light Source (ALS). They provide an illumination field that can be as small as the mirror demagnification allows, for localized study, and can be enlarged, under computer control,for survey measurements over areas of the surface up to several millimeters. The critical issue of the quality of the steel surface, polished and coated with gold, which limits the minimum achievable focused spot size is discussed in detail. Comparison is made to a polished, gold coated, electroless nickel surface, which provides a smoother finish. Surface measurements are presented as power spectral densities, as a function of spatial frequency. The surface height distributions measured with an interferometric microscope, and complemented by atomic force microscope measurements, are used to compute power spectral densities and then to evaluate the surface roughness. The effects of roughness in reducing the specular reflectivity are verified by soft x-ray measurements.

Yashchuk, Valeriy V.; Gullikson, Eric M.; Howells, Malcolm R.; Irick, Steve C.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi,Farhad; Warwick, Tony; Metz, James P.; Tonnessen, Thomas W.

2005-10-11T23:59:59.000Z

260

Magnetics and the body  

NLE Websites -- All DOE Office Websites (Extended Search)

no magnetic "charges"), such as from electromagnets. Magnetic fields are measured in Tesla (T) or Gauss (G). The Tesla is a very large unit (1 T 10,000 G). Most large magnets...

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Learning About Magnets!  

NLE Websites -- All DOE Office Websites (Extended Search)

the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a force...

262

ALS superbend magnet system  

E-Print Network (OSTI)

ALS Superbend Magnet System J. Zbasnik † , S. T. Wang †† ,of a High-Field Magnet for the ALS,” Transactions AppliedRefrigeration options for the ALS Superbend dipole magnets”,

2000-01-01T23:59:59.000Z

263

Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits  

E-Print Network (OSTI)

A hierarchical ordering is demonstrated for the periodic orbits in a strongly coupled multidimensional Hamiltonian system, namely the hydrogen atom in crossed electric and magnetic fields. It mirrors the hierarchy of broken resonant tori and thereby allows one to characterize the periodic orbits by a set of winding numbers. With this knowledge, we construct the action variables as functions of the frequency ratios and carry out a semiclassical torus quantization. The semiclassical energy levels thus obtained agree well with exact quantum calculations.

Stephan Gekle; Jörg Main; Thomas Bartsch; T. Uzer

2006-10-02T23:59:59.000Z

264

Three Extra Mirror or Sequential Families: Case for a Heavy Higgs Boson and Inert Doublet  

Science Conference Proceedings (OSTI)

We study the possibility of the existence of extra fermion families and an extra Higgs doublet. We find that requiring the extra Higgs doublet to be inert leaves space for three extra families, allowing for mirror fermion families and a dark matter candidate at the same time. The emerging scenario is very predictive: It consists of a standard model Higgs boson, with a mass above 400 GeV, heavy new quarks between 340 and 500 GeV, light extra neutral leptons, and an inert scalar with a mass below M{sub Z}.

Martinez, Homero [CEA, Saclay, DSM-IRFU-SPP (France); Melfo, Alejandra [ICTP, Trieste (Italy); Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Nesti, Fabrizio [Universita di Ferrara, Ferrara (Italy); Senjanovic, Goran [ICTP, Trieste (Italy)

2011-05-13T23:59:59.000Z

265

On the mirror instability in the presence of electron temperature anisotropy  

Science Conference Proceedings (OSTI)

Computation of the mirror instability growth rate in an ion-electron bi-Maxwellian plasma is revisited, starting from the low-frequency kinetic theory. The role of the electron finite Larmor radius (FLR) effects on the instability quenching is shown to possibly be dominant, even near threshold where the smallest unstable scales significantly exceed the electron gyroscale. Validation of the results by comparison with predictions of the fully kinetic whamp software is also presented. The influence of the electron temperatures on the ion FLR effects very near threshold, where the electron kinetic effects are negligible, is also pointed out.

Kuznetsov, E. A. [P.N. Lebedev Physical Institute RAS, 53 Leninsky Ave., 119991 Moscow, Russia and Space Research Institute, 84/31 Profsoyuznaya St., 117997 Moscow (Russian Federation); Passot, T.; Sulem, P. L. [Universite de Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France)

2012-09-15T23:59:59.000Z

266

Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals  

SciTech Connect

This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

Anglart, Henryk [Div. of Nuclear Technology, School of Engineering Sciences, Royal Institute of Technology Roslagstullsbacken 21, 106-91 Stockholm (Sweden)

2012-06-19T23:59:59.000Z

267

Durable silver mirror with ultra-violet thru far infra-red reflection  

DOE Patents (OSTI)

A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

Wolfe, Jesse D. (Discovery Bay, CA)

2010-11-23T23:59:59.000Z

268

Cleanable and Hardcoat Coatings for Increased Durability of Silvered Polymeric Mirrors  

SciTech Connect

We have successfully developed coating formulations which significantly increasethe abrasion resistance of mirror films. We have demonstrated manufacturing scale-up of these films to full width andproduction volumes. Implementation of these films in commercial test sites is planned for Q2 2013(Abengoa, Gossamer Space Frames). This slide show outlines the background and objectives of the project, technical approach and results, and key lessons. It also presents the need and opportunity for reduction of costs for CSP and collectors. It also presents an approach for a large aperture parabolic trough collector with reflective film and a high concentration factor, including demonstration and results.

Padiyath, Raghunath

2013-04-01T23:59:59.000Z

269

Helical Magnets Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC, the basic construction unit is a superconducting dipole magnet producing a four tesla dipole field that rotates through 360 degrees in a length of 2.4 meters. The magnets...

270

Survey mirrors and lenses and their required surface accuracy. Semiannual technical progress report, September 15, 1978-April 15, 1979  

DOE Green Energy (OSTI)

Since the beginning of widespread research and development for solar energy, a major concern has been the effect of optical and surface quality of collector materials on collector performance and the changes in these properties due to environmental conditions. In many instances, this type of data has not been compiled. When data is available on surface quality, mirror or lens optical characteristics, surface deformations due to stress and other errors, it is difficult to quantify the effect these have on a particular concentrator design performance. To further investigate these errors, Honeywell is performing a study of concentrator designs and mirror and lens surfaces. There are two taks within this program. The first task involves investigation and evaluation of concentrator performance. Within this task, Honeywell has conducted a survey of the literature, solar manufacturers and government information to obtain data on existing concentrator designs (i.e., V-troughs, parabolic mirror concentrators) and lens and mirror materials. Ten collector configurations have been selected to be mathematically modeled. These models will be incorporated into existing ray trace software and will be used to evaluate concentrator performance. Optical quality properties, structural deformations due to loading and stress, tracking errors and material property changes due to the environment will be included in this assessment of performance. The second task involves the expansion of an existing data base on mirror degradation due to environmental exposure and the collection of similar information on lenses. Status of the program is reported. (WHK)

None

1979-05-01T23:59:59.000Z

271

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

272

Magnetization of neutron matter  

SciTech Connect

In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

Bigdeli, M. [Department of Physics, Zanjan University, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

2011-09-21T23:59:59.000Z

273

Regenerator for Magnetic Refrigerants  

Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators.

274

Magnetic Materials Group Homepage  

Science Conference Proceedings (OSTI)

... and simulation to become the driving force in ... develop a real-time magnetic domain imaging ... data-storage and permanent magnets with increased ...

2012-12-03T23:59:59.000Z

275

NSLS II: Magnetism  

NLE Websites -- All DOE Office Websites (Extended Search)

spatial ordering of the magnetic moments that is superimposed on the crystal lattice. Why these atomic magnetic moments survive and how they arrange in the solid is the...

276

Economic significance of Q for mirror reactors: combinations of Q and M which look promising  

SciTech Connect

This term Q is the ratio of the fusion powder produced to the power input. It is a driven device. Q is truly the success parameter for mirrors--widely discussed but not succinctly specified as to required value. The problem is that Q can be treated as a subjective parameter--there are many milestone Qs; for scientific demonstration, for breakeven power, etc. Yet for a successful reactor, there is only one Q and that is the Q which produces mirror fusion power at the busbar that is less than the cost of delivered power in mills/kwhr by other means. We call this Q/sub PRACTICAL/ and believe there is a convincing argument that says this Q/sub PRACTICAL/ can be about 5.0 even assuming modest efficiencies for system components. A direct convertor is necessary. If the direct convertor were deleted, a Q/sub PRACTICAL/ of approximately 7.5 would be required. If we wish to soften the value of Q further, then the technical logic for the fusion fission hybrid is very powerful. With the hybrid a Q/sub PRACTICAL/ of 1.5 to 2.0 appears to be a very reasonable value. The key in being able to specify values of Q/sub PRACTICAL/ lies in economically comparing the capital cost of fusion power to the sum of the capital cost and the present value of all the fuel costs for the competitive fuel intensive plants.

Werner, R.W.

1978-09-11T23:59:59.000Z

277

Large N Duality, Mirror Symmetry, and a Q-deformed A-polynomial for Knots.  

E-Print Network (OSTI)

We reconsider topological string realization of SU(N) Chern-Simons theory on S^3. At large N, for every knot K in S^3, we obtain a polynomial A_K(x,p;Q) in two variables x,p depending on the t'Hooft coupling parameter Q=e^{Ng_s}. Its vanishing locus is the quantum corrected moduli space of a special Lagrangian brane L_K, associated to K, probing the large N dual geometry, the resolved conifold. Using a generalized SYZ conjecture this leads to the statement that for every such Lagrangian brane L_K we get a distinct mirror of the resolved conifold given by uv=A_K(x,p;Q). Perturbative corrections of the refined B-model for the open string sector on the mirror geometry capture BPS degeneracies and thus the knot homology invariants. Thus, in terms of its ability to distinguish knots, the classical function A_K(x,p;Q) contains at least as much information as knot homologies. In the special case when N=2, our observations lead to a physical explanation of the generalized (quantum) volume conjecture. Moreover, the specialization to Q=1 of A_K contains the classical A-polynomial of the knot as a factor.

278

Detecting H{yields}hh in the mirror model at the CERN Large Hadron Collider  

SciTech Connect

The Higgs sector may play an important role in detecting mirror particles, which can be the candidates of dark matter and appear as missing energy in the detectors at the LHC. In this paper we worked out the Higgs boson spectrum and the Higgs couplings for the symmetric vacuum, namely v{sub 1}=v{sub 2}=v, in the mirror model, and investigated the constraints from electroweak precision observables. Our study showed that electroweak precision observables have already constrained the Higgs boson sector severely. We then explored the Higgs boson phenomenology, and focused on the scenario that the heavier Higgs boson H can decay into a pair of lighter Higgs bosons h. We proposed to study the invisible decay of the Higgs boson via the pair production of them, in which one Higgs boson decays into bottom quarks and the other decays invisibly. Our detail simulation for signals and backgrounds showed that the observation of the signal can reach 5{sigma} significance for m{sub H}=260 GeV and m{sub h}=115 GeV with 10 fb{sup -1} integrated luminosity at the LHC. Moreover the possible method to further suppress dominant Zbb background was discussed. We also simulated the signals and backgrounds for H{yields}hh{yields}4b. Our results showed that it is very difficult to isolate the signals from huge QCD continuum backgrounds.

Li Wensheng; Yin Pengfei; Zhu Shouhua [Institute of Theoretical Physics, School of Physics, Peking University, Beijing 100871 (China)

2007-11-01T23:59:59.000Z

279

Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system  

Science Conference Proceedings (OSTI)

The Faraday mirror (FM) plays a very important role in maintaining the stability of two-way plug-and-play quantum key distribution (QKD) systems. However, the practical FM is imperfect, which will not only introduce an additional quantum bit error rate (QBER) but also leave a loophole for Eve to spy the secret key. In this paper we propose a passive Faraday mirror attack in two-way QKD system based on the imperfection of FM. Our analysis shows that if the FM is imperfect, the dimension of Hilbert space spanned by the four states sent by Alice is three instead of two. Thus Eve can distinguish these states with a set of Positive Operator Valued Measure (POVM) operators belonging to three-dimension space, which will reduce the QBER induced by her attack. Furthermore, a relationship between the degree of the imperfection of FM and the transmittance of the practical QKD system is obtained. The results show that the probability that Eve loads her attack successfully depends on the degree of the imperfection of FM rapidly, but the QBER induced by Eve's attack changes slightly with the degree of the FM imperfection.

Sun Shihai; Jiang Musheng; Liang Linmei [Department of Physics, National University of Defense Technology, Changsha 410073 (China)

2011-06-15T23:59:59.000Z

280

Model simulations of continuous ion injection into electron-beam ion source trap with slanted electrostatic mirror  

Science Conference Proceedings (OSTI)

The efficiency of trapping ions in an electron-beam ion source (EBIS) is of primary importance for many applications requiring operations with externally produced ions: RIA breeders, ion sources, and traps. At the present time, the most popular method of ion injection is pulsed injection, when short bunches of ions get trapped in a longitudinal trap while traversing the trap region. Continuous trapping is a challenge for EBIS devices because mechanisms which reduce the longitudinal ion energy per charge in a trap (cooling with residual gas, energy exchange with other ions, and ionization) are not very effective, and accumulation of ions is slow. A possible approach to increase trapping efficiency is to slant the mirror at the end of the trap which is opposite to the injection end. A slanted mirror will convert longitudinal motion of ions into transverse motion, and, by reducing their longitudinal velocity, prevent these ions from escaping the trap on their way out. The trade-off for the increased trapping efficiency this way is an increase in the initial transverse energy of the accumulated ions. The slanted mirror can be realized if the ends of two adjacent electrodes, drift tubes, which act as an electrostatic mirror, are machined to produce a slanted gap, rather than an upright one. Applying different voltages to these electrodes will produce a slanted mirror. The results of two-dimensional (2D) and three-dimensional (3D) computer simulations of the ion injection into an EBIS are presented using simplified models of an EBIS with conical (2D simulations) and slanted (3D simulations) mirror electrodes.

Pikin, A.; Kponou, A.; Alessi, J. G.; Beebe, E. N.; Prelec, K.; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

2008-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ORIGINAL PAPER Tribute to Dick Post on His 90th Birthday  

E-Print Network (OSTI)

that I learned about Dick's interest in electric cars. He and his son Steve published this in Sci-invented the Yin Yang in the first place. Dick also invented Direct Conversion, to make electricity by fusion at very high speed, and a specially-designed electric motor that could deliver 100 horsepower in a device

282

POLOIDAL MAGNETIC FIELD TOPOLOGY FOR TOKAMAKS WITH CURRENT HOLES  

Science Conference Proceedings (OSTI)

The appearance of hole currents in tokamaks seems to be very important in plasma confinement and on-set of instabilities, and this paper is devoted to study the topology changes of poloidal magnetic fields in tokamaks. In order to determine these fields different models for current profiles can be considered. It seems to us, that one of the best analytic descriptions is given by V. Yavorskij et al., which has been chosen for the calculations here performed. Suitable analytic equations for the family of magnetic field surfaces with triangularity and Shafranov shift are written down here. The topology of the magnetic field determines the amount of trapped particles in the generalized mirror type magnetic field configurations. Here it is found that the number of maximums and minimums of Bp depends mainly on triangularity, but the pattern is also depending of the existence or not of hole currents. Our calculations allow comparing the topology of configurations of similar parameters, but with and without whole currents. These differences are study for configurations with equal ellipticity but changing the triangularity parameters. Positive and negative triangularities are considered and compared between them.

Puerta, Julio; Martin, Pablo; Castro, Enrique [Universidad Simon Bolivar, Departamento de Fisica, Plasma Physics Laboratory, Caracas (Venezuela, Bolivarian Republic of)

2009-07-26T23:59:59.000Z

283

HTS Magnet Program | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

HTS Magnet Program HTS Magnet Program High Temperature Superconductors (HTS) have the potential to revolutionize the field of superconducting magnets for particle accelerators, energy storage and medical applications. This is because of the fact that as compared to the conventional Low Temperature Superconductors (LTS), the critical current density (Jc ) of HTS falls slowly both: as a function of increasing field, and as a function of increasing temperature These unique properties can be utilized to design and build: HTS magnets that produce very high fields (20 - 50 T) HTS magnets that operate at elevated temperatures (20 - 77 K) This is a significant step forward over the convention LTS magnets which generally operate at a temperature of ~4 K and with field usually limited

284

Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets  

SciTech Connect

Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

None

2010-10-01T23:59:59.000Z

285

Demonstration of a linear optical true-time delay device by use of a microelectromechanical mirror array  

E-Print Network (OSTI)

different switchable delays. The organization of this paper is as follows: We start by reviewing the White into the cell. We adapt the White cell to TTD by adding a second White cell and using the MEMS device to switch in a multiple reflection spherical mirror configuration based on the White cell. Divergence is avoided

Anderson, Betty Lise

286

OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB  

SciTech Connect

We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

Ari Palczewski, Rongli Geng, Hui Tian

2012-07-01T23:59:59.000Z

287

Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles  

DOE Green Energy (OSTI)

This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li/sub 2/O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H/sub 2/ and O/sub 2/.

Ribe, F.L.; Werner, R.W.

1981-01-21T23:59:59.000Z

288

Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor  

DOE Green Energy (OSTI)

The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO/sub 3/ Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed.

Galloway, T.R.; Werner, R.W.

1980-01-01T23:59:59.000Z

289

Electronic film with embedded micro-mirrors for solar energy concentrator systems  

E-Print Network (OSTI)

A novel electronic film solar energy concentrator with embedded micro-mirrors that track the sun is described. The potential viability of this new concept is presented. Due to miniaturization, the amount of material needed for the optical system is minimal. Because it is light-weight and flexible, it can easily be attached to the land or existing structures. This presents an economic advantage over conventional concentrators which require the construction of a separate structure to support them, and motors to orient them to intercept and properly reflect sunlight. Such separate structures must be able to survive gusts, windstorms, earthquakes, etc. This concentrator utilizes the ground or existing edifices which are already capable of withstanding such vicissitudes of nature.

Mario Rabinowitz; Mark Davidson

2004-04-16T23:59:59.000Z

290

Sustaining neutral beam power supply system for the Mirror Fusion Test Facility  

SciTech Connect

In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year.

Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

1980-01-01T23:59:59.000Z

291

Determination Of Plasma Parameters In The PUPR Mirror and Cusp Plasma Machine Via Electrostatic Probe Methods  

Science Conference Proceedings (OSTI)

Electrostatic probes are constructed for the PUPR Mirror and Cusp Plasma Machine and preliminary measurements of the plasma parameters are obtained. The machine is cylindrical in shape with two copper coils wound around the machine to provide the necessary mirror or cusp field configuration. The plasma is heated using the electron cyclotron heating method at a frequency of 2.45 GHz. I-V characteristics are obtained using single, double, and emissive Langmuir probes in Argon plasma at approximately 1*10-4 Torr and with approximate field strength of {approx} 0.1T at the point cusp. The single and double Langmuir probes consist of 3.5 mm radius stainless steel disks. Characteristics are obtained for the single and double Langmuir probes using a source meter and programming a voltage sweep while recording the current from the digital readout. The emissive probe is constructed by using a tungsten filament and characteristics are obtained in a manner similar to that described for the single and double Langmuir probes. An emission current is superposed on top of the sweeping signal using a DC power source. An electron temperature of approximately 7.5eV is observed in the plasma at a density of {approx}4.0*1014m-3 using the single Langmuir probe. In addition, with the distribution function obtained from the single probe, the plasma potential is observed to be approximately 25-30V. The measurement of 25-30V for the plasma potential is supported by measurements obtained from the emissive probe.

Meyer, Ryan M. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, E2433 Thomas and Nell Lafferre Hall, MO 65210 (United States); Rivera, Miguel A.; Colmenares, Franklyn; Leal, David; Rivera, Ramon; Leal-Quiros, Edbertho [Scientific Research and Development Department, Polytechnic University of Puerto Rico, 377 Ponce de Leon Ave., Hato Rey, PR 00918 (Puerto Rico); Gonzales, Angel [Electrical Engineering Department, Polytechnic University of Puerto Rico, 377 Ponce de Leon Ave., Hato Rey, PR 00918 (Puerto Rico)

2006-12-04T23:59:59.000Z

292

Tamper resistant magnetic stripes  

DOE Patents (OSTI)

This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

Naylor, Richard Brian (Albuquerque, NM); Sharp, Donald J. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

293

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine....

294

The Implementation of a Super Mirror Polarizer at the SNS Fundamental Neutron Physics Beamline  

SciTech Connect

A new bender supermirror polarizer is used to polarize the cold neutron beam at the Fundamental Neutron Physics Beamline at the Spallation Neutron Source. We present the design of a compensation magnet that was built around the polarizer to minimize the polarizer fringe fields that could compromise the magnetic field requirements of the NPDGamma experiment for the field uniformity in the spin rotator and the field direction in the liquid hydrogen target located downstream from the polarizer. The entire magnetic field environment of the experiment has been analyzed using a finite-element model. Measurements of the magnetic field gradients and field direction have been carried out and the results are less than the upper limits required in the experiment. According to the results the compensated fields meet the stringent magnetic field requirements of the experiment defined by the systematic errors that have to be well below the statistical uncertainty of 10 8 in our main observable, the gamma asymmetry in neutron capture on hydrogen. We describe the design of the magnetic field, the construction of the compensation magnet, and we compare results of the field measurements with the results from the model.

Balascuta, S. [Arizona State University; Alarcon, R. [Arizona State University; Baessler, S. [University of Virginia and Oak Ridge National Laboratory (ORNL); Greene, Geoffrey [University of Tennessee, Knoxville (UTK); Mietke, A [Technische Universitat Dresden; Crawford, C. [University of Kentucky, Lexington; Milburn, R. [University of Kentucky, Lexington; Penttila, Seppo [Oak Ridge National Laboratory (ORNL); Prince, J. [University of Virginia, Charlottesville; Schädler, J. [Jacobs University, Bremen, Germany & University of Virginia, Charlottesville

2012-01-01T23:59:59.000Z

295

LHC Magnet Program | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnet Program Magnet Program The Superconducting Magnet Division is building a number of dipole magnets for the Large Hadron Collider (LHC), which is now under construction at CERN in Geneva, Switzerland. Scheduled to begin operation in 2007, this machine will collide beams of protons with the unprecedented energy of 7 TeV per beam to explore the nature of matter at its most basic level (RHIC can collide beams of protons with energies of 0.25 TeV, but is mostly used to collide heavy ions with energies of 0.1 TeV per nucleon). The magnets are being built as part of the US program, recommended by the High Energy Physics Advisory Panel (HEPAP) and approved by Congress, to contribute to the construction and, later, use of that frontier machine by the US high energy physics community. Fermi National Accelerator Laboratory (FNAL) and

296

Active magnetic regenerator  

SciTech Connect

The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

Barclay, John A. (Los Alamos, NM); Steyert, William A. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

297

ALS superbend magnet performance  

E-Print Network (OSTI)

ALS Superbend Magnet Performance S. Marks, J. Zbasnik, W.the Advanced Light Source (ALS), with the fourth magnet as ahe Advanced Light Source (ALS) at the Lawrence Berkeley

2001-01-01T23:59:59.000Z

298

Magnetic Materials Staff  

Science Conference Proceedings (OSTI)

... Materials Science and Engineering Division Staff Directory; MML Organization. Contact. Magnetic Materials Group Robert Shull, Group Leader. ...

2012-10-09T23:59:59.000Z

299

Minimum Magnetic Energy Theorem  

E-Print Network (OSTI)

The Thomson's Theorem states that static charge distributions in conductors show up at the conducting surfaces in an equipotential configuration, so that the electrostatic energy is a minimum. In this work we study an analogue statement for magnetic systems: in a given set of conductors, the stored magnetic field energy reaches the minimum value for superficial current distributions so that the magnetic vector potential is tangent to the conductors surfaces. This is the counterpart of Thomson's theorem for the magnetic field.

Fiolhais, M C N

2008-01-01T23:59:59.000Z

300

Superconducting magnet of Aurora  

Science Conference Proceedings (OSTI)

The AURORAsuperconducting magnet system is composed of a cylindrical single?body magnet and a refrigeration system for superconducting coils. The magnet generates B z =1 T on the central orbit at the 150 MeV electron beam injection energy and B z =4.3 T at the 650 MeV storage energy. The diameter of the central orbit is 1 m. Iron poles and yokes are used for shielding the magnetic field

T. Takayama; SHI Accelerator Research Group

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Irreversible magnetic switch  

DOE Patents (OSTI)

This invention is comprised of an irreversible magnetic switch containing a ferromagnetic amorphous metal having a predetermined crystallization temperature in its inductor magnetic path. With the incorporation of such material, the magnetic properties after cooling from a high temperature excursion above its crystallization temperature are only a fraction of the original value. The difference is used to provide a safety feature in the magnetic switch.

Karnowsky, M.M.; Yost, F.G.

1991-12-31T23:59:59.000Z

302

Magnetic Nanoparticle Metrology  

Science Conference Proceedings (OSTI)

... T2 relaxation times, hysteretic energy loss, etc ... Optimization of magnetic nanoparticle synthesis for ... competition between lattice energies and dipolar ...

2012-12-03T23:59:59.000Z

303

Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays  

SciTech Connect

We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

2010-10-29T23:59:59.000Z

304

Magnetic nanohole superlattices  

DOE Patents (OSTI)

A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

Liu, Feng

2013-05-14T23:59:59.000Z

305

Tunable Magnetic Regenerator/Refrigerant  

Magnetic regenerators utilize the magnetocaloric effect--the ability of a magnetic field to reduce the magnetic part of a solid materials entropy, generating heat, and then removing the magnetic field, permitting the reduction of temperature with the ...

306

Stabilization of the hot-electron precessional mode in a symmetric tandem mirror by the axial variation of radial electric field  

SciTech Connect

The stability of the hot-electron precessional mode is investigated in the presence of a relative Earrow x Barrow precession between the end cell and the center cell, which is inherent to the tandem-mirror concept. It is found that a positive radial electric field in the end cell is favorable to stability. Under normal conditions, the stability of a hot-electron symmetric tandem mirror is not worse than a quadrupole tandem mirror with the same relative Earrow x Barrow precession.

Tsang, K.T.; Lee, X.S.

1984-11-26T23:59:59.000Z

307

Magnetic damping for maglev  

DOE Green Energy (OSTI)

Magnetic damping is one of the important parameters to control the response and stability of maglev systems. An experimental study is presented to measure the magnetic damping using a direct method. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters on magnetic damping such as conductivity, gap, excitation frequency, and oscillation amplitude. The experimental technique is capable of measuring all magnetic damping coefficients, some of which can not be measured by an indirect method.

Chen, S.S.; Zhu, S.; Cai, Y.; Rote, D.M. [Argonne National Lab., IL (United States). Energy Technology Div.

1994-12-31T23:59:59.000Z

308

Magnetically attached sputter targets  

DOE Patents (OSTI)

An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

Makowiecki, D.M.; McKernan, M.A.

1994-02-15T23:59:59.000Z

309

Analysis of the requirements for economic magnetic fusion  

SciTech Connect

A generic reactor model is used to examine the economic viability of electricity generation by magnetic fusion. The simple model uses components which are representative of those used in previous reactor studies of deuterium-tritium burning tokamaks, stellarators, bumpy tori, reverse field pinches and tandem mirrors. Conservative costing assumptions are made. The generic reactor is not a tokamak but rather it is intended to emphasize what is common to all magnetic fusion reactors. The reactor uses a superconducting toroidal coil set to produce the dominant magnetic field. To this extent it is a less good approximation to systems, such as the reversed field pinch in which the main field is produced by a plasma current. The main output of the study is the cost of electricity as a function of the weight and size of the fusion core - blanket, shield, structure and coils. The model shows that a 1200 MW/sub e/ power plant with a fusion core weight of about 10,000 tonnes should be competitive in the future with fission and fossil plants. Sensitivity studies of varying the assumptions show that this result is not sensitively dependent on any given assumption. Of particular importance is the result that this scale of fusion reactor may be realized with only moderate advances in physics and technology capabilities. For a fusion-fission hybrid with a high support ratio for fission reactors, the fusion island is not such a critical driver as for electricity production. 19 refs., 5 figs., 3 tabs.

Sheffield, J.

1986-01-01T23:59:59.000Z

310

Automatic Mirror Alignment for VIRGO: First experimental demonstration of the Anderson technique on a large-scale interferometer  

E-Print Network (OSTI)

The French-Italian interferometric gravitational wave detector VIRGO is currently being commissioned. Its principal instrument is a Michelson laser interferometer with 3 km long optical cavities in the arms and a power-recycling mirror. The interferometer resides in an ultra-high vacuum system and the mirrors are suspended from multistage pendulums for seismic isolation. This type of laser interferometer reaches its maximum sensitivity only when the optical setup is held actively very accurately at a defined operating point: control systems using the precise interferometer signals stabilise the longitudinal and angular positions of the optical component. This paper gives an overview of the control system for the angular degrees of freedom; we present the current status of the system and report the first experimental demonstration of the Anderson technique on a large-scale interferometer.

A. Freise; for the VIRGO Collaboration

2004-11-24T23:59:59.000Z

311

Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen  

DOE Green Energy (OSTI)

This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

Krikorian, O.H. (ed.)

1982-02-09T23:59:59.000Z

312

Slit-mounted LED fiducial system for rotating mirror streak cameras  

SciTech Connect

We have developed a fiducial system for rotating mirror streak cameras that utilizes light emitting diodes mounted at the slit position of the camera. The diodes are driven to the required high brightness by a unique pulse power circuit designed to provide high voltage, high current pulses 18 nanoseconds in length at a frequency of up to 2.5 megahertz. The availability of super bright light emitting diodes with a wavelength of 630 to 640 nanometers allows us to record fiducial pulses, at streaking speeds in excess of 20mm per microsecond, on all the black and white films commonly used in high speed photography. The time marks on the film record are referenced to the real time of the experiment from a clock-driver that controls the start and frequency of the fiducial pulse train and by three adjustable and discreet blanked fiducials. This paper discusses the development of this system and describes the full setup as used at LLNL. 6 refs., 4 figs.

Shaw, L.L.; Muelder, S.A.; Rivera, A.T.

1991-01-01T23:59:59.000Z

313

Modelling of a diode laser with a resonant grating of quantum wells and an external mirror  

SciTech Connect

A three-dimensional numerical model of a diode laser with a resonant grating of quantum wells (QWs) and an external mirror is developed and used to calculate diode laser pulses that are long compared to the time of reaching a stationary regime and are short enough to neglect heating of the medium. The consistent solutions of the Helmholtz field equation and the system of diffusion equations for inversion in each QW are found. A source of charge carriers can be both an electron beam and a pump laser beam. The calculations yielded the longitudinal and radial profiles of the generated field, as well as its wavelength and power. The effective threshold pump current is determined. In the created iteration algorithm, the calculation time linearly increases with the number of QWs, which allows one to find the characteristics of lasers with a large number of QWs. The output powers and beam divergence angles of a cylindrical laser are calculated for different cavity lengths and pump spot radii. After calculating the fundamental mode characteristics, high-order modes were additionally calculated on the background of the frozen carrier distributions in the QW grating. It is shown that all the competing modes remain below the excitation threshold for the pump powers used in the experiment. The calculated and experimental data for the case of pumping by a nanosecond electron beam are qualitatively compared.

Vysotskii, D V; Elkin, N N; Napartovich, A P; Kozlovskii, Vladimir I; Lavrushin, B M

2011-09-30T23:59:59.000Z

314

A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment  

Science Conference Proceedings (OSTI)

Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow ({approximately} 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos` concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable.

Fowler, T.K.

1993-09-28T23:59:59.000Z

315

Neutral Beam Injection Experiments and Related Behavior of Neutral Particles in the GAMMA 10 Tandem Mirror  

Science Conference Proceedings (OSTI)

Results of neutral beam injection (NBI) experiments in the GAMMA 10 tandem mirror plasmas are presented together with the neutral particle behavior observed in the experiments. A hydrogen neural beam was injected into the hot-ion-mode plasmas by using the injector installed in the central-cell for the plasma heating and fueling. High-energy ions produced by NBI were observed and its energy distribution was measured for the first time with a neutral particle analyzer installed in the central-cell. The temporal and spatial behavior of hydrogen was observed with axially aligned H{sub {alpha}} detectors installed from the central midplane to anchor-cell. Enhancement of hydrogen recycling due to the beam injection and the cause of the observed decrease in plasma diamagnetism are discussed. The Monte-Carlo code DEGAS for neutral transport simulation was applied to the GAMMA 10 central-cell and a 3-dimensional simulation was performed in the NBI experiment. Localization of neutral particle during the beam injection is investigated based on the simulation and it was found that the increased recycling due to the beam injection was dominant near the injection port.

Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Watanabe, K. [Plasma Research Center, University of Tsukuba (Japan); Higashizono, Y. [Plasma Research Center, University of Tsukuba (Japan); Ohki, T. [Plasma Research Center, University of Tsukuba (Japan); Ogita, T. [Plasma Research Center, University of Tsukuba (Japan); Shoji, M. [National Institute for Fusion Science(Japan); Kobayashi, S. [Institute of Advanced Energy, Kyoto University (Japan); Islam, M.K. [Plasma Research Center, University of Tsukuba (Japan); Kubota, Y. [Plasma Research Center, University of Tsukuba (Japan); Yoshikawa, M. [Plasma Research Center, University of Tsukuba (Japan); Kobayashi, T. [Plasma Research Center, University of Tsukuba (Japan); Yamada, M. [Plasma Research Center, University of Tsukuba (Japan); Murakami, R. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

2005-01-15T23:59:59.000Z

316

Some implications for mirror research of the coupling between fusion economics and fusion physics  

SciTech Connect

The thesis is made that physics understanding and innovation represent two of the most important ingredients of any program to develop fusion power. In this context the coupling between these and the econmics of yet-to-be realized fusion power plants is explored. The coupling is two-way: realistic evaluations of the economic (and environmental) requirements for fusion power systems can influence the physics objectives of present-day fusion research programs; physics understanding and innovative ideas can favorably impact the future economics of fusion power systems. Of equal importance is the role that physics/innovation can have on the time scale for the first practical demonstration of fusion power. Given the growing worldwide need for long-term solutions to the problem of energy it is claimed to be crucial that fusion research be carried out on a broad base and in a spirit that both facilitates the growth of physics understanding and fosters innovation. Developing this theme, some examples of mirror-based fusion system concepts are given that illustrate the coupling here described.

Post, R.F.

1980-01-01T23:59:59.000Z

317

Survey mirrors and lenses and their required surface accuracy. Volume 2. Concentrator optical performance software (COPS) user's manual. Final report for September 15, 1978-December 1, 1979  

SciTech Connect

The mathematical modeling of 11 different concentrating collectors is documented and instructions are given for use of the computer code. The 11 concentrators modeled are: faceted mirror concentration; fixed mirror, two-axis tracking receiver; parabolic trough collector; linear Fresnel; incremental reflector; inflated cylindrical concentrator; CPC-involute reflector with evacuated receiver; CPC-parabolic/involute reflector; V trough collectors, imaging collapsing concentrator; and parabolic dish collector. (MHR)

Not Available

1980-01-01T23:59:59.000Z

318

High Field Magnet R&D |Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

High Field Magnet R&D High Field Magnet R&D The Superconducting Magnet Division is developing advanced magnet designs and magnet-related technologies for high field accelerator magnets. We are currently working on magnets for three inter-related programs: High Field Magnets for Muon Collider Papers, Presentations Common Coil Magnets Papers, Presentations Interaction Region Magnets Papers, Presentations High Temperature Superconductor (HTS) Magnets Papers, Presentations This is part of a multi-lab superconducting magnet development program for new accelerator facilities that would be part of the U.S. High Energy Physics program. These programs (@BNL, @FNAL, @LBNL) are quite complimentary to each other, so that magnet designs and technologies developed at one laboratory can be easily transferred to another. The BNL

319

Magnetism reflectometer study shows LiF layers improve efficiency in spin valve devices  

Science Conference Proceedings (OSTI)

New, more efficient materials for spin valves - a device used in magnetic sensors, random access memories, and hard disk drives - may be on the way based on research using the magnetism reflectometer at Oak Ridge National Laboratory (ORNL). Spin valve devices work by means of two or more conducting magnetic material layers that alternate their electrical resistance depending on the layers alignment. Giant magnetoresistance is a quantum mechanical effect first observed in thin film structures about 20 years ago. The effect is observed as a significant change in electrical resistance, depending on whether the magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel magnetic alignment. 'What we are doing here is developing new materials. The search for new materials suitable for injecting and transferring carriers with a preferential spin orientation is most important for the development of spintronics,' said Valeria Lauter, lead instrument scientist on the magnetism reflectometer at the Spallation Neutron Source (SNS), who collaborated on the experiment. The researchers discovered that the conductivity of such materials is improved when an organic polymer semiconductor layer is placed between the magnetic materials. Organic semiconductors are now the material of choice for future spin valve devices because they preserve spin coherence over longer times and distances than conventional semiconductors. While research into spin valves has been ongoing, research into organic semiconductors is recent. Previous research has shown that a 'conductivity mismatch' exists in spin valve systems in which ferromagnetic metal electrodes interface with such organic semiconductors as Alq3 ({pi}-conjugated molecule tris(8-hydroxy-quinoline) aluminium). This mismatch limits the efficient injection of the electrons from the electrodes at the interface with the semiconductor material. However, lithium fluoride (LiF), commonly used in light-emitting diodes, has been found to enhance the injection of electrons through the semiconductor. Researchers from the University of Alabama and ORNL used polarized neutrons at the magnetism reflectometer at SNS to investigate the electronic, magnetic, and structural properties of the electrodes in a novel system. In this system, the magnetic layers cobalt and Ni{sub 80}Fe{sub 20} are interfaced with spacer layers composed of the organic semiconductor Alq3. A coupling layer of LiF is inserted to separate the magnetized layers from the semiconductor. 'ALQ3 is an organic semiconductor material,' said Lauter. 'Normally in these systems a first magnetic layer is grown on a hard substrate so that one can get the controlled magnetic parameters. Then you grow the organic semiconductor layer, followed by another magnetic material layer, such as cobalt.' In addition to determining the effect of the LiF layers on the efficiency of the electron injection, the researchers wanted to determine the magnetic properties of the cobalt and Ni{sub 80}Fe{sub 20} as well as the interfacial properties: whether there is interdiffusion of cobalt through the LiF layer to the semiconductor, for example. The researchers used polarized neutrons at beam line 4A to probe the entire, layer-by-layer assembly of the system. 'Reflectometry with polarized neutrons is a perfect method to study thin magnetic films,' Lauter said. 'These thin films - if you put one on a substrate, you see it just like a mirror. However, this mirror has a very complicated internal multilayer structure. The neutrons look inside this complicated structure and characterize each and every interface. Due to the depth sensitivity of the method, we measure the structural and magnetic properties of each layer with the resolution of 0.5 nm. The neutron scattering results found that inserting LiF as a barrier significantly improves the quality of the interface, increasing the injection of electrons from the magnetic layer through the organic semiconductor in the spin valve and enhancing the overall properties of the system. In related work the magneti

Bardoel, Agatha A [ORNL; Lauter, Valeria [ORNL; Szulczewski, Greg J [ORNL

2012-01-01T23:59:59.000Z

320

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pulse magnetic welder  

DOE Patents (OSTI)

A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

Christiansen, D.W.; Brown, W.F.

1984-01-01T23:59:59.000Z

322

Magnetic latching solenoid  

DOE Patents (OSTI)

This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

Marts, Donna J. (Idaho Falls, ID); Richardson, John G. (Idaho Falls, ID); Albano, Richard K. (Idaho Falls, ID); Morrison, Jr., John L. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

323

Magnetically leviated superconducting bearing  

DOE Patents (OSTI)

A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT)

1993-01-01T23:59:59.000Z

324

Nanostructrured Magnetic Materials  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... The demand for OFF-ON becomes increasingly important as ... The residual magnetic flux density and maximum energy product of the ...

325

Rare Earth Magnets  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Performance and Endurance of Nd-Fe-B Sintered Magnets in E-Motor Application Conditions: Martina Moore1; Ralph Sueptitz1; Margitta ...

326

Rare Earth Magnets  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... Current high performance permanent magnets (PM) for traction motors of (hybrid) electric vehicles use substantial amount of Dy in Nd-Fe-B ...

327

Magnetic Materials and Properties  

Science Conference Proceedings (OSTI)

Aug 5, 2013 ... Following vacuum distillation of the Mg-RE alloy, 98% pure RE metals can be recovered, which are then used to synthesize permanent magnet ...

328

Fusion component design for the moving-ring field-reversed mirror reactor  

DOE Green Energy (OSTI)

This partial report on the reactor design contains sections on the following: (1) burner section magnet system design, (2) plasma ring energy recovery, (3) vacuum system, (4) cryogenic system, (5) tritium flows and inventories, and (6) reactor design and layout. (MOW)

Carlson, G.A.

1981-01-28T23:59:59.000Z

329

Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant  

SciTech Connect

Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis. (MOW)

Donohue, M.L.; Price, M.E. (eds.)

1984-07-01T23:59:59.000Z

330

Magnetism Highlights| Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetism Magnetism SHARE Magnetism Highlights 1-5 of 5 Results ARCS maps collaborative magnetic spin behavior in iron telluride December 01, 2011 - Researchers have long thought that magnetism and superconductivity are mutually exclusive. The former typically involves localized atomic electrons. The latter requires freely propagating, itinerant electrons. Unexpected Magnetic Excitations in Doped Insulator Surprise Researchers October 01, 2011 - When doping a disordered magnetic insulator material with atoms of a nonmagnetic material, the conventional wisdom is that the magnetic interactions between the magnetic ions in the material will be weakened. Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" September 01, 2011 - Neutron scattering studies of "cobalt blue," a

331

BEPC-II Magnet Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

BEPC-II Magnet Project BEPC-II Magnet Project Project Overview The BEPC-II magnets are Interaction Region magnets to be used as part of an upgrade to the Beijing Electron Positron Collider. Two magnets will be produced, both of which will be inserted within the solenoidal detector at one of the collision points. Since the best use of the quadrupole focusing in this case requires placing the magnet as close to the collision point as possible, these magnets will be used within the magnetic field of the detector. This constrains the materials that can be used for construction to only non-magnetic materials. It also places severe demands on the structure of the magnet and it's holding supports due to the reaction forces between the solenoid and the magnet. To create the coil pattern for the final magnet, the coils will be

332

Passive magnetic bearing configurations  

Science Conference Proceedings (OSTI)

A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

Post, Richard F. (Walnut Creek, CA)

2011-01-25T23:59:59.000Z

333

EXOTIC MAGNETS FOR ACCELERATORS.  

SciTech Connect

Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

WANDERER, P.

2005-09-18T23:59:59.000Z

334

Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - 6/13/06 3 - 6/13/06 Superconducting Magnet Division S&T Committee Program Review June 22-23, 2006 Conference Room A, Bldg. 725, BNL DRAFT AGENDA Thursday, June 22 0830 Executive Session to address the charge S. Aronson (25 min) 0855 Welcome S. Aronson (5 min) 0900 Superconducting Magnet Division Status & M. Harrison (45 + 15 min) Issues - mission statement, core competencies, themes, program, problems, etc. 1000 Themes - Nb3Sn, HTS, Direct wind, Accelerator integration, P. Wanderer (20 + 10 min) rapid cycling Core Competencies 1030 Superconducting Materials A. Ghosh (20 + 5 min) 1055 Break 1110 Magnetic Design R. Gupta (20 + 5 min) 1135 Magnet Construction M. Anerella (20 + 5 min) 1200 Magnet Testing G. Ganetis (20 + 5 min)

335

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

336

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

337

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

338

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

339

Magnet pole tips  

DOE Patents (OSTI)

An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

Thorn, Craig E. (Wading River, NY); Chasman, Chellis (Setauket, NY); Baltz, Anthony J. (Coram, NY)

1984-04-24T23:59:59.000Z

340

Magnet pole tips  

DOE Patents (OSTI)

An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

Thorn, C.E.; Chasman, C.; Baltz, A.J.

1981-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

342

Magnetization of neutron star matter  

E-Print Network (OSTI)

The magnetization of neutron star matter in magnetic fields is studied by employing the FSUGold interaction. It is found that the magnetic susceptibilities of the charged particles (proton, electron and muon) can be larger than that of neutron. The effects of the anomalous magnetic moments (AMM) of each component on the magnetic susceptibility are examined in detail. It is found that the proton and electron AMM affect their respective magnetic susceptibility evidently in strong magnetic fields. In addition, they are the protons instead of the electrons that contribute most significantly to the magnetization of the neutron star matter in a relative weak magnetic field, and the induced magnetic field due to the magnetization can be appear to be very large. Finally, the effect of the density-dependent symmetry energy on the magnetization is discussed.

Dong, Jianmin; Gu, Jianzhong

2013-01-01T23:59:59.000Z

343

USE OF INCIDENT AND REFLECTED SOLAR PARTICLE BEAMS TO TRACE THE TOPOLOGY OF MAGNETIC CLOUDS  

SciTech Connect

Occasionally, large solar energetic particle (SEP) events occur inside magnetic clouds (MCs). In this work, the onset time analysis, the peak intensity analysis, and the decay phase analysis of SEPs are used to investigate two large SEP events inside MCs: the 1998 May 2 and 2002 April 21 events. The onset time analysis of non-relativistic electrons and {approx}MeV nucleon{sup -1} heavy ions shows the stability of the magnetic loop structure during a period of a few hours in the events examined. The joint analysis of pitch-angle distributions and peak intensities of electrons exhibits that, depending on the particle pitch angle observed at 1 AU, in the April event the reflection point of particles may be distributed along a wide spatial range, implying that the magnetic loop is a magnetic bottle connected to the Sun with both legs. In contrast, in the May event particle reflection occurs abruptly at the magnetic mirror formed by a compressed field enhancement behind the interplanetary shock, consistent with its open field line topology.

Tan, Lun C. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Malandraki, Olga E.; Dorrian, Gareth [Institute of Astronomy and Astrophysics, National Observatory of Athens (Greece); Reames, Donald V. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Ng, Chee K. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Wang Linghua, E-mail: ltan@umd.edu [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States)

2012-05-10T23:59:59.000Z

344

Magnetic Thin Films and Devices  

Science Conference Proceedings (OSTI)

... metal atoms that form small magnets with Curie ... a toggle operation of the magnetic state of ... A high-frequency probe driving a microwave waveguide ...

2010-10-05T23:59:59.000Z

345

Permanent Magnets for Energy Applications  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... Magnetic Materials for Energy Applications II: Permanent Magnets for ... to 500% in the last 12 months, the most unstable being the price of Dy.

346

Experiment Hazard Class 9 - Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

hazard classification applies to all experiments involving magnets, magnetic fields, and electric fields. Other hazard classifications such as electrical safety and their...

347

Nanostructured Materials for Magnetic Refrigeration  

Science Conference Proceedings (OSTI)

... of Nd-Fe-B Magnets to the Megawatt Scale Generator for the Wind Turbine ... Low Loss, High Power Density Magnetics in Inductor/Transformer Cores for Army  ...

348

Search Publications | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Rapid Cycling Magnets Helical Magnets HERA upgrade LHC IR Dipoles RHIC Publications Search Publications Selected Cryogenic Data Notebook Proceedings of the 1968 Summer Study on...

349

Cloning of arbitrary mirror-symmetric distributions on Bloch sphere: Optimality proof and proposal for practical photonic realization  

E-Print Network (OSTI)

We study state-dependent quantum cloning which can outperform universal cloning. This is possible by using some a priori information on a given quantum state to be cloned. Specifically, we propose a generalization and optical implementation of quantum optimal mirror phase-covariant cloning, which refers to optimal cloning of sets of qubits of known modulus of expectation value of Pauli's Z operator. Our results can be applied for cloning of an arbitrary mirror-symmetric distribution of qubits on Bloch sphere including in special cases the universal cloning and phase-covariant cloning. We show that the cloning is optimal by adapting our former optimality proof for axisymmetric cloning [Phys. Rev. 82, 042330 (2010)]. Moreover, we propose an optical realization of the optimal mirror phase-covariant 1 to 2 cloning of a qubit, for which the mean probability of successful cloning varies from 1/6 to 1/3 depending on prior information on the set of qubits to be cloned. The qubits are represented by polarization states of photons generated by the type-I spontaneous parametric down-conversion. The scheme is based on the interference of two photons on an unbalanced polarization-dependent beam splitter with different splitting ratios for vertical and horizontal polarization components and the additional application of feedforward by means of Pockels cells. The experimental feasibility of the proposed setup is carefully studied including various kinds of imperfections and losses including: (i) finite efficiency of generating a pair of entangled photons in the type-I spontaneous parametric down conversion, (ii) the influence of choosing various splitting ratios of the unbalanced beam splitter, (iii) the application of conventional and single-photon discriminating detectors, (iv) dark counts and finite efficiency of the detectors.

Karol Bartkiewicz; Adam Miranowicz

2011-03-28T23:59:59.000Z

350

Magnetically Driven Accretion  

E-Print Network (OSTI)

We carried out 2.5-dimensional resistive magnetohydrodynamic simulations to study the effects of magnetic diffusivity on magnetically driven mass accretion and jet formation. The initial state is a constant angular-momentum torus threaded by large-scale vertical magnetic fields. Since the angular momentum of the torus is extracted due to magnetic braking, the torus medium falls toward the central region. The infalling matter twists the large-scale magnetic fields and drives bipolar jets. We found that (1) when the normalized magnetic diffusivity, ¯? ? ?/(r0VK0), where VK0 is the Keplerian rotation speed at a reference radius r = r0, is small (¯? ? 10 ?3), mass accretion and jet formation take place intermittently; (2) when 10 ?3 ? ¯? ? 10 ?2, the system evolves toward a quasi-steady state; and (3) when ¯? ? 10 ?2 the accretion/mass 1 outflow rate decreases with ¯? and approaches 0. The results of these simulations indicate that in the center of a galaxy which has a super-massive ( ? 10 9 M?) black hole, a massive ( ? 10 8 M?) gas torus and magnetic braking provide a mass accretion rate which is sufficient to explain the activity of AGNs when ¯? ? 5 × 10?2.

Takuhito Kuwabara; Kazunari Shibata; Takahiro Kudoh

2000-01-01T23:59:59.000Z

351

K:\\Web\\WebMirror2\\ospa\\policiesandprocedures\\Allowability of B I start up costs Policy-1-12.doc SPA Procedure for Allowable B&I Clinical Trial Start-Up Costs  

E-Print Network (OSTI)

K:\\Web\\WebMirror2\\ospa\\policiesandprocedures\\Allowability of B I start up costs Policy-1-12.doc SPA

Amin, S. Massoud

352

Single-photon single-ion interaction in free space configuration in front of a parabolic mirror  

E-Print Network (OSTI)

The efficient interaction between single photons and single matter objects in free space is of key importance for quantum technologies. An experimental setup for testing this possibility involves single two-level ion trapped at the focus of a parabolic metallic mirror. We study the conditions for the setup, under which the assumption about the free-space mode structure of the radiation field in the vicinity of the atom is justified. In our analysis we apply vectorial properties of light by including polarization degree of freedom. We look for possible changes in the spontaneous emission rate of the atom resulting from the presence of the parabolic boundary conditions.

Magdalena Stobi?ska; Robert Alicki

2009-05-25T23:59:59.000Z

353

Magnetic field generator  

DOE Patents (OSTI)

A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

Krienin, Frank (Shoreham, NY)

1990-01-01T23:59:59.000Z

354

Moment free toroidal magnet  

DOE Patents (OSTI)

A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.

Bonanos, Peter (East Brunswick, NJ)

1983-01-01T23:59:59.000Z

355

Design and fabrication of a superconducting magnet for an 18 GHz electron cyclotron resonance ion/photon source NFRI-ECRIPS  

Science Conference Proceedings (OSTI)

A superconducting magnet was designed and fabricated for an 18 GHz ECR ion/photon source, which will be installed at National Fusion Research Institute (NFRI) in South Korea. The magnetic system consists of a set of four superconducting coils for axial mirror field and 36 pieces of permanent magnets for hexapolar field. The superconducting coils with a cryocooler (1.5 W - 4.2 K) allow one to reach peak mirror fields of 2.2 T in the injection and those of 1.5 T in the extraction regions on the source axis, and the resultant hexapolar field gives 1.35 T on the plasma chamber wall. The unbalanced magnetic force between the coils and surrounding yoke has been minimized to 16 ton by a coil arrangement and their electrical connection, and then was successfully suspended by 12 strong thermal insulating supports made of large numbers of carbon fibers. In order to block radiative thermal losses, multilayer thermal insulations are covered on the coil windings as well as 40-K aluminum thermal shield. Also new schemes of quench detection and safety system (coil divisions, quench detection coils, and heaters) were employed. For impregnation of the windings a special epoxy has been selected and treated to have a higher breaking strength and a higher thermal conductivity, which enables the superconductors to be uniformly and rapidly cooled down or heated during a quench.

You, H.-J.; Jang, S.-W.; Jung, Y.-H.; Lho, T.-H. [Convergence Plasma Research Center, National Fusion Research Institute, Yusung-gu, Daejeon (Korea, Republic of); Lee, S.-J. [The Theoretical Solutions, JHeng Inc., Seoul (Korea, Republic of)

2012-02-15T23:59:59.000Z

356

Permanent magnet energy conversion machine with magnet mounting arrangement  

DOE Patents (OSTI)

A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.

Hsu, John S. (Oak Ridge, TN); Adams, Donald J. (Knoxville, TN)

1999-01-01T23:59:59.000Z

357

MagneticsLab  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetics Laboratory Magnetics Laboratory Manufacturing Technologies The Magnetics Lab provides customers with design, prototyping, packaging solutions and production of unique magnetic and resistive components from millivolts to extremely high voltage (250KV) components. Capabilities * Design review of specification and requirements * Design and develop from sketches, verbal ideas, or circuit design parameters * Coil windings of any size or configuration * Coil diameter from 0.1 to 24 inches * Low temperature and high temperature coils * Precision resistors from 0.1 ohms to 2 megaohms (non-inductive) * Special high voltage transformers (2KV to 250KV) and high voltage loads (38K ohms to 100K ohms and 2KV to 250KV) Resources * Computer Aided Mechanical Design (Solid Works 3D CAD System) for mechanical

358

AFRD - Superconducting Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Magnets Superconducting Magnets Home Organization Diversity Safety Links Gallery/History Updated July 2008 Ever-stronger magnets (which must be cost-effective as well) are a key to building tomorrow's high-energy accelerators and upgrading today's. Our role— not only a leading R&D group but also the administrators of the multi-institutional National Conductor Development Program— to create both evolutionary improvements and paradigm shifts in the application of accelerator magnets, providing innovative technology that enables new science. Improvements in conductor, innovative structures to solve the challenges of high fields and brittle superconductors, and integration of computerized design and analysis tools are key. The performance requirements of modern accelerators continue to press the

359

Magnetic gripper device  

DOE Patents (OSTI)

A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

Meyer, R.E.

1992-12-31T23:59:59.000Z

360

Computing with magnets  

Science Conference Proceedings (OSTI)

Researchers are finding ways to develop ultra-efficient and nonvolatile computer processors out of nanoscale magnets. A number of obstacles, however, stand in the way of their commercialization.

Gary Anthes

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modular tokamak magnetic system  

DOE Patents (OSTI)

A modular tokamak system comprised of a plurality of interlocking modules. Each module is comprised of a vacuum vessel section, a toroidal field coil, modular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

Yang, Tien-Fang

1986-11-20T23:59:59.000Z

362

SUPERCONDUCTING MAGNET DIVISION  

NLE Websites -- All DOE Office Websites (Extended Search)

MAGNET DIVISION CY 2013 Tier 1 Inspection Schedule Frequency Building Q1 Q2 Q3 Q4 S 902B (Offices) 11713 62013 S 902A (Offices) 11713 62013 Q 902-High Bay Shop 22113 5...

363

Superconducting combined function magnets  

SciTech Connect

Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

Hahn, H.; Fernow, R.C.

1983-01-01T23:59:59.000Z

364

Magnetic fluorescent lamp  

DOE Patents (OSTI)

The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

Berman, S.M.; Richardson R.W.

1983-12-29T23:59:59.000Z

365

LABORATORY VI ELECTRICITY FROM MAGNETISM  

E-Print Network (OSTI)

the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic the magnetic flux through a coil of wire to produce an electric current. You will investigate the current are necessary for a magnetic field to produce an electric current. · Determine the direction of a current

Minnesota, University of

366

Electronic, Magnetic & Photonic Materials Division  

Science Conference Proceedings (OSTI)

... Committee · Energy Conversion and Storage Committee · Magnetic Materials Committee · Nanomaterials Committee · Thin Films and Interfaces Committee.

367

Isospin symmetry breaking at high spins in the mirror pair {sup 67}Se and {sup 67}As  

Science Conference Proceedings (OSTI)

Recent experimental data have revealed large mirror energy differences (MED) between high-spin states in the mirror nuclei {sup 67}Se and {sup 67}As, the heaviest pair where MED have been determined so far. The MED are generally attributed to the isospin symmetry breaking caused by the Coulomb force and by the isospin-nonconserving part of the nucleon-nucleon residual interaction. The different contributions of the various terms have been extensively studied in the fp shell. By employing large-scale shell-model calculations, we show that the inclusion of the g{sub 9/2} orbit causes interference between the electromagnetic spin-orbit and the Coulomb monopole radial terms at high spin. The large MED are attributed to the aligned proton pair excitations from the p{sub 3/2} and f{sub 5/2} orbits to the g{sub 9/2} orbit. The relation of the MED to deformation is discussed.

Kaneko, K. [Department of Physics, Kyushu Sangyo University, Fukuoka 813-8503 (Japan); Tazaki, S. [Department of Applied Physics, Fukuoka University, Fukuoka 814-0180 (Japan); Mizusaki, T. [Institute of Natural Sciences, Senshu University, Tokyo 101-8425 (Japan); Sun, Y.; Hasegawa, M. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); De Angelis, G. [Laboratori Nazionali di Legnaro dell'INFN, Legnaro (Padova), I-35020 (Italy)

2010-12-15T23:59:59.000Z

368

Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90 deg. off-axis parabolic mirrors  

Science Conference Proceedings (OSTI)

Gas Cherenkov detectors (GCDs) have been used to convert fusion gamma into photons to achieve gamma bang time and reaction history measurements. The GCDs designed for OMEGA used Cassegrain reflector optics in order to fit inside a 10 in. manipulator. A novel design for the National Ignition Facility using 90 deg. off-axis parabolic mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO{sub 2} gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100 mm diameter by 500 mm long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO{sub 2} gas volume. A cluster of four channels will allow for increased dynamic range as well as for different gamma energy threshold sensitivities.

Malone, R. M. [National Security Technologies, P.O. Box 809, Los Alamos, New Mexico 87544 (United States); Herrmann, H. W.; Mack, J. M.; Young, C. S. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2008-10-15T23:59:59.000Z

369

Freely oriented portable superconducting magnet  

SciTech Connect

A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

Schmierer, Eric N. (Los Alamos, NM); Prenger, F. Coyne (Los Alamos, NM); Hill, Dallas D. (Los Alamos, NM)

2010-01-12T23:59:59.000Z

370

MAGNETIC NEUTRON SCATTERING  

SciTech Connect

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

ZALIZNYAK,I.A.; LEE,S.H.

2004-07-30T23:59:59.000Z

371

RHIC Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Project RHIC Project The Superconducting Magnet Division supplied 1740 magnetic elements, in 888 cryostats, for the RHIC facility at BNL. Of these, 780 magnetic elements were manufactured by Northrop-Grumman (Bethpage, NY) and 360 were made by Everson Electric (Bethlehem, PA). The magnets made in industry used designs developed at BNL. The first cooldown of the magnets for the RHIC engineering run was in 1999. Since then, the magnets have operated very reliably. arc dipole coil and yoke Arc dipole coil and yoke, with magnetic flux lines The magnets provide modest field (3.45 Teslas in the arc dipoles) in a cost-effective design. Key features in the principal bending and focusing magnets include the use of NbTi Rutherford cable, a single-layer coil, and cold iron as both yoke and collar. The magnets operate in forced-flow

372

Ground Magnetics | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (15) Areas (12) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

373

GSI Rapid Cycling Magnets Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

GSI Rapid Cycling Magnets Project GSI Rapid Cycling Magnets Project While superconducting magnets easily achieve higher magnetic fields at lower cost than conventional electromagnets, it is very difficult to ramp superconducting magnets very quickly. But exactly that is needed at the planned new facility of GSI, the Gesellschaft für Schwerionenforschung (Institute for Heavy Ion Research), in Darmstadt, Germany. In the magnets of the SIS 200 ring, one of the components of the new facility, the magnetic field must be ramped from 0.5 Tesla to 4 Tesla at a rate of 1 Tesla per second. This ramp rate is almost 25 times faster than the ramp rate of the Relativistic Heavy Ion Collider (RHIC) magnets at Brookhaven National Lab (BNL), which ramp at a rate of 0.042 Tesla per second. While the SIS 200 magnets also require a slightly higher field strength than the

374

R&D ERL: Magnetic measurements of the ERL magnets  

SciTech Connect

The magnet system of ERL consists of G5 solenoids, 6Q12 quadrupoles with 0.58 T/m gradient, 3D60 dipoles with 0.4 T central field, 15 and 30 degree Z-bend injection line dipole/quadrupole combined function magnets, and extraction line magnets. More details about the magnets can be found in a report by G. Mahler. Field quality in all the 6Q12 quadrupoles, 3D60 dipoles and the injection line magnets has been measured with either a rotating coil, or a Hall probe mapper. This report presents the results of these magnetic measurements.

Jain, A.

2010-08-01T23:59:59.000Z

375

Magnets and Power Supplies  

NLE Websites -- All DOE Office Websites (Extended Search)

Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal bunch profile and Magnets and Power Supplies Dipole Magnets and Power Supplies Value Dipole Number 80+1 No. of power supplies 1 Magnetic length 3.06 m Core length 3.00 m Bending radius 38.9611 m Power supply limit 500.0 A Field at 7 GeV 0.599 T Dipole trim coils Number 80+1 No. of power supplies 80 Magnetic length 3.06 m Core length 3.00 m Power supply limit 20.0 A Maximum field 0.04 T Horizontal Correction Dipoles Number 317 No. of power supplies 317 Magnetic length 0.160 m Core length 0.07 m Power supply limit 150.0 A Maximum field 0.16 T Max. deflection at 7 GeV 1.1 mrad Vertical Corrector Dipoles Number 317 No. of power supplies 317

376

Magnetic reconnection launcher  

DOE Patents (OSTI)

An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

Cowan, Maynard (Albuquerque, NM)

1989-01-01T23:59:59.000Z

377

Active magnetic regenerator  

DOE Patents (OSTI)

An apparatus and method for refrigeration are disclosed which provides efficient refrigeration over temperature ranges in excess of 20/sup 0/C and which requires no maintenance and is, therefore, usable on an unmanned satellite. The apparatus comprises a superconducting magnet which may be solenoidal. A piston comprising a substance such as a rare earth substance which is maintained near its Curie temperature reciprocates through the bore of the solenoidal magnet. A magnetic drive rod is connected to the piston and appropriate heat sinks are connected thereto. The piston is driven by a suitable mechanical drive such as an electric motor and cam. In practicing the invention, the body of the piston is magnetized and demagnetized as it moves through the magnetic field of the solenoid to approximate any of the following cycles or a condition thereof as well as, potentially, other cycles: Brayton, Carnot, Ericsson, and Stirling. Advantages of the present invention include: that refrigeration can be accomplished over at least a 20/sup 0/C scale at superconducting temperatures as well as at more conventional temperatures; very high efficiency, high reliability, and small size. (LCL)

Barclay, J.A.; Steyert, W.A.

1981-01-27T23:59:59.000Z

378

Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

379

Purely magnetic spacetimes  

E-Print Network (OSTI)

Spacetimes in which the electric part of the Weyl tensor vanishes (relative to some timelike unit vector field) are said to be purely magnetic. Examples of purely magnetic spacetimes are known and are relatively easy to construct, if no restrictions are placed on the energy-momentum tensor. However it has long been conjectured that purely magnetic vacuum spacetimes (with or without a cosmological constant) do not exist. The history of this conjecture is reviewed and some advances made in the last year are described briefly. A generalisation of this conjecture first suggested for type D vacuum spacetimes by Ferrando and Saez is stated and proved in a number of special cases. Finally an approach to a general proof of the conjecture is described using the Newman-Penrose formalism based on a canonical null tetrad of the Weyl tensor.

Alan Barnes

2004-01-15T23:59:59.000Z

380

Superconducting magnetic coil  

DOE Patents (OSTI)

A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

Aized, D.; Schwall, R.E.

1999-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Requirements of Magnetic Materials for Current Technological ...  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... Magnetic Materials for Energy Applications: Requirements of Magnetic ... Hard magnetic materials play a significant role in many green ...

382

Experiment #7: Magnetic Deflection of Beta Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

of magnetism. Materials Geiger counter Wooden block (to hold the source) Aluminum shield with hole (for Geiger counter) Two cow magnets Magnet holders Sr-90 (beta source)...

383

Magnetic imaging of shipwrecks  

E-Print Network (OSTI)

The ferromagnetic material in a shipwreck on the seabed causes a modification to the earth's magnetic field which can be measured at the surface. Proton magnetometer measurements at the surface are used to locate wrecks. Here I discuss how to interpret such data to explore the shape and orientation of the shipwreck on the seabed. I give details of how to model shipwrecks and deduce the magnetic signal that results. I also discuss how to analyse data in a more general way. As examples, I present and analyse data on the shipwrecks of YSTROOM and BOUBOULINA (ex COLONEL LAMB).

Michael, C

2011-01-01T23:59:59.000Z

384

The solar magnetic field  

E-Print Network (OSTI)

The magnetic field of the Sun is the underlying cause of the many diverse phenomena combined under the heading of solar activity. Here we describe the magnetic field as it threads its way from the bottom of the convection zone, where it is built up by the solar dynamo, to the solar surface, where it manifests itself in the form of sunspots and faculae, and beyond into the outer solar atmosphere and, finally, into the heliosphere. On the way it, transports energy from the surface and the subsurface layers into the solar corona, where it heats the gas and accelerates the solar wind.

Solanki, Sami K; Schüssler, Manfred; 10.1088/0034-4885/69/3/R02

2010-01-01T23:59:59.000Z

385

Using Less Energy in the Kitchen on Thanksgiving | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Using Less Energy in the Kitchen on Thanksgiving Using Less Energy in the Kitchen on Thanksgiving Using Less Energy in the Kitchen on Thanksgiving November 16, 2012 - 1:36pm Addthis You can use less energy in your kitchen and still prepare the perfect Thanksgiving feast. | Photo courtesy of ©iStockphoto.com/YinYang You can use less energy in your kitchen and still prepare the perfect Thanksgiving feast. | Photo courtesy of ©iStockphoto.com/YinYang Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? You can save energy (and money) while doing your Thanksgiving cooking with these tips. Thanksgiving is a great time of year to bring friends and families together. It also means spending time in the kitchen to prepare the traditional Thanksgiving feast. If you're like me, you're always looking

386

Abstract--Grazing incidence metal mirrors in laser-driven IFE power plants are subject to a variety of threats that result  

E-Print Network (OSTI)

Abstract--Grazing incidence metal mirrors in laser-driven IFE power plants are subject to a variety [4] at UCSD, and help define design windows for the GIMM in a laser-driven IFE power plant's wave scattering theory to evaluate degradation of the beam performance. For a damaged surface

Tillack, Mark

387

Performance of the Meteolabor “Snow White” Chilled-Mirror Hygrometer in the Tropical Troposphere: Comparisons with the Vaisala RS80 A/H-Humicap Sensors  

Science Conference Proceedings (OSTI)

The “Snow White” hygrometer is a low-cost, chilled-mirror hygrometer for radiosonde applications provided by a Swiss company, Meteolabor AG. A total of 54 Snow White soundings were conducted at five tropical stations in different seasons in 2000–...

Masatomo Fujiwara; Masato Shiotani; Fumio Hasebe; Holger Vömel; Samuel J. Oltmans; Paul W. Ruppert; Takeshi Horinouchi; Toshitaka Tsuda

2003-11-01T23:59:59.000Z

388

"Magic mirror on the wall, who's the fastest Database of them all?" A Survey of Database Benchmarks  

E-Print Network (OSTI)

Benchmarks are important tools for measuring the performance of database management systems (DBMS) and for understanding vendor claims of performance. This paper defines DBMS benchmarks, explores the role of the Transaction Processing Performance Council as the only benchmark standards organization, and surveys eight existing DBMS benchmarks for on-line transaction processing, relational, and object-oriented databases. 1 Introduction When examining the performance of a commercial database management system (DBMS),one is bombarded with vendor performance claims. Each vendor will shower you with claims of "tpsA-Local" ratings, or top performance on the "TPC-C" benchmark. If you are looking at a commercial object-oriented DBMS, vendors will tell you they have the best performance on the "Cattell" (or OO1 or "Sun") benchmark. The use of benchmark performance measurements by commercial DBMS vendors seems a bit like the Queen in Snow White asking the magic mirror who is the fairest. If the ...

Usaf Maj; Timothy J. Halloran; Timothy J. Halloran; Mark A. Roth; Mark A. Roth

1993-01-01T23:59:59.000Z

389

Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror  

Science Conference Proceedings (OSTI)

In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TS system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.

Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

2012-10-15T23:59:59.000Z

390

Fast superconducting magnetic field switch  

DOE Patents (OSTI)

The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

Goren, Y.; Mahale, N.K.

1995-12-31T23:59:59.000Z

391

Moving Magnet Series with  

E-Print Network (OSTI)

material allows for exceptional flux densi- ties in the air gap. The intense magnetic field strengthV/Degree/Second, +/-10% Current, RMS 2.3 2.4 4.1 3.9 A, Maximum Current, Peak 6 8 20 20 A, Maximum Small Angle Step

Kleinfeld, David

392

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

393

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4   Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

394

National Magnetic Anomaly Map  

DOE Green Energy (OSTI)

A record of the conclusions of a three-day meeting and workshop of the Committee for a National Magnetic Anomaly Map held in February 1976 is presented. The purpose of he workshop was to prepare a statement of the benefits, objectives, specifications, and requirements of a NMAM and establish a working plan for producing the map. (ACR)

Not Available

1976-01-01T23:59:59.000Z

395

Magnetic resonance apparatus  

SciTech Connect

Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

Jackson, Jasper A. (Los Alamos, NM); Cooper, Richard K. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

396

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4 Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

397

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

398

Magnetic refrigeration apparatus and method  

SciTech Connect

The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

Barclay, John A. (Los Alamos, NM); Overton, Jr., William C. (Los Alamos, NM); Stewart, Walter F. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

399

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine....

400

Magnetic Devices and Nanostructures (2005)  

Science Conference Proceedings (OSTI)

... Molecular nanomagnets, which are the smallest well defined magnetic ... moment of a specimen as microwave stimulation causes resonance at ...

2010-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evolution of twisted magnetic fields  

SciTech Connect

The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

Zweibel, E.G.; Boozer, A.H.

1985-02-01T23:59:59.000Z

402

ASYMMETRIC MAGNETIZATION REVERSAL IN EXCHANGE ...  

Science Conference Proceedings (OSTI)

... Read-write heads used with magnetically stored data are based on giant magnetoresistance (GMR) sensors. These sensors ...

2001-02-27T23:59:59.000Z

403

Magnetic reconnection launcher  

DOE Patents (OSTI)

An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.

Cowan, M.

1987-04-06T23:59:59.000Z

404

The Radial Loss of Ions Trapped in the Thermal Barrier Potential and the Design of Divertor Magnetic Field in GAMMA10  

Science Conference Proceedings (OSTI)

The ion radial loss exists in the presence of a non-axisymmetric electrostatic potential in the end-mirror cells of GAMMA10, which leads to a formation of the thermal barrier potential. The non-axisymmetric electrostatic potential can also exist in the central cell. A design for divertor magnetic field of GAMMA10 is performed, the purpose of which is first to reduce an ion radial transport in the central cell by making electrostatic potential circular and second to assure the macroscopic plasma stability of GAMMA10 without help of non-axisymmetric anchor cells which enhances a neoclassical radial transport.

Katanuma, I. [Plasma Research Center, University of Tsukuba (Japan); Ito, T. [Plasma Research Center, University of Tsukuba (Japan); Saimaru, H. [Plasma Research Center, University of Tsukuba (Japan); Sasagawa, Y. [Plasma Research Center, University of Tsukuba (Japan); Pastukhov, V.P. [I.V.Kuruchatov Atomic Energy Institute (Russian Federation); Ishii, K. [Plasma Research Center, University of Tsukuba (Japan); Tatematsu, Y. [Plasma Research Center, University of Tsukuba (Japan); Saito, T. [Plasma Research Center, University of Tsukuba (Japan); Islam, Md.K. [Plasma Research Center, University of Tsukuba (Japan); Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

2005-01-15T23:59:59.000Z

405

Low field magnetic resonance imaging  

DOE Patents (OSTI)

A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

2010-07-13T23:59:59.000Z

406

Magnetic Helicity in Sphaleron Debris  

E-Print Network (OSTI)

We develop an analytical technique to evaluate the magnetic helicity in the debris from sphaleron decay. We show that baryon number production leads to left-handed magnetic fields, and that the magnetic helicity is conserved at late times. Our analysis explicitly demonstrates the connection between sphaleron-mediated cosmic baryogenesis and cosmic magnetogenesis.

Yi-Zen Chu; James B. Dent; Tanmay Vachaspati

2011-05-18T23:59:59.000Z

407

Low-temperature magnetic refrigerator  

SciTech Connect

The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

Barclay, John A. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

408

Low-temperature magnetic refrigerator  

DOE Patents (OSTI)

The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

Barclay, J.A.

1983-05-26T23:59:59.000Z

409

HELICAL LENGTHS OF MAGNETIC CLOUDS FROM THE MAGNETIC FLUX CONSERVATION  

SciTech Connect

We estimate axial lengths of helical parts in magnetic clouds (MCs) at 1 AU from the magnetic flux (magnetic helicity) conservation between solar active regions (ARs) and MCs with the event list of Leamon et al. Namely, considering poloidal magnetic flux (PHI{sub P}) conservation between MCs and ARs, we estimated L{sub h} in MCs, where L{sub h} is the axial length of an MC where poloidal magnetic flux and magnetic twist exist. It is found that L{sub h} is 0.01-1.25 AU in the MCs. If the cylinder flux rope picture is assumed, this result leads to a possible new picture of the cylinder model whose helical structure (namely, poloidal magnetic flux) localizes in a part of a MC.

Yamamoto, Tetsuya T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Chikusa, Nagoya, 464-8601 (Japan); Kataoka, R. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro, 152-8550 (Japan); Inoue, S., E-mail: tyamamot@stelab.nagoya-u.ac.j [National Institute of Information and Communications Technology, Koganei, 184-8795 (Japan)

2010-02-10T23:59:59.000Z

410

Magnetic behaviour of europium epitaxial thin films  

Science Conference Proceedings (OSTI)

... Magnetic behaviour of europium epitaxial thin films. Philippe Mangin, University of Nancy and NCNR. We present the magnetic ...

411

Magnetic Edge States in Graphene  

E-Print Network (OSTI)

Magnetic confinement in graphene has been of recent and growing interest because its potential applications in nanotechnology. In particular, the observation of the so called magnetic edge states in graphene has opened the possibility to deepen into the generation of spin currents and its applications in spintronics. We study the magnetic edge states of quasi-particles arising in graphene monolayers due to an inhomogeneous magnetic field of a magnetic barrier in the formalism of the two-dimensional massless Dirac equation. We also show how the solutions of such states in each of both triangular sublattices of the graphene are related through a supersymmetric transformation in the quantum mechanical sense.

Gabriela Murguia

2010-08-29T23:59:59.000Z

412

Fast superconducting magnetic field switch  

DOE Patents (OSTI)

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

1996-01-01T23:59:59.000Z

413

Magnetized Turbulent Dynamo in Protogalaxies  

Science Conference Proceedings (OSTI)

The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.

Leonid Malyshkin; Russell M. Kulsrud

2002-01-28T23:59:59.000Z

414

Magnetohydrodynamic evolution of magnetic skeletons  

E-Print Network (OSTI)

The heating of the solar corona is likely to be due to reconnection of the highly complex magnetic field that threads throughout its volume. We have run a numerical experiment of an elementary interaction between the magnetic field of two photospheric sources in an overlying field that represents a fundamental building block of the coronal heating process. The key to explaining where, how and how much energy is released during such an interaction is to calculate the resulting evolution of the magnetic skeleton. A skeleton is essentially the web of magnetic flux surfaces (called separatrix surfaces) that separate the coronal volume into topologically distinct parts. For the first time the skeleton of the magnetic field in a 3D numerical MHD experiment is calculated and carefully analysed, as are the ways in which it bifurcates into different topologies. A change in topology normally changes the number of magnetic reconnection sites. In our experiment, the magnetic field evolves through a total of six distinct ...

Haynes, A L; Galsgaard, K; Priest, E R; Haynes, Andrew L.; Parnell, Clare E.; Galsgaard, Klaus; Priest, Eric R.

2007-01-01T23:59:59.000Z

415

Giant magnetoresistance in nanogranular magnets.  

Science Conference Proceedings (OSTI)

We study the giant magnetoresistance of nanogranular magnets in the presence of an external magnetic field and finite temperature. We show that the magnetization of arrays of nanogranular magnets has hysteretic behavior at low temperatures leading to a double peak in the magnetoresistance which coalesces at high temperatures into a single peak. We numerically calculate the magnetization of magnetic domains and the motion of domain walls in this system using a combined mean-field approach and a model for an elastic membrane moving in a random medium, respectively. From the obtained results, we calculate the electric resistivity as a function of magnetic field and temperature. Our findings show excellent agreement with various experimental data.

Glatz, A.; Beloborodov, I. S.; Vinokur, V. M.; Materials Science Division; Univ. of Chicago

2008-05-01T23:59:59.000Z

416

Nuclear magnetic resonance contrast agents  

DOE Patents (OSTI)

This invention relates to the field of nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy, also known simply as magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). MRI and MRS are particularly useful in medical research and diagnosis. MRI may be used in addition to x-ray imaging. This invention concerns a family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 2 figs.

Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

1989-01-24T23:59:59.000Z

417

Magnetic resonance apparatus  

DOE Patents (OSTI)

The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

Jackson, J.A.; Cooper, R.K.

1980-10-10T23:59:59.000Z

418

Construction of bending magnet beamline at the APS for environmental studies. 1998 annual progress report  

SciTech Connect

'Design and construction of a bending magnet beamline at the Advanced Photon Source (APS) by the Pacific Northwest Consortium-Collaborative Access Team (PNC-CAT). The beamline will be optimized for x-ray absorption spectroscopy (XAS) studies with a major focus on environmental issues. The beamline will share the experimental facilities under development at the neighboring undulator based insertion device beamline. It will utilize these facilities for XAS of both bulk and surface samples, with spatial and elemental imaging, on toxic and radioactive samples. It will help meet the rapidly growing need for the application of these techniques to environmental problems. This report summarizes progress after 1-1/2 years of a 3-year project. The original scope of the project was to build a basic bending magnet beamline. Since the start of the project the authors have obtained addition funding from DOE-BES for the PNC-CAT activities. This has allowed us to expand the scope of the original proposed bending magnet beamline. Additional items now planned include a full sized experimental enclosure separate from the first optical enclosure (FOE), a white beam vertically collimating/focusing mirror providing improved flux and focusing, and enhanced experimental capabilities. Construction of the FOE and new experimental enclosure are complete along with full sector utilities, and the FOE is currently undergoing validation for its radiation integrity. The major beamline components are still being funded by the original EMSP project, and their status is described'

Stern, E.A.

1998-06-01T23:59:59.000Z

419

Magnetic liquefier for hydrogen  

DOE Green Energy (OSTI)

This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

NONE

1992-12-31T23:59:59.000Z

420

Linear Collider Final Focus Magnet Construction | Superconducting Magnet  

NLE Websites -- All DOE Office Websites (Extended Search)

Linear Collider Final Focus Magnet Construction Linear Collider Final Focus Magnet Construction The final focus magnets for the International Linear Collider require very small quadrupoles be placed within the detector background field for both the entrance and exit beams. The use of superconducting magnets for this function provide solutions to several problems confronting the machine designers. One constraint is the operation within the 3 tesla detector field. The direct wind magnets are capable of operation without the use of magnetic materials in their construction, making them ideal for compact focussing solutions within detectors. The second constraint is the small physical size dictated by the crossing angle of the beams and proximity to the IR within the detector solenoid. The Direct Wind design does not require a collar to withstand Lorentz

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Processing of Soft Magnetic Alloys in High Magnetic Field  

Science Conference Proceedings (OSTI)

... Magnetic Materials for Use in Energy-efficient Distribution Transformers ... Novel Morphology of Highly Efficient Two-phase Ferrite Cores for Power Systems

422

Role of Magnetic Fields and Texturing to Improved Magnetic Materials  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... Experiments to observe the structural and magnetic phase transformations were performed at the Spallation Neutron Source (SNS) at Oak ...

423

MAGNETIC PROPERTIES OF THE ALS BOOSTER SYNCHROTRON ENGINEERING MODEL MAGNETS  

E-Print Network (OSTI)

Dynamic Aperture of the ALS Booster Synchrotron." presented25953 MAGNETIC PROPERTIES OF TIIE ALS BOOSTER SYNCIIROlRONMagnetic Measurements of the ALS Booster Dipole Engineering

Keller, R.

2010-01-01T23:59:59.000Z

424

The symmetry, inferable from Bogoliubov transformation, between the processes induced by the mirror in two-dimentional and the charge in four-dimentional space-time  

E-Print Network (OSTI)

The symmetry between the creation of pairs of massless bosons or fermions by accelerated mirror in 1+1 space and the emission of single photons or scalar quanta by electric or scalar charge in 3+1 space is deepened in this paper. The relation of Bogoliubov coefficients with Fourier's components of current or charge density leads to the coicidence of the spin of any disturbances bilinear in scalar or spinor field with the spin of quanta emitted by the electric or scalar charge. The mass and invariant momentum transfer of these disturbances are essential for the relation of Bogoliubov coefficients with Green's functions of wave equations both for 1+1 and 3+1 spaces. Namely the relation (20) leads to the coincidence of the self-action changes and vacuum-vacuum amplitudes for the accelerated mirror in 1+1 space and charge in 3+1 space. Thus, both invariants of the Lorentz group, spin and mass, perform intrinsic role in established symmetry. The symmetry embraces not only the processes of real quanta radiation. It extends also to the processes of the mirror and the charge interactions with the fields carring spacelike momenta. These fields accompany their sources and define the Bogoliubov matrix coefficients \\alpha^{B,F}. It is shown that the traces of \\alpha^{B,F} describe the vector and scalar interactions of accelerated mirror with uniformly moving detector. This interpretation rests essentially on the relation (100) between the propagators of the waves with spacelike momenta in 2- and 4-dimentional spaces. The traces of \\alpha^{B,F} coincide actually with the products of the mass shift \\Delta m_{1,0} of accelerated electric or scalar charge and the proper time of the shift formation. The symmetry fixes the value of the bare fine structure constant \\alpha_0=1/4\\pi.

V. I. Ritus

2003-09-18T23:59:59.000Z

425

EUV reflectance characterization of the 94/304 ? flight secondary AIA mirror at beamline 6.3.2 of the Advanced Light Source  

Science Conference Proceedings (OSTI)

The AIA secondary flight mirror, previously coated at Columbia University with Mg/SiC for the 303.8 {angstrom} channel and Mo/Y for the 93.9 {angstrom} channel was characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL on January 10, 2006. Paul Boerner (LMSAL) also participated in these measurements.

Soufli, R; Spiller, E; Aquila, A L; Gullikson, E M; Windt, D L

2006-02-22T23:59:59.000Z

426

X-ray detection system development for tandem mirror experiment upgrade (TMX-U): hardware and software  

SciTech Connect

This x-ray detection system measures the electron Bremsstrahlung spectrum from the Tandem Mirror Experiment-Upgrade (TMX-U). From this spectrum, we can calculate the electron temperature. The low energy portion of the spectrum (0.5 to 40 keV) is measured by a liquid-nitrogen-cooled, lithium-drifted silicon detector. The higher energy spectrometer uses an intrinsic germanium detector to accommodate the 100 to 200 keV spectra. The system proceeds as follows. The preamplified detector signals are digitized by a high-speed A-to-D converter located in a Computer Automated Measurement and Control (CAMAC) crate. The data is then stored in a histogramming memory via a data router. The CAMAC crate interfaces with a local desktop computer or the main data acquisition computer that stores the data. The software sets up the modules, acquires the energy spectra (with sample times as short as 2 ms) and plots it. Up to 40 time-resolved spectra are available during one plasma cycle. The actual module configuration, CAMAC interfacing and software that runs the system are the subjects of this paper.

Jones, R.M.; Failor, B.H.; Coutts, G.W.

1984-12-01T23:59:59.000Z

427

Brett Parker | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Brett Parker Brett Parker Recent Presentations "BNL Direct Wind Magnets," (pdf) presentation dedicated to the memory of Pat Thompson given at the 22nd Magnet Technology Conference (MT22), September 11 - 16, 2011, Marseille, France A Review of BNL Direct-Wind Superconducting IR Magnet Experience, (pdf) presented at the 30th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+e- Collisions, October 13 - 16, 2003, Stanford, California The Serpentine Coil Design for BEPC-II Superconducting IR Magnets, (pdf) presented at the "Mini-Workshop on BEPC-II IR Design", January 12 - 16, 2004, Beijing, P.R. China Ma nufacture of a Superconducting Octupole Magnet for the ALPHA Experiment at CERN using the Direct Wind Machine Presentations Prior to 2004 Superconducting Final Focus Magnet Issues (pdf), presented at

428

Thin film superconductor magnetic bearings  

DOE Patents (OSTI)

A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

Weinberger, Bernard R. (Avon, CT)

1995-12-26T23:59:59.000Z

429

Magnetism in low dimensionality.  

SciTech Connect

The collective creativity of those working in the field of surface magnetism has stimulated an impressive range of advances. Once wary, theorists are now eager to enter the field. The present article attempts to take a snapshot of where the field has been, with an eye to the more speculative issue of where it is going. Selective examples are used to highlight three general areas of interest (1) characterization techniques, (2) materials properties, and (3) theoretical/simulational advances. Emerging directions are identified and discussed, including laterally confined nanomagnetism and spintronics.

Bader, S. D.; Materials Science Division

2002-03-10T23:59:59.000Z

430

Magnetic Materials for Green Innovation  

Science Conference Proceedings (OSTI)

... Magnetic Materials for Use in Energy-efficient Distribution Transformers ... Novel Morphology of Highly Efficient Two-phase Ferrite Cores for Power Systems

431

Reversal mechanisms in perpendicularly magnetized ...  

Science Conference Proceedings (OSTI)

... I. INTRODUCTION Magnetic nanostructures have potential applications in emerging technologies including spintronics,1,2 bit patterned media,3–6 ...

2008-07-16T23:59:59.000Z

432

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

433

Magnetic Refrigeration - Programmaster.org  

Science Conference Proceedings (OSTI)

Aug 6, 2013 ... Magnetic Refrigeration a 21st Century Highly Efficient and Green Cooling .... In order to advance their incorporation in prototypes and industrial ...

434

Measurements of magnetic field alignment  

Science Conference Proceedings (OSTI)

The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

Kuchnir, M.; Schmidt, E.E.

1987-11-06T23:59:59.000Z

435

Textured Polycrystalline Permanent Magnet Nanoflakes  

Science Conference Proceedings (OSTI)

... high electrical resistivity, which will reduce eddy current losses and improve motor efficiency. ... Combinatorial Search of Rare-Earth-Free Permanent Magnets

436

Magnetic Devices and Nanostructures (2007)  

Science Conference Proceedings (OSTI)

... a form of transmission electron microscopy (TEM) that uses the defection of electrons as they ... Magnetic force microscope image of 100-nanometer ...

2010-10-05T23:59:59.000Z

437

RECENT ADVANCES IN THE TECHNOLOGY OF SUPERCONDUCTING ACCELERATOR MAGNETS  

E-Print Network (OSTI)

Accelerator Magnets,· Brookhaven National Laboratory,in Superconducting Magnets,- Brookhaven National Laboratory,Accelerator Magnet Wire," Brookhaven National Laboratory,

Taylor, C.E.

2010-01-01T23:59:59.000Z

438

Fabrication of Nanocrystalline Magnetic Materials for use in Energy ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications IV ... magnetic softness, resulting in limited saturation magnetization, Bs. Chemical optimization, thus, ...

439

J-PARC Correctors | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnet Construction Magnet Construction The final turn of the J-PARC extracted proton beam is a superconducting combined function magnet line. The combined function magnets are dipole cable magnets, typical of cold mass collared magnets, but have been designed to include a large component of quadrupole field. This provides both bending and focussing of the proton beam prior to target impact, where neutrinos will be produced. The BNL Superconducting Magnet Division is using its direct wind facility to produce superconducting corrector magnets to be used in conjunction with the combined function magnets. combined function magnet The first direct wind magnet set designed and fabricated is a combined function magnet with an additional skew dipole. This magnet is intended to be used within the cable collared combined function dipole used for the

440

Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers  

DOE Patents (OSTI)

A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

Jiles, D.C.

1991-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Correction magnets for the Fermilab Recycler Ring  

SciTech Connect

In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

James T Volk et al.

2003-05-27T23:59:59.000Z

442

Complex Magnetic Evolution and Magnetic Helicity in the Solar Atmosphere  

E-Print Network (OSTI)

Solar atmosphere is a single system unified by the presence of large-scale magnetic fields. Topological changes in magnetic fields that occur in one place may have consequences for coronal heating and eruptions for other, even remote locations. Coronal magnetic fields also play role in transport of magnetic helicity from Sun's subphotosphere/upper convection zone to the interplanetary space. We discuss observational evidence pertinent to some aspects of the solar corona being a global interconnected system, i.e., large-scale coronal heating due to new flux emergence, eruption of chromospheric filament resulting from changes in magnetic topology triggered by new flux emergence, sunspots rotation as manifestation of transport of helicity through the photosphere, and potential consequences of re-distribution of energy from solar luminosity to the dynamo for solar cycle variations of solar irradiance.

Pevtsov, Alexei A

2013-01-01T23:59:59.000Z

443

Magnetic response to applied electrostatic field in external magnetic field  

E-Print Network (OSTI)

We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

T. C. Adorno; D. M. Gitman; A. E. Shabad

2013-11-16T23:59:59.000Z

444

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

445

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

446

Magnetohydrodynamic evolution of magnetic skeletons  

E-Print Network (OSTI)

The heating of the solar corona is likely to be due to reconnection of the highly complex magnetic field that threads throughout its volume. We have run a numerical experiment of an elementary interaction between the magnetic field of two photospheric sources in an overlying field that represents a fundamental building block of the coronal heating process. The key to explaining where, how and how much energy is released during such an interaction is to calculate the resulting evolution of the magnetic skeleton. A skeleton is essentially the web of magnetic flux surfaces (called separatrix surfaces) that separate the coronal volume into topologically distinct parts. For the first time the skeleton of the magnetic field in a 3D numerical MHD experiment is calculated and carefully analysed, as are the ways in which it bifurcates into different topologies. A change in topology normally changes the number of magnetic reconnection sites. In our experiment, the magnetic field evolves through a total of six distinct topologies. Initially, no magnetic flux joins the two sources. Then a new type of bifurcation, called a global double-separator bifurcation, takes place: this bifurcation is likely to be one of the main ways in which new separators are created in the corona (separators are field lines at which 3D reconnection takes place). This is the first of five bifurcations in which the skeleton becomes progressively more complex before simplifying. Surprisingly, for such a simple initial state, at the peak of complexity there are five separators and eight flux domains present.

Andrew L. Haynes; Clare E. Parnell; Klaus Galsgaard; Eric R. Priest

2007-02-22T23:59:59.000Z

447

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

448

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

449

Magnetic-field-dosimetry system  

DOE Patents (OSTI)

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21T23:59:59.000Z

450

Magnetic Resonance Facility (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

Not Available

2012-03-01T23:59:59.000Z

451

LABORATORY VI ELECTRICITY FROM MAGNETISM  

E-Print Network (OSTI)

LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

Minnesota, University of

452

Ramesh Gupta | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Ramesh Gupta Ramesh Gupta Ramesh Gupta has always been a leader in the world of superconducting magnets, which are essential to great modern accelerators such as the Relativistic Heavy Ion Collider at BNL, and the Large Hadron Collider at CERN, Switzerland. For the past decade, Lab researchers have been exploring the use of new materials that become superconducting at higher temperatures. Gupta, head of the High Temperature Superconductor (HTS) Research and Development Group in the Superconducting Magnet Division, is among those exploring avenues for HTS magnets that are energy efficient and have magnetic fields that are a million times stronger than the Earth's. These new magnets could revolutionize use in future accelerators, play a key role in energy efficiency and storage, and make possible new

453

Accuracy of magnetic energy computations  

E-Print Network (OSTI)

For magnetically driven events, the magnetic energy of the system is the prime energy reservoir that fuels the dynamical evolution. In the solar context, the free energy is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. A trustworthy estimation of the magnetic energy is therefore needed in three-dimensional models of the solar atmosphere, eg in coronal fields reconstructions or numerical simulations. The expression of the energy of a system as the sum of its potential energy and its free energy (Thomson's theorem) is strictly valid when the magnetic field is exactly solenoidal. For numerical realizations on a discrete grid, this property may be only approximately fulfilled. We show that the imperfect solenoidality induces terms in the energy that can lead to misinterpreting the amount of free energy present in a magnetic configuration. We consider a decomposition of the energy in solenoidal and nonsolenoidal parts which allows the unambiguous estimation...

Valori, G; Pariat, E; Masson, S

2013-01-01T23:59:59.000Z

454

Purification of recombinant proteins with magnetic nanoclusters  

E-Print Network (OSTI)

This thesis focused on the development and analysis of a new class of magnetic fluids for recovery of recombinant proteins from fermentation broth. Magnetic fluids are colloidally stable dispersions of magnetic nanoclusters ...

Ditsch, Andre (Andre Paul)

2005-01-01T23:59:59.000Z

455

LHC Dipole Acceptance | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnet Division designed, constructed and tested dipole magnets for the Large Hadron Collider (LHC) at CERN. Each of the BNL-built dipole magnets was tested at the Lab's...

456

Magnetic nanostructures patterned by block copolymer lithography  

E-Print Network (OSTI)

The aim of this research was twofold: understanding the methods of patterning magnetic films using self-assembled block copolymer masks and examining the magnetic reversal mechanisms of as deposited and patterned magnetic ...

Ilievski, Filip, 1980-

2008-01-01T23:59:59.000Z

457

A direct search for Dirac magnetic monopoles  

E-Print Network (OSTI)

Magnetic monopoles are highly ionizing and curve in the direction of the magnetic field. A new dedicated magnetic monopole trigger at CDF, which requires large light pulses in the scintillators of the time-of-flight system, ...

Mulhearn, Michael James

2005-01-01T23:59:59.000Z

458

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

459

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented.

Rogers, J.D.

1976-01-01T23:59:59.000Z

460

Origin of solar magnetism  

E-Print Network (OSTI)

The most promising model for explaining the origin of solar magnetism is the flux transport dynamo model, in which the toroidal field is produced by differential rotation in the tachocline, the poloidal field is produced by the Babcock--Leighton mechanism at the solar surface and the meridional circulation plays a crucial role. After discussing how this model explains the regular periodic features of the solar cycle, we come to the questions of what causes irregularities of solar cycles and whether we can predict future cycles. Only if the diffusivity within the convection zone is sufficiently high, the polar field at the sunspot minimum is correlated with strength of the next cycle. This is in conformity with the limited available observational data.

Choudhuri, Arnab Rai

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yin-yang magnet mirrors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

462

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

463

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

464

Novel Zigzag Shape Gives Sensors Magnetic Appeal  

Science Conference Proceedings (OSTI)

... Institute of Standards and Technology (NIST) have designed tiny magnetic sensors in a "zigzag" shape that are ... Zigzag-shaped magnetic sensors. ...

2013-01-22T23:59:59.000Z

465

Ground Magnetics (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics (Nannini, 1986) Ground Magnetics (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes Detection and quantitative assessment of such intrusive events can be facilitated by magnetic surveys (ground or aerial magnetic field measurements). These surveys are based on the magnetic susceptibility contrast between magmatic rocks at depth and the sedimentary formations above. References Raffaello Nannini (1986) Some Aspects Of Exploration In Non-Volcanic Areas Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_(Nannini,_1986)&oldid=388291