Powered by Deep Web Technologies
Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) |  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

2

Yellowstone Caldera Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Caldera Geothermal Region Yellowstone Caldera Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Yellowstone Caldera Geothermal Region Details Areas (3) Power Plants (0) Projects (0) Techniques (25) Map: {{{Name}}} Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Wyoming, Idaho, Montana Area 11,841 km²11,841,000,000 m² 4,570.626 mi² 127,455,339,900 ft² 14,161,836,000 yd² 2,925,970.305 acres USGS Resource Estimate for this Region Identified Mean Potential 44.0 MW44,000 kW 44,000,000 W 44,000,000,000 mW 0.044 GW 4.4e-5 TW Undiscovered Mean Potential 209.9 MW209,900 kW 209,900,000 W 209,900,000,000 mW 0.21 GW 2.099e-4 TW Planned Capacity Planned Capacity 0 MW0 kW 0 W 0 mW 0 GW 0 TW Plants Included in Planned Estimate 0 Plants with Unknown

3

National Park Service - Yellowstone National Park, Wyoming | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone National Park, Wyoming Yellowstone National Park, Wyoming National Park Service - Yellowstone National Park, Wyoming October 7, 2013 - 10:15am Addthis Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes. Since the ranch is located in the northeast corner of the park it is quite isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system

4

Geothermal Systems of the Yellowstone Caldera Field Trip Guide  

Science Conference Proceedings (OSTI)

Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

1980-09-08T23:59:59.000Z

5

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

6

Federal Energy Management Program: National Park Service - Yellowstone  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - Yellowstone National Park, Wyoming to someone by E-mail Share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Facebook Tweet about Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Twitter Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Google Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Delicious Rank Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Digg Find More places to share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on

7

Vp-Vs Ratios In The Yellowstone National Park Region, Wyoming...  

Open Energy Info (EERE)

(1) Regions (0) Abstract: In this paper we study the variation of VpVs and Poisson's ratio () in the Yellowstone National Park region, using earthquakes which were well...

8

Remote sensing in a water-resources study of Yellowstone National Park, Wyoming, Montana, and Idaho  

DOE Green Energy (OSTI)

This report describes the usefulness of remote-sensing data in a water-resources study of Yellowstone National Park by delineating warm and cool ground-water areas. Remote-sensing data from aircraft missions in August 1966, September 1967, August 1969, and May 1970 were compared with reconnaissance, ground-temperature surveys, and test-hole data. Thermal-water discharge areas can be determined from infrared imagery and photography from the aircraft missions. Contrasts on infrared imagery caused by differences in vegetative cover, particularly between forested and nonforested areas, often mask the effects of ground-water temperature differences. The imagery, however, shows relatively warm and cool land surface in some areas. Color and color infrared photographs have been useful in reconnaissance. Aerial photographs and field studies of snowpack conditions indicated the usefulness of aerial photography taken during spring snowmelt to determine relatively cool and warm land-surface areas. A snowline in Nez Perce Creek Valley corresponds to a boundary between cool and warm ground water that was determined from augered test holes and ground-temperature surveys. Remnants of the snowpack correlate well with cool areas interpreted from infrared imagery. Relatively cool areas are easier to determine from photographs of snowpack than they are from infrared imagery. Thermal-contour maps could be made from a series of aerial photographs or repetitive data from a satellite taken during the melting of the snowpack.

Cox, E.R.

1973-01-01T23:59:59.000Z

9

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

10

Gas Geochemistry Of The Valles Caldera Region, New Mexico And...  

Open Energy Info (EERE)

Facebook icon Twitter icon Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems...

11

Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes AVIRIS airborne hyperspectral imaging. References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Hyperspectral_Imaging_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=400435"

12

Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Yellowstone Region (Sturchio, Et Al., 1990) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes There are two possible explanations for the inferred presence of relatively 18O-enriched thermal water at Yellowstone in the past: (1) meteoric

13

Yellowstone Agencies Plan to Reduce Emissions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone Agencies Plan to Reduce Emissions Yellowstone Agencies Plan to Reduce Emissions Yellowstone Agencies Plan to Reduce Emissions March 15, 2010 - 11:14am Addthis Castle Geyser at Yellowstone National Park | File photo Castle Geyser at Yellowstone National Park | File photo Joshua DeLung The 10 federal land organizations - including two national parks, six national forests and two national wildlife refuges - in the Greater Yellowstone Area comprise an entire ecosystem of their own. Straddling Wyoming's borders with Montana and Idaho, the region draws millions of visitors a year, attracted by the dramatic landscapes, geothermal activity and chances to spot wildlife like bison, elk and grizzly bear. Thanks to funding from the U.S. Department of Energy's Federal Energy Management Program, the Greater Yellowstone Coordinating Committee will

14

Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Yellowstone_Region_(Goff_%26_Janik,_2002)&oldid=687484"

15

Reflection Survey At Yellowstone Region (Morgan, Et Al., 2003) | Open  

Open Energy Info (EERE)

Yellowstone Region (Morgan, Et Al., 2003) Yellowstone Region (Morgan, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Yellowstone Region (Morgan, Et Al., 2003) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Reflection Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Simultan eously, we surveyed over 2500 linear km with high-resolution seismic reflection profling that penetrated the upper ~25 m of the lake bottom. References L. A. Morgan, W. C. Shanks, D. A. Lovalvo, S. Y. Johnson, W. J. Stephenson, K. L. Pierce, S. S. Harlan, C. A. Finn, G. Lee, M. Webring, B. Schulze, J. Duhn, R. Sweeney, L. Balistrieri (2003) Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging,

16

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

17

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Details Activities (1) Areas (1) Regions (0) Abstract: The 3-D P-wave velocity and P- to S-wave velocity ratio structure of the Yellowstone volcanic field, Wyoming, has been determined from local earthquake tomography using new data from the permanent Yellowstone seismic network. We selected 3374 local earthquakes between 1995 and 2001 to invert for the 3-D P-wave velocity (Vp) and P-wave to S-wave velocity ratio (Vp/Vs) structure. Vp anomalies of small size (15_15 km) are reliably

18

Yellowstone River Compact (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone River Compact (North Dakota) Yellowstone River Compact (North Dakota) Yellowstone River Compact (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Program Info State North Dakota Program Type Siting and Permitting The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as for the conservation,

19

The objectives for deep scientific drilling in Yellowstone National Park  

DOE Green Energy (OSTI)

The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

Not Available

1987-01-01T23:59:59.000Z

20

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism  

Open Energy Info (EERE)

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Abstract Some of the earliest volcanic rocks attributed to the Yellowstone hotspot erupted from the McDermitt caldera and related volcanic centers in northwestern Nevada at 17-15 Ma. At that time, extensional faulting was ongoing to the south in central Nevada, leading some to suggest that the nascent hotspot caused or facilitated middle Miocene Basin and Range extension. Regional geologic relationships indicate that the total magnitude of extension in northwestern Nevada is low compared to the amount

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al.,  

Open Energy Info (EERE)

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to

22

Some Effects of the Yellowstone Fire Smoke Plume on Northeast Colorado at the End of Summer 1988  

Science Conference Proceedings (OSTI)

Extensive fires in Yellowstone National Park, Wyoming, during the summer of 1988 resulted in considerable smoke transport to surrounding states. The present note provides an observational evaluation of the effects of this plume on (i) surface ...

M. Segal; J. Weaver; J. F. W. Purdom

1989-10-01T23:59:59.000Z

23

Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004)  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=401329" Category: Exploration Activities

24

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=692525

25

Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

26

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Area Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=510466

27

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early  

Open Energy Info (EERE)

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Details Activities (1) Areas (1) Regions (0) Abstract: The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He,

28

Core Analysis At Yellowstone Region (Sturchio, Et Al., 1990) | Open Energy  

Open Energy Info (EERE)

Sturchio, Et Al., 1990) Sturchio, Et Al., 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Yellowstone Region (Sturchio, Et Al., 1990) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Core Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes The samples used for this study were 43 hydrothermal minerals (silica, clay and calcite) from Yellowstone drill cores Y-5, Y-6, Y-7, Y-8, Y-11, Y-12, and Y-13 (Fig. 1). References N. C. Sturchio, T. E. C. Keith, K. Muehlenbachs (1990) Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Yellowstone_Region_(Sturchio,_Et_Al.,_1990)&oldid=401307"

29

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Redondo_Area_(Goff_%26_Janik,_2002)&oldid=692533"

30

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff &  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=692539"

31

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff &  

Open Energy Info (EERE)

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=689392

32

Geothermal energy in Wyoming: site data base and development status  

DOE Green Energy (OSTI)

An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

James, R.W.

1979-04-01T23:59:59.000Z

33

Compound and Elemental Analysis At Long Valley Caldera Area (Goff & Janik,  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=510433

34

Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

35

Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Details Activities (18) Areas (8) Regions (0) Abstract: Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210-300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios

36

Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Yellowstone Region (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

37

Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data

38

Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

39

Compound and Elemental Analysis At Valles Caldera - Redondo Area (Goff &  

Open Energy Info (EERE)

Area (Goff & Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Redondo_Area_(Goff_%26_Janik,_2002)&oldid=510463

40

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is...

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MOTORWEEK YELLOWSTONE NATIONAL PARK  

NLE Websites -- All DOE Office Websites (Extended Search)

MOTORWEEK MOTORWEEK YELLOWSTONE NATIONAL PARK JOHN DAVIS: Some of America's most precious treasures are our national parks. And the U.S. park service understands that keeping the parks pristine, while also allowing easy access by vacationers is a huge challenge. So, setting the pace on making the drive through the parks greener is not just a goal, it's a passion. JOHN DAVIS: The National Parks Service is entrusted with preserving and showcasing America's natural wonders and historical landmarks, maintaining 392 national parks covering million acres of land and water in all parts of the country, and plays host to more than 275 million visitors every year. No other place on earth has as much natural diversity and spectacular scenery in one accessible place than America's first national park, Yellowstone, so it's no surprise this

42

Caldera Depression | Open Energy Information  

Open Energy Info (EERE)

Caldera Depression Caldera Depression Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Caldera Depression Dictionary.png Caldera Depression: Calderas form from the catastrophic eruption of large amounts of felsic lava and ash. Emptying of the magma chamber and subsequent collapse of the overlying volcanic edifice forms a ring-shaped caldera depression up to several kilometers in diameter. The edges of the underlying magma chamber are roughly marked by a ring fracture zone that acts as a conduit for ongoing volcanism and hydrothermal activity. Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression

43

Yellowstone Capital | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Capital Yellowstone Capital Jump to: navigation, search Logo: Yellowstone Capital Name Yellowstone Capital Address 5555 San Felipe, Suite 1650 Place Houston, Texas Zip 77056 Region Texas Area Product Private equity and venture capital investment firm Phone number (713) 650-0065 Website http://www.yellowstonecapital. Coordinates 29.749479°, -95.471973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.749479,"lon":-95.471973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon County, Wyoming November 24, 2009 CX-006669: Categorical Exclusion Determination ESP Shuttle B CX(s) Applied: B5.12 Date: 11242009 Location(s): Casper, Wyoming Office(s):...

45

Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) | Open Energy  

Open Energy Info (EERE)

Hurwitz, Et Al., 2007) Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to monthly sampling enables the examination of spatial and temporal patterns

46

Wyoming Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Wyomings oil shale deposits are less favorable for commercial extraction than those in Utah and Colorado because they are generally situated in thinner, ...

47

Wyoming State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming State Regulations: Wyoming State of Wyoming The Wyoming Oil and Gas Conservation Commission (WOGCC) is the state agency authorized to regulate oil and gas exploration and production waste. The Wyoming Department of Environmental Quality (DEQ) administers general environmental protection regulations. Contact Wyoming Oil and Gas Conservation Commission 2211 King Blvd. Casper, WY 82602 (street address) P.O. Box 2640 Casper, WY 82602 (mailing address) (307) 234-7147 (phone) (307) 234-5306 (fax) Wyoming Department of Environmental Quality 122 West 25th Street, Herscheler Building Cheyenne, WY 82002 (307) 777-7937 (phone) (307) 777-7682 (fax) Disposal Practices and Applicable Regulations Document # 4855, Agency (Oil and Gas Conservation Commission), General Agency, Board or Commission Rules, Chapter 4 (Environmental Rules, Including Underground Injection Control Program Rules for Enhanced Recovery and Disposal Projects), Section 1. Pollution and Surface Damage (Forms 14A and 14B) of the Wyoming Rules and Regulations contains the environmental rules administered by the WOGCC with respect to management options for exploration and production waste.

48

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 30, 2011 CX-006717: Categorical Exclusion Determination Enhanced Oil Recovery Steam Generator CX(s) Applied: Date: 03302011 Location(s): Casper, Wyoming Office(s): RMOTC...

49

,"Wyoming Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

50

Toyota Prius Fuel Use in Yellowstone National Park - October...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Use in Yellowstone National Park - October 2006 Four 2004 Toyota Prius hybrid electric vehicles (HEVs) were introduced into the Yellowstone National Park motor pool during the...

51

A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand  

Open Energy Info (EERE)

Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Details Activities (4) Areas (1) Regions (0) Abstract: Erosion in the Grand Canyon of the Yellowstone River, Yellowstone Caldera (640 ka), Wyoming, has exposed a cross section of older hydrothermal alteration in the canyon walls. The altered outcrops of the post-collapse tuff of Sulphur Creek (480 ka) extend from the canyon rim to more than 300 m beneath it. The hydrothermal minerals are zoned, with an advanced argillic alteration consisting of an association of quartz (opal)

52

Multispectral Imaging At Yellowstone Region (Hellman & Ramsey...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleMultispectralImagin...

53

Energy Development Opportunities for Wyoming  

Science Conference Proceedings (OSTI)

The Wyoming Business Council, representing the states interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energys Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyomings industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

Larry Demick

2012-11-01T23:59:59.000Z

54

BLM Wyoming State Office | Open Energy Information  

Open Energy Info (EERE)

State Office Jump to: navigation, search Logo: BLM Wyoming State Office Name BLM Wyoming State Office Short Name Wyoming Parent Organization Bureau of Land Management Address 5353...

55

Wyoming/Incentives | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Incentives Wyoming/Incentives < Wyoming Jump to: navigation, search Contents 1 Financial Incentive Programs for Wyoming 2 Rules, Regulations and Policies for Wyoming Download All Financial Incentives and Policies for Wyoming CSV (rows 1 - 42) Financial Incentive Programs for Wyoming Download Financial Incentives for Wyoming CSV (rows 1 - 34) Incentive Incentive Type Active Black Hills Power - Commercial Energy Efficiency Programs (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Energy Efficiency Rebate Program (Wyoming) Utility Rebate Program No Carbon Power & Light - Energy Conservation Home Improvement Loan (Wyoming) Utility Loan Program No

56

Thermal springs of Wyoming  

SciTech Connect

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

57

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,6305,-3,226,165,,,884,391,10,...

58

Wyoming Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

59

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Cleanup of "Non-Reportable" Spills of Crude Oil andor Produced Water CX(s) Applied: B5.4, B5.6 Date: 08092011 Location(s): Casper, Wyoming...

60

Thermal springs of Wyoming  

DOE Green Energy (OSTI)

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wind powering America: Wyoming  

DOE Green Energy (OSTI)

This fact sheet contains a description of the green power programs in Wyoming, the state's efforts to promote wind energy, and a list of contacts for those interested in obtaining more information.

NREL

2000-04-10T23:59:59.000Z

62

Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2010 CX-006688: Categorical Exclusion Determination Glori Oil-Biotechnology Enhanced Oil Recovery CX(s) Applied: B3.6, B5.2 Date: 02112010 Location(s): Casper, Wyoming...

63

Type C: Caldera Resource | Open Energy Information  

Open Energy Info (EERE)

C: Caldera Resource C: Caldera Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type C: Caldera Resource Dictionary.png Type C: Caldera Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources. Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Caldera resources may be found in many tectonic settings but are defined by their caldera structures which control the flow of the fluids in the system.

64

Alternative Fuels Data Center: Yellowstone National Park Commits to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellowstone National Yellowstone National Park Commits to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on AddThis.com... Oct. 16, 2010 Yellowstone National Park Commits to Alternative Fuels

65

Wyoming.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

66

Wyoming.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

67

Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE...  

Open Energy Info (EERE)

Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE GTP)...

68

Well Log Techniques At Newberry Caldera Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Well Log Techniques Activity Date Usefulness not indicated...

69

Magnetotellurics At Newberry Caldera Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Newberry Caldera Area...

70

Ground Gravity Survey At Newberry Caldera Area (DOE GTP) | Open...  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry Caldera Area...

71

Geothermal resources, present and future demand for power and legislation in the State of Wyoming. Public information series 1  

DOE Green Energy (OSTI)

Data on thermal springs and wells in Wyoming, exclusive of Yellowstone Park, are summarized. The presentation includes a map showing general spring and well locations outside the Park and lands in Wyoming that have been classified as being prospectively of geothermal value. Locations and geothermal data on the springs and wells are tabulated and a short table of chemical analyses of spring waters is also presented. Although thermal data constitute most of the material presented, the present and future demands for electrical energy in Wyoming are also summarized, and state legislation pertaining to exploration near thermal springs is reviewed. A list of state and federal agencies is included so that interested parties may obtain copies of pertinent legislation and information on the status of land.

Decker, E.R.

1976-03-01T23:59:59.000Z

72

Definition: Caldera Depression | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Caldera Depression Jump to: navigation, search Dictionary.png Caldera Depression Calderas form from the catastrophic eruption of large amounts of felsic lava and ash. Emptying of the magma chamber and subsequent collapse of the overlying volcanic edifice forms a ring-shaped caldera depression up to several kilometers in diameter. The edges of the underlying magma chamber are roughly marked by a ring fracture zone that acts as a conduit for ongoing volcanism and hydrothermal activity. View on Wikipedia Wikipedia Definition Ret Like Like You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Caldera_Depression&oldid=699075"

73

Wyoming Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

WyomingGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Wyoming Gas Prices (Ciudades Selectas) - GasBuddy.com Wyoming Gas Prices (Organizado por Condado)...

74

Wyoming Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Shale Proved Reserves (Billion Cubic Feet) Wyoming Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

75

Minerals outlook for Wyoming  

Science Conference Proceedings (OSTI)

Wyoming drilling activity was down. The rig count was at a seven year low in February. Crude oil prices also affect Wyoming's gas production. Fuel oil prices are already low enough to compete with higher priced gas, and may edge out part of the market for natural gas. This year's coal production is still forecast at 112 million tons - a 3.7 percent increase over the 108 million tons produced in 1982. Average coal prices are currently forecast at $13.20 in 1982 and $13.86 in 1983. In 1983, demand for soda ash (trona), iron ore, limestone, and gypsum should reflect any improvements in the national economy. Bentonite is dependent enough on oil and gas drilling activity that significant improvements will probably mirror the status of the petroleum industry. Aggregate (sand, gravel, ballast, clinker, etc.) production will primarily depend on the levels of highway construction and railroad maintenance. Uranium production will remain at low levels, and may even decline with the closure of the Sweetwater mine. There will be some exploration for metals and diamonds in Wyoming this year, however, unless gold and silver prices improve, exploration will fall short of earlier expectations. (DP)

Glass, G.B.

1983-01-01T23:59:59.000Z

76

Microsoft Word - wyoming.doc  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Wyoming NERC Region(s) ....................................................................................................... WECC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 7,986 37 Electric Utilities ...................................................................................................... 6,931 31 Independent Power Producers & Combined Heat and Power ................................ 1,056 41 Net Generation (megawatthours) ........................................................................... 48,119,254 31

77

Microsoft Word - wyoming.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Wyoming NERC Region(s) ....................................................................................................... WECC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 7,986 37 Electric Utilities ...................................................................................................... 6,931 31 Independent Power Producers & Combined Heat and Power ................................ 1,056 41 Net Generation (megawatthours) ........................................................................... 48,119,254 31

78

Alternative Fuels Data Center: Wyoming Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wyoming Information to Wyoming Information to someone by E-mail Share Alternative Fuels Data Center: Wyoming Information on Facebook Tweet about Alternative Fuels Data Center: Wyoming Information on Twitter Bookmark Alternative Fuels Data Center: Wyoming Information on Google Bookmark Alternative Fuels Data Center: Wyoming Information on Delicious Rank Alternative Fuels Data Center: Wyoming Information on Digg Find More places to share Alternative Fuels Data Center: Wyoming Information on AddThis.com... Wyoming Information This state page compiles information related to alternative fuels and advanced vehicles in Wyoming and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

79

Exploration And Discovery In Yellowstone Lake- Results From High...  

Open Energy Info (EERE)

volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and...

80

Evidence For Gas And Magmatic Sources Beneath The Yellowstone...  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleSoilSamplingAtYel...

82

Geodetic Survey At Yellowstone Region (Hellman & Ramsey, 2004...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleGeodeticSurveyAtY...

83

Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleRockSamplingAtYel...

84

Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration...

85

Compound and Elemental Analysis At Yellowstone Region (Hurwitz...  

Open Energy Info (EERE)

Hurwitz, Jacob B. Lowenstern, Henry Heasler (2007) Spatial And Temporal Geochemical Trends In The Hydrothermal System Of Yellowstone National Park- Inferences From River Solute...

86

Wyoming | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

87

Wind Characteristics in Southern Wyoming  

Science Conference Proceedings (OSTI)

Measurements of wind from a network of surface anemometers and a 107 m tower have been analyzed for southern Wyoming where a project for large-scale generation of electricity from wind power is underway. Topographically forced channeling of ...

Brooks E. Martner; John D. Marwitz

1982-12-01T23:59:59.000Z

88

Non-Double-Couple Microearthquakes At Long Valley Caldera, California...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

89

Recovery Act State Memos Wyoming  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 ELECTRIC GRID ........................................................................................................ 4

90

Newberry Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newberry Caldera Geothermal Area Newberry Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newberry Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (18) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.71666667,"lon":-121.2333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone  

Open Energy Info (EERE)

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Details Activities (1) Areas (1) Regions (0) Abstract: High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic

92

Clean Cities: Yellowstone-Teton Clean Energy coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellowstone-Teton Clean Energy Coalition Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Yellowstone-Teton Clean Energy coalition Contact Information Phillip Cameron 307-413-1971 phil@ytcleanenergy.org Coalition Website Clean Cities Coordinator Phillip Cameron Photo of Phillip Cameron Phillip Cameron became the coordinator of the Yellowstone-Teton Clean Energy Coalition in November 2009. He brings a diverse professional experience to this position with strong background in environmental outreach and education, grant writing, community service, and resource management. He has experience in both board and staff positions with a variety of regional and local non-profit environmental organizations.

93

Newberry Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newberry Caldera Geothermal Area Newberry Caldera Geothermal Area (Redirected from Newberry Caldera Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newberry Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (18) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.71666667,"lon":-121.2333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Demonstration of Decision Support Tools for Sustainable Development - An Application on Alternative Fuels in the Greater Yellowstone-Teton Region  

DOE Green Energy (OSTI)

The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

Shropshire, D.E.; Cobb, D.A.; Worhach, P.; Jacobson, J.J.; Berrett, S.

2000-12-30T23:59:59.000Z

95

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming Wyoming Categorical Exclusion Determinations: Wyoming Location Categorical Exclusion Determinations issued for actions in Wyoming. DOCUMENTS AVAILABLE FOR DOWNLOAD July 26, 2013 CX-010688: Categorical Exclusion Determination Optimization Project #3 CX(s) Applied: B2.5, B5.2, B5.4, B5.5 Date: 07/26/2013 Location(s): Wyoming Offices(s): RMOTC July 26, 2013 CX-010687: Categorical Exclusion Determination Optimization Project Area #1 CX(s) Applied: B2.5, B5.2, B5.4, B5.5 Date: 07/26/2013 Location(s): Wyoming Offices(s): RMOTC July 2, 2013 CX-010686: Categorical Exclusion Determination Cheyenne Substation KV2A 115-kilovolt Tie Line Installation CX(s) Applied: B4.6 Date: 07/02/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region June 28, 2013

96

Wyoming/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wyoming/Transmission < Wyoming Jump to: navigation, search WyomingTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Wyoming is part of the WestConnect Transmission Planning area, and covers the southwest of the United States. Within the WestConnect system, Wyoming is part of the Colorado Coordinated Planning Group (CCPG) power grid that covers Colorado and portions of Wyoming.

97

Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) |  

Open Energy Info (EERE)

Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Magnetotelluric results indicate deep low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, we make three estimates of reservoir dimensions. Telluric profiles, magnetotelluric sounding, dc resistivity, and electromagnetic sounding surveys were all performed over the caldera in hopes of outlining deep drilling targets (Group 7 Inc., 1972; McPhar, 1973;

98

Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Valles Caldera - Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown Notes We have described the experimental details, data analysis and forward modeling for scattered-wave amplitude data recorded during a teleseismic earthquake survey performed in the Valles Caldera in the summer of 1987. Twenty-four high-quality teleseismic events were recorded at numerous sites along a line spanning the ring fracture and at several sites outside of the caldera. References Peter M. Roberts, Keiiti Aki, Michael C. Fehler (1995) A Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New

99

Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Area (Woldegabriel & Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=510971"

100

Geologic interpretations of seismic scattering and attenuation for the Cianten Caldera and the surrounding area  

E-Print Network (OSTI)

The Cianten Caldera in Indonesia is immediately adjacent to the producing portion of the Awibengkok geothermal field. The Cianten Caldera contains rocks similar to those in the Awibengkok field, however, the Cianten Caldera ...

Hess, Clarion Hadleigh

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Compound and Elemental Analysis At Long Valley Caldera Area ...  

Open Energy Info (EERE)

The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Retrieved from...

102

Static Temperature Survey At Long Valley Caldera Area (Farrar...  

Open Energy Info (EERE)

On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, Usa, From Recent Pumping Tests And Geochemical Sampling Retrieved from...

103

Thermal Gradient Holes At Long Valley Caldera Area (Sorey, Et...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity...

104

Thermal Gradient Holes At Newberry Caldera Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Newberry Caldera Area (DOE GTP) Exploration Activity Details...

105

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

106

Modeling-Computer Simulations At Long Valley Caldera Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity...

107

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity...

108

Modeling-Computer Simulations At Valles Caldera - Redondo Area...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Jump to:...

109

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

110

Modeling-Computer Simulations At Long Valley Caldera Area (Newman...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Newman, Et Al., 2006) Exploration Activity...

111

Modeling-Computer Simulations At Valles Caldera - Redondo Area...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

112

Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al....  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Exploration Activity...

113

Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

114

Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

and forward modeling for scattered-wave amplitude data recorded during a teleseismic earthquake survey performed in the Valles Caldera in the summer of 1987. Twenty-four...

115

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

116

Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile  

Open Energy Info (EERE)

Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile Creek Formation Grabens, Southwest Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile Creek Formation Grabens, Southwest Montana Details Activities (1) Areas (1) Regions (0) Abstract: The Sixmile Creek Formation fills deep grabens in southwest Montana and preserves a stratigraphic record of the evolution of the Yellowstone hotspot track from ~ 17 Ma to ~ 2 Ma. The Ruby, Beaverhead, Big Hole, Deer Lodge, Medicine Lodge-Grasshopper, Three Forks, Canyon Ferry, Jefferson, Melrose, Wise River, and Paradise grabens were active during outbreak of the hotspot. They appear to be parts of a radial system of

117

Analysis Of Hot Springs And Associated Deposits In Yellowstone National  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Details Activities (6) Areas (1) Regions (0) Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne Visible/IR Image Spectrometer (AVIRIS) data were used to characterize hot spring deposits in the Lower, Midway, and Upper Geyser Basins of Yellowstone National Park from the visible/near infrared (VNIR) to thermal infrared (TIR) wavelengths. Field observations of these basins provided the critical ground-truth for comparison with the

118

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone  

Open Energy Info (EERE)

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Details Activities (3) Areas (1) Regions (0) Abstract: Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199°C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The Δ18O values of the thirty-two analyzed silica samples (quartz, chalcedony, α-cristobalite, and β-cristobalite) range from -7.5 to +2.8‰. About one

119

Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan  

DOE Green Energy (OSTI)

Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

Goff, F.; Nielson, D.L. (eds.)

1986-05-01T23:59:59.000Z

120

Micro-Earthquake At Newberry Caldera Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry Caldera Area...

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) (Redirected from Rocky Mountain Power (Wyoming)) Jump to: navigation, search Name PacifiCorp Place Wyoming Service Territory Wyoming Website www.rockymountainpower.ne Green Button Reference Page www.rockymountainpower.ne Green Button Implemented Yes Utility Id 14354 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PacifiCorp consists of three business units. Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho, it is headquartered in Salt Lake City, UT. Utility Rate Schedules Grid-background.png 2 Residential 25 (Small General Service - Three Phase Secondary) Commercial

122

Wyoming's Economic Future: Planning for Sustained Prosperity  

NLE Websites -- All DOE Office Websites (Extended Search)

the Highest-Priority the Highest-Priority Geological CO 2 Storage Sites and Formations in Wyoming Ronald C. Surdam Director, Carbon Management Institute Modified from Surdam, R.C., Jiao, Z., Stauffer, P., & Miller, T., 2009, An integrated strategy for carbon management combining geological CO 2 sequestration, displaced fluid production, and water treatment: Wyoming State Geological Survey Challenges in Geologic Resource Development No. 8, 25 p. WSGS, UW, State, and DOE- funded research identified two high-capacity sites in southwest Wyoming: Rock Springs Uplift & Moxa Arch Carbon Capture Potential In Southwest Wyoming Surdam, R.C. & Jiao, Z., 2007, The Rock Springs Uplift: An outstanding geological CO 2 sequestration site in southwest Wyoming: Wyoming State Geological Survey Challenges in Geologic Resource

123

Wyoming DOE EPSCoR  

SciTech Connect

All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

Gern, W.A.

2004-01-15T23:59:59.000Z

124

Wyoming - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Quick Facts. Wyoming produced 40 percent of all coal mined in the United States in 2011. In 2011, 35 States received coal from Wyoming mines, with ...

125

Heat-flow studies in Wyoming, 1979 to 1981  

DOE Green Energy (OSTI)

Thirty heat flow values completed during May 1981 for Wyoming are tabulated and updated maps of heat flow in Wyoming and adjacent areas are presented.

Decker, E.R.; Heasler, H.P.; Buelow, K.L.

1981-12-01T23:59:59.000Z

126

Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

127

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million...

128

Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

129

Wyoming - State Energy Profile Analysis - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Wyomings oil shale deposits are less favorable for commercial extraction than those in Utah and Colorado because they are generally situated in thinner, ...

130

Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

131

Wyoming Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Wyoming Natural Gas % of Total Residential - Sales (Percent) Wyoming Natural Gas % of Total Residential - Sales (Percent)...

132

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

133

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

134

Energy Savers Loan (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming Community Development Authority Website http:www.wyomingcda.comindex.phphomeownersC73 Date added to DSIRE 2008-07-01 Last DSIRE Review 06102013 References DSIRE1...

135

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

136

Energy Crossroads: Utility Energy Efficiency Programs Wyoming...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Bonneville Power Administration Information for Businesses Cheyenne Light, Fuel & Power...

137

The Valles Caldera is ready for its close-up  

NLE Websites -- All DOE Office Websites (Extended Search)

January 2013 » January 2013 » The Valles Caldera Is Ready For Its Close-up Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit The Valles Caldera is ready for its close-up The first of three documentaries on the Valles Caldera could air on the local Public Broadcasting System as soon as January. January 1, 2013 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email The piece explores the potential impact of climate change and the 2011 Los Conchas fire on the sensitive ecosystem in the area. The first of three documentaries on the Valles Caldera could air on the local Public Broadcasting System (KNME) as soon as January. The piece, called Valles Caldera: The Science, explores the potential impact of

138

Core Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Woldegabriel & Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Samples for age dating taken from core hole VC-2B in the Suphur Springs area of the Valles Caldera. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=387687"

139

Seismic imaging of the Medicine Lake Caldera  

DOE Green Energy (OSTI)

Medicine Lake Volcano, a broad shield volcano about 50 km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. The USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. This experiment had two purposes: To produce high-quality velocity and attenuation images of the young magma body presumed to be the source for the young volcanic features, and to collect a dataset that can be used to develop and test seismic imaging methods that may be useful for understanding other geothermal systems. Eight large explosions were detonated in a 50 km radius circle around the volcano, a distance chosen to produce strong upward traveling signals through the area of interest. The data were inverted using Aki's method to produce three-dimensional velocity and attenuation images of the sub-surface. Preliminary interpretation shows low velocity and attenuation on the flanks of the volcano, and coincident high attenuation values and low velocities (-20%) from 3 to 5 km beneath the center of the caldera. This zone may be a region of partial melt which fed the youngest eruptions.

Zucca, J.J.; Evans, J.R.; Kasameyer, P.W.

1987-04-01T23:59:59.000Z

140

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 7, 2012 March 7, 2012 CX-008379: Categorical Exclusion Determination Archer Communications Building CX(s) Applied: B4.6 Date: 03/07/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region January 24, 2012 CX-008675: Categorical Exclusion Determination Sustainable Energy Solutions LLC - Cryogenic Carbon Capture (Phase 2) CX(s) Applied: B3.6, B3.9 Date: 01/24/2012 Location(s): Utah, Wyoming Offices(s): Advanced Research Projects Agency-Energy January 12, 2012 CX-007755: Categorical Exclusion Determination Routine and Proposed Actions at the Riverton, Wyoming, Processing Site CX(s) Applied: B1.3, B3.1 Date: 01/12/2012 Location(s): Wyoming Offices(s): Legacy Management December 15, 2011 CX-007515: Categorical Exclusion Determination Bucknam Temporary Tap, Natrona County, Wyoming

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mid-Yellowstone Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Elec Coop, Inc Yellowstone Elec Coop, Inc Jump to: navigation, search Name Mid-Yellowstone Elec Coop, Inc Place Montana Utility Id 12463 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Farm, Residential, and Public Buildings General Service 1 Phase General Service 3 Phase Irrigation Service > 200 HP Commercial Irrigation Service < 200 HP Commercial Seasonal Services Seasonal Services Security Light 400 watt light Lighting Security Lights 175 watt light Lighting

142

Alternative Fuels Data Center: Wyoming Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wyoming Points of Wyoming Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Wyoming Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Wyoming Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Wyoming Points of Contact on Google Bookmark Alternative Fuels Data Center: Wyoming Points of Contact on Delicious Rank Alternative Fuels Data Center: Wyoming Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Wyoming Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Points of Contact The following people or agencies can help you find more information about Wyoming's clean transportation laws, incentives, and funding opportunities.

143

Alternative Fuels Data Center: Wyoming Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wyoming Laws and Wyoming Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Wyoming. Your Clean Cities coordinator at

144

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

1992) 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico

145

Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate Add-On Heat Pump: $800 Geothermal Heat Pump: $1,000 (residential); $5,000 (commercial) Program Info State Montana Program Type Utility Rebate Program Rebate Amount Add-On Heat Pump: $200 per ton Geothermal Heat Pump: $200/ton (residential); $150/ton (commercial) Water Heater: $100 - $150 Energy Star Dishwasher: $25 Energy Star Refrigerator: $25 Energy Star Clothes Washer: $50 Provider

146

Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0759678,"lon":-107.2902839,"alt":0,"address":"Wyoming","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Area (Roberts,  

Open Energy Info (EERE)

Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown Notes We have described the experimental details, data analysis and forward modeling for scattered-wave amplitude data recorded during a teleseismic earthquake survey performed in the Valles Caldera in the summer of 1987. Twenty-four high-quality teleseismic events were recorded at numerous sites along a line spanning the ring fracture and at several sites outside of the caldera. References Peter M. Roberts, Keiiti Aki, Michael C. Fehler (1995) A Shallow

148

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

149

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

150

Compound and Elemental Analysis At Valles Caldera - Redondo Area (Chipera,  

Open Energy Info (EERE)

Et Al., 2008) Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Redondo Area (Chipera, Et Al., 2008) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes X-Ray Diffraction, Scanning Electron Microscopy, and Electron Microprobe. References Steve J. Chipera, Fraser Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Redondo_Area_(Chipera,_Et_Al.,_2008)&oldid=510462

151

Non-Double-Couple Microearthquakes At Long Valley Caldera, California,  

Open Energy Info (EERE)

Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Details Activities (1) Areas (1) Regions (0) Abstract: Most of 26 small (0.4<~M<~3.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 digital three-component seismometers, have significantly non-double-couple focal mechanisms, inconsistent with simple shear faulting. We determined their mechanisms by inverting P- and S-wave polarities and amplitude ratios using linear-programming methods, and

152

Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Magnetotelluric results indicate deep low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, we make three estimates of reservoir

153

Core Analysis At Valles Caldera - Sulphur Springs Area (Ito ...  

Open Energy Info (EERE)

On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track Analysis Retrieved from "http:en.openei.orgwindex.php?titleCoreAnalysisA...

154

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Et Al., 2008) Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (Chipera, Et Al., 2008) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes X-Ray Diffraction, Scanning Electron Microscopy, and Electron Microprobe. References Steve J. Chipera, Fraser Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Chipera,_Et_Al.,_2008)&oldid=51046

155

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera...  

Open Energy Info (EERE)

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

156

Intracaldera volcanism and sedimentation-Creede caldera, Colorado  

DOE Green Energy (OSTI)

Within the Creede caldera, Colorado, many of the answers to its postcaldera volcanic and sedimentary history lie within the sequence of tuffaceous clastic sedimentary rocks and tuffs known as the Creede Formation. The Creede Formation and its interbedded ash deposits were sampled by research coreholes Creede 1 and 2, drilled during the fall of 1991. In an earlier study of the Creede Formation, based on surface outcrops and shallow mining company coreholes, Heiken and Krier (1987) concluded that the process of caldera structural resurgence was rapid and that a caldera lake had developed in an annulus (``moat``) located between the resurgent dome and caldera wall. So far we have a picture of intracaldera activity consisting of intermittent hydrovoleanic eruptions within a caldera lake for the lower third of the Creede Formation, and both magmatic and hydrovolcanic ash eruptions throughout the top two-thirds. Most of the ash deposits interbedded with the moat sedimentary rocks are extremely fine-grained. Ash fallout into the moat lake and unconsolidated ash eroded from caldera walls and the slopes of the resurgent dome were deposited over stream delta distributaries within relatively shallow water in the northwestern moat, and in deeper waters of the northern moat, where the caldera was intersected by a graben. Interbedded with ash beds and tuffaceous siltstones are coarse-grained turbidites from adjacent steep slopes and travertine from fissure ridges adjacent to the moat. Sedimentation rates and provenance for clastic sediments are linked to the frequent volcanic activity in and near the caldera; nearly all of the Creede Formation sedimentary rocks are tuffaceous.

Heiken, G.; Krier, D.; Snow, M.G. [Los Alamos National Lab., NM (United States); McCormick, T. [Colorado Univ., Boulder, CO (United States). Dept. of Geological Sciences

1994-12-31T23:59:59.000Z

157

Gravity and fault structures, Long Valley caldera, California  

DOE Green Energy (OSTI)

The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

Carle, S.F.; Goldstein, N.E.

1987-07-01T23:59:59.000Z

158

Wyoming Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wyoming are supporting a broad range of clean energy projects from energy efficiency and the smart grid to carbon capture and storage. Through these investments, Wyoming's businesses, the University of Wyoming, non-profits, and local governments are creating quality jobs today and positioning Wyoming to play an important role in the new energy economy of the future. Recovery_Act_Memo_Wyoming.pdf More Documents & Publications Slide 1

159

The Teton-Yellowstone Tornado of 21 July 1987  

Science Conference Proceedings (OSTI)

The Teton-Yellowstone Tornado, rated F4, crossed the Continental Divide at 3070 m, leaving behind a damage swath 39.2-km long and 2.5-km wide. A detailed damage analysis by using stereo-pair and color photos revealed the existence of four spinup ...

T. Theodore Fujita

1989-09-01T23:59:59.000Z

160

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 11, 2010 August 11, 2010 CX-006735: Categorical Exclusion Determination Hyperspectral Survey CX(s) Applied: B3.8, B3.11 Date: 08/11/2010 Location(s): Casper, Wyoming Office(s): RMOTC August 4, 2010 CX-003231: Categorical Exclusion Determination Wyoming American Recovery and Reinvestment Act State Energy Program CX(s) Applied: A1, A9, B5.1 Date: 08/04/2010 Location(s): Wyoming Office(s): Energy Efficiency and Renewable Energy, Golden Field Office July 13, 2010 CX-003032: Categorical Exclusion Determination Pacific Northwest Smart Grid Demonstration CX(s) Applied: A1, A9, A11, B1.7, B3.6, B4.4, B5.1 Date: 07/13/2010 Location(s): Jackson Hole, Wyoming Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 9, 2010 CX-006699: Categorical Exclusion Determination

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources Wyoming/Wind Resources < Wyoming Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

162

Wyoming Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Wyoming Municipal Power Agency Wyoming Municipal Power Agency Place Wyoming Utility Id 40603 Utility Location Yes Ownership A NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Wyoming_Municipal_Power_Agency&oldid=412214

163

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Service Territory Wyoming Website www.rockymountainpower.ne Green Button Reference Page www.rockymountainpower.ne Green Button Implemented Yes Utility Id 14354 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PacifiCorp consists of three business units. Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho, it is headquartered in Salt Lake City, UT. Utility Rate Schedules Grid-background.png 2 Residential 25 (Small General Service - Three Phase Secondary) Commercial 28 (General Service - Three Phase Secondary) Commercial 46 (Time Of Use Three Phase Secondary) Commercial

164

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2012 July 30, 2012 CX-009090: Categorical Exclusion Determination Line Switch Replacements at Guernsey Rural, Worland, Refinery, Box Butte, and Morrill Taps CX(s) Applied: B4.6, B4.11 Date: 07/30/2012 Location(s): Wyoming, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region July 23, 2012 CX-008784: Categorical Exclusion Determination License Outgrant to Owl Creek Water District Town of Thermopolis, Hot Springs County, Wyoming CX(s) Applied: B4.9 Date: 07/23/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region July 23, 2012 CX-008496: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1 Date: 07/23/2012 Location(s): Wyoming Offices(s): National Energy Technology Laboratory

165

Wyoming Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) No chart available. Wyoming Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

166

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

167

,"Wyoming Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas...

168

WYOMING  

Science Conference Proceedings (OSTI)

... well drilling company developing shallow oil wells, as well as domestic water wells. Over the years it has diversified into oilfield electrical fabrication ...

2013-02-27T23:59:59.000Z

169

Science guide for the Long Valley Caldera deep hole  

DOE Green Energy (OSTI)

The Magma Energy Program of the US Department of Energy, Geothermal Technology Division, is planning to begin drilling a deep (6 km) exploration well in Long Valley Caldera, California, in September 1988. The location of the well is in the central part of the caldera, coincident with a large number of shallow (5-7 km) geophysical anomalies identified through many independent investigations. Results from the hole will permit the following: direct investigation of the geophysical anomalies interpreted to be magma; investigation of the patterns and conditions of deep fluid circulation and heat transport below the caldera floor; determination of the amount of collapse and subsequent resurgence of the central portion of Long Valley caldera; and determination of the intrusion history of the central plutonic complex beneath the caldera, and establishment of the relationship of intrusive to eruptive events. The hole will thus provide a stringent test of the hypothesis that magma is still present within the central plutonic complex. If the interpretation of geophysical anomalies is confirmed, the hole will provide the first observations of the environment near a large silicic magma chamber. 80 refs., 7 figs., 2 tabs.

Rundle, J.B.; Eichelberger, J.C. (eds.)

1989-05-01T23:59:59.000Z

170

Fall River Rural Elec Coop Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Jump to: navigation, search Name Fall River Rural Elec Coop Inc Place Wyoming Utility Id 6169 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

171

Alternative Fuels Data Center: Wyoming Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Other The list below contains summaries of all Wyoming laws and incentives

172

Alternative Fuels Data Center: Wyoming Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives Listed below are the summaries of all current Wyoming laws, incentives, regulations, funding opportunities, and other initiatives related to

173

Big Horn County Elec Coop, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Twitter icon Big Horn County Elec Coop, Inc (Wyoming) Jump to: navigation, search Name Big Horn County Elec Coop, Inc Place Wyoming Utility Id 1683 References EIA Form EIA-861...

174

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Registered Energy Companies in Park County, Wyoming Nacel...

175

,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

3:31:47 PM" "Back to Contents","Data 1: Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSWYMMCF" "Date","Wyoming Natural...

176

Alternative Fuels Data Center: Wyoming Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Other The list below contains summaries of all Wyoming laws and incentives

177

Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Ethanol The list below contains summaries of all Wyoming laws and incentives

178

Wyoming Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Wyoming Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

179

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal

180

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Wilt & Haar, 1986) Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with well data was done whenever possible, there is some uncertainty to the

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

West Yellowstone, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Yellowstone, Montana: Energy Resources Yellowstone, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.6621493°, -111.1041092° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6621493,"lon":-111.1041092,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) | Open  

Open Energy Info (EERE)

Geothermal Region (1990) Geothermal Region (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) Exploration Activity Details Location Valles Caldera Geothermal Region Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active

183

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 30, 2009 December 30, 2009 CX-006683: Categorical Exclusion Determination Geothermal Technologies Program CX(s) Applied: B3.1, B5.2 Date: 12/30/2009 Location(s): Casper, Wyoming Office(s): RMOTC December 29, 2009 CX-001292: Categorical Exclusion Determination Training Programs, Lighting Upgrades, Hire a Consultant, Energy Efficient Boiler Installation CX(s) Applied: A9, A11, B5.1 Date: 12/29/2009 Location(s): Cheyenne, Wyoming Office(s): Energy Efficiency and Renewable Energy December 23, 2009 CX-006679: Categorical Exclusion Determination Geothermal Technologies Program CX(s) Applied: B5.2 Date: 12/23/2009 Location(s): Casper, Wyoming Office(s): RMOTC December 23, 2009 CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12/23/2009

184

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 26, 2011 May 26, 2011 CX-006716: Categorical Exclusion Determination New B-1-3 Pit and Box Construction CX(s) Applied: B1.3, B6.1 Date: 05/26/2011 Location(s): Casper, Wyoming Office(s): RMOTC May 17, 2011 CX-006719: Categorical Exclusion Determination Casing Drilling Test CX(s) Applied: B1.3, B3.7, B5.12 Date: 05/17/2011 Location(s): Casper, Wyoming Office(s): RMOTC May 5, 2011 CX-005852: Categorical Exclusion Determination Stegall-Wayside 230 Kilovolt Access Road Extension CX(s) Applied: B1.13 Date: 05/05/2011 Location(s): Dawes County, Wyoming Office(s): Western Area Power Administration-Rocky Mountain Region April 29, 2011 CX-005664: Categorical Exclusion Determination Development and Testing of Compact Heat Exchange Reactors (CHER) for Synthesis of Liquid Fuels CX(s) Applied: B3.6

185

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 8, 2010 December 8, 2010 CX-004682: Categorical Exclusion Determination Novel Sorbents for Emission Control from Coal Combustion CX(s) Applied: A9, B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 8, 2010 CX-004680: Categorical Exclusion Determination Pilot Scale Demonstration of Cowboy Coal Upgrading Process CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 8, 2010 CX-004667: Categorical Exclusion Determination Alternate Environmental Processes/Sorbents to Reduce Emissions and Recover Water for Power Plant Use CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory

186

Wyoming geo-notes No. 3  

Science Conference Proceedings (OSTI)

After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Data are also given on coal consumption by electric utilities, residential and commercial users and on coal transport by rail, river barge, and truck. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. Publications available from the Geological Survey of Wyoming are listed. 15 references, 6 figures, 8 tables.

Glass, G.B.

1984-01-01T23:59:59.000Z

187

Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) |  

Open Energy Info (EERE)

Martin, Et Al., 2004) Martin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References B. Martin, E. Silver, W. Pickles, P. Cocks (Unknown) Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Long_Valley_Caldera_Area_(Martin,_Et_Al.,_2004)&oldid=511009" Categories: Exploration Activities DOE Funded

188

Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Driving / Idling

189

Wyoming's Appliance Rebate Program Surges Ahead | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead October 19, 2010 - 12:43pm Addthis Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Lindsay Gsell What does this mean for me? Wyoming received $511,000 in Recovery Act funding for its appliance rebate program. The program has already distributed 60% of rebate funding. Wyoming's appliance rebate program, which opened in April, continues through this fall. Residents of the Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from $50 to $250.

190

Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Idle Reduction

191

Wyoming's Appliance Rebate Program Surges Ahead | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead October 19, 2010 - 12:43pm Addthis Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Lindsay Gsell What does this mean for me? Wyoming received $511,000 in Recovery Act funding for its appliance rebate program. The program has already distributed 60% of rebate funding. Wyoming's appliance rebate program, which opened in April, continues through this fall. Residents of the Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from $50 to $250.

192

Static Temperature Survey At Long Valley Caldera Area (Hurwitz, Et Al.,  

Open Energy Info (EERE)

Long Valley Caldera Area (Hurwitz, Et Al., Long Valley Caldera Area (Hurwitz, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Hurwitz, Et Al., 2010) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References Shaul Hurwitz, Christopher D. Farrar, Colin F. Williams (2010) The Thermal Regime In The Resurgent Dome Of Long Valley Caldera, California- Inferences From Precision Temperature Logs In Deep Wells Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Long_Valley_Caldera_Area_(Hurwitz,_Et_Al.,_2010)&oldid=511152"

193

Ground Gravity Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) |  

Open Energy Info (EERE)

Ground Gravity Survey At Long Valley Caldera Area Ground Gravity Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7-10 km beneath the resurgent dome and a deeper source ~15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L. Galloway, James F. Howle, Ronald Jacobson (2003) Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera,

194

Teleseismic-Seismic Monitoring At Long Valley Caldera Area (Newman, Et Al.,  

Open Energy Info (EERE)

Long Valley Caldera Area (Newman, Et Al., Long Valley Caldera Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Long Valley Caldera Area (Newman, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Andrew V. Newman, Timothy H. Dixon, Noel Gourmelen (2006) A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Long_Valley_Caldera_Area_(Newman,_Et_Al.,_2006)&oldid=425656"

195

Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) |  

Open Energy Info (EERE)

Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References Deborah Bergfeld, William C. Evans, James F. Howle, Christopher D. Farrar (2006) Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Long_Valley_Caldera_Area_(Bergfeld,_Et_Al.,_2006)&oldid=386973

196

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Association Wyoming Department of Revenue Wyoming Public Service Commission Xcel Energy Xcel Energy Services Xcel Residential Yellowstone Valley Electric Cooperative...

197

Valles Caldera - Redondo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valles Caldera - Redondo Geothermal Area Valles Caldera - Redondo Geothermal Area (Redirected from Valles Caldera - Redondo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valles Caldera - Redondo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.89,"lon":-106.58,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Valles Caldera - Sulphur Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Geothermal Area Valles Caldera - Sulphur Springs Geothermal Area (Redirected from Valles Caldera - Sulphur Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valles Caldera - Sulphur Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (21) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9081,"lon":-106.615,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Long Valley Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area (Redirected from Long Valley Caldera Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (3) 10 Exploration Activities (50) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 22, 2009 October 22, 2009 CX-006666: Categorical Exclusion Determination Geothermal Technologies Program CX(s) Applied: Date: 01/00/1900 Location(s): Casper, Wyoming Office(s): RMOTC October 20, 2009 CX-006645: Categorical Exclusion Determination T-6-10 Abandonment and Storage Relocation CX(s) Applied: B1.3, B1.22, B5.3 Date: 10/20/2009 Location(s): Casper, Wyoming Office(s): RMOTC October 20, 2009 CX-006653: Categorical Exclusion Determination B-1-3 Heat Trace CX(s) Applied: B1.3 Date: 10/20/2009 Location(s): Casper, Wyoming Office(s): RMOTC October 14, 2009 CX-006647: Categorical Exclusion Determination Move Contaminated Soil From North Water Flood to East Side Land Farm CX(s) Applied: B5.3, B5.6 Date: 10/14/2009 Location(s): Casper, Wyoming Office(s): RMOTC October 14, 2009 CX-006649: Categorical Exclusion Determination

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 3, 2010 March 3, 2010 CX-006667: Categorical Exclusion Determination Restoration of 73-SX-10H CX(s) Applied: B6.1 Date: 03/07/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 24, 2010 CX-006661: Categorical Exclusion Determination Repair Flowline at 83-AX-4 CX(s) Applied: B5.2, B5.4 Date: 02/24/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 24, 2010 CX-006655: Categorical Exclusion Determination Coal Bed Methane Gas Separator CX(s) Applied: B3.7, B3.11 Date: 02/24/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 24, 2010 CX-006651: Categorical Exclusion Determination Water Haul Permit Location CX(s) Applied: B1.3, B1.6 Date: 02/11/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 13, 2010 CX-006734: Categorical Exclusion Determination

202

EA-1581: Sand Hills Wind Project, Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Sand Hills Wind Project, Wyoming 81: Sand Hills Wind Project, Wyoming EA-1581: Sand Hills Wind Project, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Summary The Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line. Public Comment Opportunities No public comment opportunities available at this time. List of Available Documents

203

Wyoming's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Wyoming's At-large congressional district: Energy Resources Wyoming's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Wyoming. US Recovery Act Smart Grid Projects in Wyoming's At-large congressional district Cheyenne Light, Fuel and Power Company Smart Grid Project Powder River Energy Corporation Smart Grid Project Registered Energy Companies in Wyoming's At-large congressional district Blue Sky Batteries Inc Blue Sky Group Inc HTH Wind Energy Inc LappinTech LLC Nacel Energy Nanomaterials Discovery Corporation NDC Pathfinder Renewable Wind Energy PowerSHIFT Energy Company Inc TMA Global Wind Energy Systems TriLateral Energy LLC Utility Companies in Wyoming's At-large congressional district

204

LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conducts Groundwater and Soil Investigation at Riverton, Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood October 16, 2012 - 10:50am Addthis LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood What does this project do? Goal 1. Protect human health and the environment A team representing two Federal agencies-U.S. Department of Energy (DOE) Office of Legacy Management and U.S. Geological Survey-is evaluating

205

Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

206

Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Dealer to someone by E-mail Alternative Fuel Dealer to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

207

Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

208

Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on

209

Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

210

Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

211

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) |  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Fraser Goff, Harold A. Wollenberg, D. C. Brookins, Ronald W. Kistler (1991) A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff,_Et_Al.,_1991)&oldid=692527"

212

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht,  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid circulation, set limits on the thermal regime, and link the source of the heat to prolonged volcanic activity. At shallow depths in the caldera References Brian M. Smith, Gene A. Suemnicht (1991) Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes Of Long Valley Caldera, California

213

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera. At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina Flechsig, John H. Sass (2003) Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Long_Valley_Caldera_Area_(Pribnow,_Et_Al.,_2003)&oldid=389388

214

The Thermal Regime In The Resurgent Dome Of Long Valley Caldera,  

Open Energy Info (EERE)

Thermal Regime In The Resurgent Dome Of Long Valley Caldera, Thermal Regime In The Resurgent Dome Of Long Valley Caldera, California- Inferences From Precision Temperature Logs In Deep Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Thermal Regime In The Resurgent Dome Of Long Valley Caldera, California- Inferences From Precision Temperature Logs In Deep Wells Details Activities (1) Areas (1) Regions (0) Abstract: Long Valley Caldera in eastern California formed 0.76 Ma ago in a cataclysmic eruption that resulted in the deposition of 600 km3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~ 290 MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40 MWe. The RD in the center of the caldera was uplifted by ~ 80 cm between 1980 and 1999 and was explained by most

215

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et  

Open Energy Info (EERE)

Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Sulphur_Springs_Area_(Rao,_Et_Al.,_1996)&oldid=692543" Category: Exploration

216

Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Al., 1991) Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Discusses temperature and lithologic data from a dozen or so wells drilled, both by industry and the scientific community. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits

217

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Roberts, Et Al., 1995) Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of the amplitude data, using the Aki-Lamer method, confirmed that this anomaly exists and we estimated quantitative parameters defining it. All model parameters were physically meaningful except for one. The value for Q inside the anomaly, required to explain the data, was unrealistically low. This was probably due to the inability to include additional structural complexity within the low-Q zone that would account for a

218

Casper, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Casper, Wyoming: Energy Resources Casper, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.866632°, -106.313081° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866632,"lon":-106.313081,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Wyoming Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

220

Cheyenne, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cheyenne, Wyoming: Energy Resources Cheyenne, Wyoming: Energy Resources (Redirected from Cheyenne, WY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1399814,"lon":-104.8202462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Wyoming Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Center Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Orion Energy Energy Purchaser PPM Energy Inc Location Evanston WY Coordinates 41.304414°, -110.793904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.304414,"lon":-110.793904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,067 111,167 111,120 111,120 106,764 124,937 1988-2012

223

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

224

Cheyenne, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1399814,"lon":-104.8202462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Midwest, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Midwest, Wyoming: Energy Resources Midwest, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4113604°, -106.2800242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4113604,"lon":-106.2800242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Hoback, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hoback, Wyoming: Energy Resources Hoback, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2818713°, -110.7838117° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2818713,"lon":-110.7838117,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Sundance, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sundance, Wyoming: Energy Resources Sundance, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4063746°, -104.3757816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4063746,"lon":-104.3757816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Meeteetse, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Meeteetse, Wyoming: Energy Resources Meeteetse, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1571766°, -108.8715193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1571766,"lon":-108.8715193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

230

Wyoming Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 90,464 90,588 89,999 89,825 91,028 93,007 1990-2013

231

Frannie, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frannie, Wyoming: Energy Resources Frannie, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9691175°, -108.6215163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9691175,"lon":-108.6215163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

233

Hartrandt, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hartrandt, Wyoming: Energy Resources Hartrandt, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8874654°, -106.3475273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8874654,"lon":-106.3475273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Alcova, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alcova, Wyoming: Energy Resources Alcova, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.5521842°, -106.7164296° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5521842,"lon":-106.7164296,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Evansville, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8599653°, -106.2683566° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8599653,"lon":-106.2683566,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Brookhurst, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brookhurst, Wyoming: Energy Resources Brookhurst, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8574654°, -106.2364105° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8574654,"lon":-106.2364105,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

,"Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",20...

238

Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade...

239

,"Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

240

,"Wyoming Crude Oil + Lease Condensate Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2011 ,"Release...

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

242

Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

243

Wyoming Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

244

,"Wyoming Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

245

Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

246

,"Wyoming Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

247

Big Piney, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigPiney,Wyoming&oldid227767" Categories: Places Stubs Cities What links here Related...

248

Big Horn, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Geographic Relationship Tables Retrieved from "http:en.openei.orgwindex.php?titleBigHorn,Wyoming&oldid227758" Categories: Places Stubs Cities What links here Related...

249

,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

250

Mosquito populations in the Powder River basin, Wyoming.  

E-Print Network (OSTI)

??Coal bed natural gas development in northeastern Wyoming has increased surface water in ranching and agricultural areas over undeveloped land. This increase of water increases (more)

Doherty, Melissa Kuckler.

2007-01-01T23:59:59.000Z

251

Green River, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green River, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

252

,"Wyoming Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

253

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

254

Wyoming Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Wyoming Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

255

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network (OSTI)

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

256

EA-1581: Sand Hills Wind Project, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

The Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line.

257

Valles Caldera - Redondo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valles Caldera - Redondo Geothermal Area Valles Caldera - Redondo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valles Caldera - Redondo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.89,"lon":-106.58,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Long Valley Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (3) 10 Exploration Activities (50) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References Hisatoshi Ito, Kazuhiro Tanaka (1995) Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon

260

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...  

Open Energy Info (EERE)

In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO  

E-Print Network (OSTI)

of New Mexico, 1978e Geothermal demonstration plant--1975. Hydrologic testing geothermal test hole no. 2. Losof the ~lles Caldera geothermal system, New Mexico. Trans.

Wilt, M.

2011-01-01T23:59:59.000Z

262

Micro-Earthquake At Long Valley Caldera Area (Foulger, Et Al...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Retrieved from "http:en.openei.orgwindex.php?titleMicro-EarthquakeAtLongVall...

263

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus...  

Open Energy Info (EERE)

.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search GEOTHERMAL...

264

Water Sampling At Long Valley Caldera Area (Goff, Et Al., 1991...  

Open Energy Info (EERE)

91) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Area (Goff, Et Al., 1991) Exploration Activity Details...

265

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry...

266

FIA-13-0021 - In the Matter of Caldera Pharmaceuticals, Inc....  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Appellant, Caldera Pharmaceuticals, Inc., contested the adequacy of OIR's search for responsive documents pertaining to its FOIA request. The OHA reviewed the OIR's...

267

Insights On The Thermal History Of The Valles Caldera, New Mexico...  

Open Energy Info (EERE)

icon Twitter icon Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track Analysis Jump to: navigation, search GEOTHERMAL...

268

Lower Yellowstone R E A, Inc (North Dakota) | Open Energy Information  

Open Energy Info (EERE)

A, Inc (North Dakota) Jump to: navigation, search Name Lower Yellowstone R E A, Inc Place North Dakota Utility Id 11272 References EIA Form EIA-861 Final Data File for 2010 -...

269

Some Effects of the Yellowstone Fire Smoke Cloud on Incident Solar Irradiance  

Science Conference Proceedings (OSTI)

The influence of the 1988 Yellowstone National Park fire, smoke cloud on incident broadband and spectral solar irradiance was studied using measurements made at the Solar Energy Research Institute's Solar Radiation Research Laboratory, Golden, ...

Roland L. Hulstrom; Thomas L. Stoffel

1990-12-01T23:59:59.000Z

270

Exploration And Discovery In Yellowstone Lake- Results From High-Resolution  

Open Energy Info (EERE)

Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Details Activities (1) Areas (1) Regions (0) Abstract: No portion of the American continent is perhaps so rich in wonders as the Yellow Stone' (F.V. Hayden, September 2, 1874) Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal

271

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Wyoming Oil and Gas Conservation Commission Wyoming Oil and Gas Conservation Commission Jump to: navigation, search State Wyoming Name Wyoming Oil and Gas Conservation Commission Address 2211 King Blvd City, State Casper, Wyoming Zip 82602 Website http://wogcc.state.wy.us/ Coordinates 42.8433001°, -106.3511243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8433001,"lon":-106.3511243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Local Option - Energy Improvement Loan Program (Wyoming) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Energy Improvement Loan Program (Wyoming) Local Option - Energy Improvement Loan Program (Wyoming) Local Option - Energy Improvement Loan Program (Wyoming) < Back Savings Category Energy Sources Buying & Making Electricity Other Program Info Start Date 7/1/2011 State Wyoming Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs.''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. Wyoming has authorized local governments to establish such

273

Lower Yellowstone R E A, Inc | Open Energy Information  

Open Energy Info (EERE)

R E A, Inc R E A, Inc Jump to: navigation, search Name Lower Yellowstone R E A, Inc Place Montana Utility Id 11272 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Heat Residential Net Metering Rate Schedule - Base #3 Commercial Net Metering Rate Schedule - Base 1 Residential Net Metering Rate Schedule - Base 2 Commercial Schedule A Residential Schedule AS - Annual Service Residential Schedule DC-1 Commercial Schedule EH - Electric Heat Rate Commercial Schedule GS - Single Phase Commercial

274

Wyoming - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri: Montana ... University of Wyoming Extension, Renewable and ...

275

Wyoming geo-notes No. 2  

Science Conference Proceedings (OSTI)

After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables.

Glass, G.B.

1984-01-01T23:59:59.000Z

276

Compound and Elemental Analysis At Long Valley Caldera Area (Bergfeld, Et  

Open Energy Info (EERE)

Bergfeld, Et Bergfeld, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Deborah Bergfeld, William C. Evans, James F. Howle, Christopher D. Farrar (2006) Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Long_Valley_Caldera_Area_(Bergfeld,_Et_Al.,_2006)&oldid=510430"

277

Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al.,  

Open Energy Info (EERE)

3) 3) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7^10 km beneath the resurgent dome and a deeper source V15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L.

278

Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology Of The  

Open Energy Info (EERE)

Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology Of The Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology Of The Okueyama Volcano-Plutonic Complex, Southwest Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology Of The Okueyama Volcano-Plutonic Complex, Southwest Japan Details Activities (0) Areas (0) Regions (0) Abstract: A deeply eroded root of a Miocene Valles-type caldera cluster is exposed in the Okueyama volcano-plutonic complex in Kyushu, southwest Japan. The complex shows the relationship between an ash-flow caldera and a vertically zoned granitic batholith. The igneous activity of this complex began with the eruption of the Sobosan dacitic tuff and collapse of the Sobosan cauldron (18 _ 13 km). After an erosion interval, the Katamukiyama

279

Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Long Valley Caldera Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera

280

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New  

Open Energy Info (EERE)

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Abstract The Valles caldera in New Mexico hosts a high-temperature geothermal system, which is manifested in a number of hot springs discharging in and around the caldera. In order to determine the fluid pathways and the origin of chloride in this system, we measured 36Cl/Cl ratios in waters from high-temperature drill holes and from surface springs in this region. The waters fall into two general categories: recent meteoric water samples with low Cl- concentrations (< 10 mg/L) and relatively high 36Cl/Cl ratios

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermometry At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Geothermometry Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Silica-geothermometer temperature estimates for the Casa Diablo and RDO-8 well samples ( 196-202 degrees C) are lower than the corresponding cation-geothermometer temperature estimates, indicating loss of silica with declining reservoir temperature or dilution with low-silica waters. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And

282

Ground Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986)  

Open Energy Info (EERE)

Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

283

Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

1991) 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Several newer wells were cored, and the core analyses seemed to prove useful in most cases. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Long_Valley_Caldera_Area_(Sorey,_Et_Al.,_1991)&oldid=386930

284

Ground Gravity Survey At Valles Caldera - Sulphur Springs Area (Wilt &  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Area (Wilt & Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

285

Density Log at Valles Caldera - Redondo Area (Wilt & Haar, 1986) | Open  

Open Energy Info (EERE)

Valles Caldera - Redondo Area (Wilt & Haar, 1986) Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density at Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Density Log Activity Date Usefulness not indicated DOE-funding Unknown Notes The density log indicates three major density units within the well section : a surface layer of caldera fill, lake deposits, and other recent alluvium (2.12 g/cm3); the Bandelier Tuff and underlying volcanic and sedimentary units (2.3--2.5 g/cm3); and the basement unit, consisting of the lower Paleozoic and the upper Precambrian (2.65 g/cm3). There are, of course, significant density variations within each unit, but for modeling

286

Valles Caldera - Sulphur Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Valles Caldera - Sulphur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valles Caldera - Sulphur Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (21) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9081,"lon":-106.615,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Lithologic descriptions and temperature profiles of five wells in the southwestern Valles caldera region, New Mexico  

DOE Green Energy (OSTI)

The subsurface stratigraphy and temperature profiles of the southern and western Valles caldera region have been well constrained with the use of data from the VC-1, AET-4, WC 23-4, PC-1 and PC-2 wells. Data from these wells indicate that thermal gradients west of the caldera margin are between 110 and 140)degrees)C/km, with a maximum gradient occurring in the bottom of PC-1 equal to 240)degrees)C/km as a result of thermal fluid flow. Gradients within the caldera reach a maximum of 350)degrees)C/km, while the maximum thermal gradient measured southwest of the caldera in the thermal outflow plume is 140)degrees)C/km. The five wells exhibit high thermal gradients (>60)deghrees)C/km) resulting from high conductive heat flow associated with the Rio Grande rift and volcanism in the Valles caldera, as well as high convective heat flow associated with circulating geothermal fluids. Gamma logs run in four of the five wells appear to be of limited use for stratigraphic correlations in the caldera region. However, stratigraphic and temperature data from the five wells provide information about the structure and thermal regime of the southern and western Valles caldera region. 29 refs., 9 figs. 2 tabs.

Shevenell, L.; Goff, F.; Miles, D.; Waibel, A.; Swanberg, C.

1988-01-01T23:59:59.000Z

288

Low-Level Airflow in Southern Wyoming during Wintertime  

Science Conference Proceedings (OSTI)

A number of low-level flights were conducted with an instrumented aircraft to investigate wind characteristics in the planetary boundary layer over the low regions of the continental divide in southern Wyoming. The airflow upwind of the ...

John D. Marwitz; Paul J. Dawson

1984-06-01T23:59:59.000Z

289

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

290

Town of Lusk, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lusk, Wyoming (Utility Company) Lusk, Wyoming (Utility Company) Jump to: navigation, search Name Town of Lusk Place Wyoming Utility Id 11330 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Single-Phase Commercial Commercial- Three-Phase Commercial Residential Residential Average Rates Residential: $0.0838/kWh Commercial: $0.0481/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Lusk,_Wyoming_(Utility_Company)&oldid=411770

291

Wyoming/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources/Full Version Wyoming/Wind Resources/Full Version < Wyoming‎ | Wind Resources Jump to: navigation, search Print PDF Wyoming Wind Resources WyomingMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

292

Wyoming Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wyoming Regions Wyoming Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Wyoming Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Wyoming Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

293

Wyoming Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wyoming Regions Wyoming Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Wyoming Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Wyoming Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

294

City of Pine Bluffs, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bluffs, Wyoming (Utility Company) Bluffs, Wyoming (Utility Company) Jump to: navigation, search Name City of Pine Bluffs Place Wyoming Utility Id 15051 Utility Location Yes Ownership M NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electrical Household Residential General Electrical Commercial Average Rates Residential: $0.1250/kWh Commercial: $0.1050/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Pine_Bluffs,_Wyoming_(Utility_Company)&oldid=410

295

NorthWestern Energy LLC (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name NorthWestern Energy LLC Place Wyoming Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for NorthWestern Energy LLC (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-01 19.46 199.099 171 106.025 923.771 168 125.485 1,122.87 339

296

City of Cody, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cody, Wyoming (Utility Company) Cody, Wyoming (Utility Company) Jump to: navigation, search Name City of Cody Place Wyoming Utility Id 3881 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Demand Commercial Optional Commercial Commercial Residential Residential Average Rates Residential: $0.1040/kWh Commercial: $0.0748/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Cody,_Wyoming_(Utility_Company)&oldid=409457

297

Wyoming Crude Oil + Lease Condensate Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

+ Lease Condensate Proved Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

298

Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

299

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

300

Wyoming Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Wyoming Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

302

Wyoming Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 84,808...

303

Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

304

Wyoming Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Wyoming Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

305

Black Hills Power Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name Black Hills Power Inc Place Wyoming Utility Id 19545 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0867/kWh Commercial: $0.0948/kWh Industrial: $0.0627/kWh The following table contains monthly sales and revenue data for Black Hills Power Inc (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

306

Compound and Elemental Analysis At Valles Caldera - Redondo Area (White, Et  

Open Energy Info (EERE)

White, Et White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Redondo Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico

307

Three-dimensional p-velocity structure of the summit caldera of Newberry Volcano, Oregon  

DOE Green Energy (OSTI)

A three-dimensional high-resolution seismic study of the summit caldera of Newberry Volcano, Oregon, was conducted by the US Geological Survey using an adaptation of the method applied by Mercessian et al. (1984). Preliminary interpretation of the traveltime residuals reveals a ring of high P-velocity material coinciding with the inner ring fault system of the caldera in the upper 2 km. A zone of lower P velocities extends deeper than 2 km in the center of the caldera. 9 refs., 5 figs.

Stauber, D.A.; Iyer, N.M.; Mooney, W.D.; Dawson, P.B.

1985-01-01T23:59:59.000Z

308

GEOTHERMAL RESOURCES AT NPR-3, WYOMING  

NLE Websites -- All DOE Office Websites (Extended Search)

RESOURCES AT NPR-3 Mark Milliken March 2006 The Naval Petroleum Reserves NPR-3 Teapot Dome NPR-3 LOCATION Salt Creek Anticline Trend NPR-3 WHY CONSIDER GEOTHERMAL ASSETS IN A STRIPPER OIL FIELD? RMOTC will partner with industry and academia to provide a test site for technologies that to reduce energy-related operational costs. * Energy efficiency * Energy conservation * Alternative energy sources KEY CHALLENGES * Acceptance by Industry * Creation of a Joint Industry Partnership (JIP) * Consensus on best technologies * Funding for infrastructure support * Funding of Projects Teapot Dome Wyoming Depositional Basin Settings NPR-3 STRATIGRAPHY 1000 2000 3000 4000 5000 6000 7000 DEPTH PRECAMBRIAN BASEMENT CAMBRIAN SS MISSISSIPPIAN MADSION LS PENNSYLVANIAN TENSLEEP PERMIAN GOOSE EGG TRIASSIC CHUGWATER

309

US hydropower resource assessment for Wyoming  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

Francfort, J.E.

1993-12-01T23:59:59.000Z

310

Overview of Energy Development Opportunities for Wyoming  

SciTech Connect

An important opportunity exists for the energy future of Wyoming that will Maintain its coal industry Add substantive value to its indigenous coal and natural gas resources Improve dramatically the environmental impact of its energy production capability Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

Larry Demick

2012-11-01T23:59:59.000Z

311

Wyoming's Economic Future: Planning for Sustained Prosperity  

NLE Websites -- All DOE Office Websites (Extended Search)

Zunsheng Jiao Zunsheng Jiao Senior Geologist WSGS Future Work * Refine the geological framework required for 3-D rock fluid modeling of the Rock Springs Uplift (RSU). * Construct a 3-D numerical model of CO 2 injection into the RSU. * Build a Performance Assessment (PA) model that includes uncertainty and that can be utilized to construct a Probabilistic Risk Analysis (PRA) for CO 2 sequestration at the RSU. A SYSTEM MODEL FOR GEOLOGIC SEQUESTRATION OF CARBON DIOXIDE CO2_PENS, Los Alamos/Goldsim Rock Springs Uplift: an outstanding geological CO 2 sequestration site in southwestern Wyoming * Thick saline aquifer sequence overlain by thick sealing lithologies. * Doubly-plunging anticline characterized by more than 10,000 ft of closed structural relief. * Huge area (50 x 35 mile).

312

Geothermal resources of the Washakie and Great Divide basins, Wyoming  

DOE Green Energy (OSTI)

The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

Heasler, H.P.; Buelow, K.L.

1985-01-01T23:59:59.000Z

313

Field procedures manual: INYO-4, Long Valley Caldera, California  

DOE Green Energy (OSTI)

This Field Procedures Manual is the comprehensive operations guide to be used to curate samples obtained from the INYO-4 site in the Long Valley Caldera, California. This site is a diamond drilling project in small-diameter holes that will produce continuous core. Fluid samples will also be of primary importance at this site. Detailed core and fluid handling procedures are therefore the major focus of this manual. The manual provides a comprehensive operations guide for the well-site geoscientists working at the Department of Energy/Office of Basic Energy Sciences (DOE/OBES) Continental Scientific Drilling Program (CSDP)/Thermal Regimes drill sites. These procedures modify and improve those in previous DOE/OBES field manuals. 1 ref.; 6 figs.

Goff, S.

1989-01-01T23:59:59.000Z

314

Summary Of Recent Research In Long Valley Caldera, California | Open Energy  

Open Energy Info (EERE)

Summary Of Recent Research In Long Valley Caldera, California Summary Of Recent Research In Long Valley Caldera, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Summary Of Recent Research In Long Valley Caldera, California Details Activities (1) Areas (1) Regions (0) Abstract: Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the Sierra Nevada. The papers in this special volume focus on periods of accelerated seismicity and deformation in 1980, 1983, 1989-1990, and 1997-1998 to delineate relations between geologic, tectonic, and hydrologic processes. The results distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and

315

Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) |  

Open Energy Info (EERE)

Long Valley Caldera Area (Stroujkova & Malin, 2001) Long Valley Caldera Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes Our preferred model for the unusual events is that of multiple ordinary earthquakes being triggered or forced by a fluid injection into a thin volcanic conduit. An example of such a structure would be a dike connected to one or more shear or wing fractures. In this model, resonant increases in pressure in the conduit would cause the shear fractures to fail seismically at fixed time delays. For the time delays seen at Long Valley,

316

Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Klusman & Landress, 1979) Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

317

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from

318

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Useful for a whole variety of particular reservoir characterization goals, i.e.: "Isotopic values for the thermal waters become lighter with distance eastward from Casa Diablo, suggesting dilution with nonthermal ground waters from more easterly sources. In the Casa Diablo area, the effects of near-surface boiling cause the observed isotopic shift (along the line

319

New Evidence On The Hydrothermal System In Long Valley Caldera, California,  

Open Energy Info (EERE)

New Evidence On The Hydrothermal System In Long Valley Caldera, California, New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Abstract Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These

320

K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Details Activities (2) Areas (1) Regions (0) Abstract: Seventeen K/Ar dates were obtained on illitic clays within Valles caldera (1.13 Ma) to investigate the impact of hydrothermal alteration on Quaternary to Precambrian intracaldera and pre-caldera rocks in a large,

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Gas Flux Sampling At Long Valley Caldera Area (Lewicki, Et Al., 2008) |  

Open Energy Info (EERE)

Lewicki, Et Al., 2008) Lewicki, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Area (Lewicki, Et Al., 2008) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References J. L. Lewicki, M. L. Fischer, G. E. Hilley (2008) Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Long_Valley_Caldera_Area_(Lewicki,_Et_Al.,_2008)&oldid=508150" Categories: Exploration Activities DOE Funded

322

FIA-13-0021 - In the Matter of Caldera Pharmaceuticals, Inc. | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - In the Matter of Caldera Pharmaceuticals, Inc. 1 - In the Matter of Caldera Pharmaceuticals, Inc. FIA-13-0021 - In the Matter of Caldera Pharmaceuticals, Inc. On April 10, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Freedom of Information Act (FOIA) determination issued by the Department of Energy's Office of Information Resources (OIR), concluding that it could not locate any responsive documents. The Appellant, Caldera Pharmaceuticals, Inc., contested the adequacy of OIR's search for responsive documents pertaining to its FOIA request. The OHA reviewed the OIR's description of its search methodology, and determined that an adequate search for documents was conducted and that no responsive documents existed. Therefore, the OHA denied the Appeal.

323

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of the amplitude data, using the Aki-Lamer method, confirmed that this anomaly exists and we estimated quantitative parameters defining it. All model parameters were physically meaningful except for one. The value for Q inside the anomaly, required to explain the data, was unrealistically low. This was probably due to the inability to include additional

324

A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera,  

Open Energy Info (EERE)

Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Details Activities (3) Areas (1) Regions (0) Abstract: We investigate the effects of viscoelastic (VE) rheologies surrounding a vertically dipping prolate spheroid source during an active period of time-dependent deformation between 1995 and 2000 at Long Valley caldera. We model a rapid magmatic inflation episode and slip across the South Moat fault (SMF) in late 1997. We extend the spherical VE shell model of Newman et al. (Newman, A.V., Dixon, T.H., Ofoegbu, G., Dixon, J.E.,

325

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains  

Open Energy Info (EERE)

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Details Activities (0) Areas (0) Regions (0) Abstract: Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical

326

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

327

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano contains a pressurized gas cap. Shallow depths. References William C. Evans, Michael L. Sorey, Andrea C. Cook, B. Mack Kennedy, David L. Shuster, Elizabeth M. Colvard, Lloyd D. White, Mark A. Huebner

328

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From  

Open Energy Info (EERE)

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Details Activities (5) Areas (1) Regions (0) Abstract: Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclet-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower

329

Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies correlate with the location of known faults in agreement with previous

330

Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

331

Slim Holes At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Slim Holes At Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Slim_Holes_At_Newberry_Caldera_Area_(DOE_GTP)&oldid=402651" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities

332

Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) | Open  

Open Energy Info (EERE)

Newberry Caldera Area (Combs, Et Al., 1999) Newberry Caldera Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes After circulating the mud out of the hole and replacing it with clear water, we attempted two injection tests; one into the open hole section (51 16'- 5360') below the HQ liner, and one into the annulus outside the uncemented part (2748' - -4800') of the liner. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration

333

Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Acoustic Logs Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes The acoustic borehole televiewer (BHTV) was run twice in the wellbore with limited success. There were several problems with the tool's fimctions, but images were successfully obtained over the interval from 2748' to 3635'. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration

334

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells.

335

Multispectral Imaging At Long Valley Caldera Area (Pickles, Et Al., 2001) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Multispectral Imaging At Long Valley Caldera Area (Pickles, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Pickles, Et Al., 2001) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References W. L. Pickles, P. W. Kasamayer, B. A. Martini, D. C. Potts, E. A. Silver (2001) Geobotanical Remote Sensing For Geothermal Exploration

336

Field trip guide to the Valles Caldera and its geothermal systems  

DOE Green Energy (OSTI)

This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

Goff, F.E.; Bolivar, S.L.

1983-12-01T23:59:59.000Z

337

Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies

338

Magnetotellurics At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes In 1986, Unocal Geothermal Division released results from 158 time-domain electromagnetic (TDEM) soundings and, with Chevron Resources, a total of 77 magnetotelluric (MT) stations. Reinterpretations of the Unocal and Chevron data (Park and Torres-Verdin, 1988 ) and the recent public-domain MT studies (e.g. Hermance et al., 1988) outline similar shallow low-resistivity regions. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley

339

Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Valles Caldera - Redondo Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

340

Proceedings of the second workshop on hydrologic and geochemical monitoring in the Long Valley Caldera  

DOE Green Energy (OSTI)

A workshop was held to review the results of hydrologic and geochemical monitoring and scientific drilling in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and techonic processes. Data from a 2400-ft deep core hole completed in June 1986 were presented at the 1986 workshop and participants discussed the need and rationale for siting locations for future scientific drilling in the caldera.

Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A. (eds.)

1986-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP)  

Science Conference Proceedings (OSTI)

An overview of the Wyoming Weather Modification Pilot Project (WWMPP) is presented. This project, funded by the State of Wyoming, is designed to evaluate the effectiveness of cloud seeding with silver iodide in the Medicine Bow and Sierra Madre ...

Daniel Breed; Roy Rasmussen; Courtney Weeks; Bruce Boe; Terry Deshler

342

Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Natural Gas The list below contains summaries of all Wyoming laws and incentives

343

Steam Explosions, Earthquakes, and Volcanic Eruptions--What's in Yellowstone's Future?  

E-Print Network (OSTI)

Steam Explosions, Earthquakes, and Volcanic Eruptions-- What's in Yellowstone's Future? U. In the background, steam vigorously rises from the hot Each year, millions of visitors come to admire the hot, such as geysers. Steam and hot water carry huge quantities of thermal en- ergy to the surface from the magma cham

Fleskes, Joe

344

Wyoming Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Wyoming Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261,478 259,227 269,921 1970's 276,926 292,434 298,439 303,519 263,684 215,104 251,846 262,801 255,760 1980's 366,530 393,027 432,313 579,479 624,619 506,241 512,579 560,603 591,472 1990's 635,922 681,266 728,113 750,853 821,689 895,129 845,253 863,052 870,518 902,889 2000's 993,702 988,595 1,083,860 1,101,425 1,249,309 1,278,087 1,288,124 1,399,570 1,278,439 1,507,142 2010's 1,642,190 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

345

Montana-Dakota Utilities Co (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Utility Id 12199 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0890/kWh Commercial: $0.0630/kWh Industrial: $0.0711/kWh The following table contains monthly sales and revenue data for Montana-Dakota Utilities Co (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 1,001 12,569 12,440 728 11,267 2,349 17 257 19 1,746 24,093 14,808

346

High West Energy, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name High West Energy, Inc Place Wyoming Utility Id 27058 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A F Industrial Commercial & Small Power Commercial Farm and Home Residential Irrigation Industrial Large Power Industrial Security Lighting-150 - 175 watt M V/ HPS Lighting Security Lighting-200 - 250 watt M V/ HPS Lighting Security Lighting-400 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting

347

Town of Basin, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wyoming (Utility Company) Wyoming (Utility Company) Jump to: navigation, search Name Town of Basin Place Wyoming Utility Id 1779 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Demand Service Industrial General Service Commercial Industrial Demand Service Industrial Noncommercial Service Commercial Nongeneral Demand Service Industrial Nongeneral Service Commercial Nonindustrial Demand Service Industrial Nonresidential Service Residential Residential Residential Security Lighting Service Lighting

348

City of Gillette, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Gillette, Wyoming (Utility Company) Gillette, Wyoming (Utility Company) Jump to: navigation, search Name Gillette City of Place Wyoming Utility Id 7222 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial & Misc Service Commercial Demand Meter Industrial Residential Residential Residential All Electric Residential Average Rates Residential: $0.0894/kWh Commercial: $0.0692/kWh

349

Wyoming - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming - Seds - U.S. Energy Information Administration (EIA) Wyoming - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

350

Town of Lingle, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lingle, Wyoming (Utility Company) Lingle, Wyoming (Utility Company) Jump to: navigation, search Name Town of Lingle Place Wyoming Utility Id 11099 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Commercial Commercial Single Phase Commercial Commercial Single Phase B Commercial Commercial Three Phase Commercial Residential B Residential Residential Single Phase Residential Average Rates Residential: $0.1200/kWh Commercial: $0.1060/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

351

Solar and Wind Powering Wyoming Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

352

Town of Guernsey, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Guernsey, Wyoming (Utility Company) Guernsey, Wyoming (Utility Company) Jump to: navigation, search Name Town of Guernsey Place Wyoming Utility Id 7759 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - Billing Demand Equal to or Greater Than 25KW Commercial Commercial - Billing Demand Less Than 25KW Commercial Residential Residential Average Rates Residential: $0.0890/kWh Commercial: $0.1280/kWh Industrial: $0.0979/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

353

Solar and Wind Powering Wyoming Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

354

City of Torrington, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Torrington, Wyoming (Utility Company) Torrington, Wyoming (Utility Company) Jump to: navigation, search Name City of Torrington Place Wyoming Utility Id 19032 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service Demand Commercial General Service Heat Commercial Irrigation and Non-Potable Pumps Commercial Large Power Industrial Resident Electric Heat Rate (ALL Electric) Residential Residential Residential Street Lights Lighting Average Rates Residential: $0.0857/kWh Commercial: $0.1030/kWh

355

Town of Wheatland, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wyoming (Utility Company) Wyoming (Utility Company) Jump to: navigation, search Name Town of Wheatland Place Wyoming Utility Id 20512 Utility Location Yes Ownership M NERC Location WECC Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 175W Mercury Vapor Lighting 400W Mercury Vapor Lighting 700W Mercury Vapor Lighting Electric Home Heating Residential Energy Development Commercial General Service Time-of-Day- Single-Phase Commercial General Service Time-of-Day- Three-Phase Commercial General Service- Single-Phase Commercial General Service- Three-Phase Commercial

356

SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WYOMING WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Solid Waste Collection 562111 Hazardous Waste Collection 562112 Other Waste Collection 562119 Hazardous Waste Treatment and Disposal 562211 Solid Waste Landfill 562212 Solid Waste Combustors and Incinerators 562213 Other Nonhazardous Waste Treatment and Disposal 562219 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998

357

Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Loans and Leases to someone by E-mail Loans and Leases to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Loans and Leases

358

Cuttings Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) |  

Open Energy Info (EERE)

2003) 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Here we present a detailed thermal conductivity profile for LVEW (Fig. 5a). Measurements were performed at the geothermal laboratory of the USGS on chips and core samples using divided bar and needle probe instruments. Detailed descriptions of these instruments and measurement procedures are given in Sass et al. (1971a,b). At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina Flechsig, John H. Sass (2003) Fluid Flow In The Resurgent Dome Of Long

359

Direct-Current Resistivity Survey At Valles Caldera - Redondo Area (Wilt &  

Open Energy Info (EERE)

Wilt & Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Telluric profiles, magnetotelluric sounding, dc resistivity, and electromagnetic sounding surveys were all performed over the caldera in hopes of outlining deep drilling targets (Group 7 Inc., 1972; McPhar, 1973; Geonomics Inc., 1976). These data are used to help define the electrical structure in the reservoir region. Some of the data were reinterpreted using computer models, and interpretations from the various surveys were

360

Time-Domain Electromagnetics At Long Valley Caldera Area (Sorey, Et Al.,  

Open Energy Info (EERE)

1991) 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes In 1986, Unocal Geothermal Division released results from 158 time-domain electromagnetic (TDEM) soundings and, with Chevron Resources, a total of 77 magnetotelluric (MT) stations. Reinterpretations of the Unocal and Chevron data (Park and Torres-Verdin, 1988 ) and the recent public-domain MT studies (e.g. Hermance et al., 1988) outline similar shallow low-resistivity regions. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A.

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may

362

Slim Holes At Newberry Caldera Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Newberry Caldera Area (Combs, Et Al., Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes Negotiations with California Energy Company, Incorporated (CECI), which owns leases in the Newberry KGRA led to an agreement for a cost-shared exploratory drilling project on CECI'Slease. In return for the cost-share, Sandia was to receive testing, production and cost data from the slhnholes and from the production wells drilled nearby, giving a direct comparison of productivity predicted from tests on the slimholes and that achieved by the actual production wells. Since locations, depths and lithology are also similar, there would also be a close comparison of drilling costs.

363

Resistivity Log At Valles Caldera - Sulphur Springs Area (Wilt & Haar,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Resistivity Log At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date Usefulness useful DOE-funding Unknown Notes The generalized resistivity tog (Fig. 8) indicates a multilayer section with considerable resistivity contrast between the layers. The near-surface

364

Static Temperature Survey At Newberry Caldera Area (Combs, Et Al., 1999) |  

Open Energy Info (EERE)

Newberry Caldera Area Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Downhole data collection during this operation was primarily limited to temperature measurements. These temperature logs were taken with Sandia's platinum-resistance-thermometer (PRT) tool which along with a Sandia logging truck remained on-site for the entire project. This instrument uses a simple resistance bridge, with changes in resistance measured from the surface through a four-conductor cable. Since there are no downhole electronics, temperature drift with time is negligible and the PRT temperature measurements are considered a reference standard for this kind

365

Core Analysis At Valles Caldera - Sulphur Springs Area (Armstrong, Et Al.,  

Open Energy Info (EERE)

Et Al., Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Valles Caldera - Sulphur Springs Area (Armstrong, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes In preparation for this work, 103 core samples were collected at 3-m ( IO ft) intervals from the Madera Limestone and underlying Sandia Formation (both of Pennsylvanian age) intersected in the depth interval 1296.1-1556.9 m (4252.5-5108.2 ft) in CSDP corehole VC-2B, completed in 1988 in the Sulphur Springs area of the Valles caldera (Hulen and Gardner, 1989). These samples were prepared as polished thin sections, and studied by

366

Compound and Elemental Analysis At Long Valley Caldera Area (Farrar, Et  

Open Energy Info (EERE)

3) 3) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The chemical and isotopic characteristics of fluid sampled from the principal fracture zone in LVEW indicate that this fluid is not directly connected with or simply supplied by thermal water from the present-day hydrothermal system that flows around the southern edge of the resurgent dome from sources in the west moat. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L.

367

Direct-Current Resistivity Survey At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Wilt & Haar, 1986) Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Telluric profiles, magnetotelluric sounding, dc resistivity, and electromagnetic sounding surveys were all performed over the caldera in hopes of outlining deep drilling targets (Group 7 Inc., 1972; McPhar, 1973; Geonomics Inc., 1976). These data are used to help define the electrical structure in the reservoir region. Some of the data were reinterpreted using computer models, and interpretations from the various surveys were

368

Core Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith & Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

369

Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes The temperature profile in LVEW consists of an upper part (within the volcanic fill) with generally conductive gradients averaging about 35degrees C/km. Within the underlying metamorphic basement, however,

370

Cuttings Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) |  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

371

Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track Analysis Details Activities (2) Areas (1) Regions (0) Abstract: The zircon fission-track dating method was applied to the VC-2B core obtained from the active hydrothermal system at Sulphur Springs, Valles caldera, New Mexico. Four samples were analyzed to obtain both zircon ages and track length data from Permian strata to Precambrian quartz

372

Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Resistivity Log At Long Valley Caldera Area (Sorey, Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Resistivity Log Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Lithologic and resistivity logs from wells drilled into areas of less than 20 ohm-m resistivity show clay mineralization resulting from hydrothermal alteration within the volcanic fill (Nordquist, 1987). Low resistivity in the vicinity of well 44-16, identified in wellbore geophysical logs and two dimensional MT modeling is restricted to the thermal-fluid reservoirs in the early rhyolite and Bishop Tuff (Nordquist, 1987; Suemnicht, 1987). The MT data suggest that the resistivity structure near Mammoth Mountain is

373

Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes The pressure data collected during a 50-h-long flow test at LVEW in September 2001 are best matched using solutions for a flow system consisting of a steeply dipping fracture with infinite hydraulic conductivity, surrounded by a finite-conductivity rock matrix. At shallow

374

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt &  

Open Energy Info (EERE)

Redondo Area (Wilt & Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

375

Ground Gravity Survey At Long Valley Caldera Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Long Valley Caldera Area Ground Gravity Survey At Long Valley Caldera Area (Laney, 2005) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data have been processed and an initial interpretation of the results is ongoing. In particular, we have InSAR stacks for over twenty pairs of

376

Core Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) | Open  

Open Energy Info (EERE)

Pribnow, Et Al., 2003) Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Here we present a detailed thermal conductivity profile for LVEW (Fig. 5a). Measurements were performed at the geothermal laboratory of the USGS on chips and core samples using divided bar and needle probe instruments. Detailed descriptions of these instruments and measurement procedures are given in Sass et al. (1971a,b). At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina

377

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

378

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network (OSTI)

Chapter PQ COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA By G.D. Stricker Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

379

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network (OSTI)

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

380

Micro-Earthquake At Newberry Caldera Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Area (2011) Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Newberry Caldera Geothermal Area (2011) Exploration Activity Details Location Newberry Caldera Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park  

Science Conference Proceedings (OSTI)

Intensive chemical studies were made of S(-II), O/sub 2/, Al, Fe, Mn, P, As(III), As(V), and Li in waters from two high-Cl, low Ca-Mg hotspring drainages in the Lower Geyser Basin, a warm spring system rich in Ca and Mg in the Yellowstone Canyon area, and the Madison River system above Hebgen Lake. Analyses were also made of other representative thermal waters from the Park.

Stauffer, R.E.; Jenne, E.A.; Ball, J.W.

1980-01-01T23:59:59.000Z

382

Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.  

DOE Green Energy (OSTI)

Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

Cegelski, Christine C.; Campbell, Matthew R.

2006-05-30T23:59:59.000Z

383

Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

2003-04-28T23:59:59.000Z

384

Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

2003-04-28T23:59:59.000Z

385

A three-dimensional gravity model of the geologic structure of Long Valley caldera  

DOE Green Energy (OSTI)

Several attempts to define and interpret this anomaly have been made in the past using 2-D and 3-D models. None of the previous interpretations have yielded definitive results, but in fairness, the interpretation here has benefited from a larger gravity data base and more subsurface control than available to previous workers. All published 3-D models simplistically assumed constant density of fill. All 2-D models suffered from the inherent three-dimensionality of the complicated density structure of Long Valley caldera. In addition, previous interpreters have lacked access to geological data, such as well lithologies and density logs, seismic refraction interpretations, suface geology, and structural geology interpretations. The purpose of this study is to use all available gravity data and geological information to constrain a multi-unit, 3-D density model based on the geology of Long Valley caldera and its vicinity. Insights on the geologic structure of the caldera fill can help other geophysical interpretations in determining near-surface effects so that deeper structure may be resolved. With adequate control on the structure of the caldera fill, we are able to examine the gravity data for the presence of deeper density anomalies in the crust. 20 refs., 7 figs.

Carle, S.F.; Goldstein, N.E.

1987-03-01T23:59:59.000Z

386

Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by  

E-Print Network (OSTI)

Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained and Geophysical Agency, Jakarta, Indonesia R. McCaffrey, D. A. Wark, and S. W. Roecker Department of Earth@rpi.edu) Fauzi and G. Ibrahim Meteorological and Geophysical Agency, Jakarta, Indonesia (fauzi@bmg.go.id) Sukhyar

McCaffrey, Robert

387

Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wyoming Regions » Wyoming Regional Science Wyoming Regions » Wyoming Regional Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wyoming Regions Wyoming Regional Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anne Theriault Email: anne@wyrsb.org Regional Event Information Date: February 8, 2014 Maximum Number of Teams: 16 Maximum Number of Teams per School: 3

388

Wyoming Regional Middle School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Wyoming Regions » Wyoming Regional Middle Wyoming Regions » Wyoming Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wyoming Regions Wyoming Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anne Theriault Email: anneo.t@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 16

389

Economic Development from New Generation and Transmission in Wyoming and Colorado  

DOE Green Energy (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Keyser, D.; Lantz, E.

2013-03-01T23:59:59.000Z

390

Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)  

Science Conference Proceedings (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Not Available

2013-03-01T23:59:59.000Z

391

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)  

DOE Green Energy (OSTI)

Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

Not Available

2011-05-01T23:59:59.000Z

392

Distributed Generation Study/Wyoming County Community Hospital | Open  

Open Energy Info (EERE)

Wyoming County Community Hospital Wyoming County Community Hospital < Distributed Generation Study Jump to: navigation, search Study Location Warsaw, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF L36GSID Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 560 kW0.56 MW 560,000 W 560,000,000 mW 5.6e-4 GW 5.6e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/09/26

393

Airport Road, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Road, Wyoming: Energy Resources Road, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9932901°, -107.9492606° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9932901,"lon":-107.9492606,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Bar Nunn, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9135767°, -106.3433606° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9135767,"lon":-106.3433606,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Sweetwater County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Wyoming: Energy Resources County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8519395°, -109.1880047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8519395,"lon":-109.1880047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Weston County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Weston County, Wyoming: Energy Resources Weston County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9270224°, -104.4723301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9270224,"lon":-104.4723301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

NorthWestern Corporation (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name NorthWestern Corporation Place Wyoming Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0975/kWh Commercial: $0.1380/kWh The following table contains monthly sales and revenue data for NorthWestern Corporation (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14.42 146.703 173 99.874 849.906 170 114.294 996.609 343

398

Antelope Hills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0816341°, -106.3241933° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0816341,"lon":-106.3241933,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Rafter J Ranch, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rafter J Ranch, Wyoming: Energy Resources Rafter J Ranch, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.426248°, -110.79844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.426248,"lon":-110.79844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Hot Springs County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Wyoming: Energy Resources County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.658734°, -108.326784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.658734,"lon":-108.326784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Homa Hills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Homa Hills, Wyoming: Energy Resources Homa Hills, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9799661°, -106.3608619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9799661,"lon":-106.3608619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Uinta County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Uinta County, Wyoming: Energy Resources Uinta County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2107397°, -110.6168921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2107397,"lon":-110.6168921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

City of Powell, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City of Powell City of Powell Place Wyoming Utility Id 15294 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Large Power Demand Service Industrial Residential Rate Residential Security Lighting (150W HPS) Lighting Average Rates Residential: $0.0986/kWh Commercial: $0.0956/kWh Industrial: $0.0692/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Powell,_Wyoming_(Utility_Company)&oldid=410131

404

Vista West, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8599962°, -106.4346979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8599962,"lon":-106.4346979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Red Butte, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Butte, Wyoming: Energy Resources Butte, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8060757°, -106.4341976° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8060757,"lon":-106.4341976,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Sublette County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sublette County, Wyoming: Energy Resources Sublette County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8138723°, -109.7591675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8138723,"lon":-109.7591675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Powder River, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0321863°, -106.9872785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0321863,"lon":-106.9872785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Laramie County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Laramie County, Wyoming: Energy Resources Laramie County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4269559°, -104.8454619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4269559,"lon":-104.8454619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Converse County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Converse County, Wyoming: Energy Resources Converse County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0489425°, -105.4068079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0489425,"lon":-105.4068079,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Washakie County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Washakie County, Wyoming: Energy Resources Washakie County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8347829°, -107.7037626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8347829,"lon":-107.7037626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Natrona County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Natrona County, Wyoming: Energy Resources Natrona County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8313837°, -106.912251° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8313837,"lon":-106.912251,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Teton Village, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.587984°, -110.827989° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.587984,"lon":-110.827989,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

South Park, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4221501°, -110.793261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4221501,"lon":-110.793261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Goshen County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Goshen County, Wyoming: Energy Resources Goshen County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0334428°, -104.3791912° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0334428,"lon":-104.3791912,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Moose Wilson Road, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Road, Wyoming: Energy Resources Road, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5252053°, -110.844655° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5252053,"lon":-110.844655,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Lower Valley Energy Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Place Wyoming Place Wyoming Utility Id 11273 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png C-1 Small Commercial Commercial C-2 Large Power Service Commercial I-1 Small Irrigation Service Commercial I-2 Large Irrigation Service Commercial

417

Casper Mountain, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mountain, Wyoming: Energy Resources Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199°, -106.3266921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7330199,"lon":-106.3266921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Albany County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.638448°, -105.5943388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.638448,"lon":-105.5943388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Bessemer Bend, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bessemer Bend, Wyoming: Energy Resources Bessemer Bend, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7580196°, -106.5203123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7580196,"lon":-106.5203123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Wyoming History of Stripper (< 15 BOE/Day) Oil Wells by Year  

U.S. Energy Information Administration (EIA)

Wyoming History of Stripper (< 15 BOE/Day) Oil Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)  

SciTech Connect

Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.

1979-02-01T23:59:59.000Z

422

Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain  

Science Conference Proceedings (OSTI)

The Rodalquilar epithermal gold alunite deposit occurs within the Rodalquilar caldera complex, in the Cabo de Gata volcanic field, a semi-arid region in southeast Spain. The epithermal mineralization is associated with an extensive east-west trending ...

E. Bedini; F. van der Meer; F. van Ruitenbeek

2009-01-01T23:59:59.000Z

423

Geothermal data for 95 thermal and nonthermal waters of the Valles Caldera - southern Jemez Mountains region, New Mexico  

DOE Green Energy (OSTI)

Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.; Grigsby, C.O.

1982-05-01T23:59:59.000Z

424

Hydrogeochemical data for thermal and nonthermal waters and gases of the Valles Caldera- southern Jemez Mountains region, New Mexico  

DOE Green Energy (OSTI)

This report presents field, chemical, gas, and isotopic data for thermal and nonthermal waters of the southern Jemez Mountains, New Mexico. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, north of San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near-surface meteoric waters; (2) acid-sulfate waters at Sulphur Springs (Valles Caldera); (3) thermal meteoric waters in the ring fracture zone (Valles Caldera); (4) deep geothermal waters of the Baca geothermal field and derivative waters in the Soda Dam and Jemez Springs area (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. Data in this report will help in interpreting the geothermal potential of the Jemez Mountains region and will provide background for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

Shevenell, L.; Goff, F.; Vuataz, F.; Trujillo, P.E. Jr.; Counce, D.; Janik, C.J.; Evans, W.

1987-03-01T23:59:59.000Z

425

Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area  

Science Conference Proceedings (OSTI)

As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

Kandt, A.; Hotchkiss, E.; Fiebig, M.

2010-10-01T23:59:59.000Z

426

Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins  

Science Conference Proceedings (OSTI)

The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

1982-02-01T23:59:59.000Z

427

Compound and Elemental Analysis At Long Valley Caldera Area (Sorey, Et Al.,  

Open Energy Info (EERE)

Sorey, Et Al., Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Detailed XRD studies of alteration mineralogy in west-moat drill holes (Flexser, 1989, 1991-this volume) show that the present temperatures in RDO-8, PLV-1, and INYO-4 are well below (65degrees C or more) alteration temperatures, except in the lower part of RDO-8 (below about 300 m). No XRD evidence of epidote or other relatively high-temperature ( > 230 degrees C) alteration products was found in any of the core. At shallow depths in the

428

Compound and Elemental Analysis At Long Valley Caldera Area (Evans, Et Al.,  

Open Energy Info (EERE)

Et Al., Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano contains a pressurized gas cap. Shallow depths. References William C. Evans, Michael L. Sorey, Andrea C. Cook, B. Mack Kennedy, David L. Shuster, Elizabeth M. Colvard, Lloyd D. White, Mark A. Huebner

429

Trace Element Analysis At Long Valley Caldera Area (Klusman & Landress,  

Open Energy Info (EERE)

Klusman & Landress, Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element Analysis At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Trace Element Analysis Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

430

Deep Borehole Measurements for Characterizing the Magma/Hydrothermal System at Long Valley Caldera, CA  

DOE Green Energy (OSTI)

The Magma Energy Program of the Geothermal Technology Division is scheduled to begin drilling a deep (6 km) exploration well in Long Valley Caldera, California in 1989. The drilling site is near the center of the caldera which is associated with numerous shallow (5-7 km) geophysical anomalies. This deep well will present an unparalleled opportunity to test and validate geophysical techniques for locating magma as well as a test of the theory that magma is still present at drillable depths within the central portion of the caldera. If, indeed, drilling indicates magma, the geothermal community will then be afforded the unique possibility of examining the coupling between magmatic and hydrothermal regimes in a major volcanic system. Goals of planned seismic experiments that involve the well include the investigation of local crustal structure down to depths of 10 km as well as the determination of mechanisms for local seismicity and deformation. Borehole electrical and electromagnetic surveys will increase the volume and depth of rock investigated by the well through consideration of the conductive structure of the hydrothermal and underlying regimes. Currently active processes involving magma injection will be studied through observation of changes in pore pressure and strain. Measurements of in situ stress from recovered cores and hydraulic fracture tests will be used in conjunction with uplift data to determine those models for magmatic injection and inflation that are most applicable. Finally, studies of the thermal regime will be directed toward elucidating the coupling between the magmatic source region and the more shallow hydrothermal system in the caldera fill. To achieve this will require careful logging of borehole fluid temperature and chemistry. In addition, studies of rock/fluid interactions through core and fluid samples will allow physical characterization of the transition zone between hydrothermal and magmatic regimes.

Carrrigan, Charles R.

1989-03-21T23:59:59.000Z

431

Proceedings of the symposium on the Long Valley Caldera: A pre-drilling data review  

DOE Green Energy (OSTI)

This proceedings volume contains papers or abstracts of papers presented at a two-day symposium held at the Lawrence Berkeley Laboratory (LBL) on 17 and 18 March 1987. Speakers presented a large body of new scientific results and geologic-hydrogeoloic interpretations for the Long Valley caldera. The talks and the discussions that followed focused on concepts and models for the present-day magmatic-hydrothermal system. Speakers at the symposium also addressed the topic of where to site future scientific drill holes in the caldera. Deep scientific drilling projects such as those being contemplated by the DOE Division of Geothermal Technology (DGT), under the Magma Energy Program, and by the DOE Office of Energy Research, Division of Engineering and Geosciences (DEG), along with the USGS and NSE, under the Continental Scientific Drilling Program (CSDP), will be major and expensive national undertakings. DOE/DEG is sponsoring a program of relatively shallow coreholes in the caldera, and DOE/DGT is considering the initiation of a multiphase program to drill a deep hole for geophysical observations and sampling of the ''near magmatic'' environment as early as FY 1988, depending on the DOE budget. Separate abstracts have been prepared for the individual papers.

Goldstein, N.E. (ed.)

1987-09-01T23:59:59.000Z

432

Yellowstone as an Analog for Thermal-Hydrological-Chemical Processes at Yucca Mountain  

DOE Green Energy (OSTI)

Enhanced water-rock interaction resulting from the emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, may result in changes to fluid flow (resulting from mineral dissolution and precipitation in condensation and boiling zones, respectively). Studies of water-rock interaction in active and fossil geothermal systems (natural analogs) provide evidence for changes in permeability and porosity resulting from thermal-hydrological-chemical (THC) processes. The objective of this research is to document the effects of coupled THC processes at Yellowstone and then examine how differences in scale could influence the impact that these processes may have on the Yucca Mountain system. Subsurface samples from Yellowstone National Park, one of the largest active geothermal systems in the world, contain some the best examples of hydrothermal self-sealing found in geothermal systems. We selected core samples from two USGS research drill holes from the transition zone between conductive and convective portions of the geothermal system (where sealing was reported to occur). We analyzed the core, measuring the permeability, porosity, and grain density of selected samples to evaluate how lithology, texture, and degree of hydrothermal alteration influence matrix and fracture permeability.

P. F. Dobson; T. J. Kneafsey; A. Simmons; J. Hulen

2001-05-29T23:59:59.000Z

433

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Wind Powering America (EERE)

from New Transmission and Generation in Wyoming Introduction Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state. Modeling Inputs New infrastructure projects considered in this analysis would be developed for the purpose of exporting Wyoming wind and natural gas

434

Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment  

Science Conference Proceedings (OSTI)

New results are presented from the teleseismic component of the Jemez Tomography Experiment conducted across Valles caldera in northern New Mexico. We invert 4872 relative {ital P} wave arrival times recorded on 50 portable stations to determine velocity structure to depths of 40 km. The three principle features of our model for Valles caldera are: (1) near-surface low velocities of {minus}17{percent} beneath the Toledo embayment and the Valle Grande, (2) midcrustal low velocities of {minus}23{percent} in an ellipsoidal volume underneath the northwest quadrant of the caldera, and (3) a broad zone of low velocities ({minus}15{percent}) in the lower crust or upper mantle. Crust shallower than 20 km is generally fast to the northwest of the caldera and slow to the southeast. Near-surface low velocities are interpreted as thick deposits of Bandelier tuff and postcaldera volcaniclastic rocks. Lateral variation in the thickness of these deposits supports increased caldera collapse to the southeast, beneath the Valle Grande. We interpret the midcrustal low-velocity zone to contain a minimum melt fraction of 10{percent}. While we cannot rule out the possibility that this zone is the remnant 1.2 Ma Bandelier magma chamber, the eruption history and geochemistry of the volcanic rocks erupted in Valles caldera following the Bandelier tuff make it more likely that magma results from a new pulse of intrusion, indicating that melt flux into the upper crust beneath Valles caldera continues. The low-velocity zone near the crust-mantle boundary is consistent with either partial melt in the lower crust or mafic rocks without partial melt in the upper mantle. In either case, this low-velocity anomaly indicates that underplating by mantle-derived melts has occurred. {copyright} 1998 American Geophysical Union

Steck, Lee K.; Fehler, Michael C.; Roberts, Peter M.; Baldridge, W. Scott; Stafford, Darrik G. [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Lutter, William J.; Sessions, Robert [Department of Geology and Geophysics, University of Wisconsin-Madison (United States)

1998-10-01T23:59:59.000Z

435

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Wyoming Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

436

Wyoming Dry Natural Gas Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Wyoming Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,305 7,211 7,526 1980's 9,100 9,307 9,758 10,227 10,482 10,617 9,756 10,023 10,308 10,744 1990's 9,944 9,941 10,826 10,933 10,879 12,166 12,320 13,562 13,650 14,226 2000's 16,158 18,398 20,527 21,744 22,632 23,774 23,549 29,710 31,143 35,283 2010's 35,074 35,290 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 Wyoming Dry Natural Gas Proved Reserves

437

Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Wyoming Natural Gas Prices

438

UMTRA project water sampling and analysis plan, Riverton, Wyoming  

Science Conference Proceedings (OSTI)

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

Not Available

1994-03-01T23:59:59.000Z

439

Wyoming chemical flood test for oil recovery shows promise  

Science Conference Proceedings (OSTI)

This project was begun in 1978 to provide data to promote surfactant chemical flooding on a commercial scale in the low-permeability reservoirs of eastern Wyoming and Colorado. The Big Muddy Field in Wyoming was selected because of the large resource, potential net pay, and high oil saturation. Injection began on February 20, 1980 with a surfactant flooding process. Water mixed with salt (brine) was injected as a preflush which was completed on January 20, 1981. This produced 12,122 bbl of oil. The next step involves injecting a surfactant, co-surfactant (alcohol), and polymer. When the injection of the surfactant is completed in the summer of 1982, polymer alone will be injected. Polymer injection will be completed sometime in 1984. The final phase will be a followup water drive scheduled for 1984-1987. As of February 1, 1982, 36,683 bbl of oil had been produced. About 88 bbl of oil per day is being produced, compared to only about 41 bbl per day in February 1981. (ATT)

Not Available

1981-01-01T23:59:59.000Z

440

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)  

SciTech Connect

Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

2011-05-01T23:59:59.000Z

442

Elastomechanical methods in the exploration of the Valles Caldera, New Mexico. Final report, June 8, 1981-October 8, 1981  

DOE Green Energy (OSTI)

The Valles caldera in the Jemez Mountains of New Mexico is a case of an active caldera that is an object for a comprehensive ground tilt field program to map both elastic and rheic discontinuities. Based on a rather comprehensive theoretical development that is outlined in five separate Essays, estimates of the amplitudes of some of the possible ground tilt signals were obtained. Based on the results, the strongest signals of the order of 100 to 200 nanoradians would appear to result from the purely elastic response of the caldera fill to a barometric forcing. Moreover, assuming a magmatic underplate below the Valles, barometric forcing may lead to a flexure of the upper crust that could generate tilt signals of a similar magnitude. Present data material is insufficient to allow a useful estimate to be made of the possible tilt signals due to the rheic properties of a Valles pluton that may be in the state of partial fusion.

Bodvarsson, G.

1981-01-01T23:59:59.000Z

443

Preliminary study of the potential environmental concerns associated with surface waters and geothermal development of the Valles Caldera  

DOE Green Energy (OSTI)

A preliminary evaluation is presented of possible and probable problems that may be associated with hydrothermal development of the Valles Caldera Known Geothermal Resource Area (KGRA), with specific reference to surface waters. Because of the history of geothermal development and its associated environmental impacts, this preliminary evaluation indicates the Valles Caldera KGRA will be subject to these concerns. Although the exact nature and size of any problem that may occur is not predictable, the baseline data accumulated so far have delineated existing conditions in the streams of the Valles Caldera KGRA. Continued monitoring will be necessary with the development of geothermal resources. Further studies are also needed to establish guidelines for geothermal effluents and emissions.

Langhorst, G.J.

1980-06-01T23:59:59.000Z

444

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

445

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sponsored Technology Enhances Recovery of Natural Gas in Sponsored Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio.

446

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Enhances Recovery of Natural Gas in Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio. An added benefit of the project, which was managed by the National Energy

447

Wyoming Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC BUILDING TECHNOLOGIES PROGRAM 2 2009 AND 2012 IECC AS COMPARED TO THE 2006 IECC The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Wyoming homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost-effective over a 30-year life cycle. On average, Wyoming homeowners will save $1,809 over 30 years under the 2009 IECC, with savings still higher at $6,441 under the 2012 IECC. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2009 and 2 years with the 2012 IECC. Average

448

Two Wyoming mines accounted for 20% of U.S. coal production by ...  

U.S. Energy Information Administration (EIA)

Preliminary coal production data for 2012 show that 9 out of the top 10 producing coal mines in the United States are located in Wyoming; the top two producing mines ...

449

Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Information: Wyoming Regional Website: www.wyrsb.org External link Team Approval Process Teams are approved on a first-come, first-served basis determined by the datetime...

450

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

451

EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

452

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

453

Synthetic fuels projects status report. Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming. Final report  

SciTech Connect

Energy resources are abundant in the six Federal Region 8 States of Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. This publication provides a compilation of available data on energy resources and projected levels of development.

Grace, S.R.; Thoem, T.L.

1980-11-01T23:59:59.000Z

454

Geothermal modeling of Jackson Hole, Teton County Wyoming: Final report  

DOE Green Energy (OSTI)

This study investigated the possibility of high-temperature-heat sources (greater than 300/sup 0/C) in the area of Jackson Hole, northwestern Wyoming. Analytical and finite-difference numerical models describing conductive and convective terrestrial heat transport were utilized in an attempt to define the thermal regime of this area. This report presents data which were used as constraints for the analytic and numerical thermal models. These data include a general discussion of geology of the area, thermal spring information, subsurface temperature information, and hydrology of the area. Model results are presented with a discussion of interpretations and implications for the existence of high-temperature heat sources in the Jackson Hole area.

Heasler, H.P.

1987-04-01T23:59:59.000Z

455

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

456

Field guide to Muddy Formation outcrops, Crook County, Wyoming  

Science Conference Proceedings (OSTI)

The objectives of this research program are to (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline bamer reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. This report contains the data and analyses collected from outcrop exposures of the Muddy Formation, located in Crook County, Wyoming, 40 miles south of Bell Creek oil field. The outcrop data set contains permeability, porosity, petrographic, grain size and geologic data from 1-inch-diameter core plugs chilled from the outcrop face, as well as geological descriptions and sedimentological interpretations of the outcrop exposures. The outcrop data set provides information about facies characteristics and geometries and the spatial distribution of permeability and porosity on interwell scales. Appendices within this report include a micropaleontological analyses of selected outcrop samples, an annotated bibliography of papers on the Muddy Formation in the Powder River Basin, and over 950 permeability and porosity values measured from 1-inch-diameter core plugs drilled from the outcrop. All data contained in this resort are available in electronic format upon request. The core plugs drilled from the outcrop are available for measurement.

Rawn-Schatzinger, V.

1993-11-01T23:59:59.000Z

457

Jobs and Economic Development from New Transmission and Generation in Wyoming  

DOE Green Energy (OSTI)

This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

Lantz, E.; Tegen, S.

2011-03-01T23:59:59.000Z

458

Wyoming and western South Dakota's 1983 fuelwood harvest. Forest Service resource bulletin  

SciTech Connect

The estimated fuelwood harvests in Wyoming and western South Dakota in 1983 were 143,000 cords (10 million cubic feet) and 46,000 cords (3.5 million cubic feet), respectively. In Wyoming, the fuelwood harvest volume was one-third the volume of sawlogs and other industrial roundwood products harvested. In western South Dakota, the fuelwood harvest volume was 15% of the industrial roundwood. Survey participants were commercial operators and households.

McLain, W.H.

1987-09-01T23:59:59.000Z

459

Isotopic Analysis At Seven Mile Hole Area (Larson, Et Al., 2009) | Open  

Open Energy Info (EERE)

2009) 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes The 40Ar/39Ar data were collected from a single fragment of alunite from sample Y-05-25, approximately 0.5 cm3 in size. References Peter B. Larson, Allison Phillips, David John, Michael Cosca, Chad Pritchard, Allen Andersen, Jennifer Manion (2009) A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Seven_Mile_Hole_Area_(Larson,_Et_Al.,_2009)&oldid=68747

460

Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming  

Science Conference Proceedings (OSTI)

This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

Not Available

1989-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geological and Geobotanical Studies of Long Valley Caldera, CA, USA Utilizing New 5m Hyperspectral Imagery  

SciTech Connect

In May of 1989, a six month-long small magnitude earthquake swarm began beneath the Pleistocene-aged dacitic cumulovolcano Mammoth Mountain. The following year, increased mortality of trees in the Horseshoe Lake region was observed. Their deaths were initially attributed to the Sierran drought of the 1980's. In 1994 however, soil gas measurements made by the USGS confirmed that the kills were due to asphyxiation of the vegetation via the presence of 30-96 % CO{sub 2} in ground around the volcano[1]. Physiological changes in vegetation due to negative inputs into the ecological system such as anomalously high levels of magmatic CO{sub 2}, can be seen spectrally. With this phenomena in mind, as well as many other unanswered geological and geobotanical questions, seven lines of hyperspectral 5-meter HyMap data were flown over Long Valley Caldera located in eastern California on September 7, 1999. HyMap imagery provides the impetus to address geobotanical questions such as where the treekills are currently located at Mammoth and other locales around the caldera as well as whether incipient kills can be identified. The study site of the Horseshoe Lake treekills serves as a focus to the initial analyses of this extensive HyMap dataset due to both the treekill's geologically compelling origins and its status as a serious volcanic geohazard.

Martini, B.A.; Silver, E.A.; Potts, D.C.; Pickles, W.L.

2000-07-25T23:59:59.000Z

462

Geobotanical characterization of a geothermal system using hyperspectral imagery: Long Valley Caldera, CA  

SciTech Connect

We have analyzed hyperspectral Airborne Visible-Infrared Imaging System (AVIRIS) imagery taken in September of 1992 in Long Valley Caldera, CA, a geothermally active region expressed surficially by hot springs and fumaroles. Geological and vegetation mapping are attempted through spectral classification of imagery. Particular hot spring areas in the caldera are targeted for analysis. The data is analyzed for unique geobotanical patterns in the vicinity of hot springs as well as gross identification of dominant plant and mineral species. Spectra used for the classifications come from a vegetation spectral library created for plant species found to be associated with geothermal processes. This library takes into account the seasonality of vegetation by including spectra for species on a monthly basis. Geological spectra are taken from JPL and USGS mineral libraries. Preliminary classifications of hot spring areas indicate some success in mineral identification and less successful vegetation species identification. The small spatial extent of individual plants demands either sub-pixel analysis or increased spatial resolution of imagery. Future work will also include preliminary analysis of a hyperspectral thermal imagery dataset and a multitemporal air photo dataset. The combination of these remotely sensed datasets for Long Valley will yield a valuable product for geothermal exploration efforts in other regions.

Carter, M R; Cochran, S A; Martini, B A; Pickles, W L; Potts, D C; Priest, R E; Silver, E A; Wayne, B A; White, W T

1998-12-01T23:59:59.000Z

463

Tensor controlled-source audiomagnetotelluric survey over the Sulphur Springs thermal area, Valles Caldera  

DOE Green Energy (OSTI)

The extensive tensor CSAMT survey of the Sulphur Springs geothermal area, Valles Caldera, New Mexico, consists of 45 high-quality soundings acquired in continuous-profiling mode and has been funded in support of CSDP drillholes VC-2A and VC-2B. Two independent transmitter bipoles were energized for tensor measurements using a 30 KW generator placed approximately 13 km south of the VC-2B wellhead. These current bipoles gave source fields over the receiver sites which were substantially independent in polarization and provided well-resolved tensor elements. The surroundings in the Sulphur Springs area were arranged in four profiles to cross major structural features. At each receiver, two orthogonal electric and three orthogonal magnetic field components were acquired in accordance with tensor principles. Derivation of model resistivity cross sections from our data and their correlation with structure and geochemistry are principal components of the OBES award. However, Sulphur Springs also can serve as a natural testbed of traditional assumptions and methods of CSAMT with quantification through rigorous model analysis. Issues here include stability and accuracy of scalar versus tensor estimates, theoretical versus observed field patterns over the survey area, and controls on near-field effects using CSAMT and natural field data both inside and outside the caldera.

Wannamaker, P.E.

1991-10-01T23:59:59.000Z

464

Managing the Yellowstone River System with Place-based Cultural Data  

E-Print Network (OSTI)

This project aims to create new research tools within the human dimensions (HD) of the natural resources field to improve environmental policy decision making. It addresses problems that arise from the recent trend towards decentralized natural resource management (NRM) and planning (e.g., community-based planning, watershed-based and collaborative management, others). By examining one decentralized riparian management planning effort along the Yellowstone River (Montana), this study finds that decentralization forces new needs such as localized information requirements and a better understanding of the rationales behind local interests. To meet these new scale demands and to ensure that policy best fits the social and biophysical settings, this project argues that local cultural knowledge can serve as an organizing framework for delivering the kinds of understanding needed for decentralized planning. This was tested by interviewing 313 riverfront landowners, recreationalists, and civic managers to understand how residents conceptualize the rivers natural processes, its management, and their desires for the future of the river. Analysis of the transcribed in-depth interview textsthe Yellowstone River Cultural Inventory (YRCI)found that: (1) altering decision venues places more significance upon interpersonal working relationships between managers and citizens; (2) while local expertise can provide higher quality information to managers, local decision making cultures still retain power dynamics that can inhibit or advance conservation policies; (3) how natural resource places are symbolically communicated has a material impact upon resource uses; (4) how residents conceptualize the ownership of land is complicated along a dynamic river; and (5) this dynamism impacts planning efforts. In sum, this project argues that for social research to provide the data and analysis appropriate, a modification in scale and a commensurate shift in the lenses used for social inquiry is necessary. An in-depth understanding of local cultureslike the YRCIenables agencies to best manage in decentralized scales of planning by calling attention to site-specific nuances such as power dynamics and place representation which are often missed in traditional large-scale HD methods and lenses. This research also functions as a preemptive way to engage the public in environmental planning helping decision makers best fit policy to particular socio-cultural and ecological settings.

Hall, Damon M.

2010-08-01T23:59:59.000Z

465

Wyoming Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Wyoming Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 395,656 447,615 416,565 352,858 407,863 471,095 623,915 1990's 690,356 711,799 765,254 63,667 14,283 12,449 27,821 719,933 1,004,020 1,079,375 2000's 1,240,038 1,359,868 1,533,724 1,561,322 1,724,725 1,729,760 1,811,992 1,916,238 2,116,818 2,239,778 2010's 2,318,486 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

466

Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122 27,044 24,271 21,990 1994 21,363 18,661 19,224 20,115 21,689 22,447 23,568 25,072 26,511 27,440 26,978 25,065 1995 22,086 20,762 19,352 18,577 19,027 20,563 22,264 23,937 25,846 27,025 26,298 24,257

467

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's 36,526 36,930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

468

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266 23,278 24,338 24,116 30,531 32,176 36,386 2010's 36,192 36,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

469

National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota  

SciTech Connect

Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

1982-09-01T23:59:59.000Z

470

Workshop on hydrologic and geochemical monitoring in the Long Valley Caldera: proceedings  

DOE Green Energy (OSTI)

A workshop reviewed the results of hydrologic and geochemical monitoring in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and tectonic processes. Workshop participants discussed the need to instrument sites for continuous measurements of several parameters and to obtain additional hydrologic and chemical information from intermediate and deep drill holes. In addition to seismic and deformation monitoring, programs are currently in progress to monitor changes in the discharge characteristics of hot springs, fumaroles, and soil gases, as well as pressures and temperatures in wells. Some hydrochemical parameters are measured continuously, others are measured monthly or at longer intervals. This report summarizes the information presented at the hydrologic monitoring workshop, following the workshop agenda which was divided into four sessions: (1) overview of the hydrothermal system; (2) monitoring springs, fumaroles, and wells; (3) monitoring gas emissions; and (4) conclusions and recommendations.

Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A.

1984-10-01T23:59:59.000Z

471

Isotopic and trace element characteristics of rhyolites from the Valles Caldera, New Mexico. Final technical report  

DOE Green Energy (OSTI)

This report is a summary of work supported by DOE grant No. DE-FGO5-87ER13795 that was completed or is still in progress. The stated purpose of this grant was to collect geochemical information (trace element, radiogenic isotope and stable oxygen and hydrogen isotope) on samples from core holes VC-I and VC-2a in the Valles caldera in order to establish a consistent detailed intracaldera stratigraphy and relate this to extracaldera volcanic rock units of the Jemez Mountains. Careful stratigraphic control of the intracaldera units is necessary to evaluate models of caldera formation, ignimbrite deposition, and resurgence. Combined stable and radiogenic isotope and trace element data will also provide major insights to petrogenesis of the Bandelier magma system. The composition of non-hydrothermally altered samples from outflow units of the Bandelier Tuff and related volcanics must be known to assess isotopic variations of intracaldera ignimbrite samples. On detailed examination of the VC-2a core samples, it became apparent that hydrothermal alteration is so extensive that no geochemical information useful for stratigraphic fingerprinting or petrogenesis could be obtained, and that correlation with other intracaldera units and extracaldera units must be made on the basis of stratigraphic position and gross lithologic characteristics. Accordingly, we emphasize geochemical data from the extracaldera Bandelier Tuffs and related units which will be useful for comparison with proposed drill hole VC-4 and for any future studies of the region. The stable isotope, radiogenic isotope and trace element data obtained from this project, combined with existing major and trace element data for volcanic rocks from this area, provide an extensive data base essential to future Continental Scientific Drilling Program projects in the Jemez Mountains of New Mexico.

Self, S.; Sykes, M.L. [Hawaii Univ., Honolulu, HI (United States). Dept. of Geology and Geophysics; Wolff, J.A. [Texas Univ., Arlington, TX (United States). Dept. of Geology; Skuba, C.E. [McMaster Univ., Hamilton, ON (Canada). Dept. of Geology

1991-09-01T23:59:59.000Z

472

DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preparing for Sale of Unique RMOTC Property and Equipment in Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming October 24, 2013 - 8:59am Addthis DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming Did you know? RMOTC's mission is to ensure America's energy security and prosperity by assisting its partners in developing and commercializing energy efficient and environmentally friendly technologies to address critical global energy challenges. NPR-3, the site of RMOTC, is the only remaining Naval Petroleum Reserve administered by DOE and the government's only operating oilfield. The government's sale of NPR-3 by the end of 2014 will include the sale of all RMOTC-owned equipment and materials. In the eastern Rocky Mountains about 40 miles north of Casper, Wyo., is a

473

First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report  

DOE Green Energy (OSTI)

This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

Rowley, J.; Hawkins, W.; Gardner, J. (comps.)

1987-02-01T23:59:59.000Z

474

Geochemical exploration for uranium in the Red Desert, Wyoming  

SciTech Connect

Geochemical exploration techniques for uranium were performed at a known deposit, the ENQ uranium deposit, which is in arkosic sandstones of the Battle Spring Formation in the Red Desert of Wyoming. Regional gross-gamma aerial data did not indicate the most favorable terrain for follow-up surveys, but instead the radionuclide distribution mapped radioactive mudstones. The /sup 234/U//sup 238/U activity ratio and total uranium concentration in ground water were successful downflow indicators of the ENQ deposit. Helium concentration increased downflow in the ground water flowing from the deposit, while Cu, Pb, and Ba decreased. Radon emanometric techniques generally produced data that coincided with the equivalent uranium concentrations at shallow depth. Helium content in soil was interpreted to reflect local lithology and gaseous migration. Multielement geochemical analyses on soils were effective in delineating the general vicinity of the orebody. Factor analysis was used to recognize three lithologic subgroups. Leachable uranium in soils was the best indicator of subsurface mineralization for the entire subregional area. Equivalent uranium, as determined from the gamma-spectral borehole logs, revealed a consistent dispersion pattern within the host sand of the Battle Spring Formation, whereas gross gamma logs could not detect the subtle gradients in radioelement content. Halo models developed to explain the distribution of helium, radon, radioelements, and trace elements demonstrate uranium itself as the most mobile indicator. Radon and helium appear to reflect local generation from radium accumulations. Vertical leakage due to hydraulic flow against an impermeable barrier is interpreted to be the major secondary redistribution process responsible for the measureable surface signals.

Pacer, J.C.; Bramlett, L.; Moll, S.

1981-05-01T23:59:59.000Z

475

History of the youngest members of the Valles Rhyolite, Valles caldera, New Mexico using ESR dating method  

DOE Green Energy (OSTI)

The cooling history of the Valles caldera was studied by the electron spin resonance (ESR) dating method using Al and Ti centers in quartz grains which were separated from the youngest units of the Valles Rhyolite. The ESR apparent ages are much younger than fission track ages and {sup 39}Ar- {sup 40}Ar ages. Three possibilities are suggested, the first is that the ESR ages are real, the second is that ESR method did not work for these samples, and the third is that about 10--40 ka, the signal intensity was partially reduced by a thermal event such as proposed by Harrison et al. (1986). Research on the first and second possibilities is continuing. The third possibility might explain the difference between ESR ages and those by other methods (fission track and {sup 39}Ar- {sup 40}Ar). ESR dating has produced new insights regarding the history of the Valles caldera.

Ogoh, K.; Toyoda, S.; Ikeda, S.; Ikeya, M. (Osaka Univ., Toyonaka (Japan). Dept. of Physics); Goff, F. (Los Alamos National Lab., NM (United States))

1991-01-01T23:59:59.000Z

476

Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics  

Science Conference Proceedings (OSTI)

Moderately thermophilic acidophilic bacteria were isolated from geothermal (3083 C) acidic (pH 2.7 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 C, and pH 1.01.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

D. B. Johnson; N. Okibe; F. F. Roberto

2003-07-01T23:59:59.000Z

477

A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter SW A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING By R.M. Flores of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

478

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

479

Genesis of the Goshen County, Wyoming, Tornado on 5 June 2009 during VORTEX2  

Science Conference Proceedings (OSTI)

The genesis of a strong and long-lived tornado observed during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) in Goshen County, Wyoming, on 5 June 2009 is studied. Mobile radar, mobile mesonet, rawinsonde, and ...

Karen Kosiba; Joshua Wurman; Yvette Richardson; Paul Markowski; Paul Robinson; James Marquis

2013-04-01T23:59:59.000Z

480

FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS  

E-Print Network (OSTI)

Chapter HS FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

Note: This page contains sample records for the topic "yellowstone caldera wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wake Characteristics of the MOD-2 Wind Turbine at Medicine Bow, Wyoming  

SciTech Connect

The present paper summarizes results obtained from profile measurements of the MOD-2 wind turbine wake at Medicine Bow, Wyoming. Vertical profiles of wind speed, potential temperature, and turbulence at 3 and 7 rotor diameters downstream of the turbine, taken under near neutral or slightly stable atmospheric conditions, are presented.

Jacobs, E. W.; Kelley, N. D.; McKenna, H. E.; Birkenheuer, N. B.

1984-11-01T23:59:59.000Z

482

Profile of environmental quality: Region 8, Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming  

SciTech Connect

This report presents a brief overview of some of the problems which affect environmental quality in the Region VIII states of Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. It also discusses EPA's programs aimed at dealing with these problems. Some color maps and graphs may not reproduce satisfactorily.

1978-10-01T23:59:59.000Z

483

Controls on the geomorphic expression and evolution of gryphons, pools, and caldera features at hydrothermal seeps in the Salton Sea Geothermal Field,  

E-Print Network (OSTI)

(reviewed in [6,7]). This area has received considerable interest lately, propelled by developments in Biotechnology 2006, 17:250­255 www.sciencedirect.com #12;geothermal spring in Yellowstone National Park as environmental, community genomics or metagenomics. Few areas of biology have witnessed such a surge in interest

Mazzini, Adriano

484

Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico  

DOE Green Energy (OSTI)

This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

Musgrave, J.A.; Goff, F.; Shevenell, L.; Trujillo, P.E. Jr.; Counce, D.; Luedemann, G.; Garcia, S.; Dennis, B.; Hulen, J.B.; Janik, C.; Tomei, F.A.

1989-02-01T23:59:59.000Z

485

Jobs and Economic Development from New Transmission and Generation in Wyoming  

Wind Powering America (EERE)

Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Jobs and Economic Development from New Transmission and Generation in Wyoming Eric Lantz and Suzanne Tegen Technical Report NREL/TP-6A20-50577 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Jobs and Economic Development from New Transmission and Generation in Wyoming Eric Lantz and Suzanne Tegen Prepared under Task No. WTQ1.1000

486

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:28 PM" "Back to Contents","Data 1: Wyoming Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290WY2" "Date","Wyoming Natural Gas Underground Storage Capacity (MMcf)" 37271,105869 37302,105869 37330,105869 37361,105869

487

,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290wy2a.ht