National Library of Energy BETA

Sample records for yellowstone caldera geothermal

  1. Geothermal Systems of the Yellowstone Caldera Field Trip Guide

    SciTech Connect (OSTI)

    Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

    1980-09-08

    Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

  2. Yellowstone Caldera Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: EnergyYBR Solar JumpYasudaYellowstone

  3. Wyoming/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera...

  4. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  5. Simulation of water-rock interaction in the yellowstone geothermal system using toughreact

    E-Print Network [OSTI]

    Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

    2003-01-01

    fluid flow in the Yellowstone geothermal system, Wyoming.USA ABSTRACT The Yellowstone geothermal system provides anPrevious studies of the Yellowstone geothermal system have

  6. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    E-Print Network [OSTI]

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-01-01

    fluid flow in the Yellowstone geothermal system, Wyoming,ROCK INTERACTION IN THE YELLOWSTONE GEOTHERMAL SYSTEM USINGGeyser Basin of the Yellowstone geothermal system, has been

  7. A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO

    E-Print Network [OSTI]

    Wilt, M.

    2011-01-01

    of the ~lles Caldera geothermal system, New Mexico. Trans.of an active geothermal system in valles Caldera, Jemezarea, ~lles Caldera geothermal system, New Mexico. Los

  8. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Area (Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area...

  9. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Area (Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

  10. Simulation of water-rock interaction in the yellowstone geothermal system using toughreact

    E-Print Network [OSTI]

    Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

    2003-01-01

    in the Yellowstone geothermal system, Wyoming. Journal ofMuffler, L.J.P (Eds. ), Geothermal Systems: Principles andrhyolite in an active geothermal system: Yellowstone drill

  11. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  12. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water...

  13. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  14. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  15. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas...

  16. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  17. Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  18. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At...

  19. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test...

  20. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  1. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  2. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  4. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Sasada, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal Area (Sasada, 1988)...

  5. Density Log At Valles Caldera - Redondo Geothermal Area (Wilt...

    Open Energy Info (EERE)

    Density Log At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log At Valles...

  6. Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal Area (Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  7. Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data...

  8. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Soil Sampling At Long Valley Caldera Geothermal Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At...

  9. Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings...

  10. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At...

  11. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  12. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    Mariner & Willey, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Mariner & Willey,...

  13. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Steck, Et Al., 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  15. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Roberts, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  16. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  17. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Nishimura, Et Al., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  18. Compound and Elemental Analysis At Yellowstone Region (Goff ...

    Open Energy Info (EERE)

    Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not...

  19. Evidence For Gas And Magmatic Sources Beneath The Yellowstone...

    Open Energy Info (EERE)

    of magma beneath the Yellowstone caldera. Authors Stephan Husen, Robert B. Smith and Gregory P. Waite Published Journal Journal of Volcanology and Geothermal Research,...

  20. Gas Geochemistry Of The Valles Caldera Region, New Mexico And...

    Open Energy Info (EERE)

    Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Jump to: navigation, search OpenEI...

  1. Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming

    SciTech Connect (OSTI)

    Daniel, R.G.; Boore, D.M.

    1982-04-10

    To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/d..delta... Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation.

  2. Time-Domain Electromagnetics At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    were designed to assess the Long Valley hydrothermal system and to identify possible deep geothermal drilling targets beneath the western portion of the caldera. Notes The...

  3. Geodetic Survey At Long Valley Caldera Geothermal Area (Newman...

    Open Energy Info (EERE)

    Caldera Geothermal Area Exploration Technique Geodetic Survey Activity Date 1995 - 2000 Usefulness not indicated DOE-funding Unknown Notes "We investigate the effects of...

  4. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Conceptual Model Activity Date 2003 - 2003...

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  6. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1998 - 2002...

  7. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    temperature gradient, hydrogeochemical, hydrologic, and geologic data from 10 geothermal test wells and several hot springs were integrated to model the Valles caldera...

  8. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    temperature gradient, hydrogeochemical, hydrologic, and geologic data from 10 geothermal test wells and several hot springs were integrated to model the Valles caldera...

  9. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    E-Print Network [OSTI]

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-01-01

    in the Yellowstone geothermal system, Wyoming, Jour. Volcan.engineering, In: Geothermal Systems: Principles and Caserhyolite in an active geothermal system: Yellow- stone drill

  10. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem

    E-Print Network [OSTI]

    #12;Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem John R. Spear*, Jeffrey J of organisms of the kinds that derive energy for primary productivity from the oxidation of molecular hydrogen of energy for primary production in the Yellowstone high-temperature ecosys- tem. Hydrogen concentrations

  11. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Additional References Retrieved from...

  12. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    E-Print Network [OSTI]

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-01-01

    borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal

  13. Simulation of water-rock interaction in the yellowstone geothermal system using toughreact

    E-Print Network [OSTI]

    Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

    2003-01-01

    borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal

  14. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples...

  15. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  16. Inversion for sources of crustal deformation and gravity change at the Yellowstone caldera

    SciTech Connect (OSTI)

    Vasco, D.W.; Taylor, C.L. (Geophysics Lab., Hanscom AFB, MA (USA)); Smith, R.B. (Univ. of Utah, Salt Lake City (USA))

    1990-11-10

    The Yellowstone caldera was formed in the latest of three explosive eruptions of rhyolites and ash flow tuffs totaling 3,700 km{sup 3} at 2, 1.2, and 0.6 m.y. before present. Its youthful volcanic history, widespread hydrothermal activity, intense seismicity, and extremely high heat flow, in excess of 30 times the continental average, marks the Yellowstone volcanic system as a giant caldera at unrest. Orthometric height increases of the caldera of up to 76 cm, measured from precise leveling surveys from 1923 to 1975-1977, were inverted to determine volume expansion source models for the caldera-wide deformation. For the 1923 to 1977 uplift episode, two regions of expansion were found: (1) in the northern part of the caldera near the Sour Creek resurgent dome of {approximately}0.37 km{sub 3}, and (2) in the southern part of the caldera, near the Mallard Lake resurgent dome of {approximately}0.41 km{sub 3}. Both bodies occur in the upper crust from near-surface depths to 6.0 km, but the largest volume expansions were found in the 3.0-6.0 km depth range. The southern caldera source volume, near the Mallard Lake dome, may extend down to 9.0 km. From 1976 to 1987, nearly simultaneous measurements of elevation and gravity changes were made on a profile across the northern caldera during a period of net uplift. Models of the temporal gravity variation infer that the volume increase for the northern caldera source must lie above 9.0 km and involved a density perturbation greater than +0.002 g/cm{sup 3}. The modeled volumetric sources are in the same general locations as bodies of low P wave velocities, high seismic attenuation, and large negative Bouguer gravity anomalies. It is likely that the modeled volumetric increases were caused by migration of magmas and/or the introduction of large volumes of hydrothermal fluids into the upper crust.

  17. Diversity of Life at the Geothermal Subsurface--Surface Interface: The Yellowstone Example

    E-Print Network [OSTI]

    Diversity of Life at the Geothermal Subsurface--Surface Interface: The Yellowstone Example example of Yellowstone National Park indi- cate that the diversity of microbial life at the geothermal temperatures. The geothermal subsurface-surface interface in the presence of both electron donors and acceptors

  18. Magnetotellurics At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, the authors make three estimates of...

  19. Magnetotellurics At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, the authors make three estimates of...

  20. 36Cl as a tracer in geothermal systems- Example from Valles Caldera...

    Open Energy Info (EERE)

    en.openei.orgwindex.php?title36Clasatraceringeothermalsystems-ExamplefromVallesCaldera,NewMexico&oldid739991" Categories: Reference Materials References Geothermal...

  1. Newberry Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville,Information 7thJersey: EnergyNewberry Caldera

  2. Fungi from geothermal soils in Yellowstone National Park

    SciTech Connect (OSTI)

    Redman, R.S.; Litvintseva, A.; Sheehan, K.B.; Henson, J.M.; Rodriguez, R.J.

    1999-12-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70 C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils the authors cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. They cultured only three of these species from nearby cool (0 to 22 C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.

  3. Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996)Al.,EnergyOpen Energy

  4. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  5. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  6. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

  7. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    surrounding a vertically dipping prolate spheroid source during an active period of time-dependent deformation between 1995 and 2000 at Long Valley caldera. We model a rapid...

  8. Field Mapping At Valles Caldera - Redondo Geothermal Area (Bailey...

    Open Energy Info (EERE)

    based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

  9. Field Mapping At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

  10. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  11. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  12. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  13. Gas Sampling At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  14. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    E. Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, USA...

  15. Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    this new map and cross sections represent the most current understanding of the stratigraphy, structure, and thermal gradients of the Valles caldera. The map and cross sections...

  16. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

    Open Energy Info (EERE)

    W. Younker, C. Dan Miller, Grant H. Heiken, Kenneth H. Wohletz (1988) Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California...

  17. Field Mapping At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    this new map and cross sections represent the most current understanding of the stratigraphy, structure, and thermal gradients of the Valles caldera. The map and cross sections...

  18. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Keiiti Aki, Michael C. Fehler (1995) A Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New Mexico Additional References Retrieved from "http:...

  19. Review: Yellowstone's Wildlife in Transition

    E-Print Network [OSTI]

    Tans, Eric

    2014-01-01

    Yellowstone National Park occupies a special place in the American imagination. Home to mountains, geothermal

  20. The Separation of Thermal and Chemical Effects in Evaluating Geothermal Influences on Aquatic Biota

    E-Print Network [OSTI]

    Resh, Vincent H; Lamberti, Gary A; McElravy, Eric P; Wood, John R

    1983-01-01

    River (Yellowstone Park) below geothermal effluents.geothermal habitats been most intensively studied in Yellowstone

  1. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...

    Open Energy Info (EERE)

    of the (Unocal) Mammoth-1 well at Casa Diablo. This low resistivity region is unusually deep, extending into the pre-caldera basement to the northwest, and is roughly aligned with...

  2. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Dennis L. Nielson, Pisto Larry, C.W. Criswell, R. Gribble, K. Meeker, J.A. Musgrave, T. Smith, D. Wilson (1989) Scientific Core Hole Valles Caldera No. 2B (VC-2B), New Mexico:...

  3. Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT

    SciTech Connect (OSTI)

    Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

  4. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    SciTech Connect (OSTI)

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

  5. Core Analysis At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    estimates of the conductive heat flow of their upper intervals dominated by conductive cooling, and integrates these data with existing geothermal data to evaluate the thermal...

  6. Development Wells At Long Valley Caldera Geothermal Area (Associates...

    Open Energy Info (EERE)

    to about 610 m depth in a deep fault zone on the east side of the field. References Environmental Science Associates (1987) Mammoth Pacific Geothermal Development Projects:...

  7. Trace Element Analysis At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

  8. Mercury Vapor At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

  9. Valles Caldera - Redondo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumatyUvaldeValles Caldera - Redondo

  10. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumatyUvaldeValles Caldera - RedondoValles

  11. Valles Caldera - Redondo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to: navigation,Valles Caldera

  12. Reflection Survey At Valles Caldera - Redondo Geothermal Area (Musgrave, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield1989) Jump to:| Open EnergyAl., 1989) |

  13. The objectives for deep scientific drilling in Yellowstone National Park

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

  14. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie Valley Geothermal|(Newman,

  15. Resistivity Log At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformation Fish Lake Valley

  16. Resistivity Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformation Fish Lake

  17. Static Temperature Survey At Long Valley Caldera Geothermal Area (Farrar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand Maintenance GeothermalOpen EnergyMclaren, 2010) |Et

  18. Static Temperature Survey At Long Valley Caldera Geothermal Area (Farrar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand Maintenance GeothermalOpen EnergyMclaren, 2010)

  19. Field Mapping At Valles Caldera - Sulphur Springs Geothermal Area (Bailey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris Inc formerly1-2003)Emidio Desert1969)Et

  20. Porosity, permeability and fluid flow in the YellowstoneGeothermal System, Wyoming

    SciTech Connect (OSTI)

    Dobson, Patrick F.; Kneafsey, Timothy J.; Hulen, Jeffrey; Simmons, Ardyth

    2002-03-29

    Cores from two of 13 U.S. Geological Survey (USGS) research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of the convective geothermal reservoir. Variations in porosity and matrix permeability observed in the Y-5 and Y-8 cores are primarily controlled by lithology. Y-8 intersects three distinct lithologies: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous ash-flow tuff. The sandstone typically has high permeability and porosity, and the tuff has very high porosity and moderate permeability, while the perlitic lava has very low porosity and is essentially impermeable. Hydrothermal self-sealing appears to have generated localized permeability barriers within the reservoir. Changes in pressure and temperature in Y-8 correspond to a zone of silicification in the volcaniclastic sandstone just above the contact with the perlitic rhyolite; this silicification has significantly reduced porosity and permeability. In rocks with inherently low matrix permeability (such as densely welded ash-flow tuff), fluid flow is controlled by the fracture network. The Y-5 core hole penetrates a thick intracaldera section of the0.6 Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix permeability, and the frequency of fractures and veins. Fractures are most abundant within the more densely welded sections of the tuff. However, the most prominent zones of fracturing and mineralization are associated with hydrothermal breccias within densely welded portions of the tuff. These breccia zones represent transient conduits of high fluid flow that formed by the explosive release of overpressure in the underlying geothermal reservoir and that were subsequently sealed by supersaturated geothermal fluids. In addition to this fracture sealing, hydrothermal alteration at Yellowstone appears generally to reduce matrix permeability and focus flow along fractures, where multiple pulses of fluid flow and self-sealing have occurred.

  1. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    SciTech Connect (OSTI)

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests.

  2. Hydrothermal vents of Yellowstone Lake, Yellowstone National Park, Wyoming

    SciTech Connect (OSTI)

    Kaplinski, M.A.; Morgan, P. (Northern Arizona Univ., Flagstaff, AZ (United States). Geology Dept.)

    1993-04-01

    Hydrothermal vent systems within Yellowstone Lake are located within the Yellowstone caldera in the northeastern and West Thumb sections of the lake. The vent systems lie within areas of extremely high geothermal gradients (< 1,000 C/km) in the lake sediments and occur as clusters of individual vents that expel both hydrothermal fluids and gas. Regions surrounding the vents are colonized by unique, chemotropic biologic communities and suggest that hydrothermal input plays an important role in the nutrient dynamics of the lake's ecosystem. The main concentration of hydrothermal activity occurs in the northeast region of the main lake body in a number of locations including: (1) along the shoreline from the southern edge of Sedge Bay to the inlet of Pelican Creek; (2) the central portion of the partially submerged Mary Bay phreatic explosion crater, within deep (30--50 m) fissures; (3) along the top of a 3 km long, steep-sided ridge that extends from the southern border of Mary Bay, south-southeast into the main lake basin; and (4) east of Stevenson Island along the lower portion of the slope (50--107 m) into the lake basin, within an anastomosing series of north to northwest trending, narrow troughs or fissures. Hydrothermal vents were also located within, and surrounding the West Thumb of Yellowstone Lake, with the main concentration occurring the offshore of the West Thumb and Potts Geyser Basin. Hydrothermal vents in Yellowstone Lake occur along fractures that have penetrated the lake sediments or along the tops of ridges and near shore areas. Underneath the lake, rising hydrothermal fluids encounter a semi-permeable cap of lake sediments. Upwardly convecting hydrothermal fluid flow may be diverted by the impermeable lake sediments along the buried, pre-existing topography. These fluids may continue to rise along topography until fractures are encountered, or the lake sediment cover is thinned sufficiently to allow egress of the fluids.

  3. Thorium-uranium disequilibrium in a geothermal discharge zone at Yellowstone

    SciTech Connect (OSTI)

    Sturchio, N.C.; Binz, C.M.; Lewis C.H. III

    1987-07-01

    Whole rock samples of hydrothermally-altered Biscuit Basin rhyolite from Yellowstone drill cores Y-7 and Y-8 were analyzed for /sup 230/Th, /sup 234/U, /sup 238/U, and /sup 232/Th. Extreme disequilibrium was found, with (/sup 230/Th//sup 234/U) ranging from 0.30 to 1.27. Values of (/sup 230/Th//sup 232/Th) and (/sup 234/U//sup 232/Th) define a linear correlation with a slope of 0.16 +/- 0.01, which corresponds to a (/sup 230/Th//sup 234/) age of approximately 19 ka. The (/sup 230/Th//sup 234/U) disequilibrium was apparently caused by U redistribution which occurred mostly at about 19 ka, and is not related simply to the relative degree of hydrothermal alteration and self-sealing of the rhyolite. Mass balance of U requires a large flux of U-bearing ground water through the rhyolite at the time of U redistribution; rough estimates of minimum water/rock ratio range from 10/sup 2/ to 10/sup 4/, for a range of possible ground water U concentrations. Conservative hydraulic calculations indicate that the required ground water flux could have occurred within a period of hundreds of years prior to self-sealing. The disequilibrium data are consistent with a model involving U redistribution during the initial stages of development of a geothermal discharge zone that formed in response to the hydrogeologic effects of glacial melting and unloading during the decline of the Pinedale Glaciation.

  4. Fungi Inventory Endemic Plants of Yellowstone

    E-Print Network [OSTI]

    Kelley, Scott

    Monitoring Yellowstone's Bumble Bees · Microbial Diversity in Non-sulfur and Iron Geothermal Steam VentsFungi Inventory Endemic Plants of Yellowstone Restoration of Native Vegetation in Gardiner Basin v o l u m e 2 0 · i s s u e 1 · 2 0 1 2 Yellowstone Vegetation #12;F or two decades, Yellowstone

  5. Yellowstone in a Global Context n this issue of Yellowstone Science, Alethea Steingisser

    E-Print Network [OSTI]

    Marcus, W. Andrew

    of Yellowstone (1991, 1995). Donald White, known for his research on geothermal resources and gYellowstone in a Global Context I n this issue of Yellowstone Science, Alethea Steingisser- tion of geysers at the hands of humans, and the tremendous importance of Yellowstone National Park

  6. Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee, Et Al., 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  7. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    SciTech Connect (OSTI)

    D. B. Johnson; N. Okibe; F. F. Roberto

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  8. Direct-Current Resistivity Survey At Valles Caldera - Redondo...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  9. Direct-Current Resistivity Survey At Valles Caldera - Sulphur...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Valles Caldera - Sulphur Springs Geothermal Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  10. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  11. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  12. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Nishimura, Et Al., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  13. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Steck, Et Al., 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  14. Geologic interpretations of seismic scattering and attenuation for the Cianten Caldera and the surrounding area

    E-Print Network [OSTI]

    Hess, Clarion Hadleigh

    2013-01-01

    The Cianten Caldera in Indonesia is immediately adjacent to the producing portion of the Awibengkok geothermal field. The Cianten Caldera contains rocks similar to those in the Awibengkok field, however, the Cianten Caldera ...

  15. Self Potential At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheucoSedcoInformation Twenty-Nine Palms Area (Page,

  16. Neutron Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd JumpNesjavellir Geothermal Power1987) | Open Energy

  17. Field Mapping At Valles Caldera - Redondo Geothermal Area (Bailey, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris Inc formerly1-2003)Emidio Desert1969) |

  18. Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris Inc formerly1-2003)Emidio Desert1969)

  19. Field Mapping At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris Inc formerly1-2003)Emidio Desert1969)EtAl.,

  20. Resistivity Log At Valles Caldera - Sulphur Springs Geothermal Area (Wilt &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformation Fish LakeHaar, 1986)

  1. Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint Geothermal AreaOpen Energy

  2. Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...

    Open Energy Info (EERE)

    Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near...

  3. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  4. Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...

    Open Energy Info (EERE)

    Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  5. Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas...

  6. Surface Gas Sampling At Valles Caldera - Redondo Area (Goff ...

    Open Energy Info (EERE)

    Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling...

  7. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Et Al., 1996) Exploration Activity Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1996 -...

  8. Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao...

    Open Energy Info (EERE)

    Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles...

  9. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Et Al., 1996) Exploration Activity Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1996 - 1996...

  10. Compound and Elemental Analysis At Newberry Caldera Area (Goles...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Newberry Caldera Area (Goles & Lambert, 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  11. Rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA

    SciTech Connect (OSTI)

    Lewis, A.J.; Palmer, M.R.; Kemp, A.J. [Bristol Univ. (United Kingdom)] [Bristol Univ. (United Kingdom); Sturchio, N.C. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

    1997-02-01

    Rare earth element (REE) concentrations have been determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in acid-sulphate and acid-sulphate-chloride waters and the associated sinters and volcanic rocks from the Yellowstone National Park (YNP), Wyoming, USA, geothermal system. REE concentrations in the volcanic rocks range from 222 to 347 ppm: their chondrite-normalised REE patterns are typical of upper continental crust, with LREE > HREE and negative Eu anomalies. Total REE concentrations in the fluids range from 3 to 1133 nmol kg{sup -1} ({ge}162 ppm), and {Sigma}REE concentrations in sinter are {ge}181 ppm. REE abundances and patterns in drill core material from YNP indicate some REE mobility. Relative to the host rocks the REE patterns of the fluids are variably depleted in HREEs and LREEs, and usually have a pronounced positive Eu anomaly. This decoupling of Eu from the REE suite suggests that (1) Eu has been preferentially removed either from the host rock glass or from the host rock minerals, or (2) the waters are from a high temperature or reducing environment where Eu{sup 2+} is more soluble than the trivalent REEs. Since the latter is inconsistent with production of acid-sulphate springs in a low temperature, oxidising near-surface environment, we suggest that the positive Eu anomalies in the fluids result from preferential dissolution of a Eu-rich phase in the host rock. Spatial and temporal variations in major element chemistry and pH of the springs sampled from Norris Geyser Basin and Crater Hills accompany variations in REE concentrations and patterns of individual geothermal springs. These are possibly related to changes in subsurface plumbing, which results in variations in mixing and dilution of the geothermal fluids and may have lead to changes in the extent and nature of REE complexing. 37 refs., 7 figs., 4 tabs.

  12. Book Review Geothermal Biology and Geochemis-

    E-Print Network [OSTI]

    Book Review Geothermal Biology and Geochemis- try in Yellowstone National Park. (eds WP Inskeep of life. The legacy of chemical and biologi- cal research in geothermal regimes, while short in duration geothermal areas, including Yellowstone, are largely confined to the specialty literature of geochemical

  13. Origin and deformation of Holocene shoreline terraces, Yellowstone Lake, Wyoming

    SciTech Connect (OSTI)

    Meyer, G.A.; Locke, W.W.

    1986-08-01

    Geodetic surveys within the Yellowstone caldera have documented active uplift that is most likely caused by magmatic processes in the upper crust. Along the northeast shore of Yellowstone Lake, maximum relative uplift rates are 10 mm/yr for the period 1923-1975. However, information on deformation prior to historic instrumental records has been lacking. In this study, closely spaced data on elevations of postglacial shoreline terraces around the north end of Yellowstone Lake reveal complex tilting. Though most Holocene deformation is probably magma related, the pattern of shoreline tilting deviates significantly from the historic pattern of roughly symmetric inflation of the caldera. Along the northeast shore, where tilt directions of historic and shoreline deformation are similar, differential uplift of a > 2500-yr-old terrace is roughly 10 m; this gives a maximum uplift rate of 4 mm/yr. These unique Holocene terraces may exist due to episodic deformation because vertical movements affecting the lake outlet directly control lake level.

  14. Technical Geologic Overview of Long Valley Caldera for the Casa...

    Open Energy Info (EERE)

    Technical Geologic Overview of Long Valley Caldera for the Casa Diablo IV Geothermal Development Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  15. Yellowstone Agencies Plan to Reduce Emissions

    Broader source: Energy.gov [DOE]

    The 10 federal land organizations — including two national parks, six national forests and two national wildlife refuges — in the Greater Yellowstone Area comprise an entire ecosystem of their own. Straddling Wyoming’s borders with Montana and Idaho, the region draws millions of visitors a year, attracted by the dramatic landscapes, geothermal activity and chances to spot wildlife like bison, elk and grizzly bear.

  16. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance

    SciTech Connect (OSTI)

    Palmer, M.R. (Bristol Univ. (England)); Sturchio, N.C. (Argonne National Lab., IL (USA))

    1990-10-01

    Boron concentrations and isotope compositions have been measured in fourteen hot spring waters, two drill hole waters, an unaltered rhyolite flow, and hydrothermally altered rhyolite from the geothermal system in Yellowstone National Park, Wyoming. The samples are representative of the major thermal areas within the park and span the range of fluid types. For the fluids, the B concentrations range from 0.043-2.69 mM/kg, and the {delta}{sup 11}B values range from {minus}9.3 to +4.4{per thousand}. There is no relationship between the dissolved B concentrations or isotope compositions with the concentration of any major element (other than Cl) or physical property. Each basin is characterized by a restricted range in B/Cl ratios and {delta}{sup 11}B values. Hot spring waters from the Norris Basin, Upper Geyser Basin, Calcite Springs, and Clearwater have {delta}{sup 11}B values close to that of unaltered rhyolite ({minus}5.2{per thousand}) and are interpreted to have derived their B from this source. Waters from Mammoth Hot Springs, Sheepeater, and Rainbow Springs have lower {delta}{sup 11}B values close to {minus}8{per thousand}. These lower values may reflect leaching of B from sedimentary rocks outside the Yellowstone caldera, but they are similar to the {delta}{sup 11}B value of hydrothermally altered rhyolite ({minus}9.7{per thousand}). Hence, the light boron isotope compositions recorded in these hot spring waters may reflect leaching of previously deposited hydrothermal minerals. Cooler springs along the Yellowstone River just outside the park boundary have lower B concentrations and higher {delta}{sup 11}B values that may reflect mixing with shallow meteoric water.

  17. Yellowstone National Park as an opportunity for deep continental drilling in thermal regions. [Abstract only

    SciTech Connect (OSTI)

    Fournier, R.O.

    1983-03-01

    The Yellowstone caldera represnets the most intense magnatic and thermal anomaly within the conterminous United States. Voluminous rhyolite ash flows, accompanied by formation of huge calderas, occurred approximately 2.0, 1.3, and 0.6 My B.P. Although the last lava flow was about 70,000 B.P., much evidence suggests that magma may still be present at relatively shallow depth. The evidence from gravity and magnetic lows, magnetotelluric soundings, seismic wave velocities, maximum depths of earthquake foci, significant recent uplift of the caldera floor, and exceptionally high heat flux suggest that magmatic temperatures may be attained 5 to 10 km beneath much of the caldera. Most of the hot-spring and geyser activity occurs within the caldera and along a fault zone that trends north from the caldera rim through Norris Geyser Basin and Mammoth Hot Springs. The thermal waters and gases have been extensively sampled and analyzed over a period of 100 years. The chemical, isotopic, and hydrologic data obtained from natural discharges and from shallow wells drilled in thermal areas, enable formulation of models of the hydrothermal system. No previous intermediate-depth drilling has been conducted at Yellowstone to help select the best location for a deep drill hole, and because Yellowstone is a National Park, no commercial drilling will be available for add-on experiments. Also, a deep drill hole in Yellowstone would have to be sited with great regard to environmental and ecological considerations. Nevertheless, the large amount of existing data is sufficient to formulate testable models. The Yellowstone thermal anomaly is so extensive and scientifically interesting that almost any suitable drilling site there may be superior to the best drilling site in any other silicic caldera complex in the United States.

  18. RESEARCH ARTICLE Caldera resurgence during magma replenishment

    E-Print Network [OSTI]

    City calderas Ben Kennedy & Jack Wilcock & John Stix Received: 16 February 2012 /Accepted: 30 June 2012 of thousands of years or less). (2) Immedi- ately before and during resurgence, dacite magma was intruded and developed faults and fractures. This fluid movement allows hydrothermal and geothermal systems to form

  19. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect (OSTI)

    Goff, F.; Nielson, D.L. (eds.)

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  20. Geophysical Setting of the Blue Mountain Geothermal Area, North...

    Open Energy Info (EERE)

    Geophysical Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone...

  1. Aquificales in Yellowstone National Park Anna-Louise Reysenbach1* | Amy Banta1 | Sara Civello2 | Jim Daly2 | Kendra Mitchel3 | Stefan Lalonde4

    E-Print Network [OSTI]

    Reysenbach, Anna-Louise

    spring ecosystems. Key Words 130 GEOTHERMAL BIOLOGY AND GEOCHEMISTRY IN YELLOWSTONE NATIONAL PARKAquificales in Yellowstone National Park Anna-Louise Reysenbach1* | Amy Banta1 | Sara Civello2 in Geomicrobiology, Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton 5Yellowstone Center

  2. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National

    E-Print Network [OSTI]

    Tomberlin, Jeff

    Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated

  3. A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES

    E-Print Network [OSTI]

    Cosner, S.R.

    2010-01-01

    Yellowstone National Park, however, was omitted because exploitation of the geothermalGEOTHERMAL FIELD. FENNER ::6 TITLE- BORE-HOLE INVESTIGATIONS IN YELLOWSTONEYELLOWSTONE NATIONAL PARK; CHEMICAL ANALYSIS; EXPERIMENTAL RESULTS. REFERENCE- SELECTED DATA ON WATER WEllS, GEOTHERMAL

  4. The geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect (OSTI)

    White, D.E.; Keith, T.E.C. (Geological Survey, Reston, VA (USA)); Hutchinson, R.A. (US National Park Service (US))

    1988-01-01

    Norris Geyser Basin is adjacent to the north rim of the Yellowstone Caldera, one of the largest volcanic features of its type in the world. Hydrothermal activity may have been continuous for {gt}100,000 years B.P. Norris Basin includes the highest erupting geyser of recent water types, colors of organisms and inorganic precipitates, frequent changes in activity and chemistry, and very high subsurface temperatures ({gt}240{degrees}C). Norris Basin is only a part of the Norris-Mammoth Corridor that strikes north from the caldera rim to Mammoth Hot Springs. Norris Basin has a heat flow roughly 10 percent of that of the Yellowstone Caldera and requires an estimated 0.01 km{sup 3} of rhyolitic magma per year-a quantity far greater than the corridor's rate of eruption.

  5. Hydrology of Hydrothermal Systems in the Long Valley Caldera Hydrothermal activity in the Long Valley Caldera has had many different periods in its history of

    E-Print Network [OSTI]

    Polly, David

    the temperatures of the hydrothermal fluid. The geothermal systems and hydrothermal systems have been documented that the temperatures would be extremely high, akin to Yellowstone. But what they found were temperatures much lower). Hydrothermal Systems Summary Geothermal systems and the hydrothermal systems are an occurrence that happens

  6. Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing

    E-Print Network [OSTI]

    Ramsey, Michael

    Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS of Yellowstone National Park from the visible/near infrared (VNIR) to thermal infrared (TIR) wavelengths. Field and techniques; geothermal systems; Mars 1. Introduction There are thousands of known thermal springs on Earth

  7. A core hole in the southwestern moat of the Long Valley caldera: Early results

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Sorey, M.L.; Farrar, C.D.; White, A.F.; Flexser, S.; Bartel, L.C.

    1986-12-01

    A continuously cored hole penetrated 715m into the southwestern moat of the Long Valley caldera. Temperatures in the post-caldera deposits increase rapidly with depth over the upper 335m to 202/sup 0/C, then remain nearly isothermal into the Bishop Tuff to the bottom of the hole. The depth to the Bishop is the shallowest, and the temperatures observed are among the highest in holes drilled in the caldera. The hole identifies a potential geothermal resource for the community of Mammoth Lakes, constrains the position of the principal heat source for the caldera's hydrothermal system, and serves as access for monitoring changes in water level, temperatures, and fluid chemistry.

  8. A four-dimensional viscoelastic deformation model for Long Valley Caldera, California, between 1995 and 2000

    E-Print Network [OSTI]

    Frankel, Kurt L.

    November 2005 Abstract We investigate the effects of viscoelastic (VE) rheologies surrounding a vertically Valley caldera, California: Evidence for viscoelastic rheology. J. Volcanol. Geotherm. Res. 105, 183: andrew.newman@eas.gatech.edu (A.V. Newman). Journal of Volcanology and Geothermal Research 150 (2006) 244

  9. GSATODAY|2012SEPTEMBER Future volcanism at Yellowstone caldera

    E-Print Network [OSTI]

    intracaldera rhyolitic magmas using quartz petrography, geochemistry, and geobarometry. We propose that magma

  10. Boundary Creek thermal areas of Yellowstone National Park: II, thermal water analyses

    SciTech Connect (OSTI)

    Thompson, J.M. (Geological Survey, Menlo Park, CA); Hutchinson, R.A.

    1980-09-01

    Water samples from 28 thermal springs, 2 non-thermal springs, and 2 creeks from the Boundary Creek Thermal Areas (BCTA) in the southwestern corner of Yellowstone National Park were analyzed to help establish a chemical water-quality base line prior to possible geothermal exploitation of the Island Park Geothermal Area (IPGA). The springs, situated at the southwestern end of the Madison Plateau, are the Yellowstone Park thermal waters nearest to the IPGA and might respond to geothermal exploitation in the IPGA. Water temperatures ranging from 50/sup 0/ to 90/sup 0/C and low Cl concentrations (< 110 mgL/sup -1/) characterize spring waters in the BCTA. They are chemically distinct from the major geysers and hot springs in Yellowstone Park. The Na-K-Ca and silica geothermometers are in general agreement, usually within 10/sup 0/C, and indicate reservoir temperatures of 150 to 170/sup 0/C.

  11. Satellites images, digitized topography, and the recognition of the Xela Caldera, Quezaltenango Valley, Guatemala

    SciTech Connect (OSTI)

    Foley, D. (Pacific Lutheran Univ., Tacoma, WA (United States). Dept. of Earth Sciences); McEwen, A.; Duffield, W. (Geological Survey, Flagstaff, AZ (United States)); Heiken, G. (Los Alamos National Lab., NM (United States))

    1992-01-01

    The authors propose, based on reconnaissance geology studies and interpretation of landforms as depicted by Landsat Thematic Mapper (TM) images combined with digitized topography, that the Quezaltenango basin of Guatemala is part of a caldera. The Quezaltenango basin is an elliptical depression, about 12 by 25 km and about 500 m deep. The proposed Xela Caldera extends beyond the basin more than 10 km to the north. The geomorphological features of the area that are typical of a geologically young large-scale caldera include bounding walls that have steep interior and gentle exterior slopes; broad flat areas at the base of the walls; at least one large block, about 3 by 12 km, that only partly floundered as the caldera collapsed; resurgence of a younger volcanic dome, flow and small-scale caldera complex (last active in 1818); younger volcanoes located along the structural margin of the major caldera (one of which is currently active) lobate features on the caldera margins that may indicate a multiple sequence of eruptions; and an active, high-temperature geothermal system. The valley is coincident with a gravity low. Extensive ash-flow tuff sheets that have no identified source are located north of the caldera, and may be the outflow deposits. The Xela caldera is similar in size to the Atitlan caldera, which lies about 50 km southeast of Quezaltenango. The Xela Caldera, if confirmed by future studies, may contain undiscovered geothermal resources, may present a significant geologic hazard to the more than 400,000 people who occupy the Quezaltenango valley, and may be a new member of the list of magmatic systems that have the capability to change global climate for several years.

  12. Compound and Elemental Analysis At Jemez Springs Area (Goff ...

    Open Energy Info (EERE)

    Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Additional References Retrieved from...

  13. A Geological And Geophysical Appraisal Of The Baca Geothermal...

    Open Energy Info (EERE)

    A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  14. Newberry Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy Resources Jump to: navigation, searchNewberry

  15. Lithologic descriptions and temperature profiles of five wells in the southwestern Valles caldera region, New Mexico

    SciTech Connect (OSTI)

    Shevenell, L.; Goff, F.; Miles, D.; Waibel, A.; Swanberg, C.

    1988-01-01

    The subsurface stratigraphy and temperature profiles of the southern and western Valles caldera region have been well constrained with the use of data from the VC-1, AET-4, WC 23-4, PC-1 and PC-2 wells. Data from these wells indicate that thermal gradients west of the caldera margin are between 110 and 140)degrees)C/km, with a maximum gradient occurring in the bottom of PC-1 equal to 240)degrees)C/km as a result of thermal fluid flow. Gradients within the caldera reach a maximum of 350)degrees)C/km, while the maximum thermal gradient measured southwest of the caldera in the thermal outflow plume is 140)degrees)C/km. The five wells exhibit high thermal gradients (>60)deghrees)C/km) resulting from high conductive heat flow associated with the Rio Grande rift and volcanism in the Valles caldera, as well as high convective heat flow associated with circulating geothermal fluids. Gamma logs run in four of the five wells appear to be of limited use for stratigraphic correlations in the caldera region. However, stratigraphic and temperature data from the five wells provide information about the structure and thermal regime of the southern and western Valles caldera region. 29 refs., 9 figs. 2 tabs.

  16. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and those in which brittle failure is driven by...

  17. Geothermal Literature Review At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore Technologies IncEnergy2002) | Open1957) |Al., 2002)

  18. Geothermal Literature Review At Long Valley Caldera Geothermal Area (Sorey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore Technologies IncEnergy2002) | Open1957) |Al., 2002)Et

  19. Hydrothermal changes related to earthquake activity at Mud Volcano, Yellowstone National Park, Wyoming

    SciTech Connect (OSTI)

    Pitt, A.M.; Hutchinson, R.A.

    1982-04-10

    The Mud Volcano hydrothermal area in Yellowstone National Park is near the intersection of a 20-km-long zone of northeast trending normal faults with the eastern resurgent dome within the 600,000-year-odd Yellowstone caldera. Recent crustal uplift along the northeast trending axis of the caldera is at a maximum (700 mm since 1923) near the Mud Volcano area. From 1973 through April 1978, less than 10 earthquakes (largest M 2.4) were located within 3 km of the Mud Volcano area. In May 1978, earthquakes began occurring beneath the hydrothermal area at depths of 1 to 5 km. The seismic activity continued until the end of November with intense swarms (100 events per hour) occurring on October 23 and November 7. The largest event (M 3.1) occured on November 14 and at least 8 events were M 2.5 or larger. In December 1978, heat flux in the Mud Volcano hydrothermal features began increasing along a 2-km-long northeast trending zone. Existing mud cauldrons became more active, new mud cauldrons and fumeroles were formed, and vegetation (primarily lodgepole pine) was killed by increased soil temperature. The increase in heat flux continued through July 1979 then gradually declined, reaching the early 1978 level by June 1980. The spatial and temporal association of earthquakes and increased hydrothermal activity at Mud Volcano suggests that the seismic activity expanded preexisting fracture systems, premitting increased fluid flow from depths of several kilometers.

  20. Clean Cities: Yellowstone-Teton Clean Energy coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce...

  1. Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial

    E-Print Network [OSTI]

    Ha, Taekjip

    The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensiveC) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP in geothermal environments often results in considerably less microbial diversity than other terrestrial

  2. Geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect (OSTI)

    White, D.E.; Hutchinson, R.A.; Keith, T.E.C.

    1988-01-01

    Norris Geyser Basin is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. The dominant quartz sand is hydrothermally cemented by chalcedony and is extremely hard, thereby justifying the term hydrothermal quartzite. The fundamental water type in Norris Basin is nearly neutral in pH and high in Cl and SiO/sub 2/. Another common type of water in Norris Basin is high in SO/sub 4/ and moderately high in Cl, with Cl/SO/sub 4/ ratios differing considerably. This study provides no new conclusive data on an old problem, the source or sources of rare dissolved constitutents. An important part of this paper consists of examples of numerous changes in behavior and chemical composition of most springs and geysers, to extents not known elsewhere in the park and perhaps in the world. Hydrothermal mineralogy in core samples from three research holes drilled entirely in Lava Creek Tuff to a maximum depth of -331.6 m permits an interpretation of the hydrothermal alteration history. A model for large, long-lived, volcanic-hydrothermal activity is also suggested, involving all of the crust and upper mantle and using much recent geophysical data bearing on crust-mantle interrelations.

  3. Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand

    E-Print Network [OSTI]

    Konhauser, Kurt

    Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North by various microbes (Riding, 1991), are common in hot-spring systems in the geo- thermal areas of Yellowstone in the geothermal systems of the Taupo Volcanic Zone (TVZ) on the North Island of New Zealand have been termed

  4. A new look at geothermal energy potential of the eastern Snake River Plain, Idaho

    SciTech Connect (OSTI)

    Smith, R.P.; Faulder, D.D.; Jackson, S.M. (EG and G Idaho, Inc., Idaho Falls (USA)); Hackett, W.R. (Idaho State Univ., Pocatello (USA))

    1990-06-01

    Passage of the Yellowstone plume beneath the Eastern Snake River Plain (ESRP) left a wake of silicic batholiths and associated 4 to 6 Ma rhyolitic tuffs, a 1 km thick sequence of post 4 Ma basalt lava flows, and high heat flow comparable to that of the Basin-and-Range province. U.S.G.S. (United States Geological Survey) Circular 790 estimates that accessible resources are one-third larger than those of the Cascades, but geothermal exploration and research activities on the ESRP have quietly perished. The authors believe that the ESRP merits further attention as a geothermal exploration target. In this article, the first of several by their group, they identify relevant geological and geophysical features of the ESRP, the first step toward a meaningful exploration strategy. Although exploration is hindered by the heat-sapping effects of the overlying SRP aquifer, several geological features of the ESRP suggest that viable exploration targets exist beneath the aquifer: (1) the fracture zones of buried, Neogene silicic calderas; (2) Quaternary basaltic rift zones (several NW-trending ones and an axial one), which have been persistent zones of fissuring, minor faulting, and magma transport; (3) high-angle faults and fractures around the margin of the downwarped ESRP, including NW-trending basin-and-range faults and NE-trending marginal faults; and (4) fractured or brecciated zones near Pleistocene rhyolite domes and silicic intrusions. Existing geophysical data also constrain exploration targets. Aeromagnetic surveys show NW-trending highs that intersect a NE-trending axial high; rhyolite domes and youthful basaltic volcanism are localized along the highs and at intersections. Although the ESRP is remarkably aseismic, recently installed local seismic networks have identified contemporary microearthquakes that could preserve fracture permeability to depths of several kilometers.

  5. An Overview of Yellowstone Geologic Introduction

    E-Print Network [OSTI]

    and southwestern Montana. Located along the continental divide within the Middle Rocky Mountains, Yellowstone is on a high plateau averaging 8,000 feet in elevation. The mountain ranges that encircle Yellowstone vary from Mountains to the north; the Absaroka Mountains on the eastern border; and the Teton Range, within Grand

  6. Collapse and Resurgence of the Valles Caldera, Jemez Mtns, NM...

    Open Energy Info (EERE)

    40Ar39Ar ages for rocks from the Valles caldera of New Mexico imply that resurgent uplift of the caldera floor occurred within 27 &plusmin; 27 k.y. of caldera collapse. Redondo...

  7. Yellowstone as an Analog for Thermal-Hydrological-Chemical Processes at Yucca Mountain

    SciTech Connect (OSTI)

    P. F. Dobson; T. J. Kneafsey; A. Simmons; J. Hulen

    2001-05-29

    Enhanced water-rock interaction resulting from the emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, may result in changes to fluid flow (resulting from mineral dissolution and precipitation in condensation and boiling zones, respectively). Studies of water-rock interaction in active and fossil geothermal systems (natural analogs) provide evidence for changes in permeability and porosity resulting from thermal-hydrological-chemical (THC) processes. The objective of this research is to document the effects of coupled THC processes at Yellowstone and then examine how differences in scale could influence the impact that these processes may have on the Yucca Mountain system. Subsurface samples from Yellowstone National Park, one of the largest active geothermal systems in the world, contain some the best examples of hydrothermal self-sealing found in geothermal systems. We selected core samples from two USGS research drill holes from the transition zone between conductive and convective portions of the geothermal system (where sealing was reported to occur). We analyzed the core, measuring the permeability, porosity, and grain density of selected samples to evaluate how lithology, texture, and degree of hydrothermal alteration influence matrix and fracture permeability.

  8. Helium isotopes: Lower geyser basin, Yellowstone National Park

    SciTech Connect (OSTI)

    Kennedy, B.M.; Reynolds, J.H.; Smith, S.P.; Truesdell, A.H.

    1987-11-10

    High /sup 3/He//sup 4/He ratios associated with the Yellowstone caldera reflect the presence of a magmatic helium component. This component is ultimately derived from a mantle plume capped by a cooling batholith underlying the caldera. In surface hot springs, fumaroles, etc., the /sup 3/He//sup 4/He ratio varies from approx.1 to 16 tims the air ratio. The variations are produced by varying degrees of dilution of the magmatic component with radiogenic helium. The radiogenic helium is crustal-derived and is thought to be scavenged from aquifers in which the hydrothermal fluids circulate. We determined the helium iosotopic composition in 12 different springs from the Lower Geyser Basin, a large hydrothermal basin with the caldera. The /sup 3/He//sup 4/He ratio was found to vary from approx.2.7 to 7.7 times the air ratio. The variations correlate with variations in water chemistry. Specifically, the /sup 3/He//sup 4/He ratio increased with total bicarbonate concentration. The dissolved bicarbonate is from gas-water-rock interactions involving CO/sub 2/ and Na silicates. The concentration of bicarbonate is a function of the availability of dissolved CO/sub 2/, which, in turn, is a function of deep boiling with phase separation prior to CO/sub 2/-bicarbonate conversion. The correlation of high /sup 3/He//sup 4/He ratios with high bicarbonate is interpreted as the result of deep dilution of a single thermal fluid with cooler water during ascent to the surface. The dilution and cooling deters deep boiling, and therefore both CO/sub 2/ and /sup 3/He are retained in the rising fluid. Fluids that are not diluted with boil to a greater extent, losing a large proportion of /sup 3/He, as well as CO/sub 2/, leaving a helium-poor residual fluid in which the isotopic composition of helium will be strongly affected by the addition of radiogenic helium.

  9. Archaeal viruses from Yellowstone’s high temperature environments

    SciTech Connect (OSTI)

    M. Young; B. Wiedenheft; J. Snyder; J. Spuhler; F. Roberto; T. Douglas

    2005-01-01

    In general, our understanding of Archaea lags far behind our knowledge of the other two domains of life—Bacteria and Eukarya. Unlike the other domains of life, very few viruses of Archaea have been characterized. Of the approximately 4000 viruses described to date, only 36 are associated with archaeal hosts--many of these from thermophilic Crenarchaeota. In this work we describe the discovery, isolation and preliminary characterization of viruses and novel virus-like particles isolated directly from diverse thermal environments in Yellowstone National Park.

  10. Boundary Creek Thermal areas of Yellowstone National Park I: thermal activity and geologic setting

    SciTech Connect (OSTI)

    Hutchinson, R.A.

    1980-09-01

    Proposed geothermal leasing in the Island Park Geothermal Area (IPGA) in national forest and public lands adjacent to Yellowstone National Park has called attention to the moderate to high temperature springs of the Boundary Creek Thermal Areas. Up until late 1977 no description or geochemical inventory studies had been conducted in these areas. The thermal springs are scattered in four major groups along the Boundary Creek drainage with three to six km. of the IPGA - park border. Observations and analyses of physical and chemical indicators suggest that the source is under the Madison Plateau and that the waters are generally similar in the lower three thermal units. These hot springs should be monitored so as to provide early warning of change in the event that geothermal development in the IPGA causes withdrawal of groundwater from Yellow Stone National Park.

  11. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

  12. Amending the Geothermal Steam Act of 1970. Hearing before the Subcommittee on Public Lands and Reserved Water of the Committee on Energy and Natural Resources, United States Senate, Ninety-Seventh Congress, First Session on S. 669; S. 1516

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The subcommittee met in Casper, Wyoming to hear testimony on geothermal resources in Yellowstone National Park and other park systems and to consider S. 1516 and S. 669, which would help to expedite geothermal development. The lack of information on potential environmental damage, the quality of monitoring, and the poor record of damage from geothermal operations were of major concern. The testimony of 12 witnesses includes that of private and government geologists, environmental groups, and the Park Superintendent, who described the unique features of Yellowstone's Old Faithful Geyser and the importance of incorporating provisions into geothermal-leasing arrangements to protect the park. (DCK)

  13. Geothermal Resources Assessment in Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-10-01

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program. The island of Kauai was not studied during the current phase of investigation. Geothermal field studies were not considered to be warranted due to the absence of significant geochemical or geophysical indications of a geothermal resource. The great age of volcanism on this island would further suggest that should a thermal resource be present, it would be of low temperature. The geothermal field studies conducted on Oahu focused on the caldera complexes of the two volcanic systems which form the island: Waianae volcano and Koolau volcano. The results of these studies and the interpreted probability for a resource are presented.

  14. First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report

    SciTech Connect (OSTI)

    Rowley, J.; Hawkins, W.; Gardner, J. (comps.)

    1987-02-01

    This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

  15. H.R. 1137: An Act to amend the Geothermal Steam Act of 1970 (30 U.S.C. 1001-1027), and for other purposes. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, November 16, 1993 and November 17, 1993

    SciTech Connect (OSTI)

    NONE

    1993-12-31

    The report H.R. 1137 is an Act to amend the Geothermal Steam Act of 1970 to protect the Yellowstone National Park. The proposed legislative text is included.

  16. Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal...

    Open Energy Info (EERE)

    section of the 0.6-Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix...

  17. Geothermal Literature Review At Yellowstone Region (Sears, Et Al., 2009) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore Technologies IncEnergy2002)Open Energy Information

  18. Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchoolPrairiePonder, Texas:I

  19. Seismic Reflection Studies in Long Valley Caldera, Califomia

    E-Print Network [OSTI]

    Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

    1991-03-10

    Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface geological conditions within...

  20. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  1. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  2. Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation Umpqua

  3. Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation UmpquaEt Al.,

  4. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Lachenbruch,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt Al., 1976)

  5. Time-Domain Electromagnetics At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy InformationTikanderEnergy1974) |

  6. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal...

    Open Energy Info (EERE)

    Los Alamos National Laboratory, NM. 1980. Scale 1:5000. Available from: http:www.osti.govbridgeproduct.biblio.jsp?ostiid6883334. Retrieved from "http:en.openei.orgw...

  7. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B'...

  8. Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...

    Open Energy Info (EERE)

    discharge, increase in fumarolic discharge, heat induced vegetation kills, and land subsidence. Factors responsible for such changes include seismic activity and related ground...

  9. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Rock Activity Date - 2004 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis The study was undertaken to refine understanding of...

  10. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Analysis- Rock Activity Date - 1995 Usefulness could be useful with more improvements DOE-funding Unknown Exploration Basis The study utilizes the fission-track dating method...

  11. Development Wells At Long Valley Caldera Geothermal Area (Holt...

    Open Energy Info (EERE)

    form View source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with...

  12. Core Analysis At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Core Analysis Activity Date - 1995 Usefulness could be useful with more improvements DOE-funding Unknown Exploration Basis The study utilizes the fission-track dating method...

  13. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    form View source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with...

  14. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Isotopic Analysis- Rock Activity Date - 2004 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis The study was undertaken to refine understanding of...

  15. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    form View source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with...

  16. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Cl was the only aqueous component not controlled by mineral equilibrium. References Art F White, Nancy J Chuma, Fraser E. Goff (1992) Mass Transfer Constraints On The Chemical...

  17. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Cl was the only aqueous component not controlled by mineral equilibrium. References Art F White, Nancy J Chuma, Fraser E. Goff (1992) Mass Transfer Constraints On The Chemical...

  18. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    and seismic data was conducted in 2003 to investigate the cause of recent uplift of the resurgent dome. Notes Modeling of deformation and microgravity data suggests...

  19. Ground Gravity Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    and seismic data was conducted in 2003 to investigate the cause of recent uplift of the resurgent dome. Notes Modeling of deformation and microgravity data suggests...

  20. Analytical Modeling At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    in deuterium and 18O. These distinct chemical properties can be explained by adiabatic cooling or boiling of fluids at 170C during upward convection along the central fault...

  1. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    in deuterium and 18O. These distinct chemical properties can be explained by adiabatic cooling or boiling of fluids at 170C during upward convection along the central fault...

  2. Development Wells At Long Valley Caldera Geothermal Area (Suemnicht...

    Open Energy Info (EERE)

    Diablo field between 1993 and 1995 prompted the construction of the Basalt Canyon Pipeline later in 2005 to support the MP-I plant with additional fluids from wells 57-22 and...

  3. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Bergfeld...

    Open Energy Info (EERE)

    - 2006 Usefulness useful DOE-funding Unknown Notes "A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and...

  4. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    energy fluxes (sensible and latent heat) against available energy (net radiation, less soil heat flux). While incomplete (R2 0.77 for 1:1 line), the degree of energy balance...

  5. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Usefulness not indicated DOE-funding Unknown Notes "A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and...

  6. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    and the surrounding rocks. The casing in wells 13-26 and 68-28 were damaged during this process, prohibiting access to deeper parts of these wells below the perforation depth....

  7. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    estimated temperatures ranging from 240 to 273C, then flow laterally to the east and mix with cool groundwater that infiltrate and recharge the system along ring fractures and...

  8. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Activity Date - 1988 Usefulness useful DOE-funding Unknown Exploration Basis The study reports well log data from five wells completed during the UOC and CSDP drilling programs in...

  9. Isotopic Analysis At Long Valley Caldera Geothermal Area (Goff...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  10. Conceptual Model At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  11. Core Holes At Valles Caldera - Redondo Geothermal Area (Fawcett...

    Open Energy Info (EERE)

    John W. Geissman, Giday WoldeGabriel, Craig D. Allen, Catrina M. Johnson, Susan J. Smith (2007) Two Middle Pleistocene Glacial-Interglacial Cycles from the Valle Grande, Jemez...

  12. Analytical Modeling At Long Valley Caldera Geothermal Area (White...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  13. Geothermometry At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  14. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  15. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  16. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    LVEW are best matched using modeled solutions for a flow system consisting of a rock matrix with finite hydraulic conductivity cut by a steeply dipping fracture with infinite...

  17. Resistivity Log At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    is probably caused by K766hot saline reservoir fluid, by increased porosity due to fracturing and dissolution of minerals, and by high subsurface temperatures. The resistivity...

  18. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    in Menlo Park, CA. Low tritium values indicated that modern water injected during drilling andor recent (<50 years) meteoric recharge did not make up a significant...

  19. Hyperspectral Imaging At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral...

  20. Multispectral Imaging At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults,...

  1. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    1983 to the east and north of Highway 395. Notes Among these wells were exploration and monitoring wells drilled near the Fish Hatchery Springs in preparation for the siting of a...

  2. Density Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  3. Flow Test At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  4. Reflection Survey At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  5. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  6. Neutron Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  7. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  8. Pressure Temperature Log At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  9. Exploratory Well At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    from detailed logging of the physical samples. Notes The intracaldera volcanic stratigraphy in the vicinity of Redondo Peak was described in detail, and allowed for...

  10. Resistivity Log At Valles Caldera - Redondo Geothermal Area ...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  11. Gamma Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  12. Self Potential At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  13. Core Holes At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  14. Exploratory Boreholes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    excellent quality of these core holes yielded considerable new information into the stratigraphy beneath the southern moat zone, including evidence supporting the existence of a...

  15. Caliper Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  16. Isotopic Analysis- Fluid At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  17. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    resin. The resin was treated with 100 mL of 0.5 M sodium chloride in order to remove barium sulfate, which was precipitated by standard gravimetric methods, dried, and then...

  18. Geothermometry At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    resin. The resin was treated with 100 mL of 0.5 M sodium chloride in order to remove barium sulfate, which was precipitated by standard gravimetric methods, dried, and then...

  19. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    resin. The resin was treated with 100 mL of 0.5 M sodium chloride in order to remove barium sulfate, which was precipitated by standard gravimetric methods, dried, and then...

  20. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Fluid Activity Date 1983 - 1986 Usefulness useful DOE-funding Unknown Notes Fumarolic CO2 sampled at Casa Diablo reportedly contained deltaC13 values of -5.6 to -5.7 (Taylor and...

  1. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano...

  2. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Fluid Activity Date - 1982 Usefulness useful DOE-funding Unknown Notes Field, chemical, and isotopic data for 95 thermal and nonthermal waters in and around the Valles...

  3. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl., 2008) |2009)

  4. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl., 2008)

  5. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl., 2008)(Roberts,

  6. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl.,

  7. Ground Gravity Survey At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggsOpen|Information(Wilt &

  8. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada, 1988) | Open Energy

  9. Fluid Inclusion Analysis At Valles Caldera - Sulphur Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada, 1988) | Open

  10. Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada, 1988) | OpenEnergy

  11. Geothermometry At Long Valley Caldera Geothermal Area (Mariner & Willey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessmentOpenFishOpen Energy1976) | Open

  12. Direct-Current Resistivity Survey At Valles Caldera - Redondo Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard(Kauahikaua &1986)2004)Area

  13. Evolution of a Mineralized Geothermal System, Valles Caldera, New Mexico |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative Coolers Jumpin the CentralSolar

  14. Exploratory Well At Long Valley Caldera Geothermal Area (Suemnicht, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen| OpenOpen Energy

  15. Exploratory Well At Valles Caldera - Redondo Geothermal Area (Nielson &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosunOpen Energy| Open

  16. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation2008) | Open(Battaglia,

  17. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation2008) |

  18. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation2008) |(Newman, Et Al.,

  19. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation2008)|

  20. Multispectral Imaging At Long Valley Caldera Geothermal Area (Pickles, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN)Open EnergyOpenAl., 2001) |

  1. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranch Capital Jump to:Authority

  2. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) | Open Energy

  3. Magnetotellurics At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) | Open

  4. Magnetotellurics At Valles Caldera - Redondo Geothermal Area (Wilt & Haar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988)

  5. Magnetotellurics At Valles Caldera - Sulphur Springs Geothermal Area (Wilt

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988)& Haar,

  6. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Goff, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIremInformationInformation U.S.

  7. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Janik &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIremInformationInformation U.S.Goff,

  8. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIremInformationInformation

  9. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIremInformationInformationAl., 1984)

  10. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (White, 1986)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIremInformationInformationAl., 1984)|

  11. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (White, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIremInformationInformationAl.,

  12. Isotopic Analysis- Fluid At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) |(Musgrave, Et Al.,

  13. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) |(Musgrave, Et

  14. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) |(Musgrave, EtArea

  15. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) |(Musgrave, EtAreaArea

  16. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) |(Musgrave,

  17. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) |(Musgrave,Area (White,

  18. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996)Al., 2003) | Open(Ito

  19. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996)Al., 2003) |

  20. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996)Al., 2003) |(Phillips,

  1. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996)Al., 2003)

  2. Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open Energy Information Roosevelt Hot Springs(Armstrong,

  3. Pressure Temperature Log At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology Jump to:Presidio County,Maui AreaOpen(Rowley,

  4. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLite OnCounty Coop

  5. Long Valley Caldera Geothermal and Magmatic Systems | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLite OnCounty CoopInformation

  6. Thermal Gradient Holes At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information2005)

  7. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to: navigation,Valles

  8. Analytical Modeling At Long Valley Caldera Geothermal Area (White &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground Source Heat| Open

  9. Analytical Modeling At Valles Caldera - Redondo Geothermal Area (White,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground Source Heat| Open1986) |

  10. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open

  11. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open Energy Information

  12. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open Energy

  13. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open Energy(McKenzie &

  14. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open Energy(McKenzie|

  15. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open Energy(McKenzie|(Gardner,

  16. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open

  17. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open(Janik & Goff, 2002) |

  18. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open(Janik & Goff, 2002)

  19. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open(Janik & Goff,

  20. Conceptual Model At Valles Caldera - Redondo Geothermal Area (Gardner,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||OpenInformation2010) | Open

  1. Conceptual Model At Valles Caldera - Redondo Geothermal Area (Shevenell, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||OpenInformation2010) |Al.,

  2. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||OpenInformation2010)

  3. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal Area (Goff,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||OpenInformation2010)Et Al.,

  4. Core Analysis At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformation 81) Jump

  5. Core Analysis At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformation 81)

  6. Core Analysis At Valles Caldera - Sulphur Springs Geothermal Area (Morgan,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformation 81)Tanaka, 1995)

  7. Exploratory Boreholes At Long Valley Caldera Geothermal Area (Suemnicht, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEvent PlanningBirds || Open| OpenAl.,

  8. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey, 1985) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEvent PlanningBirds || Open|67)Open

  9. Hydrology of the Geothermal System in Long Valley Caldera, California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,MagazineTechnologiesInformationOpen Energy

  10. Hyperspectral Imaging At Long Valley Caldera Geothermal Area (Martini, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010) | Open EnergyOpen EnergyAl.,

  11. Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savings time.

  12. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View NewOpen EnergyEnergy(Pribnow, Et

  13. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View NewOpen EnergyEnergy(Pribnow,

  14. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View NewOpenEnergy(Wilt & Haar,

  15. Development Wells At Long Valley Caldera Geothermal Area (Associates, 1987)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper| Open Energy

  16. Development Wells At Long Valley Caldera Geothermal Area (Suemnicht, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper| Open Energy1984)

  17. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  18. High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone...

    Open Energy Info (EERE)

    differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene,...

  19. Exploration And Discovery In Yellowstone Lake- Results From High...

    Open Energy Info (EERE)

    And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Jump to: navigation, search OpenEI...

  20. Correlation of gold in siliceous sinters with {sup 3}He/{sup 4}He in hot spring waters of Yellowstone National Park

    SciTech Connect (OSTI)

    Fournier, R.O.; Thompson, J.M. [Geological Survey, Menlo Park, CA (United States)] [Geological Survey, Menlo Park, CA (United States); Kennedy, B.M. [Lawrence Berkeley Lab., CA (United States)] [Lawrence Berkeley Lab., CA (United States); Aoki, Masahiro [Geological Survey of Japan, Tsukuba (Japan)] [Geological Survey of Japan, Tsukuba (Japan)

    1994-12-01

    Opaline sinter samples collected at Yellowstone National Park (YNP) were analyzed for gold by neutron activation and for other trace elements by the inductively coupled plasma optical emission spectroscopy (ICP-OES) method. No correlation was found between Au and As, Sb, or total Fe in the sinters, although the sample containing the highest Au also contains the highest Sb. There also was no correlation of Au in the sinter with the H{sub 2}S concentration in the discharged hot spring water or with the estimated temperature of last equilibration of the water with the surrounding rock. The Au in rhyolitic tuffs and lavas at YNP found within the Yellowstone caldera show the same range in Au as do those outside the caldera, while thermal waters from within this caldera all have been found to contain relatively low dissolved Au and to deposit sinters that contain relatively little Au. Therefore, it is not likely that variations in Au concentrations among these sinters simply reflect differences in leachable Au in the rocks through which the hydrothermal fluids have passed. Rather, variations in [H{sub 2}S], the concentration of total dissolved sulfide, that result from different physical and chemical processes that occur in different parts of the hydrothermal system appear to exert the main control on the abundance of Au in these sinters. Hydrothermal fluids at YNP convect upward through a series of successively shallower and cooler reservoirs where water-rock chemical and isotopic reactions occur in response to changing temperature and pressure. In some parts of the system the fluids undergo decompressional boiling, and in other parts they cool conductively without boiling. Mixing of ascending water from deep in the system with shallow groundwaters is common. All three processes generally result in a decrease in [H{sub 2}S] and destabilize dissolved gold bisulfide complexes in reservoir waters in the YNP system.

  1. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  3. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  5. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  8. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  9. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  10. Geothermal pipeline

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    This article describes the recent attention being paid the more than 10,000 geysers, hot springs,mud pots and fumaroles in Yellowstone National Park by biotechnology companies and academic researchers. The federal government has no provisions yet for receiving royalties from the sale of microorganisms, however, it is angling for a share of the potentially immense future profits.

  11. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Broader source: Energy.gov (indexed) [DOE]

    by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. stanford2013hollett.pdf More Documents & Publications Geothermal...

  12. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Fiscal Year...

  13. Thermal Evolution Models for the Valles Caldera with Reference...

    Open Energy Info (EERE)

    by commercial interests seeking hydrothermal resources. In addition, a number of test wells have been drilled just outside the calderas west margin by the Los Alamos...

  14. New Evidence On The Hydrothermal System In Long Valley Caldera...

    Open Energy Info (EERE)

    Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation,...

  15. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  16. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  17. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  18. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    E. Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, USA...

  19. Volcanism, Structure, and Geochronology of Long Valley Caldera...

    Open Energy Info (EERE)

    Volcanism, Structure, and Geochronology of Long Valley Caldera, Mono County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  20. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    sites; mean daily atmospheric pressures and water levels at selected wells, and precipitation records for two sites.Seismicity within the caldera persisted at a relatively low...

  1. Glacial influence on caldera-forming eruptions Adelina Geyer a,

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    Glacial influence on caldera-forming eruptions Adelina Geyer a, , Ilya Bindeman b a CIMNE the world increasing productivity of mantle melting and eruptions from crustal magma chambers. However with the morphologically preserved calderas, correspond in time with "maximum glacial" conditions for the past several

  2. Diachroneity of Basin and Range Extension and Yellowstone Hotspot...

    Open Energy Info (EERE)

    against a direct link between the Yellowstone hotspot and the initiation of extension, casting additional doubt on the role of the hotspot in extension across the broader Basin and...

  3. Compound and Elemental Analysis At Yellowstone Region (Kennedy...

    Open Energy Info (EERE)

    DOE-funding Unknown References B. M. Kennedy, M. A. Lynch, J. H. Reynolds, S. P. Smith (1985) Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview...

  4. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  5. Geothermal energy

    SciTech Connect (OSTI)

    Renner, J.L. [Idaho National Engineering Laboratory, Idaho Fall, ID (United States); Reed, M.J. [Dept. of Energy, Washington, DC (United States)

    1993-12-31

    Use of geothermal energy (heat from the earth) has a small impact on the environmental relative to other energy sources; avoiding the problems of acid rain and greenhouse emissions. Geothermal resources have been utilized for centuries. US electrical generation began at The Geysers, California in 1960 and is now about 2300 MW. The direct use of geothermal heat for industrial processes and space conditioning in the US is about 1700 MW of thermal energy. Electrical production occurs in the western US and direct uses are found throughout the US. Typical geothermal power plants produce less than 5% of the CO{sub 2} released by fossil plants. Geothermal plants can now be configured so that no gaseous emissions are released. Sulfurous gases are effectively removed by existing scrubber technology. Potentially hazardous elements produced in geothermal brines are injected back into the producing reservoir. Land use for geothermal wells, pipelines, and power plants is small compared to land use for other extractive energy sources like oil, gas, coal, and nuclear. Per megawatt produced, geothermal uses less than one eighth the land that is used by a typical coal mine and power plant system. Geothermal development sites often co-exist with agricultural land uses like crop production or grazing.

  6. Type C: Caldera Resource | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy ResourcesLake,Fallon |WestTyonek,C: Caldera

  7. Caldera Rim Margins | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy ResourcesParish,Caldera Rim Margins Jump to:

  8. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  9. Ecological and Geochemical Aspects of Terrestrial Hydrothermal Systems

    E-Print Network [OSTI]

    Forrest, Matthew James

    Yellowstone Ecosystem, A. boreas breed predominantly in geothermalYellowstone Ecosystem, A. boreas breed predominantly in geothermalYellowstone Ecosystem, A. boreas breed predominantly in geothermal

  10. FY01 Supplemental Science and Performance Analysis: Volume 1, Scientific Bases and Analyses

    E-Print Network [OSTI]

    Bodvarsson, G.S.; Dobson, David

    2001-01-01

    Fluid Flow in the Yellowstone Geothermal System, Wyoming. ”examination of the Yellowstone geothermal system and a tuffSelf-Sealing at the Yellowstone Geothermal System Mineral

  11. Application of natural analogues in the Yucca Mountain project - overview

    E-Print Network [OSTI]

    Simmons, Ardyth M.

    2003-01-01

    Processes Yellowstone and other geothermal systems in weldedat Yellowstone (WY) and Wairakei (NZ) geothermal fields;Yellowstone (WY), Otake (Japan), and various New Zealand geothermal

  12. A Korarchael Genome Reveals Insights into the Evolution of the Archaea

    E-Print Network [OSTI]

    Elkins, James G.

    2008-01-01

    bioenergetics in the Yellowstone geothermal ecosystem. Procbioenergetics in the Yellowstone geothermal ecosystem. Proc2005) in Geothermal Biology and Geochemstry in Yellowstone

  13. Boron-lithium relationships in rhyolites and associated thermal waters of young silicic calderas, with comments on incompatible element behavior

    SciTech Connect (OSTI)

    Shaw, D.M. (McMaster Univ., Hamilton, Ontario (Canada)); Sturchio, N.C. (Argonne National Lab., IL (United States))

    1992-10-01

    This study had three goals: (1) to study B distribution in a rhyolitic volcanic sequence already extensively investigated for other elements; (2) to interpret the joint behavior of B and Li during the interaction of such rocks with subsurface waters; and (3) to assess the manner in which water affects the behavior of incompatible elements such as B and Gd. New B, Gd, and Sm analyses have been made on a suite of Yellowstone rhyolites, including fresh and partially devitrified glassy obsidian from surface exposures of several flows, a drill-core of increasing degrees of alteration in the Biscuit Basin Flow, and two drill-cores from other flows. Within the Biscuit Basin Flow, the Sm and Gd concentrations remain rather constant and behave conservatively, independent of alteration. Boron decreases from about 10 to 3 ppm with progressive alteration, and Li increases from about 40 ppm by a factor of 2-3 in the most altered rocks. Obsidians from the Valles and Long Valley calderas show greater Li loss during alteration. All the rhyolitic rocks lose B during aqueous alteration; the waters acquire both B and Li, but proportionately much more B. Natural waters of all kinds, including those from the three calderas, show six orders of magnitude range in aqueous B and Li, with a high degree of linear correlation and an average ratio B/Li essentially constant at 4.0. The linearity mainly expresses processes of dilution and concentration: reactions specific to B or Li engender waters with deviating B/Li.

  14. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  15. Electromagnetic Evidence For An Ancient Avalanche Caldera Rim...

    Open Energy Info (EERE)

    Evidence For An Ancient Avalanche Caldera Rim On The South Flank Of Mount Merapi, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  16. Internal Geology and Evolution of the Redondo Dome, Valles Caldera...

    Open Energy Info (EERE)

    Internal Geology and Evolution of the Redondo Dome, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Internal Geology...

  17. Scientific Drilling at Sulphur Springs, Valles Caldera, New Mexico...

    Open Energy Info (EERE)

    Scientific Drilling at Sulphur Springs, Valles Caldera, New Mexico- Core Hole VC-2A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Scientific...

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Stone, Et Al., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  19. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  20. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Dahal, Et Al., 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  1. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Elston, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  2. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  3. National Geothermal Data System - DOE Geothermal Data Repository...

    Energy Savers [EERE]

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS)...

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  5. track 3: enhanced geothermal systems (EGS) | geothermal 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review EGS technologies utilize directional...

  6. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  7. Journal of Volcanology and Geothermal Research, 27 (1986) 77--115 77 Elsevier Science Publishers B.V., Amsterdam --Printed in The Netherlands

    E-Print Network [OSTI]

    1986-01-01

    for reevaluation of the geo- thermal resource and recommendation of sites for renewed drilling activities have been identified in geothermal drill holes within the 12-kin ~ caldera. Postcaldera eruption condensate zone; (2)an intermediate two-phase (vapor) zone; and (3) a lower brine zone. Measured temperatures

  8. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Broader source: Energy.gov (indexed) [DOE]

    Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. icelandgeothermalco...

  9. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtpsmuconferencereinhardt2011.pdf More Documents & Publications Low Temperature...

  10. Geothermal Energy Association Recognizes the National Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development and Demonstration Projects for up to 78 Million to Promote Enhanced Geothermal Systems Geothermal energy, traditionally a baseload power source among renewables,...

  11. Amending the Geothermal Steam Act of 1970. Part 1. Hearing before the Committee on Energy and Natural Resources, United States Senate, Ninety-Seventh Congress, First Session on S. 669, S. 1516, October 27, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Part I of a hearing on S. 669 and S. 1516, bills to amend current laws on geothermal energy development, includes the text of each bill and statements by 14 witnesses, which included Congressmen, representatives of the geothermal energy industry, and private and public environmental organizations and national parks. The committee agreed to protect certain thermal features of Yellowstone National Park while expediting exploration and leasing procedures. The testimony is followed by additional material submitted for the record. (DCK)

  12. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  13. Sandia Energy - Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy & Drilling Technology Home Stationary Power Energy Conversion Efficiency Geothermal Geothermal Energy & Drilling Technology Geothermal Energy & Drilling...

  14. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  15. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  16. Mantle transition zone topography and structure beneath the Yellowstone hotspot

    E-Print Network [OSTI]

    Dueker, Ken

    Mantle transition zone topography and structure beneath the Yellowstone hotspot David Fee and Ken ± 1.6 km, with 36­40 km of peak to peak topography. This topography is spatially uncorrelated, providing no evidence for a lower mantle plume currently beneath the hotspot. The topography suggests

  17. Portable Emission Measurements of Yellowstone Park Snowcoaches and Snowmobiles

    E-Print Network [OSTI]

    Denver, University of

    ], and oxides of nitrogen [NOx]). Large emissions variability was still observed despite using a standardized characterized by large emission ranges in CO (5­630 g/mi), HC (1­50 g/mi), and oxides of nitrogen (NOx; 1­49 gPortable Emission Measurements of Yellowstone Park Snowcoaches and Snowmobiles Gary A. Bishop, Ryan

  18. Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park

    SciTech Connect (OSTI)

    Hearn, E.H.; Kennedy, B.M. (Univ. of California, Berkeley (USA)); Truesdell, A.H. (Geological Survey, Menlo Park, CA (USA))

    1990-11-01

    Early studies of {sup 3}He/{sup 4}He variations in geothermal systems have generally attributed these fluctuations to either differences in the source of the magmatic {sup 3}He-rich helium or to local differences in the deep flux of magmatic {sup 3}He-rich helium. Kennedy et al, however, show that near-surface processes such as boiling and dilution may also drastically affect {sup 3}He/{sup 4}He ratios of geothermal vapors. Helium isotope ratios were determined for several hot springs at Shoshone Geyser Basin of Yellowstone National Park for this study, along with other noble gas data. Stable isotope data and water and gas chemistry data for each spring were also compiled. The water chemistry indicates that there is one deep, hot thermal water in the area which is mixing with dilute meteoric water that has entered the system at depth. Spring HCO{sub 3}{sup {minus}} concentrations correlate with {sup 3}He/{sup 4}He values, as in nearby Lower Geyser Basin. This correlation is attributed to variable amounts of deep dilution of thermal waters with a relatively cool water that inhibits boiling at depth, thus preventing the loss of CO{sub 2} and magmatic He in the most diluted samples. Oxygen and hydrogen isotope data also support a boiling and dilution model, but to produce the observed fractionations, the boiling event would have to be extensive, with steam loss at the surface, whereas the boiling that affected the helium isotope ratios was probably a small scale event with steam loss at depth. It is possible that deep boiling occurred in the basin and that small amounts of steam escaped along fractures at about 500 m below the surface while all subsequently produced steam was lost near or at the surface.

  19. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    E-Print Network [OSTI]

    Clum, Alicia

    2010-01-01

    isolated from geothermal sites in Yellowstone National Park:Y00168 from a geothermal site in Yellowstone National Park [

  20. Rapid Classification of NifH Protein Sequences using Classification and Regression Trees

    E-Print Network [OSTI]

    Frank, Ildiko E.

    2014-01-01

    of nifH in the Yellowstone Geothermal Complex. MicrobialMicrobial mat, Yellowstone Park geothermal springs Table 2.

  1. Indiana/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation...

  2. National Geothermal Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  3. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  4. Regional geothermal exploration in north central New Mexico. Final report

    SciTech Connect (OSTI)

    Icerman, L. (ed.) [ed.

    1984-02-01

    A broad-based geothermal resource reconnaissance study covering Bernalillo, Los Alamos, Rio Arriba, San Miguel, Sandoval, Santa Fe, Taos, Torrance, and Valencia counties in north central New Mexico was conducted from June 15, 1981, through September 30, 1983. Specific activities included the compilation of actual temperature, bottom-hole temperature gradient, and geotemperature data; tabulation of water chemistry data; field collection of temperature-depth data from existing wells; and drilling of temperature gradient holes in the Ojo Caliente, San Ysidro, Rio Puerco, and Polvadera areas. The data collected were used to perform: (1) a regional analysis of the geothermal energy potential of north central New Mexico; (2) two site-specific studies of the potential relationship between groundwater constrictions and geothermal resources; (3) an evaluation of the geothermal energy potential at Santa Ana Pueblo; (4) a general analysis of the geothermal energy resources of the Rio Grande Rift, including specific data on the Valles Caldera; and (5) an evaluation of the use of geothermometers on New Mexico groundwaters. Separate abstracts were prepared for individual chapters.

  5. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  6. 'Taking in the waters' at LaDuke Hot Springs Resort: Early 20th century medical tourism in Montana

    E-Print Network [OSTI]

    Porter, Benjamin W.; Porter, Athna May

    2008-01-01

    would have on Yellowstone’s geothermal system, introduced aYellowstone National Park are only one small part of a complex geothermal

  7. Natural analogue synthesis report, TDR-NBS-GS-000027 rev00 icn 02

    E-Print Network [OSTI]

    2002-01-01

    Fluid Flow in the Yellowstone Geothermal System, Wyoming."11-26 11.3.2 Introduction to the Yellowstone Geothermalidentified the Yellowstone geothermal system as particularly

  8. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    At Lightning Dock Geothermal Area (Witcher, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At...

  9. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. H.R. 1137: A Bill to amend the Geothermal Steam Act of 1970 (30 U.S.C. 1001-1027), and for other purposes. Introduced in the House of Representatives, One Hundred Third Congress, First Session, February 24, 1993 and November 15, 1993

    SciTech Connect (OSTI)

    NONE

    1993-12-31

    H.R. 1137 is a bill to amend the Geothermal Steam Act of 1970. The purpose of this Act is to require the Secretary of the Interior to take the necessary actions to preserve and protect the hydrothermal system associated with, Yellowstone National Park. The proposed legislative text is included.

  11. Geothermal Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy GeothermalDemonstration2008

  12. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  13. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    the division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,associated with geothermal energy development. These g o a l

  14. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

  15. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    Liquid Dominated Geothermal Systems," Second Intern. Symp.behavior related to geothermal systems and their potentialsetting of most geothermal systems is such that natural

  16. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  17. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  18. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  19. Origin of the northeastern basin and range seismic parabola: Thermal and mechanical effects of the Yellowstone hotspot

    SciTech Connect (OSTI)

    Anders, M.H. (Columbia Univ., Palisades, NY (United States). Lamont-Doherty Earth Observatory and Dept. of Geological Sciences)

    1993-04-01

    Centered about the track of the Yellowstone hotspot is a parabolic pattern of seismicity encompassing a region of aseismicity. Recent studies have shown that this pattern has migrated in tandem with the hotspot. A one dimensional finite-difference thermomechanical model is developed which successfully accounts for the observed patterns of seismicity. The volume, chemistry and timing of magma intrusion used in the model are contained by several geophysical, geochemical and geochronological studies of the eastern Snake River Plain. In this model, mafic magmas are intruded into a lithosphere that is already extending. The intrusions heat the surrounding rock resulting in locally increased strain rates. As the intruded magmas solidify, the length of time required to return strain rates to their pre-intrusion level is then determined. The model assumes constant horizontal tectonic forces and maps strain rate as a function of yield strength and time since intrusion. Model parameters such as crustal thickness, initial geothermal gradient, and amount of magma intruded, are varied in order to assess how they affect turnaround time for strain rates. Off-axis seismicity (seismicity within the seismic parabola exclusive of Yellowstone) is accounted for by lower crustal flow. The lower crustal flow under the seismic parabola is driven by buoyancy forces generated by a sublithospheric plume. The shape of the seismic parabola is controlled by the combination of two irrotational fields; a radial flow field due to the plume and a constant velocity field corresponding to plate motion. In summation the author discusses several other models that have recently been proposed to explain the observed patterns of seismicity and late Cenozoic tectonism of the northeastern Basin and Range province.

  20. Effects of glacial ice on subsurface temperatures of hydrothermal systems in Yellowstone National Park, Wyoming: Fluid-inclusion evidence

    SciTech Connect (OSTI)

    Bargar, K.E.; Fournier, R.O. (Geological Survey, Menlo Park, CA (USA))

    1988-12-01

    Hydrothermal quartz and fluorite crystals containing liquid-rich fluid inclusions (coexisting vapor-rich fluid inclusions were not observed) were found in drill cores from eight relatively shallow research holes drilled by the US Geological Survey in and near major geyser basins of Yellowstone National Park. Homogenization temperatures (T{sub h}) for mostly secondary fluid inclusions show variations in temperature that have occurred at give depths since precipitation of the host minerals. Within major hydrothermal upflow zones, fluid-inclusion T{sub h} values all were found to be equal to or higher (commonly 20-50 C and up to 155 C higher) than present temperatures at the depths sampled. During periods when thick glacial ice covered the Yellowstone National Park region, pore-fluid pressures in the underlying rock were increased in proportion to the weight of the overlying column of ice. Accordingly, theoretical reference boiling-point curves that reflect the maximum temperature attainable in a hot-water geothermal system at a given depth were elevated, and temperatures within zones of major hydrothermal upflow (drill holes Y-2, Y-3, Y-6, Y-11, Y-13, and upper part of Y-5) increased. The thicknesses of ice required to elevate boiling-point curves sufficiently to account for the observed fluid-inclusion T{sub h} values are within the ranges estimated by glacial geologic studies. At the margins of major hydrothermal upflow zones (drill holes Y-4 and Y-9), fluid-inclusion T{sub h} values at given depths range from 57 C lower to about the same as the current temperature measurements because of a previous decrease in the rate of discharge of warm water and/or an increase in the rate of recharge of cold water into the hydrothermal system.

  1. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

  2. Geothermal Literature Review At Cascades Region (Ingebritsen...

    Open Energy Info (EERE)

    Geothermal Literature Review At Cascades Region (Ingebritsen & Mariner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  3. Dominica Grants Geothermal Exploration and Development License...

    Energy Savers [EERE]

    Energy Needs Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  4. 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus...

    Open Energy Info (EERE)

    and biotite 40Ar39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of...

  5. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    induced seismicity in geothermal systems. In: Proceedings ofThe deep EGS (Enhanced Geothermal System) project at Soultz-with enhanced geothermal systems. Geothermal Resources

  6. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  7. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  8. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  9. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  10. Summer 2012 National Geothermal Academy: Applications Due February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Course modules include: Introduction to Geothermal Energy Utilization Geothermal Geology and Geochemistry Geothermal Field Trips Geothermal Geophysics Drilling Engineering...

  11. Doug Hollett Gives Keynote Presentation at Stanford Geothermal...

    Energy Savers [EERE]

    Geothermal Energy Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  12. Geothermal | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applying advanced materials to improve well construction technologies Development of harsh environment sensors for reservoir characterization DOE Geothermal Technologies Office...

  13. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  14. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

  15. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  16. Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to:Search Your Data SearchEnergyOpenOpenAl.,

  17. X-Ray Diffraction (XRD) At Long Valley Caldera Geothermal Area (Flexser,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch, New1991) | Open Energy

  18. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History View NewOpen

  19. Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History View NewOpen| Open Energy

  20. Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation Umpqua Hot1982)

  1. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation2003) | Open

  2. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Farrar, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| Open

  3. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt Al.,

  4. Trace Element Analysis At Long Valley Caldera Geothermal Area (Klusman &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformationTown700 Jump to:Al., 2010)

  5. X-Ray Diffraction (XRD) At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  6. Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggsOpen| OpenAl., 1979)Al., 2003) |

  7. Ground Gravity Survey At Valles Caldera - Redondo Geothermal Area (Wilt &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggsOpen|Information

  8. Flow Test At Valles Caldera - Sulphur Springs Geothermal Area (Musgrave, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders,Information85-1986)PilgrimAl., 1989)

  9. Gamma Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy Resources Jump to: navigation,Flint1987) | Open

  10. Gas Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Janik &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy ResourcesMaui Area (DOEMaui Area (DOE GTP)

  11. Geodetic Survey At Long Valley Caldera Geothermal Area (Newman, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway EditOpenTechniques Jump to:New

  12. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal System,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | Open

  13. Geothermometry At Long Valley Caldera Geothermal Area (McKenzie &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessmentOpenFishOpen Energy1976) |

  14. Geothermometry At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessmentOpenFishOpen Energy1976) || Open

  15. Density Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:Delta ElectricDenair,Dennehotso,Dennis1987)

  16. Density Log At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:Delta ElectricDenair,Dennehotso,Dennis1987)|

  17. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard(Kauahikaua & Klein,(Pribnow,

  18. Exploratory Well At Long Valley Caldera Geothermal Area (McNitt, 1963) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen

  19. Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen| Open Energy

  20. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen| Open

  1. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman & Landress,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de ProvenceSolarProjectHill,EnergyEnergyEnergySoil1979)

  2. Mercury Vapor At Long Valley Caldera Geothermal Area (Klusman & Landress,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump1.2619821°, -80.1875065°Information1983) | Open1979)

  3. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt.Infinifuel Biodieself rIngos PresovCore

  4. Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt.Infinifuel Biodieself rIngos PresovCore1993) |

  5. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIremInformation Goff, Et Al.,2002) | Open

  6. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) | Open Energy(1990)|Al.,

  7. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Sorey, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) | Open

  8. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Taylor &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) | OpenGerlach, 1983) |

  9. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Farrar, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) |(Musgrave,Area2006)

  10. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (McKenzie &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996)Al., 2003)Truesdell,

  11. Noble Gas Evidence For Two Fluids In The Baca (Valles Caldera) Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir | Open Energy Information

  12. Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas and Electric JumpDensityRiver

  13. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information2005)Al.,

  14. Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPageEnergy Information Thomas,Little|

  15. Water Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPageEnergy Information Thomas,Little||

  16. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy Information AreaEnergy

  17. 36Cl as a tracer in geothermal systems- Example from Valles Caldera, New

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie,InformationSpeciesRegister of Historic

  18. A Transient Model of the Geothermal System of the Long Valley Caldera,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |RecentSulfonate as a Liquid-Phase Tracer at

  19. At Valles Caldera - Sulphur Springs Geothermal Area (Toyoda, Et Al., 1995)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy-ResourceAsthaAstrum Solar Jump to:|

  20. Caliper Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information 2ndCalifornia/Incentives < California1987)

  1. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open EnergyOpen Energy1989)

  2. Conceptual Model At Long Valley Caldera Geothermal Area (Sorey, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open EnergyOpen Energy1989)1991)

  3. Conceptual Model At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||OpenInformation2010) |

  4. Core Analysis At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy ResourcesCorbin2009)Open Energy|

  5. Core Analysis At Valles Caldera - Sulphur Springs Geothermal Area (Ito &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformation 81)Tanaka, 1995) |

  6. Core Holes At Long Valley Caldera Geothermal Area (Chu, Et Al., 1990) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen

  7. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen1988) | Open

  8. Core Holes At Long Valley Caldera Geothermal Area (Urban, Et Al., 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen1988) | OpenOpen

  9. Core Holes At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1986)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen1988)| Open

  10. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area (Gardner, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen1988)| OpenAl.,

  11. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen1988)|

  12. Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonaster And Coolbaugh, 2007) Jump to:|Information|

  13. Field Mapping At Long Valley Caldera Geothermal Area (Sorey, 1985) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonaster And Coolbaugh, 2007) Jump

  14. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Bergfeld, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware)GalvestonWind Jump

  15. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware)GalvestonWind Jump2008) | Open

  16. Ground Gravity Survey At Long Valley Caldera Geothermal Area (Laney, 2005)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New PagesInformationEnergy Information 2) JumpHot PotOpen|

  17. Isotopic Analysis At Long Valley Caldera Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savings time. |Information

  18. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savingsInformation 2007)

  19. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savingsInformationRock JumpOpen

  20. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformation 2-2005)1995) | OpenEnergy2004)

  1. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformation 2-2005)1995) |

  2. Micro-Earthquake At Newberry Caldera Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformation

  3. At Valles Caldera - Redondo Geothermal Area (Goff & Grigsby, 1982) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOil andAshtabula -AskjaGuide

  4. Core Analysis At Long Valley Caldera Geothermal Area (Pribnow, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L PGabbs ValleyEnergy2003) | Open

  5. Core Holes At Long Valley Caldera Geothermal Area (Benoit, 1984) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal LInformationCoreField |

  6. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal LInformationCoreField |1976)

  7. Core Holes At Valles Caldera - Redondo Geothermal Area (Fawcett, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal

  8. Cuttings Analysis At Long Valley Caldera Geothermal Area (Pribnow, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm JumpAlum| Open Energy2005) |

  9. Development Wells At Long Valley Caldera Geothermal Area (Holt & Campbell,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper| Open Energy1984) |

  10. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    SciTech Connect (OSTI)

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan; Jay, Z.; Tringe, Susannah G.; Rusch, Douglas B.; Beam, Jake; McCue, Lee Ann; Inskeep, William P.

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a new phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.

  11. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01

    B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

  12. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Ito, Garrett

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  13. An analysis of public testimonies on the reintroduction of wolves to the greater Yellowstone ecosystem 

    E-Print Network [OSTI]

    Wicker, Kristy Joann

    1996-01-01

    Public participation in review of draft environmental impact statements (DEIS) has been problematic. This study focused on public hearings regarding the DEIS for the reintroduction of wolves into Yellowstone National Park and central Idaho...

  14. Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera...

    Open Energy Info (EERE)

    concentrations (< 10 mgL) and relatively high 36ClCl ratios ((300-1000) 10-15); and geothermal brines with high Cl- concentrations (800-9400 mgL) but low 36ClCl ratios...

  15. Geothermal energy resource investigations at Mt. Spurr, Alaska

    SciTech Connect (OSTI)

    Turner, D.L.; Wescott, E.M. (eds.)

    1986-12-01

    Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

  16. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  17. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Medical Hot Springs Geothermal Area Idaho Batholith Medicine Lake Geothermal Area Cascades Melozi Hot Springs Geothermal Area Alaska Geothermal...

  18. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  19. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  20. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Area Central Nevada Seismic Zone Pull Apart in Strike Slip Fault Zone Ordovician shale quartzite MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest...