Powered by Deep Web Technologies
Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Capacitance Probe for Detection of Anomalies in Nonmetallic Plastic Pipe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacitance Probe for Detection of Anomalies in Capacitance Probe for Detection of Anomalies in Nonmetallic Plastic Pipe Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Patent Number 7,839,282 entitled "Capacitance Probe for Detection of Anomalies in Nonmetallic Plastic Pipe." Disclosed in this patent is an analysis of materials using a capacitive sensor to detect anomalies in nonmetallic plastic pipe through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor to generate a capacitance versus location output for the detection and localization of anomalies

2

Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1995 State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources These regulations describe standards relevant to reclamation that must be followed both during and after the completion of mining in a given area. An

3

Test plan for the irradiation of nonmetallic materials.  

SciTech Connect (OSTI)

A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M. [ARES Corporation, Richland, WA; Joslyn, C. C. [Washington River Protection Solutions, Richland, WA; Venetz, T. J. [Washington River Protection Solutions, Richland, WA

2013-03-01T23:59:59.000Z

4

Production of aggregate from non-metallic automotive shredder residues  

Science Journals Connector (OSTI)

In this paper, the results of an experimentation on the production of granules suitable to be used as aggregates in cementitious or asphalt mixes are presented and discussed. The granules were obtained by granulating the non-metallic fraction of automotive shredder residues. In a preliminary separation step the fluff fraction containing mainly inert and non-metallic materials was sieved and analyzed for the metal content. In the following granulation step, the sieved fraction was mixed with binding materials, fly ash and a densifier agent, to produce granules of 5–30 mm of diameter and up to 1400 kg/m3 of specific weight. The granulation was carried out at room temperature in a rotating tank. Concrete samples prepared using as aggregates the produced granules showed a specific weight up to 1800 kg/m3 and a compressive strength up to about 55% of reference samples prepared using a calcareous aggregate, depending on the fluff content of the mixes, and on the nature of the binder and of the other components used.

Vito Alunno Rossetti; Luca Di Palma; Franco Medici

2006-01-01T23:59:59.000Z

5

It's Elemental - The Element Bromine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selenium Selenium Previous Element (Selenium) The Periodic Table of Elements Next Element (Krypton) Krypton The Element Bromine [Click for Isotope Data] 35 Br Bromine 79.904 Atomic Number: 35 Atomic Weight: 79.904 Melting Point: 265.95 K (-7.2°C or 19.0°F) Boiling Point: 331.95 K (58.8°C or 137.8°F) Density: 3.11 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Non-metal Period Number: 4 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for stench, bromos. Say what? Bromine is pronounced as BRO-meen. History and Uses: The only nonmetallic element that is a liquid at normal room temperatures, bromine was produced by Carl Löwig, a young chemistry student, the summer before starting his freshman year at Heidelberg. When he showed his

6

Correlation of characteristics for steel containing nonmetallic inclusions  

SciTech Connect (OSTI)

The quality of steel is largely determined by nonmetallic inclusions (NI). Improvement of quantitative methods of testing for NI is part of quality evaluation. Metallographic methods of visual evaluation in accordance with GOST 1778-70 are very laborious and are thus being replaced by automatic ones based on computerized image processors (CIP) such as instruments of the Quantimet type and by methods of isolating and analyzing NI. The authors have examined the relationship between counting fields containing NI (method Sh8 in accordance with GOST 1778-70), measurements with the Quantimet-360 and Quantimet-720 CIP, as well as the determination of the concentrations of electrically isolated oxide inclusions. The authors examined hot-rolled 38KhN3MFA steel from seven commercial batches.

Shtremel', M.A.; Fadeev, Yu.I.; Maksimova, O.V.; Chernukha, L.G.; Anisimova, N.I.

1988-01-01T23:59:59.000Z

7

Environmental wear testing of nonmetallic materials for compressor applications  

SciTech Connect (OSTI)

A full-size prototypical test facility was designed and built to test nonmetallic materials in support of reciprocating compressor applications. Conventional test rigs utilize a pin- or ring-on-disk configuration to produce wear data in rotary motion under relatively low applied loads. In contrast, the subject test facility is constructed around a 9-inch (23-cm) stroke compressor frame. The test specimen and counterface configurations are similar to compressor packing rings and piston rods, respectively, and specimens are spring-loaded to variable levels encompassing actual compressor conditions. Testing to date has been performed at 500 rpm, 200 F (93 C), and three different load levels [65, 130 and 195 psi (450, 900 and 1,350 kPa)]. Material wear rate in air versus specimen pressure reveals a linear relationship with a slope of approximately 0.12 mils/day/psi (0.44 {micro}m/day/kPa). The wear performance of six different materials has been ranked in air. Future testing will focus on creating a database for material wear rates in air and nitrogen.

Parrington, R.J.; Hinchliff, E.M.

1999-07-01T23:59:59.000Z

8

Static Pressure Loss in 12”, 14”, and 16” Non-metallic Flexible Duct  

E-Print Network [OSTI]

This study was conducted to determine the effects of compression on pressure drops in non-metallic flexible duct. Duct sizes of 12”, 14” and 16” diameters were tested at a five different compression ratios (maximum stretch, 4%, 15%, 30% and 45...

Cantrill, David Lee

2013-08-01T23:59:59.000Z

9

Static Pressure Losses in 6, 8, and 10-inch Non-Metallic Flexible Ducts  

E-Print Network [OSTI]

This study measured airflow static pressure losses through non-metallic flexible ducts in compliance with ASHRAE Standard 120-1999, Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings (ASHRAE 1999). Duct sizes of 6, 8...

Weaver, K.; Culp, C.

2006-01-01T23:59:59.000Z

10

Simultaneous two-axis vibration measurement of a nonmetallic cylinder by electromagnetic induction and metallic foil loops  

Science Journals Connector (OSTI)

This work presents a method based on electromagnetic induction for the simultaneous non-contact measurement of two-axis lateral vibrations of a nonmetallic cylinder. The suggested method ... pair of loop is induc...

Soon Woo Han; Jin Ki Kim; Yoon Young Kim

2011-08-01T23:59:59.000Z

11

Injury experience in nonmetallic mineral mining (except stone and coal), 1989  

SciTech Connect (OSTI)

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

Not Available

1990-01-01T23:59:59.000Z

12

Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems  

Science Journals Connector (OSTI)

The rapid development in nanomaterials has brought great opportunities to cancer theranostics, which aims to combine diagnostics and therapy for cancer treatment and thereby improve the healthcare of patients. In this review we focus on the recent progress of several cancer theranostic strategies using mesoporous silica nanoparticles and carbon-based nanomaterials. Silicon and carbon are both group IV elements; they have been the most abundant and significant non-metallic substances in human life. Their intrinsic physical/chemical properties are of critical importance in the fabrication of multifunctional drug delivery systems. Responsive nanocarriers constructed using these nanomaterials have been promising in cancer-specific theranostics during the past decade. In all cases, either a controlled texture or the chemical functionalization is coupled with adaptive properties, such as pH-, light-, redox- and magnetic field- triggered responses. Several studies in cells and mice models have implied their underlying therapeutic efficacy; however, detailed and long-term in vivo clinical evaluations are certainly required to make these bench-made materials compatible in real bedside circumstances.

Yu-Cheng Chen; Xin-Chun Huang; Yun-Ling Luo; Yung-Chen Chang; You-Zung Hsieh; Hsin-Yun Hsu

2013-01-01T23:59:59.000Z

13

Production of Polyethylene Terephthalate using a Nonmetallic Catalyst Dr. Marsha Winston1, Jared Langson2, Angus Ferguson2, Dr. Robert Posey2  

E-Print Network [OSTI]

Production of Polyethylene Terephthalate using a Nonmetallic Catalyst Dr. Marsha Winston1, Jared Department of Chemistry Polyethylene terephthalate (PET) is a condensation polymer of terephthalic acid (HOOC

14

Reclaiming metallic material from an article comprising a non-metallic friable substrate  

DOE Patents [OSTI]

A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.

Bohland, John Raphael (Oregon, OH); Anisimov, Igor Ivanovich (Whitehouse, OH); Dapkus, Todd James (Toledo, OH); Sasala, Richard Anthony (Toledo, OH); Smigielski, Ken Alan (Toledo, OH); Kamm, Kristin Danielle (Swanton, OH)

2000-01-01T23:59:59.000Z

15

Capacitance probe for detection of anomalies in non-metallic plastic pipe  

DOE Patents [OSTI]

The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

Mathur, Mahendra P. (Pittsburgh, PA); Spenik, James L. (Morgantown, WV); Condon, Christopher M. (Morgantown, WV); Anderson, Rodney (Grafton, WV); Driscoll, Daniel J. (Morgantown, WV); Fincham, Jr., William L. (Fairmont, WV); Monazam, Esmail R. (Morgantown, WV)

2010-11-23T23:59:59.000Z

16

Elements & Compounds Atoms (Elements)  

E-Print Network [OSTI]

#12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12;Nucleus Electrons Cloud of negative charge (2 electrons) Fig. 2.5: Simplified model of a Helium (He) Atom He 4.002602 2 Helium Mass Number (~atomic mass) = number of Neutrons + Protons = 4 for Helium Atomic

Frey, Terry

17

Asymptotic expansion of two-electron integrals and its application to Coulomb and exchange lattice sums in metallic, semimetallic, and nonmetallic crystals  

SciTech Connect (OSTI)

A simple, easily implemented, accurate, and efficient approximation of long-range electron-electron-repulsion and electron-nucleus-attraction integrals is proposed. It replaces each product of two atomic-orbital (AO) basis functions of an electron by a point charge centered at the midpoint of the two AO's. The magnitude of the point charge is equal to the overlap integral of the two AO's. Each integral is then rapidly evaluated in the direct algorithm as a Coulomb interaction between two point charges. This scheme is implemented in ab initio Hartree–Fock crystalline orbital theory and tested for one-, two-, and three-dimensional solids of metallic, semimetallic, and nonmetallic electronic structures, in which the lattice sums of the direct Coulomb and/or exchange interactions are expected to be slowly convergent. It is shown that this approximation reduces operation and/or memory costs by up to an order of magnitude to achieve converged lattice sums, although the scaling (size dependence) of operation cost is unchanged. An improved criterion for truncating the exchange lattice sum is also proposed.

Yamada, Tomonori; Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States) [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Brewster, Ryan P. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)] [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)

2013-11-14T23:59:59.000Z

18

It's Elemental - The Element Europium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Samarium Samarium Previous Element (Samarium) The Periodic Table of Elements Next Element (Gadolinium) Gadolinium The Element Europium [Click for Isotope Data] 63 Eu Europium 151.964 Atomic Number: 63 Atomic Weight: 151.964 Melting Point: 1095 K (822°C or 1512°F) Boiling Point: 1802 K (1529°C or 2784°F) Density: 5.24 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named after the continent of Europe. Say what? Europium is pronounced as yoo-RO-pee-em. History and Uses: Europium was discovered by Eugène-Antole Demarçay, a French chemist, in 1896. Demarçay suspected that samples of a recently discovered element, samarium, were contaminated with an unknown element. He was able to produce

19

It's Elemental - The Element Potassium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium The Element Potassium [Click for Isotope Data] 19 K Potassium 39.0983 Atomic Number: 19 Atomic Weight: 39.0983 Melting Point: 336.53 K (63.38°C or 146.08°F) Boiling Point: 1032 K (759°C or 1398°F) Density: 0.89 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 1 Group Name: Alkali Metal What's in a name? From the English word potash. Potassium's chemical symbol comes from the Latin word for alkali, kalium. Say what? Potassium is pronounced as poh-TASS-ee-em. History and Uses: Although potassium is the eighth most abundant element on earth and comprises about 2.1% of the earth's crust, it is a very reactive element

20

It's Elemental - The Element Sulfur  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phosphorus Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine The Element Sulfur [Click for Isotope Data] 16 S Sulfur 32.065 Atomic Number: 16 Atomic Weight: 32.065 Melting Point: 388.36 K (115.21°C or 239.38°F) Boiling Point: 717.75 K (444.60°C or 832.28°F) Density: 2.067 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 16 Group Name: Chalcogen What's in a name? From the Sanskrit word sulvere and the Latin word sulphurium. Say what? Sulfur is pronounced as SUL-fer. History and Uses: Sulfur, the tenth most abundant element in the universe, has been known since ancient times. Sometime around 1777, Antoine Lavoisier convinced the rest of the scientific community that sulfur was an element. Sulfur is a

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

It's Elemental - The Element Magnesium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum The Element Magnesium [Click for Isotope Data] 12 Mg Magnesium 24.3050 Atomic Number: 12 Atomic Weight: 24.3050 Melting Point: 923 K (650°C or 1202°F) Boiling Point: 1363 K (1090°C or 1994°F) Density: 1.74 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 2 Group Name: Alkaline Earth Metal What's in a name? For Magnesia, a district in the region of Thessaly, Greece. Say what? Magnesium is pronounced as mag-NEE-zhi-em. History and Uses: Although it is the eighth most abundant element in the universe and the seventh most abundant element in the earth's crust, magnesium is never found free in nature. Magnesium was first isolated by Sir Humphry Davy, an

22

It's Elemental - The Element Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen The Element Nitrogen [Click for Isotope Data] 7 N Nitrogen 14.0067 Atomic Number: 7 Atomic Weight: 14.0067 Melting Point: 63.15 K (-210.00°C or -346.00°F) Boiling Point: 77.36 K (-195.79°C or -320.44°F) Density: 0.0012506 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words nitron and genes, which together mean "saltpetre forming." Say what? Nitrogen is pronounced as NYE-treh-gen. History and Uses: Nitrogen was discovered by the Scottish physician Daniel Rutherford in 1772. It is the fifth most abundant element in the universe and makes up

23

It's Elemental - The Element Sodium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium The Element Sodium [Click for Isotope Data] 11 Na Sodium 22.98976928 Atomic Number: 11 Atomic Weight: 22.98976928 Melting Point: 370.95 K (97.80°C or 208.04°F) Boiling Point: 1156 K (883°C or 1621°F) Density: 0.97 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 1 Group Name: Alkali Metal What's in a name? From the English word soda and from the Medieval Latin word sodanum, which means "headache remedy." Sodium's chemical symbol comes from the Latin word for sodium carbonate, natrium. Say what? Sodium is pronounced as SO-dee-em. History and Uses: Although sodium is the sixth most abundant element on earth and comprises

24

It's Elemental - The Element Francium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium The Element Francium [Click for Isotope Data] 87 Fr Francium 223 Atomic Number: 87 Atomic Weight: 223 Melting Point: 300 K (27°C or 81°F) Boiling Point: Unknown Density: Unknown Phase at Room Temperature: Solid Element Classification: Metal Period Number: 7 Group Number: 1 Group Name: Alkali Metal Radioactive What's in a name? Named for the country of France. Say what? Francium is pronounced as FRAN-see-em. History and Uses: Francium was discovered by Marguerite Catherine Perey, a French chemist, in 1939 while analyzing actinium's decay sequence. Although considered a natural element, scientists estimate that there is no more than one ounce of francium in the earth's crust at one time. Since there is so little

25

It's Elemental - The Element Phosphorus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur The Element Phosphorus [Click for Isotope Data] 15 P Phosphorus 30.973762 Atomic Number: 15 Atomic Weight: 30.973762 Melting Point: 317.30 K (44.15°C or 111.47°F) Boiling Point: 553.65 K (280.5°C or 536.9°F) Density: 1.82 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek word for light bearing, phosphoros. Say what? Phosphorus is pronounced as FOS-fer-es. History and Uses: In what is perhaps the most disgusting method of discovering an element, phosphorus was first isolated in 1669 by Hennig Brand, a German physician and alchemist, by boiling, filtering and otherwise processing as many as 60

26

It's Elemental - The Element Cerium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lanthanum Lanthanum Previous Element (Lanthanum) The Periodic Table of Elements Next Element (Praseodymium) Praseodymium The Element Cerium [Click for Isotope Data] 58 Ce Cerium 140.116 Atomic Number: 58 Atomic Weight: 140.116 Melting Point: 1071 K (798°C or 1468°F) Boiling Point: 3697 K (3424°C or 6195°F) Density: 6.770 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named for the asteroid Ceres. Say what? Cerium is pronounced as SER-ee-em. History and Uses: Cerium was discovered by Jöns Jacob Berzelius and Wilhelm von Hisinger, Swedish chemists, and independently by Martin Heinrich Klaproth, a German chemist, in 1803. Cerium is the most abundant of the rare earth elements

27

It's Elemental - The Element Indium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cadmium Cadmium Previous Element (Cadmium) The Periodic Table of Elements Next Element (Tin) Tin The Element Indium [Click for Isotope Data] 49 In Indium 114.818 Atomic Number: 49 Atomic Weight: 114.818 Melting Point: 429.75 K (156.60°C or 313.88°F) Boiling Point: 2345 K (2072°C or 3762°F) Density: 7.31 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 13 Group Name: none What's in a name? Named after the bright indigo line in its spectrum. Say what? Indium is pronounced as IN-dee-em. History and Uses: Indium was discovered by the German chemists Ferdinand Reich and Hieronymus Theodor Richter in 1863. Reich and Richter had been looking for traces of the element thallium in samples of zinc ores. A brilliant indigo line in

28

It's Elemental - The Element Neon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium The Element Neon [Click for Isotope Data] 10 Ne Neon 20.1797 Atomic Number: 10 Atomic Weight: 20.1797 Melting Point: 24.56 K (-248.59°C or -415.46°F) Boiling Point: 27.07 K (-246.08°C or -410.94°F) Density: 0.0008999 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 18 Group Name: Noble Gas What's in a name? From the Greek word for new, neos. Say what? Neon is pronounced as NEE-on. History and Uses: Neon was discovered by Sir William Ramsay, a Scottish chemist, and Morris M. Travers, an English chemist, shortly after their discovery of the element krypton in 1898. Like krypton, neon was discovered through the

29

It's Elemental - The Element Technetium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molybdenum Molybdenum Previous Element (Molybdenum) The Periodic Table of Elements Next Element (Ruthenium) Ruthenium The Element Technetium [Click for Isotope Data] 43 Tc Technetium 98 Atomic Number: 43 Atomic Weight: 98 Melting Point: 2430 K (2157°C or 3915°F) Boiling Point: 4538 K (4265°C or 7709°F) Density: 11 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 7 Group Name: none Radioactive and Artificially Produced What's in a name? From the Greek word for artificial, technetos. Say what? Technetium is pronounced as tek-NEE-she-em. History and Uses: Technetium was the first artificially produced element. It was isolated by Carlo Perrier and Emilio Segrè in 1937. Technetium was created by bombarding molybdenum atoms with deuterons that had been accelerated by a

30

It's Elemental - The Element Cobalt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iron Iron Previous Element (Iron) The Periodic Table of Elements Next Element (Nickel) Nickel The Element Cobalt [Click for Isotope Data] 27 Co Cobalt 58.933195 Atomic Number: 27 Atomic Weight: 58.933195 Melting Point: 1768 K (1495°C or 2723°F) Boiling Point: 3200 K (2927°C or 5301°F) Density: 8.86 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 9 Group Name: none What's in a name? From the German word for goblin or evil spirit, kobald and the Greek word for mine, cobalos. Say what? Cobalt is pronounced as KO-bolt. History and Uses: Cobalt was discovered by Georg Brandt, a Swedish chemist, in 1739. Brandt was attempting to prove that the ability of certain minerals to color glass blue was due to an unknown element and not to bismuth, as was commonly

31

It's Elemental - The Element Oxygen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine The Element Oxygen [Click for Isotope Data] 8 O Oxygen 15.9994 Atomic Number: 8 Atomic Weight: 15.9994 Melting Point: 54.36 K (-218.79°C or -361.82°F) Boiling Point: 90.20 K (-182.95°C or -297.31°F) Density: 0.001429 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 16 Group Name: Chalcogen What's in a name? From the greek words oxys and genes, which together mean "acid forming." Say what? Oxygen is pronounced as OK-si-jen. History and Uses: Oxygen had been produced by several chemists prior to its discovery in 1774, but they failed to recognize it as a distinct element. Joseph

32

It's Elemental - The Element Manganese  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chromium Chromium Previous Element (Chromium) The Periodic Table of Elements Next Element (Iron) Iron The Element Manganese [Click for Isotope Data] 25 Mn Manganese 54.938045 Atomic Number: 25 Atomic Weight: 54.938045 Melting Point: 1519 K (1246°C or 2275°F) Boiling Point: 2334 K (2061°C or 3742°F) Density: 7.3 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 7 Group Name: none What's in a name? From the Latin word for magnet, magnes. Say what? Manganese is pronounced as MAN-ge-nees. History and Uses: Proposed to be an element by Carl Wilhelm Scheele in 1774, manganese was discovered by Johan Gottlieb Gahn, a Swedish chemist, by heating the mineral pyrolusite (MnO2) in the presence of charcoal later that year.

33

It's Elemental - The Element Titanium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scandium Scandium Previous Element (Scandium) The Periodic Table of Elements Next Element (Vanadium) Vanadium The Element Titanium [Click for Isotope Data] 22 Ti Titanium 47.867 Atomic Number: 22 Atomic Weight: 47.867 Melting Point: 1941 K (1668°C or 3034°F) Boiling Point: 3560 K (3287°C or 5949°F) Density: 4.5 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 4 Group Name: none What's in a name? From the Greek word Titans, the mythological "first sons of the Earth." Say what? Titanium is pronounced as tie-TAY-nee-em. History and Uses: Titanium was discovered in 1791 by the Reverend William Gregor, an English pastor. Pure titanium was first produced by Matthew A. Hunter, an American metallurgist, in 1910. Titanium is the ninth most abundant element in the

34

It's Elemental - The Element Astatine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Polonium Polonium Previous Element (Polonium) The Periodic Table of Elements Next Element (Radon) Radon The Element Astatine [Click for Isotope Data] 85 At Astatine 210 Atomic Number: 85 Atomic Weight: 210 Melting Point: 575 K (302°C or 576°F) Boiling Point: Unknown Density: about 7 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 6 Group Number: 17 Group Name: Halogen Radioactive What's in a name? From the Greek word for unstable, astatos. Say what? Astatine is pronounced as AS-teh-teen or as AS-teh-ten. History and Uses: Astatine was produced by Dale R. Carson, K.R. MacKenzie and Emilio Segrè by bombarding an isotope of bismuth, bismuth-209, with alpha particles that had been accelerated in a device called a cyclotron. This created

35

It's Elemental - The Element Copper  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc The Element Copper [Click for Isotope Data] 29 Cu Copper 63.546 Atomic Number: 29 Atomic Weight: 63.546 Melting Point: 1357.77 K (1084.62°C or 1984.32°F) Boiling Point: 2835 K (2562°C or 4644°F) Density: 8.933 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 11 Group Name: none What's in a name? From the Latin word cuprum, which means "from the island of Cyprus." Say what? Copper is pronounced as KOP-er. History and Uses: Archaeological evidence suggests that people have been using copper for at least 11,000 years. Relatively easy to mine and refine, people discovered methods for extracting copper from its ores at least 7,000 years ago. The

36

It's Elemental - The Element Gadolinium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Europium Europium Previous Element (Europium) The Periodic Table of Elements Next Element (Terbium) Terbium The Element Gadolinium [Click for Isotope Data] 64 Gd Gadolinium 157.25 Atomic Number: 64 Atomic Weight: 157.25 Melting Point: 1586 K (1313°C or 2395°F) Boiling Point: 3546 K (3273°C or 5923°F) Density: 7.90 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named for the mineral gadolinite which was named after Johan Gadolin, a Finnish chemist. Say what? Gadolinium is pronounced as GAD-oh-LIN-ee-em. History and Uses: Spectroscopic evidence for the existence of gadolinium was first observed by the Swiss chemist Jean Charles Galissard de Marignac in the minerals

37

It's Elemental - The Element Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

38

It's Elemental - The Element Hafnium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lutetium Lutetium Previous Element (Lutetium) The Periodic Table of Elements Next Element (Tantalum) Tantalum The Element Hafnium [Click for Isotope Data] 72 Hf Hafnium 178.49 Atomic Number: 72 Atomic Weight: 178.49 Melting Point: 2506 K (2233°C or 4051°F) Boiling Point: 4876 K (4603°C or 8317°F) Density: 13.3 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 4 Group Name: none What's in a name? From the Latin word for the city of Copenhagen, Hafnia. Say what? Hafnium is pronounced as HAF-neeem. History and Uses: Hafnium was discovered by Dirk Coster, a Danish chemist, and Charles de Hevesy, a Hungarian chemist, in 1923. They used a method known as X-ray spectroscopy to study the arrangement of the outer electrons of atoms in

39

It's Elemental - The Element Boron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon The Element Boron [Click for Isotope Data] 5 B Boron 10.811 Atomic Number: 5 Atomic Weight: 10.811 Melting Point: 2348 K (2075°C or 3767°F) Boiling Point: 4273 K (4000°C or 7232°F) Density: 2.37 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 2 Group Number: 13 Group Name: none What's in a name? From the Arabic word Buraq and the Persian word Burah, which are both words for the material "borax." Say what? Boron is pronounced as BO-ron. History and Uses: Boron was discovered by Joseph-Louis Gay-Lussac and Louis-Jaques Thénard, French chemists, and independently by Sir Humphry Davy, an English chemist,

40

It's Elemental - The Element Thorium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Actinium Actinium Previous Element (Actinium) The Periodic Table of Elements Next Element (Protactinium) Protactinium The Element Thorium [Click for Isotope Data] 90 Th Thorium 232.03806 Atomic Number: 90 Atomic Weight: 232.03806 Melting Point: 2023 K (1750°C or 3182°F) Boiling Point: 5061 K (4788°C or 8650°F) Density: 11.72 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 7 Group Number: none Group Name: Actinide Radioactive What's in a name? Named for the Scandinavian god of war, Thor. Say what? Thorium is pronounced as THOR-ee-em or as THO-ree-em. History and Uses: Thorium was discovered by Jöns Jacob Berzelius, a Swedish chemist, in 1828. He discovered it in a sample of a mineral that was given to him by the Reverend Has Morten Thrane Esmark, who suspected that it contained an

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

It's Elemental - The Element Chromium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium Vanadium Previous Element (Vanadium) The Periodic Table of Elements Next Element (Manganese) Manganese The Element Chromium [Click for Isotope Data] 24 Cr Chromium 51.9961 Atomic Number: 24 Atomic Weight: 51.9961 Melting Point: 2180 K (1907°C or 3465°F) Boiling Point: 2944 K (2671°C or 4840°F) Density: 7.15 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 6 Group Name: none What's in a name? From the Greek word for color, chroma. Say what? Chromium is pronounced as KROH-mee-em. History and Uses: Chromium was discovered by Louis-Nicholas Vauquelin while experimenting with a material known as Siberian red lead, also known as the mineral crocoite (PbCrO4), in 1797. He produced chromium oxide (CrO3) by mixing

42

It's Elemental - The Element Iron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manganese Manganese Previous Element (Manganese) The Periodic Table of Elements Next Element (Cobalt) Cobalt The Element Iron [Click for Isotope Data] 26 Fe Iron 55.845 Atomic Number: 26 Atomic Weight: 55.845 Melting Point: 1811 K (1538°C or 2800°F) Boiling Point: 3134 K (2861°C or 5182°F) Density: 7.874 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 8 Group Name: none What's in a name? From the Anglo-Saxon word iron. Iron's chemical symbol comes from the Latin word for iron, ferrum. Say what? Iron is pronounced as EYE-ern. History and Uses: Archaeological evidence suggests that people have been using iron for at least 5000 years. Iron is the cheapest and one of the most abundant of all metals, comprising nearly 5.6% of the earth's crust and nearly all of the

43

It's Elemental - The Element Molybdenum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Niobium Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium The Element Molybdenum [Click for Isotope Data] 42 Mo Molybdenum 95.96 Atomic Number: 42 Atomic Weight: 95.96 Melting Point: 2896 K (2623°C or 4753°F) Boiling Point: 4912 K (4639°C or 8382°F) Density: 10.2 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 6 Group Name: none What's in a name? From the Greek word for lead, molybdos. Say what? Molybdenum is pronounced as meh-LIB-deh-nem. History and Uses: Molybdenum was discovered by Carl Welhelm Scheele, a Swedish chemist, in 1778 in a mineral known as molybdenite (MoS2) which had been confused as a lead compound. Molybdenum was isolated by Peter Jacob Hjelm in 1781. Today,

44

It's Elemental - The Element Cesium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Xenon Xenon Previous Element (Xenon) The Periodic Table of Elements Next Element (Barium) Barium The Element Cesium [Click for Isotope Data] 55 Cs Cesium 132.9054519 Atomic Number: 55 Atomic Weight: 132.9054519 Melting Point: 301.59 K (28.44°C or 83.19°F) Boiling Point: 944 K (671°C or 1240°F) Density: 1.93 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 1 Group Name: Alkali Metal What's in a name? From the Latin word for sky blue, caesius. Say what? Cesium is pronounced as SEE-zee-em. History and Uses: Cesium was discovered by Robert Wilhelm Bunsen and Gustav Robert Kirchhoff, German chemists, in 1860 through the spectroscopic analysis of Durkheim mineral water. They named cesium after the blue lines they observed in its

45

It's Elemental - The Element Iridium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Osmium Osmium Previous Element (Osmium) The Periodic Table of Elements Next Element (Platinum) Platinum The Element Iridium [Click for Isotope Data] 77 Ir Iridium 192.217 Atomic Number: 77 Atomic Weight: 192.217 Melting Point: 2719 K (2446°C or 4435°F) Boiling Point: 4701 K (4428°C or 8002°F) Density: 22.42 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 9 Group Name: none What's in a name? From the Latin word for rainbow, iris. Say what? Iridium is pronounced as i-RID-ee-em. History and Uses: Iridium and osmium were discovered at the same time by the British chemist Smithson Tennant in 1803. Iridium and osmium were identified in the black residue remaining after dissolving platinum ore with aqua regia, a mixture

46

It's Elemental - The Element Platinum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iridium Iridium Previous Element (Iridium) The Periodic Table of Elements Next Element (Gold) Gold The Element Platinum [Click for Isotope Data] 78 Pt Platinum 195.084 Atomic Number: 78 Atomic Weight: 195.084 Melting Point: 2041.55 K (1768.4°C or 3215.1°F) Boiling Point: 4098 K (3825°C or 6917°F) Density: 21.46 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 10 Group Name: none What's in a name? From the Spainsh word for silver, platina. Say what? Platinum is pronounced as PLAT-en-em. History and Uses: Used by the pre-Columbian Indians of South America, platinum wasn't noticed by western scientists until 1735. Platinum can occur free in nature and is sometimes found in deposits of gold-bearing sands, primarily those found in

47

It's Elemental - The Element Arsenic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Germanium Germanium Previous Element (Germanium) The Periodic Table of Elements Next Element (Selenium) Selenium The Element Arsenic [Click for Isotope Data] 33 As Arsenic 74.92160 Atomic Number: 33 Atomic Weight: 74.92160 Melting Point: 1090 K (817°C or 1503°F) Boiling Point: 887 K (614°C or 1137°F) Density: 5.776 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 4 Group Number: 15 Group Name: Pnictogen What's in a name? From the Latin word arsenicum, the Greek word arsenikon and the Arabic word Az-zernikh. Say what? Arsenic is pronounced as AR-s'n-ik. History and Uses: Although arsenic compounds were mined by the early Chinese, Greek and Egyptian civilizations, it is believed that arsenic itself was first identified by Albertus Magnus, a German alchemist, in 1250. Arsenic occurs

48

It's Elemental - The Element Barium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cesium Cesium Previous Element (Cesium) The Periodic Table of Elements Next Element (Lanthanum) Lanthanum The Element Barium [Click for Isotope Data] 56 Ba Barium 137.327 Atomic Number: 56 Atomic Weight: 137.327 Melting Point: 1000 K (727°C or 1341°F) Boiling Point: 2170 K (1897°C or 3447°F) Density: 3.62 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 2 Group Name: Alkaline Earth Metal What's in a name? From the Greek word for heavy, barys. Say what? Barium is pronounced as BAR-ee-em. History and Uses: Barium was first isolated by Sir Humphry Davy, an English chemist, in 1808 through the electrolysis of molten baryta (BaO). Barium is never found free in nature since it reacts with oxygen in the air, forming barium oxide

49

It's Elemental - The Element Gold  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Platinum Platinum Previous Element (Platinum) The Periodic Table of Elements Next Element (Mercury) Mercury The Element Gold [Click for Isotope Data] 79 Au Gold 196.966569 Atomic Number: 79 Atomic Weight: 196.966569 Melting Point: 1337.33 K (1064.18°C or 1947.52°F) Boiling Point: 3129 K (2856°C or 5173°F) Density: 19.282 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 11 Group Name: none What's in a name? From the Sanskrit word Jval and the Anglo-Saxon word gold. Gold's chemical symbol comes from the the latin word for gold, aurum. Say what? Gold is pronounced as GOLD. History and Uses: An attractive and highly valued metal, gold has been known for at least 5500 years. Gold is sometimes found free in nature but it is usually found

50

It's Elemental - The Element Rhenium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium The Element Rhenium [Click for Isotope Data] 75 Re Rhenium 186.207 Atomic Number: 75 Atomic Weight: 186.207 Melting Point: 3459 K (3186°C or 5767°F) Boiling Point: 5869 K (5596°C or 10105°F) Density: 20.8 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 7 Group Name: none What's in a name? From the Latin word for the Rhine River, Rhenus. Say what? Rhenium is pronounced as REE-nee-em. History and Uses: Rhenium was discovered by the German chemists Ida Tacke-Noddack, Walter Noddack and Otto Carl Berg in 1925. They detected rhenium spectroscopically in platinum ores and in the minerals columbite ((Fe, Mn, Mg)(Nb, Ta)2O6),

51

It's Elemental - The Element Osmium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rhenium Rhenium Previous Element (Rhenium) The Periodic Table of Elements Next Element (Iridium) Iridium The Element Osmium [Click for Isotope Data] 76 Os Osmium 190.23 Atomic Number: 76 Atomic Weight: 190.23 Melting Point: 3306 K (3033°C or 5491°F) Boiling Point: 5285 K (5012°C or 9054°F) Density: 22.57 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 8 Group Name: none What's in a name? From the Greek word for a smell, osme. Say what? Osmium is pronounced as OZ-mee-em. History and Uses: Osmium and iridium were discovered at the same time by the British chemist Smithson Tennant in 1803. Osmium and iridium were identified in the black residue remaining after dissolving platinum ore with aqua regia, a mixture

52

It's Elemental - The Element Antimony  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tin Tin Previous Element (Tin) The Periodic Table of Elements Next Element (Tellurium) Tellurium The Element Antimony [Click for Isotope Data] 51 Sb Antimony 121.760 Atomic Number: 51 Atomic Weight: 121.760 Melting Point: 903.78 K (630.63°C or 1167.13°F) Boiling Point: 1860 K (1587°C or 2889°F) Density: 6.685 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 5 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words anti and monos, which together mean "not alone." Antimony's chemical symbol comes from its historic name, Stibium. Say what? Antimony is pronounced as AN-the-MOH-nee. History and Uses: Antimony has been known since ancient times. It is sometimes found free in nature, but is usually obtained from the ores stibnite (Sb2S3) and

53

It's Elemental - The Element Zinc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Copper Copper Previous Element (Copper) The Periodic Table of Elements Next Element (Gallium) Gallium The Element Zinc [Click for Isotope Data] 30 Zn Zinc 65.38 Atomic Number: 30 Atomic Weight: 65.38 Melting Point: 692.68 K (419.53°C or 787.15°F) Boiling Point: 1180 K (907°C or 1665°F) Density: 7.134 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 12 Group Name: none What's in a name? From the German word zink. Say what? Zinc is pronounced as ZINK. History and Uses: Although zinc compounds have been used for at least 2,500 years in the production of brass, zinc wasn't recognized as a distinct element until much later. Metallic zinc was first produced in India sometime in the 1400s by heating the mineral calamine (ZnCO3) with wool. Zinc was rediscovered by

54

It's Elemental - The Element Chlorine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon The Element Chlorine [Click for Isotope Data] 17 Cl Chlorine 35.453 Atomic Number: 17 Atomic Weight: 35.453 Melting Point: 171.65 K (-101.5°C or -150.7°F) Boiling Point: 239.11 K (-34.04°C or -29.27°F) Density: 0.003214 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 3 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for greenish yellow, chloros. Say what? Chlorine is pronounced as KLOR-een or as KLOR-in. History and Uses: Since it combines directly with nearly every element, chlorine is never found free in nature. Chlorine was first produced by Carl Wilhelm Scheele, a Swedish chemist, when he combined the mineral pyrolusite (MnO2) with

55

It's Elemental - The Element Fluorine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Oxygen Previous Element (Oxygen) The Periodic Table of Elements Next Element (Neon) Neon The Element Fluorine [Click for Isotope Data] 9 F Fluorine 18.9984032 Atomic Number: 9 Atomic Weight: 18.9984032 Melting Point: 53.53 K (-219.62°C or -363.32°F) Boiling Point: 85.03 K (-188.12°C or -306.62°F) Density: 0.001696 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 17 Group Name: Halogen What's in a name? From the Latin and French words for flow, fluere. Say what? Fluorine is pronounced as FLU-eh-reen or as FLU-eh-rin. History and Uses: Fluorine is the most reactive of all elements and no chemical substance is capable of freeing fluorine from any of its compounds. For this reason, fluorine does not occur free in nature and was extremely difficult for

56

It's Elemental - The Element Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thallium Thallium Previous Element (Thallium) The Periodic Table of Elements Next Element (Bismuth) Bismuth The Element Lead [Click for Isotope Data] 82 Pb Lead 207.2 Atomic Number: 82 Atomic Weight: 207.2 Melting Point: 600.61 K (327.46°C or 621.43°F) Boiling Point: 2022 K (1749°C or 3180°F) Density: 11.342 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 14 Group Name: none What's in a name? From the Anglo-Saxon word lead. Lead's chemical symbol comes from the Latin word for waterworks, plumbum. Say what? Lead is pronounced as LED. History and Uses: Lead has been known since ancient times. It is sometimes found free in nature, but is usually obtained from the ores galena (PbS), anglesite (PbSO4), cerussite (PbCO3) and minum (Pb3O4). Although lead makes up only

57

It's Elemental - The Element Iodine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tellurium Tellurium Previous Element (Tellurium) The Periodic Table of Elements Next Element (Xenon) Xenon The Element Iodine [Click for Isotope Data] 53 I Iodine 126.90447 Atomic Number: 53 Atomic Weight: 126.90447 Melting Point: 386.85 K (113.7°C or 236.7°F) Boiling Point: 457.55 K (184.4°C or 364.0°F) Density: 4.93 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 5 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for violet, iodes. Say what? Iodine is pronounced as EYE-eh-dine or as EYE-eh-din. History and Uses: Iodine was discovered by the French chemist Barnard Courtois in 1811. Courtois was extracting sodium and potassium compounds from seaweed ash. Once these compounds were removed, he added sulfuric acid (H2SO4) to

58

Programmatic Elements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide provides acceptable methods of meeting the requirements of DOE O 151.1C for programmatic elements that sustain the emergency management program and maintain the readiness of the program to respond to an emergency. Cancels DOE G 151.1-1, Volume 5-1, DOE G 151.1-1, Volume 5-2, DOE G 151.1-1, Volume 5-3, DOE G 151.1-1, Volume 5-4, DOE G 151.1-1, Volume 7-1, and DOE G 151.1-1, Volume 7-3.

2007-07-11T23:59:59.000Z

59

Response Elements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Cancels DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

2007-07-11T23:59:59.000Z

60

It's Elemental - Isotopes of the Element Magnesium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

It's Elemental - Isotopes of the Element Chlorine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

62

It's Elemental - Isotopes of the Element Potassium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248Ă—10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

63

It's Elemental - Isotopes of the Element Phosphorus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

64

It's Elemental - Isotopes of the Element Francium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

65

It's Elemental - Isotopes of the Element Oxygen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139Ă—10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

66

It's Elemental - Isotopes of the Element Gallium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zinc Zinc Previous Element (Zinc) The Periodic Table of Elements Next Element (Germanium) Germanium Isotopes of the Element Gallium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 69 60.108% STABLE 71 39.892% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 56 No Data Available Proton Emission (suspected) No Data Available 57 No Data Available Proton Emission (suspected) No Data Available 58 No Data Available Proton Emission (suspected) No Data Available 59 No Data Available Proton Emission (suspected) No Data Available 60 70 milliseconds Electron Capture 98.40%

67

It's Elemental - Isotopes of the Element Sodium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium Isotopes of the Element Sodium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 23 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 18 1.3Ă—10-21 seconds Proton Emission 100.00% 19 < 40 nanoseconds Proton Emission No Data Available 20 447.9 milliseconds Electron Capture with delayed Alpha Decay 20.05% Electron Capture 100.00% 21 22.49 seconds Electron Capture 100.00% 22 2.6027 years Electron Capture 100.00% 23 STABLE - - 24 14.997 hours Beta-minus Decay 100.00%

68

It's Elemental - Isotopes of the Element Neon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium Isotopes of the Element Neon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 20 90.48% STABLE 21 0.27% STABLE 22 9.25% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 16 9Ă—10-21 seconds Double Proton Emission 100.00% 17 109.2 milliseconds Electron Capture with delayed Alpha Decay No Data Available Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 18 1.6670 seconds Electron Capture 100.00% 19 17.22 seconds Electron Capture 100.00% 20 STABLE - -

69

It's Elemental - Isotopes of the Element Copper  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc Isotopes of the Element Copper [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 63 69.15% STABLE 65 30.85% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 52 No Data Available Proton Emission No Data Available 53 < 300 nanoseconds Electron Capture No Data Available Proton Emission No Data Available 54 < 75 nanoseconds Proton Emission No Data Available 55 27 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 15.0% 56 93 milliseconds Electron Capture 100.00%

70

It's Elemental - Isotopes of the Element Boron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255Ă—10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439Ă—10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

71

It's Elemental - Isotopes of the Element Tungsten  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6Ă—10+17 years 182 26.50% STABLE 183 14.31% > 1.3Ă—10+19 years 184 30.64% STABLE 186 28.43% > 2.3Ă—10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

72

It's Elemental - Isotopes of the Element Radon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

73

It's Elemental - Isotopes of the Element Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boron Boron Previous Element (Boron) The Periodic Table of Elements Next Element (Nitrogen) Nitrogen Isotopes of the Element Carbon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 12 98.93% STABLE 13 1.07% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 8 1.981Ă—10-21 seconds Proton Emission 100.00% Alpha Decay No Data Available 9 126.5 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 61.60% Electron Capture with delayed Alpha Decay 38.40% 10 19.308 seconds Electron Capture 100.00% 11 20.334 minutes Electron Capture 100.00% 12 STABLE - -

74

It's Elemental - Isotopes of the Element Rhenium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33Ă—10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

75

It's Elemental - Isotopes of the Element Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen Isotopes of the Element Nitrogen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 14 99.636% STABLE 15 0.364% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 10 No Data Available Proton Emission 100.00% 11 5.49Ă—10-22 seconds Proton Emission 100.00% 12 11.000 milliseconds Electron Capture 100.00% 13 9.965 minutes Electron Capture 100.00% 14 STABLE - - 15 STABLE - - 16 7.13 seconds Beta-minus Decay 100.00% Beta-minus Decay with delayed Alpha Decay 1.2Ă—10-3 % 17 4.173 seconds Beta-minus Decay 100.00%

76

Automation of organic elemental analysis  

Science Journals Connector (OSTI)

Automation of organic elemental analysis ... Describes the development and design of an apparatus for automated organic elemental analysis. ...

Velmer B. Fish

1969-01-01T23:59:59.000Z

77

NON-METALLIC MATE!UALS LIST  

E-Print Network [OSTI]

·ra···...........-..... cs CS(R) CS(T) GU LEAM LEAM(Z) LMS L.MS(EOD) LMS(T) LSG(L) LSG(LR) LSP LSP LSP(G) - ......""·ALSEP,LSP lZZ LMS LSG(L) Silicone Gen Elec Spd RTV-615 LMS Epoxy, Clear Emer · Cum Eccobond Z4 LM.S(EOD

Rathbun, Julie A.

78

Acoustic resonance for nonmetallic mine detection  

SciTech Connect (OSTI)

The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

Kercel, S.W.

1998-04-01T23:59:59.000Z

79

Josephson junction element  

SciTech Connect (OSTI)

A sandwich-type josephson junction element wherein a counter electrode is made of a mo-re alloy which contains 10-90 atomic-% of re. The josephson junction element has a high operating temperature, and any deterioration thereof attributed to a thermal cycle is not noted.

Kawabe, U.; Tarutani, Y.; Yamada, H.

1982-03-09T23:59:59.000Z

80

Proceedings of transuranium elements  

SciTech Connect (OSTI)

The identification of the first synthetic elements was established by chemical evidence. Conclusive proof of the synthesis of the first artificial element, technetium, was published in 1937 by Perrier and Segre. An essential aspect of their achievement was the prediction of the chemical properties of element 43, which had been missing from the periodic table and which was expected to have properties similar to those of manganese and rhenium. The discovery of other artificial elements, astatine and francium, was facilitated in 1939-1940 by the prediction of their chemical properties. A little more than 50 years ago, in the spring of 1940, Edwin McMillan and Philip Abelson synthesized element 93, neptunium, and confirmed its uniqueness by chemical means. On August 30, 1940, Glenn Seaborg, Arthur Wahl, and the late Joseph Kennedy began their neutron irradiations of uranium nitrate hexahydrate. A few months later they synthesized element 94, later named plutonium, by observing the alpha particles emitted from uranium oxide targets that had been bombarded with deuterons. Shortly thereafter they proved that is was the second transuranium element by establishing its unique oxidation-reduction behavior. The symposium honored the scientists and engineers whose vision and dedication led to the discovery of the transuranium elements and to the understanding of the influence of 5f electrons on their electronic structure and bonding. This volume represents a record of papers presented at the symposium.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thematic Questions about Chemical Elements Nature of the chemical elements  

E-Print Network [OSTI]

Be Atomic No. 1 2 3 4 Isotopes 1,2,3 3,4 6,7 9,10 Name Boron Carbon Nitrogen Oxygen Symbol B C N O Atomic No Environment Element Synthesis: Exploration of Chemical Fundamentals Element Synthesis and Isotopes · Elemental Abundance and Isotopes · distribution of elements in the universe · factors that define elemental

Polly, David

82

Element 103, Lawrencium  

Science Journals Connector (OSTI)

... formed on February 14 by bombarding 3 (Jigm. of californium (element 98) with boron-10 or boron-11 nuclei in a heavy-ion linear accelerator at the Lawrence Radiation Laboratory ...

1961-04-29T23:59:59.000Z

83

Sandia National Laboratories: CSP: ELEMENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSP: ELEMENTS Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

84

Elemental sulfur recovery process  

DOE Patents [OSTI]

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

85

Rare Earth Elements:  

Science Journals Connector (OSTI)

...were also extracted as by-products of uranium mining from conglomerates at Elliot Lake...toxic waste lakes, acrid air, and high cancer rates in the Bayan Obo area. The environmental...Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary...

Anton R. Chakhmouradian; Frances Wall

86

Element Crossword Puzzles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crossword Puzzles Crossword Puzzles Welcome to It's Elemental - Element Crossword Puzzles! Use the clues provided to solve each crossword puzzle. To place letters on the puzzle, first select the clue you are answering from the pull-down menu and then enter your answer in the text box. Press the 'return' key on your keyboard when you are done. Correct letters will be green while incorrect letters will be red. Good luck and have fun! If you are reading this, your browser is NOT running JavaScript. JavaScript MUST be enabled for this section of our site to work. Once you have turned JavaScript on, reload this page and this warning will go away. Puzzle 1 - It's a Gas! Puzzle 2 - Easy Symbols Puzzle 3 - Strange Symbols Puzzle 4 - Known to the Ancients Puzzle 5 - The Alkali Metals

87

Plutonium and Other Transuranium Elements  

Science Journals Connector (OSTI)

Glenn T. Seaborg has assisted at the birth of three of the four new transuranium elements. ... GLENN T. SEABORG ...

GLENN T. SEABORG

1947-02-10T23:59:59.000Z

88

Synthesis of reversible sequential elements  

Science Journals Connector (OSTI)

To construct a reversible sequential circuit, reversible sequential elements are required. This work presents novel designs of reversible sequential elements such as the D latch, JK latch, and T latch. Based on these reversible latches, we construct ... Keywords: Reversible logic, sequential circuits, sequential elements

Min-Lun Chuang; Chun-Yao Wang

2008-01-01T23:59:59.000Z

89

Chemical characterization of element 112  

Science Journals Connector (OSTI)

... directly comparing the adsorption characteristics of 283112 to that of mercury and the noble gas radon, we find that element 112 is very volatile and, unlike ... , we find that element 112 is very volatile and, unlike radon, reveals a metallic interaction with the gold surface. These adsorption characteristics establish element 112 ...

R. Eichler; N. V. Aksenov; A. V. Belozerov; G. A. Bozhikov; V. I. Chepigin; S. N. Dmitriev; R. Dressler; H. W. Gäggeler; V. A. Gorshkov; F. Haenssler; M. G. Itkis; A. Laube; V. Ya. Lebedev; O. N. Malyshev; Yu. Ts. Oganessian; O. V. Petrushkin; D. Piguet; P. Rasmussen; S. V. Shishkin; A. V. Shutov; A. I. Svirikhin; E. E. Tereshatov; G. K. Vostokin; M. Wegrzecki; A. V. Yeremin

2007-05-03T23:59:59.000Z

90

The CEBAF Element Database  

SciTech Connect (OSTI)

With the inauguration of the CEBAF Element Database (CED) in Fall 2010, Jefferson Lab computer scientists have taken a step toward the eventual goal of a model-driven accelerator. Once fully populated, the database will be the primary repository of information used for everything from generating lattice decks to booting control computers to building controls screens. A requirement influencing the CED design is that it provide access to not only present, but also future and past configurations of the accelerator. To accomplish this, an introspective database schema was designed that allows new elements, types, and properties to be defined on-the-fly with no changes to table structure. Used in conjunction with Oracle Workspace Manager, it allows users to query data from any time in the database history with the same tools used to query the present configuration. Users can also check-out workspaces to use as staging areas for upcoming machine configurations. All Access to the CED is through a well-documented Application Programming Interface (API) that is translated automatically from original C++ source code into native libraries for scripting languages such as perl, php, and TCL making access to the CED easy and ubiquitous.

Theodore Larrieu, Christopher Slominski, Michele Joyce

2011-03-01T23:59:59.000Z

91

Definition: Element | Open Energy Information  

Open Energy Info (EERE)

Element Element Jump to: navigation, search Dictionary.png Element Any electrical device with terminals that may be connected to other electrical devices such as a generator, transformer, circuit breaker, bus section, or transmission line. An element may be comprised of one or more components.[1] View on Wikipedia Wikipedia Definition Electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. Any electrical network can be analysed as multiple, interconnected electrical elements in a schematic diagram or circuit diagram, each of which affects the voltage in the network or current through the network. These ideal electrical elements represent real, physical electrical or electronic components but

92

Photoconductive circuit element reflectometer  

DOE Patents [OSTI]

A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

Rauscher, C.

1987-12-07T23:59:59.000Z

93

Photoconductive circuit element reflectometer  

DOE Patents [OSTI]

A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

Rauscher, Christen (Alexandria, VA)

1990-01-01T23:59:59.000Z

94

THE NEW ELEMENT CALIFORNIUM (ATOMIC NUMBER 98)  

E-Print Network [OSTI]

shell, as occurs in rare earth elements at the point ofand homologous rare earth elements in high temperaturethe homologous rare earth elements. (2) Its distinctive high

Thompson, S.G.; Street, K.,Jr.; Ghiorso, A.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

95

Resistive hydrogen sensing element  

DOE Patents [OSTI]

Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

Lauf, Robert J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

96

Electronic Structure of the Heaviest Elements  

E-Print Network [OSTI]

well known grou~ 14 rare earth elements of atomic numbersproposed for the rare earth elements because these 14

Seaborg, G.T.

2008-01-01T23:59:59.000Z

97

The Search for Heavy Elements  

ScienceCinema (OSTI)

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

None

2010-01-08T23:59:59.000Z

98

The Search for Heavy Elements  

SciTech Connect (OSTI)

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

2008-04-17T23:59:59.000Z

99

Terminological aspects of data elements  

SciTech Connect (OSTI)

The creation and display of data comprise a process that involves a sequence of steps requiring both semantic and systems analysis. An essential early step in this process is the choice, definition, and naming of data element concepts and is followed by the specification of other needed data element concept attributes. The attributes and the values of data element concept remain associated with them from their birth as a concept to a generic data element that serves as a template for final application. Terminology is, therefore, centrally important to the entire data creation process. Smooth mapping from natural language to a database is a critical aspect of database, and consequently, it requires terminology standardization from the outset of database work. In this paper the semantic aspects of data elements are analyzed and discussed. Seven kinds of data element concept information are considered and those that require terminological development and standardization are identified. The four terminological components of a data element are the hierarchical type of a concept, functional dependencies, schematas showing conceptual structures, and definition statements. These constitute the conventional role of terminology in database design. 12 refs., 8 figs., 1 tab.

Strehlow, R.A. (Oak Ridge National Lab., TN (United States)) [Oak Ridge National Lab., TN (United States); Kenworthey, W.H. Jr. (Department of Defense, Washington, DC (United States)) [Department of Defense, Washington, DC (United States); Schuldt, R.E. (Martin Marietta Aerospace, Denver, CO (United States)) [Martin Marietta Aerospace, Denver, CO (United States)

1991-01-01T23:59:59.000Z

100

Elemental ABAREX -- a user's manual.  

SciTech Connect (OSTI)

ELEMENTAL ABAREX is an extended version of the spherical optical-statistical model code ABAREX, designed for the interpretation of neutron interactions with elemental targets consisting of up to ten isotopes. The contributions from each of the isotopes of the element are explicitly dealt with, and combined for comparison with the elemental observables. Calculations and statistical fitting of experimental data are considered. The code is written in FORTRAN-77 and arranged for use on the IBM-compatible personal computer (PC), but it should operate effectively on a number of other systems, particularly VAX/VMS and IBM work stations. Effort is taken to make the code user friendly. With this document a reasonably skilled individual should become fluent with the use of the code in a brief period of time.

Smith, A.B.

1999-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Platinum-Group Elements:  

Science Journals Connector (OSTI)

...higher Pt emissions have been measured for diesel catalysts (Moldovan et al. 2002...1031-1036 Johnson Matthey (2007) Market Data Tables. Online information www...platinum-group elements released from gasoline and diesel engine catalytic converters. Science...

Sebastien Rauch; Gregory M. Morrison

102

Canonical elements for collision orbits  

E-Print Network [OSTI]

I derive a set of canonical elements that are useful for collision orbits (perihelion distance approaching zero at fixed semimajor axis). The coordinates are the mean anomaly and the two spherical polar angles at aphelion.

Scott Tremaine

2000-12-12T23:59:59.000Z

103

Environmental research on actinide elements  

SciTech Connect (OSTI)

The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

1987-08-01T23:59:59.000Z

104

linear-elements-code.scm  

E-Print Network [OSTI]

(o Linear-finite-element-operator)) ;; initialize various fields that depend on the space ;; if coefficients is not defined, we set it to arrays of floating-point ;; zeros ...

105

American Elements | Open Energy Information  

Open Energy Info (EERE)

Elements Place: Los Angeles, California Zip: 90024 Product: US-based manufacturer and supplier of PV feedstocks such as silicon, CIS, CIGS-based and Gallium-based materials....

106

THE NEW ELEMENT BERKELIUM (ATOMIC NUMBER 97)  

E-Print Network [OSTI]

of time from rare earth elements and from the actinidea group from the rare earth elements before using the columnpositions of some rare earth elements was obtained and these

Thompson, S.G.; Ghiorso, A.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

107

A few new (?) facts about infinite elements  

E-Print Network [OSTI]

Keywords: Helmholtz equation; Infinite element; hp finite elements; Echo Area. 1. .... Ľ g :Ľ ? ouinc on . ?2.1?. The Sommerfeld radiation condition represents a ...

2006-04-24T23:59:59.000Z

108

Element Labs Inc | Open Energy Information  

Open Energy Info (EERE)

Inc. Place: Santa Clara, California Zip: 95054 Product: Element Labs is a developer of LED video technology for entertainment, architectural, and signage. References: Element...

109

Superheavy Elements - Achievements and Challenges  

SciTech Connect (OSTI)

The search for superheavy elements (SHE) has yielded exciting results for both the 'cold fusion' approach with reactions employing Pb and Bi targets and the ''hot fusion'' reactions with {sup 48}Ca beams on actinide targets. The most recent activities at GSI were the successful production of a more neutron rich isotope of element 112 in the reaction {sup 48}Ca+{sup 238}U confirming earlier result from FLNR, and the attempt to synthesize an isotope with Z 120 in the reaction {sup 64}Ni+{sup 238}U. Apart from the synthesis of new elements, advanced nuclear structure studies for heavy and super heavy elements promise a detailed insight in the properties of nuclear matter under the extreme conditions of high Z and A. The means are evaporation residue(ER)-{alpha}-{alpha} and -{alpha}-{gamma} coincidence techniques applied after separation of the reaction products from the beam. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the investigation of K-isomers observed for {sup 252,254}No and indicated for {sup 270}Ds. Fast chemistry and precision mass measurements deliver in addition valuable information on the fundamental properties of the SHE.

Ackermann, Dieter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

2009-03-04T23:59:59.000Z

110

Single element laser beam shaper  

DOE Patents [OSTI]

A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

2005-09-13T23:59:59.000Z

111

Eric Heinicke Energy Elements LLC  

E-Print Network [OSTI]

and East CTA Snapshots; Cost Effective Energy Saving Measures And Supplemental Issues Benchmarking and FineEric Heinicke Energy Elements LLC 702-683-5067 eric@energyelements.net NW CTA, Burkholder MS Tuning High Performance HYBRID GX Systems Cary Smith Sound Geothermal Corporation 801-942-6100 dcsmith

112

The Transuranium Elements - Present Status: Nobel Lecture  

DOE R&D Accomplishments [OSTI]

The discovery of the transuranium elements and the work done on them up to the present time are reviewed. The properties of these elements, their relationship to other elements, their place in the periodic table, and the possibility of production and identification of other transuranium elements are discussed briefly.

Seaborg, G. T.

1951-12-12T23:59:59.000Z

113

Property:GRR/Elements | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:GRR/Elements Jump to: navigation, search Property Name GRR/Elements Property Type Page Description List of elements included in this section. The value of this property is derived automatically by the portion of the element template that controls the content displayed when elements are embedded in sections. Pages using the property "GRR/Elements" Showing 25 pages using this property. (previous 25) (next 25) G GRR/Elements/ + GRR/Elements/1a.21 to 1a.22 - Proposed Land Use Plan (New Plan) or Final Environmental Impact Statement (Revision) + GRR/Elements/12-FD-a.10 - Written Concurrence with the "No Effect" and/or "No Likely Adverse Effects" Determination + GRR/Elements/12-FD-a.10 - Written Concurrence with the "No Effect" and/or "No Likely Adverse Effects" Determination +

114

Element Labs | Open Energy Information  

Open Energy Info (EERE)

Element Labs Element Labs Address 3350 Scott Blvd Place Santa Clara, California Zip 95054 Sector Efficiency Product LED Producer Website http://www.elementlabs.com/ Coordinates 37.380364°, -121.9823779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.380364,"lon":-121.9823779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Element Power | Open Energy Information  

Open Energy Info (EERE)

Power Power Jump to: navigation, search Logo: Element Power Name Element Power Address 421 SW Sixth Avenue, Suite 1000 Place Portland, Oregon Zip 97204 Sector Wind energy Product uility-scale solar and wind projects Website http://www.elpower.com/ Coordinates 45.520812°, -122.67791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.520812,"lon":-122.67791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Composite oxygen ion transport element  

SciTech Connect (OSTI)

A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

2007-06-12T23:59:59.000Z

117

Self supporting heat transfer element  

DOE Patents [OSTI]

The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

Story, Grosvenor Cook (Livermore, CA); Baldonado, Ray Orico (Livermore, CA)

2002-01-01T23:59:59.000Z

118

The Origin of the Elements  

ScienceCinema (OSTI)

The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

Murphy, Edward

2014-08-06T23:59:59.000Z

119

Photoconductive circuit element pulse generator  

DOE Patents [OSTI]

A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

Rauscher, Christen (Alexandria, VA)

1989-01-01T23:59:59.000Z

120

Neutrino induced light element synthesis  

SciTech Connect (OSTI)

As the core of a massive star collapses to form a neutron star, the flux of neutrinos in the overlying shells of heavy elements becomes so great that, despite the small cross section, substantial nuclear transmutation is induced. Neutrinos, especially the higher energy {mu}- and {tau}-neutrinos, excite heavy elements and even helium to particle unbound levels. The evaporation of a single neutron or proton, and the back reaction of these nucleons on other species present, significantly alters the outcome of traditional nucleosynthesis calculations leading to a new process: {nu}-nucleosynthesis. The process was first studied by Domogatsky et al. and Woosley. Recent work by Epstein, Colgate, and Haxton and Woosley and Haxton suggested that a large number of elements could owe their existence in nature to {nu}-induced reactions in supernovae. A parametrized study of this process including shock wave propagation was carried out by Woosley et al. for selected zones of a 20 M{sub {circle dot}} star. Here we give preliminary results for a 25 M{sub {circle dot}} star, including all {nu}-reactions in all stellar zones.

Hartmann, D.H.; Mathews, G.; Weaver, T.A. (Lawrence Livermore National Lab., CA (USA)); Haxton, W.C. (Washington Univ., Seattle, WA (USA). Dept. of Physics); Woosley, S.E. (Lawrence Livermore National Lab., CA (USA) California Univ., Santa Cruz, CA (USA). Board of Studies in Astronomy and Astrophysics)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Study on Non-Metallic Structure of Heliostat  

Science Journals Connector (OSTI)

Heliostat constitutes a very important component in the ... be given in the design and optimization of heliostat.

Xiaobin Liu; Chuncheng Zang; Xiliang Zhang…

2009-01-01T23:59:59.000Z

122

Nonmetallic Conduction in Electron Inversion Layers at Low Temperatures  

Science Journals Connector (OSTI)

We have measured the resistance of electron inversion layers in Si metal-oxide-semiconductor field-effect transistors at low temperatures (?50 mK) and low electric fields (?0.1 V/m). At low values of R? we observe logarithmic dependences of the resistance on both temperature and applied electric field which scale only on R?. We observe a gradual transition to an exponential dependence at R??10 k?. The logarithmic dependences agree qualitatively but not quantitatively with current theories of localization.

D. J. Bishop, D. C. Tsui, and R. C. Dynes

1980-04-28T23:59:59.000Z

123

The New Element Americium (Atomic Number 95)  

DOE R&D Accomplishments [OSTI]

Several isotopes of the new element 95 have been produced and their radiations characterized. The chemical properties of this tripositive element are similar to those of the typical tripositive lanthanide rare-earth elements. Element 95 is different from the latter in the degree and rate of formation of certain compounds of the complex ion type, which makes possible the separation of element 95 from the lanthanide rare-earths. The name americium (after the Americas) and the symbol Am are suggested for the element on the basis of its position as the sixth member of the actinide rare-earth series, analogous to europium, Eu, of the lanthanide series.

Seaborg, G.T.; James, R.A.; Morgan, L.O.

1948-01-00T23:59:59.000Z

124

Numerical Simulation of Detonation Initiation by the Space-Time Conservation Element and Solution Element Method.  

E-Print Network [OSTI]

??This dissertation is focused on the numerical simulation of the detonation initiation process. The space-time Conservation Element and Solution Element (CESE) method, a novel numerical… (more)

Wang, Bao

2010-01-01T23:59:59.000Z

125

Essential Grid Workflow Monitoring Elements  

SciTech Connect (OSTI)

Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

2005-07-01T23:59:59.000Z

126

Questions and Answers - Who discovered the elements?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Will scientists everfind smaller elements? Will scientists ever<br>find smaller elements? Previous Question (Will scientists ever find smaller elements?) Questions and Answers Main Index Next Question (What are boiling and melting points?) What are boiling and melting points? Who discovered the element gold, silver, copper, neon, etc...? Below is a list of all of the known elements, who they were discovered by and the year they were discovered. Some elements, such as gold, silver and iron, have been known since ancient times, so it is impossible to credit a single person for their discovery. Other elements were discovered around the same time by two or more scientists who were working independently of each other. In these cases, each scientist is listed along with the year they made their discovery. Other elements were discovered by teams of

127

RECENT WORK WITH THE TRANSURANIUM ELEMENTS  

Science Journals Connector (OSTI)

...WITH THE TRANSURANIUM ELEMENTS Glenn T. Seaborg LAWRENCE RADIATION LABORATORY...45, 1959 PHYSICS: G. T. SEABORG 471 RECENT WORK WITH THE TRANS URANIUL'3 ELEMENTS BY GLENN T. SEABORG LAWRENCE RADIATION LABORATORY...

Glenn T. Seaborg

1959-01-01T23:59:59.000Z

128

Die Elemente der 13. Gruppe: die Borgruppe  

Science Journals Connector (OSTI)

Die 13. Gruppe enthält die Elemente: Bor (B), Aluminium (Al), Gallium (Ga), Indium (In) und Thallium (Tl).

Prof. Dr. Waldemar Ternes

2013-01-01T23:59:59.000Z

129

Climbing elements in finite coxeter groups  

E-Print Network [OSTI]

We define the notion of a climbing element in a finite real reflection group relative to a total order on the reflection set and we characterise these elements in the case where the total order arises from a bipartite Coxeter element.

Brady, Thomas; Watt, And Colum

2010-01-01T23:59:59.000Z

130

Fuel elements of thermionic converters  

SciTech Connect (OSTI)

Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

Hunter, R.L. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Environmental Systems Assessment Dept.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N. [RI SIA Lutch, Podolsk (Russian Federation)

1997-01-01T23:59:59.000Z

131

Characterization of electrodeposited elemental boron  

SciTech Connect (OSTI)

Elemental boron was produced through electrowinning from potassium fluoroborate dissolved in a mixture of molten potassium fluoride and potassium chloride. The characteristics of the electrodeposited boron (raw boron) as well as the water and acid-leached product (processed boron) were studied. The chemical purity, specific surface area, size distribution of particles and X-ray crystallite size of the boron powders were investigated. The morphology of the deposits was examined using scanning electron microscopy (SEM). The chemical state of the matrix, as well as the impurity phases present in them, was established using X-ray photoelectron spectroscopy (XPS). In order to interpret and understand the results obtained, a thermodynamic analysis was carried out. The gas-phase corrosion in the head space as well as the chemistry behind the leaching process were interpreted using this analysis. The ease of oxidation of these powders in air was investigated using differential thermal analysis (DTA) coupled with thermogravimetry (TG). From the results obtained in this study it was established that elemental boron powder with a purity of 95-99% could be produced using a high temperature molten salt electrowinning process. The major impurities were found to be oxygen, carbon, iron and nickel.

Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India); Anthonysamy, S. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India)], E-mail: sas@igcar.gov.in; Ananthasivan, K.; Ranganathan, R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India); Mittal, Vinit; Narasimhan, S.V. [Water and Steam Chemistry Division, BARC (F), Kalpakkam, 603102 (India); Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India)

2008-07-15T23:59:59.000Z

132

Data transmission element for downhole drilling components  

DOE Patents [OSTI]

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

133

Renewable Energy Community: Key Elements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Energy of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future A Renewable Energy Community: Key Elements A reinvented community to meet untapped customer needs for shelter and transportation with minimal environmental impacts, stable energy costs, and a sense of belonging N. Carlisle, J. Elling, and T. Penney Technical Report NREL/TP-540-42774 January 2008 NREL is operated by Midwest Research Institute â—Ź Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

134

UNIFIED FINITE ELEMENT DISCRETIZATIONS OF COUPLED DARCY-STOKES FLOW  

E-Print Network [OSTI]

by using standard Stokes elements like the MINI element or the Taylor­Hood element in the entire domain elements like the Taylor­Hood element or the MINI element for the Stokes region. The similar approach], to overcome this problem. This finite element space is defined with respect to a rectangular grid. On each

Winther, Ragnar

135

Microwave Plasma Monitoring System For Real-Time Elemental Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

air for the presence of minor amounts of elements, particularly transition metals, rare earth elements, actinides, and alkali and alkaline earth elements. The invention apparatus...

136

Proposed Data Elements for PARS II Web Application | Department...  

Broader source: Energy.gov (indexed) [DOE]

Proposed Data Elements for PARS II Web Application Proposed Data Elements for PARS II Web Application Proposed Data Elements for PARS II Web Application More Documents &...

137

Element One, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Element One, Element One, Inc. America's Next Top Energy Innovator Challenge 191524 likes Element One, Inc. National Renewable Energy Laboratory Element One's detection products will change the paradigm in the way hydrogen and other hazardous gas leaks are detected, achieving a new level of safety in existing industrial and emerging consumer environments. Element One has patented the only available coatings for the detection of hydrogen that change color reversibly or non-reversibly as desired to give both current and historical information about leaked hydrogen. In 2011, Element One optioned to license three National Renewable Energy Laboratory (NREL) patents that complement its own technologies. Completed and proposed testing of our indicators for different applications

138

Element One, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Element One, Element One, Inc. America's Next Top Energy Innovator Challenge 191524 likes Element One, Inc. National Renewable Energy Laboratory Element One's detection products will change the paradigm in the way hydrogen and other hazardous gas leaks are detected, achieving a new level of safety in existing industrial and emerging consumer environments. Element One has patented the only available coatings for the detection of hydrogen that change color reversibly or non-reversibly as desired to give both current and historical information about leaked hydrogen. In 2011, Element One optioned to license three National Renewable Energy Laboratory (NREL) patents that complement its own technologies. Completed and proposed testing of our indicators for different applications

139

Trace Element Analysis | Open Energy Information  

Open Energy Info (EERE)

Trace Element Analysis Trace Element Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Trace Element Analysis Details Activities (8) Areas (8) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Reconstructing the fluid circulation of a hydrothermal system Thermal: Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / element Median Estimate (USD): 18.001,800 centUSD 0.018 kUSD 1.8e-5 MUSD 1.8e-8 TUSD / element High-End Estimate (USD): 106.0010,600 centUSD 0.106 kUSD 1.06e-4 MUSD 1.06e-7 TUSD / element

140

Element One, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Element One, Element One, Inc. America's Next Top Energy Innovator Challenge 191524 likes Element One, Inc. National Renewable Energy Laboratory Element One's detection products will change the paradigm in the way hydrogen and other hazardous gas leaks are detected, achieving a new level of safety in existing industrial and emerging consumer environments. Element One has patented the only available coatings for the detection of hydrogen that change color reversibly or non-reversibly as desired to give both current and historical information about leaked hydrogen. In 2011, Element One optioned to license three National Renewable Energy Laboratory (NREL) patents that complement its own technologies. Completed and proposed testing of our indicators for different applications

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The History of Element 43—Technetium  

Science Journals Connector (OSTI)

The History of Element 43—Technetium ... Department of Mining, Metallurgical and Materials Engineering, Laval University, G1K 7P4 Quebec City, Canada ...

Fathi Habashi

2006-02-01T23:59:59.000Z

142

Two position optical element actuator device  

DOE Patents [OSTI]

The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

Holdener, Fred R. (Tracy, CA); Boyd, Robert D. (Livermore, CA)

2002-01-01T23:59:59.000Z

143

The New Element Berkelium (Atomic Number 97)  

DOE R&D Accomplishments [OSTI]

An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

1950-04-26T23:59:59.000Z

144

Bi-stable optical element actuator device  

DOE Patents [OSTI]

The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

Holdener, Fred R. (Tracy, CA); Boyd, Robert D. (Livermore, CA)

2002-01-01T23:59:59.000Z

145

Insertion Preference of Maize and Rice Miniature Inverted Repeat Transposable Elements as Revealed by the Analysis of Nested Elements  

Science Journals Connector (OSTI)

...DNA element. This element (called Midway), initially found as an 850-bp...closer examination indicates that Midway harbors another Stowaway element (Stowaway-Os25). That there are three Midway/Stowaway composite elements in the...

Ning Jiang; Susan R. Wessler

146

Appendix: Some elements of Indian Astronomy  

E-Print Network [OSTI]

. Z Z' N S P' P O W E Q Q' 2 #12;Appendix: Some elements of Indian Astronomy to two pointsChapter 1 Appendix: Some elements of Indian Astronomy 1.1 Generalities The sky is considered) perpendicular to the Celestial axis. Let us imagine an observer (O) on Earth. Since the Earth and thus the point

Paris-Sud XI, Université de

147

The New Element Curium (Atomic Number 96)  

DOE R&D Accomplishments [OSTI]

Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

Seaborg, G. T.; James, R. A.; Ghiorso, A.

1948-00-00T23:59:59.000Z

148

Microcalorimeter Magnetic Sensor Geometries Using Superconducting Elements  

SciTech Connect (OSTI)

We describe a numerical code developed to estimate performance of magnetic microcalorimeter configurations, including superconducting elements and SQUID characteristics. We present results of a preliminary design analysis showing that composite sensors with both superconducting and paramagnetic elements should realize substantial gains in magnetic flux signal per magnetization change of the paramagnet, compared to sensors containing only paramagnet.

Boyd, S. T. P. [University of New Mexico, MSC07 4220, Albuquerque NM 87131-0001 (United States); Cantor, R. H. [STAR Cryoelectronics, 25-A Bisbee Ct., Santa Fe NM 87508-1338 (United States)

2009-12-16T23:59:59.000Z

149

William Fowler and Elements in the Stars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

William Fowler and Elements in the Stars Resources with Additional Information William A. Fowler Courtesy AIP Emilio Segrè Visual Archives 'William A. Fowler ... shared the 1983 Nobel Prize in physics for his research into the creation of chemical elements inside stars ... . During his career in nuclear physics and nuclear astrophysics, which spanned more that 60 years, Fowler was primarily concerned with studies of fusion reactions--how the nuclei of lighter chemical elements fuse to create the heavier ones in a process known as nucleosynthesis. In 1957, Fowler coauthored ... the seminal paper "Synthesis of the Elements in the Stars", [which] showed that all of the elements from carbon to uranium could be produced by nuclear processes in stars, starting only with the hydrogen and helium produced in the Big Bang.

150

Element 74, the Wolfram Versus Tungsten Controversy  

SciTech Connect (OSTI)

Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

Holden,N.E.

2008-08-11T23:59:59.000Z

151

Zeros in (inverse) bremsstrahlung matrix elements  

Science Journals Connector (OSTI)

We discuss the possibility of zeros in the nonrelativistic radiative continuum-continuum matrix element for electron-atom (inverse) bremsstrahlung. As demonstrated earlier for upward transitions from bound states, the occurrence of different signs for the free-free matrix element in limiting cases, plus the requirement of continuity, implies the existence of zeros. Using knowledge of the sign of the dipole matrix element in the soft- and hard-photon limits with one continuum electron energy held fixed, we show that zeros can occur in the s-p matrix element. We discuss the connection of our results to elastic scattering and to Ramsauer-Townsend minima. We consider the observability of zeros in this (s-p) matrix element manifested as minima in the cross sections.

C. David Shaffer; R. H. Pratt; Sung Dahm Oh

1998-01-01T23:59:59.000Z

152

Questions and Answers - What is an element? How many elements are there?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An example of indirect evidenceused to study atoms? An example of indirect evidence<br>used to study atoms? Previous Question (An example of indirect evidence used to study atoms?) Questions and Answers Main Index Next Question (What is the difference between atoms and elements?) What is the difference betweenatoms and elements? What is an element? How many elements are there? An element is a substance that is made entirely from one type of atom. For example, the element hydrogen is made from atoms containing a single proton and a single electron. If you change the number of protons an atom has, you change the type of element it is. If you had very, very good eyes and could look at the atoms in a sample of hydrogen, you would notice that most of the hydrogen atoms would have no neutrons, some of them would have one neutron and a few of them would have

153

Helioseismic limit on heavy element abundance  

E-Print Network [OSTI]

Primary inversions of accurately measured solar oscillation frequencies coupled with the equations of thermal equilibrium and other input physics, enable us to infer the temperature and hydrogen abundance profiles inside the Sun. These profiles also help in setting constraints on the input physics as well as on heavy element abundance in the solar core. Using different treatments of plasma screening for nuclear reaction rates, limits on the cross-section of proton-proton nuclear reaction as a function of heavy element abundance in the solar core are obtained and an upper limit on heavy element abundance in the solar core is also derived from these results.

H. M. Antia; S. M. Chitre

2002-09-08T23:59:59.000Z

154

Compound and Elemental Analysis | Open Energy Information  

Open Energy Info (EERE)

Compound and Elemental Analysis Compound and Elemental Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Compound and Elemental Analysis Details Activities (104) Areas (69) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Results can aid in the determination of fluid source regions and circulation pathways. Thermal: Certain elements exhibit high spatial correlation with high-temperature geothermal systems. Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / compound Median Estimate (USD): 30.003,000 centUSD

155

Ion processing element with composite media  

DOE Patents [OSTI]

An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

Mann, Nick R. (Blackfoot, ID); Tranter, Troy J. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Sebesta, Ferdinand (Prague, CZ)

2009-03-24T23:59:59.000Z

156

Quantitative Elemental Analyses by Plasma Emission Spectroscopy  

Science Journals Connector (OSTI)

...Elemental Analyses by Plasma Emission Spectroscopy...Argon-supported inductively coupled plasmas operated at atmospheric pressures are excellent...HIGH-FREQUENCY ARGON PLASMA FOR OPTICAL EMISSION...EXPERIMENTAL-STUDY OF A 1-KW, 50-MHZ RF INDUCTIVELY COUPLED...

Velmer A. Fassel

1978-10-13T23:59:59.000Z

157

Quantitative Elemental Analyses by Plasma Emission Spectroscopy  

Science Journals Connector (OSTI)

...Elemental Analyses by Plasma Emission Spectroscopy...inductively coupled plasmas operated at atmospheric...INDUCTIVELY-COUPLED HIGH-FREQUENCY ARGON PLASMA FOR OPTICAL EMISSION...1-KW, 50-MHZ RF INDUCTIVELY COUPLED...STUDIES OF A RADIO-FREQUENCY INDUCTIVELY COUPLED...

Velmer A. Fassel

1978-10-13T23:59:59.000Z

158

Perfluorohalogenoorgano Compounds of Main Group 5 Elements  

Science Journals Connector (OSTI)

The compounds of the Main Group 5 elements phosphorus, arsenic, antimony, and bismuth, are covered to the end of 1973 in “Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente”, Part 3, 1975 (cited here ...

Alois Haas; Michael R. Chr. Gerstenberger…

1983-01-01T23:59:59.000Z

159

Transuranium Elements in the Nuclear Fuel Cycle  

Science Journals Connector (OSTI)

Transuranium elements, neptunium, plutonium, americium, and curium, are formed via neutron capture processes of actinides, and are mainly by-products of fuel irradiation during the operation of a nuclear react...

Thomas Fanghänel; Jean-Paul Glatz; Rudy J. M. Konings…

2010-01-01T23:59:59.000Z

160

Quantum Algorithms for Element Distinctness Harry Buhrman  

E-Print Network [OSTI]

Quantum Algorithms for Element Distinctness Harry Buhrman Christoph D¨urr Mark Heiligman§ Peter, France. Email: durr@lri.fr. §NSA, Suite 6111, Fort George G. Meade, MD 20755, USA. Email: mheilig

Magniez, Frédéric

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Quantum Algorithms for Element Distinctness Harry Buhrman  

E-Print Network [OSTI]

Quantum Algorithms for Element Distinctness Harry Buhrman£ Christoph D¨urr� Mark Heiligman� Peter, France. Email: durr@lri.fr. �NSA, Suite 6111, Fort George G. Meade, MD 20755, USA. Email: mheilig

de Wolf, Ronald

162

The Mutual Adjustment of Meteorological Elements  

Science Journals Connector (OSTI)

The complete set of equations of atmospheric fluid dynamics and thermodynamics contains time derivatives of five elements: u, v, w, p, ? (or T), i.e., it is of the fifth order in time. For initial value (Cauchy) ...

S. Panchev

1985-01-01T23:59:59.000Z

163

THE NEW ELEMENT CALIFORNIUM (ATOMIC NUMBER 98)  

E-Print Network [OSTI]

No, 66) as the names americium (No, curium (No, andthe production of element 98. Americium, the source for theneutron-irradiated americium in which it was produced as a

Thompson, S.G.; Street, K.,Jr.; Ghiorso, A.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

164

Isotope/element fractionation during surface adsorption  

Science Journals Connector (OSTI)

The adsorption of ions onto mineral surfaces accompanies isotope/element fractionation in planets and asteroids. A model based on simple classical physics is presented to predict these fractionations. The agreement between the experimentally observed isotope/element ratios and their predicted values is found to be excellent. This fractionation can be demonstrated experimentally in advanced physics laboratories using macroscopic particles. The success of the model shows students that even a very complex naturally occurring process can be explained quantitatively with simple physics.

Gamini Seneviratne; Asiri Nanayakkara

2004-01-01T23:59:59.000Z

165

Quadrilateral/hexahedral finite element mesh coarsening  

DOE Patents [OSTI]

A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.

Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E

2012-10-16T23:59:59.000Z

166

Stretchable semiconductor elements and stretchable electrical circuits  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Rogers, John A. (Champaign, IL); Khang, Dahl-Young (Seoul, KR); Menard, Etienne (Durham, NC)

2009-07-07T23:59:59.000Z

167

A new finite element lifting surface technique  

E-Print Network [OSTI]

Element Lifting Surface Technique. (May 1973) James David Kocurek, B. S. , Texas ASM University 1 Directed by: Dr. Balusu M. Rao A numerical lifting surface technique based on discrete vortex loading elements is developed for calculating the steady..., incompress- ; ible, aerodynamic load distribution on a general, nonplanar, ideal- 1 ized body. The method, described as the "Vortex Box" technique, has been applied to general planar wings of arbitrary straight line ' geometry and to annular wings...

Kocurek, James David

2012-06-07T23:59:59.000Z

168

Property:GRR/SubsectionElementNumber | Open Energy Information  

Open Energy Info (EERE)

SubsectionElementNumber SubsectionElementNumber Jump to: navigation, search Property Name GRR/SubsectionElementNumber Property Type Number Description The subsection element number of an element in the Geothermal Regulatory Roadmap. The value of this property is derived automatically by the element template and is used in sorting elements within a section. Pages using the property "GRR/SubsectionElementNumber" Showing 25 pages using this property. (previous 25) (next 25) G GRR/Elements/14-CA-b.1 - NPDES Permit Application + 1 + GRR/Elements/14-CA-b.10 - Did majority of RWQCB approve the permit + 10 + GRR/Elements/14-CA-b.11 - EPA Review of Adopted Permit + 11 + GRR/Elements/14-CA-b.12 - Were all EPA objections resolved + 12 + GRR/Elements/14-CA-b.13 - NPDES Permit issued + 13 +

169

Best Practices: Elements of a Federal Privacy Program  

Broader source: Energy.gov (indexed) [DOE]

Best Practices: Best Practices: Elements of a Federal Privacy Program Version 1.0 Sponsored By: Federal CIO Council Privacy Committee June 2010 Best Practices: Elements of a Federal Privacy Program June 2010 Page i Contents Acknowledgements __________________________________________________________________ ii Purpose ____________________________________________________________________________ 1 Introduction: Privacy Stewardship and Governance _________________________________________ 3 Element 1 -Leadership ________________________________________________________________ 6 Element 2 - Privacy Risk Management and Compliance Documentation _________________________ 9 Element 3 - Information Security _______________________________________________________ 14

170

Nuclear elements in Banach Jordan pairs Ottmar Loos  

E-Print Network [OSTI]

Nuclear elements in Banach Jordan pairs Ottmar Loos Abstract We introduce nuclear elements in Banach Jordan pairs, generalizing the nuclear elements Jordan pairs and show that the trace form Trintroduced in [3] may be extended to the nuclear

171

Review of Selected Elements of Emergency Management at the Oak...  

Broader source: Energy.gov (indexed) [DOE]

OVERSIGHT REVIEW OF SELECTED ELEMENTS OF EMERGENCY MANAGEMENT AT THE OAK RIDGE NATIONAL LABORATORY July 2011 i INDEPENDENT OVERSIGHT REVIEW OF SELECTED ELEMENTS OF EMERGENCY...

172

OSHA Rulemaking on Basic Program Elements for Federal Employee...  

Energy Savers [EERE]

OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational Safety and Health Programs and Related Matters; 29 CFR 1960 OSHA Rulemaking on Basic Program Elements...

173

Elements of a Federal Privacy Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Elements of a Federal Privacy Program Elements of a Federal Privacy Program This document serves as a best practices guide to help federal organizations implement and sustain...

174

Compound and Elemental Analysis At Rye Patch Area (DOE GTP) ...  

Open Energy Info (EERE)

Compound and Elemental Analysis At Rye Patch Area (DOE GTP) Exploration Activity Details Location Rye Patch Area Exploration Technique Compound and Elemental Analysis Activity Date...

175

3800 Green Series Cost Elements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(formerly EPP) Program 3800 Green Series Cost Elements 06112014 (Rev. 7) 3800 Green Series Cost Elements More Documents & Publications 1 OPAM Policy Acquisition Guides...

176

Compound and Elemental Analysis At Fort Bliss Area (DOE GTP)...  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Compound and Elemental Analysis Activity...

177

Rapporteur's Report - workshop on rare earth elements  

Broader source: Energy.gov (indexed) [DOE]

Trans-Atlantic Workshop on Rare Earth Elements and Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Hosted by the MIT Energy Initiative, cambridge, Massachusetts december 3, 2010 Introduction The objective of the workshop was to exchange views and information on the material security challenges of rare earths and other elements critical for clean energy generation and use. This includes the description of current research topics around the supply chain and end uses, and to identify opportunities for Trans-Atlantic research cooperation. The workshop consisted of a series of brief presentations by researchers in the US and Europe, followed by a discussion of possible areas of collaboration proposed by the co-chairs. A list of the presentations and the agenda for the day is appended with this document.

178

Element Labs (Texas) | Open Energy Information  

Open Energy Info (EERE)

Element Labs (Texas) Element Labs (Texas) Jump to: navigation, search Name Element Labs Address 9701 Metric Blvd Place Austin, Texas Zip 78758 Sector Efficiency Product LED Producer Website http://www.elementlabs.com/ Coordinates 30.376797°, -97.715649° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.376797,"lon":-97.715649,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Catalyst for elemental sulfur recovery process  

DOE Patents [OSTI]

A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

Flytzani-Stephanopoulos, M.; Liu, W.

1995-01-24T23:59:59.000Z

180

Spectroscopy of element 115 decay chains  

SciTech Connect (OSTI)

A high-resolution a, X-ray and -ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum fu r Schwerionenforschung. Thirty correlated a-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. The data includes first candidates of fingerprinting the decay step Mt --> Bh with characteristic X rays. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

Rudolph, Dirk [Lund University, Sweden; Forsberg, U. [Lund University, Sweden; Golubev, P. [Lund University, Sweden; Sarmiento, L. G. [Lund University, Sweden; Yakushev, A. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Andersson, L.-L. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Di Nitto, A. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Duehllmann, Ch. E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Gates, J. M. [Lawrence Berkeley National Laboratory (LBNL); Gregorich, K. E. [Lawrence Berkeley National Laboratory (LBNL); Gross, Carl J [ORNL; Hessberger, F. P. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Herzberg, R.-D [University of Liverpool; Khuyagbaatar, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Kratz, J. V. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Rykaczewski, Krzysztof Piotr [ORNL; Schaedel, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Aberg, S. [Lund University, Sweden; Ackermann, D. [GSI-Hemholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; Block, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Brand, H. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Carlsson, B. G. [Lund University, Sweden; Cox, D. [University of Liverpool; Derkx, X. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Eberhardt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Even, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Fahlander, C. [Lund University, Sweden; Gerl, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Jaeger, E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kindler, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Krier, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kojouharov, I. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kurz, N. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Lommel, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Mistry, A. [University of Liverpool; Mokry, C. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Nitsche, H. [Lawrence Berkeley National Laboratory (LBNL); Omtvedt, J. P. [Paul Scherrer Institut, Villigen, Switzerland; Papadakis, P. [University of Liverpool; Ragnarsson, I. [Lund University, Sweden; Runke, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Schaffner, H. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Schausten, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Thoerle-Pospiech, P. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Torres, T. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Traut, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Tuerler, A. [Paul Scherrer Institut, Villigen, Switzerland; Ward, A. [University of Liverpool; Ward, D. E. [Lund University, Sweden; Wiehl, N. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Matrix elements for rotating Morse oscillators  

Science Journals Connector (OSTI)

In this paper formulas and recursion relations for the expectation values of the operators {1-exp[-a(r-re)]}n, (r-re)n, exp[-a(r-re)]n, and (r-re){exp[-a(r-re)]}n are derived for a rotating Morse oscillator. These equations can be used to calculate the diagonal (v=v’, J=J’) and off-diagonal (v?v’, J?J’) matrix elements. Asymptotic approximations for the diagonal elements of the (r-re)n operator, ?vJ?(r-re)?vJ? and ?vJ?(r-re)2?vJ?, are also obtained.

A. Requena; A. López Pieiro; B. Moreno

1986-11-01T23:59:59.000Z

182

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

SciTech Connect (OSTI)

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

NA

2004-11-22T23:59:59.000Z

183

Knowledge of Language: Its Elements and Origins  

Science Journals Connector (OSTI)

2 October 1981 research-article Knowledge of Language: Its Elements and Origins...language is based on the assumption that knowledge of language can be properly characterized...concepts are those of 'grammar' and 'knowledge of grammar'. The concepts of 'language...

1981-01-01T23:59:59.000Z

184

RECENT WORK WITH THE TRANSURANIUM ELEMENTS  

Science Journals Connector (OSTI)

...out materials from the first test thermonuclear explosion, the "Mike" shot which...chemical investigations were completed. Thermonuclear explosions do offer good possibilities...elements in 94 96 98 W 102 104 106 108 110 thermonuclear explosions is an ATOMIC NUMBER interesting...

Glenn T. Seaborg

1959-01-01T23:59:59.000Z

185

X-Ray Identification of Element 104  

Science Journals Connector (OSTI)

The daughter x-ray identification technique has been applied to the identification of element 104. The characteristic K-series x rays from the ?-decay daughter isotope, nobelium (Z=102), have been observed in coincidence with ? particles from the decay of 4.5-sec 104257, thus providing an unequivocal determination of the parent atomic number, Z=104.

C. E. Bemis; Jr.; R. J. Silva; D. C. Hensley; O. L. Keller; Jr.; J. R. Tarrant; L. D. Hunt; P. F. Dittner; R. L. Hahn; C. D. Goodman

1973-09-03T23:59:59.000Z

186

Chaotic Boltzmann machines with two elements  

E-Print Network [OSTI]

In this brief note, we show that chaotic Boltzmann machines truly yield samples from the probabilistic distribution of the corresponding Boltzmann machines if they are composed of only two elements. This note is an English translation (with slight modifications) of the article originally written in Japanese [H. Suzuki, Seisan Kenkyu 66 (2014), 315-316].

Hideyuki Suzuki

2015-01-28T23:59:59.000Z

187

Seaborg Discusses Transuranium Elements in Howe Lecture  

Science Journals Connector (OSTI)

Seaborg Discusses Transuranium Elements in Howe Lecture ... THE isolation of a pure compound of americium in weighable amounts and the natural occurrence of plutonium in carnotite were announced by Glenn T. Seaborg at the second annual Harrison Howe Lecture of the Rochester Section of the AMERICAN CHEMICAL SOCIETY on Nov. 18. ...

1946-12-10T23:59:59.000Z

188

A NONCONFORMING MIXED FINITE ELEMENT METHOD FOR ...  

E-Print Network [OSTI]

of the time-harmonic Maxwell's equations in a three-dimensional, bounded ... tric conductivity from measurements of natural electric and magnetic fields on the .... Let (?s(?) ˇs) and (?s(?) ˇs) indicate standard, complex Sobolev spaces ..... continuity constraints at the centroids of the interfaces between adjacent elements:.

1910-10-30T23:59:59.000Z

189

CONVERGENCE OF A MULTISCALE FINITE ELEMENT METHOD ...  

E-Print Network [OSTI]

Mar 3, 1999 ... In this paper, we consider solving a class of two-dimensional, second order, el- liptic boundary ... a standard finite element or finite difference method is used to solve the equations, the degrees of ..... terfaces. The result depends on the geometry of the jump interfaces. ...... a measure of the relative error.

1999-04-17T23:59:59.000Z

190

Near-field diffractive elements Daniel Marks  

E-Print Network [OSTI]

by a near-field diffractive element (NDE) that scatters the high-spatial-frequency components of the field susceptibility r , and the NDE is described by the susceptibilty r . The field obeys the equation 2 U r +k0 2 U r to first order in both the NDE and the sample susceptibilities. It is assumed that the background terms

Bhargava, Rohit

191

Amounts of Trace Elements in Marine Cephalopods  

Science Journals Connector (OSTI)

......Amounts of Trace Elements in Marine Cephalopods T. Ueda * M. Nakahara...H. Suzuki ** * Division of Marine Radioecology, National Institute...Power Reactor and Nuclear Fuel Development Cooperation, Tokyo...Co and Cs in 5 species of marine cephalopods were determined......

T. Ueda; M. Nakahara; T. Ishii; Y. Suzuki; H. Suzuki

1979-12-01T23:59:59.000Z

192

The New Element Californium (Atomic Number 98)  

DOE R&D Accomplishments [OSTI]

Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

1950-06-19T23:59:59.000Z

193

Category:Geothermal Regulatory Roadmap Elements | Open Energy Information  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Elements Geothermal Regulatory Roadmap Elements Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap pages. Add.png Add an Element Pages in this category are created or edited using the RRElement form. Pages in category "Geothermal Regulatory Roadmap Elements" The following 40 pages are in this category, out of 40 total. 1 GRR/Elements/14-CA-b.1 - NPDES Permit Application GRR/Elements/14-CA-b.10 - Did majority of RWQCB approve the permit GRR/Elements/14-CA-b.11 - EPA Review of Adopted Permit GRR/Elements/14-CA-b.12 - Were all EPA objections resolved GRR/Elements/14-CA-b.13 - NPDES Permit issued GRR/Elements/14-CA-b.2 - Review of application for completeness

194

Ferroelectric tunneling element and memory applications which utilize the tunneling element  

DOE Patents [OSTI]

A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.

Kalinin, Sergei V. (Knoxville, TN) [Knoxville, TN; Christen, Hans M. (Knoxville, TN) [Knoxville, TN; Baddorf, Arthur P. (Knoxville, TN) [Knoxville, TN; Meunier, Vincent (Knoxville, TN) [Knoxville, TN; Lee, Ho Nyung (Oak Ridge, TN) [Oak Ridge, TN

2010-07-20T23:59:59.000Z

195

Process to separate transuranic elements from nuclear waste  

DOE Patents [OSTI]

A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

Johnson, Terry R. (Wheaton, IL); Ackerman, John P. (Downers Grove, IL); Tomczuk, Zygmunt (Orland Park, IL); Fischer, Donald F. (Glen Ellyn, IL)

1989-01-01T23:59:59.000Z

196

HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Trace elements and alkaliTrace elements and alkali  

E-Print Network [OSTI]

elements in fossil - and waste-derived fuelsTrace elements in fossil - and waste-derived fuels Coal Peat Heavy fuel oil Pet coke MSW RDF Wood Waste wood Waste paper Scrap tyres Sew. sludge Hg 0.02-3 ~0.07 .153 Behaviour of trace elements in coalBehaviour of trace elements in coal combustion flue gasescombustion flue

Zevenhoven, Ron

197

4.2.3.4 Magnetic neutron scattering in terbium, holmium and dysprosium gallium garnets  

Science Journals Connector (OSTI)

This document is part of Subvolume E ‘Garnets’ of Volume 27 ‘Magnetic Properties of Non-Metallic Inorganic Compounds Based on Transition Elements’ of Landolt-Börnstein - Group III Condensed Matter.

Z. A. Kazei; N. P. Kolmakova; V. I. Sokolov

1991-01-01T23:59:59.000Z

198

Spatial Characterization of the Atmospheric-Pressure Moderate-Power He Microwave-Induced Plasma  

Science Journals Connector (OSTI)

Three-dimensional emission profiles of several metallic and nonmetallic elements from a moderate-power (450 W) atmospheric-pressure helium microwave-induced plasma (He MIP) are...

Pak, Yong-Nam; Koirtyohann, S R

1991-01-01T23:59:59.000Z

199

U(Sb, Te): Polarized Neutron Scattering  

Science Journals Connector (OSTI)

This document is part of subvolume B6b?‘Actinide Monochalcogenides’ of Volume 27 ‘Magnetic properties of non-metallic inorganic compounds based on transition elements’ of Landolt-Börnstein - Group III ‘Condens...

R. Tro?

2009-01-01T23:59:59.000Z

200

(U, La)Te: Scattering Function of Inelastic Neutron Scattering  

Science Journals Connector (OSTI)

This document is part of subvolume B6b?‘Actinide Monochalcogenides’ of Volume 27 ‘Magnetic properties of non-metallic inorganic compounds based on transition elements’ of Landolt-Börnstein - Group III ‘Condens...

R. Tro?

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NpTe: Polarized Neutron Scattering  

Science Journals Connector (OSTI)

This document is part of subvolume B6b?‘Actinide Monochalcogenides’ of Volume 27 ‘Magnetic properties of non-metallic inorganic compounds based on transition elements’ of Landolt-Börnstein - Group III ‘Condens...

R. Tro?

2009-01-01T23:59:59.000Z

202

USe: Magnetic Neutron Scattering  

Science Journals Connector (OSTI)

This document is part of subvolume B6b?‘Actinide Monochalcogenides’ of Volume 27 ‘Magnetic properties of non-metallic inorganic compounds based on transition elements’ of Landolt-Börnstein - Group III ‘Condens...

R. Tro?

2009-01-01T23:59:59.000Z

203

UTe: Scattering Function of Inelastic Neutron Scattering  

Science Journals Connector (OSTI)

This document is part of subvolume B6b?‘Actinide Monochalcogenides’ of Volume 27 ‘Magnetic properties of non-metallic inorganic compounds based on transition elements’ of Landolt-Börnstein - Group III ‘Condens...

R. Tro?

2009-01-01T23:59:59.000Z

204

Jimthompsonite, babingtonite, zektzerite, batisite and related silicates (Tables)  

Science Journals Connector (OSTI)

This document is part of Subvolume I4 'Inosilicates' of Volume 27 'Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III Condensed Matter. It conta...

E. Burzo

2006-01-01T23:59:59.000Z

205

Jimthompsonite, babingtonite, zektzerite, batisite and related silicates (Figures)  

Science Journals Connector (OSTI)

This document is part of Subvolume I4 'Inosilicates' of Volume 27 'Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III Condensed Matter. It conta...

E. Burzo

2006-01-01T23:59:59.000Z

206

Index of substances for Volume III/27I4  

Science Journals Connector (OSTI)

This document is part of Subvolume I4 'Inosilicates' of Volume 27 'Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III Condensed Matter. It co...

W. Polzin

2006-01-01T23:59:59.000Z

207

Jimthompsonite, babingtonite, zektzerite, batisite and related silicates (Text)  

Science Journals Connector (OSTI)

This document is part of Subvolume I4 'Inosilicates' of Volume 27 'Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III Condensed Matter. It conta...

E. Burzo

2006-01-01T23:59:59.000Z

208

Uranium Monochalcogenides: Crystal Field Effect (CFE)  

Science Journals Connector (OSTI)

This document is part of subvolume B6b?‘Actinide Monochalcogenides’ of Volume 27 ‘Magnetic properties of non-metallic inorganic compounds based on transition elements’ of Landolt-Börnstein - Group III ‘Condens...

R. Tro?

2009-01-01T23:59:59.000Z

209

MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS FROM:  

Broader source: Energy.gov (indexed) [DOE]

HEADS OF DEPARTMENTAL ELEMENTS HEADS OF DEPARTMENTAL ELEMENTS FROM: SUBJECT: Project Full Funding Policy in the Annual ~ u d ~ e t Request On July 18,2008, the Secretary approved the Department's Contract and Project Management Root Cause Analysis (RCA) Corrective Action Plan (CAP). This is the Department's plan to improve contract and project management and ultimately be removed from GAO's High Risk List - a list that the Department has been on since 1990. One of the key issues identified in the CAP is the Department's failure to request and obtain full funding for non-information technology capital asset projects, where appropriate. This new policy is established to reduce the inherent inefficiencies and risks ingoduced by prolonging the duration of small projects, as well as to add budget stability

210

Cantilevered probe detector with piezoelectric element  

DOE Patents [OSTI]

A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

2013-04-30T23:59:59.000Z

211

Automation of the matrix element reweighting method  

E-Print Network [OSTI]

Matrix element reweighting is a powerful experimental technique widely employed to maximize the amount of information that can be extracted from a collider data set. We present a procedure that allows to automatically evaluate the weights for any process of interest in the standard model and beyond. Given the initial, intermediate and final state particles, and the transfer functions for the final physics objects, such as leptons, jets, missing transverse energy, our algorithm creates a phase-space mapping designed to efficiently perform the integration of the squared matrix element and the transfer functions. The implementation builds up on MadGraph, it is completely automatized and publicly available. A few sample applications are presented that show the capabilities of the code and illustrate the possibilities for new studies that such an approach opens up.

P. Artoisenet; V. Lemaître; F. Maltoni; O. Mattelaer

2010-07-19T23:59:59.000Z

212

Trace element partitioning in Texas lignite  

E-Print Network [OSTI]

), but collected from the one of the secondary tanks which contains the slurry that exits the scrubber tower and is either recycled or sent to the thickener tank. 10. Bag house FGD (flue gas desulfurization system) fly ash fines (BHA): white-gray, dry, fine... Station. Concentrations of 41 elements were determined by neutron activation analysis. The particle size distribution was determined by Coulter counter analysis for the fly ash collected from the electrostatic precipitator outlets and from the flue...

Acevedo, Lillian Esther

1989-01-01T23:59:59.000Z

213

Muckraking elements in Frank Norris's "The Octopus.  

E-Print Network [OSTI]

illegal schemes and imposes the same outrageous rates and. regu. lations as the real "octopus. " Likewise, 'Iorris creates f'ct. 'anal characters to correspond. to the real ranchers who had opposed the railroad. IIagnus and IIarran i)errick, Annixter... "mouthpieces" for the business interests which owned them, but they were necessary elements ior the great hoax to be successful. The apathetic public was unli! ely to be aware that collusion existed between industry end government and that illegal...

Leitz, Robert Charles

1969-01-01T23:59:59.000Z

214

Integrating local action elements for action analysis  

Science Journals Connector (OSTI)

In this paper, we propose a framework for human action analysis from video footage. A video action sequence in our perspective is a dynamic structure of sparse local spatial-temporal patches termed action elements, so the problems of action analysis ... Keywords: Action classification, Action distance function, Action matching, Action retrieval, Generalized Hough Transform, Implicit Shape Model, Multi-dimensional density estimation, Sparse Bayesian classifier, Spatial temporal feature

Tuan Hue Thi; Li Cheng; Jian Zhang; Li Wang; Shinichi Satoh

2012-03-01T23:59:59.000Z

215

Nuclear fuel elements made from nanophase materials  

DOE Patents [OSTI]

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

Heubeck, N.B.

1998-09-08T23:59:59.000Z

216

Note: Portable rare-earth element analyzer using pyroelectric crystal  

SciTech Connect (OSTI)

We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

Imashuku, Susumu, E-mail: imashuku.susumu.2m@kyoto-u.ac.jp; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)] [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)

2013-12-15T23:59:59.000Z

217

Pyrometallurgical processes for recovery of actinide elements  

SciTech Connect (OSTI)

A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

1994-01-01T23:59:59.000Z

218

Application of synchrotron radiation to elemental analysis  

SciTech Connect (OSTI)

The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 ..mu..m.

Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

1983-01-01T23:59:59.000Z

219

Superheavy Element Synthesis And Nuclear Structure  

SciTech Connect (OSTI)

After the successful progress in experiments to synthesize superheavy elements (SHE) throughout the last decades, advanced nuclear structure studies in that region have become feasible in recent years thanks to improved accelerator, separation and detection technology. The means are evaporation residue(ER)-alpha-alpha and ER-alpha-gamma coincidence techniques complemented by conversion electron (CE) studies, applied after a separator. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the studies of K-isomers observed in {sup 252,254}No and in {sup 270}Ds.

Ackermann, D.; Block, M.; Burkhard, H.-G.; Heinz, S.; Hessberger, F. P.; Khuyagbaatar, J.; Kojouharov, I.; Mann, R.; Maurer, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr.1, D-64921 Darmstadt (Germany); Antalic, S.; Saro, S.; Venhart, M. [Department of Nuclear Physics, Comenius UniversitySK-84248 Bratislava (Slovakia); Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr.1, D-64921 Darmstadt (Germany); Institut fuer Physik, Johann Wolfgang Goethe-Universitaet, D-60438 Frankfurt (Germany); Leino, M.; Uusitalo, J. [Department of Physics, University of JyvaeskylaeFIN-40351 Jyvaeskylae (Finland); Nishio, K. [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Popeko, A. G.; Yeremin, A. V. [Flerov Laboratory of Nuclear Reactions, JINR Ru-141 980 Dubna (Russian Federation)

2009-08-26T23:59:59.000Z

220

Mixed finite elements for global tide models  

E-Print Network [OSTI]

We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation -- the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in $L^2$ as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.

Cotter, Colin J

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sandia National Laboratories: Sandia Researchers Win CSP:ELEMENTS...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECAbout ECFacilitiesAdvanced Materials LaboratorySandia Researchers Win CSP:ELEMENTS Funding Award Sandia Researchers Win CSP:ELEMENTS Funding Award The Brain: Key To a...

222

On Some Versions of the Element Agglomeration AMGe Method  

SciTech Connect (OSTI)

The present paper deals with element-based AMG methods that target linear systems of equations coming from finite element discretizations of elliptic PDEs. The individual element information (element matrices and element topology) is the main input to construct the AMG hierarchy. We study a number of variants of the spectral agglomerate element based AMG method. The core of the algorithms relies on element agglomeration utilizing the element topology (built recursively from fine to coarse levels). The actual selection of the coarse degrees of freedom (dofs) is based on solving large number of local eigenvalue problems. Additionally, we investigate strategies for adaptive AMG as well as multigrid cycles that are more expensive than the V-cycle utilizing simple interpolation matrices and nested conjugate gradient (CG) based recursive calls between the levels. The presented algorithms are illustrated with an extensive set of experiments based on a matlab implementation of the methods.

Lashuk, I; Vassilevski, P

2007-08-09T23:59:59.000Z

223

Heavy Element Synthesis Reactions W. Loveland Oregon State University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heavy element synthesis reactions and heavy element properties * Hot (E*35-60 MeV) and Cold (E*15 MeV) fusion reactions * Multi-nucleon transfer reactions * Fission * Atomic...

224

Rational Wachspress-type Finite Elements on Regular Hexagons  

Science Journals Connector (OSTI)

......Finite Elements on Regular Hexagons J. L. GOUT Departement de Mathematiques, Universite...Finite Elements on Regular Hexagons J. L. GOUT Departement de Mathematiques, Universite...1975) (see also Apprato, Arcangeli & Gout, 1979a, b; Gout, 1979, 1980a, b......

J. L. GOUT

225

GEO+, a finite element program on a personal computer  

E-Print Network [OSTI]

The following study is the first step toward implementation of a complete finite element analysis package on a personal computer for geotechnical engineering problems. A complete finite element analysis has been written in the C/C++ language...

Guillin, Clement Gerard

2012-06-07T23:59:59.000Z

226

GNEP Element:Minimize Nuclear Waste | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Minimize Nuclear Waste GNEP Element:Minimize Nuclear Waste An article describing the ways in which the GNEP plans to minimize nuclear waste. GNEP Element:Minimize Nuclear Waste...

227

Element specific measurements of the structural properties and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Element specific measurements of the structural properties and magnetism of CoxZn1-xO. Element specific measurements of the structural properties and magnetism of CoxZn1-xO....

228

Defining functional DNA elements in the human genome  

E-Print Network [OSTI]

With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements ...

Kellis, Manolis

229

A User's Guide to the Encyclopedia of DNA Elements (ENCODE)  

E-Print Network [OSTI]

The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to

Bernstein, Bradley E.

230

Rapid Neutron Absorption by Heavy Nuclei Forms Transplutonium Elements  

Science Journals Connector (OSTI)

Thermonuclear synthesis of transplutonium elements has been postulated since californium was discovered in thermonuclear bomb tests, he notes. ...

1963-06-03T23:59:59.000Z

231

Residential Energy Efficiency Financing: Key Elements of Program Design  

Broader source: Energy.gov [DOE]

Presents key programmatic elements and context of financing initiatives, including contractor support, rebates, quality assurance, and more.

232

Effect of Microbial Activity on Trace Element Release from Sewage  

E-Print Network [OSTI]

Effect of Microbial Activity on Trace Element Release from Sewage Sludge S H A B N A M Q U R E S H in mobilization of trace elements from land-applied wastewater sludge is not well-defined. Our study examined-effective management alternative. Unfor- tunately, sewage sludge also contains potentially toxic trace elements

Walter, M.Todd

233

RARE EARTH ELEMENT SENSITIVITY FACTORS IN CALCIC PLAGIOCLASE (ANORTHITE)  

E-Print Network [OSTI]

RARE EARTH ELEMENT SENSITIVITY FACTORS IN CALCIC PLAGIOCLASE (ANORTHITE) C. Floss and B. Jolliff Mc Brookings Drive, St. Louis, MO 63130 1. Introduction The rare earth elements (REE) are sensitive indicators concentrations for each sample are listed in Table 1 and are shown in Fig. 1. Table 1. Rare Earth Element Data

234

Finite element analysis of multilayer coextrusion.  

SciTech Connect (OSTI)

Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann

2011-09-01T23:59:59.000Z

235

Precision instrumentation for rolling element bearing characterization  

SciTech Connect (OSTI)

This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings.

Marsh, Eric R.; Vigliano, Vincent C.; Weiss, Jeffrey R.; Moerlein, Alex W.; Vallance, R. Ryan [Machine Dynamics Research Laboratory, Pennsylvania State University, 331 Reber Building University Park, Pennsylvania 16802 (United States); Precision Systems Laboratory, George Washington University, 738 Phillips Hall 801 22nd Street, N.W. Washington, D.C., 20052 (United States)

2007-03-15T23:59:59.000Z

236

Superheavy Element Nuclear Chemistry at RIKEN  

SciTech Connect (OSTI)

A gas-jet transport system has been coupled to the RIKEN gas-filled recoil ion separator GARIS to startup superheavy element (SHE) chemistry at RIKEN. The performance of the system was appraised using an isotope of element 104, {sup 261}Rf, produced in the {sup 248}Cm({sup 18}O,5n){sup 261}Rf reaction. Alpha-particles of {sup 261}Rf separated with GARIS and extracted to a chemistry laboratory were successfully identified with a rotating wheel apparatus for alpha spectrometry. The setting parameters such as the magnetic field of the separator and the gas-jet conditions were optimized. The present results suggest that the GARIS/gas-jet system is a promising approach for exploring new frontiers in SHE chemistry: (i) the background radioactivities of unwanted reaction products are strongly suppressed, (ii) the intense beam is absent in the gas-jet chamber and hence high gas-jet efficiency is achieved, and (iii) the beam-free condition also allows for investigations of new chemical systems.

Haba, Hiromitsu; Kaji, Daiya; Kasamatsu, Yoshitaka; Kudou, Yuki; Morimoto, Kouji; Morita, Kosuke; Ozeki, Kazutaka; Yoneda, Akira [Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198 (Japan); Kikunaga, Hidetoshi; Komori, Yukiko; Ooe, Kazuhiro; Shinohara, Atsushi; Yoshimura, Takashi [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Sato, Nozomi; Toyoshima, Atsushi [Advanced Science Research Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Yokoyama, Akihiko [Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan)

2010-05-12T23:59:59.000Z

237

Nuclear Reactions Used For Superheavy Element Research  

SciTech Connect (OSTI)

Some of the most fascinating questions about the limits of nuclear stability are confronted in the heaviest nuclei. How many more new elements can be synthesized? What are the nuclear and chemical properties of these exotic nuclei? Does the 'Island of Stability' exist and can we ever explore the isotopes inhabiting that nuclear region? This paper will focus on the current experimental research on the synthesis and characterization of superheavy nuclei with Z>112 from the Dubna/Livermore collaboration. Reactions using {sup 48}Ca projectiles from the U400 cyclotron and actinide targets ({sup 233,238}U, {sup 237}Np, {sup 242,244}Pu, {sup 243}Am, {sup 245,248}Cm, {sup 249}Cf) have been investigated using the Dubna Gas Filled Recoil Separator in Dubna over the last 8 years. In addition, several experiments have been performed to investigate the chemical properties of some of the observed longer-lived isotopes produced in these reactions. Some comments will be made on nuclear reactions used for the production of the heaviest elements. A summary of the current status of the upper end of the chart of nuclides will be presented.

Stoyer, Mark A. [N Division, Physical Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA 94550 (United States)

2008-04-17T23:59:59.000Z

238

Measuring Sparticles with the Matrix Element  

SciTech Connect (OSTI)

We apply the Matrix Element Method (MEM) to mass determination of squark pair production with direct decay to quarks and LSP at the LHC, showing that simultaneous mass determination of squarks and LSP is possible. We furthermore propose methods for inclusion of QCD radiation effects in the MEM. The goal of the LHC at CERN, scheduled to start this year, is to discover new physics through deviations from the Standard Model (SM) predictions. After discovery of deviations from the SM, the next step will be classification of the new physics. An important first goal in this process will be establishing a mass spectrum of the new particles. One of the most challenging scenarios is pair-production of new particles which decay to invisible massive particles, giving missing energy signals. Many methods have been proposed for mass determination in such scenarios (for a recent list of references, see e.g. [1]). In this proceeding, we report the first steps in applying the Matrix Element Method (MEM) in the context of supersymmetric scenarios giving missing energy signals. After a quick review of the MEM, we will focus on squark pair production, a process where other mass determination techniques have difficulties to simultaneously determine the LSP and squark masses. Finally, we will introduce methods to extend the range of validity of the MEM, by taking into account initial state radiation (ISR) in the method.

Alwall, Johan; /SLAC /Taiwan, Natl. Taiwan U.; Freitas, Ayres; /Pittsburgh U.; Mattelaer, Olivier; /INFN, Rome3 /Rome III U. /Louvain U.

2012-04-10T23:59:59.000Z

239

Process to separate transuranic elements from nuclear waste  

DOE Patents [OSTI]

A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

1989-03-21T23:59:59.000Z

240

Process to separate transuranic elements from nuclear waste  

DOE Patents [OSTI]

A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

1988-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Neutron activation R-matrix elements and ?-matrix elements and neutron energy spectra  

Science Journals Connector (OSTI)

In the present paper, the principle of using some ?-matrix elementsK ij, such as175Yb (i or j)-169Yb (j or i),153Gd (i or j)-159Gd (j or i),103Ru (i or j)-97Ru (j or i) and95Zr (i or j)-97Zr (j or...

X. Z. Feng

1987-06-01T23:59:59.000Z

242

14th Finite Element Workshop --Ulm, July 2007 Finite Element Simulation  

E-Print Network [OSTI]

of Bonn, {martin.rumpf,ole.schwen}@ins.uni-bonn.de 1 #12;CT segment CFE Figure 1: The image based of the composite finite element (CFE) concept first introduced in [22, 23]. The main idea is to incorporate and corresponding geometric multigrid solvers. After a review of related methods, we explain the CFE method

Rumpf, Martin

243

International team discovers element 117 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International team discovers element 117 International team discovers element 117 International team discovers element 117 April 6, 2010 - 12:14pm Addthis An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas. "The discovery of element 117 is the culmination of a decade-long journey to expand the periodic table and write the next chapter in heavy element research," said Academician Yuri Oganessian, scientific leader of the

244

Definition: Compound and Elemental Analysis | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Compound and Elemental Analysis Jump to: navigation, search Dictionary.png Compound and Elemental Analysis Compound and elemental analysis is a process where a sample of some material (e.g., soil, waste or drinking water, bodily fluids, minerals, chemical compounds) is analyzed for its elements and compounds and sometimes its isotopic composition. Elemental analysis can be qualitative (determining what elements are present), and it can also be quantitative (determining how much of each type are present).[1] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Elemental_analysis Ret Like Like You like this.Sign Up to see what your friends like. rieved from

245

International team discovers element 117 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

team discovers element 117 team discovers element 117 International team discovers element 117 April 6, 2010 - 12:14pm Addthis An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas. "The discovery of element 117 is the culmination of a decade-long journey to expand the periodic table and write the next chapter in heavy element research," said Academician Yuri Oganessian, scientific leader of the

246

Transposable Elements and Genetic Instabilities in Crop Plants  

DOE R&D Accomplishments [OSTI]

Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

Burr, B.; Burr, F.

1981-04-10T23:59:59.000Z

247

Element Markets LLC | Open Energy Information  

Open Energy Info (EERE)

Markets LLC Markets LLC Jump to: navigation, search Name Element Markets LLC Place Houston, Texas Zip 77027 Sector Renewable Energy, Services Product Houston-based firm that develops renewable energy projects and provides commercial advisory services to enterprises seeking to manage its emissions or renewable energy assets. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Ultraviolet Light Initiated Oxidation of Elemental Hg  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The PCO Process for Removal of Mercury from Flue Gas The PCO Process for Removal of Mercury from Flue Gas Christopher R. McLarnon, Ph.D. Powerspan Corp., P.O. Box 219, 54 Old Bay Road, New Durham, NH 03855 Evan J. Granite* and Henry W. Pennline National Energy Technology Laboratory, United States Department of Energy, P.O. Box 10940, MS 58-106, Pittsburgh, PA 15236-0940 *Corresponding author. Tel.: +1412-386-4607; fax: +1412-386-6004 E-mail address: evan.granite@netl.doe.gov Abstract A promising technology has been developed to capture and remove elemental mercury species from coal-fired power plants. Powerspan Corp. has licensed the technology and initiated a bench and pilot test program to develop the Photochemical Oxidation, or PCO(tm), process for

249

Element 104 identified by characteristic x rays  

Science Journals Connector (OSTI)

A research team at the Oak Ridge National Laboratory has recently announced that they have conclusively identified the 257 isotope of element 104. This new work shows promise of shedding light on the controversy between Albert Ghiorso and Georgi N. Flerov the leaders respectively of the groups at Lawrence Berkeley Laboratory and the Joint Institute for Nuclear Research Dubna. The isotope 104 X 257 decays by alpha emission to 102 No 253 with a half?life of 4.3 seconds. The Oak Ridge group observed the K?series x rays from nobelium in coincidence with the alpha particles from 104 X 257 ; the observation of x?ray spectra has never been reported previously by the Berkeley or Dubna workers according to Curtis E. Bemis Jr spokesman for the group.

Ronald J. Cohn

1973-01-01T23:59:59.000Z

250

Chemical Properties of Elements 99 and 100 [Einsteinium and Fermium  

DOE R&D Accomplishments [OSTI]

A description of some of the chemical properties and of the methods used in the separations of elements 99 [Einsteinium] and 100 [Fermium] are given. The new elements exhibit the properties expected for the tenth and eleventh actinide elements. Attempts to produce an oxidation state greater than III of element 99 have been unsuccessful. In normal aqueous media only the III state of element 100 appears to exist. The relative spacings of the elution peaks of the new elements in some separations with ion exchange resin columns are the same as the relative spacings of the homologous lanthanide elements. The results of experiments involving cation exchange resins with very concentrated hydrochloric acid eluant show that the new elements, like the earlier actinides, are more strongly complexed than the lanthanides. The new elements also exist partially as anions in concentrated hydrochloric acid, as do earlier actinide elements, and they may be partially separated from each other by means of ion exchange resins. With some eluants interesting reversals of elution positions are observed in the region Bk-Cf-99-100, indicating complex ion formation involving unusual factors.

Seaborg, G. T.; Thompson, S. G.; Harvey, B. G.; Choppin, G. R.

1954-07-23T23:59:59.000Z

251

E-Print Network 3.0 - analyzing elemental composition Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SIMS trace- element data (up to 33 elements analyzed) are among... thermal processing. Bulk trace-element compositions: Our broad- beam SIMS data imply that vapor... refractory...

252

E-Print Network 3.0 - availability influences elemental Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. In other cases, technical limitations constrain the availability of an element. Rare-earth elements... the availability of an element. The ... Source: Colorado School of Mines,...

253

Summary compilation of shell element performance versus formulation.  

SciTech Connect (OSTI)

This document compares the finite element shell formulations in the Sierra Solid Mechanics code. These are finite elements either currently in the Sierra simulation codes Presto and Adagio, or expected to be added to them in time. The list of elements are divided into traditional two-dimensional, plane stress shell finite elements, and three-dimensional solid finite elements that contain either modifications or additional terms designed to represent the bending stiffness expected to be found in shell formulations. These particular finite elements are formulated for finite deformation and inelastic material response, and, as such, are not based on some of the elegant formulations that can be found in an elastic, infinitesimal finite element setting. Each shell element is subjected to a series of 12 verification and validation test problems. The underlying purpose of the tests here is to identify the quality of both the spatially discrete finite element gradient operator and the spatially discrete finite element divergence operator. If the derivation of the finite element is proper, the discrete divergence operator is the transpose of the discrete gradient operator. An overall summary is provided from which one can rank, at least in an average sense, how well the individual formulations can be expected to perform in applications encountered year in and year out. A letter grade has been assigned albeit sometimes subjectively for each shell element and each test problem result. The number of A's, B's, C's, et cetera assigned have been totaled, and a grade point average (GPA) has been computed, based on a 4.0-system. These grades, combined with a comparison between the test problems and the application problem, can be used to guide an analyst to select the element with the best shell formulation.

Heinstein, Martin Wilhelm; Hales, Jason Dean (Idaho National Laboratory, Idaho Falls, ID); Breivik, Nicole L.; Key, Samuel W. (FMA Development, LLC, Great Falls, MT)

2011-07-01T23:59:59.000Z

254

U-002:Adobe Photoshop Elements Multiple Memory Corruption Vulnerabilities |  

Broader source: Energy.gov (indexed) [DOE]

02:Adobe Photoshop Elements Multiple Memory Corruption 02:Adobe Photoshop Elements Multiple Memory Corruption Vulnerabilities U-002:Adobe Photoshop Elements Multiple Memory Corruption Vulnerabilities October 4, 2011 - 11:00am Addthis PROBLEM: Adobe Photoshop Elements Multiple Memory Corruption Vulnerabilities. PLATFORM: Adobe Photoshop Elements 8.0 and earlier versions for Windows. ABSTRACT: A remote user can create a file that, when loaded by the target user, will execute arbitrary code on the target user's system. reference LINKS: Adobe Advisory: APSA11-03 SecurityTracker Alert ID: 1026132 SecurityFocus: CVE-2011-2443 IMPACT ASSESSMENT: High Discussion: A vulnerability was reported in Adobe Photoshop Elements. A remote user can cause arbitrary code to be executed on the target user's system. A remote user can create a specially crafted '.grd' or '.abr' file that,

255

Combined passive bearing element/generator motor  

DOE Patents [OSTI]

An electric machine includes a cylindrical rotor made up of an array of permanent magnets that provide a N-pole magnetic field of even order (where N=4, 6, 8, etc.). This array of permanent magnets has bars of identical permanent magnets made of dipole elements where the bars are assembled in a circle. A stator inserted down the axis of the dipole field is made of two sets of windings that are electrically orthogonal to each other, where one set of windings provides stabilization of the stator and the other set of windings couples to the array of permanent magnets and acts as the windings of a generator/motor. The rotor and the stator are horizontally disposed, and the rotor is on the outside of said stator. The electric machine may also include two rings of ferromagnetic material. One of these rings would be located at each end of the rotor. Two levitator pole assemblies are attached to a support member that is external to the electric machine. These levitator pole assemblies interact attractively with the rings of ferromagnetic material to produce a levitating force upon the rotor.

Post, Richard F. (Walnut Creek, CA)

2000-01-01T23:59:59.000Z

256

Finite element analysis of substation composite insulators  

Science Journals Connector (OSTI)

Composite insulators are rapidly replacing their porcelain counterparts in electrical substation applications. These insulators consist of a glass-reinforced polymer (GRP) rod, with two metal end fittings radially crimped onto the ends of the rod during assembly. In this paper, axisymmetric finite element models are developed to evaluate the mechanical performance of composite insulators under externally applied axial compression. The analyses are performed by assuming both a perfectly bonded interface between the composite rod and the end fittings, and an imperfect interface which permits large relative sliding with Coulomb friction. Results indicate that the perfect interface model is unrealistic since it predicts singular stresses at the interface comer and an overall linear structural response. On the other hand, the imperfect interface model is found to simulate accurately the structural non-linearity caused by relative sliding of the GRP rod within the end fittings. The imperfect interface model has therefore been used to evaluate the effects of interface friction, and the extent of crimping, on the maximum load-bearing capacity of substation composite insulators.

A. Bansal; A. Schubert; M.V. Balakrishnan; M. Kumosa

1995-01-01T23:59:59.000Z

257

Bacterial reduction of selenite to elemental selenium  

SciTech Connect (OSTI)

Toxic species of selenium are pollutants found in agricultural as well as oil refinery waste streams. Selenium contamination is particularly problematic in areas which have seleniferous subsurface geology, such as the central valley of California. We are developing a bacterial treatment system to address the selenium problem using Bacillus subtilis and Pseudomonas fluorescens, respectively, as model Gram (+) and (-) soil bacteria. We have found that, during growth, both organisms reduce selenite, a major soluble toxic species, to red elemental selenium--an insoluble product generally regarded as nontoxic. In both cases, reduction depended on the growth substrate and was effected by an inducible system that effectively removed selenite at concentrations typical of polluted sites--i.e. 50 to 300 ppb. The bacteria studied differed in one respect: when grown in media supplemented with nitrate or sulfate, the ability of P. fluorescens to remediate selenite was enhanced, whereas that of B. subtilis was unchanged. Current efforts are being directed toward understanding the biochemical mechanism(s) of detoxification, and determining whether bacteria occurring in polluted environments such as soils and sludge systems are capable of selenite remediation.

Leighton, T.; Buchanan, B. [Univ. of California, Berkeley, CA (United States)

1995-12-01T23:59:59.000Z

258

Probabilistic finite element modeling of waste rollover  

SciTech Connect (OSTI)

Stratification of the wastes in many Hanford storage tanks has resulted in sludge layers which are capable of retaining gases formed by chemical and/or radiolytic reactions. As the gas is produced, the mechanisms of gas storage evolve until the resulting buoyancy in the sludge leads to instability, at which point the sludge ``rolls over`` and a significant volume of gas is suddenly released. Because the releases may contain flammable gases, these episodes of release are potentially hazardous. Mitigation techniques are desirable for more controlled releases at more frequent intervals. To aid the mitigation efforts, a methodology for predicting of sludge rollover at specific times is desired. This methodology would then provide a rational basis for the development of a schedule for the mitigation procedures. In addition, a knowledge of the sensitivity of the sludge rollovers to various physical and chemical properties within the tanks would provide direction for efforts to reduce the frequency and severity of these events. In this report, the use of probabilistic finite element analyses for computing the probability of rollover and the sensitivity of rollover probability to various parameters is described.

Khaleel, M.A. [Pacific Northwest Lab., Richland, WA (United States); Cofer, W.F.; Al-fouqaha, A.A. [Washington State Univ., Pullman, WA (United States). Dept. of Civil and Environmental Engineering

1995-09-01T23:59:59.000Z

259

Finite element training before real analysis: A personal view  

Science Journals Connector (OSTI)

In finite element structural analysis, we have the dilemma that an engineer can solve a very complex problem using multi-million dollar software on high-technology hardware with beautifully coloured pictures of the results, without knowing the fundamentals of the finite element method. In this paper the author presents a personal view of how this dilemma should be resolved. His solution emphasises the crucial importance of standards, quality assurance, reliability and, above all, education and training in finite element analysis.

John Robinson

1994-01-01T23:59:59.000Z

260

Folden Group - Heavy Element Nuclear and Radiochemistry at Texas...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

elements. This involves measuring the production cross sections for a variety of nuclear fusion reactions, and using theoretical models to interpret the results. Our work is...

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Interactive Facades - Critical Elements for Future Green Buildings?  

E-Print Network [OSTI]

Elements for Future Green Buildings? Stephen Selkowitzelement for a “green building” that provides daylighting andcurrent interest in green buildings there was no shortage of

Selkowitz, Stephen; Aschehoug, Oyvind; Lee, Eleanor S.

2003-01-01T23:59:59.000Z

262

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

263

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

Fish Lake Valley Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA...

264

Trace element content of magnetohydrodynamic coal combustion effluents  

Science Journals Connector (OSTI)

Trace element contents from effluents of a simulated coal-fired magnetohydrodynamic (MHD) combustion process have been determined using thermal neutron activation analysis techniques. The quality control consi...

M. S. Akanni; V. O. Ogugbuaja; W. D. James

1983-01-01T23:59:59.000Z

265

Compound and Elemental Analysis At International Geothermal Area...  

Open Energy Info (EERE)

Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal...

266

Compound and Elemental Analysis At Fenton Hill HDR Geothermal...  

Open Energy Info (EERE)

Technique Compound and Elemental Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from...

267

Status of Segmented Element Thermoelectric Generator for Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

ring which includes TE elements Advanced Thermoelectric Solutions - 10 - Liquid tanks are attached at each end of the TEG. The cooling liquid flows counter to the flow of...

268

Compound and Elemental Analysis At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

diagnostic lithogeochemical tool for geothermal exploration, the analysis of lithium and other elements in tufa deposits could serve as exploration guides for hot spring...

269

Binary high-frequency-carrier diffractive optical elements: electromagnetic theory  

Science Journals Connector (OSTI)

Using rigorous electromagnetic diffraction theory, we evaluate the potential performance and the limitations of coding diffractive optical elements in the form of a...

Noponen, Eero; Turunen, Jari

1994-01-01T23:59:59.000Z

270

Compound and Elemental Analysis At Little Valley Area (Wood,...  

Open Energy Info (EERE)

in this paper as "Snively Hot Springs" References Scott A. Wood (2002) Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Additional...

271

Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

Redondo Geothermal Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Compound and Elemental Analysis...

272

At an Elemental Crossroad: Investigating the Chemistry of Protactinium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

orbitals are the defining characteristic of the actinides as well as the rare-earth elements. This is critical because the relative energies of the orbitals that...

273

2-D discrete element modeling of unconsolidated sandstones.  

E-Print Network [OSTI]

??In this work unconsolidated sands saturated with heavy oil were modeled using a discrete element numerical model, (DEM). The DEM code was built in Mathematica… (more)

Franquet Barbara, Javier Alejandro

2012-01-01T23:59:59.000Z

274

CESP Tool 1.2: Leadership Team Charter Elements  

Broader source: Energy.gov [DOE]

CESP Tool 1.2: Leadership Team Charter Elements in Step 1: Establish and Charge a Leadership Team in the Introduction to Community Energy Strategic Planning.

275

Discovery of the Transuranium Elements (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2006: Darleane Hoffman, a Berkeley Lab nuclear chemist, chronicles the discovery of the heaviest elements ? those much heavier than uranium and plutonium.

Hoffman, Darleane

2011-04-28T23:59:59.000Z

276

Compound and Elemental Analysis At Akutan Fumaroles Area (Kolker...  

Open Energy Info (EERE)

and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The chemistry of the hot springs strongly suggests the existence of a neutral chloride reservoir...

277

Compound and Elemental Analysis At Glass Buttes Area (DOE GTP...  

Open Energy Info (EERE)

Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding...

278

Self-Assembly of Polymer Nano-Elements on Sapphire  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured...

279

Process for synthesizing compounds from elemental powders and product  

DOE Patents [OSTI]

A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

Rabin, Barry H. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

280

Technologies and Approaches for Improving Energy Efficiency of Network Elements  

Science Journals Connector (OSTI)

Technologies and approaches for implementing energy-efficient network elements are briefly reviewed. Optical transmission and switching together with an optimized network concept...

Aleksic, Slaviša

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Transuranium Elements: Early History (Nobel Lecture)  

DOE R&D Accomplishments [OSTI]

In this talk the author tells of the circumstances that led to the discovery of neptunium, the first element beyond uranium, and the partial identification of plutonium, the next one beyond that. The part of the story that lies before 1939 has already been recounted here in the Nobel lectures of Fermi and Hahn. Rather the author starts with the discovery of fission by Hahn and Strassmann. News of this momentous discovery reached Berkeley early in 1939. The staff of the Radiation Laboratory was put into a state of great excitement and several experiments of a nature designed to check and extend the announced results were started, using ionization chambers and pulse amplifiers, cloud chambers, chemical methods, and so forth. The author decided to do an experiment of a very simple kind. When a nucleus of uranium absorbs a neutron and fission takes place, the two resulting fragments fly apart with great violence, sufficient to propel them through air or other matter for some distance. This distance, called the "range", is quantity of some interest, and the author undertook to measure it by observing the depth of penetration of the fission fragments in a stack of thin aluminum foils. The fission fragments came from a thin layer of uranium oxide spread on a sheet of paper, and exposed to neutrons from a beryllium target bombarded by 8 Mev deuterons in the 37-inch cyclotron. The aluminum foils, each with a thickness of about half a milligram per square centimeter, were stacked like the pages of a book in immediate contact with the layer of uranium oxide. After exposure to the neutrons, the sheets of aluminum were separated and examined for radioactivity by means of an ionization chamber. The fission fragments of course are radioactive atoms, and their activity is found where they stop.

McMillan, E. M.

1951-12-12T23:59:59.000Z

282

Genome Organization and Gene Expression Shape the Transposable Element Distribution  

E-Print Network [OSTI]

Genome Organization and Gene Expression Shape the Transposable Element Distribution The distribution of transposable elements (TEs) in a genome reflects a balance between insertion rate and selection shaping the organization of genomes. Past research has shown that TEs tend to accumulate in genomic

Alvarez, Nadir

283

The Use and Usefulness of the Cybersecurity Data Element  

E-Print Network [OSTI]

for Strategic Workforce Planning #12;· The OPM cybersecurity data elements were published in the Guide their cybersecurity professionals The OPM Data element will: #12;Workforce Planning Succession Management Interlocking Collect and Operate (3) 31 Collection Operations 32 Cyber Operations 33 Cyber Operations Planning 40

284

Single element changes in electrical networks Thomas Berger,  

E-Print Network [OSTI]

University of Technology Page 2 / 13 #12;Example: electrical RLC network Z(s)i(s) = vs(s), Z(s) = s-1 1 C1Single element changes in electrical networks Thomas Berger, George Halikias and Nicos Karcanias, 2012 Single element changes in electrical networks Thomas Berger, George Halikias and Nicos Karcanias

Knobloch,JĂĽrgen

285

Single element changes in electrical networks Thomas Berger,  

E-Print Network [OSTI]

, Ilmenau University of Technology Page 2 / 13 #12;Example: electrical RLC network Z(s)i(s) = vs(s), ZSingle element changes in electrical networks Thomas Berger, George Halikias and Nicos Karcanias, February 23, 2012 Single element changes in electrical networks Thomas Berger, George Halikias and Nicos

Knobloch,JĂĽrgen

286

FINITE ELEMENT METHOD IN FLUID MECHANICS & HEAT TRANSFER  

E-Print Network [OSTI]

FINITE ELEMENT METHOD IN FLUID MECHANICS & HEAT TRANSFER AERSP-560 Department : Aerospace element techniques to especially fluid flow and heat transfer problems. A student who successfully method and write full sized application codes for analyzing fluid flow and heat transfer problems

Camci, Cengiz

287

Nuclear breeder reactor fuel element with silicon carbide getter  

DOE Patents [OSTI]

An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

1987-01-01T23:59:59.000Z

288

Chemical Investigations of Superheavy Elements - Current Results and New Techniques  

SciTech Connect (OSTI)

Chemical studies of the superheavy elements have progressed tremendously in recent years. This is illustrated here using the following four examples: (i) gas chemical studies of element 112, (ii) radiochemical investigations of the reaction 248Cm(26Mg,xn)274-xHs, (iii) complexation studies of rutherfordium, and (iv) the development of the technique of physical preseparation.

Duellmann, Christoph E. [Gesellschaft fuer Schwerionenforschung mbH, Planckstrasse 1, 64291 Darmstadt (Germany)

2007-02-26T23:59:59.000Z

289

Cell Bridge: A Signal Transmission Element for Networked Sensing  

E-Print Network [OSTI]

Cell Bridge: A Signal Transmission Element for Networked Sensing A.Okada, Y.Makino, and H signals propagate with communication elements called "cell bridges" and requires neither radio sheet on various materials. We show the physical layer and the data link layer of the cell bridge. We

Shinoda, Hiroyuki

290

Long-Term Management and Storage of Elemental Mercury  

Broader source: Energy.gov [DOE]

In addition to banning the export of elemental mercury from the United States as of January 1, 2013, the Mercury Export Ban Act of 2008 (MEBA) required DOE to establish a facility for the long-term management and storage of elemental mercury.

291

Multicriteria Choice of the NVG Optoelectronic Channel Elements Daniela Borissova  

E-Print Network [OSTI]

6 1 Multicriteria Choice of the NVG Optoelectronic Channel Elements Daniela Borissova Institute of technological development and mass production. The process of the NVG design involves choice of optoelectronic elements must fulfill specific requirements of the NVG optoelectronic channel and it has to meet user

Borissova, Daniela

292

Curved finite elements by the method of initial strains  

E-Print Network [OSTI]

, pp. 383-432. 2. Clough, R. W. , "Comparison of Three Dimensional Finite Elements, " Proceedin s of the S osium on A lication of Finite Element Mhd l. t''i~Et f, Vd6'ltUt ty, 1969, pp. 1-26. 3. Stricklin, J. A. , informal proposal submitted to Dr...

Leick, Roger Dale

1974-01-01T23:59:59.000Z

293

Miniaturized Multi-Band Antenna via Element Collocation  

SciTech Connect (OSTI)

Although much research has been performed on a driven element parasitically loaded by another element shorted to ground for dual frequency operation, the novel concept of two or more coplanar-driven elements in close proximity designed for multiple frequency operation has not been represented in the literature. Since each higher frequency antenna is built into the lower frequency elements, the largest element controls the structure’s total size. Furthermore, by using the self-resonant frequency inherent in reactive elements due to device packaging, the aperture of each antenna, due to a low insertion loss path at the frequency of the larger element, will include that of all smaller radiators. This configuration provides a large standing wave ratio at the shorter wavelengths via several series capacitive-inductive connections. Therefore, each antenna element provides the required surface area for the frequency of operation while being isolated from the larger radiators. For this study, a dual 2.45/5.8 GHz microstrip patch encompasses a small surface area of 9 square inches and provides circularly polarized electromagnetic radiation in excess of 6 dBi. This concept can be extrapolated to include additional radiators or may be scaled to other frequencies of interest.

Martin, R. P.

2012-04-19T23:59:59.000Z

294

Synthesis and investigation of superheavy elements: perspectives with radioactive beams  

Science Journals Connector (OSTI)

...direct mass measurements and laser spectroscopy to investigate...communication) obtained from an HF-Bogoliubov calculation. Though...those populated directly in the fusion process, as observed for element...and superheavy elements (a) Fusion of heavy systems Figure 12 displays...

1998-01-01T23:59:59.000Z

295

Parallel Finite Element Simulation of Tracer Injection in Oil Reservoirs  

E-Print Network [OSTI]

Parallel Finite Element Simulation of Tracer Injection in Oil Reservoirs Alvaro L.G.A. Coutinho In this work, parallel finite element techniques for the simulation of tracer injection in oil reservoirs. Supercomputers have made it possible to consider global reservoir effects which can not be represented using

Coutinho, Alvaro L. G. A.

296

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Fenton Hill HDR Site References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Brookins_%26_Laughlin,_1983)&oldid=511281"

297

Behavior of Rare Earth Elements in Geothermal Systems- A New  

Open Energy Info (EERE)

Behavior of Rare Earth Elements in Geothermal Systems- A New Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Abstract N/A Author Department of Geology and Geological Engineering niversity of Idaho Published Publisher Not Provided, 2001 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Citation Department of Geology and Geological Engineering niversity of Idaho. 2001. Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool?. (!) : (!) . Retrieved from

298

Mobile monolithic polymer elements for flow control in microfluidic devices  

DOE Patents [OSTI]

A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

Hasselbrink, Jr., Ernest F. (Saline, MI); Rehm, Jason E. (Alameda, CA); Shepodd, Timothy J. (Livermore, CA); Kirby, Brian J. (San Francisco, CA)

2005-11-11T23:59:59.000Z

299

Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems  

DOE Patents [OSTI]

A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

Hasselbrink, Jr., Ernest F. (Saline, MI); Rehm, Jason E. (Alameda, CA); Shepodd, Timothy J. (Livermore, CA); Kirby, Brian J. (San Francisco, CA)

2006-01-24T23:59:59.000Z

300

EIS-0423: Storage and Management of Elemental Mercury | Department of  

Broader source: Energy.gov (indexed) [DOE]

23: Storage and Management of Elemental Mercury 23: Storage and Management of Elemental Mercury EIS-0423: Storage and Management of Elemental Mercury Summary This EIS evaluates the environmental impacts associated with the reasonable alternatives for managing and storing elemental mercury at seven candidate locations (i.e., Colorado, Idaho, Missouri, Nevada, South Carolina, Texas, and Washington). The U.S. Environmental Protection Agency, the Texas Commission on Environmental Quality, and the Mesa County Board of Commissioners (Mesa County, Colorado) are cooperating agencies in the preparation of this EIS. Public Comment Opportunities None available at this time. Documents Available for Download June 5, 2012 EIS-0423-S1: Notice of Intent to Prepare a Supplemental Environmental Impact Statement Long-Term Management and Storage of Elemental Mercury

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Trace element partitioning between type B CAI melts and melilite and spinel: Implications for trace element distribution  

E-Print Network [OSTI]

. Partition coefficients between intermediate composition melilites and CAI melt are the following: Li, 0.5 size energetics analysis is used to assess isovalent partitioning into the different cation sites, interpreta- tion of the trace element and isotope compositions of CAIs, particularly the light elements Li

Mcdonough, William F.

302

Oxygen is a key element for biology and the cycling of geochemical elements, and has shaped the chemical  

E-Print Network [OSTI]

Oxygen is a key element for biology and the cycling of geochemical elements, and has shaped the chemical and biological evolution of Earth. The oceans appear to be loosing oxygen due to on-going climate change, with resulting impacts on marine ecosystems and global biogeochemical cycles. As oxygen levels

Handy, Todd C.

303

Compound and Elemental Analysis At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Nevada Nevada Seismic Zone Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for geothermal exploration, the analysis of lithium and other elements in tufa deposits could serve as exploration guides for hot spring lithium

304

Compound and Elemental Analysis At Northern Basin & Range Region  

Open Energy Info (EERE)

(Coolbaugh, Et Al., 2010) (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

305

Materials/manufacturing element of the Advanced Turbine System Program  

SciTech Connect (OSTI)

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

1994-08-01T23:59:59.000Z

306

AMIP Simulation with the CAM4 Spectral Element Dynamical Core  

SciTech Connect (OSTI)

We evaluate the climate produced by the Community Earth System Model, version 1, running with the new spectral-element atmospheric dynamical core option. The spectral-element method is congured to use a cubed-sphere grid, providing quasi-uniform resolution over the sphere, increased parallel scalability and removing the need for polar filters. It uses a fourth order accurate spatial discretization which locally conserves mass and moist total energy. Using the Atmosphere Model Intercomparison Project protocol, we compare the results from the spectral-element dy- namical core with those produced by the default nite-volume dynamical core and with observations.

Evans, Katherine J [ORNL; Lauritzen, Peter [National Center for Atmospheric Research (NCAR); Mishra, Saroj [National Center for Atmospheric Research (NCAR); Neale, Rich [National Center for Atmospheric Research (NCAR); Taylor, Mark [Sandia National Laboratories (SNL); Tribbia, Joe [National Center for Atmospheric Research (NCAR)

2013-01-01T23:59:59.000Z

307

Excited State Effects in Nucleon Matrix Element Calculations  

SciTech Connect (OSTI)

We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

2011-12-01T23:59:59.000Z

308

HANFORD SITE LOW EXPOSURE PIPELINE REPAIR USING A NON-METALLIC COMPOSITE SYSTEM  

SciTech Connect (OSTI)

At the Department of Energy, Richland Operations (DOE-RL) Hanford site in eastern Washington, a 350 mm (14 inch) diameter high density polyethylene (HDPE) pump recirculation pipeline failed at a bonded joint adjacent to a radiologically and chemically contaminated groundwater storage basin. The responsible DOE-RL contractor, CH2MHill Plateau Remediation Company, applied a fiberglass reinforced plastic (composite) field repair system to the failed joint. The system was devised specifically for the HDPE pipe repair at the Hanford site, and had not been used on this type of plastic piping previously. This paper introduces the pipe failure scenario, describes the options considered for repair and discusses the ultimate resolution of the problem. The failed pipeline was successfully returned to service with minimal impact on waste water treatment plant operating capacity. Additionally, radiological and chemical exposures to facility personnel were maintained as low as reasonably achievable (ALARA). The repair is considered a success for the near term, and future monitoring will prove whether the repair can be considered for long term service and as a viable alternative for similar piping failures at the Hanford site.

HUTH RJ

2009-11-12T23:59:59.000Z

309

Microwave Plasma Monitoring System For Real-Time Elemental Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microwave Plasma Monitoring System For Real-Time Elemental Analysis Microwave Plasma Monitoring System For Real-Time Elemental Analysis Microwave Plasma Monitoring System For Real-Time Elemental Analysis The invention apparatus can also be used to monitor for the presence of halogens, sulfur and silicon. Available for thumbnail of Feynman Center (505) 665-9090 Email Microwave Plasma Monitoring System For Real-Time Elemental Analysis There has been invented a process for analyzing ambient air in a microwave induced plasma without use of an additional carrier gas. There has also been invented an apparatus for analyzing ambient air, other sample gas, or nebulized and desolvated liquids wherein a novel arrangement of plasma gas and sample gas conduits is used to enhance dependability of the plasma. This apparatus embodiment of the invention has a concentric arrangement of

310

Departmental (or DOE) Elements | Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Departmental (or DOE) Elements Departmental (or DOE) Elements Print page Print page Email page Email page DOE Elements are first-tier organizations at Headquarters and in the field, as described in the Correspondence Style Guide, Office of the Executive Secretariat. Heads of Departmental Elements at Headquarters, including NNSA Ensure that the objectives and requirements of the DOE Order 241.1B are incorporated into their program planning, management, contract administration, and performance-based management activities. Ensure that program-issued documents or other types of STI are appropriately reviewed and released and made available in acceptable electronic formats to OSTI, with corresponding Announcement Notices Instruct initiators of procurement requests for M&O and site/facility management contracts to specify whether the CRD for this

311

FEHM (Finite Element Heat and Mass Transfer Code)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FEHM (Finite Element Heat and Mass Transfer Code) FEHM (Finite Element Heat and Mass Transfer Code) FEHM (Finite Element Heat and Mass Transfer Code) FEHM is used to simulate groundwater and contaminant flow and transport in deep and shallow, fractured and un-fractured porous media throughout the US DOE complex. June 29, 2013 software FEHM is used to simulate groundwater and contaminant flow and transport in deep and shallow, fractured and un-fractured porous media throughout the US DOE complex. Available for thumbnail of Feynman Center (505) 665-9090 Email FEHM (Finite Element Heat and Mass Transfer Code) FEHM is used to simulate groundwater and contaminant flow and transport in deep and shallow, fractured and un-fractured porous media throughout the US DOE complex. FEHM has proved to be a valuable asset on a variety of

312

Coming up with platinum substitutes may be elemental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coming up with platinum substitutes may be elemental Coming up with platinum substitutes may be elemental Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Coming up with platinum substitutes may be elemental Lab researchers are working with an abundant element to take their place: cobalt. February 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Initial findings by a Los Alamos team indicate that if a cobalt atom is captured within a complex molecule, it can mimic the reactivity of platinum group metals. Platinum and some related precious metals (palladium, iridium, rhodium and ruthenium) are frequently used as chemical catalysts and for countless laboratory processes. As rare metals, they are also expensive. To ensure

313

Long-Term Management and Storage of Elemental Mercury | Department...  

Office of Environmental Management (EM)

Mercury Export Ban Act of 2008 (MEBA) (Public Law No. 110-414) requires the Department of Energy (DOE) to establish a facility for the long-term management and storage of elemental...

314

Laser Enables Inexpensive Elemental Analysis | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Enables Inexpensive Elemental Analysis Sep 2014 Aug 2014 Jul 2014 June 2014 May 2014 Apr 2014 Mar 2014 Feb 2014 Jan 2014 Dec 2013 Nov 2013 Oct 2013 Sep 2013 Aug 2013 Jul 2013...

315

Gardening the elements in a landscape of technology  

E-Print Network [OSTI]

Gardening the Elements in a Landscape of Technology discusses three multisensory environmental sculptures: Wave Garden, Eyes of the Wind, and Thermal Delight. Each of these installations explores the relationship between ...

Willow, Diane

1992-01-01T23:59:59.000Z

316

Trace elements in brown coal and its products of combustion  

Science Journals Connector (OSTI)

Concentrations of 38 elements in brown coal, bottom ash and size fractionated ESP coal ash from the Belchatów I Power Plant were determined by INAA. Based on enrichment factors calculated relatively to iron an...

U. Tomza; P. Kaleta

1986-10-20T23:59:59.000Z

317

Compound and Elemental Analysis At Kilauea East Rift Geothermal...  

Open Energy Info (EERE)

(XRF). The samples were made into thin sections as well as ground in a tungsten carbide grinding mill. A table of trace elements and amounts found during the analysis is...

318

Resolution of grain scale interactions using the Discrete Element Method  

E-Print Network [OSTI]

Granular materials are an integral part of many engineering systems. Currently, a popular tool for numerically investigating granular systems is the Discrete Element Method (DEM). Nearly all implementations of the DEM, ...

Johnson, Scott M. (Scott Matthew), 1978-

2006-01-01T23:59:59.000Z

319

APPROXIMATE HARTREE TYPE WAVE FUNCTIONS AND MATRIX ELEMENTS FOR...  

Office of Scientific and Technical Information (OSTI)

APPROXIMATE HARTREE TYPE WAVE FUNCTIONS AND MATRIX ELEMENTS FOR THE K AND L SHELLS OF ATOMS AND IONS Re-direct Destination: Temp Data Fields Meyerott, R.E. Temp Data Storage 3:...

320

A SOLID-STATE HEAT PUMP USING ELECTROCALORIC CERAMIC ELEMENTS.  

E-Print Network [OSTI]

??The thermoacoustic cycle is a robust thermodynamic cycle that can be generalizedto describe and develop an all-solid-state heat pump using generic caloric elements.Ferroelectric barium strontium… (more)

Hilt, Matthew

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

APPLICATION OF BOUNDARY ELEMENT METHOD TO STREAMLINE GENERATION  

E-Print Network [OSTI]

Jitendra Kikani July 1989 Reservoir Simulation Industrial Affiliates #12;APPLICATION OF BOUNDARY ELEMENT injection, C02flooding, in-situ combustion). In addition impermeable barriers of any shape and orientation

Stanford University

322

2-D discrete element modeling of unconsolidated sandstones  

E-Print Network [OSTI]

developed in this thesis is compared to the results of triaxial tests performed in cylindrical core samples of unconsolidated sandstones saturated with heavy oil. The discrete element model treats the sand as a two dimensional assembly of particles...

Franquet Barbara, Javier Alejandro

2012-06-07T23:59:59.000Z

323

Finite Element Analysis of Marine Diesel Engine Crankshaft  

Science Journals Connector (OSTI)

In this paper, with the ANSYS, stress distribution and safety factor of crankshaft were analyzed by using 3D finite element method. The results show that the exposed destructive position is the transition circ...

Bin Zheng; Yongqi Liu; Ruixiang Liu…

2011-01-01T23:59:59.000Z

324

Naming elements after scientists: an account of a controversy  

Science Journals Connector (OSTI)

The next element to be named after a person—or more correctly—persons, was curium. Glenn Seaborg had been the first to announce that ... gadolinium. As he reports in his autobiography (Seaborg and Seaborg 2001): ...

Geoff Rayner-Canham; Zheng Zheng

2008-04-01T23:59:59.000Z

325

Properties of Group Five and Group Seven transactinium elements  

E-Print Network [OSTI]

respect the wishes of Glenn Seaborg, I will continue to useRadiochimica Acta Glenn T. Seaborg, “Tranuranium Elements:Table as arranged by Glenn T. Seaborg, 1945 [Seaborg 1945].

Wilk, Philip A.

2001-01-01T23:59:59.000Z

326

Dynamic control of spin states in interacting magnetic elements  

DOE Patents [OSTI]

A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

Jain, Shikha; Novosad, Valentyn

2014-10-07T23:59:59.000Z

327

A study on some trace elements in Chilean seafood  

Science Journals Connector (OSTI)

Levels of essential and toxic trace elements in six marine species greatly in demand in the international market (canned pink clams, razor clams, clams, king crab, sardines, and frozen albacore tuna fish) were...

N. Gras; L. Munoz; M. Thieck…

1993-03-01T23:59:59.000Z

328

A Comprehensive Map of Insulator Elements for the Drosophila Genome  

E-Print Network [OSTI]

Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities ...

White, Kevin P.

329

2.72 Elements of Mechanical Design, Fall 2002  

E-Print Network [OSTI]

Examination and practice in the application of many mechanical design elements, including control components. Students working in groups design, fabricate, and test prototype devices in response to requests from industrial ...

Blanco, Ernesto E.

330

A VECTOR FINITE ELEMENT TIME-DOMAIN METHOD FOR ...  

E-Print Network [OSTI]

gential continuity across interfaces whereas the face elements have normal continuity ..... Example: Numerical dispersion for three-dimensional shear distortion. Let ..... The error measure is the standard L2 relative error shown below,.

SIAM (#1) 1035 2001 Apr 10 12:32:38

2001-08-14T23:59:59.000Z

331

An integrated encyclopedia of DNA elements in the human genome  

E-Print Network [OSTI]

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of ...

Altshuler, Robert Charles

332

Finite-element modelling: a new tool for the biologist  

Science Journals Connector (OSTI)

...problem that excessive distortion of the applied skin will prevent adequate adhesion...Finite-element techniques have already been applied to problems associated with cochlear mechanics...position at the University Hospital, Utrecht, The Netherlands, he moved to Bristol...

2000-01-01T23:59:59.000Z

333

Process for synthesizing compounds from elemental powders and product  

DOE Patents [OSTI]

A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

Rabin, B.H.; Wright, R.N.

1993-12-14T23:59:59.000Z

334

Livermore Scientists Team with Russia to Discover Element 118  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Synthesis of the isotopes of elements 118 and 116" (Abstract) "Synthesis of the isotopes of elements 118 and 116" (Abstract) Physical Review C, October 9, 2006 Livermore Scientists Team With Russia To Discover Elements 113 and 115 LLNL News Release, February. 2, 2004 "Present at the Creation" Science & Technology Review, January/February 2002 Island of Stability NOVA Science Now, September 2006 Social Media Logos Follow LLNL on YouTube Subscribe to LLNL's RSS feed Follow LLNL on Facebook Follow LLNL on Twitter Follow LLNL on Flickr Contact: Anne M. Stark Phone: (925) 422-9799 E-mail: stark8l@llnl.gov FOR IMMEDIATE RELEASE October 16, 2006 NR-06-10-03 Livermore scientists team with Russia to discover element 118 LIVERMORE, Calif. - Scientists from the Chemistry, Materials and Life Sciences Directorate at Lawrence Livermore National Laboratory, in

335

Behavior Of Rare Earth Element In Geothermal Systems, A New  

Open Energy Info (EERE)

Behavior Of Rare Earth Element In Geothermal Systems, A New Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Details Activities (32) Areas (17) Regions (0) Abstract: The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields

336

HSS Work Group Leadership Meetings: Transition Elements | Department of  

Broader source: Energy.gov (indexed) [DOE]

Work Group Leadership Meetings: Transition Elements Work Group Leadership Meetings: Transition Elements HSS Work Group Leadership Meetings: Transition Elements Meeting Dates: November 13 - 15, 2012 This HSS Focus Group Work Group telecom was held with the Work Group Co-Leads to discuss change elements and strategic direction to support accelerated efforts to advancing progress, productivity and performance within each of the Work Groups. Although current roles within all of the Work Groups and Focus Group efforts remain the same, the addition of centralized leadership and oversight by representatives (2) of the Departmental Representative to the Defense Nuclear Facilities Safety Board are established. Meeting Summaries 851 Implementation Meeting Summary Strategic Initiatives Meeting Summary Workforce Retention Meeting Summary

337

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al.,  

Open Energy Info (EERE)

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to

338

Sulfide catalysts for reducing SO2 to elemental sulfur  

DOE Patents [OSTI]

A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

2001-01-01T23:59:59.000Z

339

Trace elements in oil shale. Progress report, 1979-1980  

SciTech Connect (OSTI)

The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

Chappell, W R

1980-01-01T23:59:59.000Z

340

Solar Abundance of Elements from Neutron-Capture Cross Sections  

E-Print Network [OSTI]

Excess lightweight products of slow neutron capture in the photosphere, over the mass range of 25 to 207 amu, confirm the solar mass separation recorded by excess lightweight isotopes in the solar wind, over the mass range of 3 to 136 amu [Solar Abundance of the Elements, Meteoritics, volume 18, 1983, pages 209 to 222]. Both measurements show that major elements inside the Sun are Fe, O, Ni, Si and S, like those in rocky planets.

O. Manuel; W. A. Myers; Y. Singh; M. Pleess

2004-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Savoy, IL); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Urbana, IL)

2009-11-24T23:59:59.000Z

342

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

2013-05-14T23:59:59.000Z

343

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

2014-03-04T23:59:59.000Z

344

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Durham, NC); Lee, Keon Jae (Daejeon, KR); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Raleigh, NC); Zhu, Zhengtao (Urbana, IL)

2011-07-19T23:59:59.000Z

345

Finite element modeling of heat and mass transport in aquifers  

E-Print Network [OSTI]

of the grid test problem transient temperature distribution using upstream weighting to the solution of Avdonin (1964)(linear elements). 60 Comparison of the radial test problem transient temperature profile using upstream weighting to the solution... of Avdonin (1964)(linear elements) . . 61 12 13 Comparison of the grid problem transient temperature profile using mass lumping to the solution of Avdonin (1964). Comparison of the grid problem temperature progression using mass lumping to the solution...

Grubaugh, Elston Kent

1980-01-01T23:59:59.000Z

346

Combined passive magnetic bearing element and vibration damper  

DOE Patents [OSTI]

A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium and dampen transversely directed vibrations. Mechanical stabilizers are provided to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. In a improvement over U.S. Pat. No. 5,495,221, a magnetic bearing element is combined with a vibration damping element to provide a single upper stationary dual-function element. The magnetic forces exerted by such an element, enhances levitation of the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations, and suppresses the effects of unbalance or inhibits the onset of whirl-type rotor-dynamic instabilities. Concurrently, this equilibrium is made stable against displacement-dependent drag forces of the rotating object from its equilibrium position.

Post, Richard F. (Walnut Creek, CA)

2001-01-01T23:59:59.000Z

347

Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil  

DOE Patents [OSTI]

The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

2014-07-08T23:59:59.000Z

348

Modified Mini finite element for the Stokes problem in ?2 or ?3  

Science Journals Connector (OSTI)

We analyze a modified version of the Mini finite element (or the Mini* finite element) for the Stokes problem...2 or ?3. The cross?grid element of order one in ?3 is also analyzed. The stability is verified with ...

Yongdeok Kim; Sungyun Lee

349

Larval Behavior and Natural Trace Element Signatures as Indicators of Crustacean Population Connectivity  

E-Print Network [OSTI]

variability in an atlas of trace element signatures forin creating a trace element atlas, our results show thatstage to create a trace element atlas in 2009 (Table 4.2),

Miller, Seth Haylen

2011-01-01T23:59:59.000Z

350

Trace element fingerprinting of ancient Chinese gold with femtosecond laser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trace element fingerprinting of ancient Chinese gold with femtosecond laser Trace element fingerprinting of ancient Chinese gold with femtosecond laser ablation-inductivity coupled mass spectrometry Title Trace element fingerprinting of ancient Chinese gold with femtosecond laser ablation-inductivity coupled mass spectrometry Publication Type Journal Article Year of Publication 2009 Authors Brostoff, Lynn B., Jhanis J. Gonzalez, Paul Jett, and Richard E. Russo Journal Journal of Archeological Science Volume 36 Start Page 461 Issue 2 Pagination 461-466 Date Published 02/2009 Keywords Ancient gold, femtosecond, la-icp-ms, Trace element Abstract In this collaborative investigation, femtosecond laser ablation-inductively coupled mass spectrometry (LA-ICP-MS) was applied to the study of a remarkable group of ancient Chinese gold objects in the Smithsonian's Freer Gallery of Art and Arthur M. Sackler Gallery. Taking advantage of the superior ablation characteristics and high precision of a femtosecond 266 nm Ti:sapphire laser at Lawrence Berkeley National Laboratory, major, minor and trace element concentrations in the gold fragments were quantified. Results validate use of femtosecond LA-ICP-MS for revealing ''fingerprints'' in minute gold samples. These fingerprints allow us to establish patterns based on the association of silver, palladium and platinum that support historical, technical and stylistic relationships, and shed new light on these ancient objects.

351

Magnetic Torque of Microfabricated Elements and Magnetotactic Bacteria  

E-Print Network [OSTI]

We present a thorough theoretical analysis of the magnetic torque on microfabricated elements with dimensions in the range of 100 to 500 {\\mu}m and magneto-somes of magnetotactic bacteria of a few {\\mu}m length. We derive simple equations for field dependent torque and magnetic shape anisotropy that can be readily used to replace the crude approximations commonly used. We illustrate and verify the theory on microfabricated elements and magnetotactic bacteria, by field depedent torque magnetometry and by observing their rotation in water under application of a rotating magnetic field. The maximum rotation frequency of the largest microfabricated elements agrees within error boundaries with theory. For smaller, and especially thinner, elements the measured frequencies are a factor of three to four too low. We suspect this is caused by incomplete saturation of the magnetisation in the elements, which is not incorporated in our model. The maximum rotation frequency of magnetotactic bacteria agrees with our model within error margins, which are however quite big due to the large spread in bacteria morphology. The model presented provides a solid basis for the analysis of experiments with magnetic objects in liquid, which is for instance the case in the field of medical microrobotics.

Lars Zondervan; Özlem Sardan Sukas; Islam S. M. Khalil; Marc P. Pichel; Sarthak Misra; Leon Abelmann

2014-08-07T23:59:59.000Z

352

Elemental analysis of cotton by laser-induced breakdown spectroscopy  

SciTech Connect (OSTI)

Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

Schenk, Emily R.; Almirall, Jose R.

2010-05-01T23:59:59.000Z

353

Migration and retention of elements at the Oklo natural reactor  

SciTech Connect (OSTI)

The Oklo natural reactor, Gabon, permits study of fission-produced elemental behavior in a natural geologic environment. The uranium ore that sustained fission reactions formed about 2 billion years before present (BYBP), and the reactor was operative for about 5 x 10/sup 5/ yrs between about 1.95 to 2 BYBP. The many tons of fission products can, for the most part, be studied for their abundance and distribution today. Since reactor shutdown, many fissiogenic elements have not migrated from host pitchblende, and several others have migrated only a few tens of meters from the reactor ore. Only Xe and Kr have apparently been largely removed from the reactor zones. An element by element assessment of the Oklo rocks' ability to retain the fission products, and actinides and radiogenic Pb and Bi as well, leads to the conclusion that no widespread migration of the elements occurred. This suggests that rocks with more favorable geologic characteristics are indeed well suited for consideration for the storage of radioactive waste.

Brookins, D.G.

1982-01-01T23:59:59.000Z

354

E-Print Network 3.0 - abundance element Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

160, 291- Summary: may have low abundances of high field strength elements, rare earth elements and Y. Variable vein... in subduction zones. However, abundance variations of...

355

Compound and Elemental Analysis At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Compound and Elemental Analysis At Central Nevada Compound and Elemental Analysis At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

356

Compound and Elemental Analysis At Valles Caldera - Redondo Area (Chipera,  

Open Energy Info (EERE)

Et Al., 2008) Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Redondo Area (Chipera, Et Al., 2008) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes X-Ray Diffraction, Scanning Electron Microscopy, and Electron Microprobe. References Steve J. Chipera, Fraser Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Redondo_Area_(Chipera,_Et_Al.,_2008)&oldid=510462

357

Proposed Data Elements for PARS II Web Application  

Broader source: Energy.gov (indexed) [DOE]

Data Elements for PARS II Data Elements for PARS II Revised: July 27, 2009 - Version 5.1 This document should be printed on legal size paper, in landscape mode. 1.0 Overview The PARS II application will collect two major types of data from DOE Field Site and DOE Headquarters locations. The two types of data are called: (1) Oversight and Assessment Data and (2) Contractor Project Performance Data and are designed to provide information to support for the concepts and data elements represented by the DOE EVMS Gold Card 1 . A reproduction the relevant section of the Gold Card appears to the right. Performance Baseline (TPC) CBB + Profit Fee Non Contract Costs (Includes DOE Direct Costs) Contingency (DOE Held) Performance Measurement Baseline (PMB) Profit Fee (Contractor) Management

358

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Area Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=510466

359

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Grigsby, Et Al., 1983) Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511285

360

Element_team_looks_for_magic_number.pdf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EWSLINE EWSLINE N A LOOK AT NTS BEFORE NUCLEAR TESTING WHAT'S INSIDE PAGE 3 - page 4 PAGE 6 HOME CAMPAIGN BUILDS MOMENTUM Published for the employees of Lawrence Livermore National Laboratory October 27, 2006 Vol. 31, No. 21 HANS BETHE AWARD FOR JIM WILSON PAGE 5 Getting to the bottom of the. . . periodic table Newsline 4 October 27, 2006 SCIENCE NEWS By Anne M. Stark Newsline staff writer It could be dubbed voyage to the bottom of the periodic table of elements. That's the journey that the Heavy Element Group in the Chemistry, Materials and Life Sciences Directorate is on. And they recently came one step closer as they joined with Russian scientists to discover the newest superheavy ele- ment, element 118. LLNL scientists collabo-

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Jefferson Lab Science Series - The Origin of the Elements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

You Already Know This Physics! You Already Know This Physics! Previous Video (You Already Know This Physics!) Science Series Video Archive Next Video (Guesstimating the Environment) Guesstimating the Environment The Origin of the Elements Dr. Edward Murphy - University of Virginia, Department of Astronomy November 13, 2012 The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang,

362

Compound and Elemental Analysis At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Dixie Valley Compound and Elemental Analysis At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

363

Reconstructing the cosmic evolution of the chemical elements  

E-Print Network [OSTI]

The chemical elements are created in nuclear fusion processes in the hot and dense cores of stars. The energy generated through nucleosynthesis allows stars to shine for billions of years. When these stars explode as massive supernovae, the newly made elements are expelled, chemically enriching the surrounding regions. Subsequent generations of stars are formed from gas that is slightly more element enriched than that from which previous stars formed. This chemical evolution can be traced back to its beginning soon after the Big Bang by studying the oldest and most metal-poor stars still observable in the Milky Way today. Through chemical analysis, they provide the only available tool for gaining information about the nature of the short-lived first stars and their supernova explosions more than thirteen billion years ago. These events set in motion the transformation of the pristine universe into a rich cosmos of chemically diverse planets, stars, and galaxies.

Frebel, Anna

2014-01-01T23:59:59.000Z

364

Glueball matrix elements: a lattice calculation and applications  

E-Print Network [OSTI]

We compute the matrix elements of the energy-momentum tensor between glueball states and the vacuum in SU(3) lattice gauge theory and extrapolate them to the continuum. These matrix elements may play an important phenomenological role in identifying glue-rich mesons. Based on a relation derived long ago by the ITEP group for J/psi radiative decays, the scalar matrix element leads to a branching ratio for the glueball that is at least three times larger than the experimentally observed branching ratio for the f_0 mesons above 1GeV. This suggests that the glueball component must be diluted quite strongly among the known scalar mesons. Finally we review the current best continuum determination of the scalar and tensor glueball masses, the deconfining temperature, the string tension and the Lambda parameter, all in units of the Sommer reference scale, using calculations based on the Wilson action.

Harvey B. Meyer

2008-08-22T23:59:59.000Z

365

Recovery of phosphates from elemental phosphorus bearing wastes  

SciTech Connect (OSTI)

A process for oxidizing aqueous elemental phosphorus containing residues (sludges) to produce orthophosphate containing slurries suitable for subsequent reaction with ammonia to produce nitrogen and phosphate containing fertilizer products is presented. It comprises reacting aqueous elemental phosphorus containing residues with certain special mixtures of concentrated nitric acid and sulfuric acid to effect the conversion of the elemental phosphorus into mostly orthophosphoric acid and very little orthophosphorus acid with the relative ratios of the two acids being dependent upon the mole ratio of H{sub 2}SO{sub 4}:HNO{sub 3} employed in the processing. The resulting aqueous reaction intermediate is neutralized with ammonia during processing to a fluid or solid fertilizer product. Prior to the conversion to products, the aqueous reaction intermediate may be subjected to a solids separation step to remove insoluble salts of certain environmentally undesirable metals, such as Pb, Cd, Ba, and Cr.

Edwards, R.E.; Moore, O.E.; Sullivan, J.M.

1994-10-01T23:59:59.000Z

366

Toward parton equilibration with improved parton interaction matrix elements  

E-Print Network [OSTI]

The Quark-Gluon Plasma can be produced in high energy heavy ion collisions and how it equilibrates is important for the extraction of the properties of strongly interacting matter. A radiative transport model can be used to reveal interesting characteristics of Quark-Gluon Plasma thermalization. For example, screened parton interactions always lead to partial pressure isotropization. Systems with different initial pressure anisotropies evolve toward the same asymptotic evolution. In particular, radiative processes are crucial for the chemical equilibration of the system. Matrix elements under the soft and collinear approximation for these processes, as first derived by Gunion and Bertsch, are widely used. A different approach is to start with the exact matrix elements for the two to three and its inverse processes. General features of this approach will be reviewed and the results will be compared with the Gunion-Bertsch results. We will comment on the possible implications of the exact matrix element approach on Quark-Gluon Plasma thermalization.

Bin Zhang

2012-08-06T23:59:59.000Z

367

Solving the Grad–Shafranov equation with spectral elements  

Science Journals Connector (OSTI)

Abstract The development of a generalized two dimensional MHD equilibrium solver within the nimrod framework [Sovinec, et al., J. Comput. Phys. 195 (2004) 355] is discussed. Spectral elements are used to represent the poloidal plane. To permit the generation of spheromak and other compact equilibria, special consideration is given to ensure regularity at the geometric axis ( R = 0 ) . The scalar field ? = ? / R 2 is used as the dependent variable to express the Grad–Shafranov operator as a total divergence. With the correct gauge, regularity along the geometric axis is satisfied. The convergence properties of the spectral elements are investigated by comparing numerically generated equilibria against known analytic solutions. Equilibria accurate to double precision error are generated with sufficient resolution. Depending on the equilibrium, either geometric or algebraic convergence is observed as the polynomial degree of the spectral-element basis is increased.

E.C. Howell; C.R. Sovinec

2014-01-01T23:59:59.000Z

368

A computational study of nodal-based tetrahedral element behavior.  

SciTech Connect (OSTI)

This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.

Gullerud, Arne S.

2010-09-01T23:59:59.000Z

369

Uncertainties in nuclear transition matrix elements of neutrinoless ?? decay  

SciTech Connect (OSTI)

To estimate the uncertainties associated with the nuclear transition matrix elements M{sup (K)} (K=0?/0N) for the 0{sup +} ? 0{sup +} transitions of electron and positron emitting modes of the neutrinoless ?? decay, a statistical analysis has been performed by calculating sets of eight (twelve) different nuclear transition matrix elements M{sup (K)} in the PHFB model by employing four different parameterizations of a Hamiltonian with pairing plus multipolar effective two-body interaction and two (three) different parameterizations of Jastrow short range correlations. The averages in conjunction with their standard deviations provide an estimate of the uncertainties associated the nuclear transition matrix elements M{sup (K)} calculated within the PHFB model, the maximum of which turn out to be 13% and 19% owing to the exchange of light and heavy Majorana neutrinos, respectively.

Rath, P. K. [Department of Physics, University of Lucknow, Lucknow-226007 (India)

2013-12-30T23:59:59.000Z

370

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Et Al., 2008) Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (Chipera, Et Al., 2008) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes X-Ray Diffraction, Scanning Electron Microscopy, and Electron Microprobe. References Steve J. Chipera, Fraser Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Chipera,_Et_Al.,_2008)&oldid=51046

371

Acceleration of matrix element computations for precision measurements  

E-Print Network [OSTI]

The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the concrete example of the top quark mass, we present two approaches to reduce the computation time of the technique by two orders of magnitude. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. Second, we utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing e...

Brandt, Oleg; Wang, Michael H L S; Ye, Zhenyu

2014-01-01T23:59:59.000Z

372

Telling friends from foes : strontium isotope and trace element analysis of companion burials from Pusilhá, Toledo District, Belize  

E-Print Network [OSTI]

uranium, and the rare earth elements (REE) can readilyof uranium and the rare earth elements are extremely low andconsumed in vivo. The rare earth element lanthanum, like

Somerville, Andrew D.

2010-01-01T23:59:59.000Z

373

Compound and Elemental Analysis At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

Indonesia Indonesia (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent

374

Compound and Elemental Analysis At International Geothermal Area, Mexico  

Open Energy Info (EERE)

Mexico Mexico (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area Mexico (Norman & Moore, 2004) Exploration Activity Details Location International Geothermal Area Mexico Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Our examination of Cerro Prieto gas analyses indicates that the geothermal system structure is changing with time. Gas data routinely measured in most geothermal fields; hence fluid-flow plots as presented here can be accomplished with little cost. Gas analytical data, therefore, are useful in developing management procedures for geothermal fields characterized by

375

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

1992) 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico

376

Method and system for high power reflective optical elements  

DOE Patents [OSTI]

A method of repairing damage in an optical element includes providing a laser system including at least one optical element having a coating layer having an incident light surface and directing a laser pulse from the laser system to impinge on the incident light surface. The method also includes sustaining damage to a portion of the incident light surface and melting the damaged portion of the incident light surface and a region adjacent to the damaged portion. The method further includes flowing material from the region adjacent the damaged portion to the damaged portion and solidifying the material in the damaged portion and the region adjacent to the damaged portion.

Demos, Stavros G.; Rubenchik, Alexander M.; Negres, Raluca A.

2013-03-12T23:59:59.000Z

377

Expert system for surveillance and diagnosis of breach fuel elements  

DOE Patents [OSTI]

An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

Gross, Kenny C. (Lemont, IL)

1989-01-01T23:59:59.000Z

378

Elemental composition in sealed plutonium–beryllium neutron sources  

Science Journals Connector (OSTI)

Abstract Five sealed plutonium–beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed.

N. Xu; K. Kuhn; D. Gallimore; A. Martinez; M. Schappert; D. Montoya; E. Lujan; K. Garduno; L. Tandon

2015-01-01T23:59:59.000Z

379

Dry deposition of gaseous elemental iodine on water  

E-Print Network [OSTI]

DRy DEPOSITION OF GASEOUS ELEMENTAL IODINE ON WATER A Thesis by MICHAEL DANA ALLEN Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 19/4 Ma...Jor SubJect: Nuclear Engineering (Health Physics) DRY DEPOSITION OF GASEOUS ELEMENTAL IODINE ON WATER A Thesis MICHAEL DANA ALLEN Approved as to style and content by: irman of C ttee) ( a of Department) (Member) (Member) August 1974 3. 1. 595') 6...

Allen, Michael Dana

2012-06-07T23:59:59.000Z

380

Periodic Boundary Conditions in the ALEGRA Finite Element Code  

SciTech Connect (OSTI)

This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.

AIDUN,JOHN B.; ROBINSON,ALLEN C.; WEATHERBY,JOE R.

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Empirical Survey of Neutrinoless Double Beta Decay Matrix Elements  

E-Print Network [OSTI]

Neutrinoless double beta decay has been the subject of intensive theoretical work as it represents the only practical approach to discovering whether neutrinos are Majorana particles or not, and whether lepton number is a conserved quantum number. Available calculations of matrix elements and phase-space factors are reviewed from the perspective of a future large-scale experimental search for neutrinoless double beta decay. Somewhat unexpectedly, a uniform inverse correlation between phase space and the square of the nuclear matrix element emerges. As a consequence, no isotope is either favored or disfavored; all have qualitatively the same decay rate per unit mass for any given value of the Majorana mass.

R. G. H. Robertson

2013-01-07T23:59:59.000Z

382

Control System Design Guide Element 5--Integrated Commissioning and Diagnostics  

E-Print Network [OSTI]

Control System Design Guide Element 5--Integrated Commissioning and Diagnostics Project 2 Performance Commercial Building Systems #12;Table of Contents: Control System Design Guide 1. How to Use the Design Guide 2. Control System Design Process 3. Selection and Installation of Control and Monitoring

383

Toxic element composition of multani mitti clay for nutritional safety  

E-Print Network [OSTI]

elements has exponentially increased over the last few decades due to combustion of fossil fuels and may pose health con- cerns. The data presented in this study can be used as national base level been aware of the beneficial health effects of clays since prehistoric times. Many ancient

Short, Daniel

384

Exposing Datapath Elements to Reduce Microprocessor Energy Consumption  

E-Print Network [OSTI]

to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton Submitted to the Department of ElectricalExposing Datapath Elements to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton B Submitted to the Department of Electrical Engineering and Computer Science in partial ful llment

385

Transmutation of Elements through Capture of Electrons by Nuclei  

E-Print Network [OSTI]

A proton can capture an electron and turn into a neutron provided the electron has a kinetic energy of 0.782 MeV or more.An element of the Periodic Table can change into another on being exposed to such high energy electrons.

A. Mukherji

2011-05-11T23:59:59.000Z

386

Dennis, Eberhart, Dulikravich & Radons FINITE ELEMENT SIMULATION OF COOLING  

E-Print Network [OSTI]

). The simulations performed in this study consider ice packs applied to head and neck as well as using a head-cooling1 Dennis, Eberhart, Dulikravich & Radons FINITE ELEMENT SIMULATION OF COOLING OF REALISTIC 3-D Rapid cooling of the brain in the first minutes following the onset of cerebral ischemia

Dennis, Brian

387

Bit-serial RISC processing element for parallel processing  

E-Print Network [OSTI]

Corpo- ration and the KSR-1 by Kendall Square Research. These machines are expected to attain an impressive peak performance ranging from 300Gflops (Intel Paragon) up to 2Tflops by the TMC CM-5 using 16K SPARC processing elements[3]. SIMD and MIMD...

Haidar, Faisal A

1994-01-01T23:59:59.000Z

388

Beta-Decay Matrix Elements in Sb122  

Science Journals Connector (OSTI)

An electronic computer has been used to investigate the six nuclear matrix elements which enter into the 2- to 2+ 1.40-MeV beta transition in the decay of Sb122. Data from beta-gamma angular correlation, beta-circularly polarized gamma angular correlation, nuclear orientation, and nuclear resonance experiments were used in this analysis. As a further aid, the Feenberg-Ahrens relations between certain of the nuclear matrix elements were employed to catalog the solutions and to simplify the search problem. In order to discover how the remaining ambiguity of these solutions could most easily be reduced, for each of the solutions calculations were made of the predicted results of all possible experiments on this beta transition. These calculations show how sufficient experimental data can be obtained to determine unambiguously all six nuclear matrix elements. In an appendix all the theoretical formulas which give the experimental observables for a first forbidden 2- to 2+ beta transition in terms of the nuclear matrix elements are summarized.

F. M. Pipkin; J. Sanderson; W. Weyhmann

1963-03-15T23:59:59.000Z

389

First Elements on Knowledge Discovery Guided by Domain Knowledge (KDDK)  

E-Print Network [OSTI]

First Elements on Knowledge Discovery Guided by Domain Knowledge (KDDK) Jean Lieber, Amedeo Napoli how knowledge discovery and knowl- edge processing may be combined. The knowledge discovery knowledge units. From a knowledge representa- tion perspective, the kdd process may take advantage of domain

Boyer, Edmond

390

Path Computation Element (PCE) 1. What is QoS?  

E-Print Network [OSTI]

Path Computation Element (PCE) PCE #12;Index 1. What is QoS? 2. Why it's necessary in networks? 3(OSPF) 5. Solution: PCE 6. How PCE works? 7. PCE andTED 8. PCE and Multi-Domains 9. PCEArchitecture 10 increments the network overhead Creates inaccuracy 8 #12;Solution: PCE Definition: An entity (component

391

FUSION HINDRANCE and SYNTHESIS of SUPERHEAVY ELEMENTS , G. Kosenko2  

E-Print Network [OSTI]

FUSION HINDRANCE and SYNTHESIS of SUPERHEAVY ELEMENTS Y. Abe1 , G. Kosenko2 , C.W. Shen3 , B. But unexpectedly, fusion hindrance were observed and its reaction mechanism had not yet been understood well so and to provide the theoretical framework for calculation of fusion probability, the present authors et al. have

Paris-Sud XI, Université de

392

Element One Reduces Cost of Hydrogen Leak Detection Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

In 2012, Element One was named as a runner-up in the Department of Energy’s (DOE’s) “America’s Next Top Energy Innovator” challenge—a competition among 36 companies that optioned to license patents from DOE national laboratories.

393

Abelian Subgroups and Engel Elements of Soluble Groups  

Science Journals Connector (OSTI)

......SUBGROUPS AND ENGEL ELEMENTS OF SOLUBLE GROUPS constrained, given geG there is J{g)eQ(g) such that dJ[g)eDn zQ. So dfig)(g-- 1) = 0 and Dn_x ZQ is a constrained QG-module. Let U be a subspace complementary to Dn z Q in Z)n_! z Q......

C. J. B. Brookes

1985-12-01T23:59:59.000Z

394

Double Gamow-Teller matrix elements in the germanium region  

Science Journals Connector (OSTI)

The matrix elements involved in the double-beta-decay process for the nuclei Ge76 and Se82 are calculated in terms of the variational wave functions resulting from realistic effective interactions operating in the unrestricted (2p1/2, 2p3/2, 1f5/2, 1g9/2)?,? configuration space.

S. K. Sharma, G. Mukherjee, and P. K. Rath

1990-03-01T23:59:59.000Z

395

Element A "Identifying Sources and Causes of Impairment in the  

E-Print Network [OSTI]

-based plan (and to achieve any other watershed goals identified in the watershed-based plan). What Does that into plan. Characterizing the Watershed is Element A Refer to Handbook Chapters 5,6,7 Gather existing data (Social and Environmental tools) Data Typical for Watershed Characterization Physical and Natural Features

396

AN ADAPTIVE SURFACE FINITE ELEMENT METHOD BASED ON VOLUME MESHES  

E-Print Network [OSTI]

makes use of a (standard) outer volume mesh to discretize an equation on a two-dimensional surface, interface, finite element, level set method, adaptivity, error estimator AMS subject classification. 65N15 measure The first author was partially supported by National Science Foundation grant DMS-1016094

Demlow, Alan

397

Liver vasculature refinement with multiple 3D structuring element shapes  

Science Journals Connector (OSTI)

Delineating anatomical structures and other regions of interest is an important component of assisting and automating specific diagnostic, radiological, and surgical tasks. In this paper, a segmentation approach for liver region delineation is proposed, ... Keywords: 3D structuring element, Hysteresis thresholding, Mathematical morphology, Region growing, Texture analysis, Vessel tree refinement

Do-Yeon Kim

2014-08-01T23:59:59.000Z

398

Finite element analysis of controlled laser coagulation experiments  

E-Print Network [OSTI]

A mathematical model to predict the effect of laser and tissue parameters on the zone of thermal injury by laser interaction on beef liver is presented. The heat transfer and coagulation process was modeled using a non-linear finite-element model...

Tolat, Nimish Prabodh

2012-06-07T23:59:59.000Z

399

New Advances in Neutrinoless Double Beta Decay Matrix Elements  

Science Journals Connector (OSTI)

We present the matrix elements necessary to evaluate the half?life of some neutrinoless double beta decay candidates in the framework of the microscopic interacting boson model (IBM). We compare our results with those from other models and extract some simple features of the calculations.

José Barea Muńoz

2010-01-01T23:59:59.000Z

400

Finite Element Discretization Strategies for the Inverse Electrocardiographic (ECG) Problem  

E-Print Network [OSTI]

Finite Element Discretization Strategies for the Inverse Electrocardiographic (ECG) Problem Dafang electrocardiographic (ECG) problems re- quires the ability to both quantify and minimize approxi- mation errors specifically for the inverse ECG prob- lem. By quantitatively analyzing the connection between the ill

Utah, University of

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

biomedical (BME) The interdisciplinary field of Biomedical Engineering combines elements  

E-Print Network [OSTI]

32 biomedical (BME) The interdisciplinary field of Biomedical Engineering combines elements to apply advanced technology to the complex problems of medical care. The Biomedical Engineering program of Engineering, pre-med BME's have access to the University's Pre-Health advisement office. Biomedical

Rohs, Remo

402

Sign elements in symmetric groups Jrn B. Olsson  

E-Print Network [OSTI]

;Introduction Work in progress Question by G. Navarro about characters in symmetric groups, related to a paper characters · The Isaacs-Navarro question · Sign elements/classes in finite groups and their relation groups · Answering the Isaacs-Navarro question · A general result about sign classes in symmetric groups

Takahashi, Ryo

403

Trace element partitioning between baddeleyite and carbonatite melt at high pressures and high temperatures  

E-Print Network [OSTI]

as the heavy rare earth elements (HREE) prefer to enter baddeleyite rather than carbonate melts (D>1), whereas the light rare earth elements (LREE) and other trace elements behave incompatibly (D in carbonatite melts. Baddeleyite is known to accumulate the high field strength elements (HFSE) and some rare

404

Non-Mandatory Appendix A to 1910.900: Ergonomics Program Elements Note: The elements of an ergonomics program contained here are consistent with and  

E-Print Network [OSTI]

A - 1 Non-Mandatory Appendix A to §1910.900: Ergonomics Program Elements Note: The elements of an ergonomics program contained here are consistent with and somewhat redundant of those contained that is not in the mandatory part of the standard is not mandatory. Elements of a complete ergonomics program. A full

Choobineh, Fred

405

Questions and Answers - What is the difference between atoms and elements?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an element? Howmany elements are there? an element? How<br>many elements are there? Previous Question (What is an element? How many elements are there?) Questions and Answers Main Index Next Question (What are atoms, elements, compounds and mixtures?) What are atoms, elements,compounds and mixtures? What is the difference between atoms and elements? Get ready for an imperfect analogy. Imagine going to an ice cream store. Let's say that they have 30 different flavors of ice cream. Those are elements, the things that I have available to build my dessert from. The smallest amount of ice cream that the store will sell to me is a scoop. This is an atom. If I want, I can put two or more scoops of ice cream together. This is a molecule. If my molecule has more than one flavor of ice cream, I can call it a compound.

406

Compound and Elemental Analysis At Lassen Volcanic National Park Area  

Open Energy Info (EERE)

Janik & Mclaren, 2010) Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

407

Compound and Elemental Analysis At International Geothermal Area,  

Open Energy Info (EERE)

Philippines (Wood, 2002) Philippines (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area Philippines (Wood, 2002) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley

408

Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood,  

Open Energy Info (EERE)

2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

409

Compound and Elemental Analysis At Coso Geothermal Area (1991) | Open  

Open Energy Info (EERE)

1) 1) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Coso Geothermal Area (1991) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1991 Usefulness useful DOE-funding Unknown Exploration Basis Determine the fluid origin by looking at variations in dissolved gas compositions of reservoir fluids Notes Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Steam sampled from wells in the

410

Compound and Elemental Analysis At International Geothermal Area, New  

Open Energy Info (EERE)

New New Zealand (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area New Zealand (Wood, 2002) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley

411

Min CSP on Four Elements: Moving Beyond Submodularity  

E-Print Network [OSTI]

We report new results on the complexity of the valued constraint satisfaction problem (VCSP). Under the unique games conjecture, the approximability of finite-valued VCSP is fairly well-understood. However, there is yet no characterisation of VCSPs that can be solved exactly in polynomial time. This is unsatisfactory, since such results are interesting from a combinatorial optimisation perspective; there are deep connections with, for instance, submodular and bisubmodular minimisation. We consider the Min and Max CSP problems (i.e. where the cost functions only attain values in {0,1}) over four-element domains and identify all tractable fragments. Similar classifications were previously known for two- and three-element domains. In the process, we introduce a new class of tractable VCSPs based on a generalisation of submodularity. We also extend and modify a graph-based technique by Zivny and Kolmogorov (originally introduced by Takhanov) for efficiently obtaining hardness results in our setting. This allow us...

Jonsson, Peter; Thapper, Johan

2011-01-01T23:59:59.000Z

412

Elements of an advanced integrated operator control station  

SciTech Connect (OSTI)

One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

Clarke, M.M.; Kreifeldt, J.G.

1984-01-01T23:59:59.000Z

413

Elements of an advanced integrated operator control station  

SciTech Connect (OSTI)

One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

Clarke, M.M.; Kreifeldt, J.G.

1984-01-01T23:59:59.000Z

414

NEUTRON RADIOGRAPHY (NRAD) REACTOR 64-ELEMENT CORE UPGRADE  

SciTech Connect (OSTI)

The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately +/-1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

John D. Bess

2014-03-01T23:59:59.000Z

415

Matrix elements of the Argonne v18 potential  

E-Print Network [OSTI]

We discuss two approaches to the calculation of matrix elements of the Argonne v18 potential. The first approach is applicable in the case of a single-particle basis of harmonic-oscillator wave functions. In this case we use the Talmi transformation, implemented numerically using the Moshinsky transformation brackets, to separate the center-of-mass and relative coordinates degrees of freedom. Integrals involving the radial part of the potential are performed using Gauss-Hermite quadrature formulas, and convergence is achieved for sets of at least 512 points. We validate the calculation of matrix elements of the Argonne v18 potential using a second approach suitable for the case of an arbitrary functional form of the single-particle wave functions. When the model space is represented in terms of harmonic-oscillator wave functions, results obtained using these two approaches are shown to to be identical within numerical accuracy.

Bogdan Mihaila

2011-11-17T23:59:59.000Z

416

The Esthetic Element in the Origin of Mythology  

E-Print Network [OSTI]

, Helen M. 1907 H2he esthetic element i n the o r i g i n of raythology," The E s t h e t i c Element i n the O r i g i n of. M y t h o i e g p Helen M. C l a r k e . Contents. I. D e f i n i t i o n s . 1. O r i g i n . 2. Mythology. 3. E s t h e... t i c . IT. Subjective Tendencies. 1. Awe. 2. C u r i o s i t y . 3. Anthropomorphism. I I I . Objective Occasions. 1. H i s t o r i c a l F a c t s . 2. N a t u r a l Phenomena. 3. S P i r i t s of Ancestors. 4. L i n g u i s t i c Problems...

Clarke, Helen Maude

1907-01-01T23:59:59.000Z

417

Design and Testing of Prototypic Elements Containing Monolithic Fuel  

SciTech Connect (OSTI)

The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

2011-10-01T23:59:59.000Z

418

Iron aluminide useful as electrical resistance heating elements  

DOE Patents [OSTI]

The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

1999-01-01T23:59:59.000Z

419

Iron aluminide useful as electrical resistance heating elements  

DOE Patents [OSTI]

The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

1997-01-01T23:59:59.000Z

420

A finite element method for low-speed compressible flows.  

SciTech Connect (OSTI)

The derivation and justification for various low-speed approximations to the fully compressible, Navier-Stokes equations are presented. A numerical formulation based on the finite element method is developed and implemented as an extension to the standard Boussinesq equations. Example steady and transient flow problems are simulated to examine the performance of the numerical algorithm and the solution differences with the more commonly studied Boussinesq approximation.

Martinez, Mario J.; Gartling, David K.

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sorption of redox-sensitive elements: critical analysis  

SciTech Connect (OSTI)

The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH/sup -/, CO/sup - -//sub 3/) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states.

Strickert, R.G.

1980-12-01T23:59:59.000Z

422

Synthesis of a new element with atomic number Z=117  

SciTech Connect (OSTI)

The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving eleven new nuclei were identified by means of the Dubna Gas Filled Recoil Separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z111, validating the concept of the long sought island of enhanced stability for super-heavy nuclei.

Oganessian, Yuri Ts. [FLNR-JINR, Russia; Abdullin, F. Sh. [Joint Institute for Nuclear Research, Dubna, Russia; Bailey, P. D. [Oak Ridge National Laboratory (ORNL); Benker, D. E. [Oak Ridge National Laboratory (ORNL); Bennett, M. E. [University of Nevada, Las Vegas; Dmitriev, S. [FLNR-JINR, Russia; Ezold, Julie G. [Oak Ridge National Laboratory (ORNL); Hamilton, J. H. [Vanderbilt University; Henderson, R. [Lawrence Livermore National Laboratory (LLNL); Itkis, M. G. [FLNR-JINR, Russia; Lobanov, Yu. V. [Joint Institute for Nuclear Research, Dubna, Russia; Mezentsev, A. N. [Joint Institute for Nuclear Research, Dubna, Russia; Moody, K. [Lawrence Livermore National Laboratory (LLNL); Nelson, S. L. [Lawrence Livermore National Laboratory (LLNL); Polyakov, A. N. [Joint Institute for Nuclear Research, Dubna, Russia; Porter, C. E. [Oak Ridge National Laboratory (ORNL); Ramayya, A. V. [Vanderbilt University; Riley, F. D. [Oak Ridge National Laboratory (ORNL); Roberto, James B [ORNL; Ryabinin, M. A. [Research Institute of Atomic Reactors, Dimitrovgrad, Russia; Rykaczewski, Krzysztof Piotr [ORNL; Sagaidak, R. N. [Joint Institute for Nuclear Research, Dubna, Russia; Shaughnessy, D. [Lawrence Livermore National Laboratory (LLNL); Shirokovsky, I. V. [Joint Institute for Nuclear Research, Dubna, Russia; Stoyer, M. [Lawrence Livermore National Laboratory (LLNL); Subbotin, V. G. [Joint Institute for Nuclear Research, Dubna, Russia; Sudowe, R. [University of Nevada, Las Vegas; Sukhov, A. M. [Joint Institute for Nuclear Research, Dubna, Russia; Tsyganov, Yu. S. [Joint Institute for Nuclear Research, Dubna, Russia; Utyonkov, V. [FLNR-JINR, Russia; Voinov, A. A. [Joint Institute for Nuclear Research, Dubna, Russia; Vostokin, G. K. [Joint Institute for Nuclear Research, Dubna, Russia; Wilk, P. A. [Lawrence Livermore National Laboratory (LLNL)

2010-01-01T23:59:59.000Z

423

Piezoelectric theory for finite element analysis of ultrasonic motors  

SciTech Connect (OSTI)

The authors present the fundamental equations of piezoelectricity and references. They show how a second form of the equations and a second set of coefficients can be found, through inversions involving the elasticity tensor. They show how to compute the clamped permittivity matrix from the unclamped matrix. The authors list the program pzansys.ftn and present examples of its use. This program does the conversions and calculations needed by the finite element program ANSYS.

Emery, J.D.; Mentesana, C.P.

1997-06-01T23:59:59.000Z

424

Deformed Kazhdan-Lusztig elements and Macdonald polynomials  

E-Print Network [OSTI]

We introduce deformations of Kazhdan-Lusztig elements and specialised nonsymmetric Macdonald polynomials, both of which form a distinguished basis of the polynomial representation of a maximal parabolic subalgebra of the Hecke algebra. We give explicit integral formula for these polynomials, and explicitly describe the transition matrices between classes of polynomials. We further develop a combinatorial interpretation of homogeneous evaluations using an expansion in terms of Schubert polynomials in the deformation parameters.

Jan de Gier; Alain Lascoux; Mark Sorrell

2011-06-06T23:59:59.000Z

425

Design and Implementation of the CEBAF Element Database  

SciTech Connect (OSTI)

With inauguration of the CEBAF Element Database (CED) in Fall 2010, Jefferson Lab computer scientists have taken a first step toward the eventual goal of a model-driven accelerator. Once fully populated, the database will be the primary repository of information used for everything from generating lattice decks to booting front-end computers to building controls screens. A particular requirement influencing the CED design is that it must provide consistent access to not only present, but also future, and eventually past, configurations of the CEBAF accelerator. To accomplish this, an introspective database schema was designed that allows new elements, element types, and element properties to be defined on-the-fly without changing table structure. When used in conjunction with the Oracle Workspace Manager, it allows users to seamlessly query data from any time in the database history with the exact same tools as they use for querying the present configuration. Users can also check-out workspaces and use them as staging areas for upcoming machine configurations. All Access to the CED is through a well-documented API that is translated automatically from original C++ into native libraries for script languages such as perl, php, and TCL making access to the CED easy and ubiquitous. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

Theodore Larrieu, Christopher Slominski, Michele Joyce

2011-10-01T23:59:59.000Z

426

Guaranteed Verification of Finite Element Solutions of Heat Conduction  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . 1 1.2 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outline of the dissertation . . . . . . . . . . . . . . . . . . 4 II A POSTERIORI ERROR ESTIMATION OF A THERMAL BATTERY PROBLEM WITH HIGH ORTHOTROPY . . . . . 5 2....1 Thermal battery problem and its finite element solution . . 5 2.2 Upper and lower bounds based on residual estimators . . . 12 III ILLUSTRATION OF THE MAIN DIFFICULTY . . . . . . . . 31 3.1 Model problem with boundary layer . . . . . . . . . . . . . 31...

Wang, Delin

2012-07-16T23:59:59.000Z

427

Neutrinoless $??$ decay nuclear matrix elements in an isotopic chain  

E-Print Network [OSTI]

We analyze nuclear matrix elements (NME) of neutrinoless double beta decay calculated for the Cadmium isotopes. Energy density functional methods including beyond mean field effects such as symmetry restoration and shape mixing are used. Strong shell effects are found associated to the underlying nuclear structure of the initial and final nuclei. Furthermore, we show that NME for two-neutrino double beta decay evaluated in the closure approximation, $M^{2\

Tomás R. Rodríguez; Gabriel Martínez-Pinedo

2012-10-11T23:59:59.000Z

428

Ladder operators for the rotating Morse oscillators: Matrix element calculations  

Science Journals Connector (OSTI)

We describe a simple method based on the hypervirial theorem along with a second-quantization formalism, which allows us to obtain recursion relations without using explicit wave functions for the calculation of matrix elements such as {exp[-a(r-re)]}n, (r-re)n, (r-re)nexp[-a(r-re)], and {exp[-a(r-re)]}n(d/dr) for the rotating Morse oscillator.

A. López Pińeiro and B. Moreno

1988-12-01T23:59:59.000Z

429

Neutrinoless double beta decay and nuclear matrix elements  

Science Journals Connector (OSTI)

The fundamental importance of searching for neutrinoless double?beta decay (0????decay) is widely recognized. Observation of the decay would tell us that the total lepton number is not conserved and that consequently neutrinos are massive Majorana fermions. The 0????decay is discussed in context of neutrino oscillation data. The perspectives of the experimental 0????decay searches are analyzed. The importance of reliable determination of the 0????decay nuclear matrix elements is pointed out.

2011-01-01T23:59:59.000Z

430

Rotordynamic analysis with shell elements for the transfer matrix method  

E-Print Network [OSTI]

Committee) Al B. elazzo1o (Member) John T. Tielki g (Member) Michael J. Rabins (Head of Department) August 1989 111 ABSTRACT Rotordynamic Analysis with Shell Elements for the Transi'er Matrix Method. (August 1989) Edward Anthony L'Antigua, B. M... theory. There have been recent publications proposing various methods for solving this problem of inaccuracy due to the beam modeling used in the transfer matrix approach. Rouch and Kao (1979), Nelson (1980), To (1981), Greenhill et al. , (1985...

L'Antigua, Edward Anthony

2012-06-07T23:59:59.000Z

431

Self-Assembly of Polymer Nano-Elements on Sapphire  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Self-Assembly of Polymer Self-Assembly of Polymer Nano-Elements on Sapphire Self-Assembly of Polymer Nano-Elements on Sapphire Print Wednesday, 25 March 2009 00:00 Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or nano-imprint lithography, but these methods are painstaking, and they have not yet been able to produce perfect surfaces over large areas. Recently, a group of researchers used faceted surfaces of commercially available sapphire wafers to guide the self-assembly of block copolymer microdomains. Grazing-incidence small-angle x-ray scattering (GISAXS) at ALS Beamline 7.3.3 verified the arrays' quasi long-range crystalline order over arbitrarily large wafer surfaces. It's expected that this new method of producing highly ordered macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others, such as photovoltaics.

432

Self-Assembly of Polymer Nano-Elements on Sapphire  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or nano-imprint lithography, but these methods are painstaking, and they have not yet been able to produce perfect surfaces over large areas. Recently, a group of researchers used faceted surfaces of commercially available sapphire wafers to guide the self-assembly of block copolymer microdomains. Grazing-incidence small-angle x-ray scattering (GISAXS) at ALS Beamline 7.3.3 verified the arrays' quasi long-range crystalline order over arbitrarily large wafer surfaces. It's expected that this new method of producing highly ordered macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others, such as photovoltaics.

433

Self-Assembly of Polymer Nano-Elements on Sapphire  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or nano-imprint lithography, but these methods are painstaking, and they have not yet been able to produce perfect surfaces over large areas. Recently, a group of researchers used faceted surfaces of commercially available sapphire wafers to guide the self-assembly of block copolymer microdomains. Grazing-incidence small-angle x-ray scattering (GISAXS) at ALS Beamline 7.3.3 verified the arrays' quasi long-range crystalline order over arbitrarily large wafer surfaces. It's expected that this new method of producing highly ordered macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others, such as photovoltaics.

434

Key Elements of and Materials Performance Targets for Highly Insulating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Elements of and Materials Performance Targets for Highly Insulating Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Title Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Publication Type Journal Article LBNL Report Number LBNL-5099E Year of Publication 2011 Authors Gustavsen, Arlid, Steinar Grynning, Dariush K. Arasteh, Bjørn Petter Jelle, and Howdy Goudey Journal Energy and Buildings Volume 43 Issue 10 Pagination 2583-2594 Date Published 10/2011 Keywords Fenestration, heat transfer modeling, thermal performance, thermal transmittance, u-factor, window frames Abstract The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.

435

Self-Assembly of Polymer Nano-Elements on Sapphire  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or nano-imprint lithography, but these methods are painstaking, and they have not yet been able to produce perfect surfaces over large areas. Recently, a group of researchers used faceted surfaces of commercially available sapphire wafers to guide the self-assembly of block copolymer microdomains. Grazing-incidence small-angle x-ray scattering (GISAXS) at ALS Beamline 7.3.3 verified the arrays' quasi long-range crystalline order over arbitrarily large wafer surfaces. It's expected that this new method of producing highly ordered macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others, such as photovoltaics.

436

Self-Assembly of Polymer Nano-Elements on Sapphire  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured materials, since self-assembly is highly parallel, quite versatile, and easy to implement. Especially promising are novel compounds known as block copolymers, formed by two chemically different polymers that are linked together. Guided patterned arrays have been produced using electron-beam lithographic techniques or nano-imprint lithography, but these methods are painstaking, and they have not yet been able to produce perfect surfaces over large areas. Recently, a group of researchers used faceted surfaces of commercially available sapphire wafers to guide the self-assembly of block copolymer microdomains. Grazing-incidence small-angle x-ray scattering (GISAXS) at ALS Beamline 7.3.3 verified the arrays' quasi long-range crystalline order over arbitrarily large wafer surfaces. It's expected that this new method of producing highly ordered macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others, such as photovoltaics.

437

THE RAVE CATALOG OF STELLAR ELEMENTAL ABUNDANCES: FIRST DATA RELEASE  

SciTech Connect (OSTI)

We present chemical elemental abundances for 36,561 stars observed by the RAdial Velocity Experiment (RAVE), an ambitious spectroscopic survey of our Galaxy at Galactic latitudes |b| > 25 Degree-Sign and with magnitudes in the range 9 elements Mg, Al, Si, Ca, Ti, Fe, and Ni, with a mean error of {approx}0.2 dex, as judged from accuracy tests performed on synthetic and real spectra. Abundances are estimated through a dedicated processing pipeline in which the curve of growth of individual lines is obtained from a library of absorption line equivalent widths to construct a model spectrum that is then matched to the observed spectrum via a {chi}{sup 2} minimization technique. We plan to extend this pipeline to include estimates for other elements, such as oxygen and sulfur, in future data releases.

Boeche, C.; Williams, M.; De Jong, R. S.; Steinmetz, M. [Leibniz-Institut fuer Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Siebert, A.; Bienayme, O. [Observatoire Astronomique de Strasbourg, Universite de Strasbourg, CNRS, UMR 7550, F-67000 Strasbourg (France); Fulbright, J. P.; Ruchti, G. R. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Campbell, R. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY (United States); Freeman, K. C. [Research School of Astronomy and Astrophysics, Australia National University, Weston Creek, Canberra ACT 2611 (Australia); Gibson, B. K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilmore, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, D-69120 Heidelberg (Germany); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, 9700 AV Groningen (Netherlands); Munari, U. [INAF Osservatorio Astronomico di Padova, Asiago I-36012 (Italy); Navarro, J. F. [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Parker, Q. A.; Reid, W. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Seabroke, G. M. [Mullard Space Science Laboratory, University College London, Holmbury, St. Mary RH5 6NT (United Kingdom); and others

2011-12-15T23:59:59.000Z

438

3-D Finite Element Analyses of the Egan Cavern Field  

SciTech Connect (OSTI)

Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.

Klamerus, E.W.; Ehgartner, B.L.

1999-02-01T23:59:59.000Z

439

Energy-time entanglement, Elements of Reality, and Local Realism  

E-Print Network [OSTI]

The Franson interferometer, proposed in 1989 [J. D. Franson, Phys. Rev. Lett. 62:2205-2208 (1989)], beautifully shows the counter-intuitive nature of light. The quantum description predicts sinusoidal interference for specific outcomes of the experiment, and these predictions can be verified in experiment. In the spirit of Einstein, Podolsky, and Rosen it is possible to ask if the quantum-mechanical description (of this setup) can be considered complete. This question will be answered in detail in this paper, by delineating the quite complicated relation between energy-time entanglement experiments and Einstein-Podolsky-Rosen (EPR) elements of reality. The mentioned sinusoidal interference pattern is the same as that giving a violation in the usual Bell experiment. Even so, depending on the precise requirements made on the local realist model, this can imply a) no violation, b) smaller violation than usual, or c) full violation of the appropriate statistical bound. Alternatives include a) using only the measurement outcomes as EPR elements of reality, b) using the emission time as EPR element of reality, c) using path realism, or d) using a modified setup. This paper discusses the nature of these alternatives and how to choose between them. The subtleties of this discussion needs to be taken into account when designing and setting up experiments intended to test local realism. Furthermore, these considerations are also important for quantum communication, for example in Bell-inequality-based quantum cryptography, especially when aiming for device independence.

Jonathan Jogenfors; Jan-Ĺke Larsson

2014-04-30T23:59:59.000Z

440

California Natural Gas Number of Residential Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Number of Natural Gas Residential

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements  

DOE Patents [OSTI]

A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

Mechery, Shelly John (Mississippi State, MS); Singh, Jagdish P. (Starkville, MS)

2007-07-03T23:59:59.000Z

442

Neutron-capture elements in the very metal-poor star HD88609: another st ar with excesses of light neutron-capture elements  

E-Print Network [OSTI]

We obtained a high resolution, high signal-to-noise UV-blue spectrum of the extremely metal-poor red giant HD88609 to determine the abundances of heavy elements. Nineteen neutron-capture elements are detected in the spectrum. Our analysis revealed that this object has large excesses of light neutron-capture elements while heavy neutron-capture elements are deficient. The abundance pattern shows a continuously decreasing trend, as a function of atomic number, from Sr to Yb, which is quite different from those in stars with excesses of r-process elements. Such an abundance pattern is very similar to that of HD122563 that was studied by our previous work. The results indicate that the abundance pattern found in the two stars could represent the pattern produced by the nucleosynthesis process that provided light neutron-capture elements in the very early Galaxy.

Satoshi Honda; Wako Aoki; Yuhri Ishimaru; Shinya Wanajo

2007-05-27T23:59:59.000Z

443

Principal elements of Ozark uplift during the Pennsylvanian  

SciTech Connect (OSTI)

The Pennsylvanian history of the Ozark uplift is complex, reflecting major late Mississippian or earliest Pennsylvanian reactivation along prominent NW-trending tectonic zones (TZ), followed by regional baseleveling, repeated phases of regional uplift, and a number of lesser episodes of reactivation along principal tectonic zones and intra-zonal faults. Pre-Pennsylvanian baseleveling resulted in a complex paleogeologic substrate. During the Pennsylvanian, movement along principal tectonic zones defined large elements of Ozark uplift provisionally identified as Trans-Ozark arc; Northeast Missouri graben; Lincoln fold system; St. Francis Mtn. core; and Tri-State platform, incorporating both Spavinaw arch and Arkansas-Missouri shelf/platform. The suggested definitions and nomenclature follow an important concept developed by Searight and Searight (1961) in a little-publicized paper. Lincoln fold system may reflect a tectonic zone with its extension to the southeast offset along Cap-Au-Gres fault. Mississippi River arch served to link the obliquely-faulted northeastern area of the uplift with southwestern elements of Wisconsin uplift. Spavinaw arch, including Seneca fault zone along its axis, is associated with and may in fact dominate the Tri-State platform. Both became clearly defined during early( ) Atokan time and served to define an eastern boundary of early Desmoinesian Cherokee basin. Miami Trough, reflecting a significant NE-trending TZ, bounds Tri-State platform to the west-northwest. Trans-Ozark arch, a horst-dominated feature including the area between Bolivar-Mansfield TZ and Grand River TZ, incorporates Central Missouri TZ as the most important of several associated features. Regional expression of elements of Ozark uplift changed during Pennsylvanian time in the course of successive TR events coupled with the influence of continuing tectonic activity.

Howe, W.B. (Univ. of Missouri, Rolla, MO (United States))

1993-03-01T23:59:59.000Z

444

MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS FROM: IN GRID^,,  

Broader source: Energy.gov (indexed) [DOE]

2,2011 2,2011 MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS FROM: IN GRID^,, DIRECT SUBJECT: Working Effectively with Contractors The Department of Energy (DOE) depends on contractors to provide vital support in achieving our mission. Their contributions are critical t o accomplishing our goals in such important areas as energy research and development, weapons production, stockpile management, and environmental remediation and restoration. Although contractors are integral to our mission accomplishment, we must respect the roles we each have in contract performance. DOE defines deliverables and the contractors determine how to best perform the work. With rare exception, DOE officials should not direct contractors' selection or termination of employees. Giving

445

Calculation of hadronic matrix elements using lattice QCD  

SciTech Connect (OSTI)

The author gives a brief introduction to the scope of lattice QCD calculations in his effort to extract the fundamental parameters of the standard model. This goal is illustrated by two examples. First the author discusses the extraction of CKM matrix elements from measurements of form factors for semileptonic decays of heavy-light pseudoscalar mesons such as D {yields} Ke{nu}. Second, he presents the status of results for the kaon B parameter relevant to CP violation. He concludes the talk with a short outline of his experiences with optimizing QCD codes on the CM5.

Gupta, R.

1993-08-01T23:59:59.000Z

446

Analysis of anelastic flow and numerical treatment via finite elements  

SciTech Connect (OSTI)

In this report, we reconsider the various approximations made to the full equations of motion and energy transport for treating low-speed flows with significant temperature induced property variations. This entails assessment of the development of so-called anelastic for low-Mach number flows outside the range of validity of the Boussinesq equations. An integral part of this assessment is the development of a finite element-based numerical scheme for obtaining approximate numerical solutions to this class of problems. Several formulations were attempted and are compared.

Martinez, M.J.

1994-05-01T23:59:59.000Z

447

Exact evaluation of density matrix elements for the Heisenberg chain  

E-Print Network [OSTI]

We have obtained all the density matrix elements on six lattice sites for the spin-1/2 Heisenberg chain via the algebraic method based on the quantum Knizhnik-Zamolodchikov equations. Several interesting correlation functions, such as chiral correlation functions, dimer-dimer correlation functions, etc... have been analytically evaluated. Furthermore we have calculated all the eigenvalues of the density matrix and analyze the eigenvalue-distribution. As a result the exact von Neumann entropy for the reduced density matrix on six lattice sites has been obtained.

Jun Sato; Masahiro Shiroishi; Minoru Takahashi

2006-11-06T23:59:59.000Z

448

An improved shell of revolution element utilizing cubic displacement functions  

E-Print Network [OSTI]

-curved sheli of revolu Lion element developed by Stricklin, et al. ' uses polynomial displac ment functions similar 11 to Eq. (I. l) in the m. ridional direction and a Fourier series in the cir "umferential direction. For axisyrmetric loadinc, this fi. Id..., and e are defined in Fig. 2-1. The rotations of the normal to the shell about the o- and s -axes are defined by e&3 and e23, respectively. Using th, strains described in Eq, (2 . 4), the strai n energy expression for orthotropi c shells may...

Mebane, Paul Mitchell

2012-06-07T23:59:59.000Z

449

Disentangling Effects of Nuclear Structure in Heavy Element Formation  

SciTech Connect (OSTI)

Forming the same heavy compound nucleus with different isotopes of the projectile and target elements allows nuclear structure effects in the entrance channel (resulting in static deformation) and in the dinuclear system to be disentangled. Using three isotopes of Ti and W, forming {sup 232}Cm, with measurement spanning the capture barrier energies, alignment of the heavy prolate deformed nucleus is shown to be the main reason for the broadening of the mass distribution of the quasifission fragments as the beam energy is reduced. The complex, consistently evolving mass-angle correlations that are observed carry more information than the integrated mass or angular distributions, and should severely test models of quasifission.

Hinde, D. J.; Thomas, R. G.; Rietz, R. du; Diaz-Torres, A.; Dasgupta, M.; Brown, M. L.; Evers, M.; Gasques, L. R.; Rafiei, R.; Rodriguez, M. D. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

2008-05-23T23:59:59.000Z

450

Energy dissipation characteristics of rubber crash cushion elements  

E-Print Network [OSTI]

. Cylinder Cushion, Before and During Test 79 28 Energy Dissipation of 4. 5-in. and 1. 75-in. Five Element Cushions 80 29 Full-Scale Rubber Crash Cushion Prototype 30 Steel Drum Crash Cushions After Head-On 83 Collisions 87 31 Numerical Analysis... 300 Natural rubber circular cylinder 0. 60 inch wall thickness Displacement at closure: 3. 6 inch 200 100 0 0. 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0 3. 5 4. 0 Displacement (in. ) FIGDEE 4. Typical Static Force vs. Displacement Curve 16 and square...

Thompson, Michael Fowlkes

2012-06-07T23:59:59.000Z

451

Indeterminate masses, elements and models in information fusion  

Science Journals Connector (OSTI)

In this paper at the beginning, we make a short history of the logics, from the classical Boolean logic to the most general logic of today neutrosophic logic. We define the general logic space and give the definition of the neutrosophic logic. Then we introduce the indeterminate models in information fusion, which are due either to the existence of some indeterminate elements in the fusion space or to some indeterminate masses. The best approach for dealing with such models is the neutrosophic logic, which is part of neutrosophy. Neutrosophic logic is connected with neutrosophic set and neutrosophic probability and statistics.

Florentin Smarandache

2013-01-01T23:59:59.000Z

452

B-spline finite elements for plane elasticity problems  

E-Print Network [OSTI]

. The k-refinement is reported to be much more efficient and robust than the standard h or p- refinement used in the conventional FEM models. Besides the use of B-spline functions for structural problems, they have been used in some other fields as well... and convergence behavior. The paper reports a reduction in the numerical cost using B-spline FEM. The use of the B-spline finite element method for the thermistor problem [29,30] and for a numerical solution of Burger?s equation[31- 33] has been successfully...

Aggarwal, Bhavya

2007-04-25T23:59:59.000Z

453

Calculation of nuclear matrix elements in neutrinoless double electron capture  

E-Print Network [OSTI]

We compute nuclear matrix elements for neutrinoless double electron capture on $^{152}$Gd, $^{164}$Er and $^{180}$W nuclei. Recent precise mass measurements for these nuclei have shown a large resonance enhancement factor that makes them the most promising candidates for observing this decay mode. We use an advanced energy density functional method which includes beyond mean-field effects such as symmetry restoration and shape mixing. Our calculations reproduce experimental charge radii and $B(E2)$ values predicting a large deformation for all these nuclei. This fact reduces significantly the values of the NMEs leading to half-lives larger than $10^{29}$ years for the three candidates.

Tomas R. Rodriguez; Gabriel Martinez-Pinedo

2012-03-05T23:59:59.000Z

454

K Series X-Ray Wavelengths in Rare Earth Elements  

Science Journals Connector (OSTI)

The K-series x-rays in ten rare earth elements have been studied with a two-meter-radius bent-quartz-crystal spectrograph. The 3.7-Mev proton beam of the A-48 accelerator (UCRL, Livermore) was used to produce the atomic excitations. The wavelengths obtained for the K?1, K?2, K?3, and K?1 lines are compared with previous wavelength measurements. Two weaker transitions, K?5 and KOIIOIII, were also observed and the energies are compared with energies obtained from tables of known atomic energy levels.

E. L. Chupp, J. W. M. Du Mond, F. J. Gordon, R. C. Jopson, and Hans Mark

1958-11-15T23:59:59.000Z

455

TEAPOT: A thin element accelerator program for optics and tracking  

SciTech Connect (OSTI)

The program TEAPOT is described. It is intended for fast particle tracking in an accelerator with magnet errors and misalignments. A realistic lattice (Standard Input Format) is first mechanically translated into an acceptably similar lattice containing only thin elements. Tracking in that lattice is fast and exact. This procedure of exact tracking in an approximate lattice can be contrasted with approximate tracking in an exact'' lattice as is performed in existing programs. A full Twiss analysis is performed and there are provisions for the compensation of error-induced coupling, tune-shifts and chromaticity shifts.

Schachinger, L.; Talman, R.

1985-12-01T23:59:59.000Z

456

Miniaturized Multi-Band Antenna via Element Collocation  

SciTech Connect (OSTI)

The resonant frequency of a microstrip patch antenna may be reduced through the addition of slots in the radiating element. Expanding upon this concept in favor of a significant reduction in the tuned width of the radiator, nearly 60% of the antenna metallization is removed, as seen in the top view of the antenna’s radiating element (shown in red, below, left). To facilitate an increase in the gain of the antenna, the radiator is suspended over the ground plane (green) by an air substrate at a height of 0.250? while being mechanically supported by 0.030? thick Rogers RO4003 laminate in the same profile as the element. Although the entire surface of the antenna (red) provides 2.45 GHz operation with insignificant negative effects on performance after material removal, the smaller square microstrip in the middle must be isolated from the additional aperture in order to afford higher frequency operation. A low insertion loss path centered at 2.45 GHz may simultaneously provide considerable attenuation at additional frequencies through the implementation of a series-parallel, resonant reactive path. However, an inductive reactance alone will not permit lower frequency energy to propagate across the intended discontinuity. To mitigate this, a capacitance is introduced in series with the inductor, generating a resonance at 2.45 GHz with minimum forward transmission loss. Four of these reactive pairs are placed between the coplanar elements as shown. Therefore, the aperture of the lower-frequency outer segment includes the smaller radiator while the higher frequency section is isolated from the additional material. In order to avoid cross-polarization losses due to the orientation of a transmitter or receiver in reference to the antenna, circular polarization is realized by a quadrature coupler for each collocated antenna as seen in the bottom view of the antenna (right). To generate electromagnetic radiation concentrically rotating about the direction of propagation, ideally one-half of the power must be delivered to the output of each branch with a phase shift of 90 degrees and identical amplitude. Due to this, each arm of the coupler is spaced ?/4 wavelength apart.

Martin, R. P.

2012-06-01T23:59:59.000Z

457

MA FI QPR Scoring Elements 1st Qtr FY 2010_091020.xls  

Broader source: Energy.gov (indexed) [DOE]

st st Blank Reference Due Date Element Measure Critical? Score > ≤ 11/15 11/15 11/22 11/22 90% 100% 80% 90% 0% 80% 11/13 11/13 10/14 12/30 1/1/10 2/13/10 11/13 11/13 11/13 11/13 11/13 11/13 Program specific elements, negotiated with Programs: Program specific measures, negotiated with Programs: Overall Score: Green * All critical elements green, and * No more then one non-critical element yellow Yellow * Any critical element yellow, or * Any non-critical red, or * Two or more non-critical elements yellow Red * Any critical element red or * Two or more non-critical elements red TYRT 3.4 DOE O 430.1B Yes Submission timeliness Capture sustainability data in FIMS. November 13, 2009 Provide OECM FIMS Data Validation schedule for each of your sites

458

System design description for the SY-101 vent header flow element enclosure upgrades  

SciTech Connect (OSTI)

This document describes the design of the High and Low Range Vent Header Flow Element(s) Field Enclosure for the 241-SY-101 High Level Nuclear Waste Underground Storage Tank.

Vargo, G.F.

1995-11-01T23:59:59.000Z

459

Implementation of finite element analysis into the athletic shoe design process  

E-Print Network [OSTI]

Finite element analysis is used by companies throughout the world as a substitution for manually testing prototypes. With the assistance of finite element analysis many companies and industries have decreased the time and ...

Hidalgo, Maria E. (Maria Estela), 1982-

2004-01-01T23:59:59.000Z

460

Design of duplex low-carbon steels with carbide forming elements  

E-Print Network [OSTI]

Molybdenum X3 a strong carbide forming element Mo„C). (in the form of alloy carbides. Molybdenum improves grain1) Niobium is a strong carbide forming element (NbC). The

Costello, Peter K.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES  

E-Print Network [OSTI]

Minor Elements ~n Oil Shale and Oil-Shale Products. LERC RI-Analytical Chemistry of Oil Shale and Tar Sands. Advan. inH. Meglen. The Analysis of Oil-Shale Materials for Element

Fox, J.P.

2011-01-01T23:59:59.000Z

462

The Effect of Morphological Elements on the Icon Recognition in Smart Phones  

Science Journals Connector (OSTI)

This study aims to explore the effect of morphological elements on the icon recognition in smart phone. 42 icons were first selected and classified in a ... based on its visual design elements. Then, icons were e...

Chiwu Huang; Chieh-Ming Tsai

2007-01-01T23:59:59.000Z

463

Regulation of the mobile genetic element ICEBs1 by a conserved repressor and anti-repressor  

E-Print Network [OSTI]

The mobile genetic element ICEBs1 is an integrative and conjugative element (a conjugative transposon) found in the Bacillus subtilis chromosome. The SOS response and the RapI-Phrl sensory system activate ICEBsl gene ...

Bose, Baundauna

2010-01-01T23:59:59.000Z

464

E-Print Network 3.0 - alloying elements al Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

attack due to impurities andor alloying elements 4... of rapidly solidified Mg-Zn rare earth element alloys in NaCl solution Corros. Sci. 49 255-62 8 ASM... Microstructure,...

465

DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements...  

Broader source: Energy.gov (indexed) [DOE]

Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal and Coal Byproducts DOE Seeks Your Novel Ideas for Recovery of Rare Earth Elements from Coal and Coal...

466

E-Print Network 3.0 - alkaline-earth elements studied Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: alkaline-earth elements studied Page: << < 1 2 3 4 5 > >> 1 Heavy Alkaline-earth Elements: Barium and Radium...

467

An evaluation of finite element models of stiffened plates subjected to impulsive loading  

E-Print Network [OSTI]

Different finite element models are evaluated for two very common structures, a cantilever beam and a stiffened plate, subjected to impulsive loading. For the cantilever beam case, the finite element models are one, two ...

Pedatzur, Omri

2004-01-01T23:59:59.000Z

468

An h-Adaptive Finite-Element Technique for Constructing 3D Wind Fields  

Science Journals Connector (OSTI)

An h-adaptive, mass-consistent finite-element model (FEM) has been developed for constructing 3D wind fields over irregular terrain utilizing sparse meteorological tower data. The element size in the computational domain is dynamically controlled ...

Darrell W. Pepper; Xiuling Wang

2009-03-01T23:59:59.000Z

469

SIMULATION OF RADIO-FREQUENCY ABLATION USING COMPOSITE FINITE ELEMENT METHODS  

E-Print Network [OSTI]

with Composite-Finite- Element (CFE) methods2 . CFE methods are characterized by the capa- bility of resolving

Preusser, Tobias

470

NORTHWESTERN UNIVERSITY Finite Element Analysis of TDR Cable-Grout-Soil Mass  

E-Print Network [OSTI]

NORTHWESTERN UNIVERSITY Finite Element Analysis of TDR Cable-Grout-Soil Mass Interaction During Cable Shear Test.................................................................................................................... 9 Cable Types

471

SOLAR SYSTEM ABUNDANCES AND CONDENSATION TEMPERATURES OF THE ELEMENTS Katharina Lodders  

E-Print Network [OSTI]

determinations for all elements are summarized and the best currently available photospheric abundances are selected. The meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron elemental and isotopic abundances are derived from photospheric abundances by considering settling effects

Fegley Jr., Bruce

472

Gauge invariance and the finite-element solution of the Schwinger model  

Science Journals Connector (OSTI)

We apply the method of finite elements to two-dimensional quantum electrodynamics. We construct gauge-invariant operator difference equations and compute the chiral anomaly in the Schwinger model. The relative error between the exact answer and the finite-element prediction vanishes like M-2, where M is the number of finite elements.

Carl M. Bender; Kimball A. Milton; David H. Sharp

1985-01-15T23:59:59.000Z

473

Preprint of the paper "A Boundary Element Formulation for the Substation Grounding Design"  

E-Print Network [OSTI]

Preprint of the paper "A Boundary Element Formulation for the Substation Grounding Design" I://caminos.udc.es/gmni #12;A BOUNDARY ELEMENT FORMULATION FOR THE SUBSTATION GROUNDING DESIGN I. Colominas, F. Navarrina A Boundary Element approach for the numerical computation of substation grounding systems is pre- sented

Colominas, Ignasi

474

INVERTIBLE AND NILPOTENT ELEMENTS IN THE GROUP ALGEBRA OF A UNIQUE PRODUCT GROUP  

E-Print Network [OSTI]

INVERTIBLE AND NILPOTENT ELEMENTS IN THE GROUP ALGEBRA OF A UNIQUE PRODUCT GROUP ERHARD NEHER Abstract. We describe the nilpotent and invertible elements in group alge- bras k[G] for k a commutative. A fundamental problem in the theory of group algebras is to determine their units = invertible elements

Neher, Erhard

475

Improved Neutron-Capture Element Abundances in Planetary N. C. SterlingA,I  

E-Print Network [OSTI]

Improved Neutron-Capture Element Abundances in Planetary Nebulae N. C. SterlingA,I , H. L of neutron(n)-capture elements that cannot be detected in asymptotic giant branch (AGB) stars. However Approximately half of the neutron(n)-capture elements (atomic number Z > 30) in the Universe are created by slow

Royer, Dana

476

Rare earth elements activate endocytosis in plant cells Lihong Wanga,b,1  

E-Print Network [OSTI]

Rare earth elements activate endocytosis in plant cells Lihong Wanga,b,1 , Jigang Lic,d,1 , Qing (sent for review May 15, 2014) It has long been observed that rare earth elements (REEs) regulate, such as rare earth elements (REEs), have been observed for a long time to be beneficial to plant growth (1, 2

Deng, Xing-Wang

477

Rare earth elements in the sediments of Lake Baikal Lawrence M. Och a  

E-Print Network [OSTI]

Rare earth elements in the sediments of Lake Baikal Lawrence M. Och a , Beat MĂĽller a, , Adrian Available online 3 April 2014 Editor: Carla M. Koretsky Keywords: Rare earth elements Cerium anomaly Lake to complex and cryptic redox cycles. The mobility of rare earth elements (REEs) is influenced

Wehrli, Bernhard

478

Quantification of the elemental incompatibility sequence, and composition of the "superchondritic" mantle  

E-Print Network [OSTI]

, where REE means rare earth elements) are in chondritic proportions. In deriving BSE compositions Earth is the "chondritic" model, in which the refractory elements in the bulk Earth, and the refractory lithophile elements in the bulk silicate Earth, are assumed to be in chondritic proportions. Recent discovery

Zhang, Youxue

479

The impact of vegetation on fractionation of rare earth elements (REE) during waterrock interaction  

E-Print Network [OSTI]

The impact of vegetation on fractionation of rare earth elements (REE) during water The fractionation of the rare earth elements (REE) in river water, as well as the immobilization of REE in the river earth elements (REE) principally originate from apatite dissolution during weathering. However, stream

Mailhes, Corinne

480

Speciation of adsorbed yttrium and rare earth elements on oxide surfaces  

E-Print Network [OSTI]

Speciation of adsorbed yttrium and rare earth elements on oxide surfaces Wojciech Piasecki, Dimitri 10 June 2008 Abstract The distribution of yttrium and the rare earth elements (YREE) between natural investigate the applicability of the X-ray results to rare earth elements and to several oxides in addition

Sverjensky, Dimitri A.

Note: This page contains sample records for the topic "yellowish nonmetallic element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin (Southern France)  

E-Print Network [OSTI]

Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin Geological Survey Service, Bordeaux, France, e.malcuit@brgm.fr The study of rare earth elements (REEs such as rivers and lakes and groundwaters. Rare earth elements) are of great interest because of their unique

Paris-Sud XI, Université de

482

Trace element partitioning between apatite and silicate melts Stefan Prowatke a,1  

E-Print Network [OSTI]

). The experiments were conducted at pressures of 1.0 GPa and temperatures of 1250 °C. The rare earth elements (La polymerisation of the melt, apatite/melt partition coefficients for the rare earth elements increase for about occurring apatites contain large amounts of the rare earth elements and Sr, it has been well known

483

Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids  

E-Print Network [OSTI]

ARTICLE Hydrothermal transport and deposition of the rare earth elements by fluorine environmental concerns, have created a great demand for the rare earth elements (REE), and focused considerable Hydrothermal concentration of the rare earth elements (REE) to economic and potentially economic levels has

484

Neutrino-driven wind simulations and nucleosynthesis of heavy elements  

E-Print Network [OSTI]

Neutrino-driven winds, which follow core-collapse supernova explosions, present a fascinating nuclear astrophysics problem that requires understanding advanced astrophysics simulations, the properties of matter and neutrino interactions under extreme conditions, the structure and reactions of exotic nuclei, and comparisons against forefront astronomical observations. The neutrino-driven wind has attracted vast attention over the last 20 years as it was suggested to be a candidate for the astrophysics site where half of the heavy elements are produced via the r-process. In this review, we summarize our present understanding of neutrino-driven winds from the dynamical and nucleosynthesis perspectives. Rapid progress has been made during recent years in understanding the wind with improved simulations and better micro physics. The current status of the fields is that hydrodynamical simulations do not reach the extreme conditions necessary for the r-process and the proton or neutron richness of the wind remains to be investigated in more detail. However, nucleosynthesis studies and observations point already to neutrino-driven winds to explain the origin of lighter heavy elements, such as Sr, Y, Zr.

A. Arcones; F. -K. Thielemann

2012-07-11T23:59:59.000Z

485

A Finite Element Model for Simulation of Carbon Dioxide Sequestration  

SciTech Connect (OSTI)

We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

Bao, Jie; Xu, Zhijie; Fang, Yilin

2013-11-02T23:59:59.000Z

486

AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES  

SciTech Connect (OSTI)

Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

2007-12-19T23:59:59.000Z

487

Light element opacities of astrophysical interest from ATOMIC  

SciTech Connect (OSTI)

We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a new equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.

Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.; Armstrong, G. S. J.; Abdallah, J. Jr.; Sherrill, M. E. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fontes, C. J.; Zhang, H. L.; Hakel, P. [Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2013-07-11T23:59:59.000Z

488

Accelerated finite element elastodynamic simulations using the GPU  

SciTech Connect (OSTI)

An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source.

Huthwaite, Peter, E-mail: p.huthwaite@imperial.ac.uk

2014-01-15T23:59:59.000Z

489

Selection of Isotopes and Elements for Fuel Cycle Analysis  

SciTech Connect (OSTI)

Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

Steven J. Piet

2009-04-01T23:59:59.000Z

490

Heavy elements in Globular Clusters: the role of AGB stars  

E-Print Network [OSTI]

Recent observations of heavy elements in Globular Clusters reveal intriguing deviations from the standard paradigm of the early galactic nucleosynthesis. If the r-process contamination is a common feature of halo stars, s-process enhancements are found in a few Globular Clusters only. We show that the combined pollution of AGB stars with mass ranging between 3 to 6 M$_\\odot$ may account for most of the features of the s-process overabundance in M4 and M22. In these stars, the s process is a mixture of two different neutron-capture nucleosynthesis episodes. The first is due to the 13C(a,n)16O reaction and takes place during the interpulse periods. The second is due to the 22Ne(a,n)25Mg reaction and takes place in the convective zones generated by thermal pulses. The production of the heaviest s elements (from Ba to Pb) requires the first neutron burst, while the second produces large overabundances of light s (Sr, Y, Zr). The first mainly operates in the less-massive AGB stars, while the second dominates in th...

Straniero, Oscar; Piersanti, Luciano

2014-01-01T23:59:59.000Z

491

Finite element meshing approached as a global minimization process  

SciTech Connect (OSTI)

The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested before this project ended. The primary complexity in the extension was in the connectivity problem formulation. Defining all of the interparticle interactions that occur in three-dimensions and expressing them in mathematical relationships is very difficult.

WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.

2000-03-01T23:59:59.000Z

492

Iron Isotope and Rare Earth Element Patterns of the Neoproterozoic Fulu Formation, South China: Implications for Late Proterozoic Ocean Chemistry  

E-Print Network [OSTI]

13 3.5. Rare Earth Element Analysis…………………………………………. ……15 4.21 b. 5.2. Rare Earth Element Patterns……………………………………………24 6.Piper, D. Z. (1974). Rare earth elements in the sedimentary

Goldbaum, Elizabeth

2014-01-01T23:59:59.000Z

493

Nations Work Together to Discover New Element | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nations Work Together to Discover New Element Nations Work Together to Discover New Element Stories of Discovery & Innovation Nations Work Together to Discover New Element Enlarge Photo Photo courtesy of Oak Ridge National Laboratory Berkelium-249, contained in the greenish fluid in the tip of the vial, was crucial to the experiment that discovered element 117. It was made in the High Flux Isotope Reactor at DOE's Oak Ridge National Laboratory. When the californium-252 radioisotope was discovered, there were no known practical uses for it, but now it is widely used in industry and medicine. 03.28.11 Nations Work Together to Discover New Element The discovery of element 117 increases evidence for the "island of stability" in super-heavy nuclei, opening new frontiers of chemistry. A new element took its position on the Periodic Table in 2010 after a long research

494

GRR/Elements/14-CA-b.7 - Publish public notice | Open Energy Information  

Open Energy Info (EERE)

GRR/Elements/14-CA-b.7 - Publish public notice GRR/Elements/14-CA-b.7 - Publish public notice < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-b.7 - Publish public notice After RWQCB notifies the developer that the application will be considered, the developer must publish notice of the NPDES application in a local newspaper. Proof of the publication must be submitted to the RWQCB. Logic Chain No Parents \V/ GRR/Elements/14-CA-b.7 - Publish public notice (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-b.7_-_Publish_public_notice&oldid=482584" Categories: Geothermal Regulatory Roadmap Elements Under Development

495

MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS FROM: TIMOTHY M. DIRKS  

Broader source: Energy.gov (indexed) [DOE]

8, 2001 8, 2001 MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS FROM: TIMOTHY M. DIRKS DIRECTOR OF HUMAN RESOURCES MANAGEMENT SUBJECT: PREVENTIVE HEALTH SCREENINGS As you know, the Secretary recently issued a statement on Worknife Programs, specifically addressing the issues of telecommuting and preventive health measures; a copy of the statement, which was distributed via DOECAST, is attached to this memorandum. The statement provided that the Office of Management and Administration would issue guidelines in support of the new Secretarial policy which authorizes all Department of Energy Federal employees "up to 4 hours of excused absence each leave year in order to participate in preventive health screenings." The following responds to the Secretary's direction for guidelines and provides related information.

496

Compound and Elemental Analysis At Coso Geothermal Area (2004) | Open  

Open Energy Info (EERE)

Coso Geothermal Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Notes In order to test FIS for geothermal exploration, drill chips from Coso well 83-16 were analyzed, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by the CFS (crushfast-scan) method (Norman 1996) show that chips have a high density of homogeneous fluid inclusions. Analyses were averaged and plotted verses depth (Fig. 4), and interpreted. Fluid inclusion gas analyses done on vein minerals from drill hole 68-6 that were earlier analyzed (Adams 2000) were plotted for comparison in order to confirm that similar analyses are obtained from chips and vein

497

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Fenton Hill Hdr Fenton Hill Hdr Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from each core. Standard petrographic techniques were used to identify constituent minerals and to obtain modal analyses. The number of points counted varied from about 500 to several thousand, depending upon the grain size of the rock. Whole-rock chemical analysis was performed by John Husler, University of New Mexico, using a variety of techniques (Laughlin and Eddy, 1977). The precision for SiO2 is + 1% relative; for the other oxides it is + 2% relative. Accuracy was monitored by using USGS standard rock samples. Where

498

The Uranium Processing Facility Finite Element Meshing Discussion  

Broader source: Energy.gov (indexed) [DOE]

Uranium Processing Facility (UPF) Uranium Processing Facility (UPF) Finite Element Meshing Discussion ...Need picture of Building... October 25, 2011 Department of Energy - Natural Phenomenon Hazard Workshop 1 Loring Wyllie Arne Halterman Degenkolb Engineers, San Francisco Purpose of Presentation * Design vs. Analysis * Discuss the mesh criteria * Discuss the evolution of the mesh of the UPF main building model * Discuss how the mesh affects the analysis process October 25, 2011 2 Department of Energy - Natural Phenomenon Hazard Workshop FEM Modeling * GTStrudl typically used for DOE projects. * Mesh size is important * What is to be captured? * How complex is the system? * Current criteria set to capture in-plane and out-of-plane response. October 25, 2011 3

499

MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS OTHER THAN THE  

Broader source: Energy.gov (indexed) [DOE]

, 2013 , 2013 MEMORANDUM FOR HEADS OF DEPARTMENTAL ELEMENTS OTHER THAN THE NA TI ON AL NUCLEAR SECURITY ADMINISTRATION FROM: SUBJECT: ROBERT C. GIBBS ~Mb CHIEF HUMAN CAPITAL OFFICER W AIYER OF THE BI-WEEKLY PAY LIMITATION FOR EMERGENCY RESPONSE ACTIVITIES This memorandum replaces: 1) the January 31, 2002, memorandum from Timothy M. Dirks, (former) Director of Human Resources Management, subject: Waiver of Bi-Weekly Premium Pay Limitation, pertaining to "emergency work in connection with the continuing and immediate threat of further attacks on the United States;" 2) the April 25, 2003, memorandum from Claudia A. Cross, (former) Acting Director of Human Resources Management and Michael C. Kane, (former) Deputy Associate Administrator for Management & Administration, NNSA, subject: Waiver of Bi-Weekly

500

Surface photovoltage measurements and finite element modeling of SAW devices.  

SciTech Connect (OSTI)

Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

Donnelly, Christine

2012-03-01T23:59:59.000Z