National Library of Energy BETA

Sample records for year-7 year-8 year-9

  1. Maine Natural Gas Price Sold to Electric Power Consumers (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 4.09 6.22 6.66 W W W W W 2010's...

  2. New Mexico Crude Oil + Lease Condensate Reserves Sales (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  3. New Mexico - East Crude Oil + Lease Condensate Reserves Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  4. New Mexico - West Crude Oil + Lease Condensate Reserves Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  5. An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities

    E-Print Network [OSTI]

    Eto, Joseph H.

    2013-01-01

    6 Year 7 Year 8 Year 9 Utility Effects R 2 Without MajorReported to State Public Utility Commissions. Berkeley CA:7 Figure 2. Number of Utilities with SAIDI and SAIFI

  6. Sabine Pass, LA Exports to Brazil Liquefied Natural Gas (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 3,279 8,468 0 0 0...

  7. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 2,581 8,142 0 2,664...

  8. Alaska Crude Oil + Lease Condensate New Reservoir Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's...

  9. A Ten-Year, $7 Million Energy Initiative Marching on: Texas A&M University Campus Energy Systems CC 

    E-Print Network [OSTI]

    Deng, S.; Claridge, D. E.; Turner, W. D.; Bruner, H. L.; Williams, L.; Riley, J. G.

    2006-01-01

    The $35 million in measured savings for the ten-year, $7 million continuous commissioning (CC) program at the Texas A&M University (TAMU) makes the decision to continue easy. In today's energy environment and with the ...

  10. Year 1 Year 2 Anne 3 Anne 4 Year 5 Year 6 Year 7Year 3 Year 4 INGENIEUR POLYTECHNICIENINGENIEUR POLYTECHNICIEN

    E-Print Network [OSTI]

    Cengarle, María Victoria

    Languages, Sport EP Third Year: - First 2 trimesters of courses (specialization) - Third trimester: researchYear 1 Year 2 Année 3 Année 4 Year 5 Year 6 Year 7Year 3 Year 4 «« INGENIEUR POLYTECHNICIENINGENIEUR POLYTECHNICIEN »» MASTERMASTER PhDPhD Two to three years of undergraduate studies Education

  11. Maine Natural Gas Deliveries to Electric Power Consumers (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 43 53 517 2000's 27,180 80,044 90,769 60,666 63,245 48,647 40,341 33,872 36,594 36,746 2010's...

  12. Natural Gas Delivered to Consumers in Maine (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,290 5,716 6,572 2000's 43,971 94,569 100,659 69,973 85,478 61,088 63,541 62,430 69,202 69,497...

  13. Maine Natural Gas Industrial Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,525 2,297 2,550 2000's 12,984 10,929 23,672 3,315 16,233 6,500 17,514 21,640 25,628 25,923...

  14. Washington Natural Gas Residential Consumption (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 23,160 26,342 30,479 1970's 31,929 33,934 38,631 36,468 35,525 34,349 32,348 30,533 27,437...

  15. Washington Natural Gas Underground Storage Net Withdrawals (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -1,064 -1,092 1970's -5,340 -1,242 -3,243 -2,918 -2,483 99 -3,173 -2,702 -302 -1,927 1980's...

  16. Washington Natural Gas Price Sold to Electric Power Consumers...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.44 2000's 4.03 3.25 4.17 4.63 6.64 5.81 6.15 8.56 5.29 2010's 5.52 W...

  17. Washington Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27,725 40,373 32,639 2000's 74,400 86,184 39,552 57,880 66,068 65,809 58,800 57,294 74,580...

  18. Washington Natural Gas Industrial Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 111,159 133,106 124,371 2000's 83,748 75,017 67,717 65,884 67,812 66,874 70,758 73,572 75,748...

  19. Liquefied U.S. Natural Gas Exports to Brazil (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 3,279 11,049 8,142 0 2,664...

  20. Hawaii Natural Gas Industrial Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 342 373 463 2000's 536 532 475 444 446 439 451 502 431 344 2010's 339 362 355 388 401...

  1. West Virginia Crude Oil + Lease Condensate Reserves New Field...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0...

  2. Liquefied U.S. Natural Gas Exports by Vessel to Japan (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48,346 50,258 53,002 49,779 51,655 48,434 51,289 1980's 44,732 55,929 49,861 52,857 52,840...

  3. Maine Price of Natural Gas Sold to Commercial Consumers (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.36 1.46 1.40 1970's 1.44 1.50 1.63 1.70 1.88 2.12 2.65 3.23 3.27 3.61 1980's 5.12 6.13 7.32...

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864...

  5. Maine Natural Gas Residential Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,967 3,571 4,910 1970's 5,247 5,591 6,036 6,027 6,174 5,578 6,111 5,747 5,887 5,587 1980's 555...

  6. Natural Gas Citygate Price in Maine (Dollars per Thousand Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4.30 4.46 3.73 3.15 3.00 3.23 1990's 3.06 3.00 3.17 3.69 2.98 3.35 4.30 3.84 3.43 4.61 2000's...

  7. Maine Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.55 5.13 4.93 2000's 4.10 8.00 8.44 9.74 10.43 13.74 14.39 13.40 14.89 9.12 2010's 11.23 10.89...

  8. Maine Price of Natural Gas Delivered to Residential Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.96 2.05 1.97 1970's 1.99 2.05 2.14 2.17 2.38 2.65 2.68 3.62 3.57 4.10 1980's 6.34 7.45 8.63...

  9. Washington Price of Natural Gas Delivered to Residential Consumers...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.48 1.43 1.36 1970's 1.40 1.43 1.47 1.55 1.77 2.27 2.70 3.12 3.48 3.95 1980's 5.31 6.02 6.87...

  10. Washington Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.16 2.64 2.82 2000's 4.01 5.02 4.81 6.05 7.83 10.26 9.87 9.79 10.55 11.68 2010's 9.37 9.47 8.77...

  11. Washington Price of Natural Gas Sold to Commercial Consumers...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1.15 1.09 1.10 1970's 1.11 1.13 1.16 1.25 1.33 1.82 2.23 2.67 2.85 3.46 1980's 4.83 5.35 6.21...

  12. New York Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  13. New York Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9Year

  14. Regmi Research Series ,Year 9, December 1, 1977

    E-Print Network [OSTI]

    Regmi, Mahesh C

    1977-01-01

    H::nt~-· of Ghy

  15. Regmi Research Series ,Year 8, December 1, 1976

    E-Print Network [OSTI]

    Regmi, Mahesh C

    1976-01-01

    ~~l ·'Per '-};7~ons who have been oranted authority through a formal charter iltf'1e. oov~rnmer.t. tu. ~xAr.c" ~;e judicial. aut!"1ority, Jagirdars , ' SCr.~o'mer s , an'l Amal~s snall comply w~th thE': proce:lures pre_ I.Of l. ~ by layl 2.r formal... disputes , or collect f:.nes and other pcnal ­ t'es~~ by appo i nting clerks and other emplO'ye~s ~t his own private ''''.ith::J enCe. ::;7 :n<2:( , however , ,hear an~ dispose

  16. Regmi Research Series ,Year 7, December 1, 1975

    E-Print Network [OSTI]

    Regmi, Mahesh C

    1975-01-01

    . Activit ies of the Guthi Corporation .le .. Prel i ri,inacy tJotes on thE: Nature ol: R~na Law and ( 'overrun en t 19 . The HarHHnan- Dmka .Palace 20 . Selected Documents of Kartik- Marga, 1 8 87 21. The Fak i rana Levy . 22 . 'l'he Dhilrm

  17. New Mexico Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  18. New Mexico Crude Oil + Lease Condensate Reserves Extensions ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  19. New Mexico Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. FALL 2013 SPRING 2014 Intramural Sports

    E-Print Network [OSTI]

    (wage x 1.3 hours) 1st Year $7.25 $9.43 2nd Year $7.65 $9.95 3rd Year $8.05 $10.47 4th Year $8.45 $10 & Substitutions 4 4 ­ Intramural Sport Information 5 5 ­ Year-End Banquet 7 6 ­ Officials Information Outlets 8 that sport. Emails will be sent throughout the year by Intramural Staff to relay important information

  1. Improvement October 23 & 25, 2012

    E-Print Network [OSTI]

    New Mexico, University of

    .75/hour ­ 2nd Year* $8.00/hour ­ 3rd Year* Youth Summer Wkr 2 Undergraduates from other colleges or universities $8.25/hour ­ 1st Year* $8.50/hour ­ 2nd Year* $8.75/hour ­ 3rd Year* Youth Summer Wkr 3 Graduates from other colleges or universities $9.00/hour ­ 1st Year* $9.25/hour ­ 2nd Year* #12;Youth Summer Hire

  2. Annual Report 2012 -2013 For the year 7/1/2012 -6/30/2013

    E-Print Network [OSTI]

    Arnold, Elizabeth A.

    related to the Inauguration, as well as the unexpected, such as extreme flooding and snow storms. And food by the Princeton Review, and food options such as vegan, locally grown, steamed and baked, reduced

  3. CfLI Office Hours: 10:00 AM 6:00 PM (Academic Year); 9:00 AM 5:00 PM (Summer) ORGANIZATION DEVELOPMENT

    E-Print Network [OSTI]

    Schulte, Mike

    responsibilities: general front desk administration, partner with CfLI staff to complete strategic projects necessary. This involves answering phones, emails, and visitor inquiries in a courteous, professional, phone, and visitor inquiries, while updating information on registration forms. Assist professional

  4. Updated 11/2011 PAGE 1: INSTRUCTIONS

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    of any potential uncertainties in your funding? 1st Year 2nd Year 3rd Year 4th Year 5th Year 6th Year 7th regular term (fall and spring) is mandatory for all PhD students beginning in the third year year. 8. How often do you meet with your research supervisor {your student}? Do you feel

  5. New York Natural Gas Industrial Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8Year Jan Feb

  6. New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8Year Jan

  7. New York Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8YearNet

  8. School Of Mathematics & Statistics Dual Honours Degrees

    E-Print Network [OSTI]

    ........................................................................................................... 8 Progression into the Fourth Year............................................................................................................... 7 Progression into the Third Year

  9. School Of Mathematics & Statistics Dual Honours Degrees

    E-Print Network [OSTI]

    ..........................................................................................................8 Progression into the Fourth Year.............................................................................................................7 Progression into the Third Year

  10. Outcomes in Patients Treated With Mastectomy for Ductal Carcinoma In Situ

    SciTech Connect (OSTI)

    Owen, Dawn; Tyldesley, Scott; Breast Cancer Outcomes Unit of the British Columbia Cancer Agency and University of British Columbia, Vancouver and Victoria, British Columbia ; Alexander, Cheryl; Speers, Caroline; Truong, Pauline; Nichol, Alan; Wai, Elaine S.; Breast Cancer Outcomes Unit of the British Columbia Cancer Agency and University of British Columbia, Vancouver and Victoria, British Columbia

    2013-03-01

    Purpose: To examine, in a large, population-based cohort of women, the risk factors for recurrence after mastectomy for pure ductal carcinoma in situ (DCIS) and to identify which patients may benefit from postmastectomy radiation therapy. Methods and Materials: Data were analyzed for 637 subjects with pure DCIS, diagnosed between January 1990 and December 1999, treated initially with mastectomy. Locoregional relapse (LRR), breast cancer-specific survival, and overall survival were described using the Kaplan-Meier method. Reported risk factors for LRR (age, margins, size, Van Nuys Prognostic Index, grade, necrosis, and histologic subtype) were analyzed by univariate (log-rank) and multivariate (Cox modeling) methods. Results: Median follow-up was 12.0 years. Characteristics of the cohort were median age 55 years, 8.6% aged ?40 years, 30.5% tumors >4 cm, 42.5% grade 3 histology, 37.7% multifocal disease, and 4.9% positive margins. At 10 years, LRR was 1.0%, breast cancer-specific survival was 98.0%, and overall survival was 90.3%. All recurrences (n=12) involved ipsilateral chest wall disease, with the majority being invasive disease (11 of 12). None of the 12 patients with recurrence died of breast cancer; all were successfully salvaged (median follow-up of 4.4 years). Ten-year LRR was higher with age ?40 years (7.5% vs 1.5%; P=.003). Conclusion: Mastectomy provides excellent locoregional control for DCIS. Routine use of postmastectomy radiation therapy is not justified. Young age (?40 years) predicts slightly higher LRR, but possibly owing to the small number of cases with multiple risk factors for relapse, a subgroup with a high risk of LRR (ie, approximately 15%) was not identified.

  11. For the draft Australian Curriculum

    E-Print Network [OSTI]

    Boynton, Walter R.

    year 7Geography For the draft Australian Curriculum Explaining our catchment #12;Prepared by: Water...........................................................................................................2 Australian Curriculum links for this unit ...........................................................................3 Australian Curriculum: Geography

  12. Renewable Energy Project Development and Financing: Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Most costly for Tribedeveloper to acquire long-term ownership of project (large cash infusion year 7) * Tribedeveloper operates the project * Requires largest equity...

  13. CONTENTS 3 1 Strategy and education policy 5

    E-Print Network [OSTI]

    Paris 7 - Denis Diderot, Université

    Year Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Fourth year1 #12;2 #12;CONTENTS 3 Contents 1 Strategy and education policy 5 2 Courses listed per year 8 2.1 Core curriculum: first and second year . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Third

  14. New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  15. New Mexico - West Crude Oil + Lease Condensate Reserves Extensions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. New Mexico - East Crude Oil + Lease Condensate Reserves Extensions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  17. New Mexico - East Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  19. New Mexico Crude Oil + Lease Condensate Reserves Revision Increases...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. New Mexico Crude Oil + Lease Condensate Reserves Revision Decreases...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  1. New Mexico - West Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. Doug Brutlag 2014 Bibliographic Search

    E-Print Network [OSTI]

    Brutlag, Doug

    searches per year, 7 million per day · MeSH Medical Subject Heading Thesaurus ­ Controlled vocabulary Brutlag 2014 MeSH Contains 27,149 Thesaurus Terms & 218,000 Entry Terms (Synonyms) Average 10-15 per

  3. Bob Scowcroft: Executive Director, Organic Farming Research Foundation

    E-Print Network [OSTI]

    Reti, Irene H.

    2010-01-01

    flower vase, half of my salary for the next year, because Iphone costs. That was my salary my first year, $7,000. So I501(c)(3) and everybody’s salary was caught up. In thirty-

  4. Mid-American Review of Sociology, Volume 9, Number 2 (WINTER, 1984): Back Matter

    E-Print Network [OSTI]

    1984-01-01

    _ Payment Enclosed _ Please Invoice _ Remittance by Check _ Remittance by Money Order --_ Name of Individual/Institution/Student Address Town State Zip Code SUBSCRIPTION RATES: Institutions One Year $16 Two Years $30 Individual One Year $8 Two Years $15... _ Payment Enclosed _ Please Invoice _ Remittance by Check _ Remittance by Money Order --_ Name of Individual/Institution/Student Address Town State Zip Code SUBSCRIPTION RATES: Institutions One Year $16 Two Years $30 Individual One Year $8 Two Years $15...

  5. September 2011 Aug. 31 -Sept. 2 Orientation program for first year

    E-Print Network [OSTI]

    Graham, Nick

    for first and second years 17 Fall term ends for fourth year 19 - 23 Pre-clerkship for third year 23 Fall for third year and resumes for fourth year 9 Classes begin for first and second years February 2012 1 Friday 13 Clerkship rotations end for fourth year 30 Winter Term ends May 2012 1 Summer Term begins 11

  6. Boise State University Diagnostic Radiography First, Second, and Third Professional Years

    E-Print Network [OSTI]

    Barrash, Warren

    Boise State University Diagnostic Radiography First, Second, and Third Professional Years Bachelor.00$ Total Summer Semester 1,129.00$ to Total Second Year 11,782.40$ to THIRD YEAR Fall Semester: University,964.00$ to Total Third Year 9,774.34$ to Total Program Costs 34,147.14$ NOTE: Non Residents add $6,426 per semester

  7. Strong and ductile nanostructured Cu-carbon nanotube composite Hongqi Li,1,a

    E-Print Network [OSTI]

    Zhu, Yuntian T.

    . Past research effort mainly focused on the polymer/ceramic-based CNT composites5­8 and studies on metal in the CNT-metallic matrix composites has been growing rapidly for the past five years.9­21 GenerallyStrong and ductile nanostructured Cu-carbon nanotube composite Hongqi Li,1,a Amit Misra,1 Zenji

  8. R AdResource Adequacy Advisory CommitteeAdvisory Committee

    E-Print Network [OSTI]

    Meeting November 20, 2013 #12;TopicsTopics TopographyTopography Modeling Assumptions 2 #12;Canada)*Economic load growth (not temp related) Market availability* Climate change Climate change ­ Impacts to load temp year 8 #12;Specific Assumptions MarketsMarkets Assumptions 2017 2019 (proposed) NW market winter 3

  9. Parallel implementation and one year experiments with the Danish Euleian Model

    E-Print Network [OSTI]

    Dimov, Ivan

    -page: http://www.dmu.dk/AtmosphericEnvironment Abstract. Large scale air pollution models are powerful tools for air pollution modelling has been studied for years [8, 15]. An air pollution model is generally of chemical species (pollutants and other components of the air that interact with the pollutants) in a large

  10. MOLECULAR AND COMPUTATIONAL BIOLOGY Department of Biological Sciences

    E-Print Network [OSTI]

    Rohs, Remo

    Year Initiation of dissertation research by the first summer. 6. 2nd /3rd Year Completion of other required coursework. 7. 2nd /3rd Year Complete Written Qualifying Exam; pass by end of first semester of 3rd year. 8. 2nd /3rd Year Complete Oral Qualifying Examination; pass by end of first semester of 3rd

  11. NATIONAL CENTER FOR GEOGRAPHIC INFORMATION AND ANALYSIS

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    based on geographic information systems (GIS) in the many disciplines involved in GIS-based research been described by Abler (International Journal of Geographical Information Systems 1: 303-326 (1987NATIONAL CENTER FOR GEOGRAPHIC INFORMATION AND ANALYSIS ANNUAL REPORT Year 8 (January 1, 1996

  12. Introduction The greenhouse whitefly, Trialeurodes vaporariorum, feeds on a variety of vegetable and

    E-Print Network [OSTI]

    New Hampshire, University of

    and nearly transparent. White waxen filaments radiate from the body of the last stage nymph. The adult outdoors in NH, usually remains in greenhouses year-round. Number of generations per year 8-12 Time of year when most damage done Year round (greenhouse); summer (outdoors) Number of applications 3-6 depending

  13. GENERAL TUITION RATES UNDERGRADUATES

    E-Print Network [OSTI]

    Amin, S. Massoud

    Resident & nonresident 1st year $ 15,487.50 2nd year 15,175.00 Per credit (special circumstances) $ 1,675.00 Master of Science in Software Engineering Resident & nonresident 1st year $ 7,200.00 2nd year, continuing 6,750.00 Master of Infrastructure Systems Engineering Resident & nonresident 1st year $ 6,700.00 2nd

  14. COMPUTER INFORMATION SYSTEMS Suggested Schedule

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Sophomore Year ­ 3rd Semester Senior Year ­ 7th Semester *ACC 2100 (must make a "C-" or better) *ECO 2030COMPUTER INFORMATION SYSTEMS 2011-2012 BSBA Suggested Schedule Freshman Year ­ 1st Semester Junior Year ­ 5th Semester *ENG 1000 (must make a "C" or better) UCO 1200 (First Year Seminar) Gen. Ed

  15. Reykjavik University School of Science and Engineernig 221014 Learning outcomes for BSc in Mechanical and Energy Engineering SIE/ISR/G/IS

    E-Print Network [OSTI]

    Karlsson, Brynjar

    in Mechanical and Energy Engineering SIE/ISR/ÁG/IS 1 BSc in Mechanical and Energy Engineering The Mechanical and Energy Engineering BSc program is 3.5 years (7 semesters) full time study. The total credits are 210 ECTS. Students have the option of choosing between two fields of specialization: Mechanical Design or Energy

  16. On the local space-time structure of non-equilibrium steady states.

    E-Print Network [OSTI]

    #12;1 Introduction. Non-equilibrium stationary states (NESS) of systems of classical Hamiltonian os recent years [7, 9, 24]. Numerous global results concerning those NESS have been obtained, including and the characterization of NESS in terms of probabilities over pathspace introduced by Maes [18]. There- fore, in order

  17. OxCORT v4 Quick Guide Tutorial Reports

    E-Print Network [OSTI]

    Wallace, Mark

    the appropriate option from the drop-down. 6. Select the appropriate Term and Year. 7. Enter the usernames into four further topics: · Search for reports pg 2 · To view or edit a report pg 2 · To complete a Tutorial will allow you to search for, view, edit, submit, delete, clone, print, email from, and export data from both

  18. Five Common Energy Conversion Projects in Small and Medium-Sized Industrial Plants 

    E-Print Network [OSTI]

    Britton, A. J.; Heffington, W. M.; Nutter, D. W.

    1993-01-01

    were recommended which would save $4 million annually (about 9 % of utility costs) for Texas manufacturers. Projects actually implemented realize just over half of the recommended earnings and the overall payback for implemented projects is slightly... includes the weather in the estimated The clear sky factor is determined from information from the U.S. Weather Bureaus' Local Climatological Data. For example: Houston has thunderstorms an average of 62 days per year, and heavy fog 37 days per year (8...

  19. Equity.doc 1. Equity Report

    E-Print Network [OSTI]

    Table 4. Undergraduate Honours Honors Female % Male % Minority % Total 2nd Year 7 35% 13 75% 3 15% 20 3. Undergraduate Majors Majors Female % Male % Minority % Total 2nd Year 5 22% 18 78% 2 9% 23 3rd Year 19 46% 22 54 Majors. EOS Majors Female % Male % Minority % Total 2nd Year 3 20% 12 80% 1 7% 15 3rd Year 14 48% 15 52

  20. College of Liberal Arts, 2013 Milestones for Doctoral Programs Based on http://www.utexas.edu/ogs/admissions/milestones/

    E-Print Network [OSTI]

    Pillow, Jonathan

    Within ten long semesters Within seven years 7/2/2013 Anthropology ANT990++D20152 End of 3rd year End 990CFD20152 End of 3rd year End of 4th year End of year 6, 7, or 8 (depending on fieldwork) 7 of 3rd year (post MA) 4th or 5th year (post MA) 7/15/2013 French Lingustics (MA entry) FR+990LGLD20152

  1. Semantic Processing in Children with Reading Comprehension Deficits

    E-Print Network [OSTI]

    Gillispie, William Matthew

    2008-01-01

    such as inference making 5 (Cain & Oakhill, 1999, 2006; Cain, Oakhill, Barnes, & Bryant, 2001; Catts, Adlof, & Weismer, 2006; Oakhill, 1982, 1984), comprehension monitoring, ability to structure stories, and knowledge of story title purpose (Cain & Oakhill..., these children were asked for their verbal consent to participate in the study. The SRCD group consisted of children ranging from 9 years, 7 months to 10 years; 10 months of age (mean age = 10 years, 1.5 months). The 4NR group consisted of children ranging...

  2. Implementation Regulation for the BSc Programme Nanobiology

    E-Print Network [OSTI]

    of the first year, 2012-2013 6 Paragraph 3: Second and third year 7 Article 6a: Composition of the second year of the third year, 2014-2015 8 Article 6d: Honours track 8 Paragraaf 4: Exams 9 Article 7: Form of the exam year BSc programme of 180EC. The first year (propaedeutic phase) is 60EC, the second and third year

  3. Choosing Power Cables on the Basis of Energy Economics 

    E-Print Network [OSTI]

    Dimachkieh, S.; Brown, D. R.

    1980-01-01

    -04-102 Proceedings from the Second Industrial Energy Technology Conference Houston, TX, April 13-16, 1980 TABLE 5 Effects of Reduced Cable Operating Temperature 30 Ye~r Cable Life, 12% Interest Rate Cost of Energy Starting at $.05/kwhr and Tripling in 16 Years....8 7.3 4.8 4.2 0.0 (Thousands of dollars per 1000 ft) TABLE 6 Effects of Cable Life 12% Interest Rate Cost of Energy Starting at $.05/kwhr and Tripling in 16 Years Current (amperes) 75 98 128 146 168 192 219 249 273 304 334 359 408 450 505...

  4. Nevada Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet)VehicleYear8 0.8 0.9 0.9

  5. Nevada Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet)VehicleYear8 0.8 0.9 0.90

  6. New Field Discoveries of Dry Natural Gas Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet)VehicleYear8 0.8 0.9

  7. New Field Discoveries of Natural Gas, Wet After Lease Separation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet)VehicleYear8 0.8 0.91,423

  8. New Hampshire Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet)VehicleYear8 0.8May-15

  9. New Hampshire Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet)VehicleYear8DecadeNA NA

  10. New Hampshire Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet)VehicleYear8DecadeNA NA0

  11. New Hampshire Natural Gas Deliveries to Electric Power Consumers (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet)VehicleYear8DecadeNA

  12. Highlights

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic Feet) Year8 Year

  13. Highlights

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic Feet) Year8

  14. American Samoa - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing AnnualFoot) YearYear7) August

  15. Geographic Distribution of Chagas Disease Vectors in Brazil Based on Ecological NicheModeling

    E-Print Network [OSTI]

    Gurgel-Gonç alves, Rodrigo; Galvã o, Cleber; Costa, Jane; Peterson, A. Townsend

    2011-01-01

    ]. At that time, 4.2% of the Brazilian population was estimated to be infected and around 100,000 new cases were recorded per year [7]. In 1991, Brazil joined the South- ern Cone Initiative, an international consortium with the main objective of reducing vectorial... Medicine reduced drastically [11]. In 2006, the Intergovernmental Initiative of Southern Cone, OMS, certified Brazil as free of vectorial transmission by T. infestans [12, 13]. In Brazil, the current estimate is that 1.9 million people are infected [10...

  16. Colorado Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and AlternateYear Jan 1. IntroductionYear7,348DecadeYear

  17. State Nuclear Profiles 2010

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013Additions (Million CubicYear Jan Feb3YearYear7

  18. New York Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  19. New York Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7Decade Year-0

  20. New York Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7Decade Year-0Year

  1. Virginia Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  2. Petroleum marketing monthly: September 1996, with data for June 1996

    SciTech Connect (OSTI)

    1996-09-01

    The Petroleum Marketing Monthly provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. Detailed statistics for crude oil, including the price of imported crude oil by country of origin, by gravity, and by crude stream. To aid the reader in determining the market changes, the majority of the tables show data for the report month and previous months for the current year, and the report month for the previous year. 7 figs., 50 tabs.

  3. Use of the Viatorr Expanded Polytetrafluoroethylene-Covered Stent-Graft for Transjugular Intrahepatic Portosystemic Shunt Creation in Children: Initial Clinical Experience

    SciTech Connect (OSTI)

    Mermuys, Koen; Maleux, Geert, E-mail: geert.maleux@uzleuven.be; Heye, Sam [University Hospitals Leuven, Department of Radiology (Belgium); Lombaerts, Rita [University Hospitals Leuven, Department of Paediatrics (Belgium); Nevens, Frederik [University Hospitals Leuven, Department of Hepatology (Belgium)

    2008-07-15

    Four children, three boys and one girl, with a median age of 9 years 8 months, underwent transjugular intrahepatic portosystemic shunt creation with an expanded polytetrafluoroethylene (e-PTFE)-covered nitinol stent. The stent-graft was successfully placed in all four patients without any complication. Clinical and biochemical improvement was noted in all four patients during follow-up. Radiological follow-up with use of duplex ultrasound showed a recurrent stenosis of the shunt 180 days after stent-graft implantation in one patient. This was treated with placement of an additional stent-graft, re-expanding completely the recurrent stenosis. In the other three patients, the stent-graft remained fully patent until the end of the study or until orthotopic liver transplantation. These preliminary results suggest that use of the Viatorr ePTFE-covered stent-graft in children is safe and feasible, with potentially the same high patency rate and improved clinical outcome as reported in adult patients.

  4. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect (OSTI)

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  5. Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned

    SciTech Connect (OSTI)

    Surovchak, S.; Kaiser, L.; DiSalvo, R.; Boylan, J.; Squibb, G.; Nelson, J.; Darr, B.; Hanson, M.

    2008-07-01

    The U.S. Department of Energy's (DOE's) Rocky Flats Site was established in 1951 as part of the United States' nationwide nuclear weapons complex to manufacture nuclear weapons components. In 1992 weapons production halted, and the Rocky Flats mission changed to include environmental investigations, cleanup, and site closure. In October 2005, DOE and its contractor completed an accelerated 10-year, $7 billion cleanup of chemical and radiological contamination left from nearly 50 years of production. The cleanup required the decommissioning, decontamination, demolition, and removal of more than 800 structures; removal of more than 500,000 cubic meters of low-level radioactive waste; and remediation of more than 360 potentially contaminated environmental sites. The final remedy for the site was selected in September 2006 and included institutional controls, physical controls, and continued monitoring for the former industrial portion of the site. The remainder of the site, which served as a buffer zone surrounding the former industrial area, was transferred to the U.S. Fish and Wildlife Service in July 2007 for a national wildlife refuge. DOE's Office of Legacy Management is responsible for the long-term surveillance and maintenance of Rocky Flats, which includes remedy implementation activities and general site maintenance. Several factors have complicated the transition from closure to post-closure at Rocky Flats. The early experiences associated with the two years since the physical cleanup and closure work were completed have led to several valuable lessons learned. (authors)

  6. Direct Photons at RHIC

    E-Print Network [OSTI]

    G. David; for the PHENIX Collaboration

    2008-10-21

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum ($p_T$) range. The $p$ + $p$ measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high $p_T$ direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring "almost real" virtual photons which appear as low invariant mass $e^+e^-$ pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  7. Plutonium-238 alpha-decay damage study of the ceramic waste form.

    SciTech Connect (OSTI)

    Frank, S M [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Barber, T L [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Cummings, D G [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; DiSanto, T [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Esh, D W [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; Giglio, J J [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Goff, K M [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Johnson, S G [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Kennedy, J R [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Jue, J-F [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Noy, M [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; O'Holleran, T P [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Sinkler, W [UOP LLC, 25 E Algonquin Road, Des Plaines, IL 60017

    2006-03-27

    An accelerated alpha-decay damage study of a glass-bonded sodalite ceramic waste form has recently been completed. The purpose of this study was to investigate the physical and chemical durability of the waste form after significant exposure to alpha decay. This accelerated alpha-decay study was performed by doping the ceramic waste form with {sup 238}Pu which has a much greater specific activity than {sup 239}Pu that is normally present in the waste form. The alpha-decay dose at the end of the four year study was approximately 1 x 10{sup 18} alpha-decays/gram of material. An equivalent time period for a similar dose of {sup 239}Pu would require approximately 1100 years. After four years of exposure to {sup 238}Pu alpha decay, the investigation observed little change to the physical or chemical durability of the ceramic waste form (CWF). Specifically, the {sup 238}Pu-loaded CWF maintained it's physical integrity, namely that the density remained constant and no cracking or phase de-bonding was observed. The materials chemical durability and phase stability also did not change significantly over the duration of the study. The only significant measured change was an increase of the unit-cell lattice parameters of the plutonium oxide and sodalite phases of the material and an increase in the release of salt components and plutonium of the waste form during leaching tests, but, as mentioned, these did not lead to any overall loss of waste form durability. The principal findings from this study are: (1) {sup 238}Pu-loaded CWF is similar in microstructure and phase composition to referenced waste form. (2) Pu was observed primarily as oxide comprised of aggregates of nano crystals with aggregates ranging in size from submicron to twenty microns in diameter. (3) Pu phases were primarily found in the intergranular glassy regions. (4) PuO phase shows expected unit cell volume expansion due to alpha decay damage of approximately 0.7%, and the sodalite phase unit cell volume has expanded slightly by 0.3% again, presumably due to alpha-decay damage. (5) No bulk sample swelling was observed. (6) No amorphization of sodalite or actinide bearing phases was observed after four years of alpha-decay damage. (7) No microcracks or phase de-bonding were observed in waste form samples aged for four years. (8) In some areas of the {sup 238}Pu doped ceramic waste form material bubbles and voids were found. Bubbles and voids with similar size and density were also found in ceramic waste form samples without actinide. These bubbles and voids are interpreted as pre-existing defects. However, some contribution to these bubbles and voids from helium gas can not be ruled out. (9) Chemical durability of {sup 238}Pu CWF has not changed significantly after four years of alpha-decay exposure except for an increase in the release of salt components and Pu. Still, the plutonium release from CWF is very low at less than 0.005 g/m{sup 2}.

  8. HEP Science Network Requirements--Final Report

    SciTech Connect (OSTI)

    Bakken, Jon; Barczyk, Artur; Blatecky, Alan; Boehnlein, Amber; Carlson, Rich; Chekanov, Sergei; Cotter, Steve; Cottrell, Les; Crawford, Glen; Crawford, Matt; Dart, Eli; Dattoria, Vince; Ernst, Michael; Fisk, Ian; Gardner, Rob; Johnston, Bill; Kent, Steve; Lammel, Stephan; Loken, Stewart; Metzger, Joe; Mount, Richard; Ndousse-Fetter, Thomas; Newman, Harvey; Schopf, Jennifer; Sekine, Yukiko; Stone, Alan; Tierney, Brian; Tull, Craig; Zurawski, Jason

    2010-04-27

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans-Atlantic connectivity is more complex than network engineering for intra-US connectivity. This is because transoceanic circuits have lower reliability and longer repair times when compared with land-based circuits. Therefore, trans-Atlantic connectivity requires greater deployed bandwidth and diversity to ensure reliability and service continuity of the user-level required data transfer rates. (4) Trans-Atlantic traffic load and patterns must be monitored, and projections adjusted if necessary. There is currently a shutdown planned for the LHC in 2012 that may affect projections of trans-Atlantic bandwidth requirements. (5) There is a significant need for network tuning and troubleshooting during the establishment of new LHC Tier-2 and Tier-3 facilities. ESnet will work with the HEP community to help new sites effectively use the network. (6) SLAC is building the CCD camera for the LSST. This project will require significant bandwidth (up to 30Gbps) to NCSA over the next few years. (7) The accelerator modeling program at SLAC could require the movement of 1PB simulation data sets from the Leadership Computing Facilities at Argonne and Oak Ridge to SLAC. The data sets would need to be moved overnight, and moving 1PB in eight hours requires more than 300Gbps of throughput. This requirement is dependent on the deployment of analysis capabilities at SLAC, and is about five years away. (8) It is difficult to achieve high data transfer throughput to sites in China. Projects that need to transfer data in or out of China are encouraged to deploy test and measurement infrastructure (e.g. perfSONAR) and allow time for performance tuning.

  9. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    SciTech Connect (OSTI)

    R.R. Fessler; G.R. Fenske

    1999-12-13

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency improvement over equivalent gasoline-fueled trucks. (2) Develop by 2004 the enabling technology for a Class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) that will meet prevailing emission standards, using either diesel or a liquid alternative fuel. (3) Develop by 2006 diesel engines with fuel flexibility and a thermal efficiency of 55% with liquid alternative fuels, and a thermal efficiency of 55% with dedicated gaseous fuels. (4) Develop a methodology for analyzing and evaluating the operation of a heavy vehicle as an integrated system, considering such factors as engine efficiency; emissions; rolling resistance; aerodynamic drag; friction, wear, and lubrication effects; auxiliary power units; material substitutions for reducing weight; and other sources of parasitic energy losses. Overarching these considerations is the need to preserve system functionality, cost, competitiveness, reliability, durability, and safety.

  10. Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects

    SciTech Connect (OSTI)

    Mills, Evan; Mathew, Paul

    2009-04-01

    Buildings rarely perform as intended, resulting in energy use that is higher than anticipated. Building commissioning has emerged as a strategy for remedying this problem in non-residential buildings. Complementing traditional hardware-based energy savings strategies, commissioning is a 'soft' process of verifying performance and design intent and correcting deficiencies. Through an evaluation of a series of field projects, this report explores the efficacy of an emerging refinement of this practice, known as monitoring-based commissioning (MBCx). MBCx can also be thought of as monitoring-enhanced building operation that incorporates three components: (1) Permanent energy information systems (EIS) and diagnostic tools at the whole-building and sub-system level; (2) Retro-commissioning based on the information from these tools and savings accounting emphasizing measurement as opposed to estimation or assumptions; and (3) On-going commissioning to ensure efficient building operations and measurement-based savings accounting. MBCx is thus a measurement-based paradigm which affords improved risk-management by identifying problems and opportunities that are missed with periodic commissioning. The analysis presented in this report is based on in-depth benchmarking of a portfolio of MBCx energy savings for 24 buildings located throughout the University of California and California State University systems. In the course of the analysis, we developed a quality-control/quality-assurance process for gathering and evaluating raw data from project sites and then selected a number of metrics to use for project benchmarking and evaluation, including appropriate normalizations for weather and climate, accounting for variations in central plant performance, and consideration of differences in building types. We performed a cost-benefit analysis of the resulting dataset, and provided comparisons to projects from a larger commissioning 'Meta-analysis' database. A total of 1120 deficiency-intervention combinations were identified in the course of commissioning the projects described in this report. The most common location of deficiencies was in HVAC equipment (65% of sites), followed by air-handling and distributions systems (59%), cooling plant (29%), heating plants (24%), and terminal units (24%). The most common interventions were adjusting setpoints, modifying sequences of operations, calibration, and various mechanical fixes (each done in about two-thirds of the sites). The normalized rate of occurrence of deficiencies and corresponding interventions ranged from about 0.1/100ksf to 10/100ksf, depending on the issue. From these interventions flowed significant and highly cost-effective energy savings For the MBCx cohort, source energy savings of 22 kBTU/sf-year (10%) were achieved, with a range of 2% to 25%. Median electricity savings were 1.9 kWh/sf-year (9%), with a range of 1% to 17%. Peak electrical demand savings were 0.2 W/sf-year (4%), with a range of 3% to 11%. The aggregate commissioning cost for the 24 projects was $2.9 million. We observed a range of normalized costs from $0.37 to 1.62/sf, with a median value of $1.00/sf for buildings that implemented MBCx projects. Per the program design, monitoring costs as a percentage of total costs are significantly higher in MBCx projects (median value 40%) than typical commissioning projects included in the Meta-analysis (median value of 2% in the commissioning database). Half of the projects were in buildings containing complex and energy-intensive laboratory space, with higher associated costs. Median energy cost savings were $0.25/sf-year, for a median simple payback time of 2.5 years. Significant and cost-effective energy savings were thus obtained. The greatest absolute energy savings and shortest payback times were achieved in laboratory-type facilities. While impacts varied from project to project, on a portfolio basis we find MBCx to be a highly cost-effective means of obtaining significant program-level energy savings across a variety of building types. Energy savings are ex