Powered by Deep Web Technologies
Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate Add-On Heat Pump: $800 Geothermal Heat Pump: $1,000 (residential); $5,000 (commercial) Program Info State Montana Program Type Utility Rebate Program Rebate Amount Add-On Heat Pump: $200 per ton Geothermal Heat Pump: $200/ton (residential); $150/ton (commercial) Water Heater: $100 - $150 Energy Star Dishwasher: $25 Energy Star Refrigerator: $25 Energy Star Clothes Washer: $50 Provider

2

Yellowstone Valley Electric Cooperative - Residential/Commercial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and washing machines. (Note: A State Tax Credit of 1,500 is also available for Ground Source Heat Pumps.) Rebate applications are located on the program web site. All...

3

Valley Electric Association- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

4

Golden Valley Electric Association - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program for Builders Golden Valley Electric Association - Residential Energy Efficiency Rebate Program for Builders < Back Eligibility Construction Savings Category...

5

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program Eligibility Commercial Savings For Appliances &...

6

Minnesota Valley Electric Cooperative -Residential Energy Resource...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Eligibility Residential Savings...

7

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

8

Minnesota Valley Electric Cooperative -Residential Energy Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative -Residential Energy Resource Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Loan Program Rebate Amount Heat Pump Installation: up to $5,000 Electric Water Heater and Installation: up to $5,000 Electric Heating Equipment: up to $5,000 Heat Pump Installation: up to $5,000 Weatherization: up to $1,500 Provider Minnesota Valley Electric Cooperative

9

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) This is the approved revision of this page, as well...

10

Minnesota Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative - Residential Energy Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Maximum Rebate Ground-Source Heat Pump: 5 ton maximum Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $25 Freezer/Refrigerator: $25 Dishwasher: $25 Air-Source Heat Pump: $500 Ground-Source Heat Pump: $200 per ton Electric Resistant Heating Products: $10 per kW Mini-Split Heat Pumps: $75 Central A/C or Heat Pump Tune-Up: $25 Provider Minnesota Valley Electric Cooperative Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to

11

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

12

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV: $8,000 Solar Water Heaters: $1,000 Solar Water Wells: $750 Wind-electric: $6,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount PV: $2.00/watt Solar Water Heaters: $1,000/unit Solar Water Wells: $750/unit Wind-electric: $1.00/watt Provider Guadalupe Valley Electric Cooperative '''''The $1.5 million budget cap for PV rebates in 2013 has been met. No additional applications for PV rebates will be accepted. '''''

13

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Sequachee Valley Electric Coop Sequachee Valley Electric Coop Jump to: navigation, search Name Sequachee Valley Electric Coop Place Tennessee Utility Id 16930 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA1 Commercial Green Power Switch Residential Industrial GSA1 Industrial Light- 100w High Pressure Sodium Lighting Light- 250w High Pressure Sodium Lighting Light- 250w Metal Halide Lighting Light- 400w Metal Halide Lighting Residential Residential Average Rates Residential: $0.0962/kWh Commercial: $0.1020/kWh

14

Ohio Valley Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Ohio Valley Electric Corp Ohio Valley Electric Corp Place Ohio Utility Id 14015 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0450/kWh The following table contains monthly sales and revenue data for Ohio Valley Electric Corp (Ohio). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

15

Penoyer Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Penoyer Valley Electric Coop Penoyer Valley Electric Coop Jump to: navigation, search Name Penoyer Valley Electric Coop Place Nevada Utility Id 40497 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agriculture Rate Commercial Lincoln County Residential Residential Residential Rate Residential Residential Rate- Lower Colorado Residence Residential Average Rates Residential: $0.0787/kWh Commercial: $0.0722/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

16

Powell Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Powell Valley Electric Coop Powell Valley Electric Coop Jump to: navigation, search Name Powell Valley Electric Coop Place Tennessee Utility Id 15293 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Industrial 1001 - 5000 KW Industrial General Power Industrial 51 - 1000 KW Industrial General Power Commercial 1001 - 5000 KW Commercial General Power Commercial 51 - 1000 KW Commercial General Power Commercial Less than 50 KW Commercial General Power Industrial Less than 50 KW Industrial

17

Toyota Prius Fuel Use in Yellowstone National Park - October...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Use in Yellowstone National Park - October 2006 Four 2004 Toyota Prius hybrid electric vehicles (HEVs) were introduced into the Yellowstone National Park motor pool during the...

18

Pearl River Valley Electric Power Association - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pearl River Valley Electric Power Association - Residential Energy Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount New Homes Heat Pump: $150 - $500 Geothermal Heat Pump: $500 Electric Water Heater: $150 Existing Homes Heat Pump: $200 Gas to Electric Water Heater Conversion: $150 Provider Pearl River Valley Electric Power Association Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the

19

Chippewa Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Chippewa Valley Electric Coop Chippewa Valley Electric Coop Place Wisconsin Utility Id 3498 Utility Location Yes Ownership C NERC Location MRO ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED CENTRAL AC CREDIT - RATE CODE AC Commercial DISTRIBUTED GENERATION RATE DG Commercial DUSK/DAWN LIGHTING RATE CODE L Lighting INDUSTRIAL TIME OF DAY RATE CODE I Industrial LARGE SINGLE PHASE/MEDIUM-LARGE THREE PHASE RATE CODE X Industrial MEDIUM SINGLE PHASE/SMALL THREE PHASE - RATE CODE W Commercial OFF-PEAK ELECTRIC SPACE HEATING RATE CODE H Commercial

20

Minnesota Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Minnesota Valley Electric Coop Minnesota Valley Electric Coop Place Minnesota Utility Id 12651 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule A- Single Phase Service Schedule B- 3 phase service 25 kW and greater Commercial Schedule B- 3 phase service less than 25 kW Schedule DH: Dual Heat Service Schedule EH: Electric Heat Service Schedule I: Single-Phase Irrigation Service Schedule I: Three-Phase Irrigation Service Schedule SL: 150 Watt HPS Lighting Schedule SL: 175 Watt MV Lighting Schedule SL: 400 Watt MV Lighting

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Magic Valley Electric Cooperative - ENERGY STAR Builders Program Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home: $150-$600 ENERGY STAR Home with Version 3.0 Checklist: $200 Marathon Water Heater Installation: $150 ENERGY STAR Heat Pump Water Heater: $250 Provider Magic Valley Electric Cooperative Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes

22

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

23

Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

24

Guadalupe Valley Electric Cooperative- Conservation Plan 7 Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Guadalupe Valley Electric Cooperative offers an incentive for members to increase the energy efficiency of existing homes and facilities through the Conservation Plan 7 Loan Program. The loan...

25

Magic Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Magic Valley Electric Cooperative's Value Incentive Program (VIP) offers consumers incentives for the installation of new central heat pump systems, dual fuel heating systems, central air...

26

Valley Electric Association - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Nevada Program Type Utility Loan Program Provider Valley Electric Association Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA partnered with Great Basin College to train and certify installers, creating jobs in the community, and also with Rheem Manufacturing and a local licensed contractor to install the units. A site visit is performed to determine the best installation and system design for each member. Members have the option of

27

Bear Valley Electric Service | Open Energy Information  

Open Energy Info (EERE)

Service Service Jump to: navigation, search Name Bear Valley Electric Service Place California Utility Id 17612 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-1 General Service, less than 20 kW A-1 General Service, less than 20 kW - Direct Access Commercial A-2 General Service, 20 to 50 kW A-2 General Service, 20 to 50 kW - Direct Access A-3 General Service, more than 50 kW Commercial

28

Valley Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

California California Utility Id 19840 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1340/kWh Commercial: $0.2500/kWh Industrial: $0.0958/kWh The following table contains monthly sales and revenue data for Valley Electric Assn, Inc (California). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 1.385 11.496 12 0.106 0.462 2 2.846 34.986 30 4.337 46.944 44

29

Twin Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Electric Coop Inc Valley Electric Coop Inc Jump to: navigation, search Name Twin Valley Electric Coop Inc Place Kansas Utility Id 18962 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric and/or Air Source Heat Pump Commercial Commercial Large Commercial Commercial Small Commercial Farm and Residential Residential Average Rates Residential: $0.1240/kWh Commercial: $0.1510/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Twin_Valley_Electric_Coop_Inc&oldid=411888"

30

Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)  

Energy.gov (U.S. Department of Energy (DOE))

Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

31

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project |  

Open Energy Info (EERE)

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Jump to: navigation, search Project Lead Sioux Valley Southwestern Electric Cooperative, Inc. Country United States Headquarters Location Colman, South Dakota Additional Benefit Places Minnesota Recovery Act Funding $4,016,368.00 Total Project Value $8,032,736.00 Coverage Area Coverage Map: Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Coordinates 43.9824719°, -96.8144973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

32

Golden Valley Electric Association - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Golden Valley Electric Association - Residential Energy Efficiency Rebate Program for Builders Golden Valley Electric Association - Residential Energy Efficiency Rebate Program for Builders < Back Eligibility Construction Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Alaska Program Type Utility Rebate Program Rebate Amount Fluorescent Lamps: $10-$20 CFL Fixtures: $3 LED Lamp: $10 Photocell/Motion Detector: $10 High Intensity Discharge Fixture: $20 Insulating Blanket for Water Heater: $10 Water Heater Timer: $30 Timer Controlling Exterior Vehicle Plug-In Outlet: $20 Switch Controlling Exterior Vehicle Plug-In Outlet: $10 Provider Golden Valley Electric Association Golden Valley Electric Association's (GVEA) Builder $ense program targets

33

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Abstract Extended logging and surface-to-borehole electromagnetic induction measurements were performed at the Dixie Valley Geothermal Field as part of an ongoing effort to employ electromagnetic induction logging to geothermal reservoir characterization. The principal goal of this effort is to discern subsurface features useful in geothermal production, such as larger scale mapping of geothermal reservoirs and smaller scale mapping of producing

34

Golden Valley Electric Association - Sustainable Natural Alternative Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Natural Sustainable Natural Alternative Power (SNAP) Program Golden Valley Electric Association - Sustainable Natural Alternative Power (SNAP) Program < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Savings Category Bioenergy Buying & Making Electricity Solar Home Weatherization Water Wind Maximum Rebate 1.50/kWh Program Info State Alaska Program Type Performance-Based Incentive Rebate Amount Varies; determined by kWh produced and contributions from supporting members. Provider Golden Valley Electric Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an incentive payment based on the system's production on a dollar per kilowatt-hour ($/kWh) basis. The

35

Silicon Valley Power - Solar Electric Buy Down Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Electric Buy Down Program Solar Electric Buy Down Program Silicon Valley Power - Solar Electric Buy Down Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentives step down over time as installed capacity goals are met. Check program web site for current incentive level. '''Rebate levels as of 9/20/12:''' Residential: $2.00/watt AC Commercial (up to 100 kW): $1.10/watt AC Commercial (>100 kW to 1 MW): $0.15/kWh for 5 years Provider Silicon Valley Power Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as certain installed

36

White River Valley Electric Cooperative - Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White River Valley Electric Cooperative - Energy Efficiency Rebate White River Valley Electric Cooperative - Energy Efficiency Rebate Program White River Valley Electric Cooperative - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pump: 10 tons for Residential, 50 tons for Commercial Dual Fuel Heat Pump: 10 tons for Residential, 50 tons for Commercial Air Source Heat Pump: 10 tons Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Residential Sector Only: Refrigerator: $75 Electric Water Heater: $50 Room AC: $50 Both Commercial and Residential: Ground Source Heat Pump (New Installation): $750/ton Ground Source Heat Pump (Replacement) : $150/ton

37

Golden Valley Electric Association - Commercial Lighting Retrofit Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $20,000 per project Program Info State Alaska Program Type Utility Rebate Program Rebate Amount Up to $1,000/kW or 50% of the project cost Provider Golden Valley Electric Association BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to existing facilities receiving the commercial rate who reduce their lighting loads through energy efficient lighting retrofit projects. Facilities on GVEA's

38

Kaw Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Kaw Valley Electric Coop Inc Kaw Valley Electric Coop Inc Jump to: navigation, search Name Kaw Valley Electric Coop Inc Place Kansas Utility Id 10019 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Domestic Service - Large (12) Residential General Domestic Service - Peak Mgmt (20) Commercial General Domestic Service - Standard (10) Residential General Service Small - Single Phase (30) Commercial General Service Small - Three Phase (32) Commercial Irrigation Service (40) Commercial Irrigation Service - Load Control (45) Commercial

39

Magic Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Electric Coop Inc Valley Electric Coop Inc Jump to: navigation, search Name Magic Valley Electric Coop Inc Place Texas Utility Id 11501 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Area 100 W HPS Lighting Commercial Area 150 W HPS Lighting Commercial Area 175 W MV Lighting Commercial Area 250 W HPS Lighting Commercial Area 400 W HPS Lighting Commercial Area 400 W MV Lighting Commercial Flood 1000 W HPS Lighting Commercial Flood 1000 W MH Lighting Commercial Flood 250 W HPS Lighting

40

Minnesota Valley Electric Cooperative - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative - Commercial and Industrial Minnesota Valley Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate For lighting, motors, and ASDs, there is a maximum of 50% of the project cost, or $5,000 Agriculture Ventilation: 50% of cost or $100,000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies according to fixture type Rooftop/Split System A/C: $18/ton, plus bonus of $5/ton for each 0.1 above

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Golden Valley Electrical Association Battery Energy Storage System  

Science Conference Proceedings (OSTI)

In June 2003, the Golden Valley Electrical Association (GVEA) in Alaska commissioned a nickel-cadmium battery energy storage system (BESS) that is capable of providing 27 MW for 15 minutes or 46 MW for 5 minutes. This Engineer-of-Record report summarizes the background, planning, design, engineering, testing, and operation of the GVEA BESS.

2010-05-13T23:59:59.000Z

42

Golden Valley Electric Association - Sustainable Natural Alternative...  

Open Energy Info (EERE)

electricity produced from generation facilities that are fueled by: (a) wind; or (b) solar energy and other renewable energy resources. GVEA limits these resources to 25...

43

Coosa Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Coosa Valley Electric Coop Inc Coosa Valley Electric Coop Inc Place Alabama Utility Id 4327 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial (0016) Large Commercial (0017) Commercial Large Commercial (0018) Commercial Large Commercial V2 Commercial Medium Commercial Rates Commercial Residential Residential Restricted Primary Metering Rate Commercial Small Commercial Commercial Small Power and Light Commercial Sports Lighting Lighting Average Rates Residential: $0.1300/kWh Commercial: $0.1330/kWh

44

Valley Rural Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Rural Electric Coop Inc Valley Rural Electric Coop Inc Place Pennsylvania Utility Id 40222 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights 100w HPS Lighting Area Lights 100w Mercury Vapor Lighting Area Lights 150w HPS Lighting Area Lights 175w Mercury Vapor Lighting Area Lights 250w HPS Lighting Area Lights 250w Mercury Vapor Lighting Area Lights 400w HPS Lighting Area Lights 400w Mercury Vapor Lighting Residential Residential Average Rates Residential: $0.1080/kWh Commercial: $0.1020/kWh

45

Yampa Valley Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

Yampa Valley Electric Assn Inc Yampa Valley Electric Assn Inc Place Colorado Utility Id 21081 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL SERVICE Commercial IRRIGATION SERVICE Commercial LARGE POWER SERVICE Commercial OUTDOOR SECURITY LIGHTING SERVICE: 175 Watt Mercury Vapor Lamp Lighting OUTDOOR SECURITY LIGHTING SERVICE: 250 Watt Mercury Vapor Lamp Lighting OUTDOOR SECURITY LIGHTING SERVICE: 400 Watt Mercury Vapor Lamp Lighting RESIDENTIAL SERVICE Residential Average Rates Residential: $0.0960/kWh

46

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) |  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

47

Yellowstone River Compact (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone River Compact (North Dakota) Yellowstone River Compact (North Dakota) Yellowstone River Compact (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Program Info State North Dakota Program Type Siting and Permitting The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as for the conservation,

48

Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Yellowstone_Region_(Goff_%26_Janik,_2002)&oldid=687484"

49

ASME Treasure Valley Section - Electric Drive Vehicles and Infrastruct...  

NLE Websites -- All DOE Office Websites (Extended Search)

- NEV 9 to 13 hours 8 Level 2 Charging Level * Expected to be most common method for residential and commercial charging * EVSE (electric vehicle supply equipment) for AC energy...

50

Treasure Valley CCC - Electric Drive Vehicles and Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

- NEV 9 to 13 hours 8 Level 2 Charging Level * Expected to be most common method for residential and commercial charging * EVSE (electric vehicle supply equipment) for AC energy...

51

A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation  

DOE Green Energy (OSTI)

A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

2005-06-30T23:59:59.000Z

52

MOTORWEEK YELLOWSTONE NATIONAL PARK  

NLE Websites -- All DOE Office Websites (Extended Search)

MOTORWEEK MOTORWEEK YELLOWSTONE NATIONAL PARK JOHN DAVIS: Some of America's most precious treasures are our national parks. And the U.S. park service understands that keeping the parks pristine, while also allowing easy access by vacationers is a huge challenge. So, setting the pace on making the drive through the parks greener is not just a goal, it's a passion. JOHN DAVIS: The National Parks Service is entrusted with preserving and showcasing America's natural wonders and historical landmarks, maintaining 392 national parks covering million acres of land and water in all parts of the country, and plays host to more than 275 million visitors every year. No other place on earth has as much natural diversity and spectacular scenery in one accessible place than America's first national park, Yellowstone, so it's no surprise this

53

Pilot Evaluation of Electricity-Reliability and Power-Quality Monitoring in California's Silicon Valley with the I-Grid  

E-Print Network (OSTI)

to detect events on the larger electricity grid by means of correlation of data from the sensors's Silicon Valley with the I-Grid® System Prepared for Imre Gyuk Energy Storage Program Office of Electric by the Energy Storage Program, Office of Electric Transmission and Distribution of the U.S. Department of Energy

54

Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2009-06-01T23:59:59.000Z

55

Yellowstone Capital | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Capital Yellowstone Capital Jump to: navigation, search Logo: Yellowstone Capital Name Yellowstone Capital Address 5555 San Felipe, Suite 1650 Place Houston, Texas Zip 77056 Region Texas Area Product Private equity and venture capital investment firm Phone number (713) 650-0065 Website http://www.yellowstonecapital. Coordinates 29.749479°, -95.471973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.749479,"lon":-95.471973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data

57

Geothermal Systems of the Yellowstone Caldera Field Trip Guide  

Science Conference Proceedings (OSTI)

Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

1980-09-08T23:59:59.000Z

58

Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2  

SciTech Connect

Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time-reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken1. In certain two-dimensional electron systems such as bilayer graphene, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field2,3. In principle, this offers the possibility of switching on/off and continuously tuning the magnetic moment and Berry curvature near the Dirac valleys by reversible electrical control4,5. Here we investigate this possibility using polarization-resolved photoluminescence of bilayer MoS2, which has the same symmetry as bilayer graphene but has a bandgap in the visible spectrum6,7 allowing direct optical probing5,8 12. We find that in bilayer MoS2 the circularly polarized photoluminescence can be continuously tuned from 15% to 15% as a function of gate voltage, whereas in structurally non-centrosymmetric monolayer MoS2 the photoluminescence polarization is gate independent. The observations are well explained as resulting from the continuous variation of orbital magnetic moments between positive and negative values through symmetry control.

Wu, Sanfeng [University of Washington, Seattle; Ross, Jason [University of Washington, Seattle; Liu, G. B. [University of Hong Kong, The; Aivazian, Grant [University of Washington, Seattle; Jones, Aaron [University of Washington, Seattle; Fei, Zaiyao [University of Washington, Dept Phys, Seattle, WA; Zhu, Wenguang [University of Tennessee, Knoxville (UTK); Xiao, Di [ORNL; Yao, Wang [University of Hong Kong, The; Cobden, David [University of Washington, Dept Phys, Seattle, WA; Xu, Xiaodong [University of Washington

2013-01-01T23:59:59.000Z

59

Potential growth of electric power production from Imperial Valley geothermal resources  

DOE Green Energy (OSTI)

The growth of geothermal electric power operations in Imperial Valley, California is projected over the next 40 years. With commercial power forecast to become available in the 1980's, the scenario considers three subsequent growth rates: 40, 100, and 250 MW per year. These growth rates, along with estimates of the total resource size, result in a maximum level of electric power production ranging from 1000 to 8000 MW to be attained in the 2010 to 2020 time period. Power plant siting constraints are developed and used to make siting patterns for the 400- through 8000-MW level of power production. Two geothermal technologies are included in the scenario: flashed steam systems that produce cooling water from the geothermal steam condensate and emit noncondensable gases to the atmosphere; and high pressure, confined flow systems that inject the geoghermal fluid back into the ground. An analysis of the scenario is made with regard to well drilling and power plant construction rates, land use, cooling water requirements, and hydrogen sulfide emissions.

Ermak, D.L.

1977-09-30T23:59:59.000Z

60

NREL: Learning - Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Electricity Production Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Multispectral Imaging At Yellowstone Region (Hellman & Ramsey...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleMultispectralImagin...

62

Field Operations Program - U.S. Postal Service - Fountain Valley Electric Carrier Route Vehicle Testing  

Science Conference Proceedings (OSTI)

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valley Post Office and eighteen mail carriers primarily drove the ECRVs on ''park and loop'' mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, J.E.

2002-01-21T23:59:59.000Z

63

Federal Energy Management Program: National Park Service - Yellowstone  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - Yellowstone National Park, Wyoming to someone by E-mail Share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Facebook Tweet about Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Twitter Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Google Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Delicious Rank Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Digg Find More places to share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on

64

Field Operations Program - US Postal Service Fountain Valley Electric Carrier Route Vehicle Testing  

SciTech Connect

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valey Post Office and eighteen mail carriers primarily drove the ECRVs on "park and loop" mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, James Edward

2002-01-01T23:59:59.000Z

65

Alternative Fuels Data Center: Yellowstone National Park Commits to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellowstone National Yellowstone National Park Commits to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on AddThis.com... Oct. 16, 2010 Yellowstone National Park Commits to Alternative Fuels

66

Non-electric utilization of geothermal energy in the San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

Information on the geothermal resources of the San Luis Valley, Colorado, has been gathered and reviewed and a preliminary, quantitative assessment of the magnitude and quality of resources present was carried out. Complete process designs were developed for the processes of producing crystal sugar from beets and for malting barley for use in the brewing industry, in each case adapting the processes to use a 302/sup 0/F geothermal water supply as the main process energy source. A parametric design analysis was performed for a major pipeline to be used to ship geothermal water, and thus deliver its heat, out of the San Luis Valley to three major Colorado cities along the eastern threshold of the Rocky Mountains. Cost estimates for capital equipment and energy utilization are presented. The analyses of the two process applications indicate favorable economics for conversion and operation as geothermally-heated plants. A major geothermal water pipeline for this region is seriously limited on achievement of the economy of scale by the physical absence of significant demand for heat energy. Finally, the development and utilization of Colorado's San Luis Valley geothermal groundwaters hold the potential to contribute to the prudent and beneficial management of that area's natural water resources systems.

Vorum, M.; Coury, G.E.; Goering, S.W.; Fritzler, E.A.

1978-02-01T23:59:59.000Z

67

Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes AVIRIS airborne hyperspectral imaging. References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Hyperspectral_Imaging_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=400435"

68

Yellowstone Agencies Plan to Reduce Emissions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone Agencies Plan to Reduce Emissions Yellowstone Agencies Plan to Reduce Emissions Yellowstone Agencies Plan to Reduce Emissions March 15, 2010 - 11:14am Addthis Castle Geyser at Yellowstone National Park | File photo Castle Geyser at Yellowstone National Park | File photo Joshua DeLung The 10 federal land organizations - including two national parks, six national forests and two national wildlife refuges - in the Greater Yellowstone Area comprise an entire ecosystem of their own. Straddling Wyoming's borders with Montana and Idaho, the region draws millions of visitors a year, attracted by the dramatic landscapes, geothermal activity and chances to spot wildlife like bison, elk and grizzly bear. Thanks to funding from the U.S. Department of Energy's Federal Energy Management Program, the Greater Yellowstone Coordinating Committee will

69

Lower Yellowstone R E A, Inc | Open Energy Information  

Open Energy Info (EERE)

R E A, Inc R E A, Inc Jump to: navigation, search Name Lower Yellowstone R E A, Inc Place Montana Utility Id 11272 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Heat Residential Net Metering Rate Schedule - Base #3 Commercial Net Metering Rate Schedule - Base 1 Residential Net Metering Rate Schedule - Base 2 Commercial Schedule A Residential Schedule AS - Annual Service Residential Schedule DC-1 Commercial Schedule EH - Electric Heat Rate Commercial Schedule GS - Single Phase Commercial

70

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Association Wyoming Department of Revenue Wyoming Public Service Commission Xcel Energy Xcel Energy Services Xcel Residential Yellowstone Valley Electric Cooperative...

71

National Park Service - Yellowstone National Park, Wyoming | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone National Park, Wyoming Yellowstone National Park, Wyoming National Park Service - Yellowstone National Park, Wyoming October 7, 2013 - 10:15am Addthis Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes. Since the ranch is located in the northeast corner of the park it is quite isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system

72

Situation Reports: Ohio Valley and Mid-Atlantic Storm 2012 |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Situation Reports: Ohio Valley and Mid-Atlantic Storm 2012 Situation Reports: Ohio Valley and Mid-Atlantic Storm 2012 The Office of Electricity Delivery and Energy Reliability...

73

Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Yellowstone Region (Sturchio, Et Al., 1990) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes There are two possible explanations for the inferred presence of relatively 18O-enriched thermal water at Yellowstone in the past: (1) meteoric

74

Exploration And Discovery In Yellowstone Lake- Results From High...  

Open Energy Info (EERE)

volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and...

75

Evidence For Gas And Magmatic Sources Beneath The Yellowstone...  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

76

Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleSoilSamplingAtYel...

77

Geodetic Survey At Yellowstone Region (Hellman & Ramsey, 2004...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleGeodeticSurveyAtY...

78

Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleRockSamplingAtYel...

79

Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration...

80

Compound and Elemental Analysis At Yellowstone Region (Hurwitz...  

Open Energy Info (EERE)

Hurwitz, Jacob B. Lowenstern, Henry Heasler (2007) Spatial And Temporal Geochemical Trends In The Hydrothermal System Of Yellowstone National Park- Inferences From River Solute...

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Yellowstone Caldera Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Caldera Geothermal Region Yellowstone Caldera Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Yellowstone Caldera Geothermal Region Details Areas (3) Power Plants (0) Projects (0) Techniques (25) Map: {{{Name}}} Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Wyoming, Idaho, Montana Area 11,841 km²11,841,000,000 m² 4,570.626 mi² 127,455,339,900 ft² 14,161,836,000 yd² 2,925,970.305 acres USGS Resource Estimate for this Region Identified Mean Potential 44.0 MW44,000 kW 44,000,000 W 44,000,000,000 mW 0.044 GW 4.4e-5 TW Undiscovered Mean Potential 209.9 MW209,900 kW 209,900,000 W 209,900,000,000 mW 0.21 GW 2.099e-4 TW Planned Capacity Planned Capacity 0 MW0 kW 0 W 0 mW 0 GW 0 TW Plants Included in Planned Estimate 0 Plants with Unknown

82

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Details Activities (1) Areas (1) Regions (0) Abstract: The 3-D P-wave velocity and P- to S-wave velocity ratio structure of the Yellowstone volcanic field, Wyoming, has been determined from local earthquake tomography using new data from the permanent Yellowstone seismic network. We selected 3374 local earthquakes between 1995 and 2001 to invert for the 3-D P-wave velocity (Vp) and P-wave to S-wave velocity ratio (Vp/Vs) structure. Vp anomalies of small size (15_15 km) are reliably

83

Reflection Survey At Yellowstone Region (Morgan, Et Al., 2003) | Open  

Open Energy Info (EERE)

Yellowstone Region (Morgan, Et Al., 2003) Yellowstone Region (Morgan, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Yellowstone Region (Morgan, Et Al., 2003) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Reflection Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Simultan eously, we surveyed over 2500 linear km with high-resolution seismic reflection profling that penetrated the upper ~25 m of the lake bottom. References L. A. Morgan, W. C. Shanks, D. A. Lovalvo, S. Y. Johnson, W. J. Stephenson, K. L. Pierce, S. S. Harlan, C. A. Finn, G. Lee, M. Webring, B. Schulze, J. Duhn, R. Sweeney, L. Balistrieri (2003) Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging,

84

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone  

Open Energy Info (EERE)

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Details Activities (1) Areas (1) Regions (0) Abstract: High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic

85

Clean Cities: Yellowstone-Teton Clean Energy coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellowstone-Teton Clean Energy Coalition Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Yellowstone-Teton Clean Energy coalition Contact Information Phillip Cameron 307-413-1971 phil@ytcleanenergy.org Coalition Website Clean Cities Coordinator Phillip Cameron Photo of Phillip Cameron Phillip Cameron became the coordinator of the Yellowstone-Teton Clean Energy Coalition in November 2009. He brings a diverse professional experience to this position with strong background in environmental outreach and education, grant writing, community service, and resource management. He has experience in both board and staff positions with a variety of regional and local non-profit environmental organizations.

86

Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system  

SciTech Connect

Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilities of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.

Eto, Joseph; Divan, Deepak; Brumsickle, William

2004-02-01T23:59:59.000Z

87

Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile  

Open Energy Info (EERE)

Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile Creek Formation Grabens, Southwest Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile Creek Formation Grabens, Southwest Montana Details Activities (1) Areas (1) Regions (0) Abstract: The Sixmile Creek Formation fills deep grabens in southwest Montana and preserves a stratigraphic record of the evolution of the Yellowstone hotspot track from ~ 17 Ma to ~ 2 Ma. The Ruby, Beaverhead, Big Hole, Deer Lodge, Medicine Lodge-Grasshopper, Three Forks, Canyon Ferry, Jefferson, Melrose, Wise River, and Paradise grabens were active during outbreak of the hotspot. They appear to be parts of a radial system of

88

Analysis Of Hot Springs And Associated Deposits In Yellowstone National  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Details Activities (6) Areas (1) Regions (0) Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne Visible/IR Image Spectrometer (AVIRIS) data were used to characterize hot spring deposits in the Lower, Midway, and Upper Geyser Basins of Yellowstone National Park from the visible/near infrared (VNIR) to thermal infrared (TIR) wavelengths. Field observations of these basins provided the critical ground-truth for comparison with the

89

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism  

Open Energy Info (EERE)

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Abstract Some of the earliest volcanic rocks attributed to the Yellowstone hotspot erupted from the McDermitt caldera and related volcanic centers in northwestern Nevada at 17-15 Ma. At that time, extensional faulting was ongoing to the south in central Nevada, leading some to suggest that the nascent hotspot caused or facilitated middle Miocene Basin and Range extension. Regional geologic relationships indicate that the total magnitude of extension in northwestern Nevada is low compared to the amount

90

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone  

Open Energy Info (EERE)

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Details Activities (3) Areas (1) Regions (0) Abstract: Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199°C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The Δ18O values of the thirty-two analyzed silica samples (quartz, chalcedony, α-cristobalite, and β-cristobalite) range from -7.5 to +2.8‰. About one

91

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

92

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al.,  

Open Energy Info (EERE)

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to

93

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=692525

94

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Xcel Energy Services Xcel Residential Yellowstone Valley Electric Cooperative York Electric Cooperative, Inc Your Energy Savings Expiration Date Chesapeake Bay, Drilling for...

95

CITY OF MORENO VALLEY ADOPTION OF THE CITY OF MORENO VALLEY RENEWABLE ENERGY  

E-Print Network (OSTI)

CITY OF MORENO VALLEY ADOPTION OF THE CITY OF MORENO VALLEY RENEWABLE ENERGY ENFORCEMENT PROGRAM of the City of Moreno Valley Electric Renewable Energy Resources Enforcement Program pursuant California, a publicly owned utility. SB 1X-2 establishes minimum quantities of renewable energy resources that load

96

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

97

Mid-Yellowstone Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Elec Coop, Inc Yellowstone Elec Coop, Inc Jump to: navigation, search Name Mid-Yellowstone Elec Coop, Inc Place Montana Utility Id 12463 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Farm, Residential, and Public Buildings General Service 1 Phase General Service 3 Phase Irrigation Service > 200 HP Commercial Irrigation Service < 200 HP Commercial Seasonal Services Seasonal Services Security Light 400 watt light Lighting Security Lights 175 watt light Lighting

98

The objectives for deep scientific drilling in Yellowstone National Park  

DOE Green Energy (OSTI)

The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

Not Available

1987-01-01T23:59:59.000Z

99

Case Study - Sioux Valley Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sioux Valley Energy Sioux Valley Energy SVE's smart meters report consumption levels every 30 minutes, which enables SVE to bill customers for critical peak events that occur on particular days and during particular time periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) is an electric cooperative serving approximately 21,000 customers in seven counties in South Dakota and Minnesota. SVE's Smart Grid Investment Grant (SGIG) Advanced Metering Infrastructure Project is a customer-focused initiative to assist customers with better managing their electricity consumption and associated costs, and to help SVE realize operational efficiencies and

100

The Teton-Yellowstone Tornado of 21 July 1987  

Science Conference Proceedings (OSTI)

The Teton-Yellowstone Tornado, rated F4, crossed the Continental Divide at 3070 m, leaving behind a damage swath 39.2-km long and 2.5-km wide. A detailed damage analysis by using stereo-pair and color photos revealed the existence of four spinup ...

T. Theodore Fujita

1989-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

South Valley Compliance Agreement Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Valley South Valley Agreement Name South Valley Superfund Site Interagency Agreement State New Mexico Agreement Type Compliance Agreement Legal Driver(s) CERCLA Scope Summary Interagency Agreement with the U.S. Air Force for payment of costs associated with the remediation of two operable units (the facility and San Jose 6) at the South Valley Superfund Site. Parties DOE; U.S. Air Force Date 9/26/1990 SCOPE * Set forth the actions required of the USAF and DOE to fulfill their respective responsibilities pursuant to the Settlement Agreement between DOE, USAF, and General Electric Company (8/29/1990). * Establish mechanism by which DOE will transfer, to a fund managed by the USAF, its share of the costs set forth in the Settlement Agreement. * Set forth each party's responsibilities and respective share of costs.

102

Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004)  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=401329" Category: Exploration Activities

103

Compound and Elemental Analysis At Long Valley Caldera Area (Goff & Janik,  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=510433

104

"1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900 "3. Milton R Young","Coal","Minnkota Power Coop, Inc",697 "4. Leland Olds","Coal","Basin Electric Power Coop",670 "5. Garrison","Hydroelectric","USCE-Missouri River District",508 "6. Coyote","Coal","Otter Tail Power Co",427 "7. Stanton","Coal","Great River Energy",202 "8. Tatanka Wind Power LLC","Other Renewables","Acciona Wind Energy USA LLC",180 "9. Langdon Wind LLC","Other Renewables","FPL Energy Langdon Wind LLC",159

105

Remote sensing in a water-resources study of Yellowstone National Park, Wyoming, Montana, and Idaho  

DOE Green Energy (OSTI)

This report describes the usefulness of remote-sensing data in a water-resources study of Yellowstone National Park by delineating warm and cool ground-water areas. Remote-sensing data from aircraft missions in August 1966, September 1967, August 1969, and May 1970 were compared with reconnaissance, ground-temperature surveys, and test-hole data. Thermal-water discharge areas can be determined from infrared imagery and photography from the aircraft missions. Contrasts on infrared imagery caused by differences in vegetative cover, particularly between forested and nonforested areas, often mask the effects of ground-water temperature differences. The imagery, however, shows relatively warm and cool land surface in some areas. Color and color infrared photographs have been useful in reconnaissance. Aerial photographs and field studies of snowpack conditions indicated the usefulness of aerial photography taken during spring snowmelt to determine relatively cool and warm land-surface areas. A snowline in Nez Perce Creek Valley corresponds to a boundary between cool and warm ground water that was determined from augered test holes and ground-temperature surveys. Remnants of the snowpack correlate well with cool areas interpreted from infrared imagery. Relatively cool areas are easier to determine from photographs of snowpack than they are from infrared imagery. Thermal-contour maps could be made from a series of aerial photographs or repetitive data from a satellite taken during the melting of the snowpack.

Cox, E.R.

1973-01-01T23:59:59.000Z

106

Compound and Elemental Analysis At Long Valley Caldera Area ...  

Open Energy Info (EERE)

The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Retrieved from...

107

Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

108

Wabash Valley Power Association- Residential Energy Efficiency Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

109

West Yellowstone, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Yellowstone, Montana: Energy Resources Yellowstone, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.6621493°, -111.1041092° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6621493,"lon":-111.1041092,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system  

E-Print Network (OSTI)

in the Economic Value of Electricity Reliability to the U.S.Pilot Evaluation of Electricity-Reliability & PQ Monitoringto Power Quality and Electricity Reliability Monitoring

Eto, Joseph; Divan, Deepak; Brumsickle, William

2004-01-01T23:59:59.000Z

111

DOE/EIS-0183 Record of Decision for the Electrical Interconnection of the Kittitas Valley Wind Project (09/04/09)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kittitas Valley Wind Project Kittitas Valley Wind Project September 2009 B o n n e v i l l e P o w e r A d m i n i s t r a t i o n 1 INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of up to 108 megawatts (MW) of power to be generated by the proposed Kittitas Valley Wind Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Sagebrush Power Partners, LLC (Sagebrush) has received authorization from the Washington Energy Facility Site Evaluation Council (EFSEC) to construct and operate the proposed Wind Project in Kittitas County, Washington, and has requested interconnection to the FCRTS on BPA's Columbia-Covington 230-kV transmission line in the vicinity of Ellensburg, Washington. BPA will construct a new substation to accommodate this additional power into the

112

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early  

Open Energy Info (EERE)

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Details Activities (1) Areas (1) Regions (0) Abstract: The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He,

113

Core Analysis At Yellowstone Region (Sturchio, Et Al., 1990) | Open Energy  

Open Energy Info (EERE)

Sturchio, Et Al., 1990) Sturchio, Et Al., 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Yellowstone Region (Sturchio, Et Al., 1990) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Core Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes The samples used for this study were 43 hydrothermal minerals (silica, clay and calcite) from Yellowstone drill cores Y-5, Y-6, Y-7, Y-8, Y-11, Y-12, and Y-13 (Fig. 1). References N. C. Sturchio, T. E. C. Keith, K. Muehlenbachs (1990) Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Yellowstone_Region_(Sturchio,_Et_Al.,_1990)&oldid=401307"

114

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

115

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

116

Valley splitting in strained silicon quantum wells Timothy B. Boykin  

E-Print Network (OSTI)

Valley splitting in strained silicon quantum wells Timothy B. Boykin Department of Electrical on localized-orbital approaches is developed to describe the valley splitting observed in silicon quantum wells in the absence of electric field in contrast to previous works. The splitting in a square well oscillates

Sheridan, Jennifer

117

Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

118

Valley Forge Corporate Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

55 Jefferson Ave. 55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and Review of Infrastructure Projects. Request for Information ("RFI") 78 Fed. Reg. 53436 (August 29, 2013) Dear Ms. Smith: Please accept the following comments submitted on behalf of PJM Interconnection, L.L.C. ("PJM") in response to the RFI issued in the above captioned matter. This letter responds

119

CHESTNUT RIDGE RD VALLEY ROAD  

E-Print Network (OSTI)

.1 Miles 0.20 N Miles 0.20 TO MELTON VALLEY DRIVE HFIR PARKING WALK-IN ENTRY 7900 7964K - HFIR USER OFFICE RM 18 7972 HFIR High Flux Isotope Reactor 7962 HFIR User Office: 865-574-4523 BETHEL VALLEY RD BETHEL VALLEY RD BETHEL VALLEY RD RAMSEY DRIVE EGERACCESSROAD MELTON VALLEY DRIVE MELTON VALLEY ACCESS ROAD HFIR

120

Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lower Yellowstone R E A, Inc (North Dakota) | Open Energy Information  

Open Energy Info (EERE)

A, Inc (North Dakota) Jump to: navigation, search Name Lower Yellowstone R E A, Inc Place North Dakota Utility Id 11272 References EIA Form EIA-861 Final Data File for 2010 -...

122

Vp-Vs Ratios In The Yellowstone National Park Region, Wyoming...  

Open Energy Info (EERE)

(1) Regions (0) Abstract: In this paper we study the variation of VpVs and Poisson's ratio () in the Yellowstone National Park region, using earthquakes which were well...

123

Some Effects of the Yellowstone Fire Smoke Cloud on Incident Solar Irradiance  

Science Conference Proceedings (OSTI)

The influence of the 1988 Yellowstone National Park fire, smoke cloud on incident broadband and spectral solar irradiance was studied using measurements made at the Solar Energy Research Institute's Solar Radiation Research Laboratory, Golden, ...

Roland L. Hulstrom; Thomas L. Stoffel

1990-12-01T23:59:59.000Z

124

Exploration And Discovery In Yellowstone Lake- Results From High-Resolution  

Open Energy Info (EERE)

Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Details Activities (1) Areas (1) Regions (0) Abstract: No portion of the American continent is perhaps so rich in wonders as the Yellow Stone' (F.V. Hayden, September 2, 1874) Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal

125

Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Yellowstone Region (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

126

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...  

Open Energy Info (EERE)

In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

127

Poudre Valley REA - Photovoltaic Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $4,500 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount $1.50 per watt Provider Poudre Valley REA Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's Energy Office's (GEO) state-wide rebate program, and Poudre Valley REC customers are permitted to receive both rebates. Before receiving a rebate, applicants must have an energy audit of their home that includes a blower door test. The audit must

128

Solar Goes Big: Launching the California Valley Solar Ranch | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Goes Big: Launching the California Valley Solar Ranch Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in San Luis Obispo County, California. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in San Luis Obispo County, California. | Photo courtesy of SunPower. According to NRG Energy, the California Solar Valley Ranch project has created thousands of jobs and put an estimated $315 million into the local economy. | Photo courtesy of SunPower.

129

Sulphur Springs Valley EC- SunWatts Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of...

130

Red River Valley REA- Heat Pump Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

131

Electric  

U.S. Energy Information Administration (EIA)

Average Retail Price of Electricity to ... Period Residential Commercial Industrial ... or usage falling within specified limits by rate ...

132

Ganges valley aerosol experiment.  

Science Conference Proceedings (OSTI)

In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

Kotamarthi, V.R.; Satheesh, S.K. (Environmental Science Division); (Indian Institute of Science, Bangalore, India)

2011-08-01T23:59:59.000Z

133

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

DOE Green Energy (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

134

Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Electricity is an essential part of modern life. The Energy Department is working to create technology solutions that will reduce our energy use and save Americans money.

135

Hudson Valley Fog Environments  

Science Conference Proceedings (OSTI)

Observations of 14 cases of radiation fog in the Hudson River valley in New York State are presented. Our emphasis is to connect the fog prediction problem to mechanisms in the nocturnal boundary layer that influence heat and moisture balances. ...

David R. Fitzjarrald; G. Garland Lala

1989-12-01T23:59:59.000Z

136

Nighttime Valley Waves  

Science Conference Proceedings (OSTI)

This paper describes a regular oscillation observed in nighttime drainage airflow in a valley under relatively light upper-level wind conditions. The period of these oscillations is about 20 minutes with at least one harmonic at about 10 minutes. ...

William M. Porch; William E. Clements; Richard L. Coulter

1991-02-01T23:59:59.000Z

137

Wabash Valley Power Association - Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wabash Valley Power Association - Residential Energy Efficiency Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 1/1/2012 Expiration Date 12/31/2012 State Indiana Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $400/unit Air-source Heat Pumps: $250-$1,500/unit Geothermal Heat Pumps: $1,500/unit Dual Fuel Heat Pump Rebate: $1,500 Appliance Recycling: $35 Provider Wabash Valley Power Association Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and Illinois. View the WVPA

138

Resistivity studies of the Imperial Valley geothermal area, California |  

Open Energy Info (EERE)

Resistivity studies of the Imperial Valley geothermal area, California Resistivity studies of the Imperial Valley geothermal area, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Resistivity studies of the Imperial Valley geothermal area, California Abstract Electrical resistivity has been employed for mapping thehnperial Valley of California as part of a multi-disciplinaryapproach to assess its geothermal potential. Vertical and lateralresistivity changes were determined from Schlumherger deptilsoundings with effective probing depths up to 8000 ft.Chie/ conclusions were: (1) Known geothermal anomaliesappear as residual resistivity lows superimposed on the regionalgradient which decreases northwest.ward from the southeastcorner of the Imperial Valley, near the Colorado River, tovalues about two orders of magnitude lower at the Salton

139

Steam Explosions, Earthquakes, and Volcanic Eruptions--What's in Yellowstone's Future?  

E-Print Network (OSTI)

Steam Explosions, Earthquakes, and Volcanic Eruptions-- What's in Yellowstone's Future? U. In the background, steam vigorously rises from the hot Each year, millions of visitors come to admire the hot, such as geysers. Steam and hot water carry huge quantities of thermal en- ergy to the surface from the magma cham

Fleskes, Joe

140

Some Effects of the Yellowstone Fire Smoke Plume on Northeast Colorado at the End of Summer 1988  

Science Conference Proceedings (OSTI)

Extensive fires in Yellowstone National Park, Wyoming, during the summer of 1988 resulted in considerable smoke transport to surrounding states. The present note provides an observational evaluation of the effects of this plume on (i) surface ...

M. Segal; J. Weaver; J. F. W. Purdom

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC cdrtrokArJclaeT 3 I+ &i, y I &OF I*- j< t j,fci..- ir )(yiT E-li, ( -,v? Cl -p4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson...

142

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

143

Independent Oversight Review, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

144

Session: Long Valley Exploratory Well  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

1992-01-01T23:59:59.000Z

145

Tennessee Valley Smart Grid Roadmap  

Science Conference Proceedings (OSTI)

This document is the final report resulting from a Smart Grid road-mapping process conducted collaboratively by the power distributors of the Tennessee Valley in coordination with the Tennessee Valley Authority. The project spanned twelve months and was facilitated through a series of topical workshops in which domain experts from throughout the Valley met to develop the plan. The roadmap takes a ten-year look at Smart Grid developments and plans for the Valley, identifying key focus areas, specific goal...

2011-12-05T23:59:59.000Z

146

Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) | Open Energy  

Open Energy Info (EERE)

Hurwitz, Et Al., 2007) Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to monthly sampling enables the examination of spatial and temporal patterns

147

Golden Valley Electric Association - Residential Energy Efficiency...  

Open Energy Info (EERE)

Eligible Technologies Lighting, Water Heaters, Vehicle Engine Preheating Plug-Ins, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

148

Cumberland Valley Electric Cooperative - Energy Efficiency and...  

Open Energy Info (EERE)

Sector Residential Eligible Technologies Building Insulation, Doors, Heat pumps, Windows, Geothermal Heat Pumps Active Incentive Yes Implementing Sector Utility Energy...

149

Golden Valley Electric Association - Sustainable Natural Alternative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fee of 100 (includes the cost of verifying interconnection requirements, accessing the grid and installing a meter) * a one-time records fee of 10 (per meter and account) * a...

150

Guadalupe Valley Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washer: 50 Dishwasher: 50 Heat Pumps: 550-650unit (depending on efficiency) AtticWall Insulation: 0.20sq. ft. Window Solar ScreenFilm: 0.50sq. ft. Heat Pump Water...

151

Fountain Valley Electric Carrier Route Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

13 miles per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of- Charge (SOC) data was collected for only 28 of the route tests....

152

Minnesota Valley Electric Cooperative - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps: 118ton, plus bonus of 5ton for each 0.1 above base requirement Condenser: 18ton, plus bonus of 5ton for each 0.1 above base requirement RTU Economizers:...

153

Verdigris Valley Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.90 efficiency rating minimum Dual FuelAir Source Heat Pumps: Energy Star rated; SEEREER value of 16.5 or greater Geothermal Heat Pumps (replacing existing geothermal heat...

154

Magic Valley Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

efficient units. Dealers can receive a 40 rebate for selling AC units with a 14 SEER or greater, and 50 for selling heat pumps with a 14 SEER or greater. All equipment...

155

Cumberland Valley Electric Cooperative - Energy Efficiency and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: 400 Program Information Kentucky Program Type Utility Rebate Program Rebate Amount...

156

Minnesota Valley Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Maximum Rebate Ground-Source Heat Pump: 5 ton maximum Program Information Minnesota Program Type Utility...

157

Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park  

Science Conference Proceedings (OSTI)

Intensive chemical studies were made of S(-II), O/sub 2/, Al, Fe, Mn, P, As(III), As(V), and Li in waters from two high-Cl, low Ca-Mg hotspring drainages in the Lower Geyser Basin, a warm spring system rich in Ca and Mg in the Yellowstone Canyon area, and the Madison River system above Hebgen Lake. Analyses were also made of other representative thermal waters from the Park.

Stauffer, R.E.; Jenne, E.A.; Ball, J.W.

1980-01-01T23:59:59.000Z

158

Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.  

DOE Green Energy (OSTI)

Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

Cegelski, Christine C.; Campbell, Matthew R.

2006-05-30T23:59:59.000Z

159

Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

2003-04-28T23:59:59.000Z

160

Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

2003-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tri-Generation Success Story: World's First Tri-Gen Energy Station - Fountain Valley  

NLE Websites -- All DOE Office Websites (Extended Search)

Tri-Generation Success Tri-Generation Success Story World's First Tri-Gen Energy Station- Fountain Valley The Fountain Valley energy station, supported in part by a $2.2 million grant from the Energy Department, is the world's first tri-generation hydrogen energy and electrical power station to provide transportation fuel to the public and electric power to an industrial facility. Located at the Orange County Sanitation District's wastewater treatment plant in Fountain Valley, California, the unit is a combined heat, hydrogen, and power (CHHP) system that co-produces hydrogen in addition to electricity and heat, making it a tri-generation system. The hydrogen produced by the system

162

MONUMENT VALLEY, ARIZONA  

Office of Legacy Management (LM)

VALLEY, ARIZONA VALLEY, ARIZONA Sampled August 1997 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Descriotion of Contents 1. Site Sampling Lead Summary 2. Data Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessment Summary, which describes problems identified in the data validation process and summarizes the validator's findings. Suspected Anomalies Reports generated by the UMTRA database system. This report compares the new data $et with historical data and designates "suspected anomalies" based on the many criteria listed as footnotes on each page. In

163

monument valley.cdr  

Office of Legacy Management (LM)

The Monument Valley processing site is located on the The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore-processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site.

164

LVOC - Livermore Valley Open Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

LVOC - Livermore Valley Open Campus LVOC - Livermore Valley Open Campus ↓ Case Studies | ↓ About LVOC Get to market faster Making the impossible possible Lawrence Livermore and Sandia National Laboratories are home to some of the world's most unique state-of-the art facilities and resources. For decades, we have been using our combined capabilities, including a workforce of over 7000 employees to solve complex problems for the nation. Visit the science and technology epicenter - the Livermore Valley Open Campus - just east of San Francisco in the Tri-Valley's innovation ecosystem to find out what problems we can solve for you. LVOC Flyer We Keep Industry on the Cutting Edge of Innovative Technology About the Livermore Valley Open Campus LVOC Rendering Open for Business: The Livermore Valley Open Campus is located at the

165

City of Sunset Valley - Solar Water Heating Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $2,000 Program Info Funding Source General Funds State Texas Program Type Local Rebate Program Rebate Amount 30% of installed cost Provider City of Sunset Valley The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that are offered by Austin Energy to its electric customers. The Sunset Valley rebate is set at 30% of the installed system cost, up to a maximum rebate of $2,000 per homeowner, supplementing the

166

More Than 350 Now at Work Building CA Valley Solar Plant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Than 350 Now at Work Building CA Valley Solar Plant More Than 350 Now at Work Building CA Valley Solar Plant More Than 350 Now at Work Building CA Valley Solar Plant February 27, 2012 - 12:13pm Addthis The California Valley Solar Ranch facility is creating clean energy jobs in San Luis Obispo County, California. Sonia Taylor Loan Programs Office What are the key facts? About 350 skilled workers are busy constructing the 250-megawatt California Valley Solar Ranch. The facility is expected to avoid over 425,000 metric tons of carbon dioxide annually. Once operational, the new solar facility is expected to provide enough clean electricity to power 64,000 homes. Last fall, the Energy Department finalized a $1.2 billion loan guarantee in support of the California Valley Solar Ranch (CVSR) -- a new solar facility in San Luis Obispo County, California.

167

Pennsylvania Nuclear Profile - Beaver Valley  

U.S. Energy Information Administration (EIA) Indexed Site

Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

168

VALDRIFTA Valley Atmospheric Dispersion Model  

Science Conference Proceedings (OSTI)

VALDRIFT (valley drift) is a valley atmospheric transport, diffusion, and deposition model. The model is phenomenologicalthat is, the dominant meteorological processes governing the behavior of the valley atmosphere are formulated explicitly in ...

K. Jerry Allwine; Xindi Bian; C. David Whiteman; Harold W. Thistle

1997-08-01T23:59:59.000Z

169

Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs for the Tennessee Valley Authority  

Science Conference Proceedings (OSTI)

This report documents the results of a study to assess the achievable potential for electricity energy savings and peak demand reductions for the Tennessee Valley Authority (TVA) for 2010-2030. The approach involved applying the methodology and technology data developed for the Electric Power Research Institute (EPRI) National Study on the same subject (product number 1016987), adapted to the specific market sector characteristics of the Tennessee Valley. The efficient technologies and measures considere...

2010-03-24T23:59:59.000Z

170

Chuckawalla Valley State Prison | Open Energy Information  

Open Energy Info (EERE)

Prison Jump to: navigation, search Name Chuckawalla Valley State Prison Place Blythe, California Zip 92226 Sector Solar Product Prison located in Chuckawalla Valley,...

171

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

search Name Aire Valley Environmental Place United Kingdom Product Leeds-based waste-to-energy project developer. References Aire Valley Environmental1 LinkedIn...

172

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

Tees Valley Biofuels Jump to: navigation, search Name Tees Valley Biofuels Place United Kingdom Sector Biofuels Product Company set up by North East Biofuels to establish an...

173

Platte Valley Fuel Ethanol | Open Energy Information  

Open Energy Info (EERE)

search Name Platte Valley Fuel Ethanol Place Central City, Nebraska Product Bioethanol producer using corn as feedstock References Platte Valley Fuel Ethanol1 LinkedIn...

174

Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area  

Science Conference Proceedings (OSTI)

As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

Kandt, A.; Hotchkiss, E.; Fiebig, M.

2010-10-01T23:59:59.000Z

175

Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins  

Science Conference Proceedings (OSTI)

The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

1982-02-01T23:59:59.000Z

176

Cookeville Electric Department- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'...

177

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

Science Conference Proceedings (OSTI)

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

178

monument valley.cdr  

Office of Legacy Management (LM)

The The Monument Valley Processing Site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site. These source materials and other site-related contamination were removed during surface remediation at the

179

Nishnabotna Valley R E C | Open Energy Information  

Open Energy Info (EERE)

Nishnabotna Valley R E C Nishnabotna Valley R E C Jump to: navigation, search Name Nishnabotna Valley R E C Place Iowa Utility Id 13675 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controlled Off-Peak Dual Fuel Residential Controlled Off-Peak Interruptible Heat Residential Multi Phase Large >130kV Commercial Multi Phase Small <130kV Commercial Multi-Purpose Single Phase Uncontrolled Electric Heat Residential Average Rates Residential: $0.1100/kWh

180

Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Rebate Program (Colorado) Commercial Lighting Rebate Program (Colorado) Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Lighting Retrofit: 50% of equipment cost, $20,000 LED Street Lighting/Induction Street Lighting: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount LED Refrigerated Case Lighting (Top Lighting): $60 per ln ft LED Refrigerated Case Lighting (Case Lighting): $60 per door LED Street Lighting: $44 - $475 per fixture Induction Street Lighting: $33 - $355 per fixture Commercial Lighting Retrofit: $250 per kW saved Provider Poudre Valley REA Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

City of Valley City, North Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Valley City, North Dakota (Utility Company) Valley City, North Dakota (Utility Company) Jump to: navigation, search Name City of Valley City Place North Dakota Utility Id 19687 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial service rate - Single Phase Commercial Commercial service rate - Three Phase Commercial Commercial service rate(second meter if electric Heat) Commercial Industrial service rate Industrial Large power service rate Industrial Outdoor area lighting service - 100 Watt H.P.S Lighting

182

Yellowstone as an Analog for Thermal-Hydrological-Chemical Processes at Yucca Mountain  

DOE Green Energy (OSTI)

Enhanced water-rock interaction resulting from the emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, may result in changes to fluid flow (resulting from mineral dissolution and precipitation in condensation and boiling zones, respectively). Studies of water-rock interaction in active and fossil geothermal systems (natural analogs) provide evidence for changes in permeability and porosity resulting from thermal-hydrological-chemical (THC) processes. The objective of this research is to document the effects of coupled THC processes at Yellowstone and then examine how differences in scale could influence the impact that these processes may have on the Yucca Mountain system. Subsurface samples from Yellowstone National Park, one of the largest active geothermal systems in the world, contain some the best examples of hydrothermal self-sealing found in geothermal systems. We selected core samples from two USGS research drill holes from the transition zone between conductive and convective portions of the geothermal system (where sealing was reported to occur). We analyzed the core, measuring the permeability, porosity, and grain density of selected samples to evaluate how lithology, texture, and degree of hydrothermal alteration influence matrix and fracture permeability.

P. F. Dobson; T. J. Kneafsey; A. Simmons; J. Hulen

2001-05-29T23:59:59.000Z

183

NETL: Ambient Monitoring - Upper Ohio River Valley Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Ohio River Valley Project Upper Ohio River Valley Project In cooperation with key stakeholders including EPA, local and state environmental agencies, industry, and academia, the U.S. Department of Energy (DOE) has established the Upper Ohio River Valley Project (UORVP), a network for monitoring and characterizing PM2.5 in the Upper Ohio River Valley. This region was chosen because it has a high density of coal-fired electric utilities, heavy industries (e.g. coke and steel making), light industry, and transportation emission sources. It is also ideally situated to serve as a platform for the study of interstate pollution transport issues. This region, with its unique topography (hills and river valleys) as well as a good mix of urban and rural areas, has a high population of elderly who are susceptible to health impacts of fine particulate as well as other related environmental issues (e.g., acid rain, Hg deposition, ozone). A world-class medical research/university system is also located in the region, which will facilitate the subsequent use of the air quality data in studies of PM2.5 health effects.

184

West Valley facility spent fuel handling, storage, and shipping experience  

Science Conference Proceedings (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

185

Swauk Valley | Open Energy Information  

Open Energy Info (EERE)

Swauk Valley Swauk Valley Jump to: navigation, search Name Swauk Valley Facility Swauk Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McKinstry Developer McKinstry Location Ellensburg WA Coordinates 47.14163°, -120.754376° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.14163,"lon":-120.754376,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Spring Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Spring Valley Facility Spring Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser NV Energy Location Ely NV Coordinates 39.10555447°, -114.4940186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.10555447,"lon":-114.4940186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Magic Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Magic Valley Facility Magic Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Location Raymondville TX Coordinates 26.46534829°, -97.6725769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.46534829,"lon":-97.6725769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Retrofitting the Tennessee Valley Authority  

E-Print Network (OSTI)

As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

Zeiber, Kristen (Kristen Ann)

2013-01-01T23:59:59.000Z

189

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera. At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina Flechsig, John H. Sass (2003) Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Long_Valley_Caldera_Area_(Pribnow,_Et_Al.,_2003)&oldid=389388

190

Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Al., 1991) Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Discusses temperature and lithologic data from a dozen or so wells drilled, both by industry and the scientific community. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits

191

Along-Valley Structure of Daytime Thermally Driven Flows in the Wipp Valley  

Science Conference Proceedings (OSTI)

High-resolution Doppler lidar observations obtained during the Mesoscale Alpine Program (MAP) 1999 field campaign are used to investigate the along-valley structure of daytime valley flows in the Wipp Valley, Austria. The observations show that ...

Magdalena Rucker; Robert M. Banta; Douw G. Steyn

2008-03-01T23:59:59.000Z

192

New Evidence On The Hydrothermal System In Long Valley Caldera, California,  

Open Energy Info (EERE)

New Evidence On The Hydrothermal System In Long Valley Caldera, California, New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Abstract Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These

193

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From  

Open Energy Info (EERE)

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Details Activities (5) Areas (1) Regions (0) Abstract: Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclet-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower

194

"1. Browns Ferry","Nuclear","Tennessee Valley Authority",3309  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "1. Browns Ferry","Nuclear","Tennessee Valley Authority",3309 "2. James H Miller Jr","Coal","Alabama Power Co",2675 "3. Barry","Coal","Alabama Power Co",2575 "4. E C Gaston","Coal","Alabama Power Co",1878 "5. H Allen Franklin Combined Cycle","Gas","Southern Power Co",1815 "6. Joseph M Farley","Nuclear","Alabama Power Co",1734 "7. Widows Creek","Coal","Tennessee Valley Authority",1604 "8. Colbert","Coal","Tennessee Valley Authority",1574 "9. E B Harris Electric Generating Plant","Gas","Southern Power Co",1269

195

RECIPIENT:SURPRISE VALLEY ELECTRIFICATION CORP STATE: OR PROJECT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECIPIENT:SURPRISE VALLEY ELECTRIFICATION CORP STATE: OR RECIPIENT:SURPRISE VALLEY ELECTRIFICATION CORP STATE: OR PROJECT TITLE: RECOVERY ACT: RURAL ELECTRIC COOPERATIVE GEOTHERMAL DEVELOPMENT ELECTRIC AND AGRICULTURE Funding Opportunity Announcement Number DE-FOA-0000109 Procurement Instrument Number DE-EE0003006 NEPA Control Number ern Number GFO-0003006-004 G03006 Based on my review of the information concerning the pro posed action, as NEPA Compliance Ofticer (autborized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

196

Sioux Valley SW Elec Coop | Open Energy Information  

Open Energy Info (EERE)

SW Elec Coop SW Elec Coop Jump to: navigation, search Name Sioux Valley SW Elec Coop Place Colman, South Dakota Utility Id 17267 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project was awarded $4,016,368 Recovery Act Funding with a total project value of $8,032,736. Utility Rate Schedules Grid-background.png commercial electric heat rate Commercial commercial general service - single phase Commercial commercial general service - three phase Commercial

197

Geothermal chemistry/exploration investigations at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

Dixie Valley geothermal field has continuously produced electric power since 1988. At the request of Oxbow Geothermal Corp. and the US Department of Energy, the authors have organized an inter-agency team of investigators to examine several topics of concern regarding management and behavior of the resource. These topics include scaling of the injection system, recharge of the reservoir, geochemical monitoring of the reservoir, and development of increased fumarolic activity north of the power plant.

Goff, F.; Bergfeld, D.; Counce, D. [Los Alamos National Lab., NM (United States); Janik, C.J. [Geological Survey (United States); Bruton, C.J.; Nimz, G. [Lawrence Livermore National Lab., CA (United States)

1998-12-01T23:59:59.000Z

198

Tennessee Valley Authority (TVA) Transmission Grid Modernization Roadmap  

Science Conference Proceedings (OSTI)

In August 2010, the Tennessee Valley Authority (TVA) adopted a corporate vision for the company to become one of the nations leading providers of clean low-cost energy by the year 2020. Within TVA, the Energy Delivery (ED) organization is responsible for the reliable delivery of electric power. EDs mission is to maintain a cost-effective, reliable, safe, and compliant transmission system for TVA.Various challenges, such as increasing environmental regulation, new and ...

2012-09-11T23:59:59.000Z

199

Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980  

DOE Green Energy (OSTI)

Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

1980-01-01T23:59:59.000Z

200

Assessment of Achievable Potential from Energy-Efficiency and Demand Response Programs for the Tennessee Valley Authority (2010-2030)  

Science Conference Proceedings (OSTI)

This report documents the results of a study to assess the achievable potential for electric energy savings and peak demand reductions for the Tennessee Valley Authority (TVA) for the years 2010-2030. The approach involved applying the methodology and technology data developed for the Electric Power Research Institute (EPRI) National Study on the same subject, adapted to the specific market sector characteristics of the Tennessee Valley. The efficient technologies and measures considered are commercially...

2010-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Shenandoah Valley Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Shenandoah Valley Elec Coop Place Virginia Utility Id 17066 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100% RENEWABLE ENERGY ATTRIBUTES ELECTRIC SERVICE- RIDER R Residential INTERIM RATE INCREASE RIDER OD-09 SALES AND USE TAX SURCHARGE-Q SCHEDULE A-10 (UNBUNDLED) RESIDENTIAL SERVICE Residential SCHEDULE ALQ PRIVATE OUTDOOR AREA LIGHTING SERVICE Mercury 100 Watt - Customer-Owned Lighting SCHEDULE ALQ PRIVATE OUTDOOR AREA LIGHTING SERVICE Mercury 175 Watt -

202

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

DOE Green Energy (OSTI)

The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

203

West Valley Demonstration Project Transportation Emergency Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Transportation Emergency Management Program Independent Oversight Review of the Office of Independent Oversight and Performance Assurance...

204

Pennsylvania Nuclear Profile - Beaver Valley  

U.S. Energy Information Administration (EIA)

snpt3pa6040 892 7,119 91.1 PWR 885 7,874 101.6 1,777 14,994 96.3 Beaver Valley Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: ...

205

Smoky Hill and River Valleys  

E-Print Network (OSTI)

.............................................................................3 - 13 Wind Energy and the Meridian Way Wind Farm County. This location is the site of a new wind farm development by Westar Energy, Horizon Wind EnergySmoky Hill and Republican River Valleys Water, Wind, and Economic Development 2008 Field Conference

Peterson, Blake R.

206

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

c","Investor-Owned",1439002,513084,720009,205909,"-" "4. Sioux Valley SW Elec Coop","Cooperative",543948,273406,37503,233039,"-" "5. Southeastern Electric Coop...

207

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" "1. Golden Valley Elec Assn Inc","Cooperative",1288167,304785,140257,843125,"-" "2. Chugach Electric Assn Inc","Cooperative",1169430,545123,578892,45415,"-" "3. Anchorage...

208

Independent Oversight Review, West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Secretary of Energy's Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) in September 2000.

209

Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies correlate with the location of known faults in agreement with previous

210

Geothermometry At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Geothermometry Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Silica-geothermometer temperature estimates for the Casa Diablo and RDO-8 well samples ( 196-202 degrees C) are lower than the corresponding cation-geothermometer temperature estimates, indicating loss of silica with declining reservoir temperature or dilution with low-silica waters. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And

211

Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

1991) 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Several newer wells were cored, and the core analyses seemed to prove useful in most cases. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Long_Valley_Caldera_Area_(Sorey,_Et_Al.,_1991)&oldid=386930

212

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

213

Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies

214

Managing the Yellowstone River System with Place-based Cultural Data  

E-Print Network (OSTI)

This project aims to create new research tools within the human dimensions (HD) of the natural resources field to improve environmental policy decision making. It addresses problems that arise from the recent trend towards decentralized natural resource management (NRM) and planning (e.g., community-based planning, watershed-based and collaborative management, others). By examining one decentralized riparian management planning effort along the Yellowstone River (Montana), this study finds that decentralization forces new needs such as localized information requirements and a better understanding of the rationales behind local interests. To meet these new scale demands and to ensure that policy best fits the social and biophysical settings, this project argues that local cultural knowledge can serve as an organizing framework for delivering the kinds of understanding needed for decentralized planning. This was tested by interviewing 313 riverfront landowners, recreationalists, and civic managers to understand how residents conceptualize the rivers natural processes, its management, and their desires for the future of the river. Analysis of the transcribed in-depth interview textsthe Yellowstone River Cultural Inventory (YRCI)found that: (1) altering decision venues places more significance upon interpersonal working relationships between managers and citizens; (2) while local expertise can provide higher quality information to managers, local decision making cultures still retain power dynamics that can inhibit or advance conservation policies; (3) how natural resource places are symbolically communicated has a material impact upon resource uses; (4) how residents conceptualize the ownership of land is complicated along a dynamic river; and (5) this dynamism impacts planning efforts. In sum, this project argues that for social research to provide the data and analysis appropriate, a modification in scale and a commensurate shift in the lenses used for social inquiry is necessary. An in-depth understanding of local cultureslike the YRCIenables agencies to best manage in decentralized scales of planning by calling attention to site-specific nuances such as power dynamics and place representation which are often missed in traditional large-scale HD methods and lenses. This research also functions as a preemptive way to engage the public in environmental planning helping decision makers best fit policy to particular socio-cultural and ecological settings.

Hall, Damon M.

2010-08-01T23:59:59.000Z

215

BPA/Lower Valley Transmission Project Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Summary Summary * The Purpose and Need for Action * Alternatives * Affected Environment * Impacts This summary gives the major points of the Final Environmental Impact Statement (EIS) prepared for the BPA/Lower Valley Transmission Project by Bonneville Power Administration (BPA). BPA is the lead federal agency on this project and supervises the preparation of the EIS. The U.S. Forest Service is a cooperating agency and assists BPA in EIS preparation. The Targhee and Bridger-Teton National Forests are crossed by BPA's existing transmission line and some of the alternatives. S.1 Purpose and Need For Action S.1.1 BPA Lower Valley Power and Light, Inc. (LVPL) buys electricity from BPA and then supplies it to the residences, farms and businesses of the Jackson and Afton, Wyoming areas. Since the late 1980s,

216

Monument Valley Phytoremediation Pilot Study:  

Office of Legacy Management (LM)

1.8 1.8 U.S. Department of Energy UMTRA Ground Water Project Monument Valley Ground Water Remediation Work Plan: Native Plant Farming and Phytoremediation Pilot Study August 1998 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Prepared by MACTEC Environmental Restoration Services, LLC Grand Junction, Colorado Project Number UGW-511-0015-10-000 Document Number U0029501 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Note: Some of the section page numbers in the Table of Contents may not correspond to the page on which the section appears when viewing them in Adobe Acrobat. Document Number U0029501 Contents DOE/Grand Junction Office Monument Valley Ground Water Remediation Work Plan August 1998 Page v Contents Page Acronyms .

217

Upper Scioto Valley School | Open Energy Information  

Open Energy Info (EERE)

Valley School Valley School Jump to: navigation, search Name Upper Scioto Valley School Facility Upper Scioto Valley School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Upper Scioto Valley Schools Energy Purchaser Upper Scioto Valley Schools Location McGuffey OH Coordinates 40.691542°, -83.786353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.691542,"lon":-83.786353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

219

Tippecanoe Valley School Corp | Open Energy Information  

Open Energy Info (EERE)

Valley School Corp Valley School Corp Jump to: navigation, search Name Tippecanoe Valley School Corp Facility Tippecanoe Valley School Corp Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tippecanoe Valley School Corp Developer Performance Services Energy Purchaser Tippecanoe Valley School Corp Location Akron IN Coordinates 41.11098144°, -86.04468584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.11098144,"lon":-86.04468584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Facility Dixie Valley Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Facility General Information Name Dixie Valley Geothermal Facility Facility Dixie Valley Sector Geothermal energy Location Information Location Dixie Valley, Nevada Coordinates 39.966973991529°, -117.85519123077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966973991529,"lon":-117.85519123077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rogue Valley Clean Cities Coalition Rogue Valley Clean Cities Coalition The Rogue Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Rogue Valley Clean Cities coalition Contact Information Mike Quilty 541-621-4853 mikeq@roguevalleycleancities.org Coalition Website Clean Cities Coordinator Mike Quilty Mike Quilty served on the Rogue Valley Clean Cities Coalition (RVCCC) Board for three years prior to becoming RVCCC's Fleet Outreach Coordinator in late 2010. He was appointed RVCCC's Coordinator in March of 2013. Quilty is active in Oregon transportation policy issues. He is currently Chair of the Rogue Valley Metropolitan Planning Organization Policy Committee (2005 to Present), and is a member of the: Oregon Rail Leadership

222

Modeling of Mountain-Valley Wind Fields in the Southern San Joaquin Valley, California  

Science Conference Proceedings (OSTI)

A dry three-dimensional mesoscale model was used to study the diurnal cycle of mountain-valley winds in the southern San Joaquin Valley during a summer day. A scheme for interpolating potential temperature was developed to provide hourly ...

Gary E. Moore; Christopher Daly; Mei-Kao Liu; Shi-Jian Huang

1987-09-01T23:59:59.000Z

223

Dixie Valley Geothermal Field | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley Geothermal Field Citation Online Nevada Encyclopedia. Dixie...

224

Valley Forge Composite Technologies, Lawrence Livermore ...  

... high-security buildings and border entry points. More information about Valley Forge Composite Technologies, Inc. can be found at www.vlyf.com. ...

225

Independent Activity Report, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project - July 2012 Independent Activity Report, New Brunswick Laboratory - November 2011 Orientation Visit to the Paducah Gaseous Diffusion Plant,...

226

Kankakee Valley Rural E M C | Open Energy Information  

Open Energy Info (EERE)

M C M C Jump to: navigation, search Name Kankakee Valley Rural E M C Place Indiana Utility Id 9999 Utility Location Yes Ownership C NERC Location ECAR NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Envirowatt Residential Electric Service(Manually Read Meter) Residential General Service Non-Demand(Using Manually read meter)) Residential General Service Non-Demand(Using Manually read meter)) Commercial RATE SCHEDULE A: RESIDENTIAL ELECTRIC SERVICE RATE SCHEDULE Residential Rate Schedule A1: Envirowatt Residential Electric Service Rate Schedule

227

Graphene quantum dots for valley-based quantum computing: A feasibility study  

E-Print Network (OSTI)

At the center of quantum computing1 realization is the physical implementation of qubits - two-state quantum information units. The rise of graphene2 has opened a new door to the implementation. Because graphene electrons simulate two-dimensional relativistic particles with two degenerate and independent energy valleys,3 a novel degree of freedom (d.o.f.), namely, the valley state of an electron, emerges as a new information carrier.4 Here, we expand the Loss-DiVincenzo quantum dot (QD) approach in electron spin qubits,5,6 and investigate the feasibility of double QD (DQD) structures in gapful graphene as "valley qubits", with the logic 0 / 1 states represented by the "valley" singlet / triplet pair. This generalization is characterized by 1) valley relaxation time ~ O(ms), and 2) electric qubit manipulation on the time scale ~ ns, based on the 1st-order "relativistic effect" unique in graphene. A potential for valley-based quantum computing is present.

G. Y. Wu; N. -Y. Lue; L. Chang

2011-04-04T23:59:59.000Z

228

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

229

Electrical engineering Electricity  

E-Print Network (OSTI)

generation Transmission Distribution · Electrical generators · Electric motors · High voltage engineering associated with the systems Electrical engineering · Electric power generation Transmission Distribution The electricity transported to load locations from a power station transmission subsystem The transmission system

?nay, Devrim

230

Climatology of High Wind Events in the Owens Valley, California  

Science Conference Proceedings (OSTI)

The climatology of high wind events in the Owens Valley, California, a deep valley located just east of the southern Sierra Nevada, is described using data from six automated weather stations distributed along the valley axis in combination with ...

Shiyuan Zhong; Ju Li; C. David Whiteman; Xindi Bian; Wenqing Yao

2008-09-01T23:59:59.000Z

231

Dynamics of Katabatic Winds in Colorado' Brush Creek Valley  

Science Conference Proceedings (OSTI)

A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields ...

I. Vergeiner; E. Dreiseitl; C. David Whiteman

1987-01-01T23:59:59.000Z

232

Direct-Current Resistivity At Dixie Valley Geothermal Field Area...  

Open Energy Info (EERE)

Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field...

233

Pages that link to "Arbon Valley, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Arbon Valley, Idaho" Arbon Valley, Idaho Jump to: navigation, search What links here Page: Arbon...

234

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

235

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

In Dixie Valley, Nevada Retrieved from "http:en.openei.orgwindex.php?titleGroundGravitySurveyAtDixieValleyGeothermalFieldArea(Blackwell,EtAl.,2009)&oldid38834...

236

Antelope Valley Water Storage, LLC RFP - DEADLINE: March 31,...  

NLE Websites -- All DOE Office Websites (Extended Search)

-Renewable-Energy.doc REQUEST FOR PROPOSALS RENEWABLE ENERGY SUPPLY FOR ANTELOPE VALLEY WATER BANKING PROJECT ANTELOPE VALLEY WATER STORAGE, LLC. Filing Deadline: March 31, 2008 -...

237

Green Valley LFGTE Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Valley LFGTE Biomass Facility Jump to: navigation, search Name Green Valley LFGTE...

238

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

239

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

240

Clean Cities: Valley of the Sun Clean Cities (Phoenix) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Valley of the Sun Clean Cities (Phoenix) Coalition The Valley of the Sun Clean Cities (Phoenix) coalition works with vehicle fleets, fuel providers, community leaders, and other...

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...  

Open Energy Info (EERE)

Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Water Sampling Activity Date Usefulness not...

242

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

243

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Thermochronometry At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area...

244

Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Gabbs Valley Area (DOE GTP) Exploration...

245

Multiple Ruptures For Long Valley Microearthquakes- A Link To...  

Open Energy Info (EERE)

Number: Unavailable DOI: Unavailable Source: View Original Journal Article Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) Long Valley Caldera...

246

Technical Services Contract Awarded for West Valley Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Services Contract Awarded for West Valley Demonstration Project Support Services Technical Services Contract Awarded for West Valley Demonstration Project Support...

247

The Climate of Death Valley, California  

Science Conference Proceedings (OSTI)

Death Valley, California, is one of the most extreme environments in the world. The floor of the valley, which is below sea level, is one of the hottest and driest places on Earth. This article and associated data files compile and describe the ...

Steven Roof; Charlie Callagan

2003-12-01T23:59:59.000Z

248

Demonstration of Decision Support Tools for Sustainable Development - An Application on Alternative Fuels in the Greater Yellowstone-Teton Region  

DOE Green Energy (OSTI)

The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

Shropshire, D.E.; Cobb, D.A.; Worhach, P.; Jacobson, J.J.; Berrett, S.

2000-12-30T23:59:59.000Z

249

Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics  

Science Conference Proceedings (OSTI)

Moderately thermophilic acidophilic bacteria were isolated from geothermal (3083 C) acidic (pH 2.7 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 C, and pH 1.01.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

D. B. Johnson; N. Okibe; F. F. Roberto

2003-07-01T23:59:59.000Z

250

Clean Cities: Treasure Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Treasure Valley Clean Cities Coalition Treasure Valley Clean Cities Coalition The Treasure Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Treasure Valley Clean Cities coalition Contact Information Beth Baird 208-384-3984 bbaird@cityofboise.org Coalition Website Clean Cities Coordinator Beth Baird Photo of Beth Baird Beth Baird was involved in the development of the Treasure Valley Clean Cities coalition (TVCCC) and has been the coalition's coordinator since its designation in 2006. Baird has been employed at the city of Boise Public Works Department for 14 years. During that time, she developed the air quality program for the city of Boise. Most recently, she has taken on responsibilities for the Climate

251

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

252

NPP Tropical Forest: Magdalena Valley, Colombia  

NLE Websites -- All DOE Office Websites (Extended Search)

Magdalena Valley, Colombia, 1970-1971 Magdalena Valley, Colombia, 1970-1971 Data Citation Cite this data set as follows: Folster, H. 1999. NPP Tropical Forest: Magdalena Valley, Colombia, 1970-1971. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Biomass, litterfall, and nutrient content of above-ground vegetation and soil were determined for a tropical seasonal evergreen forest at Magdalena Valley, Colombia, during an 18-month period in 1970 and 1971. The study was sponsored by the German Research Foundation. Of primary interest were biomass and nutrient dynamics of a forest stand that had developed atop a perched water table on a typical valley terrace. Perched water tables give rise to pseudogley soils with low pH, prolonged

253

Bolton Valley Resort | Open Energy Information  

Open Energy Info (EERE)

Bolton Valley Resort Bolton Valley Resort Jump to: navigation, search Name Bolton Valley Resort Facility Bolton Valley Resort Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Bolton Valley VT Coordinates 44.4144038°, -72.83469647° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4144038,"lon":-72.83469647,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Clean Cities: Antelope Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Antelope Valley Clean Cities Coalition Antelope Valley Clean Cities Coalition The Antelope Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Antelope Valley Clean Cities coalition Contact Information Curtis Martin 661-492-5916 visioncc@verizon.net Coalition Website Clean Cities Coordinator Curtis Martin Photo of Curtis Martin Curtis Martin has been the coordinator for the Antelope Valley Clean Cities coalition since 2008. In addition to his Clean Cities functions, he is also the alternative fuels manager for Robertson's Palmdale Honda in Palmdale, California. As the alternative fuels manager, he is responsible for the sales and marketing of the Civic GX to retail and fleet customers. Martin has been involved in alternative fuels for the past 12 years and has

255

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,  

Open Energy Info (EERE)

Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Citation Gabriel L. Plank. 1995. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada. Geothermal Resources Council Transactions. 19: (!) . Retrieved from "http://en.openei.org/w/index.php?title=Structure,_Stratigraphy,_and_Tectonics_of_the_Dixie_Valley_Geothermal_Site,_Dixie_Valley,_Nevada&oldid=682622"

256

Pearl River Valley El Pwr Assn | Open Energy Information  

Open Energy Info (EERE)

El Pwr Assn El Pwr Assn Jump to: navigation, search Name Pearl River Valley El Pwr Assn Place Mississippi Utility Id 14563 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1 GS General Service 10 LGS-6 Large General Service 2 GS-DG General Service Distributed Generation 20 LP-6 Large Power 21 LP-AE-2 Large Power All Electric 22 LP-PM-6 Large Power Primary Meter 23 LP-PM-AE-2 Large Power Primary Metering All Electric 3 GS-TWH General Service Tankless Water Heater 3 TGS-1 Temporary General Service

257

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

258

ELECTRICAL DISTRICT No.  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL ELECTRICAL DISTRICT No. 4 PINAL COUNTY POST OFFICE BOX 605- ELOY, ARIZONA 85131 Telephone: (520) 468-7338 BOARD OF DIRECTORS: DISTRICT MANAGER: MARK HAMILTON, CHAIRMAN RON McEACHERN CHARLES BUSH ThOMAS W. SCM JAMES F. SHEDD WILLIAM WARREN VIA ELECTRONIC MAIL TO: DSWFPP~2wapa.gov July 19, 2010 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project Electrical District Number Four of Pinal County ("ED4") and Electrical District Number Five of Pinal County ("ED5") are members of the Southwest Public Power Resource ("SPPR") Group and support the ED5 to Palo Verde Project Statement of Interest ("SOT") submitted by the SPPR Group. ED4 is also a participant in the Southeast Valley C'SEV") Project and has offered to

259

Valley Electric Assn, Inc (Nevada) | Open Energy Information  

Open Energy Info (EERE)

9840 9840 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - Large Commercial Greater than 250kW Industrial General Service-Less than 50kW Residential General Service-Small Commercial-50-249 kW Commercial General Service-Small Commercial-50-249 kW(Primary Metering) Commercial Irrigation Service Commercial Outdoor Lighting Service-100 W HPS Lighting Outdoor Lighting Service-175 W MV Lighting

260

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...  

Open Energy Info (EERE)

induction logging was performed during December 1999, using the VEMP(Vertical Electro Magnetic Profiling) system. This system provides regional resistivity structure around the...

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Basin Electric Power Cooperative's Antelope Valley Station near  

NLE Websites -- All DOE Office Websites (Extended Search)

the next 10 years at two new sites in Holland. Shell will capture CO 2 from its Pernis oil refinery in Rotterdam and sequester it in depleted gas fields. The consortium headed...

262

Duncan Valley Electric Cooperative - SunWatts Rebate Program...  

Open Energy Info (EERE)

Heat, Wind Active Incentive Yes Implementing Sector Utility Energy Category Renewable Energy Incentive Programs Amount PV and Wind (10 kW or less): 1.00W-DC PV and Wind...

263

Pearl River Valley Electric Power Association - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the home owner can receive rebates up to 500 for new, energy efficient heat pumps (SEER of 15 or higher) or geothermal heat pumps. These Comfort Advantage incentives are paid...

264

Sheep Valley Ranch | Open Energy Information  

Open Energy Info (EERE)

Sheep Valley Ranch Sheep Valley Ranch Jump to: navigation, search Name Sheep Valley Ranch Facility Sheep Valley Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two Dot Wind LLC Location Wheatland MT Coordinates 46.45°, -110.07° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.45,"lon":-110.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Lighthouse Solar Indian Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Indian Valley Name Lighthouse Solar Indian Valley Address 5062 McLean Station Road Place Green Lane, PA Zip 18054 Sector Solar Phone number (215) 541-5464 Website http://www.lighthousesolar.com Coordinates 40.350689°, -75.475961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.350689,"lon":-75.475961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

267

Lighthouse Solar Diablo Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Diablo Valley Name Lighthouse Solar Diablo Valley Address 2420 Sand Creek Road - C1308 Place Brentwood, CA Zip 94513 Sector Solar Phone number (925) 420-5121 Website http://www.lighthousesolar.com Coordinates 37.9434593°, -121.738203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9434593,"lon":-121.738203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Dakota Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Dakota Valley Wind Project Dakota Valley Wind Project Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355°, -96.524841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.548355,"lon":-96.524841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Unalakleet Valley Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Unalakleet Valley Elec Coop Unalakleet Valley Elec Coop Jump to: navigation, search Name Unalakleet Valley Elec Coop Place Alaska Utility Id 40548 Utility Location Yes Ownership C NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service Commercial Residential Service Residential Average Rates Residential: $0.3920/kWh Commercial: $0.3680/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Unalakleet_Valley_Elec_Coop&oldid=41190

270

Harquahala Valley Pwr District | Open Energy Information  

Open Energy Info (EERE)

Harquahala Valley Pwr District Harquahala Valley Pwr District Jump to: navigation, search Name Harquahala Valley Pwr District Place Arizona Utility Id 8139 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Gin Commercial Irrigation Pumping Commercial Non-Irrigation Agriculture Commercial Average Rates Industrial: $0.0565/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Harquahala_Valley_Pwr_District&oldid=410799

271

Tributary Fluxes into Brush Creek Valley  

Science Conference Proceedings (OSTI)

Measurements in a tributary to Brush Creek Valley during the September and October 1984 ASCOT campaign with laser anemometers, tethersondes, a minisodar, and smoke release were used to calculate the contribution by tributaries to nocturnal ...

R. L. Coulter; Monte Orgill; William Porch

1989-07-01T23:59:59.000Z

272

Contemporary Climate Change in the Jordan Valley  

Science Conference Proceedings (OSTI)

This study examines the climate changes that have occurred in the 40 years since the publication of Jehuda Neumann's classic climatological studies of the energy and water balance of the natural water bodies of the Jordan Valley. The measurements ...

Shabtai Cohen; Gerald Stanhill

1996-07-01T23:59:59.000Z

273

City of Sunset Valley- PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

274

Lighthouse Solar Central Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Central Valley Name Lighthouse Solar Central Valley Address 2135 McCall Ave. Place Selma, CA Zip 93662 Sector Solar Phone number (559) 260-0796 Website http://www.lighthousesolar.com Coordinates 36.564699°, -119.611283° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.564699,"lon":-119.611283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Tennessee Valley Smart Grid Roadmap Workshops  

Science Conference Proceedings (OSTI)

The power distributors of the Tennessee Valley are developing a smart grid roadmap in coordination with the Tennessee Valley Authority. The road-mapping process included the identification of a set of key applications, each of which served as the topic of a dedicated workshop. This report provides a compilation of the reports that resulted from these workshops. The report was produced to ensure that the meeting minutes are maintained and available for future reference. The overall smart grid roadmap is d...

2011-10-11T23:59:59.000Z

276

Atmospheric Mass Transport by Along-Valley Wind Systems in a Deep Colorado Valley  

Science Conference Proceedings (OSTI)

Hourly tethered-balloon wind soundings from the 650-m deep, narrow, Brush Creek Valley of Colorado are analyzed to determine the nocturnal atmospheric mass (or volume) budget of the valley. Under the assumption that the volume flux on an entire ...

C. David Whiteman; Sumner Barr

1986-09-01T23:59:59.000Z

277

The coupling of synoptic and valley winds in the Tennessee Valley  

DOE Green Energy (OSTI)

The interaction of winds in a valley with the winds above the valley is of interest for both practical and theoretical reasons. For example, the forecasting of conditions affecting air quality,, emergency preparedness, or aerial spraying of pesticides requires the ability to relate local valley circulations to ambient synoptic conditions. While empirically derived relationships may be useful, it is also desirable to develop an understanding of the mechanisms responsible for the observed behavior. In this paper we combine results from analyses of measurements and model-generated data to provide insight into factors affecting the climatology of the winds in the Tennessee Valley. We discuss four mechanisms that can determine the behavior of winds in a valley. The conditions can be illustrated in terms of the expected joint frequency distributions of the surface and geostrophic winds.

Doran, J.C.; Whiteman, C.D.

1992-09-01T23:59:59.000Z

278

O:\ELECTRIC\ORDERS\ea-239 ord.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aroostook Valley Electric Company Aroostook Valley Electric Company Order No. EA-239 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On April 27, 2001, the Office of Fossil Energy (FE) of the Department of Energy (DOE) received an application from Aroostook Valley Electric Company (AVEC) to transmit electric energy from the United States to Canada. AVEC, a Maine corporation, owns and operates a 31-MW wood- burning generation facility located in Fort Fairfield, Maine ("the Plant"). The Plant originally was owned by Fairfield Energy Venture (Fairfield). On October 8, 1985, DOE issued an order (ERA Docket PP-83EA) authorizing Fairfield and

279

Cookeville Electric Department - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cookeville Electric Department - Residential Energy Efficiency Cookeville Electric Department - Residential Energy Efficiency Rebate Program Cookeville Electric Department - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Utility Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Energy Audit Suggested Measures: $500 Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $100 Energy Audit Suggested Measures: 50% of cost Provider Cookeville Electric Department Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'' rebate program. Rebates

280

Gibson Electric Membership Corporation - Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gibson Electric Membership Corporation - Energy Efficiency Rebates Gibson Electric Membership Corporation - Energy Efficiency Rebates Gibson Electric Membership Corporation - Energy Efficiency Rebates < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Energy Right New Home: $300 - $400 Water Heater: $100 - $250 Provider Gibson Electric Membership Corporation Gibson Electric Membership Corporation, in collaboration with the Tennessee Valley Authority, promotes energy efficient building design through its [http://www.energyright.com/ ''energy right''] New Homes Program. Rebates

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Murfreesboro Electric Department - Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Murfreesboro Electric Department - Energy Efficiency Rebate Program Murfreesboro Electric Department - Energy Efficiency Rebate Program Murfreesboro Electric Department - Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Single-Family Homes: $1,500 Multi-Family Homes: Up to $100 per unit Water Heater: $25 - $100 Provider Murfreesboro Electric Department Murfreesboro Electric Department, in collaboration with the Tennessee Valley Authority, offers incentives to home builders and homeowners for the

282

Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17  

DOE Green Energy (OSTI)

The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

283

Tennessee Valley Authority Smart Modal Area Recharge Terminal (SMART) Station Project  

Science Conference Proceedings (OSTI)

EPRI and the Tennessee Valley Authority (TVA) collaborated to design and build solar-assisted electric vehicle (EV) charging stations, referred to as a TVA Smart Modal Area Recharge Terminal, or TVA SMART Station. These stationswhich combine photovoltaic generation, EV charging, and stationary battery storagehave been deployed across the State of Tennessee. In specific, the five deployed stations provide a total of 72 kW of solar generation capacity, 36 parking spaces equipped for ...

2012-11-12T23:59:59.000Z

284

West Valley Site History, Cleanup Status, and Role of the West...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force...

285

Spring Valley Pub Utils Comm | Open Energy Information  

Open Energy Info (EERE)

Comm Comm Jump to: navigation, search Name Spring Valley Pub Utils Comm Place Minnesota Utility Id 17824 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Large Commercial (Demand) Commercial Primary Metering Demand Industrial Residential Residential Residential- All Electric Residential Small Commercial (Demand) Commercial Average Rates Residential: $0.1190/kWh Commercial: $0.0964/kWh

286

Elk Valley Rancheria Energy Efficiency and Alternatives Analysis  

DOE Green Energy (OSTI)

Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

2011-11-30T23:59:59.000Z

287

Smoky Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Smoky Valley Wind Project Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766°, -97.683563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.578766,"lon":-97.683563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

All Valley Solar | Open Energy Information  

Open Energy Info (EERE)

All Valley Solar All Valley Solar Name All Valley Solar Address 6851 Cahuenga Park Trail Place Los Angeles, California Year founded 1986 Phone number (661) 257-7780 Coordinates 34.1235069°, -118.345082° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1235069,"lon":-118.345082,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

291

Valley View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Valley View Wind Farm Facility Valley View Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind Developer Valley View Transmission Energy Purchaser Xcel Energy Location Outside Chandler MN Coordinates 43.905808°, -96.020508° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.905808,"lon":-96.020508,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Clayton Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Clayton Valley Geothermal Project Clayton Valley Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Clayton Valley Geothermal Project Project Location Information Coordinates 37.755°, -117.63472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.755,"lon":-117.63472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Golden Valley Wind Park | Open Energy Information  

Open Energy Info (EERE)

Golden Valley Wind Park Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.379924°, -113.876892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.379924,"lon":-113.876892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Tennessee Valley Authority (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Valley Authority Tennessee Valley Authority Place Kentucky Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0455/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 68,976 1,670,768 22 68,976 1,670,768 22

295

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

296

Blue Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Energy Blue Valley Energy Name Blue Valley Energy Address 3075 75th Street Place Boulder, Colorado Zip 80301 Sector Efficiency Product Geothermal heating and cooling systems Website http://www.bluevalleyenergy.co Coordinates 40.030298°, -105.179643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.030298,"lon":-105.179643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Great Valley Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Valley Ethanol LLC Valley Ethanol LLC Jump to: navigation, search Name Great Valley Ethanol LLC Place Bakersfield, California Product Developing a 63m gallon ethanol plant in Hanford, CA Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Whitewater Valley Rural EMC | Open Energy Information  

Open Energy Info (EERE)

Valley Rural EMC Valley Rural EMC Jump to: navigation, search Name Whitewater Valley Rural EMC Place Indiana Utility Id 20216 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule GS - General Service Multi Phase Commercial Schedule GS - General Service Single Phase Commercial Schedule GS TOU - General Service Time-of-Use Commercial Schedule IP - Industrial Power Service Industrial Schedule LP - Large Power Service Multi Phase Industrial Schedule LP - Large Power Service Single Phase Industrial

299

Loup Valleys Rural P P D | Open Energy Information  

Open Energy Info (EERE)

Valleys Rural P P D Jump to: navigation, search Name Loup Valleys Rural P P D Place Nebraska Utility Id 11250 Utility Location Yes Ownership P NERC Location MRO NERC SPP Yes RTO...

300

Modeling Bulk Atmospheric Drainage Flow in a Valley  

Science Conference Proceedings (OSTI)

Most simulations of bulk valley-drainage flows depend heavily on parameterizations. The 1984 Atmospheric Studies in Complex Terrain (ASCOT) field experiment in Brush Creek Valley, Colorado, provided an unprecedented density of measurements in a ...

Ronald J. Dobosy

1989-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY DEMONSTRATION PROJECT WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FINAL SUMMARY December 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY DOE/EIS - 0337F For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE 10282 Rock Springs Road WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National

302

Summer Wind Flow Regimes over the Sacramento Valley  

Science Conference Proceedings (OSTI)

This study utilized conditional sampling to identify three frequent wind regimes in the lower Sacramento Valley. The major flow features of the mean diurnal wind patterns in the southern Sacramento Valley and surrounding areas were analyzed for ...

Laura L. Zaremba; John J. Carroll

1999-10-01T23:59:59.000Z

303

Silicon Valley Solar Inc SV Solar | Open Energy Information  

Open Energy Info (EERE)

Silicon Valley Solar Inc SV Solar Jump to: navigation, search Name Silicon Valley Solar Inc (SV Solar) Place Santa Clara, California Zip 95051 Sector Solar Product A US-based...

304

Clean Cities Award Winning Coalition: Coachella Valley  

DOE Green Energy (OSTI)

Southern California's Coachella Valley became a Clean Cities region in 1996. Since then, they've made great strides. SunLine Transit, the regional public transit provider, was the first transit provider to replace its entire fleet with compressed natural gas buses. They've also built the foundation for a nationally recognized model in the clean air movement, by partnering with Southern California Gas Company to install a refueling station and developing a curriculum for AFV maintenance with the College of the Desert. Today the valley is home to more than 275 AFVs and 15 refueling stations.

ICF Kaiser

1999-05-20T23:59:59.000Z

305

Non-Double-Couple Microearthquakes At Long Valley Caldera, California...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

306

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Wisian & Blackwell, 2004)...

307

Advanced Metering Infrastructure (AMI) Roadmap for the Tennessee Valley  

Science Conference Proceedings (OSTI)

This report summarizes the findings of an advanced metering infrastructure (AMI) roadmap project that was conducted for the distributors of the Tennessee Valley. These distributors, collectively represented by the Tennessee Valley Public Power Association (TVPPA), along with the Tennessee Valley Authority, are developing a long-term Smart Grid vision for the Valley and believe that the diversity of AMI systems in the region can form a foundation for advanced applications.

2009-08-17T23:59:59.000Z

308

Clean Cities Coalitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Capital District Columbia-Willamette Central New York Vermont Maine Genesee Region Granite State Twin Cities Yellowstone-Teton Rogue Valley Treasure Valley Western New York...

309

Thermally Driven Flows at an Asymmetric Valley Exit: Observations and Model Studies at the Lech Valley Exit  

Science Conference Proceedings (OSTI)

The summertime thermal circulation in the region of an asymmetric valley exit is investigated by means of observations and high-resolution model simulations. The northeastward-oriented Alpine Lech Valley opening into the Bavarian Alpine foreland ...

Thomas Spengler; Jan H. Schween; Markus Ablinger; Gnther Zngl; Joseph Egger

2009-10-01T23:59:59.000Z

310

Geothermal resource investigations, Imperial Valley, California. Status report  

DOE Green Energy (OSTI)

The discussion is presented under the following chapter titles: geothermal resource investigations, Imperial Valley, California; the source of geothermal heat; status of geothermal resources (worldwide); geothermal aspects of Imperial Valley, California; potential geothermal development in Imperial Valley; environmental considerations; and proposed plan for development. (JGB)

Not Available

1971-04-01T23:59:59.000Z

311

Mesoscale Influences on Nocturnal Valley Drainage Winds in Western Colorado Valleys  

Science Conference Proceedings (OSTI)

The mesoalpha-scale upper-level sounding network data collected during the 1984 ASCOT meteorological and tracer experiments provided a unique opportunity to analyze the nocturnal drainage wind in four different valleys in western Colorado, and to ...

Montie M. Orgill; John D. Kincheloe; Robert A. Sutherland

1992-02-01T23:59:59.000Z

312

Tributary, Valley and Sidewall Air Flow Interactions in a Deep Valley  

Science Conference Proceedings (OSTI)

Field experiments measuring nocturnal tributary flows have shown complex internal structure. Variations in the flow range from short-term (816 min) oscillations (related to tributary/valley flow interactions) to long-term flow changes throughout ...

William M. Porch; Richard B. Fritz; Richard L. Coulter; Paul H. Gudiksen

1989-07-01T23:59:59.000Z

313

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area (Redirected from Dixie Valley Geothermal Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area (Redirected from Grass Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Potential hydrologic characterization wells in Amargosa Valley  

SciTech Connect

More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

Lyles, B.; Mihevc, T.

1994-09-01T23:59:59.000Z

316

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01T23:59:59.000Z

317

On the Problem of Violent Valley Winds  

Science Conference Proceedings (OSTI)

observational results of a one-month mesoscale experiment in a valley are used to emphasize the prominent part played by an inversion layer in air flow dynamics. A model based on the analogy between shallow water flow and air flow beneath an ...

Paul Pettre

1982-03-01T23:59:59.000Z

318

Site Programs & Cooperative Agreements: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has interests and concerns regarding the West Valley Demonstration Project Site. Like at Hanford, DOE environmental cleanup activities have the potential to impact natural and cultural resources and to interfere with American Indian religious practices. Through a cooperative agreement, tribal staff is engaged on a frequent basis with DOE and its contractors. The principle activities engaged by tribes include reviewing and commenting on plans and documents, participating in meetings at the request of DOE, monitoring cultural resource sites, participating in site surveys, and identifying issues that

319

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

320

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lower Valley Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Audit: Discounted Cost Weatherization Measures: Varies Marathon Water Heater: $25 Water Heater: $15 - $25 Clothes Washer: $25 - $50 Refrigerator: $15 Refrigerator Recycling: $75 Energy Star Manufactured Home: $1,000 Geothermal Heat Pumps: Up to $2,100 Provider Lower Valley Energy Lower Valley Energy offers numerous rebates for residential customers who

322

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE-WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE-West Valley Area Office

323

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE West Valley Area Office

324

Valley Center Municipal Water District | Open Energy Information  

Open Energy Info (EERE)

Municipal Water District Municipal Water District Jump to: navigation, search Name Valley Center Municipal Water District Place Valley Center, California Zip 92082 Product VCMWD is the second largest water provider in San Diego County behind the City of San Diego. References Valley Center Municipal Water District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Valley Center Municipal Water District is a company located in Valley Center, California . References ↑ "Valley Center Municipal Water District" Retrieved from "http://en.openei.org/w/index.php?title=Valley_Center_Municipal_Water_District&oldid=352717" Categories: Clean Energy Organizations Companies Organizations

325

Missouri Valley Renewable Energy MOVRE | Open Energy Information  

Open Energy Info (EERE)

Valley Renewable Energy MOVRE Valley Renewable Energy MOVRE Jump to: navigation, search Name Missouri Valley Renewable Energy (MOVRE) Place Saint Louis, Missouri Zip 63105 Sector Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product An energy efficiency solutions company focused on renewable DP for farms, including wind, solar and hydro power. The company was absorbed by Farmergy Inc. in January 2007. References Missouri Valley Renewable Energy (MOVRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Missouri Valley Renewable Energy (MOVRE) is a company located in Saint Louis, Missouri . References ↑ "Missouri Valley Renewable Energy (MOVRE)" Retrieved from "http://en.openei.org/w/index.php?title=Missouri_Valley_Renewable_Energy_MOVRE&oldid=348873"

326

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

327

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Valley Geothermal Project Whirlwind Valley Geothermal Project Project Location Information Coordinates 39.4375°, -113.87583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4375,"lon":-113.87583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Tennessee Valley Authority (Mississippi) | Open Energy Information  

Open Energy Info (EERE)

Mississippi) Mississippi) Jump to: navigation, search Name Tennessee Valley Authority Place Mississippi Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0448/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Mississippi). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14,903 268,562 8 14,903 268,562 8

329

High Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

High Valley Geothermal Project High Valley Geothermal Project Project Location Information Coordinates 38.863611111111°, -122.80138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.863611111111,"lon":-122.80138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Tennessee Valley Authority (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Authority (Alabama) Authority (Alabama) Jump to: navigation, search Name Tennessee Valley Authority Place Alabama Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0487/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Alabama). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 19,875 343,154 24 19,875 343,154 24

331

Dixie Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Project Dixie Valley Geothermal Project Project Location Information Coordinates 39.7223036°, -118.0616895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7223036,"lon":-118.0616895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

North Valley Geothermal Project North Valley Geothermal Project Project Location Information Coordinates 39.830833333333°, -119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.830833333333,"lon":-119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Elk Valley coal implements smartcell flotation technology  

Science Conference Proceedings (OSTI)

In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

Stirling, J.C. [Elk Valley Coal Corporation, Elkford, BC (Canada)

2008-06-15T23:59:59.000Z

334

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

335

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Imperial Valley environmental project: air quality assessment  

DOE Green Energy (OSTI)

The potential impact on air quality of geothermal development in California's Imperial Valley is assessed. The assessment is based on the predictions of numerical atmospheric transport models. Emission rates derived from analyses of the composition of geothermal fluids in the region and meteorological data taken at six locations in the valley over a 1-yr period were used as input to the models. Scenarios based on 3000 MW, 2000 MW, 500 MW, and 100 MW of power production are considered. Hydrogen sulfide is the emission of major concern. Our calculations predict that at the 3000-MW level (with no abatement), the California 1-h standard for H{sub 2}S(42 {mu}g/m{sup 3}) would be violated at least 1% of the time over an area of approximately 1500 km{sup 2} (about 1/3 of the valley area). The calculations indicate that an H{sub 2}S emission rate below 0.8 g/s per 100-MW unit is needed to avoid violations of the standard beyond a distance of 1 km from the source. Emissions of ammonia, carbon dioxide, mercury, and radon are not expected to produce significant ground level concentrations, nor is the atmospheric conversion of hydrogen sulfide to sulfur dioxide expected to result in significant SO{sub 2} levels.

Ermak, D.L.; Nyholm, R.A.; Gudiksen, P.H.

1979-04-04T23:59:59.000Z

338

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Little Valley Geothermal Area (Redirected from Little Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Little Valley Geothermal Area Little Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs  

DOE Green Energy (OSTI)

There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.

Benjamin Bolduc; Daniel P. Shaughnessy; Yuri I. Wolf; Eugene V. Koonin; Francisco F. Roberto; Mark Young

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network (OSTI)

of a tracer test at Dixie Valley, Nevada, Proc. 22 ndand footwall faulting at Dixie Valley, Nevada, Geothermalthe shallow thermal regime at Dixie Valley geothermal field,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

342

Independent Activity Report, West Valley Demonstration Project - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, West Valley Demonstration Project - Activity Report, West Valley Demonstration Project - November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit [HIAR-WVDP-2011-11-07] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE West Valley Demonstration Project (WVDP) Office and the nuclear facility at West Valley, NY, on November 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry out its independent oversight

343

West Valley Demonstration Project 10282 Rock Springs Road  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 Mr. Daniel W. Coyne President & General Manager CH2M HILL B&W West Valley, LLC West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 ATTENTION: J. D. Rendall, Regulatory Strategy, AC-EA SUBJECT: Environmental Checklist WVDP-20 12-0 1, " WVDP Reservoir Interconnecting Canal Maintenance Activities" REFERENCE: Letter WD:2012:0409 (357953), D. W. Coyne to R. W. Reffner, "CONTRACT NO. DE-EM000 1529, Section 5-3, Item 105, NEPA Documentation (Transmittal of Environmental Checklist WVDP-20 12-0 1, WVDP Reservoir Interconnecting Canal Maintenance Activities), Revision 1 ," dated July 24, 20 12 Dear Mr. Coyne:

344

Crustal Structure and tectonics of the Imperial Valley Region California |  

Open Energy Info (EERE)

Crustal Structure and tectonics of the Imperial Valley Region California Crustal Structure and tectonics of the Imperial Valley Region California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Crustal Structure and tectonics of the Imperial Valley Region California Abstract N/A Authors Gary S. Fruis and William M. Kohler Published Journal U. S. GEOLOGICAL SURVEY, 1984 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Crustal Structure and tectonics of the Imperial Valley Region California Citation Gary S. Fruis,William M. Kohler. 1984. Crustal Structure and tectonics of the Imperial Valley Region California. U. S. GEOLOGICAL SURVEY. N/A(N/A):285-297. Retrieved from "http://en.openei.org/w/index.php?title=Crustal_Structure_and_tectonics_of_the_Imperial_Valley_Region_California&oldid=682730"

345

West Valley Demolition Marks Important Accomplishment for EM | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM June 13, 2013 - 12:00pm Addthis Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Demolition work is shown in February 2013. Demolition work is shown in February 2013. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Debris is removed following demolition. Debris is removed following demolition. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility.

346

Enforcement Letter, West Valley Nuclear Services - March 30, 1998 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Nuclear Services - March 30, 1998 West Valley Nuclear Services - March 30, 1998 Enforcement Letter, West Valley Nuclear Services - March 30, 1998 March 30, 1998 Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project This letter refers to the Department of Energy's (DOE) evaluation of West Valley Nuclear Services Company's (WVNS) report of a potential noncompliance with the requirements of 10 CFR 830.120 (Quality Assurance) and 10 CFR 835 (Occupational Radiation Protection). This potential noncompliance, which involved inadequate hazards analysis, design review, and implementation of work controls during decontamination activities for a high-level waste tank mobilization pump, was identified by WVNS on

347

Independent Activity Report, West Valley Demonstration Project - July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project - West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project [HIAR WVDP-2012-07-30] The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). In the fall of 2011, a new contractor, CH2M Hill-B&W West Valley (CHBWV), was selected to perform site operations for Phase 1 decommissioning and facility disposition, including the Main Plant Process Building, the Low-Level Waste Treatment Facility, and other facilities.

348

Clean Cities: Coachella Valley Region Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coachella Valley Region Clean Cities Coalition Coachella Valley Region Clean Cities Coalition The Coachella Valley Region Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Coachella Valley Region Clean Cities coalition Contact Information Richard Cromwell III 760-329-6462 rcromwell@cromwellandassociates.com Georgia Seivright 760-340-1575 georgias@c3vr.org Coalition Website Clean Cities Coordinators Coord Richard Cromwell III Coord Coord Georgia Seivright Coord Photo of Richard Cromwell III Clean fuels consultant Richard Cromwell III is a founding member of the Coachella Valley Region Clean Cities coalition. When the Coachella Valley Region coalition was founded, on Earth Day in 1996, Cromwell was the general manager and CEO of SunLine Transit Agency, the lead agency for the

349

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

350

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

351

Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open  

Open Energy Info (EERE)

Grass Valley Area (Morrison, Et Al., 1979) Grass Valley Area (Morrison, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) Exploration Activity Details Location Grass Valley Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes The attempt to carry out a detailed interpretation of a magnetotelluric survey has demonstrated some fundamental problems that must be addressed in future surveys and in future research. (see paper conclusions) References H. Frank Morrison, K i Ha Lee, Gary Oppliger, Abhi jit De (1979) Magnetotelluric Studies In Grass Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Grass_Valley_Area_(Morrison,_Et_Al.,_1979)&oldid=387832"

352

Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park  

DOE Green Energy (OSTI)

Paenibacillus speciesY412MC10 was one of a number of organisms initially isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA. The isolate Y412MC10 was initially classified as a Geobacillus sp. based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species and not Geobacillus; the 16S rRNA analysis indicated the organism was a strain of Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome of Paenibacillus lautus strain Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. The Paenibacillus sp.Y412MC10 genome sequence was deposited at the NCBI in October 2009 (NC{_}013406). Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other Paenibacilli. Over 25% of the proteins predicted by the Y412MC10 genome share no identity with the closest sequenced Paenibacillus species; most of these are predicted hypothetical proteins and their specific function in the environment is unknown.

Mead, David [University of Wisconsin, Madison; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Zhang, Xiaojing [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Brumm, Catherine [United States Department of Energy Joint Genome Institute; Hochstein, Rebecca [Lucigen Corporation, Middleton, Wisconsin; Schoenfeld, Thomas [Lucigen Corporation, Middleton, Wisconsin; Brumm, Phillip [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

353

West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation for the Concentrator Feed Makeup Tank and the Melter Feed Hold Tank February 2013 Prepared by the U.S. Department of Energy West Valley, New York This page is intentionally blank. WASTE-INCIDENTAL-TO-REPROCESSING EVALUATION FOR THE WVDP CFMT AND MFHT CONTENTS Revision 0 i NOTATION (Acronyms, Abbreviations, and Units).................................................. v 1.0 INTRODUCTION ...................................................................................................... 1 1.1 Purpose. ................................................................................................................. 2

354

Energy Efficiency Technology Assessment for the Tennessee Valley Region  

Science Conference Proceedings (OSTI)

As America's largest public power provider and steward of the nation's fifth largest river system, Tennessee Valley Authority (TVA) must seek ways to achieve sustainable power production, quality distribution, environmental stewardship, and economic growth within the Tennessee Valley. To help meet the growing energy needs of the Valley and the nation and in support of TVA goals and critical success factors, cost effective energy-efficiency and load leveling alternatives that support the wise use of elect...

2003-01-10T23:59:59.000Z

355

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

356

Armored scale insecticide resistance challenges San Joaquin Valley citrus growers  

E-Print Network (OSTI)

registered to control armored scale. As a result. outbreaksand carbamate-resistant armored scale in San Joaquin ValleyEE. 1994. Chlorpyrifos effect on armored scale (Homoptera:

Grafton-Cardwell, Elizabeth E.; Ouyang, Yuling; Striggow, Rebecka; Vehrs, Stacy

2001-01-01T23:59:59.000Z

357

Arbon Valley, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Arbon Valley, Idaho: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

358

Shipping Data Generation for the Hunter Valley Coal Chain  

E-Print Network (OSTI)

demand for coal is expected to double in the next decade. ... The Hunter Valley Coal Chain (HVCC) refers to the inland portion of the coal export supply chain.

359

Geographic Information System At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful...

360

Solahart All Valley Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Jump to: navigation, search Name Solahart All Valley Energy Systems Place Clovis, California Zip 93612 Sector Solar Product Solar contractor installing all types of solar...

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL...

362

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

363

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

364

Static Temperature Survey At Long Valley Caldera Area (Farrar...  

Open Energy Info (EERE)

On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, Usa, From Recent Pumping Tests And Geochemical Sampling Retrieved from...

365

Green Valley, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Green Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8542511, -110.9937019 Loading map... "minzoom":false,"mappingservice"...

366

Thermal Gradient Holes At Long Valley Caldera Area (Sorey, Et...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity...

367

Regional hydrology of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

Counc, 1999 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary...

368

Exploration and Development at Dixie Valley, Nevada- Summary...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies...

369

Integrated dense array and transect MT surveying at dixie valley...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal...

370

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...  

Open Energy Info (EERE)

1995 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,...

371

Egs Exploration Methodology Project Using the Dixie Valley Geothermal...  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

372

An investigation of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using...

373

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are...

374

Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et Al., 2010) Exploration Activity...

375

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

New River Geothermal Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal...

376

Ohio Valley Gas Corporation - Residential and Small Commercial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Natural Gas Incentive Program Ohio Valley Gas Corporation - Residential and Small Commercial Natural Gas Incentive Program Eligibility Commercial Residential Savings...

377

Sulphur Springs Valley EC - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Sulphur Springs Valley EC - Residential Energy Efficiency Rebate Eligibility Residential Savings For Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances &...

378

Operational Awareness Oversight of the West Valley Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

on the upcoming activities at the West Valley Demonstration Project (WVDP). Major decommissioning activities underway include removal of asbestos-containing materials, disassembly...

379

Green Valley, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Valley, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

380

Green Valley Farms, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Valley Farms, Texas: Energy Resources Jump to: navigation, search Equivalent URI...

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Green Valley, South Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Valley, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI...

382

Longwall mining thrives in Colorado's North Fork Valley  

Science Conference Proceedings (OSTI)

With mining units poised for record-setting capacity and rail service restored, these mines in Colorado's North Fork valley are ready to cut coal. 4 photos.

Buchsbaum, L.

2006-08-15T23:59:59.000Z

383

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details...

384

Aerial Photography At Dixie Valley Geothermal Field Area (Wesnousky...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

385

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

386

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley...  

Open Energy Info (EERE)

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL...

387

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

388

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope...

389

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit History Facebook icon Twitter icon Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search...

390

Modeling-Computer Simulations At Long Valley Caldera Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity...

391

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation,...

392

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity...

393

Modeling-Computer Simulations At Long Valley Caldera Area (Newman...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Newman, Et Al., 2006) Exploration Activity...

394

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009)...

395

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

396

A Four-Dimensional Viscoelastic Deformation Model For Long Valley...  

Open Energy Info (EERE)

Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

397

Silicon Valley Technology Centre SVTC | Open Energy Information  

Open Energy Info (EERE)

Technology Centre SVTC Jump to: navigation, search Name Silicon Valley Technology Centre (SVTC) Place San Jose, California Zip 915134 Product Development foundry which offers...

398

DOE - Office of Legacy Management -- MonValley  

Office of Legacy Management (LM)

and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site-2008 Pilot Study Status Report LMSMONS05418 August 2009 Natural and...

399

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

400

Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration...

402

Compound and Elemental Analysis At Buffalo Valley Hot Springs...  

Open Energy Info (EERE)

for geothermal development. These samples are being collected to support more detailed work and assessment at those sites. (e.g., Buffalo Valley and Rawhide-Fairview Peak)....

403

Compound and Elemental Analysis At Little Valley Area (Wood,...  

Open Energy Info (EERE)

Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood, 2002) Exploration...

404

Water geochemistry study of Indian Wells Valley, Inyo and Kern...  

Open Energy Info (EERE)

Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Jump to: navigation, search...

405

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution...

406

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

407

Potential effects of geothermal energy conversion on Imperial Valley ecosystems. [Seven workshop presentations  

DOE Green Energy (OSTI)

This workshop on potential effcts of geothermal energy conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project (IVEP). The LLL Integrated Assessment Team identified the electric power potential and its associated effluents, discharges, subsidence, water requirements, land use, and noise. The Working Groups addressed the ecological problems. Water resource management problems include forces on water use, irrigation methods and water use for crops, water production, and water allocation. Agricultural problems are the contamination of edible crops and the reclamation of soil. A strategy is discussed for predevelopment baseline data and for identification of source term tracers. Wildlife resources might be threatened by habitat destruction, powerline impacts, noise and disturbance effects, gas emissions, and secondary impacts such as population pressure. Aquatic ecosystems in both the Salton Sea and fresh waters have potential hazards of salinity and trace metal effects, as well as existing stresses; baseline and bioassay studies are discussed. Problems from air pollution resulting from geothermal resource development might occur, particularly to vegetation and pollinator insects. Conversion of injury data to predicted economic damage isneeded. Finally, Imperial Valley desert ecosystems might be threatened by destruction of habitat and the possible effects on community structure such as those resulting from brine spills.

Shinn, J.H. (ed.)

1976-12-17T23:59:59.000Z

408

Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona  

Science Conference Proceedings (OSTI)

Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

Not Available

1981-10-01T23:59:59.000Z

409

Magnetotelluric studies in Grass Valley, Nevada  

DOE Green Energy (OSTI)

A program of detailed magnetotelluric soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central Nevada. The magnetotelluric program had three main goals; the determination of resistivity distribution at depths greater than that conveniently measured with other techniques; a comparison of the interpreted resistivity at shallow depth with the results of the other techniques; and the evaluation of the SQUID or Josephson effect magnetometer in practical field surveys. In addition, new numerical models were developed so that interpretation could be carried out in terms of fairly complex two-dimensional models.

Morrison, H.F.; Lee, K.H.; Oppliger, G.; Dey, A.

1979-01-01T23:59:59.000Z

410

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

411

Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

412

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

413

Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Fish Lake Valley Area (DOE GTP) Exploration...

414

Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (DOE GTP) Exploration...

415

West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to Reprocessing Evaluations and Determinations West Valley Demonstration Project DOE Manual 435.1-1 Waste...

416

Over Core Stress At Gabbs Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Over Core Stress At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Over Core Stress At Gabbs Valley Area (DOE GTP)...

417

Field Mapping At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Gabbs Valley Area (DOE GTP) Exploration Activity...

418

Density Log at Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Gabbs Valley Area (DOE GTP) Exploration Activity...

419

LiDAR At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area...

420

Structural Analysis of Southern Dixie Valley using LiDAR and...  

Open Energy Info (EERE)

Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation, search...

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Flow and Plume Dispersion in a Coastal Valley  

Science Conference Proceedings (OSTI)

An analysis is carried out of summertime surface and upper-air wind and temperature data from the Latrobe Valley in southeastern Australia. An easterly sea breeze is found to regularly penetrate over 100 km up the east-west-oriented valley, ...

William L. Physick; Deborah J. Abbs

1992-01-01T23:59:59.000Z

422

A Theoretical Study of Mountain Barrier Jets over Sloping Valleys  

Science Conference Proceedings (OSTI)

A shallow-water model is developed to examine the dynamics of mountain-barrier jets over a mesoscale sloping valley between two mountain ridges. In this model, the cold air trapped in the valley is represented by a shallow-water layer that is ...

Qin Xu; Ming Liu; Douglas L. Westphal

2000-05-01T23:59:59.000Z

423

Channeling and Countercurrent in the Upper Rhine Valley: Numerical Simulations  

Science Conference Proceedings (OSTI)

In the upper Rhine Valley, located in the southwest part of the Federal Republic of Germany, a pronounced channeling of the airflow is observed and occasionally also a countercurrent, although the valley is very flat and very broad (35 km), and ...

G. Gross; F. Wippermann

1987-10-01T23:59:59.000Z

424

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Railroad Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Railroad Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.434,"lon":-115.529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

426

Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy  

Open Energy Info (EERE)

Valley Geothermal Project Thermal Gradient Wells Valley Geothermal Project Thermal Gradient Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Pumpernickel Valley Geothermal Project Thermal Gradient Wells Details Activities (4) Areas (1) Regions (0) Abstract: The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault,

427

An investigation of the Dixie Valley geothermal field, Nevada, using  

Open Energy Info (EERE)

investigation of the Dixie Valley geothermal field, Nevada, using investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Citation Marshall J. Reed. 2007. An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests. In:

428

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Et Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes Geologic mapping from air photos in some places clearly located the structures in the valley and hence is very site specific. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388817

429

Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Hyperspectral data was also used to successfully map soil-mineral anomalies that are structurally related in Dixie Valley, Nevada. In the area of the power plant, 20 m spatial resolution AVIRIS data were used. For Dixie Meadows, Nevada, 3 m spatial resolution HyVista HyMap hyperspectral data

430

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley  

Open Energy Info (EERE)

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Abstract A new generation MT array measurement system was applied in a contiguous bipole deployment at the Dixie Valley thermal area. Basic goals of the survey area are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single range front fault versus shallower, stepped pediment; 2) delineate fault zones which have experienced fluid flux as

431

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need November 26, 2013 - 12:00pm Addthis Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteer John Schelble helps unload a delivery truck at a food pantry. Volunteer John Schelble helps unload a delivery truck at a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry.

432

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

433

Clean Cities: San Joaquin Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Joaquin Valley Clean Cities Coalition Joaquin Valley Clean Cities Coalition The San Joaquin Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. San Joaquin Valley Clean Cities coalition Contact Information Linda Urata 661-342-8262 iwantcleanair@aim.com Spencer Schluter 661-599-9454 scschluter@gmail.com Coalition Website Clean Cities Coordinators Coord Linda Urata Coord Coord Spencer Schluter Coord Photo of Linda Urata In 2000, Linda Urata became the coordinator of the San Joaquin Valley Clean Cities coalition. Urata works at Kern Council of Governments in Bakersfield, California. There, she coordinates the Kern Energy Watch program, which is a local government and utility company partnership effort

434

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Silicon Valley Clean Cities (San Jose) Coalition Silicon Valley Clean Cities (San Jose) Coalition The Silicon Valley Clean Cities (San Jose) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Silicon Valley Clean Cities (San Jose) coalition Contact Information Margo Sidener 408-998-5865 margo@lungsrus.org Patricia Tind 408-998-5865 patricia@lungsrus.org Coalition Website Clean Cities Coordinators Coord Margo Sidener Coord Coord Patricia Tind Coord Photo of Margo Sidener Margo Sidener has been the coordinator of the Silicon Valley (San Jose) Clean Cities coalition since 2006. She also serves as the president and CEO of Breathe California of the Bay Area, the "Local Clean Air and Healthy Lungs Leader," a nonprofit grassroots organization founded in 1911 to fight

435

Technical Services Contract Awarded for West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Services Contract Awarded for West Valley Demonstration Technical Services Contract Awarded for West Valley Demonstration Project Support Services Technical Services Contract Awarded for West Valley Demonstration Project Support Services February 21, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value. The task order will be issued from the Indefinite Delivery/Indefinite Quantity (ID/IQ) master contract, firm-fixed-price and time and materials. Under the task order, Safety and Ecology Corporation will perform technical

436

Geothermometry At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Lualualei Valley Area (Thomas, 1986) Geothermometry At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Yhe extensive set of groundwater chemical data compiled for the wells in the valley (Table 1) showed that two of the primary indicators that have been commonly used in Hawaii for identifying geothermal potential (i.e. silica concentration and chloride to magnesium ion ratios) were anomalous in the groundwater of this survey area (Cox and Thomas, 1979). Several wells located on the caldera boundaries were found to have both

437

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

438

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley,  

Open Energy Info (EERE)

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Abstract A collaborative effort among U. S. Department of Energy sponsored remote sensing specialists and industry recently culminated in the acquisition of hyperspectral data over a new exploration target in Dixie Valley, Nevada, U. S. A. Related research at the Energy & Geoscience Institute is currently focused on mineralogy mapping at the outcrop level. This will be extended to piedmont and valley fill soils to detect soil mineral anomalies that may be related to buried structures and sinters. Spectral mineral end-members

439

Clean Cities: Valley of the Sun Clean Cities (Phoenix) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Valley of the Sun Clean Cities (Phoenix) Coalition Valley of the Sun Clean Cities (Phoenix) Coalition The Valley of the Sun Clean Cities (Phoenix) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Valley of the Sun Clean Cities (Phoenix) coalition Contact Information Bill Sheaffer 480-314-0360 bill@cleanairaz.org Brianna Graf 480-884-1623 brianna@cleanairaz.org Coalition Website Clean Cities Coordinators Coord Bill Sheaffer Coord Coord Brianna Graf Coord Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this all-volunteer coalition. The coalition has been actively involved with the state legislature as well as the key agencies, municipalities, and

440

Power produced from hot dry rock geothermal resources: a case study for the Imperial Valley, California  

SciTech Connect

The case study described here concerns an HDR system which provides geothermal fluids for a hypothetical electric plant located in California's Imperial Valley. Primary concern is focused on the implications of differing drilling conditions, as reflected by costs, and differing risk environments for the potential commercialization of an HDR system. Drilling costs for best, medium and worst drilling conditions are taken from a recent study of drilling costs for HDR systems. Differing risk environments are presented by differing rate of return requirements on stocks and interest on bonds which the HDR system is assumed to pay; rate of return/interest combinations considered are 6%/3%, 9%/6%, 12%/9% and 15%/12%. The method used for analyzing the HDR system involves a two-stage process. In stage 1, the maximum amount that the electric plant can pay to an HDR system for geothermal fluids is calculated for alternative busbar prices of electricity received by the electric plant. In stage 2, costs for the HDR system are calculated under differing assumed risk environments and drilling conditions. These two sets of data may then be used to analyze the minimum busbar price of electricity - which defines a maximum fuel bill that could be paid to the HDR system by the electric plant - which could result in the HDR system's full recouperation of all production and drilling costs.

Cummings, R.G.; Morris, G.E.; Arundale, C.J.; Erickson, E.L.

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electricity Reliability  

NLE Websites -- All DOE Office Websites (Extended Search)

lines and bar graph Electricity Reliability The Consortium for Electric Reliability Technology Solutions (CERTS) conducts research, develops, and disseminates new methods, tools,...

442

Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

government incentives or subsidies in the near future. Companies active in the electric automobile area There are no companies directly active in the electric automobile...

443

Wabash Valley Power Association - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and Illinois....

444

Geotechnical Environmental Aspects of Geothermal Power Generation at Heber, Imperial Valley, California. Topical report 1  

DOE Green Energy (OSTI)

This report presents a portion of the results from a one-year feasibility study sponsored by the Electric Power Research Institute (EPRI) to assess the feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source. The impact of power generation from hydrothermal resources on subsurface water flow, seismicity and subsidence are of acute interest in the determination of the environmental acceptance of geothermal energy. At the same time, the experience and data bases in these areas are very limited. The objective of the project was to assess the technical, geotechnical, environmental and economic feasibility of producing electricity from hydrothermal resources like those known to exist in the US. The objective of this part of the study was to investigate the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California. This report discusses geology, geophysics, hydrogeology, seismicity and subsidence in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. it also discusses estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds.

None

1976-10-01T23:59:59.000Z

445

El Paso Electric EPE | Open Energy Information  

Open Energy Info (EERE)

EPE EPE Jump to: navigation, search Name El Paso Electric (EPE) Place El Paso, Texas Zip 79960 Product Utility serving the Rio Grande Valley in western Texas and southern New Mexico. References El Paso Electric (EPE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. El Paso Electric (EPE) is a company located in El Paso, Texas . References ↑ "El Paso Electric (EPE)" Retrieved from "http://en.openei.org/w/index.php?title=El_Paso_Electric_EPE&oldid=344593" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data

446

Reconnaissance electrical surveys in the Coso Range, California | Open  

Open Energy Info (EERE)

electrical surveys in the Coso Range, California electrical surveys in the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance electrical surveys in the Coso Range, California Details Activities (3) Areas (1) Regions (0) Abstract: Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs--Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map

447

Lower Valley Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Lower Valley Energy Inc Place Idaho Utility Id 11273 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png C-1 Small Commercial Commercial C-2 Large Power Service Commercial I-1 Small Irrigation Service Commercial I-2 Large Irrigation Service Commercial I-3 Small Irrigation Optional Commercial L-1 Street and Yard Light Service-100W Sodium Vapor Lighting L-1 Street and Yard Light Service-175W Sodium Vapor Lighting L-1 Street and Yard Light Service-200W Sodium Vapor Lighting L-1 Street and Yard Light Service-250W Sodium Vapor Lighting L-1 Street and Yard Light Service-400W Sodium Vapor Lighting

448

I Lower Yakima Valley Wetlands and Riparian  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Lower Yakima Valley Wetlands and Riparian - Restoration Project \ , Final Environmental Assessment DOENo. 0941 c Bonneville Power kdmi.nistration, Yakama Indian Nation, Bureawof Indian Affairs % J e;r%mBlYTlON OF THIS DOCUMENT IS UNLIMITED DISCLAIMER This report was .prepared as a n account of work sponsored by an agency of t h e United States Government. Neither t h e United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes a n y legal liability or responsibility for t h e accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial

449

Fort Valley Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Utility Comm Utility Comm Jump to: navigation, search Name Fort Valley Utility Comm Place Georgia Utility Id 6617 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL: #20 Commercial INDUSTRIAL LARGE POWER: #26/28 Industrial INSTITUTIONAL: #14 Commercial Industrial Small Power Industrial RESIDENTIAL: #10 Residential SMALL COMMERCIAL: #22 Commercial Average Rates Residential: $0.0787/kWh Commercial: $0.1030/kWh Industrial: $0.0772/kWh References

450

Sioux Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Place Minnesota Utility Id 17267 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Sioux Valley Energy (Minnesota). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 471.643 6,546.783 2,704 29.053 345.695 163 162.948 2,211.723 68 663.644 9,104.201 2,935

451

Bureau Valley School District Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Valley School District Wind Farm Valley School District Wind Farm Jump to: navigation, search Name Bureau Valley School District Wind Farm Facility Bureau Valley School District Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Bureau Valley School District Developer Engineers Architects Professional Corp. Energy Purchaser Bureau Valley School District Location Bureau Valley IL Coordinates 41.4661°, -89.678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4661,"lon":-89.678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study  

DOE Green Energy (OSTI)

Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill dpeosits in these areas may be about 40/sup 0/C per kilometer. Geothermometers and mixing models indicate that temperatures of equilibration are at least 170/sup 0/C for the thermal components of the hotter waters. The size and location of geothermal reservoirs are unknown.

Sammel, E.A.; Craig, R.W.

1981-01-01T23:59:59.000Z

453

Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Imperial Valley Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Imperial Valley Geothermal Area (1976) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters

454

The investigation of anomalous magnetization in the Raft River valley,  

Open Energy Info (EERE)

investigation of anomalous magnetization in the Raft River valley, investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous magnetization in the Raft River valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal energy; gravel; ground methods; Idaho; isothermal remanent magnetization; magnetic anomalies; magnetic methods; magnetic properties; magnetic susceptibility; magnetization; paleomagnetism; Raft River basin; remanent magnetization; sediments; surveys; United States Author(s): Anderson, L.A.; Mabey, D.R. Published: Abstracts - Society of Exploration Geophysicists International

455

Spring Valley Public Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Valley Public Utilities - Commercial and Industrial Energy Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Other Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use Lodging Guestroom Energy Management Systems: $75 - $85

456

"1. Paradise","Coal","Tennessee Valley Authority",2201 "2. Ghent","Coal","Kentucky Utilities Co",1918  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "1. Paradise","Coal","Tennessee Valley Authority",2201 "2. Ghent","Coal","Kentucky Utilities Co",1918 "3. E W Brown","Coal","Kentucky Utilities Co",1546 "4. Mill Creek","Coal","Louisville Gas & Electric Co",1472 "5. Trimble County","Coal","Louisville Gas & Electric Co",1471 "6. H L Spurlock","Coal","East Kentucky Power Coop, Inc",1346 "7. Shawnee","Coal","Tennessee Valley Authority",1330 "8. Big Sandy","Coal","Kentucky Power Co",1060 "9. Riverside Generating LLC","Gas","Riverside Generating Co LLC",825

457

Microsoft Word - Swan%20Valley%20-%20Palisades%20Communication%20Upgrade%20CX[1].doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dave Tripp - TEP-CSB-1 Dave Tripp - TEP-CSB-1 Proposed Action: Swan Valley - Palisades Communication Upgrade Budget Information: Work Order # 00253530 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems, data processing equipment, and similar electronic equipment." B4.6 "Additions or modifications to electric power transmission facilities..." Location: Township 2 North, Range 43 East, Sections 25 and 26 of the Swan Valley Quadrangle Township 1 South, Range 45 East, Section 17 of the Palisades Dam Quadrangle Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install new equipment for microwave

458

EA-1475: Chariton Valley Biomass Project, Chillicothe, Iowa | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

75: Chariton Valley Biomass Project, Chillicothe, Iowa 75: Chariton Valley Biomass Project, Chillicothe, Iowa EA-1475: Chariton Valley Biomass Project, Chillicothe, Iowa SUMMARY This EA evaluates the environmental impacts for the proposal to provide partial funding for (1) the design and construction of a biomass storage, handling, and conveying system into the boiler at the Ottumwa Generating Station near Chillicothe, Iowa; (2) operational testing of switchgrass as a biomass co-fire feedstock at OGS; and (3) ancillary activities related to growing, harvesting, storing, and transporting switchgrass in areas of the Rathbun Lake watershed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2003 EA-1475: Final Environmental Assessment Chariton Valley Biomass Project

459

Elkhorn Valley (08) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Elkhorn Valley (08) Wind Farm Elkhorn Valley (08) Wind Farm Jump to: navigation, search Name Elkhorn Valley (08) Wind Farm Facility Elkhorn Valley (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser Idaho Power Location OR Coordinates 45.05034°, -117.780011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.05034,"lon":-117.780011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Imperial Valley Resource Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Imperial Valley Resource Recovery Plant Biomass Facility Imperial Valley Resource Recovery Plant Biomass Facility Jump to: navigation, search Name Imperial Valley Resource Recovery Plant Biomass Facility Facility Imperial Valley Resource Recovery Plant Sector Biomass Owner Itaska Location Brawley, California Coordinates 32.9786566°, -115.530267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9786566,"lon":-115.530267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nespelem Valley Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Nespelem Valley Elec Coop, Inc Nespelem Valley Elec Coop, Inc Jump to: navigation, search Name Nespelem Valley Elec Coop, Inc Place Washington Utility Id 13387 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RESIDENTIAL RATE Residential Security Lighting Lighting Average Rates Residential: $0.0704/kWh Commercial: $0.0634/kWh Industrial: $0.0579/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Nespelem_Valley_Elec_Coop,_Inc&oldid=411159

462

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley  

Open Energy Info (EERE)

Of Faulting And Neotechtonic Framework In The Dixie Valley Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Details Activities (6) Areas (3) Regions (0) Abstract: We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal

463

Regional hydrology of the Dixie Valley geothermal field, Nevada-  

Open Energy Info (EERE)

hydrology of the Dixie Valley geothermal field, Nevada- hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Authors Gregory Nimz, Cathy Janik, Fraser Goff, Charles Dunlap, Mark Huebner, Dale Counce and Stuart D. Johnson Published Journal Trans Geotherm Resour Counc, 1999 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Citation Gregory Nimz,Cathy Janik,Fraser Goff,Charles Dunlap,Mark Huebner,Dale

464

Cherry Valley Elementary School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Valley Elementary School Wind Project Valley Elementary School Wind Project Jump to: navigation, search Name Cherry Valley Elementary School Wind Project Facility Cherry Valley Elementary School Sector Wind energy Facility Type Community Wind Location CO Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 120342 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

465

Pioneer Valley Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pioneer Valley Resource Recovery Biomass Facility Pioneer Valley Resource Recovery Biomass Facility Jump to: navigation, search Name Pioneer Valley Resource Recovery Biomass Facility Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314°, -72.6624209° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1172314,"lon":-72.6624209,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Compound and Elemental Analysis At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Dixie Valley Compound and Elemental Analysis At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

467

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area (Redirected from Valley Of Ten Thousand Smokes Region Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

468

Greene Valley Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Greene Valley Gas Recovery Biomass Facility Greene Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type Landfill Gas Location Du Page County, Illinois Coordinates 41.8243831°, -88.0900762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8243831,"lon":-88.0900762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Abstract Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in

470

EA-0941: Lower Yakima Valley Wetlands and Riparian Restoration Project,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Lower Yakima Valley Wetlands and Riparian Restoration 41: Lower Yakima Valley Wetlands and Riparian Restoration Project, Washington EA-0941: Lower Yakima Valley Wetlands and Riparian Restoration Project, Washington SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy's Bonneville Power Administration to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs. The proposed action would allow the sponsors to ensure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. PUBLIC COMMENT OPPORTUNITIES None available at this time.

471

ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsGanges Valley Aerosol Experiment (GVAX) govCampaignsGanges Valley Aerosol Experiment (GVAX) Campaign Links Science Plan AMF India Deployment Website Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ganges Valley Aerosol Experiment (GVAX) 2011.06.13 - 2012.03.31 Website : http://www.arm.gov/sites/amf/pgh/ Lead Scientist : V. Rao Kotamarthi Description The Ganges valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoon. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers could be immense. Recent satellite-based measurements have indicated that

472

Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Facility Coachella Valley Fish Farm Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692°, -116.0772244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

473

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Exploration Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

474

USD 384 Blue Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Wind Project Blue Valley Wind Project Jump to: navigation, search Name USD 384 Blue Valley Wind Project Facility USD 384 Blue Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.433575°, -96.758011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.433575,"lon":-96.758011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

476

Navasota Valley Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Navasota Valley Elec Coop, Inc Navasota Valley Elec Coop, Inc Jump to: navigation, search Name Navasota Valley Elec Coop, Inc Place Texas Utility Id 16146 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1170/kWh Commercial: $0.1100/kWh Industrial: $0.0718/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Navasota_Valley_Elec_Coop,_Inc&oldid=411152"

477

Maquoketa Valley Rrl Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Maquoketa Valley Rrl Elec Coop Maquoketa Valley Rrl Elec Coop Jump to: navigation, search Name Maquoketa Valley Rrl Elec Coop Place Iowa Utility Id 12642 Utility Location Yes Ownership C NERC Location RFC NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1180/kWh Commercial: $0.1040/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Maquoketa_Valley_Rrl_Elec_Coop&oldid=411035" Categories:

478

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley  

Open Energy Info (EERE)

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Abstract A 2D reactive transport model of the Dixie Valley,Nevada, geothermal area was developed to assessfluid flow pathways and fluid rock interactionprocesses. Setting up the model includedspecification of the mineralogy of the different rockunits, the formulation of the corresponding mineraldissolution and precipitation reactions, the explicitdefinition of two major normal faults and thespecification of a dual continuum domain

479

Elkhorn Valley (07) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Valley (07) Wind Farm Valley (07) Wind Farm Jump to: navigation, search Name Elkhorn Valley (07) Wind Farm Facility Elkhorn Valley (07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser Idaho Power Location Union County OR Coordinates 45.05034°, -117.780011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.05034,"lon":-117.780011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Roaring Fork Valley - Energy Smart Loan Program (Colorado) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roaring Fork Valley - Energy Smart Loan Program (Colorado) Roaring Fork Valley - Energy Smart Loan Program (Colorado) Roaring Fork Valley - Energy Smart Loan Program (Colorado) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Appliances & Electronics Water Heating Program Info Funding Source American Recovery and Reinvestment Act State Colorado Program Type Local Loan Program Rebate Amount $1,000 for small projects and up to $25,000 Provider Roaring Fork Valley - Energy Smart Program Residents of Eagle, Gunnison or Pitkin Counties may be eligible for financing through the Energy Smart Program. Loans as low as $1,000 with flexible terms are available for small projects, and larger projects may

Note: This page contains sample records for the topic "yellowstone valley electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

482

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References

483

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino  

Open Energy Info (EERE)

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Abstract A series of four tracer tests was recently conducted at the Dixie Valley, Nevada, geothermal reservoir in order to determine fluid-flow processes and to evaluate candidate tracers for use in hydrothermal systems. These tests have resulted in the first successful use of the compounds amino G and pyrenetetrasulfonate as tracers in a geothermal reservoir. The tracer candidates were subjected to simulated hydrothermal conditions in laboratory reactors at temperatures as high as 300°C in order to determine

484

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Using a simple one-dimensional steady-state fluid flow model, the helium content and isotopic composition imply vertical fluid flow rates from the mantle of _7 mm/yr. This is a strict lower limit to the fluid flow rate: the one-dimensional model does not consider diffusive re-distribution of helium or mixing with water containing only a crustal helium component and

485

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic  

Open Energy Info (EERE)

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not produced clearly recognized volcanic tremor. Instead, a variety of atypical microearthquakes have been recorded during these episodes, including events dominated by low-frequency (long-period) or mixed high and low-frequency (hybrid) signals. During a 1997 episode, a number of unusual microearthquakes occurred within a temporary 40-station

486

Indian Valley Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Valley Hospital Space Heating Low Temperature Geothermal Facility Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian Valley Hospital Sector Geothermal energy Type Space Heating Location Greenville, California Coordinates 40.1396126°, -120.9510675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

487

Langel Valley Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Langel Valley Space Heating Low Temperature Geothermal Facility Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel Valley Sector Geothermal energy Type Space Heating Location Bonanza, Oregon Coordinates 42.1987607°, -121.4061076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

488

EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

34: Hualapai Valley Solar Interconnection Project, Arizona 34: Hualapai Valley Solar Interconnection Project, Arizona EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona Overview Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator. Proposed infrastructure would consist of a solar field, power block, thermal energy storage system, substation site, transmission line, temporary laydown areas and other ancillary facilities. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download

489

Non-Double-Couple Microearthquakes At Long Valley Caldera, California,  

Open Energy Info (EERE)

Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Details Activities (1) Areas (1) Regions (0) Abstract: Most of 26 small (0.4<~M<~3.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 digital three-component seismometers, have significantly non-double-couple focal mechanisms, inconsistent with simple shear faulting. We determined their mechanisms by inverting P- and S-wave polarities and amplitude ratios using linear-programming methods, and

490

Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Multispectral Imaging At Buffalo Valley Hot Springs Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

491

Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv | Open  

Open Energy Info (EERE)

Sensing For Geothermal Exploration Over Buffalo Valley, Nv Sensing For Geothermal Exploration Over Buffalo Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Remote sensing is a useful tool for identifying the surface expression of geothermal systems based on characteristic mineral assemblages that result from hydrothermal alteration (Kratt et al., 2004; Vaughan et al., 2005). Buffalo Valley in Pershing and Lander Counties, Nevada, is an area of high potential for geothermal energy production (Shevenell et al., 2004). Geothermal heat is expressed by several hot springs with surface temperatures of up to 79°C (Olmsted et al., 1975). The hot springs and a chain of Quaternary cinder cones appear to be

492

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in six wells penetrating a geothermalreservoir associated with the Stillwater fault zone inDixie Valley, Nevada, were used to investigate therelationship between reservoir permeability and thecontemporary in situ stress field. Data from wellsdrilled into productive and nonproductive segments ofthe Stillwater fault zone indicate that permeability inall wells is dominated by a relatively small number offractures striking parallel to the local trend of

493

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The high resolution aeromagnetic technique was very successful along the east side of the valley, but less along the geothermally important west side. Detailed correlation will be investigated when the high resolution data are available. The magnetic results will also vary from area to area depending on the local rock types more than in the other techniques. Nonetheless important information on the style of the faulting is contained in the data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

494

Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History  

Open Energy Info (EERE)

in Dixie Valley, Nevada- Case History in Dixie Valley, Nevada- Case History Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History Abstract After several years of reconnaissance geology in Nevada, an exploration program to evaluate the geothermal resource potential of Dixie Valley was begun in 1974. Between 1974 and 1978 Sunoco Energy Development Co. conducted two heat-flow drilling programs, a resistivity survey, a seismic emission study, a ground noise survey, two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led to the acquisition of geothermal resource leases from fee