Powered by Deep Web Technologies
Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

State building energy codes status  

Science Conference Proceedings (OSTI)

This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

NONE

1996-09-01T23:59:59.000Z

2

State Building Code  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption Updated: 121708 - 1 - Code Adoption Process Checklist Para-Technical Adoption of Code Effective Date Responsible Chief Policy Analyst Support Staff: Boards Coordinator...

3

Surface code implementation of block code state distillation  

E-Print Network (OSTI)

State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states |A>=(|0>+e^{i\\pi/4}|1>)/\\sqrt{2} produced a single improved |A> state given 15 input copies. New block code state distillation methods can produce k improved |A> states given 3k+8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three.

Austin G. Fowler; Simon J. Devitt; Cody Jones

2013-01-29T23:59:59.000Z

4

State Technical Assistance | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center...

5

The Washington State Experience Energy Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington State Experience Washington State Experience Residential Energy Code Compliance Gary Nordeen Senior Building Science Specialist April 4, 2013 WSU Energy Program Provides energy services, products, education and information for: * Businesses * Utilities ̶ public and private * Governments ̶ state and local * Tribes * Federal agencies * Manufacturing plants * Educational facilities * National laboratories WSU Energy Program Building Science Team * Residential energy code technical assistance * Voluntary programs, Northwest ENERGYSTAR Homes * Research and development, Building America * Community-based upgrade programs * Industry training and certifications ̶ HERS, BPI, ENERGY STAR, PTCS Staff provides building science expertise for: WSU Energy Program

6

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

MwH)","RES_CONS ","COM_REV (Thousand $)","COM_SALES (MwH)","COM_CONS","IND_REV (Thousand $)","IND_SALES (MwH)","IND_CONS","OTH_REV (Thousand $)","OTH_SALES (MwH)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MwH)","TOT_CONS" MwH)","RES_CONS ","COM_REV (Thousand $)","COM_SALES (MwH)","COM_CONS","IND_REV (Thousand $)","IND_SALES (MwH)","IND_CONS","OTH_REV (Thousand $)","OTH_SALES (MwH)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MwH)","TOT_CONS" 0,"State Level Adjustment","AK",2006,1,4505,21935,0,6801,28853,0,1284,11667,0,,,0,12590,62454,0 213,"Alaska Electric Light&Power Co","AK",2006,1,1424,13941,13422,961,11573,2086,349,4532,98,0,0,0,2734,30046,15606 219,"Alaska Power Co","AK",2006,1,603,2288,4345,823,3487,1956,0,0,0,0,0,0,1426,5775,6301 599,"Anchorage Municipal Light and Power","AK",2006,1,1643,16217,23865,6649,90110,6112,0,0,0,0,0,0,8292,106327,29977

7

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

OTH_REV (Thousand $)","OTH_SALES (MWh)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MWh)","TOT_CONS" OTH_REV (Thousand $)","OTH_SALES (MWh)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MWh)","TOT_CONS" 0,"State Level Adjustment","AK","2007R",1,5766,24179,0,7398,30009,0,1385.504,7829.663,0,,,0,14549.504,62017.663,0 213,"Alaska Electric Light&Power Co","AK","2007R",1,1479,14609,13602,981,11953,2118,390.496,5260.337,99,0,0,0,2850.496,31822.337,15819 219,"Alaska Power Co","AK","2007R",1,605,2282,4456,803,3397,2000,0,0,0,0,0,0,1408,5679,6456 599,"Anchorage Municipal Light and Power","AK","2007R",1,1488,16596,23880,5545,87869,6182,0,0,0,0,0,0,7033,104465,30062 1651,"Bethel Utilities Corp","AK","2007R",1,489,1180,1563,1171,2979,1121,0,0,0,0,0,0,1660,4159,2684

8

Updating Building Energy Codes: How Much Can Your State ...  

Science Conference Proceedings (OSTI)

Updating Building Energy Codes: How Much Can Your State Save? From NIST Tech Beat: November 5, 2013. ...

2013-11-05T23:59:59.000Z

9

Building Energy Codes Collaborative Technical Assistance for States  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Collaborative Codes Collaborative Technical Assistance for States Chris Wagner National Association of State Energy Officials cwagner@naseo.org; 703.299.8800 x 12 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement * States are committed to adopting model energy codes and developing programs to promote and measure compliance. However, many states have limited on- going funding sources to make these activities sustainable.

10

Building Energy Codes Collaborative Technical Assistance for States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes Collaborative Codes Collaborative Technical Assistance for States Chris Wagner National Association of State Energy Officials cwagner@naseo.org; 703.299.8800 x 12 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement * States are committed to adopting model energy codes and developing programs to promote and measure compliance. However, many states have limited on- going funding sources to make these activities sustainable.

11

Country Report on Building Energy Codes in the United States  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

Halverson, Mark A.; Shui, Bin; Evans, Meredydd

2009-04-30T23:59:59.000Z

12

Reducing Energy Demand in Buildings Through State Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Assistance Project Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism * States need support for implementation Impact of Project:

13

Reducing Energy Demand in Buildings Through State Energy Codes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes Assistance Project Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism * States need support for implementation Impact of Project:

14

Iowa State Energy Code Review Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Code Energy Code Statement of Review Form Statutory Authority: Iowa Code 103A.19 and Administrative Rule 661-303.1(3): The plans and specifications for all buildings to be constructed after July 1, 1977, and which exceed a total volume of 100,000 cubic feet of enclosed space that is heated or cooled, shall be reviewed by an Iowa registered architect or licensed professional engineer for compliance with applicable provisions of the 2009 International Energy Conservation Code (IECC). A statement that a review has been accomplished and that the design is in compliance with applicable provisions of the 2009 IECC shall be signed and sealed by the responsible registered architect or licensed professional

15

Alabama State Certification of Commercial Building Codes | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Codes Commercial Building Codes In response to the U.S. Department of Energy's July 20, 2011 notice of determination in the Federal Register regarding ANSI/ASHRAE/IESNA Standard 90.1-2007, Alabama certifies that it has reviewed and adopted the provisions of its Alabama Energy and Residential Code to include the requirement for non-state-funded buildings to comply with the 2009 International Energy Conservation Code, and by reference ASHRAE 90.1-2007. Publication Date: Wednesday, May 15, 2013 Alabama Commercial Certification.pdf Document Details Last Name: Adams Initials: TL Affiliation: Alabama Department of Economic and Community Affairs Focus: Adoption Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-2007 2009 IECC Document type: State-specific Target Audience:

16

Buildings Energy Data Book: 7.8 State Building Energy Codes  

Buildings Energy Data Book (EERE)

of State Energy Codes: Commercial Sector(1) Note(s): Source(s): 1) These are the current Commercial codes as of March 2012. DOEEERE, The Status of State Energy Codes, http:www...

17

Buildings Energy Data Book: 7.8 State Building Energy Codes  

Buildings Energy Data Book (EERE)

of State Energy Codes: Residential Sector (1) Note(s): Source(s): 1) These are the current residential codes as of March 2012. DOEEERE, The Status of State Energy Codes, www...

18

NASA Lewis steady-state heat pipe code users manual  

SciTech Connect

The NASA Lewis heat pipe code has been developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or, with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which the monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.

Tower, L.K. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Baker, K.W. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Marks, T.S. [Oregon State Univ., Corvallis, OR (United States)

1992-06-01T23:59:59.000Z

19

Magic-state distillation with the four-qubit code  

E-Print Network (OSTI)

The distillation of magic states is an often-cited technique for enabling universal quantum computing once the error probability for a special subset of gates has been made negligible by other means. We present a routine for magic-state distillation that reduces the required overhead for a range of parameters of practical interest. Each iteration of the routine uses a four-qubit error-detecting code to distill the +1 eigenstate of the Hadamard gate at a cost of ten input states per two improved output states. Use of this routine in combination with the 15-to-1 distillation routine described by Bravyi and Kitaev allows for further improvements in overhead.

Adam M. Meier; Bryan Eastin; Emanuel Knill

2012-04-18T23:59:59.000Z

20

UTILITYID","UTILNAME","STATE_CODE","YEAR","MONTH","RESIDENTIAL...  

U.S. Energy Information Administration (EIA) Indexed Site

VT)","VT",2013,1,1372,8449,16525,2476,15128,3706,777,5247,12,0,0,0,4625,28824,20243 7601,"Green Mountain Power Corp","VT",2013,1,28620,159754,218382,18657,134557,38190,10074,105040...

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alabama State Certification of Residential Building Codes | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Name: Adams Initials: TL Affiliation: Alabama Department of Economic and Community Affairs Focus: Adoption Building Type: Residential Code Referenced: 2009 IECC 2009 IRC...

22

A steady state analysis code for prediction of behavior in loop heat pipes.  

E-Print Network (OSTI)

??The purpose of this work is to prepare an analysis raphics. code for the prediction of Loop Heat Pipe (LHP) behavior in steady-state operation. The (more)

Hamm, Trenton Allen

2012-01-01T23:59:59.000Z

23

Texas Administrative Code Office of the Secretary of State  

E-Print Network (OSTI)

School childrens artwork has decorated the blank filler pages of the Texas Register since 1987. Teachers throughout the state submit the drawings for students in grades K-12. The drawings dress up the otherwise gray pages of the Texas Register and introduce students to this obscure but important facet of state government. We will display artwork on the cover of each Texas Register. The artwork featured on the front cover is chosen at random. The artwork is published on what would otherwise be blank pages in the Texas Register. These blank pages are caused by the production process used to print the Texas Register. The artwork does not add additional pages to each issue and does not increase the cost of the Texas Register. For more information about the student art project, please call (800) 226-7199. Texas Register, ISSN 0362-4781, is published weekly, 52 times a year. Issues will be published

Dana Blanton; John Cartwright; Ann Franklin; Daneane Jarzombek; Roberta Knight; Kelly Ramsey; Becca Williams; Director Dan Procter; Jill S. Ledbetter

1997-01-01T23:59:59.000Z

24

Solid-State Lighting: DOE Five Year Commercialization Support Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: DOE Five Year Commercialization Support Plan to someone by E-mail Share Solid-State Lighting: DOE Five Year Commercialization Support Plan on Facebook Tweet about Solid-State Lighting: DOE Five Year Commercialization Support Plan on Twitter Bookmark Solid-State Lighting: DOE Five Year Commercialization Support Plan on Google Bookmark Solid-State Lighting: DOE Five Year Commercialization Support Plan on Delicious Rank Solid-State Lighting: DOE Five Year Commercialization Support Plan on Digg Find More places to share Solid-State Lighting: DOE Five Year Commercialization Support Plan on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos

25

Entity State Code Class of Ownership Residential Commercial...  

U.S. Energy Information Administration (EIA) Indexed Site

Code Class of Ownership Residential Commercial Industrial Transportation All Sectors DTE Energy Services AL Non-Utility - - 458,868 - 458,868 Riceland Foods Inc. AR Non-Utility -...

26

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Codes and Standards Safety, Codes and Standards Multi-Year Research, Development and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use with market deployment and commercialization underway. The Safety, Codes and Standards sub-program (SCS) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing information resources for their safe use. SCS relies on extensive input from automobile

27

Literature review of United States utilities computer codes for calculating actinide isotope content in irradiated fuel  

SciTech Connect

This paper reviews the accuracy and precision of methods used by United States electric utilities to determine the actinide isotopic and element content of irradiated fuel. After an extensive literature search, three key code suites were selected for review. Two suites of computer codes, CASMO and ARMP, are used for reactor physics calculations; the ORIGEN code is used for spent fuel calculations. They are also the most widely used codes in the nuclear industry throughout the world. Although none of these codes calculate actinide isotopics as their primary variables intended for safeguards applications, accurate calculation of actinide isotopic content is necessary to fulfill their function.

Horak, W.C.; Lu, Ming-Shih

1991-12-01T23:59:59.000Z

28

Comparison of current state residential energy codes with the 1992 model energy code for one- and two-family dwellings; 1994  

Science Conference Proceedings (OSTI)

This report is one in a series of documents describing research activities in support of the US Department of Energy (DOE) Building Energy Codes Program. The Pacific Northwest Laboratory (PNL) leads the program for DOE. The goal of the program is to develop and support the adopting, implementation, and enforcement of Federal, State, and Local energy codes for new buildings. The program approach to meeting the goal is to initiate and manage individual research and standards and guidelines development efforts that are planned and conducted in cooperation with representatives from throughout the buildings community. Projects under way involve practicing architects and engineers, professional societies and code organizations, industry representatives, and researchers from the private sector and national laboratories. Research results and technical justifications for standards criteria are provided to standards development and model code organizations and to Federal, State, and local jurisdictions as a basis to update their codes and standards. This effort helps to ensure that building standards incorporate the latest research results to achieve maximum energy savings in new buildings, yet remain responsive to the needs of the affected professions, organizations, and jurisdictions. Also supported are the implementation, deployment, and use of energy-efficient codes and standards. This report documents findings from an analysis conducted by PNL of the State`s building codes to determine if the codes meet or exceed the 1992 MEC energy efficiency requirements (CABO 1992a).

Klevgard, L.A.; Taylor, Z.T.; Lucas, R.G.

1995-01-01T23:59:59.000Z

29

Title 49 United States Code (USC) Section 40118 01/03/05  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 United States Code (USC) Section 40118 01/03/05 9 United States Code (USC) Section 40118 01/03/05 Title 49 - Transportation, Subtitle VII - Aviation Programs, Part A - Air Commerce and Safety, subpart i - general, Chapter 401 - General Provisions, Sec. 40118. Government-financed air transportation - STATUTE- (a) Transportation by Air Carriers Holding Certificates. - A department, agency, or instrumentality of the United States Government shall take necessary steps to ensure that the transportation of passengers and property by air is provided by an air carrier holding a certificate under section 41102 of this title if - (1) the department, agency, or instrumentality - (A) obtains the transportation for itself or in carrying out an arrangement under which payment is made by the Government or payment is made from amounts

30

An Evaluation of State Energy Program Accomplishments: 2002 Program Year  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's (DOE's) State Energy Program (SEP) was established in 1996 by merging the State Energy Conservation Program (SECP) and the Institutional Conservation Program (ICP), both of which had been in existence since 1976 (U.S. DOE 2001a). The SEP provides financial and technical assistance for a wide variety of energy efficiency and renewable energy activities undertaken by the states and territories. SEP provides money to each state and territory according to a formula that accounts for population and energy use. In addition to these ''Formula Grants'', SEP ''Special Project'' funds are made available on a competitive basis to carry out specific types of energy efficiency and renewable energy activities (U.S. DOE 2003c). The resources provided by DOE typically are augmented by money and in-kind assistance from a number of sources, including other federal agencies, state and local governments, and the private sector. The states SEP efforts include several mandatory activities, such as establishing lighting efficiency standards for public buildings, promoting car and vanpools and public transportation, and establishing policies for energy-efficient government procurement practices. The states and territories also engage in a broad range of optional activities, including holding workshops and training sessions on a variety of topics related to energy efficiency and renewable energy, providing energy audits and building retrofit services, offering technical assistance, supporting loan and grant programs, and encouraging the adoption of alternative energy technologies. The scope and variety of activities undertaken by the various states and territories is extremely broad, and this reflects the diversity of conditions and needs found across the country and the efforts of participating states and territories to respond to them. The purpose of this report is to present estimates of the energy and cost savings and emissions reductions associated with SEP activities performed by the states during the 2002 program year, based on primary data provided by the states themselves. This is the second systematic evaluation of SEP accomplishments performed by Oak Ridge National Laboratory (ORNL) for DOE. A report documenting the findings of the first study was published in January 2003 (Schweitzer et.al., 2003).

Schweitzer, M.

2005-07-13T23:59:59.000Z

31

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Michigan Program Type Building Energy Code Provider Michigan Department of Labor and Economic Growth ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code. The state energy code is evaluated for revisions or modifications every three years. The new code requirements are adopted at the beginning of each state building code cycle (which corresponds with the three-year cycle of

32

PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code  

SciTech Connect

This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

Vondy, D.R.

1981-09-01T23:59:59.000Z

33

IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS AT STATE LEVELBUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS AT STATE LEVEL Executive Summary  

E-Print Network (OSTI)

The Building Energy Codes Program (BECP) recently conducted a nationwide residential energy code analysis for the U.S. Department of Energy (DOE). The analysis compares the requirements of the 2009 International Energy Conservation Code (IECC) with the residential codeor typical construction practice in the absence of a codein most states as of June 2009. The results, which include estimated typical energy savings of updating each states code to the 2009 IECC, are provided in this report in chapters specific to each state. An overview of the 2009 IECC and its major chapters, as well as a brief comparison to previous versions, is provided as introductory information. The IECC is then briefly compared to the International Residential Code, which contains a chapter with energy efficiency requirements that are very similar to the IECC. Several states have either not adopted a mandatory energy code or developed their own codes which have minimal or no connection to the IECC. The latterincluding California, Florida, Oregon, and Washington were not included in this analysis as the codes in these states would be difficult to appropriately compare to the 2009 IECC and most of these states have energy offices that have already assessed the IECC on their own. Chapter 2 is dedicated to outlining some of the major code differences in the 2009 IECC that are not contained in any previous version of the code, and to which much of the energy savings of the 2009 IECC compared to previous versions is attributable. These energy saving differences are described in further detail in the report,

unknown authors

2009-01-01T23:59:59.000Z

34

SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis  

SciTech Connect

Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

Basehore, K.L.; Todreas, N.E.

1980-08-01T23:59:59.000Z

35

Harmonizing Above Code Codes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harmonizing "Above Code" Harmonizing "Above Code" Codes Doug Lewin Executive Director, SPEER 6 Regional Energy Efficiency Organizations SPEER Members Texas grid facing an energy crisis * No new generation coming online * Old, inefficient coal-fired plants going offline * ERCOT CEO Trip Doggett said "We are very concerned about the significant drop in the reserve margin...we will be very tight on capacity next summer and have a repeat of this year's emergency procedures and conservation appeals." Higher codes needed to relieve pressure Building Codes are forcing change * 2012 IECC 30% higher than 2006 IECC * IRC, the "weaker code," will mirror IECC in 2012 * City governments advancing local codes with

36

Texas State Building Energy Code: Analysis of Potential Benefits and Costs of Commercial Lighting Requirements  

SciTech Connect

The State Energy Conservation Office of Texas has asked the U.S. Department of Energy to analyze the potential energy effect and cost-effectiveness of the lighting requirements in the 2003 IECC as they consider adoption of this energy code. The new provisions of interest in the lighting section of IECC 2003 include new lighting power densities (LPD) and requirements for automatic lighting shutoff controls. The potential effect of the new LPD values is analyzed as a comparison with previous values in the nationally available IECC codes and ASHRAE/IESNA 90.1. The basis for the analysis is a set of lighting models developed as part of the ASHRAE/IES code process, which is the basis for IECC 2003 LPD values. The use of the models allows for an effective comparison of values for various building types of interest to Texas state. Potential effects from control requirements are discussed, and available case study analysis results are provided but no comprehensive numerical evaluation is provided in this limited analysis effort.

Richman, Eric E.; Belzer, David B.; Winiarski, David W.

2005-09-15T23:59:59.000Z

37

FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations  

SciTech Connect

A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B & W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL`s pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

Ding, Jianmin; Lyczkowski, R.W. [Argonne National Lab., IL (United States); Burge, S.W. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center

1993-02-01T23:59:59.000Z

38

FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations  

SciTech Connect

A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL's pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

Ding, Jianmin; Lyczkowski, R.W. (Argonne National Lab., IL (United States)); Burge, S.W. (Babcock and Wilcox Co., Alliance, OH (United States). Research Center)

1993-02-01T23:59:59.000Z

39

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Montana Program Type Building Energy Code Provider Building Codes Bureau ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The energy codes are reviewed on a three-year cycle corresponding to the adoption of new versions of the International Code Conference (ICC) Uniform

40

2000 Years of Drought Variability in the Central United States  

Science Conference Proceedings (OSTI)

Droughts are one of the most devastating natural hazards faced by the United States today. Severe droughts of the twentieth century have had large impacts on economies, society, and the environment, especially in the Great Plains. However, the ...

Connie A. Woodhouse; Jonathan T. Overpeck

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solid-State Lighting: Text-Alternative Version: DOE Five Year  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE DOE Five Year Commercialization Support Plan to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Google Bookmark Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Delicious Rank Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on Digg Find More places to share Solid-State Lighting: Text-Alternative Version: DOE Five Year Commercialization Support Plan on AddThis.com... Conferences & Meetings

42

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network (OSTI)

piloting a state-level training program for code officialsrecommended three-tier training program are also available,year on education and training programs in four Northwest

Williams, Alison

2013-01-01T23:59:59.000Z

43

Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004  

SciTech Connect

This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.

Richman, Eric E.

2006-09-29T23:59:59.000Z

44

How much oil does the United States consume per year? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

How much oil does the United States consume per year? The United States consumed a total of 6.87 billion barrels (18.83 million barrels per day) in 2011 and 7.0 ...

45

United States History of Stripper (< 15 BOE/Day) Oil Wells by Year  

U.S. Energy Information Administration (EIA)

United States History of Stripper (< 15 BOE/Day) Oil Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

46

Years  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology in and Technology in the National Interest 60 Years of Excellence Lawrence Livermore National Laboratory FY 2012 Annual Report About the Cover: Lawrence Livermore National Laboratory (LLNL) engineers Chris Spadaccini (left) and Eric Duoss are shown experimenting with direct ink-writing to create micro- to macroscale structures with extreme precision. The Laboratory is advancing this process and other additive manufacturing technologies to develop new materials with extraordinary properties for use in a wide range of national-security and other applications. About the Laboratory: Lawrence Livermore National Laboratory was founded in 1952 to enhance the security of the United States by advancing nuclear weapons science and technology. With a talented and dedicated workforce and

47

Arizona | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

None Statewide Amendments Additional State Code Information Arizona has no statewide energy code. However, many counties have adopted the IECC 2006 as an energy efficiency code....

48

SALT (System Analysis Language Translater): A steady state and dynamic systems code  

DOE Green Energy (OSTI)

SALT (System Analysis Language Translater) is a lumped parameter approach to system analysis which is totally modular. The modules are all precompiled and only the main program, which is generated by SALT, needs to be compiled for each unique system configuration. This is a departure from other lumped parameter codes where all models are written by MACROS and then compiled for each unique configuration, usually after all of the models are lumped together and sorted to eliminate undetermined variables. The SALT code contains a robust and sophisticated steady-sate finder (non-linear equation solver), optimization capability and enhanced GEAR integration scheme which makes use of sparsity and algebraic constraints. The SALT systems code has been used for various technologies. The code was originally developed for open-cycle magnetohydrodynamic (MHD) systems. It was easily extended to liquid metal MHD systems by simply adding the appropriate models and property libraries. Similarly, the model and property libraries were expanded to handle fuel cell systems, flue gas desulfurization systems, combined cycle gasification systems, fluidized bed combustion systems, ocean thermal energy conversion systems, geothermal systems, nuclear systems, and conventional coal-fired power plants. Obviously, the SALT systems code is extremely flexible to be able to handle all of these diverse systems. At present, the dynamic option has only been used for LMFBR nuclear power plants and geothermal power plants. However, it can easily be extended to other systems and can be used for analyzing control problems. 12 refs.

Berry, G.; Geyer, H.

1983-01-01T23:59:59.000Z

49

EcoCAR 2 Competition Announces Year Two Winner: Penn State University |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR 2 Competition Announces Year Two Winner: Penn State EcoCAR 2 Competition Announces Year Two Winner: Penn State University EcoCAR 2 Competition Announces Year Two Winner: Penn State University May 24, 2013 - 2:14pm Addthis News Media Contact (202) 586-4940 SAN DIEGO, Calif. - EcoCAR 2: Plugging In to the Future today named Pennsylvania State University its Year Two winner at the EcoCAR 2013 Competition in San Diego. The 15 universities competing in EcoCAR 2 gathered in Yuma, Arizona last week for six days of rigorous vehicle testing and evaluation on drive quality and environmental impact at General Motors (GM) Desert Proving Ground. From there, the competition moved to San Diego for a second round of judging by automotive industry experts. EcoCAR 2 -- a three-year competition managed by Argonne National Laboratory

50

EcoCAR 2 Competition Announces Year Two Winner: Penn State University |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR 2 Competition Announces Year Two Winner: Penn State EcoCAR 2 Competition Announces Year Two Winner: Penn State University EcoCAR 2 Competition Announces Year Two Winner: Penn State University May 24, 2013 - 2:14pm Addthis News Media Contact (202) 586-4940 SAN DIEGO, Calif. - EcoCAR 2: Plugging In to the Future today named Pennsylvania State University its Year Two winner at the EcoCAR 2013 Competition in San Diego. The 15 universities competing in EcoCAR 2 gathered in Yuma, Arizona last week for six days of rigorous vehicle testing and evaluation on drive quality and environmental impact at General Motors (GM) Desert Proving Ground. From there, the competition moved to San Diego for a second round of judging by automotive industry experts. EcoCAR 2 -- a three-year competition managed by Argonne National Laboratory

51

Property:Incentive/CodeChgCycle | Open Energy Information  

Open Energy Info (EERE)

CodeChgCycle CodeChgCycle Jump to: navigation, search Property Name Incentive/CodeChgCycle Property Type Text Description Code Change Cycle. Pages using the property "Incentive/CodeChgCycle" Showing 25 pages using this property. (previous 25) (next 25) B Building Energy Code (Alabama) + No set schedule. Most recent update effective October 1, 2012 Building Energy Code (Alaska) + No set schedule. Most recent update effective: March 9, 2011 Building Energy Code (Arizona) + No set schedule. Arizona is a home rule state and legislation is the normal route through which changes in the energy code proceed. Building Energy Code (Arkansas) + No set schedule. Most recent residential update effective: October 1, 2004. Building Energy Code (California) + Three-year code change cycle. The 2008 Standards took effect January 1, 2010. The 2012 Standards are scheduled to take effect in 2014.

52

Alternative fuel vehicles for the state fleets: Results of the 5-year planning process  

DOE Green Energy (OSTI)

This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

Not Available

1993-05-01T23:59:59.000Z

53

Joint Source-Channel Coding over a Fading Multiple Access Channel with Partial Channel State Information  

E-Print Network (OSTI)

In this paper we address the problem of transmission of correlated sources over a fast fading multiple access channel (MAC) with partial channel state information available at both the encoders and the decoder. We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). We provide the optimal power allocation strategy and compare the strategy with various levels of channel state information. Keywords: Fading MAC, Power allocation, Partial channel state information, Correlated sources.

Rajesh, R

2009-01-01T23:59:59.000Z

54

EcoCAR 2 Announces Year One Winner: Mississippi State University |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR 2 Announces Year One Winner: Mississippi State University EcoCAR 2 Announces Year One Winner: Mississippi State University EcoCAR 2 Announces Year One Winner: Mississippi State University May 24, 2012 - 10:40am Addthis NEWS MEDIA CONTACT (202) 586-4940 Los Angeles, Calif. - EcoCAR 2: Plugging In to the Future today named Mississippi State University its Year One winner at the EcoCAR 2012 Competition in Los Angeles. The 15 universities competing in EcoCAR 2 gathered for six days of judged competition this week with $100,000 in prize money up for grabs. EcoCAR 2, a three-year competition sponsored by the U.S. Department of Energy (DOE), General Motors (GM) and 25 other government and industry leaders, gives students the opportunity to gain real-world, eco-friendly automotive engineering experience while striving to improve the energy efficiency of an already highly-efficient vehicle -

55

YEAR  

National Nuclear Security Administration (NNSA)

1 1 YEAR 2011 Males 18 Females 23 YEAR 2011 SES 2 EJ/EK 2 NQ (Prof/Tech/Admin) 35 NU (Tech/Admin Support) 2 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 9 Asian Male 0 Asian Female 0 Hispanic Male 2 Hispanic Female 6 White Male 12 White Female 6 DIVERSITY Workforce Diversity Associate Administrator for Information Management & Chief Information Officer, NA-IM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 18 43.9% 23 56.1% Gender Males Females 4.9% 4.9% 85.4% 4.9% Pay Plan SES EJ/EK NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 2.4% 4.9% 7.3% 22.0% 0.0% 0.0% 4.9% 14.6% 29.3% 14.6% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

56

YEAR  

National Nuclear Security Administration (NNSA)

4 4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 31 NU (Tech/Admin Support) 5 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 2 Asian Male 1 Asian Female 1 Hispanic Male 6 Hispanic Female 10 White Male 13 White Female 10 DIVERSITY Workforce Diversity Office of General Counsel, NA-GC As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 21 47.7% 23 52.3% Gender Males Females 6.8% 2.3% 2.3% 6.8% 70.5% 11.4% Pay Plan SES EJ/EK EN 03 NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.0% 0.0% 2.3% 4.5% 2.3% 2.3% 13.6% 22.7% 29.5% 22.7% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

57

YEAR  

National Nuclear Security Administration (NNSA)

6 6 YEAR 2011 Males 7 Females 9 YEAR 2011 SES 1 NQ (Prof/Tech/Admin) 9 GS 15 2 GS 13 2 GS 12 1 GS 11 1 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 3 Asian Male 1 Asian Female 0 Hispanic Male 1 Hispanic Female 0 White Male 4 White Female 6 DIVERSITY Workforce Diversity Associate Administrator of External Affairs, NA-EA As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 7 43.8% 9 56.3% Gender Males Females 6.3% 56.3% 12.5% 12.5% 6.3% 6.3% Pay Plan SES NQ (Prof/Tech/Admin) GS 15 GS 13 GS 12 GS 11 0.0% 0.0% 6.3% 18.8% 6.3% 0.0% 6.3% 0.0% 25.0% 37.5% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male Hispanic Female White Male White Female FY11 Workforce Diversity

58

YEAR  

National Nuclear Security Administration (NNSA)

40 40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJ/EK 1 NN (Engineering) 16 NQ (Prof/Tech/Admin) 115 NU (Tech/Admin Support) 3 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 7 Asian Male 4 Asian Female 0 Hispanic Male 25 Hispanic Female 26 White Male 35 White Female 37 DIVERSITY Workforce Diversity Associate Administrator for Acquistion & Project Management, NA-APM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 68 48.6% 72 51.4% Gender Males Females 3.6% 0.7% 11.4% 82.1% 2.1% Pay Plan SES EJ/EK NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.7% 1.4% 2.1% 5.0% 2.9% 0.0% 17.9% 18.6% 25.0% 26.4% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male

59

An implicit steady-state initialization package for the RELAP5 computer code  

Science Conference Proceedings (OSTI)

A direct steady-state initialization (DSSI) method has been developed and implemented in the RELAP5 hydrodynamic analysis program. It provides a means for users to specify a small set of initial conditions which are then propagated through the remainder of the system. The DSSI scheme utilizes the steady-state form of the RELAP5 balance equations for nonequilibrium two-phase flow. It also employs the RELAP5 component models and constitutive model packages for wall-to-phase and interphase momentum and heat exchange. A fully implicit solution of the linearized hydrodynamic equations is implemented. An implicit coupling scheme is used to augment the standard steady-state heat conduction solution for steam generator use. It solves the primary-side tube region energy equations, heat conduction equations, wall heat flux boundary conditions, and overall energy balance equation as a coupled system of equations and improves convergence. The DSSI method for initializing RELAP5 problems to steady-state conditions has been compared with the transient solution scheme using a suite of test problems including; adiabatic single-phase liquid and vapor flow through channels with and without healing and area changes; a heated two-phase test bundle representative of BWR core conditions; and a single-loop PWR model.

Paulsen, M.P.; Peterson, C.E.; Odar, F.

1995-08-01T23:59:59.000Z

60

Table 1. State energy-related carbon dioxide emissions by year (2000 - 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State energy-related carbon dioxide emissions by year (2000 - 2010)" State energy-related carbon dioxide emissions by year (2000 - 2010)" "million metric tons carbon dioxide" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,," 2000 to 2010 " "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",140.4264977,131.9521389,136.7103146,137.2323195,139.6896437,141.493798,143.9716001,146.076107,139.2224128,119.7962734,132.7462762,-0.05469211069,-7.680221558 "Alaska",44.32104312,43.40375114,43.56121812,43.5078746,46.76217106,48.06229125,45.79367017,44.11576503,39.46205329,37.91867389,38.72718369,-0.1262122693,-5.593859429 "Arizona",85.96984024,88.33838336,87.66914741,89.29026566,96.58329461,96.7032775,100.0087541,102.1950438,103.1458188,94.63481918,95.91303514,0.1156591064,9.943194897

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Iowa | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

utility company must obtain a written statementcertification from the builder or homeowner attesting to their compliance with the state energy code. Code enforcement is...

62

Buildings Energy Data Book: 7.8 State Building Energy Codes  

Buildings Energy Data Book (EERE)

3 3 Building Energy Rating and Disclosure Policies in the United States Commercial Buildings Commercial Buildings Public Buildings Homes Existing Policy Policy Being Considered Rating Requirement Disclosure Requirement Austin, TX Connecticut Arlington County, VA Alaska California Colorado Denver, CO Austin, TX District of Columbia Illinois Hawaii Kansas New York, NY Maine Michigan Montgomery County, MD San Francisco, CA Maryland Minnesota Nevada Seattle, WA Massachusetts Ohio New York Washington New Mexico West Chester, PA Santa Fe, NM Oregon South Dakota Portland, OR Tennessee Vermont Note(s): Source(s): Map depicts the policy landscape as of March 17, 2011. More information available at www.BuildingRating.org. Institute for Market Transformation, "Rating Policy Map and Timeline."

63

State  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel Producers and Production Capacity by State, September 2013 Biodiesel Producers and Production Capacity by State, September 2013 State Number of Producers Annual Production Capacity (million gallons per year) Alabama 3 47 Alaska - - Arizona 1 2 Arkansas 3 85 California

64

Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 2001  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory is subject to annual emissions-reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. For calendar year 2001, the Technical Area 3 steam plant was the primary source of criteria air pollutants from the Laboratory, while research and development activities were the primary source of volatile organic compounds. Emissions of beryllium and aluminum were reported for activities permitted under 20.2.72 NMAC. Hazardous air pollutant emissions from chemical use for research and development activities were also reported.

Margorie Stockton

2003-04-01T23:59:59.000Z

65

Step 1. Understand the Benefits of Code Adoption | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

1. Understand the Benefits of Code Adoption 1. Understand the Benefits of Code Adoption Before beginning the code adoption process, states and jurisdictions should understand the benefits realized through energy code adoption. Description The primary goal of an energy code or standard is to conserve energy. Commercial buildings and residential households in the United States consume nearly 50% of the nation's total primary energy, 70% of the nation's electricity, and account for one-third of the nation's greenhouse emissions.1 A report by the McKinsey Global Institute found that America could reduce energy use in new and existing buildings by more than one quarter by 2020 with measures that pay for themselves within 10 years.2 Energy code adoption enables new and renovated residential and commercial

66

Evolving Priorities: Canadian Oil Policy and the United States in the years leading up to the Oil Crisis of 1973.  

E-Print Network (OSTI)

??This study investigates the relationship between the oil industries of Canada and the United States in the years leading up to the 1973 oil crisis. (more)

Muller, Ian

2008-01-01T23:59:59.000Z

67

Alabama | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption » Status of State Energy Code Adoption Adoption » Status of State Energy Code Adoption Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Alabama Last updated on 2013-05-31 Current News The Alabama Energy and Residential Codes Board adopted the 2009 International Energy Conservation Code (IECC) for Commercial Buildings and the 2009 International Residential Code (IRC) for Residential Construction. The new codes will become effective on October 1, 2012. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in Alabama (BECP Report, Sept. 2009)

68

11. CONTRACT ID CODE  

National Nuclear Security Administration (NNSA)

30030 Amarillo, TX 79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120...

69

Florida | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Florida Last updated on 2013-11-18 Current News The triennial code change process is currently underway. Florida expects to be equivalent to ASHRAE 90.1-10 and IECC 2012 by early 2014. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information N/A Approved Compliance Tools Can use State specific EnergyGauge Summit FlaCom State Specific Research Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/15/2012 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Florida DOE Determination Letter, May 31, 2013 Florida State Certification of Commercial Building Codes Current Code State Specific Amendments / Additional State Code Information Florida Building Code

70

Washington | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington Washington Last updated on 2013-11-05 Current News The Washington State Building Code Council recently completed deliberations on adoption and amendment of the 2012 codes. This includes adoption of the 2012 IECC with state amendments. The new codes became effective July 1, 2013. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information WA 2012 Nonresidential Codes Approved Compliance Tools Nonresidential Energy Code Compliance Tools Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2010 Effective Date 07/01/2013 Adoption Date 02/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Washington DOE Determination Letter, May 31, 2013 Washington State Certification of Commercial and Residential Building Energy Codes

71

Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20.2.73 NMAC) for Calendar Year 2003  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory is subject to annual emissions-reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. For calendar year 2003, the Technical Area 3 steam plant and the air curtain destructors were the primary sources of criteria air pollutants from the Laboratory, while the air curtain destructors and chemical use associated with research and development activities were the primary sources of volatile organic compounds and hazardous air pollutants. Emissions of beryllium and aluminum were reported for activities permitted under 20.2.72 NMAC. Hazardous air pollutant emissions were reported from chemical use as well as from all combustion sources. In addition, estimates of particulate matter with diameter less than 2.5 micrometers and ammonia were provided as requested by the New Mexico Environment Department, Air Quality Bureau.

M. Stockton

2005-01-01T23:59:59.000Z

72

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

73

Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)  

Science Conference Proceedings (OSTI)

In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

2012-08-01T23:59:59.000Z

74

International Code Assessment and Applications Program: Summary of code assessment studies concerning RELAP5/MOD2, RELAP5/MOD3, and TRAC-B. International Agreement Report  

Science Conference Proceedings (OSTI)

Members of the International Code Assessment Program (ICAP) have assessed the US Nuclear Regulatory Commission (USNRC) advanced thermal-hydraulic codes over the past few years in a concerted effort to identify deficiencies, to define user guidelines, and to determine the state of each code. The results of sixty-two code assessment reviews, conducted at INEL, are summarized. Code deficiencies are discussed and user recommended nodalizations investigated during the course of conducting the assessment studies and reviews are listed. All the work that is summarized was done using the RELAP5/MOD2, RELAP5/MOD3, and TRAC-B codes.

Schultz, R.R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-12-01T23:59:59.000Z

75

Nebraska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Nebraska Last updated on 2013-11-04 Current News Nebraska Legislature adopted the 2009 IECC/ASHRAE 90.1-2007. The code became effective August 27, 2011. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Cities and counties may adopt codes that differ from the Nebraska Energy Code; however, state law requires the adopted code to be equivalent to the Nebraska Energy Code. For existing buildings, only those renovations that will cost more than 50 percent of the replacement cost of the building must comply with the code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Nebraska (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

76

Georgia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Georgia Last updated on 2013-07-18 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use COMcheck Must choose ASHRAE 90.1-2007 as code option. State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Georgia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 01/01/2011 Adoption Date 11/03/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Georgia State Certification of Commercial and Residential Building Codes Extension Request Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use REScheck

77

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1  

SciTech Connect

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

Not Available

1994-12-01T23:59:59.000Z

78

Kansas State University electric vehicle site operator program. Year 1, second quarter report, October 1, 1991--December 30, 1991  

DOE Green Energy (OSTI)

K-State is presently working with Grumman Allied and Unique Mobility to establish a working agreement for the research and development of a pure electric postal vehicle. K-State has worked on the design of this vehicle for the past year and is working to establish the appropriate consortium to bring this vehicle to commercial realization. K-State is working to establish infrastructure support for electric vehicles. Presently, a Kansas company is working with K-State to bring its patented low-cost vehicle metering product to market. An anticipated second year DOE project would provide 100 electric metering stations to Southern California for a large scale electric vehicle infrastructure demonstration project. This project would allow a parking lot(s) to be made EV ready. K-State`s Site Operator Program continues to get the ``word-out`` about electric vehicles. From a personal visit by Senator Bob Dole, to Corporate Board of Director Meetings, to school classrooms, to shopping mall demonstrations; K-State Employees are increasing public access and awareness about the electric vehicle industry. As has been shown in this report, K-State`s G-Van has logged an average eighteen miles per day while maintaining a full schedule of public relations tours within the state of Kansas and Missouri. K-State has now been contacted by companies in Nebraska and Iowa requesting information and involvement in this program. Kansas and Kansas State will continue its work to contribute to the Site Operator Program effort. With the purchase of two additional electric vehicles and the pending request to purchase two more electric vehicles during the next contractual year, K-states`s program will grow. When vehicle development plans and infrastructure requirements are solidified, K-State`s program will be ready to participate and be a major contributor to the development and introduction of this technology.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-12-31T23:59:59.000Z

79

Annual report to the President and the Congress on the State Energy Conservation Program for calendar year 1985  

SciTech Connect

Many of the 1985 objectives were brought forward from 1984 as part of a multi-year plan. Thus, the 1985 achievements must be measured as progressive milestones toward achieving the ultimate goal. A few of these milestones are programmatic monitoring strengthened by a revision and implementation of new monitoring guidelines; states developed increased awareness of the need to bring other partners into their projects to add to their resources; multi-regional meetings between states were held to transfer project information between the states, training and technical assistance were provided by DOE for SECP grantees; and there was the continued development of state self-sufficiency in the SECP area.

Not Available

1986-10-01T23:59:59.000Z

80

Step 2. Identify a Code Support Infrastructure | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

2. Identify a Code Support Infrastructure Utilities can play several roles in support of building energy codes. Examples include partnering with states and localities during code...

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

COMcheck201 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

International Energy Conservation Code (IECC) Software: COMcheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

82

COMcheck Basics | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

International Energy Conservation Code (IECC) Software: COMcheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

83

REScheck Basics | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

International Energy Conservation Code (IECC) Software: REScheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

84

COMcheck for Oregon | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

International Energy Conservation Code (IECC) Software: COMcheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

85

Cost-Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States  

SciTech Connect

This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous U.S. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are as follows: to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

Fairey, P.; Parker, D.

2012-11-01T23:59:59.000Z

86

Minnesota | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota Minnesota Last updated on 2013-06-03 Current News The 2009 editions of the International Residential Code (IRC), International Building Code (IBC), and International Fire Code (IFC) will be published soon and the Construction Codes and Licensing Division and the State Fire Marshal Division have been discussing this adoption. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2004 with Amendments Amendments / Additional State Code Information Commercial Energy Code Approved Compliance Tools Compliance forms can be downloaded from ASHRAE State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Minnesota (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than ASHRAE 90.1-2004 Effective Date 06/01/2009

87

Michigan | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Michigan Michigan Last updated on 2013-06-03 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information 2009 Commercial MI Uniform Energy Code Rules Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Michigan (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/09/2011 Adoption Date 11/08/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Michigan DOE Determination Letter, May 31, 2013 Current Code 2009 IECC with Amendments Amendments / Additional State Code Information 2009 Residential MI Uniform Energy Code Rules Approved Compliance Tools Can use REScheck

88

Annual report to the President and the Congress on the State Energy Conservation Program for Calendar Year 1984  

Science Conference Proceedings (OSTI)

The Annual Report to the President and the Congress on the State Energy Conservation Program (SECP) for Calendar Year 1984 is required to be prepared and transmitted annually by section 365 (c) of the Energy Policy and Conservation Act (EPCA), Public Law 94-163, 42 U.S.C. 6325(c). This is the ninth annual report and discusses the activities in the State Energy Conservation Program from December 1983 through December 1984.

Not Available

1985-08-01T23:59:59.000Z

89

Energy consumption evaluation of United States Navy LEED certified buildings for fiscal year 2009 .  

E-Print Network (OSTI)

??As of October 1, 2008, the Department of the Navy inserted the requirement that all new buildings constructed for the United States Navy and United (more)

Mangasarian, Seth

2010-01-01T23:59:59.000Z

90

T ID CODE I  

National Nuclear Security Administration (NNSA)

I 9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 10A. MODIFICATION OF CONTRACTIORDER NO. DE-AC52-06NA25396 3. EFFECTIVE DATE See...

91

Site Map | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption State Technical Assistance Status of State Energy Code Adoption Adoption Process State Pages Alabama Louisiana Oklahoma Alaska Maine Oregon American Samoa Maryland...

92

Annual report to the President and the Congress on the State Energy Conservation Program for calendar year 1989  

SciTech Connect

The Department is required by Section 365(c) of Title 3, Part C, of the Energy Policy and Conservation Act (EPCA), 42 U.S.C. 6321-6327, as amended by Title 4, Part B of the Energy Conservation and Production Act (ECPA), to report annually to the President and the Congress on the operation of the State Energy Conservation Program. The report is to include an estimate of the energy conservation achieved, and the degree of state participation and achievement as well as a description of innovative conservation programs undertaken by individual states. Together the EPCA and the ECPA constitute the State Energy Conservation Program (SECP) which has provided the states (any one of the 50 states, the District of Columbia, Puerto Rico, and the Territories and possessions of the United States) with funding to help establish and maintain their capability to plan, design, implement and coordinate a variety of programs and initiatives designed to promote energy conservation and efficiency at state and local levels. All states have operational programs funded under EPCA (no monies have been appropriated under ECPA since FY 1981). In addition, the majority of states have augmented the SECP with oil overcharge funding they have received over the past several years. Each state is required to provide a twenty-percent match for the Federal funds received, and its Base Plan must include the following program measures: (1) mandatory lighting efficiency standards for state public buildings; (2) programs to promote the availability and use of carpool, vanpool, and public transportation; (3) mandatory standards and policies relating to energy efficiency to govern the state procurement practices; (4) mandatory thermal efficiency standards and insulation requirements for new and renovated buildings; and (5) a traffic law or regulation, which permits the operator of a motor vehicle to turn right at a red stop light after stopping. 6 tabs.

Not Available

1990-12-01T23:59:59.000Z

93

Delaware | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Delaware Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Agriculture structures are excluded. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Delaware (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 07/29/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Delaware DOE Determination Letter, May 31, 2013 Delaware State Certification of Commercial and Residential Building Energy Codes

94

Variation in United States Cloudiness and Sunshine Duration between 1950 and the Drought Year of 1988  

Science Conference Proceedings (OSTI)

The variations in United States cloudiness (percent of sky covered by clouds, as estimated subjectively by observers at 100 National Weather Service stations) and sunshine duration (percent of possible sunshine, as estimated objectively by ...

J. K. Angell

1990-02-01T23:59:59.000Z

95

The Identification of 10- to 20-Year Temperature and Precipitation Fluctuations in the Contiguous United States  

Science Conference Proceedings (OSTI)

A potentially fruitful approach to assessing society's sensitivity to climate change is to study the impacts, perceptions and adjustments of recent climate fluctuations. We set out to determine if the recent (193182) United States climate record ...

Thomas R. Karl; William E. Riebsame

1984-06-01T23:59:59.000Z

96

Ohio | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio Ohio Last updated on 2013-10-21 Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Ohio's commercial code is the 2009 IECC with a direct reference to ASHRAE 90.1-07. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Ohio (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 11/01/2011 Adoption Date 03/07/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Ohio DOE Determination Letter, May 31, 2013 Ohio State Certification of Commercila and Residential Building Energy Codes Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Effective January 1, 2013 the residential code in Ohio is based on Chapter 11 of the 2009 IRC. It includes the 2009 IECC and state-specific alternative compliance paths. The 2013 Residential Code of Ohio (RCO) contains amendments to allow compliance to be demonstrated in three ways: (1) 2009 IECC; or (2) RCO Sections 1101 through 1104; or RCO Section 1105 ("The Ohio Homebuilder's Association Alternative Energy Code Option").

97

The body surface as a communication system: The state of the art after 50 years  

Science Conference Proceedings (OSTI)

The suggestion that the body surface might be used as an additional means of presenting information to human-machine operators has been around in the literature for nearly 50 years. Although recent technological advances have made the possibility of ...

Alberto Gallace; Hong Z. Tan; Charles Spence

2007-12-01T23:59:59.000Z

98

Oil and Gas Field Code Master List 1990  

Science Conference Proceedings (OSTI)

This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

Not Available

1991-01-04T23:59:59.000Z

99

Utah | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

compliance with the energy code requirements. The Division of Facilities Construction Management is responsible for enforcement for all state-owned or -funded buildings....

100

Pennsylvania | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Pennsylvania Pennsylvania Last updated on 2013-11-05 Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Pennsylvania's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Pennsylvania (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 12/31/2009 Adoption Date 12/10/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Pennsylvania DOE Determination Letter, May 31, 2013 Pennsylvania State Certification of Commercial and Residential Building Energy Codes Current Code 2009 IECC Amendments / Additional State Code Information Pennsylvania's current residential code is the 2009 IECC, 2009 IRC, Chapter 11, and/or PA-Alt. Adherence to Pennsylvania's Alternative Residential Energy Provisions 2009 is an acceptable means of demonstrating compliance with the energy conservation code requirements of the Uniform Construction Code.

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Agency Bureau Primary Activity Code Secondary Activity Code  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENCLOSURE 1 ENCLOSURE 1 Agency Bureau Primary Activity Code Secondary Activity Code Additional Activity Code Description of Activity Competed Type of Competition Location (State) # of FTE in study # of Bids Received Start Date (Day/Mo/Yr) End Date (Day/Mo/Yr) Expected Phase-In Completion Date (Day/Mo/Yr) Actual Phase- In Completion Date (Day/Mo/Yr) Source Selection Strategy Used Winning Provider FY 2006 Costs Total Cost All Years Estimated Savings Period of Est. Savings (Performance Period--in years) Annualized Savings Actual Savings (if available) Saving Methodology: Calculation / Proxy Quantifiable Description of Improvements in Service or Performance (if appropriate) 0 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0.628 FY 2007 FIXED COSTS*

102

News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

News News A variety of resources and news from BECP, states, and other news sources are available for anyone interested in learning more about building energy codes. This includes newsletters, articles, links and more. To receive BECP News and other updates from the Building Energy Codes Program via email, join our mailing list. Featured Codes News DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Mayors Urge Cities to Strengthen Energy Code AZ Legislature Preserves Local Control of Building Energy Efficiency Codes Washington State Home Builders Lead the Nation in Energy Code Compliance Mississippi Invests in Future Growth With Adoption of Best-in-Class Energy Efficiency Legislation Energy 2030 Report Calls for Stricter Energy Building Codes

103

Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1  

Science Conference Proceedings (OSTI)

As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

NONE

1995-12-01T23:59:59.000Z

104

Going Beyond Code | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Going Beyond Code Beyond the energy codes are stretch, green, or sustainable codes and associated labeling programs. Codes are written to lend themselves to mandatory enforcement...

105

Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995  

Science Conference Proceedings (OSTI)

This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

NONE

1995-12-01T23:59:59.000Z

106

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

Science Conference Proceedings (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

Not Available

1993-12-01T23:59:59.000Z

107

Kentucky | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky Last updated on 2013-08-02 Current News Kentucky moves forward with the 2009 IECC by reference in their updated 2007 Kentucky Building Code. 2009 IECC is effective 3/6/2011 with mandatory compliance beginning 6/1/2011. Kentucky residential code was also updated to the 2009 IECC. The code is effective 7/1/2012 with an enforcement date of 10/1/2012. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Amendments are contained in the latest update to the 2007 Kentucky Building Code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kentucky (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

108

Wyoming | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

109

Multi-Year Program Plan FY'09-FY'15 Solid-State Lighting Research and Development  

SciTech Connect

President Obama's energy and environment agenda calls for deployment of 'the Cheapest, Cleanest, Fastest Energy Source - Energy Efficiency.' The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) plays a critical role in advancing the President's agenda by helping the United States advance toward an energy-efficient future. Lighting in the United States is projected to consume nearly 10 quads of primary energy by 2012.3 A nation-wide move toward solid-state lighting (SSL) for general illumination could save a total of 32.5 quads of primary energy between 2012 and 2027. No other lighting technology offers the DOE and our nation so much potential to save energy and enhance the quality of our built environment. The DOE has set forth the following mission statement for the SSL R&D Portfolio: Guided by a Government-industry partnership, the mission is to create a new, U.S.-led market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy, reduce costs and enhance the quality of the lighted environment.

None

2009-03-01T23:59:59.000Z

110

New York | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

York York Last updated on 2013-08-02 Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information N/A Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of New York (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 12/28/2010 Adoption Date 09/29/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No New York DOE Determination Letter, May 31, 2013 New York State Certification of Commercial and Residential Building Energy Codes Current Code State Specific Amendments / Additional State Code Information The Energy Conservation Construction Code of New York State 2010 can be obtained from ICC.

111

11. CONTRACT ID CODE  

NLE Websites -- All DOE Office Websites (Extended Search)

1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Amarillo, TX 79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 CODE I FACILITY CODE SA. AMENDMENT OF SOLICITATION NO.

112

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

113

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Ohio Program Type Building Energy Code Provider Ohio Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Board of Building Standards is the primary state agency that protects

114

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Massachusetts Program Type Building Energy Code Provider State Board of Building Regulations and Standards ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Massachusetts Board of Building Regulations and Standards has authority

115

Building Energy Code | Open Energy Information  

Open Energy Info (EERE)

Code Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

116

Arkansas | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Arkansas Arkansas Last updated on 2013-12-10 Current News ASHRAE 90.1-2007 became the effective commercial code in Arkansas on January 1, 2013. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information Arkansas Supplements and Amendments Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Arkansas Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 01/01/2013 Adoption Date 01/13/2012 Code Enforcement Mandatory DOE Determination ASHRAE Standard 90.1-2007: Yes ASHRAE Standard 90.1-2010: No Energy cost savings for Arkansas resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $100 million annually by 2030.

117

Kansas State University Electric Vehicle Site Operator Program. Year 1: First quarter report, July 2, 1991--September 30, 1991  

SciTech Connect

During the past fifteen years Kansas State`s faculty has been involved in research of alternative fuel vehicles. From formulation of fuels and automotive fuel storage to development of electronic controls, K-State`s faculty research has been ongoing. With the increased awareness of what is occurring to the world`s environment, the catalyst -- to ensure applied results from faculty research will occur -- has been activated. The Department of Energy`s Electric Vehicle Site Operator Program is the platform being used to demonstrate international efforts to bring a more acceptable daily mode of transportation to our highways. The first new electrical vehicle procured at K-State in the last ten years, a G-Van, is a technological dinosaur. It does not incorporate leading edge control or drive systems nor does it provide the type of vehicle frame and body to meet a majority of the daily commuter needs required by the American market. Yet, this vehicle represents initial efforts to bring a federally crash certified vehicle to the commercial automotive market. As such, it is an evolutionary step in the mass production of electric vehicle products.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-12-31T23:59:59.000Z

118

Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

Science Conference Proceedings (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

Not Available

1993-11-12T23:59:59.000Z

119

United States Department of Energy, Nevada Operations Office, completion report Operation KLAXON, Fiscal Year 1993  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy, Nevada Operations Office (DOE/NV), Completion Report provides a summary of activities conducted at the Nevada Test Site (NTS) between October 1, 1992, and September 30, 1993, associated with Operation KLAXON. (In the past, each annual Completion Report dealt with a series of underground nuclear detonations; however, because no nuclear tests were conducted during FY 1993, this Report summarizes continuing nonnuclear and nuclear test readiness activities at the NTS sponsored by DOE/NV.) The report serves as a reference for those involved with the planning and execution of Operation KLAXON and also serves as a planning guide for future operations. Information in the report covers the logistics and management of activities. Scientific information and data associated with NTS activities are presented in technical documents published by participating agencies. In September 1992, Congress legislated a nine-month moratorium on the testing of nuclear weapons. The bill also provided for a resumption of testing (with no more than five tests per year, or a total of 15 during the next three years) in July 1993, and mandated an end to nuclear testing, entirely, by 1996. President Bush signed the bill into law in October 1992.

Not Available

1994-06-01T23:59:59.000Z

120

Hawaii | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

at least as energy efficient as the statewide code. State Specific Research Impacts of ASHRAE.1-2007 for Commercial Buildings in the State of Hawaii (BECP Report, Sept. 2009)...

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Influence of the Pacific Decadal Oscillation on Winter Precipitation and Drought during Years of Neutral ENSO in the Western United States  

Science Conference Proceedings (OSTI)

The influence of the Pacific decadal oscillation (PDO) on important hydroclimatic variables during years of neutral ENSO for 84 climate divisions in the western United States is analyzed from 1925 to 1998. When the 34 neutral ENSO years are split ...

Gregory B. Goodrich

2007-02-01T23:59:59.000Z

122

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

123

Compliance with Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance with Energy Codes Compliance with Energy Codes Energy code compliance must be achieved to realize the considerable benefits inherent in energy codes. BECP supports successful compliance by making no-cost compliance tools, REScheck(tm) and COMcheck(tm), and other resources widely available to everyone. BECP has also developed several resources to help states uniformly assess the rate of compliance with their energy codes for residential and commercial buildings. It is important to note that regardless of the level of enforcement, as a law the building owner/developer is ultimately responsible to comply with the energy code. Compliance will be increased if the adopting agency prepares the building construction community to comply with the energy code and provides resources to code officials to enforce it.

124

Oil and gas field code master list 1997  

Science Conference Proceedings (OSTI)

The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

NONE

1998-02-01T23:59:59.000Z

125

Tennessee | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Tennessee Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2006 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Tennessee (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2006 IECC Effective Date 07/01/2011 Adoption Date 06/02/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Tennessee DOE Determination Letter, May 31, 2013 Tennessee State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Tennessee (BECP Report, Sept. 2009)

126

Colorado -- Building & Energy Codes Survey Results | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Target Audience: Advocate Code Official Policy Maker State Official State: Colorado Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Friday,...

127

Department Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Department Codes Department Codes Code Organization BO Bioscience Department BU Business Development & Analysis Office DI Business Operations NC Center for Functional Nanomaterials CO Chemistry Department AD Collider Accelerator Department PA Community, Education, Government and Public Affairs CC Computational Science Center PM Condensed Matter Physics and Materials Science Department CI Counterintelligence AE Department of Energy DC Directorate - Basic Energy Sciences DK Directorate - CEGPA DE Directorate - Deputy Director for Operations DO Directorate - Director's Office DH Directorate - Environment, Safety and Health DF Directorate - Facilities and Operations DA Directorate - Global and Regional Solutions DB Directorate - Nuclear and Particle Physics DL Directorate - Photon Sciences

128

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Alabama Program Type Building Energy Code Provider Alabama Department of Economic and Community Affairs ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Legislation passed in March 2010 authorized the Alabama Energy and

129

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Connecticut Program Type Building Energy Code Provider Connecticut Office of Policy and Management ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/

130

Alaska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Alaska Last updated on 2013-12-10 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Alaska (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Code Enforcement DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Energy cost savings for Alaska resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $50 million annually by 2030. Alaska DOE Determination Letter, May 31, 2013

131

Kansas | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas Kansas Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The State has adopted the 2006 IECC as the applicable EE standard for commercial and industrial buildings in Kansas (KSA 66-1227). The same law also states that "the state corporation commission has no authority to adopt or enforce energy efficiency standards for residential, commercial, or industrial structures." Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kansas (BECP Report, Sept. 2009) Effective Date 04/10/2007 Code Enforcement Voluntary DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Kansas DOE Determination Letter, May 31, 2013

132

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994  

SciTech Connect

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

Not Available

1994-11-01T23:59:59.000Z

133

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State District of Columbia Program Type Building Energy Code Provider Washington State Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The State Building Code Council revised the [https://fortress.wa.gov/ga/apps/sbcc/Page.aspx?nid=14 Washington State

134

Louisiana | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana Louisiana Last updated on 2013-08-02 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information N/A Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Louisiana (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 07/20/2011 Adoption Date 07/20/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Louisiana DOE Determination Letter, May 31, 2013 Louisiana State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IRC Amendments / Additional State Code Information Louisiana's current residential code is the 2006 IRC with direct reference to the 2006 IECC. All AC duct insulation is R6 instead of R8 and to include Section R301.2.1.1 of the 2003 edition of the IRC in lieu of Section R301.2.1.1 of the 2006 edition.

135

City State Zip Code Institution  

E-Print Network (OSTI)

current PERS member account to my ORP investment company. I forfeit my PERS pension and all rights to future PERS benefits. I am required by statute to transfer my PERS member account to the ORP. I forfeit OPSRP benefit to the ORP. I forfeit my OPSRP pension and all rights to future OPSRP benefits

Daescu, Dacian N.

136

Oil and Gas field code master list 1995  

Science Conference Proceedings (OSTI)

This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

NONE

1995-12-01T23:59:59.000Z

137

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Mississippi Program Type Building Energy Code Provider Mississippi Development Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement

138

Massachusetts | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Massachusetts Massachusetts Last updated on 2013-11-04 Current News The BBRS voted to adopt the 2012 IECC and ASHRAE 90.1-2010 on July 9, 2013. They will be phased in over an extended concurrency period, and is expected to become the sole effective baseline energy code on July 1, 2014. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information 13.0 Energy Conservation- 2009 IECC Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Massachusetts (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 01/01/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes

139

Virginia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia Last updated on 2013-11-05 Current News BHCD/DHCD workgroups are currently meeting over the next 12+ months for the 2012 USBC/IECC regulatory process, with an anticipated effective date in early 2014. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Virginia's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Virginia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 03/01/2011 Adoption Date 07/26/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Virginia DOE Determination Letter, May 31, 2013

140

Step 8. Receive Assistance on Energy Code and Adoption Questions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Program (BECP) BECP is an information resource on national energy codes and green building programs. BECP works with other government agencies, state...

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

COMcheck101 for the 2009 IECC | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus: Compliance Code Version: 2009 IECC Software: COMcheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

142

IECC, REScheck, and COMcheck | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Code Version: 2009 IECC 2006 IECC Software: COMcheck REScheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

143

Comply! Energy Code Tools You May Be Missing | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conservation Code (IECC) Software: COMcheck REScheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer Federal Official State Official...

144

REScheck for the 2006 IECC | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus: Compliance Code Version: 2006 IECC Software: REScheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

145

COMcheck101 for the 2006 IECC | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus: Compliance Code Version: 2006 IECC Software: COMcheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

146

Alterations Feature in COMcheck | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

International Energy Conservation Code (IECC) Software: COMcheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

147

Annual report to the President and the Congress on the State Energy Conservation Program for calendar year 1986  

Science Conference Proceedings (OSTI)

This volume briefly reviews state participation in the State Energy Conservation Program during 1986. Appropriations and grants are listed. (JDH)

Not Available

1987-10-01T23:59:59.000Z

148

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New York Program Type Building Energy Code Provider NYS Department of State ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Energy Conservation Construction Code of New York State (ECCCNYS) requires that all government, commercial and residential buildings,

149

Adoption Process | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption Process Energy codes are adopted at the state and local jurisdiction levels and, in most cases, are part of a broader set of codes addressing building, fire, electrical...

150

User Instructions for the CiderF Individual Dose Code and Associated Utility Codes  

SciTech Connect

Historical activities at facilities producing nuclear materials for weapons released radioactivity into the air and water. Past studies in the United States have evaluated the release, atmospheric transport and environmental accumulation of 131I from the nuclear facilities at Hanford in Washington State and the resulting dose to members of the public (Farris et al. 1994). A multi-year dose reconstruction effort (Mokrov et al. 2004) is also being conducted to produce representative dose estimates for members of the public living near Mayak, Russia, from atmospheric releases of 131I at the facilities of the Mayak Production Association. The approach to calculating individual doses to members of the public from historical releases of airborne 131I has the following general steps: Construct estimates of releases 131I to the air from production facilities. Model the transport of 131I in the air and subsequent deposition on the ground and vegetation. Model the accumulation of 131I in soil, water and food products (environmental media). Calculate the dose for an individual by matching the appropriate lifestyle and consumption data for the individual to the concentrations of 131I in environmental media at their residence location. A number of computer codes were developed to facilitate the study of airborne 131I emissions at Hanford. The RATCHET code modeled movement of 131I in the atmosphere (Ramsdell Jr. et al. 1994). The DECARTES code modeled accumulation of 131I in environmental media (Miley et al. 1994). The CIDER computer code estimated annual doses to individuals (Eslinger et al. 1994) using the equations and parameters specific to Hanford (Snyder et al. 1994). Several of the computer codes developed to model 131I releases from Hanford are general enough to be used for other facilities. This document provides user instructions for computer codes calculating doses to members of the public from atmospheric 131I that have two major differences from the Hanford modeling sequence. First, the air transport code HYSPLIT (Draxler et al. 2012) is used instead of the RATCHET code. Second, the new individual dose code CiderF replaces the older CIDER code and five auxiliary codes.

Eslinger, Paul W.; Napier, Bruce A.

2013-08-30T23:59:59.000Z

151

Step 4. Select the Appropriate Code for Adoption | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

4. Select the Appropriate Code for Adoption 4. Select the Appropriate Code for Adoption Description To achieve the economic, environmental, and social benefits offered by energy codes, a state or jurisdiction must select the energy code that is most appropriate for their locale. States and municipalities generally choose to either adopt a model energy code or standard or create a state-specific or local energy code. States or municipalities may also select to adopt "stretch codes"-those that go beyond the minimum requirements of an adopted energy code to achieve greater energy efficiency. In addition, states and local jurisdictions may choose to adopt policies that implement a green building rating system or policies that apply to specific structures, such as state-owned or -funded buildings.

152

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

153

Building Energy Codes News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes News Building Energy Codes News News Category: National Policy DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Posted: Tuesday, August 6, 2013 On August 6, DOE published an RFI on its methodology for assessing code compliance into the Federal Register. Based on feedback received from the individual state compliance pilot studies in 2011-2012, the RFI seeks input on DOE's methodology and fundamental assumptions from the general public. Read the full article... Source: U.S. Department of Energy Building Energy Codes Program Energy 2030 Report Calls for Stricter Energy Building Codes Posted: Tuesday, February 12, 2013 The Alliance Commission on National Energy Efficiency Policy aims to double US energy productivity by 2030, and one of its many ways to achieve that

154

Nevada | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada Nevada Last updated on 2013-06-27 Current News On November 10, 2011, The Nevada State office of Energy adopted the 2009 IECC with an effective date of July 1, 2012. Jurisdictions in southern Nevada adopted the 2009 IECC effective July 5, 2011. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information The commercial code in Nevada effective July 1, 2012 is the 2009 IECC with reference to 90.1-2007. Jurisdictions in southern Nevada adopted the 2009 IECC Effective July 5, 2011. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Nevada (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2012

155

Vermont | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont Last updated on 2013-06-03 Current News The Vermont Commercial Building Energy Standards (CBES) became effective January 3, 2012. The CBES incorporates elements of the 2012 IECC. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information 2011 Vermont Commercial Building Energy Standards (CBES) are based on the 2009 IECC. Commercial Building Energy Standards Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Vermont (BECP Report, Sept. 2009) Approximate Energy Efficiency More energy efficient than 2009 IECC Effective Date 01/03/2012 Adoption Date 10/03/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No

156

Mississippi | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Energy cost savings for Mississippi resulting from the state updating its commercial and...

157

Colorado | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Energy cost savings for Colorado resulting from the state updating its commercial and...

158

Montana Coal Mining Code (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

159

Idaho | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Idaho Last updated on 2013-06-03 Current News As of January 1, 2011, all jurisdictions are required to comply with the 2009 IECC. Commercial Residential Code Change Current Code 2009 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Idaho (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 01/01/2011 Adoption Date 06/08/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Idaho DOE Determination Letter, May 31, 2013 Current Code 2009 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Idaho (BECP Report, Sept. 2009)

160

Hanford Site Groundwater Monitoring for Fiscal Year 2002  

SciTech Connect

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2003-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk  

Energy.gov (U.S. Department of Energy (DOE))

A report to the US-Canada Power System Outage Task Force on steps taken in the United States and Canada to reduce blackout risk one year after the August 14, 2003 blackout.

162

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Oregon Program Type Building Energy Code Provider Oregon Building Codes Division ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://www.oregon.gov/ENERGY/CONS/Codes/cdpub.shtml The Oregon Energy

163

Primary Modes and Predictability of Year-to-Year Snowpack Variations in the Western United States from Teleconnections with Pacific Ocean Climate  

Science Conference Proceedings (OSTI)

Snowpack, as measured on 1 April, is the primary source of warm-season streamflow for most of the western United States and thus represents an important source of water supply. An understanding of climate factors that influence the variability of ...

Gregory J. McCabe; Michael D. Dettinger

2002-02-01T23:59:59.000Z

164

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State West Virginia Program Type Building Energy Code Provider West Virginia Division of Energy ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. Local jurisdictions must adopt

165

American Samoa | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

American Samoa American Samoa Last updated on 2012-08-21 Commercial Residential Code Change Current Code None Statewide DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Current Code None Statewide DOE Determination 2009 IECC: No 2012 IECC: No Code Change Process Legislative Code Change Cycle None Timeline of Cycle None Adoption Process Standards are adopted through legislation. Background The Uniform Building Code is administered and enforced by the government public works department. Popular Links Status of State Energy Codes Status of State Energy Codes Select a state Alabama Alaska American Samoa Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana

166

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Georgia Program Type Building Energy Code Provider Georgia Environmental Finance Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory"

167

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider Colorado Energy Office ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Colorado is a home rule state so no statewide energy code exists. Voluntary

168

Viewpoint: the energy code tempest  

SciTech Connect

In 1973, the organization of state building code officials asked the National Bureau of Standards for guidelines on energy conservation to be incorporated into state building codes. Prescriptive codes on the proper approach became quite controversial. One group advocated a prescriptive type of code under which all building components influencing energy consumption would be individually specified. A second group favored an overall energy consumption budget for buildings expressed in Btu/sq ft of floor area/yr. Then it was conceded that different buildings required different specifications. This article illustrates some specific examples of why building codes to conserve energy must permit a trade-off between the various components of a building. (MCW)

Ashley, J.M.

1975-02-01T23:59:59.000Z

169

Building Energy Codes | Open Energy Information  

Open Energy Info (EERE)

Codes Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Contents 1 Building Energy Code Incentives 2 References Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

170

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

171

Company Company Code Fiscal Year Submission Date  

U.S. Energy Information Administration (EIA) Indexed Site

2010 2010 2010 EIA-28 Financial Reporting System Sch 5100 -- Page 1 of 1 #N/A Your are not required to respond to any Federally sponsored collection of information unless it displays a valid OMB number The Report is Mandatory Under Public Laws 95-91 and 93-275 Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law (See Section E of the General Instructions). For the provisions concerning the confidentiality of information submitted on this form, see Section D of the General Instructions. Public reporting burden for this collection of information is estimated to average approximately 500 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

172

Company Company Code Fiscal Year Submission Date  

U.S. Energy Information Administration (EIA) Indexed Site

#N/A #N/A 2010 2010 EIA-28 Financial Reporting System Sch 5100 -- Page 1 of 1 Your are not required to respond to any Federally sponsored collection of information unless it displays a valid OMB number The Report is Mandatory Under Public Laws 95-91 and 93-275 Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law (See Section E of the General Instructions). For the provisions concerning the confidentiality of information submitted on this form, see Section D of the General Instructions. Public reporting burden for this collection of information is estimated to average approximately 500 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

173

Illinois | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois Illinois Last updated on 2013-11-04 Current News Senate Bill 3724, signed by the Governor on August 17, 2012, amends the effective date of the 2012 IECC to January 1, 2013. Administrative Rules to adopt the 2012 IECC with amendments were approved by the Joint Committee on Administrative Rules on December 11, 2012. Commercial Residential Code Change Current Code 2012 IECC with Amendments Amendments / Additional State Code Information N/A Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Illinois (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2012 IECC Effective Date 01/01/2013 Adoption Date 12/11/2012 Code Enforcement Mandatory DOE Determination ASHRAE Standard 90.1-2007: No

174

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

10,1,6539.248,26227.516,0,8095.266,30902.977,0,1420.819,7702.417,0,0,0,0,16055.333,64832.91,0 10,1,6539.248,26227.516,0,8095.266,30902.977,0,1420.819,7702.417,0,0,0,0,16055.333,64832.91,0 213,"Alaska Electric Light&Power Co","AK",2010,1,1535.941,15011.6,13783,980.665,11721.382,2156,987.54,11255.996,91,0,0,0,3504.146,37988.978,16030 219,"Alaska Power Co","AK",2010,1,668.02,2319.376,4592,921.903,3261.675,2099,0,0,0,0,0,0,1589.923,5581.051,6691 599,"Anchorage Municipal Light and Power","AK",2010,1,1759.777,15111.366,24014,7807.31,87008.534,6284,0,0,0,0,0,0,9567.087,102119.9,30298 1651,"Bethel Utilities Corp","AK",2010,1,468,1127,1643,1135,2893,1060,0,0,0,0,0,0,1603,4020,2703 3522,"Chugach Electric Assn Inc","AK",2010,1,7333,57329,69482,5576,52475,8979,311,3086,5,0,0,0,13220,112890,78466

175

YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL REVENUE ($1,000  

U.S. Energy Information Administration (EIA) Indexed Site

2,1,"AL",4958,"Decatur Utilities",0.148,0.124,0,0,0.272,5.55,4.65,0,0,10.2,20,2,0,0,22 2,1,"AL",4958,"Decatur Utilities",0.148,0.124,0,0,0.272,5.55,4.65,0,0,10.2,20,2,0,0,22 2012,1,"AL",6422,"City of Florence - (AL)",0.4,0,0,0,0.4,15,0,0,0,15,55,0,0,0,55 2012,1,"AL",9094,"City of Huntsville - (AL)",5.688,1.64,0,0,7.328,213.3,61.5,0,0,274.8,669,4,0,0,673 2012,1,"AL",9739,"Joe Wheeler Elec Member Corp",0.188,0,0,0,0.188,7.05,0,0,0,7.05,20,0,0,0,20 2012,1,"AR",14063,"Oklahoma Gas & Electric Co",0.488,0,0.058,0,0.546,67.739,0,8.333,0,76.072,60,0,1,0,61 2012,1,"AZ",16572,"Salt River Project",,5.372,,,5.372,,500,,,500,,6,,,6 2012,1,"AZ",19189,"Trico Electric Cooperative Inc",0.01,,,,0.01,0.25,,,,0.25,3,,,,3

176

UTILITYID","UTILNAME","STATE_CODE","YEAR","MONTH","RESIDENTIAL REVENUES ($1,000)  

U.S. Energy Information Administration (EIA) Indexed Site

2","AK",2012,1,6257.82,23660.55,30690,9110.54,32916.825,11233,1910.706,8696.631,522,,,,17279.066,65274.006,42445 2","AK",2012,1,6257.82,23660.55,30690,9110.54,32916.825,11233,1910.706,8696.631,522,,,,17279.066,65274.006,42445 213,"Alaska Electric Light&Power Co","AK",2012,1,1892.088,15119.148,13875,1179.601,11179.105,2166,1001.746,10986.738,95,0,0,0,4073.435,37284.991,16136 219,"Alaska Power and Telephone Co","AK",2012,1,747.204,2477.956,4736,928.067,3281.279,2123,0,0,0,0,0,0,1675.271,5759.235,6859 599,"Anchorage Municipal Light and Power","AK",2012,1,1965.984,15566.627,24192,8645.711,87731.854,6281,0,0,0,0,0,0,10611.695,103298.481,30473 1651,"Bethel Utilities Corp","AK",2012,1,695,1309,1664,1540,3024,1024,0,0,0,0,0,0,2235,4333,2688 3522,"Chugach Electric Assn Inc","AK",2012,1,8440,62524,69955,6107,54467,9174,442,4366,7,0,0,0,14989,121357,79136

177

UTILITYID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV","RES_SALES","RES_CON  

U.S. Energy Information Administration (EIA) Indexed Site

RES_REV","RES_SALES","RES_CONS","COM_REV","COM_SALES","COM_CONS","IND_REV","IND_SALES","IND_CONS","TRA_REV","TRA_SALES","TRA_CONS","TOT_REV","TOT_SALES","TOT_CONS" RES_REV","RES_SALES","RES_CONS","COM_REV","COM_SALES","COM_CONS","IND_REV","IND_SALES","IND_CONS","TRA_REV","TRA_SALES","TRA_CONS","TOT_REV","TOT_SALES","TOT_CONS" 0,"Adjustment 2011","AK",2011,1,6247.737,25405.763,30437,8891.302,33394.335,11262,1799.371,8452.222,408,,,,16938.41,67252.32,42107 213,"Alaska Electric Light&Power Co","AK",2011,1,1913.906,15780.043,13800,1191.056,11892.612,2172,749.249,8392.574,93,0,0,0,3854.211,36065.229,16065 219,"Alaska Power and Telephone Co","AK",2011,1,776.905,2477.956,4683,989.646,3281.279,2102,0,0,0,0,0,0,1766.551,5759.235,6785

178

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

8,1,6253.499,25151.849,0,8208.937,31991.364,0,1543.228,7550.664,0,,,0,16005.664,64693.877,0 8,1,6253.499,25151.849,0,8208.937,31991.364,0,1543.228,7550.664,0,,,0,16005.664,64693.877,0 213,"Alaska Electric Light&Power Co","AK",2008,1,2015.937,14801.591,13678,1251.812,10568.181,2133,586.169,5267.906,104,0,0,0,3853.918,30637.678,15915 219,"Alaska Power Co","AK",2008,1,671,2365,4469,920,3569,2025,0,0,0,0,0,0,1591,5934,6494 599,"Anchorage Municipal Light and Power","AK",2008,1,1651.456,16935.599,23989,6541.271,93233.067,6236,0,0,0,0,0,0,8192.727,110168.666,30225 1651,"Bethel Utilities Corp","AK",2008,1,487,1211,1569,1098,2861,1141,0,0,0,0,0,0,1585,4072,2710 3522,"Chugach Electric Assn Inc","AK",2008,1,7922,60443,69877,5884,54753,8839,290,3241,6,0,0,0,14096,118437,78722

179

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

9,1,6604.695,26567.861,0,8336.99,32882.18,0,1345.301,7416.849,0,0,0,0,16286.986,66865.89,0 9,1,6604.695,26567.861,0,8336.99,32882.18,0,1345.301,7416.849,0,0,0,0,16286.986,66865.89,0 213,"Alaska Electric Light&Power Co","AK",2009,1,3587,16219,13713,2198,10943,2143,1053,5362,91,0,0,0,6838,32524,15947 219,"Alaska Power Co","AK",2009,1,676.033,2544.992,4478,879.743,3565.976,2065,0,0,0,0,0,0,1555.776,6110.968,6543 599,"Anchorage Municipal Light and Power","AK",2009,1,1829.997,17165.04,23948,7297.496,90566.855,6262,0,0,0,0,0,0,9127.493,107731.895,30210 1651,"Bethel Utilities Corp","AK",2009,1,597,1111,1622,1377,2655,1074,0,0,0,0,0,0,1974,3766,2696 3522,"Chugach Electric Assn Inc","AK",2009,1,9619,63056,69308,7256,55227,8987,340,2916,6,0,0,0,17215,121199,78301

180

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Photovoltaic and solar-thermal technologies in residential building codes, tackling building code requirements to overcome the impediments to applying new technologies  

SciTech Connect

This report describes the building code requirements and impediments to applying photovoltaic (PV) and solar-thermal technologies in residential buildings (one- or two-family dwellings). It reviews six modern model building codes that represent the codes to be adopted by most locations in the coming years: International Residential Code, First Draft (IRC), International Energy Conservation Code (IECC), International Mechanical Code (IMC), International Plumbing Code (IPC), International Fuel Gas Code (IFGC), and National Electrical Code (NEC). The IRC may become the basis for many of the building codes in the United States after it is released in 2000, and it references the other codes that will also likely become applicable at that time. These codes are reviewed as they apply to photovoltaic systems in buildings and building-integrated photovoltaic systems and to active-solar domestic hot-water and space-heating systems. The first discussion is on general code issues that impact the s e technologies-for example, solar access and sustainability. Then, secondly, the discussion investigates the relationship of the technologies to the codes, providing examples, while keeping two major issues in mind: How do the codes treat these technologies as building components? and Do the IECC and other codes allow reasonable credit for the energy impacts of the technologies? The codes can impact the implementation of the above technologies in several ways: (1) The technology is not mentioned in the codes. It may be an obstacle to implementing the technology, and the solution is to develop appropriate explicit sections or language in the codes. (2) The technology is discussed by the codes, but the language is confusing or ambiguous. The solution is to clarify the language. (3) The technology is discussed in the codes, but the discussion is spread over several sections or different codes. Practitioners may not easily find all of the relevant material that should be considered. The so lution is to put all relevant information in one section or to more clearly reference relevant sections. (4) The technology is prohibited by the code. Examples of this situation were not found. However, energy credit for some technologies cannot be achieved with the requirements of these codes. Finally, four types of future action are recommended to make the codes reviewed in this report more accommodating to renewable energy technologies: (1) Include suggested language additions and changes in the codes; (2) Create new code sections that place all of the requirements for a technology in one section of an appropriate code; (3) Apply existing standards, as appropriate, to innovative renewable energy and energy conservation technologies; and (4) Develop new standards, as necessary, to ease code compliance. A synergy may be possible in developing suitable code language changes for both photovoltaic and solar hot-water systems. The installation of rooftop photovoltaic panels and solar hot- water collectors involves many overlapping issues. Roof loading, weather tightness, mounting systems, roof penetrations, and similar concerns are identical for both technologies. If such work can be coordinated, organizations supporting both technologies could work together to implement the appropriate revisions and additions to the codes.

Wortman, D.; Echo-Hawk, L. [authors] and Wiechman, J.; Hayter, S.; Gwinner, D. [eds.

1999-10-04T23:59:59.000Z

182

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

state to allow its jurisdictions to voluntarily adopt the http:www.iccsafe.orgcsIGCCPagesdefault.aspx International Green Construction Code beginning in March 2012....

183

Area Takeoffs 101 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Type: Commercial Residential Focus: Compliance Software: REScheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

184

Program Impact Analysis | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Impact Analysis Program Impact Analysis BECP periodically assesses the impacts of its activities by estimating historical and projected energy savings, consumer savings, and avoided emissions. Since the inception of the Program 20 years ago, cumulative full-fuel-cycle (FFC) energy savings from 1992- 2012 are estimated to be approximately 4.8 quads and cost savings to consumers have been more than $44 billion. These savings have resulted primarily from the Program's activities which upgrade the model energy codes, accelerate their adoption by states and localities, and improve code compliance by means of various software tools and other types of training and technical support. The federal budgetary cost of the Program over this same period (1992-2012) was estimated to be around $110 million, resulting in a ratio of more than $400

185

Shortest synchronizing strings for Huffman codes  

Science Conference Proceedings (OSTI)

Most complete binary prefix codes have a synchronizing string, that is a string that resynchronizes the decoder regardless of its previous state. This work presents an upper bound on the length of the shortest synchronizing string for such codes. Two ... Keywords: ?ern conjecture, Finite automaton, Huffman code, Synchronizing string

Marek Tomasz Biskup; Wojciech Plandowski

2009-09-01T23:59:59.000Z

186

A class of authentication codes with secrecy  

Science Conference Proceedings (OSTI)

We study a class of authentication codes with secrecy. We determine the maximum success probabilities of the impersonation and the substitution attacks on these codes and the level of secrecy. Therefore we give an answer to an open problem stated in ... Keywords: 14G50, 94A60, 94A62, Algebraic function fields, Authentication codes with secrecy, Linearized polynomial

Elif Kurtaran zbudak; Ferruh zbudak; Zlfkar Sayg?

2011-04-01T23:59:59.000Z

187

Residential Code Methodology | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Site Map...

188

Residential Code Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Code Development Subscribe to updates To receive news and updates about code development activities subscribe to the BECP Mailing List. The model residential building...

189

Generating Unit Retirements in the United States by State, 2007  

U.S. Energy Information Administration (EIA) Indexed Site

7" 7" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

190

Generating Unit Retirements in the United States by State, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

9" 9" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

191

Generating Unit Retirements in the United States by State, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

6" 6" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

192

Generating Unit Retirements in the United States by State, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

10" 10" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

193

Generating Unit Retirements in the United States by State, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

8" 8" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

194

Generating Unit Retirements in the United States by State, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

195

Generating Unit Retirements in the United States by State, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

4" 4" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

196

Generating Unit Retirements in the United States by State, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5" 5" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

197

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New Hampshire Program Type Building Energy Code Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites. New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. SB 81 was enacted in July 2007, and it upgraded the New

198

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Indiana Program Type Building Energy Code Provider TSREI ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process, certain seismic provisions were weakened, primarily affecting nine southwestern counties. Local jurisdictions may amend to make the code more stringent with state approval only.

199

Year","Quarter","Destination State","Origin State","Consumer Type","Transportati  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Coke Plant","Truck",141202 2012,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202 2012,3,"Alabama","Alabama","Electric Power Sector","River",729969 2012,3,"Alabama","Alabama","Electric Power Sector","Truck",56130 2012,3,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",10029

200

Advancing Building Energy Codes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Advancing Building Energy Codes Advancing Building Energy Codes 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. Energy Codes Ensure Efficiency in Buildings

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE Code:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

we1rbox installatiOn we1rbox installatiOn ____:....;...=.~;;....:..;=-+- DOE Code: - - !- Project Lead: Wes R1esland NEPA COMPLIANCE SURVEY J 3-24-10 1 Date: Project Information 1. Project Overview What are tne enwonmental mpacts? Contractor~~ _ _ _ _ ] 11 The purpose of this project is to prepare a pad for a 90 ton crane to get 1nto positiOn and ng up so we can 1 set our new weir box into position We will widen the existing road around 20 feet at the north end and taper our fill to about5 feet at the south end for a total of about 200 feeL and budd a near level pad for them tong up the crane on We will use the d1rt from the hill irnrnedJateiy north of the work to oe done 2. 3 4 What*s the legal location? What IS the durabon of the prOJed?

202

state  

Science Conference Proceedings (OSTI)

NIST. state. (definition). Definition: The condition of a finite state machine or Turing machine at a certain time. Informally, the content of memory. ...

2013-11-08T23:59:59.000Z

203

GENII Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GENII Code GENII Code GENII Code GENII is a second generation of environmental dosimetry computer code compiled in the Hanford Environmental Dosimetry System (Generation II). GENII provides a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radio nuclides released into the environment. The GENII System includes capabilities for calculating radiation doses following postulated chronic and acute releases. Version 2.10 is currently being evaluated for inclusion in the Central Registry. For more information on GENII to: http://radiologicalsciences.pnl.gov/resources/hardware.asp The GENII code-specific guidance report has been issued identifying applicable regimes in accident analysis, default inputs, and special

204

Business Models for Code Compliance | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Compliance Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center Business Models for Code Compliance The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to demonstrate, quantify, and monetize energy code compliance and coordinate deployment at the local, state, and regional levels. Consumer Assurance through Code Compliance Energy efficiency measures in the buildings sector, if properly realized and captured, provide a tremendous opportunity to reduce energy consumption and expenditures. Yet currently there is a lack of assurance that buildings as designed realize the levels of energy efficiency established in the

205

Wisconsin | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wisconsin Wisconsin Last updated on 2013-07-18 Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information SPS Chapter 363 specifically addresses amendments to the 2009 IECC. For example, if there is reference to SPS 363.0503, then the SPS 363 references only those amendments associated with the 2009 IECC (as based on language adopted in SPS 361.05), and 0503 indicates that section 503 of the 2009 IECC is being amended. WI Amendments as addressed by SPS 361.05 Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Wisconsin (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 09/01/2011 Adoption Date 07/01/2011

206

Impacts of the 2009 IECC for Residential Buildings at State Level - Nebraska  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Nebraska September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEBRASKA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEBRASKA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Nebraska Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2003 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $236 a year

207

Texas | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Texas Last updated on 2013-12-10 Current News Cities in Texas are beginning to move their energy codes forward. The city of Cedar Park adopted the 2012 IECC, effective October 1, 2012. Amarillo has also adopted the 2012 IECC, although with some weakining provisions. In addition, the Houston City Council recently voted to require all new residential construction to be 10% higher than the 2009 IECC. Commercial Residential Code Change Current Code 2009 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Texas (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 04/01/2011 Adoption Date 06/04/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes

208

Commercial Building Codes and Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes and Standards Codes and Standards Commercial Building Codes and Standards Local code officials enforce building energy codes. Credit: iStockphoto Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building Technologies Office (BTO) provides support to states and local governments as they adopt and monitor commercial building code as well as builders working to meet and exceed code. BTO also develops test procedures and minimum efficiency standards for commercial equipment. Building Energy Codes DOE encourages using new technologies and better building practices to improve energy efficiency. Mandating building energy efficiency by

209

State  

Science Conference Proceedings (OSTI)

State NIST. Weights and Measures. Laboratories. Program Handbook. NIST Handbook 143. March 2003. Preface. The National ...

2010-11-30T23:59:59.000Z

210

Rhode Island | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island Last updated on 2013-11-05 Current News 2012 IECC adopted July 1, 2013 Commercial Residential Code Change Current Code 2012 IECC Amendments / Additional State Code Information The Rhode Island commercial code is the 2012 IECC with reference to ASHRAE 90.1-2010. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Rhode Island (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2012 IECC Effective Date 07/01/2013 Adoption Date 07/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Rhode Island DOE Determination Letter, May 31, 2013 Rhode Island State Certification of Commercial and Residential Building Energy Codes

211

New Jersey | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Jersey Jersey Last updated on 2013-11-05 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information New Jersey Amendments Approved Compliance Tools Can use COMcheck For additional information, see Bulletin 11-1 State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of New Jersey (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 09/07/2010 Adoption Date 08/12/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No New Jersey DOE Determination Letter, May 31, 2013 Certification notice ASHRAE 90.1-2007 Current Code 2009 IECC with Amendments Amendments / Additional State Code Information New Jersey Amendments

212

South Dakota | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

South Dakota South Dakota Last updated on 2013-06-03 Current News South Dakota adopted the 2009 IECC as the voluntary energy standard for new residential construction. SB 94 was signed into law on March 15, 2011 and became effective July 1, 2011. Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of South Dakota (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Adoption Date Code Enforcement DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No South Dakota DOE Determination Letter, May 31, 2013 Current Code None Statewide Amendments / Additional State Code Information The 2009 IECC is voluntary as of July 2011.

213

Plutonium Oxication State Transformations and Their Consequence on Plutonium Transport through Sediment During an 11-year Field Study  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) contains a large inventory of plutonium (Pu), some of it in the form of Low-Level Waste (LLW). Much of this LLW has been or will be disposed at the E Area LLW Facility. As part of the permitting of LLW on-site disposal, SRS is required to periodically update the Performance Assessment calculations used in part to establish the facility specific amount of waste that can be safely disposed (or establish the Waste Acceptance Criteria). The objective of this project was to determine if a recent discovered change in plutonium chemistry (i.e., oxidation of PuO2, a common form of Pu waste, may form plutonium in the more mobile hexavalent form) was within the assumptions, parameters, and bases of the approved Performance Assessment WSRC (2000) and Composite Assessment, WSRC (1997). This project was initiated in 2001, and this is the final report describing laboratory and lysimeter (field) studies. Results from this year's work provided additional technical support f or the conceptual Pu geochemical model proposed for future risk-based calculations. When lysimeters containing Pu(III) or Pu(IV) were left exposed to the natural environment for 11 years, essentially all of the sediment-bound Pu existed as Pu(IV) and possibly Pu(III), the least mobile forms of Pu. This result was confirmed by two independent measurements, a very sensitive, indirect wet-chemistry method and a less-sensitive, direct spectroscopic technique, micro-X-ray adsorption near-edge structure (micro-XANES) spectroscopy. In these lysimeters, Pu sediment concentrations decreased on average an order-of-magnitude per centimeter for the first 5 cm below the source, an astounding rate of contaminant retardation. When Pu(VI), the more mobile form, may form from PuO2, was added to the lysimeters, the Pu moved faster than it had in the other lysimeters: Pu moving on average 12.5 cm/yr in the Pu(VI) lysimeter, compared to 0.9 cm/yr in the Pu(III) and Pu(IV) lysimeters. Importantly, transport modeling of the data clearly suggested that reduction of the original Pu(VI) occurred,thus most of the transport of the Pu in the lysimeter must have progressed during the early portion of the study, prior to the sediment-induced reduction of Pu(VI). When Pu(V) was added to the lysimeter sediment in a laboratory study, the Pu(V) quickly reduced to Pu(IV) within a couple days. These data together with those from previous reports for this project conclusively show that Pu, irrespective of the form it is introduced into SRS sediments, tends to convert rapidly to the plus 4, and possible plus 3, oxidation state, the least mobile form of Pu.

KAPLAN, DANIEL

2004-09-30T23:59:59.000Z

214

Annual report to the President and the Congress on the State Energy Conservation Program for calendar year 1983  

Science Conference Proceedings (OSTI)

This report contains a summary of the activities resulting from the State Energy Conservation Program during the period from December 1982 through December 1983. Included are discussions of estimates on energy conservation achieved and the degree of state participation. 3 tables. (DMC)

Not Available

1984-08-01T23:59:59.000Z

215

West Virginia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia West Virginia Last updated on 2013-08-02 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of West Virginia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 09/01/2013 Adoption Date 07/18/2012 Code Enforcement Mandatory DOE Determination Standard 90.1-2007: Yes Standard 90.1-2010: No West Virginia DOE Determination Letter, May 31, 2013 West Virginia State Certification of Commercial and Residential Building Energy Codes Current Code 2009 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of West Virginia (BECP Report, Sept. 2009)

216

2007 Commercial Energy Code Compliance Study | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Type: Commercial Document type: Reports and Studies Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State: All States Contacts Web...

217

Kansas State University: DOE/KEURP Site Operator Program. Year 4, fourth quarterly report, April 1, 1995--June 30, 1995  

SciTech Connect

Kansas State University, in support of a DOE and Kansas Electric Utilities Research Program subject contract, continues to test, evaluate, demonstrate, and develop electric vehicle and infrastructure technology. K-State is operating two Soleq EVcort vehicles. During this reporting period both vehicles were brought back to full operational status after warranty service was completed by Soleq. Vehicle failures occurred due to three unrelated battery cable failures in addition to the replacement of one battery. Both vehicles are being operated on a routine basis. K-State, along with York Technical College, has established a relationship with Troy Design and Manufacturing (TDM) Redford, Michigan. K-State has ordered no less than four Ford Ranger electric trucks from TDM. K-State is involved in the steering committee that is monitoring and refining information to direct the design and testing of these new technology vehicles. TDM should become the first automotive manufacturer certified by one of the Big Three under their Quality Vehicle Manufacturer program. Kansas State University and the Kansas Electric Utility Research Program look forward to working with TDM on their new EV program.

1995-08-01T23:59:59.000Z

218

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from United States of America) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

219

OpenAD/F: Automatic Differentiation of Fortran Codes | Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

OpenAD/F: Automatic Differentiation of Fortran Codes OpenAD/F: Automatic Differentiation of Fortran Codes OpenAD/F: Automatic Differentiation of Fortran Codes The OpenAD/F project seeks to develop a modular, open-source tool for the automatic generation of adjoint code from Fortran 95 source code. Discrete adjoint computations are used for sensitivity analysis and to provide the gradients used in geophysical state estimation. Because derivatives are needed with respect to millions or billions of independent variables, finite different approximations are impractical: a gradient computation that would take minutes or hours using an adjoint computation would take months or years using finite differences. Project Contact Jean Utke Paul Hovland Other Contributors Patrick Heimbach Chris Hill Carl Wunsch Funding Sources

220

Statutory Requirements | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Statutory Requirements DOE activities surrounding building energy codes are defined by the following statutory requirements. Specific language outlining federal requirements and associated regulations are outlined below. References are also provided to individual statutes. State Building Energy Efficiency Codes Statutory Authority: Energy Conservation and Production Act (ECPA) (Pub. L. No. 94-385), as amended1 Section 304(a) of ECPA, as amended, provides that when the 1992 Model Energy Code (MEC), or any successor to that code2, is revised, the Secretary must determine, not later than 12 months after the revision, whether the revised code would improve energy efficiency in residential

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Codes 101 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101 Codes 101 This course covers basic knowledge of energy codes and standards, the development processes of each, historical timelines, adoption, implementation, and enforcement of energy codes and standards, and voluntary energy efficiency programs. Most sections have links that provide additional details on that section's topic as well as additional resources for more information. Begin Learning! Estimated Length: 1-2 hours CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Self-paced, online Building Type: Commercial Residential Focus: Adoption Code Development Compliance Code Version: ASHRAE Standard 90.1 International Energy Conservation Code (IECC) Model Energy Code (MEC) Target Audience: Advocate Architect/Designer Builder

222

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA...

223

II.CONTRACT ID CODE  

National Nuclear Security Administration (NNSA)

1 1 II.CONTRACT ID CODE ~AGE 1 of AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT PAGES AC 5. PROJECT NO. (If applicable) 3. EFFECTNE DATE 2. AMENDMENTfMODIFICA TION NO. 4. REQUISITIONIPURCHASE REQ. NO. See Block 16c. NOPR 7. ADMINISTERED BY (If other than Item 6) CODE 05008 6. ISSUED BY CODE 05008 U.S. Department of Energy National Nuclear Security Administration U.S. Department of Energy National Nuclear Security Administration P.O. Box 2050 Oak Ridge, TN 37831 P.O. Box 2050 Oak Ridge, TN 37831 9A. AMENDMENT OF SOLICITATION NO. 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Y-12, LLC P.O. Box 2009 MS 8014 9B. DATED (SEE ITEM 11) Oak Ridge, TN 37831-8014 lOA. MODIFICATION OF CONTRACT/ORDER NO.

224

An Eight-Year Lightning Climatology of the Southeast United States Prepared for the 1996 Summer Olympics  

Science Conference Proceedings (OSTI)

The 1996 Summer Olympics will be held in the Atlanta, Georgia, vicinity and several other sites in the southeast United States between 19 July and 4 August 1996. This period coincides with the peak thunderstorm season, so the threat of lightning ...

Andrew I. Watson; Ronald L. Holle

1996-05-01T23:59:59.000Z

225

Kansas State University DOE/KEURP Site Operator Program. Year 5 second quarter report, October 1--December 31, 1995  

SciTech Connect

Kansas State University is displaying, testing, and evaluating electric or hybrid vehicle technology. Data collection and a historical perspective are maintained on vehicle requirements. Two vehicles are electric conversion vehicles from Soleq Corporation of Chicago, Illinois, and four Ford Ranger EVs were procured from Troy Design and manufacturing of Redford, Michigan.

Hague, J.R.

1995-12-31T23:59:59.000Z

226

End of an Era: UW's state-of-the-art airborne research facility grounded after 30 years  

E-Print Network (OSTI)

below with Masonis). The instrument could help paint the clearest picture yet of the tiny particles Fuji to ascending the altar, Sarah Masonis has plenty to reflect on after five years in pursuit to measure scatter by atmospheric particles. In the process, she developed a curi- osity for the atmospheric

227

Quantum error control codes  

E-Print Network (OSTI)

It is conjectured that quantum computers are able to solve certain problems more quickly than any deterministic or probabilistic computer. For instance, Shor's algorithm is able to factor large integers in polynomial time on a quantum computer. A quantum computer exploits the rules of quantum mechanics to speed up computations. However, it is a formidable task to build a quantum computer, since the quantum mechanical systems storing the information unavoidably interact with their environment. Therefore, one has to mitigate the resulting noise and decoherence effects to avoid computational errors. In this dissertation, I study various aspects of quantum error control codes - the key component of fault-tolerant quantum information processing. I present the fundamental theory and necessary background of quantum codes and construct many families of quantum block and convolutional codes over finite fields, in addition to families of subsystem codes. This dissertation is organized into three parts: Quantum Block Codes. After introducing the theory of quantum block codes, I establish conditions when BCH codes are self-orthogonal (or dual-containing) with respect to Euclidean and Hermitian inner products. In particular, I derive two families of nonbinary quantum BCH codes using the stabilizer formalism. I study duadic codes and establish the existence of families of degenerate quantum codes, as well as families of quantum codes derived from projective geometries. Subsystem Codes. Subsystem codes form a new class of quantum codes in which the underlying classical codes do not need to be self-orthogonal. I give an introduction to subsystem codes and present several methods for subsystem code constructions. I derive families of subsystem codes from classical BCH and RS codes and establish a family of optimal MDS subsystem codes. I establish propagation rules of subsystem codes and construct tables of upper and lower bounds on subsystem code parameters. Quantum Convolutional Codes. Quantum convolutional codes are particularly well-suited for communication applications. I develop the theory of quantum convolutional codes and give families of quantum convolutional codes based on RS codes. Furthermore, I establish a bound on the code parameters of quantum convolutional codes - the generalized Singleton bound. I develop a general framework for deriving convolutional codes from block codes and use it to derive families of non-catastrophic quantum convolutional codes from BCH codes. The dissertation concludes with a discussion of some open problems.

Abdelhamid Awad Aly Ahmed, Sala

2008-05-01T23:59:59.000Z

228

Kansas State University DOE/KEURP Site Operator Program. Year 2, Second quarter report, October 1--December 31, 1992  

SciTech Connect

This concludes the sixth quarter that Kansas State University has been under contract to the US Department of Energy and the Kansas Electric Utility Research Program to demonstrate electric vehicle technology. The G-Van continues to perform within acceptable limits, although the batteries and the charger have caused some problems. Dave Harris, Chloride, has been working with K-State to correct these problems. It may very well be that the limited mileage (less than 25 miles) can be increased by extending the charge cycle (overcharging) the batteries. Soleq Corp. has failed to deliver contracted vehicles. A dual shaft electric propulsion minivan, built by Eaton Corp. in 1987, will be shipped here. On the infrastructure side, EHV Corp. is developing curbside and home charging stations.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.; Maier, M.A.

1992-12-31T23:59:59.000Z

229

LMBFR and LWR in-core thermal-hydraulic codes: the state-of-the-art and research and development needs  

Science Conference Proceedings (OSTI)

A review of analytical design methods used for predicting reactor core flow and temperature distributions is presented with emphasis on LMFBR's. The paper also briefly describes and contrasts the methods used for LWR's. These methods are global analysis, subchannel analysis, distributed parameter, and hybrid analysis. The evolution of the local and subchannel analysis methods is presented. Data used for code validation are also presented. Current research and development needs are identified and discussed. Areas identified for future research and development include methods and expermental data for analysis of distorted bundles and natural convection. Methods that have been developed for predicting the safety performance of LMFBR's and LWR's are not within the scope of this paper.

Khan, E.U.; Coomes, E.P.; Rowe, D.S.; Trent, D.S.

1981-04-01T23:59:59.000Z

230

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from USA) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

231

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA Natural Gas Reserves 6,928,000,000,000 Cubic Meters (cu m) 6 2010 CIA World Factbook

232

Washington, DC | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington, DC Washington, DC Last updated on 2013-08-02 Current News In December, the DC CCCB voted 7-1 to adopt the 2012 IECC. The code will now enter administrative review and legislative process with likely adoption in the second half of 2013. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information Based on 2008 DC Construction Code with several amendments. State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the District of Columbia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 12/26/2009 Adoption Date 12/26/2008 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No DC DOE Determination Letter, May 31, 2013

233

Weight Distribution of a Class of Binary Linear Block Codes Formed from RCPC Codes  

E-Print Network (OSTI)

of a convolutional code is used to describe the state transition possibilities and corresponding output weight of the code [2]. For a convolutional code with rate R = 1/S and memory M, the transition matrix is a 2M by 2M 0 0 D D . (2) As stated in [2], the (i, j)-th element of the K-th power of A, (AK )i,j , gives

Cosman, Pamela C.

234

Yields of ten and eleven year-old hybrid poplars in the north central United States. Final report  

SciTech Connect

The objective of this research is to determine commercially attainable biomass yields given the best site tending possible under the constraints of this extensive network. Biomass yields are reported from the best clones planted in one acre blocks on 8 sites over the four states. Biomass yields are presented of short rotation intensively cultured poplar plantations established in Wisconsin, Minnesota, North and South Dakota during 1987--88. It was reported at that time that the mean annual increment had not peaked in the plantations. Growth measurements were continued through the 1997 growing season when the plantations had completed their 10th and 11th growing season.

Netzer, D.; Tolsted, D.

1998-12-31T23:59:59.000Z

235

Puerto Rico | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Puerto Rico Puerto Rico Last updated on 2012-08-21 Current News The adoption date of the IECC 2009 began on January 1st, 2011; however, the effective date of this code will be transitory. Effective dates begin March 1, 2013 and continue through March 1, 2016. Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The adoption date of the IECC 2009 began on January 1st, 2011; however, the effective date of this code will be transitory. Effective dates begin March 1, 2013 and continue through March 1, 2016. Approved Compliance Tools Can use COMcheck Approximate Energy Efficiency Equivalent to 2009 IECC Adoption Date 02/24/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Current Code None Statewide

236

Optimal superdense coding over memory channels  

SciTech Connect

We study the superdense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and nonunitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The superdense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where nonunitary encoding leads to an improvement in the superdense coding capacity.

Shadman, Z.; Kampermann, H.; Bruss, D.; Macchiavello, C. [Institute fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf, DE-40225 Duesseldorf (Germany); Dipartimento di Fisica ''A. Volta'' and INFM-Unita di Pavia, Via Bassi 6, IT-27100 Pavia (Italy)

2011-10-15T23:59:59.000Z

237

New Hampshire | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hampshire Hampshire Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information The New Hampshire commercial code is the 2009 IECC with direct reference for compliance to ASHRAE Standard 90.1-2007. 103.5 compliance except any structure three stories or less above grade plane in height and less than 4,000 square feet in gross floor area is permitted to show envelope compliance based on Chapter 4. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of New Hampshire (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 04/01/2010 Adoption Date 12/11/2009 Code Enforcement Mandatory

238

Kansas State University DOE/KEURP Site Operator Program. Year 3, Third quarter report, January 1, 1994--March 31, 1994  

Science Conference Proceedings (OSTI)

Formed on July 15, 1981, the goal of this program is to undertake applied research and development projects that may enhance reliability and minimize the cost of electric service in Kansas. The Kansas Electric Utilities Research Program (KEURP) is a contractual joint venture between six major electric utilities that serve the residents of the State of Kansas. The establishment of KEURP was made possible by the Kansas Corporation Commission (KCC). The KCC allowed Kansas electric utilities to include research and development (R & D) costs in their operating expenses, including dues to the Electric Power Research Institute (EPRI). Kansas universities play a unique role in KEURP with representation on the executive, technical and advisory committees of the program. The universities receive significant direct and indirect support from KEURP through direct funded projects as well as KEURP/EPRI co-funded projects. KEURP is working with EPRI researchers on projects to develop or expand Kansans knowledge and expertise in the fields of high technology and economic development. KEURP is a major source of funding in the electric/hybrid vehicle demonstration program.

Hague, J.R.

1994-05-01T23:59:59.000Z

239

Status of State Energy Code Adoption | Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariana Islands Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas U.S. Virgin Islands Utah Vermont Virginia Washington...

240

The Cost of Enforcing Building Energy Codes: Phase 1  

NLE Websites -- All DOE Office Websites (Extended Search)

of Enforcing Building Energy Codes: Phase 1 Title The Cost of Enforcing Building Energy Codes: Phase 1 Publication Type Report LBNL Report Number LBNL-6181E Year of Publication...

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Introduction to Hydrogen for Code Officials | Open Energy Information  

Open Energy Info (EERE)

Introduction to Hydrogen for Code Officials Introduction to Hydrogen for Code Officials Jump to: navigation, search Tool Summary Name: Introduction to Hydrogen for Code Officials Agency/Company /Organization: United States Department of Energy, National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy, Hydrogen Resource Type: Training materials Cost: Free Language: English Introduction to Hydrogen for Code Officials Screenshot References: Introduction to Hydrogen for Code Officials[1] "The Department of Energy's Introduction to Hydrogen for Code Officials online training course provides an overview of hydrogen and fuel cell technologies, how these technologies are used in real-world applications, and references for related codes and standards. The course consists of four modules:

242

US Department of Energy Office of Codes and Standards resource book  

SciTech Connect

The US Department of Energy`s (DOE`s) Office of Codes and Standards has developed this Resource Book to provide a discussion of DOE involvement in building codes and standards; a current and accurate set of descriptions of residential, commercial, and Federal building codes and standards; information on State contacts, State code status, State building construction unit volume, and State needs; and a list of stockholders in the building energy codes and standards arena.

NONE

1996-01-01T23:59:59.000Z

243

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Heating Program Info State California Program Type Building Energy Code Provider California Energy Commission '''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to take effect on January 1, 2014, and represent significant energy and water savings compared to the current standards. Among many notable provisions, the new standards will

244

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

245

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

","Row" "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors" ,,"Total United States" ,"RSE...

246

Contacts | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Provide feedback, ask questions, or formally request assistance: Website Contact Report broken links and suggest content and/or updates to information on this website. Please use the Online Help Desk for questions or issues with the compliance software tools. Online Help Desk Submit questions regarding energy codes, compliance, REScheck(tm), COMcheck(tm), or other BECP tools to a building energy codes expert. Technical Assistance Request Submit a formal, state or local jurisdiction-level request for technical assistance. Program Contacts U.S. Department of Energy (DOE) contacts for the Building Energy Codes Program (BECP). Federal (DOE) Contact Program Area Jeremy Williams, Project Manager Adoption Compliance Compliance Tools- REScheck& COMcheck Technical Assistance

247

Office of Codes and Standards resource book. Section 1, Building energy codes and standards  

SciTech Connect

The US Department of Energy`s (DOE`s) Office of Codes and Standards has developed this Resource Book to provide: A discussion of DOE involvement in building codes and standards; a current and accurate set of descriptions of residential, commercial, and Federal building codes and standards; information on State contacts, State code status, State building construction unit volume, and State needs; and a list of stakeholders in the building energy codes and standards arena. The Resource Book is considered an evolving document and will be updated occasionally. Users are requested to submit additional data (e.g., more current, widely accepted, and/or documented data) and suggested changes to the address listed below. Please provide sources for all data provided.

Hattrup, M.P.

1995-01-01T23:59:59.000Z

248

City of Chicago - Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicago - Building Energy Code Chicago - Building Energy Code City of Chicago - Building Energy Code < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Insulation Program Info State Illinois Program Type Building Energy Code Provider City of Chicago The Chicago Energy Conservation Code (CECC) requires residential buildings applying for building permits to comply with energy efficient measures which go beyond those required by the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=I... Illinois Building Energy Code]. The applicability of the CECC to commercial construction was superseded when the state of Illinois adopted the more stringent IECC 2009 model code. Illinois state law in 2009 also mandated

249

North Carolina | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Carolina Carolina Last updated on 2013-11-04 Current News On Friday, June 24, 2011, Governor Beverly Perdue signed SB 708 into law and approved a new Energy Conservation Code for the residential and commercial buildings in North Carolina. This new code will save home and business owners money on their monthly energy bills and help retain and create jobs in every region of the state. It delivers significant improvements in insulation levels, window performance and building envelope air leakage reduction. The new code also includes the High Efficiency Residential Option (HERO) Appendix which delivers a 30% improvement in minimum energy efficiency over the state's current energy code. The new NC Energy Conservation Code became effective January 1, 2012 with mandatory

250

Model Policies | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Center Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Model Policies States and local jurisdictions across the nation have demonstrated leadership in developing programs and policies that both encourage and require compliance with energy codes, stretch codes (e.g., above-minimum codes) and green building techniques, energy-efficiency practices, and environmentally-friendly procedures. The laws and regulations behind these programs and policies can help states and jurisdictions establish unique policies to address their particular needs. Model policies for residential and commercial building construction have

251

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

252

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

253

Active code completion  

Science Conference Proceedings (OSTI)

Code completion menus have replaced standalone API browsers for most developers because they are more tightly integrated into the development workflow. Refinements to the code completion menu that incorporate additional sources of information have similarly ...

Cyrus Omar; YoungSeok Yoon; Thomas D. LaToza; Brad A. Myers

2012-06-01T23:59:59.000Z

254

Existing Generating Unit in the United States by State and Energy Source, 2007  

U.S. Energy Information Administration (EIA) Indexed Site

7" 7" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","MultiGenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

255

Existing Generating Unit in the United States by State and Energy Source, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

09" 09" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

256

Existing Generating Unit in the United States by State and Energy Source, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

10" 10" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

257

Existing Generating Unit in the United States by State and Energy Source, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

8" 8" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","MultiGenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

258

INTERNATIONAL CODE COUNCIL  

Science Conference Proceedings (OSTI)

... EE concepts / practices Page 8. IGCC Code Development Timeline ... Board modification) Page 9. IGCC Subject Areas 1. Energy use efficiency- ...

2012-10-14T23:59:59.000Z

259

MACCS2: An improved code for assessing nuclear accident consequences  

Science Conference Proceedings (OSTI)

The MACCS computer code was developed to predict probabilistic assessments of the consequences from severe accidents at nuclear power plants.For DOE applications and sensitivity studies of emergency response actions at nuclear power plants, MACCS2 represents a significant improvement in modeling flexibility over MACCS 1.5. This increased flexibility is obtained with an approximate doubling of the code`s run time and memory requirements. The software can be adapted to most computers. An executable is included in the code package for 386/486 IBM-compatible personal computers with 8 megabytes of random access memory (RAM). MACCS2 is being benchmarked against the RSAC-5 code developed by INEL. A new set of code documentation is being prepared that describes the use of the code, the models implemented, and the code benchmarking. Current plans are to have the code package (including source code) available to the public at the end of fiscal year 1994.

Chanin, D.I.; Banjac, V.; Miller, L.A. [Sandia National Lab., Albuquerque, NM (United States)

1994-12-31T23:59:59.000Z

260

Locally Testable Cyclic Codes  

Science Conference Proceedings (OSTI)

Cyclic linear codes of block length n over a finite field \\mathbb{F}_qare the linear subspace of \\mathbb{F}_{_q }^n that are invariant under a cyclic shift of their coordinates. A family of codes is good if all the codes in the family have constant rate ...

Lszl Babai; Amir Shpilka; Daniel tefankovic

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Informal Control code logic  

E-Print Network (OSTI)

General definitions as well as rules of reasoning regarding control code production, distribution, deployment, and usage are described. The role of testing, trust, confidence and risk analysis is considered. A rationale for control code testing is sought and found for the case of safety critical embedded control code.

Bergstra, Jan A

2010-01-01T23:59:59.000Z

262

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Iowa Program Type Building Energy Code Provider Iowa Office of Energy Independence ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://coolice.legis.state.ia.us/Cool-ICE/default.asp?Category=billinfo&... House File 2361] was signed in April 2006. This law rescinded Iowa's minimum energy efficiency standard for residential construction, the "home heating index," and instead requires the state building commissioner to adopt energy conservation requirements based on a nationally recognized

263

UNITED STATES Calendar Year 2004  

E-Print Network (OSTI)

Coke 2.8 Electricity 39.0 Charcoal 1.8 Ethyl Alcohol 3.1 Petroleum Derivatives 35.2 Other Secondaries 0 to respond to the needs with reasonable costs and environmental impact. Among the options for the expansion will be the least-cost solution for this expansion and the net change in CO2 emissions? The answer

US Army Corps of Engineers

264

UNITED STATES Calendar Year 2004  

E-Print Network (OSTI)

, upgrading, and refining processes, at a cost, but there is so little demand for petroleum products which) gasoline c) diesel d) heavy fuel oil e) petroleum coke and f) other petroleum products. The physical flows products (gasoline, diesel) with weak demand growth for others (e.g. heavy oil, petroleum coke

US Army Corps of Engineers

265

UNITED STATES Calendar Year 2005  

E-Print Network (OSTI)

% Energy Efficiency 16% Geothermal Petroleum & Pet Coke of regulation and carbon cost in the Council's Plan, the Council is also required to consider environmental costs more broadly. This presentation is intended to provide a foundation of facts from which discussion

US Army Corps of Engineers

266

UNITED STATES Calendar Year 2006  

E-Print Network (OSTI)

Nuclear Other renewables Petroleum coke Other gases and other fuels Coal Petroleum Hydro ChangeDetection and advanced stimulation ­ Slow decline curves ­ Reduce drilling (fewer rigs, lower costs, smaller footprint, CEE/BEG/JSG/UT Not All Producers are the Same $10 $12 10% Return U.S. 2010 Cash Operating Costs

US Army Corps of Engineers

267

UNITED STATES Calendar Year 2003  

E-Print Network (OSTI)

Engineering Department, King Fahd UniVersity of Petroleum & Minerals, Dhahran 31261, Saudi Arabia 1 with toluene. Thus, these processes offer a way to utilize the low-cost toluene and TMB to produce the much to having total constant pressure since the total number of moles remains constant. Coke deposited on spent

US Army Corps of Engineers

268

UNITED STATES Calendar Year 2003  

E-Print Network (OSTI)

, upgrading, and refining processes, at a cost, but there is so little demand for petroleum products which) gasoline c) diesel d) heavy fuel oil e) petroleum coke and f) other petroleum products. The physical flows products (gasoline, diesel) with weak demand growth for others (e.g. heavy oil, petroleum coke

US Army Corps of Engineers

269

Variational-average-atom-in-quantum-plasmas (VAAQP) code and virial theorem: Equation-of-state and shock-Hugoniot calculations for warm dense Al, Fe, Cu, and Pb  

Science Conference Proceedings (OSTI)

The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.

Piron, R. [CEA, DAM, DIF, F-91297 Arpajon (France); Blenski, T. [CEA, IRAMIS, Service des Photons Atomes et Molecules, F-91191 Gif-sur-Yvette (France)

2011-02-15T23:59:59.000Z

270

XSOR codes users manual  

SciTech Connect

This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

Jow, Hong-Nian [Sandia National Labs., Albuquerque, NM (United States); Murfin, W.B. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States); Johnson, J.D. [Science Applications International Corp., Albuquerque, NM (United States)

1993-11-01T23:59:59.000Z

271

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards Photo of two inspectors looking at a clipboard on a commercial building site with the steel frame of a commercial building in the background. Local code officials enforce building energy codes. Credit: iStockphoto Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building Technologies Office (BTO) provides support to states and local governments as they adopt and monitor commercial building code as well as builders working to meet and exceed code. BTO also develops test procedures and minimum efficiency standards for commercial equipment. Building Energy Codes DOE encourages using new technologies and better building practices to improve energy efficiency. Mandating building energy efficiency by including it in state and local codes is an effective strategy for achieving that goal. The Building Energy Codes Program works with the International Code Council (ICC), American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Illuminating Engineering Society of North America (IESNA), American Institute of Architects (AIA), the building industry, and state and local officials to develop and promote more stringent and easy-to-understand building energy codes and to assess potential code barriers to new energy-efficient technologies.

272

Code of Conduct  

NLE Websites -- All DOE Office Websites (Extended Search)

Governance » Governance » Ethics, Accountability » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Code of Conduct (505) 667-7506 Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our work, and mutual respect and teamwork. LANL must demonstrate to customers and the public that the Laboratory is accountable for its actions and that it conducts business in a trustworthy manner. What is LANL's Code of Conduct? Charlie McMillan 1:46 Laboratory Director Charlie McMillan introduces the code LANL's Code of Conduct is designed to help employees recognize and

273

Oil and Gas Field Code Master List 1995  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 1995 is the fourteenth annual listing of all identified oil and gasfields in the United States. It is updated with field information collected through October 1995. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

1995-12-01T23:59:59.000Z

274

Oil and Gas Field Code Master List 1996  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 1996 is the fifteenth annual listing of all identified oil and gasfields in the United States. It is updated with field information collected through October 1996. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

1996-12-01T23:59:59.000Z

275

Sustainable Acquisition Coding System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System More Documents & Publications Policy...

276

Comparison of the Supplement to the 2004 IECC to the Current New York Energy Conservation Code - Residential Buildings  

Science Conference Proceedings (OSTI)

The New York State Department of State requested the U.S. Department of Energy (DOE) to prepare a report consisting of two components. The first component is an analysis comparing the effects on energy usage as a result of implementation of the 2004 Supplement to the IECC with the current New York code. The second component is an engineering analysis to determine whether additional costs of compliance with the proposal would be equal to or less than the present value of anticipated energy savings over a 10-year period. Under DOE's direction, Pacific Northwest National Laboratory (PNNL) completed the requested assessment of the potential code upgrade.

Lucas, Robert G.

2004-09-01T23:59:59.000Z

277

Clark County - Energy Conservation Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark County - Energy Conservation Code Clark County - Energy Conservation Code Clark County - Energy Conservation Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Nevada Program Type Building Energy Code Provider Clark County In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings located within Clark County. The code was developed by the Southern Nevada Building Officials' International Energy Conservation Committee, comprised of seven municipalities throughout Nevada (including Clark County, Las Vegas, North

278

Country Report on Building Energy Codes in China  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

2009-04-15T23:59:59.000Z

279

Country Report on Building Energy Codes in India  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

2009-04-07T23:59:59.000Z

280

Country Report on Building Energy Codes in Korea  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

2009-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Country Report on Building Energy Codes in Australia  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

2009-04-02T23:59:59.000Z

282

Country Report on Building Energy Codes in Japan  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

Evans, Meredydd; Shui, Bin; Takagi, T.

2009-04-15T23:59:59.000Z

283

Country Report on Building Energy Codes in Canada  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

Shui, Bin; Evans, Meredydd

2009-04-06T23:59:59.000Z

284

Asymptotic analysis of UEP fountain codes over BIAWGN channels  

Science Conference Proceedings (OSTI)

In many communication systems, it is necessary to use unequal error protection (UEP) techniques. The design issues of UEP fountain codes over the binary erasure channel (BEC) have been extensively studied in recent years. In this paper, we investigate ... Keywords: BIAWGN channels, EWF codes, UEP-LT codes, semi-Gaussian approximation

Lei Yuan; Jianping An; Xiangming Li; Jing Yang

2010-06-01T23:59:59.000Z

285

eLearning Catalog | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

eLearning Catalog eLearning Catalog To receive updates about training events and eLearing courses subscribe to the BECP Mailing List. 2009/2012 IECC Cost-Effectiveness Analysis Webinar Course Type: Video Focus: Code Development Target Audience: Code Official, Federal Official, State Official Code Version: International Energy Conservation Code (IECC), 2012 IECC, 2009 IECC This webinar provided an overview of the analyses, both national and state results, as well as the underlying methodology of the series of cost analyses, covering the 2009 and 2012 editions of the International Energy Conservation Code (IECC) for... 90 Percent Compliance Course Type: Video Focus: Compliance Target Audience: State Official Code Version: ASHRAE Standard 90.1, International Energy Conservation Code

286

Building Energy Codes ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ENFORCEMENT TOOLKIT ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES i Building Energy Codes ENFORCEMENT TOOLKIT Prepared by: Building Energy Codes Program The U.S. Department of Energy's Building Energy Codes Program is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90467 LEARNING SERIES OVERVIEW Building Energy Codes ACE

287

Building Energy Codes COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPLIANCE TOOLKIT COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES III Building Energy Codes COMPLIANCE TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90466 LEARNING SERIES OVERVIEW Building Energy Codes

288

Building Energy Codes ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ADOPTION TOOLKIT ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES I Building Energy Codes ADOPTION TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-89963 LEARNING SERIES OVERVIEW Building Energy Codes

289

A Retrospective Analysis of Commercial Building Energy Codes: 1990 2008  

Science Conference Proceedings (OSTI)

Building Energy Codes Program's efforts are designed to result in increased stringency in national model energy codes, more rapid and broader adoption by states and localities of updated codes, and increased compliance and enforcement. Report estimates the historical impact of Building Energy Codes Program in terms of energy savings achieved that are based upon various editions of ANSI/ASHRAE/IESNA Standard 90.1 (ASHRAE Standard 90.1).

Belzer, David B.; McDonald, Sean C.; Halverson, Mark A.

2010-10-01T23:59:59.000Z

290

Light-water-reactor coupled neutronic and thermal-hydraulic codes  

Science Conference Proceedings (OSTI)

An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented.

Diamond, D.J.

1982-01-01T23:59:59.000Z

291

Toolkit Definitions | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Toolkit Definitions The following are definitions for common terms used within the adoption, compliance, and enforcement toolkits. Building code refers to a law or regulation used by state or local governments that establishes specifications for the design and construction of residential or commercial buildings. Building codes help ensure that new and existing residential and commercial structures meet minimum health, safety, and performance standards. In addition, building codes offer a baseline to which structures can be compared. Code adoption refers to the vehicle that establishes code requirements and their administration. Adoption can be mandatory, voluntary, or a combination of the two. The means of adoption vary with respect to the

292

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Program Type Building Energy Code Provider Delaware Department of Natural Resources and Environmental Control ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' In 2004, the governor signed [http://delcode.delaware.gov/sessionlaws/ga142/chp418.shtml SB 306] adopting the 2000 International Energy Conservation Code (IECC) for residential construction and American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 90.1-1999 for commercial

293

Mechanical code comparator  

DOE Patents (OSTI)

A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

294

Magma benchmark code - CECM  

E-Print Network (OSTI)

Below is the Magma code used to run the benchmarks in Section 5 of the paper " In-place Arithmetic for Univariate Polynomials over an Algebraic Number Field"...

295

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

296

Quantum convolutional stabilizer codes  

E-Print Network (OSTI)

Quantum error correction codes were introduced as a means to protect quantum information from decoherance and operational errors. Based on their approach to error control, error correcting codes can be divided into two different classes: block codes and convolutional codes. There has been significant development towards finding quantum block codes, since they were first discovered in 1995. In contrast, quantum convolutional codes remained mainly uninvestigated. In this thesis, we develop the stabilizer formalism for quantum convolutional codes. We define distance properties of these codes and give a general method for constructing encoding circuits, given a set of generators of the stabilizer of a quantum convolutional stabilizer code, is shown. The resulting encoding circuit enables online encoding of the qubits, i.e., the encoder does not have to wait for the input transmission to end before starting the encoding process. We develop the quantum analogue of the Viterbi algorithm. The quantum Viterbi algorithm (QVA) is a maximum likehood error estimation algorithm, the complexity of which grows linearly with the number of encoded qubits. A variation of the quantum Viterbi algorithm, the Windowed QVA, is also discussed. Using Windowed QVA, we can estimate the most likely error without waiting for the entire received sequence.

Chinthamani, Neelima

2005-05-01T23:59:59.000Z

297

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square...

298

Step 2. Identify the Code and Compliance Path | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

2. Identify the Code and Compliance Path 2. Identify the Code and Compliance Path It is important to review the submitted documentation and identify which code was used for the building. Next, to determine whether the building complies with that code, the path used to demonstrate compliance must be identified. There are several compliance paths available in the 2009 and 2012 IECC and ASHRAE Standards 90.1-2007 and 90.1-2010. Each of these codes/standards contains a prescriptive path that clearly states specific requirements. Prescriptive paths limit design freedom. Each of these codes/standards also has a performance-based path that provides more design freedom and can lead to innovative design, but involves more complex energy simulations and tradeoffs between systems. Residential and smaller commercial buildings

299

H.R. 432: A Bill to amend chapter 601 of title 49, United States Code, to improve natural gas and hazardous liquid pipeline safety, in response to the natural gas pipeline accident in Edison, New Jersey, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect

This document contains H.R. 432, A Bill to amend chapter 601 of title 49, United States Code, to improve natural gas and hazardous liquid pipeline safety, in response to the natural gas pipeline accident in Edison, New Jersey, and for other purposes. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 5, 1995.

NONE

1995-12-31T23:59:59.000Z

300

Home Address City State Zip Code  

E-Print Network (OSTI)

must be full-time University faculty or staff. To be eligible for the program, participants must live Parking Program will be provided within ten (10) business days. Work Address Work # Home # Cell # Email Address MCTA South Shore Line Full-time Faculty Part-time Faculty Full-time Staff Part-time Staff Please

He, Chuan

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Iowa State Energy Code Review Form  

NLE Websites -- All DOE Office Websites (Extended Search)

of enclosed space that is heated or cooled, shall be reviewed by an Iowa registered architect or licensed professional engineer for compliance with applicable provisions of the...

302

REScheck | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance » Software & Web Tools Compliance » Software & Web Tools Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center REScheck Subscribe to updates To receive updates about compliance tools subscribe to the BECP Mailing List. Residential Compliance Using REScheck(tm) The REScheck product group makes it fast and easy for builders, designers, and contractors to determine whether new homes, additions, and alterations meet the requirements of the IECC or a number of state energy codes. REScheck also simplifies compliance determinations for building officials, plan checkers, and inspectors by allowing them to quickly determine if a low-rise residence meets the code. REScheck is appropriate for insulation and window trade-off calculations in

303

Oil and gas field code master list, 1993  

Science Conference Proceedings (OSTI)

This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

Not Available

1993-12-16T23:59:59.000Z

304

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network (OSTI)

by state Maine: 5 inspectors, 3 office employees (salary andfunds five inspectors and three office employees, exclusiveInspectors and Plan Reviewers for the Non-Residential Energy Code. Olympia, WA: Washington State Energy Office.

Williams, Alison

2013-01-01T23:59:59.000Z

305

Final Report for National Transport Code Collaboration PTRANSP  

SciTech Connect

PTRANSP, which is the predictive version of the TRANSP code, was developed in a collaborative effort involving the Princeton Plasma Physics Laboratory, General Atomics Corporation, Lawrence Livermore National Laboratory, and Lehigh University. The PTRANSP/TRANSP suite of codes is the premier integrated tokamak modeling software in the United States. A production service for PTRANSP/TRANSP simulations is maintained at the Princeton Plasma Physics Laboratory; the server has a simple command line client interface and is subscribed to by about 100 researchers from tokamak projects in the US, Europe, and Asia. This service produced nearly 13000 PTRANSP/TRANSP simulations in the four year period FY 2005 through FY 2008. Major archives of TRANSP results are maintained at PPPL, MIT, General Atomics, and JET. Recent utilization, counting experimental analysis simulations as well as predictive simulations, more than doubled from slightly over 2000 simulations per year in FY 2005 and FY 2006 to over 4300 simulations per year in FY 2007 and FY 2008. PTRANSP predictive simulations applied to ITER increased eight fold from 30 simulations per year in FY 2005 and FY 2006 to 240 simulations per year in FY 2007 and FY 2008, accounting for more than half of combined PTRANSP/TRANSP service CPU resource utilization in FY 2008. PTRANSP studies focused on ITER played a key role in journal articles. Examples of validation studies carried out for momentum transport in PTRANSP simulations were presented at the 2008 IAEA conference. The increase in number of PTRANSP simulations has continued (more than 7000 TRANSP/PTRANSP simulations in 2010) and results of PTRANSP simulations appear in conference proceedings, for example the 2010 IAEA conference, and in peer reviewed papers. PTRANSP provides a bridge to the Fusion Simulation Program (FSP) and to the future of integrated modeling. Through years of widespread usage, each of the many parts of the PTRANSP suite of codes has been thoroughly validated against experimental data and benchmarked against other codes. At the same time, architectural modernizations are improving the modularity of the PTRANSP code base. The NUBEAM neutral beam and fusion products fast ion model, the Plasma State data repository (developed originally in the SWIM SciDAC project and adapted for use in PTRANSP), and other components are already shared with the SWIM, FACETS, and CPES SciDAC FSP prototype projects. Thus, the PTRANSP code is already serving as a bridge between our present integrated modeling capability and future capability. As the Fusion Simulation Program builds toward the facility currently available in the PTRANSP suite of codes, early versions of the FSP core plasma model will need to be benchmarked against the PTRANSP simulations. This will be necessary to build user confidence in FSP, but this benchmarking can only be done if PTRANSP itself is maintained and developed.

Arnold H. Kritz

2012-06-14T23:59:59.000Z

306

PETSc: Docs: Code Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Code Management Code Management Home Download Features Documentation Manual pages and Users Manual Citing PETSc Tutorials Installation SAWs Changes Bug Reporting Code Management FAQ License Linear Solver Table Applications/Publications Miscellaneous External Software Developers Site In this file we list some of the techniques that may be used to increase one's efficiency when developing PETSc application codes. We have learned to use these techniques ourselves, and they have improved our efficiency tremendously. Editing and Compiling The biggest time sink in code development is generally the cycle of EDIT-COMPILE-LINK-RUN. We often see users working in a single window with a cycle such as: Edit a file with emacs. Exit emacs. Run make and see some error messages. Start emacs and try to fix the errors; often starting emacs hides

307

Hydrogen Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

308

Arkansas Underground Injection Control Code (Arkansas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) < Back Eligibility Commercial Construction Industrial Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the purpose of this UIC Code to adopt underground injection control (UIC) regulations necessary to qualify the State of Arkansas to retain authorization for its Underground Injection Control Program pursuant to the Safe Drinking Water Act of 1974, as amended; 42 USC 300f et seq. In order

309

Development of a Residential Code-Compliant Calculator for the Texas Climate Vision Project  

E-Print Network (OSTI)

The United States Environmental Protection Agency (EPA) has designated four areas in Texas as having unacceptable ozone levels in excess of the National Ambient Air Quality Standard (NAAQS) limits, leading to a designation as non-attainment areas. One of those areas is Austin, a City already known for its environmental zeal. Austin owns its municipal power provider, Austin Energy (AE). Together, they have embarked on many programs to reduce greenhouse gases while maintaining service levels and providing the best return on capital. Of the stationary emissions, a large percentage is sourced to buildings that have driven Austin to adopt above code standards for new buildings. Austin, with assistance from the Energy Systems Laboratory (ESL), extended the IECC 2006 to further strengthen building codes. Funding from the US Department of Energy (DOE) and the Texas State Energy Conservation Office (SECO) has provided an opportunity for Austin Energy to team with ESL to implement a two-year project called the Texas Climate Vision (TCV). The mission of TCV is to realize 20%-40% above code homes using a combination of better codes, improved processes, inspection, and information technology. This paper provides an overview of the permitting process of a single-family house and how the web-based software collects, calculates and certifies above-code compliance for each home, while aggregating data and providing value to builders, inspectors and Austin Energy.

Haberl, J. S.; Marshall, K.; Mukhopadhyay, J.; Gilman, D. R.; Stackhouse, R.; Cordes, J.; Yazdani, B.; Culp, C.; Morgan, R.; Montgomery, C.; Liu, Z.

2007-12-01T23:59:59.000Z

310

Wind energy systems application to regional utilities. [SERIES code; WINDS code; PHASES code; AVERAGE code; NETLOAD code; GENSYS code; PROCOST code; CAP6 code; EVEN code  

DOE Green Energy (OSTI)

A methodology for analyzing the economic impact of WECS on a utility is described in Volume I of this report. The methodology requires extrapolating both historical utility load data and historical wind power into a year of analysis; calculating the total amount of funds made available in that year, as a result of the inclusion of wind power in the utility mix; and then estimating the present value of the total funds made available to the utility over the life of the WECS. To apply the methodology to a specific case, it was necessary to develop various computer programs. The following sections in this report list the programs developed for this study, briefly summarize their contents, and explain how they are used. Wherever possible, a typical input/output file is shown.

Not Available

1979-09-01T23:59:59.000Z

311

N. Mariana Islands - Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N. Mariana Islands - Building Energy Code N. Mariana Islands - Building Energy Code N. Mariana Islands - Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Building codes for the Commonwealth of the Northern Mariana Islands (CNMI)

312

Property:Incentive/ResCode | Open Energy Information  

Open Energy Info (EERE)

ResCode ResCode Jump to: navigation, search Property Name Incentive/ResCode Property Type Text Description Residential Code. Pages using the property "Incentive/ResCode" Showing 25 pages using this property. (previous 25) (next 25) A Aspen & Pitkin County - Renewable Energy Mitigation Program (Colorado) + 2009 IECC with local amendments. Special offset requirements for snowmelt systems, outdoor spas and pools, and houses larger than 4,999 square feet Aspen and Pitkin County - Efficient Building Program (Colorado) + Requirements vary depending on whether the building is residential, large residential, or publicly funded low-income housing B Building Energy Code (Alabama) + 2009 IRC with Alabama amendments Building Energy Code (Alaska) + The 2011 Building Energy Efficiency Standards (BEES) is a state-developed code based on the 2009 IECC with Alaska-specific amendments.

313

Quantum stabilizer codes and beyond  

E-Print Network (OSTI)

The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. Despite the large body of literature in quantum coding theory, many important questions, especially those centering on the issue of "good codes" are unresolved. In this dissertation the dominant underlying theme is that of constructing good quantum codes. It approaches this problem from three rather different but not exclusive strategies. Broadly, its contribution to the theory of quantum error correction is threefold. Firstly, it extends the framework of an important class of quantum codes - nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. In particular it provides many explicit constructions of stabilizer codes, most notably it simplifies the criteria by which quantum BCH codes can be constructed from classical codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. Prior to our work however, systematic methods to construct these codes were few and it was not clear how to fairly compare them with other classes of quantum codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work established a close link between subsystem codes and classical codes and it became clear that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels. This approach is based on a Calderbank- Shor-Steane construction that combines BCH and finite geometry LDPC codes.

Sarvepalli, Pradeep Kiran

2008-08-01T23:59:59.000Z

314

City of Austin - Zoning Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Austin - Zoning Code City of Austin - Zoning Code City of Austin - Zoning Code < Back Eligibility Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Other Solar Buying & Making Electricity Program Info State Texas Program Type Solar/Wind Access Policy The Zoning Code (Chapter 25-2) of the Austin City Code provides a height limitation exemption for solar installations. Solar installations may exceed the zoning district height limit by 15% or the amount necessary to comply with a federal or state regulation, whichever is greater. The Zoning Code also allows for preservation plan in historic districts to incorporate sustainability measures such as solar technologies and other energy

315

Report number codes  

SciTech Connect

This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

Nelson, R.N. (ed.)

1985-05-01T23:59:59.000Z

316

Codes base on unambiguous products  

Science Conference Proceedings (OSTI)

In this paper, we propose the notion of +-unambiguous product which is expanded from unambiguous product and the definitions of alternative product, alternative code, even alternative code on a pair (X, Y) of languages. Some basic properties of ... Keywords: +-unambiguous product, alt-code, ealt-code, generations of code, independency of conditions

Ho Ngoc Vinh; Vu Thanh Nam; Phan Trung Huy

2010-11-01T23:59:59.000Z

317

FCT Safety, Codes and Standards: DOE Safety, Codes, and Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Codes, and Standards Activities to someone by E-mail Share FCT Safety, Codes and Standards: DOE Safety, Codes, and Standards Activities on Facebook Tweet about FCT Safety,...

318

Code manual for passive solar design single family residential construction  

DOE Green Energy (OSTI)

General information is presented on types of passive solar techniques and a method for estimating passive solar performance. Important codes and standards are described, each description listing the items in the code which could have a potential impact on a passive solar design and analyzing the effect of the code on the use of such techniques. State and local codes and code agencies are summarized. The local summary contains the name of a contact in the enforcement agency to whom specific questions may be addressed. The requirements to file for a building permit are given briefly. (LEW)

None

1979-08-01T23:59:59.000Z

319

Residential Codes and Standards | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

houses, which are built in a factory and transported to the home site. ICC ASHRAE International Energy Conservation Code The International Energy Conservation Code...

320

Building Energy Codes in Arizona: Best Practices in Code Support...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Code Support, Compliance, and Enforcement A study funded by the North American Insulation Manufacturers Association to identify "the best practices in energy code support,...

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

APPENDIX A CRUDE STREAM CODES COUNTRY Stream Code Stream Name ...  

U.S. Energy Information Administration (EIA)

Page ?? 6 * A Former Soviet Republic APPENDIX A CRUDE STREAM CODES COUNTRY Stream Code Stream Name Gravity Sulfur Columbia - Continued CO043 Orito ...

322

Compiling Codes on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Compiling Codes Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention is that programs are compiled on the login nodes and executed on the compute nodes. Because the compute nodes and login nodes have different operating systems, binaries created for compute nodes may not run on the login node. The wrappers mentioned above guarantee that

323

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

Only","Other than","and","Any","from Only","Other than","and" "Code(a)","Subsector and Industry","Electricity(b)","Local Utility(c)","Local Utility(d)","Other Sources","Natural...

324

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

than","and","Any","from Only","Other than","and","Row" "Code(a)","Subsector and Industry","Electricity(b)","Local Utility(c)","Local Utility(d)","Other Sources","Natural...

325

BECP News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

BECP News BECP News BECP News December 2012 Introduction The U.S. Department of Energy (DOE) Building Energy Codes Program newsletter (BECP News) encourages the exchange of information among stakeholders in the buildings arena. BECP News targets building professionals, state and local code officials, researchers, contractors, and utilities, as well as national associations and others involved in the design, construction, and commissioning of buildings. The goal of the newsletter is to facilitate the timely development and early adoption of, and compliance with, building energy codes and standards. Subscribe to updates Subscribe to BECP News to receive the latest on building energy code activities, software, and resources, or update your subscription to receive updates on specific topics of interest, including Compliance Tools,

326

Directional lapped transforms for image coding  

E-Print Network (OSTI)

AbstractIn this paper, we present the design of directional lapped transforms for image coding. A lapped transform, which can be implemented by a prefilter followed by a discrete cosine transform (DCT), can be factorized into elementary operators. The corresponding directional lapped transform is generated by applying each elementary operator along a given direction. The proposed directional lapped transforms are not only nonredundant and perfectly reconstructed, but they can also provide a basis along an arbitrary direction. These properties, along with the advantages of lapped transforms, make the proposed transforms appealing for image coding. A block-based directional transform scheme is also presented and integrated into HD Phtoto, one of the state-of-the-art image coding systems, to verify the effectiveness of the proposed transforms. Index TermsDirectional transform, image coding, lapped transform.

Jizheng Xu; Feng Wu; Senior Member; Jie Liang; Wenjun Zhang

2008-01-01T23:59:59.000Z

327

Building Technologies Office: Technology Research, Standards, and Codes in  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes in Emerging Technologies Codes in Emerging Technologies Developing innovative technologies that increase building energy efficiency is one of the primary goals of research being conducted between the U.S. Department of Energy, laboratories, and industry partners. Once new technologies or practices are introduced into the broader market and become widely-adopted, the U.S. Department of Energy (DOE) may seek to set a new baseline standard for energy efficiency, and may work with state and local governments to update building energy codes. Appliance and Equipment Standards New and innovative technologies developed by researchers and partners help improve building energy efficiency, and if these technologies become widely-adopted they may be incorporated into new appliance and equipment standards. BTP sets standards for more than 50 different products, and works with stakeholders in updating these standards as energy efficient technologies become more cost effective. Consumers and businesses save $15 billion per year from improved energy efficiency standards, with this amount expected to nearly double by 2025.

328

Steam generator and circulator model for the HELAP code  

SciTech Connect

An outline is presented of the work carried out in the 1974 fiscal year on the GCFBR safety research project consisting of the development of improved steam generator and circulator (steam turbine driven helium compressor) models which will eventually be inserted in the HELAP (1) code. Furthermore, a code was developed which will be used to generate steady state input for the primary and secondary sides of the steam generator. The following conclusions and suggestions for further work are made: (1) The steam-generator and circulator model are consistent with the volume and junction layout used in HELAP, (2) with minor changes these models, when incorporated in HELAP, could be used to simulate a direct cycle plant, (3) an explicit control valve model is still to be developed and would be very desirable to control the flow to the turbine during a transient (initially this flow will be controlled by using the existing check valve model); (4) the friction factor in the laminar flow region is computed inaccurately, this might cause significant errors in loss-of-flow accidents; and (5) it is felt that HELAP will still use a large amount of computer time and will thus be limited to design basis accidents without scram or loss of flow transients with and without scram. Finally it may also be used as a test bed for the development of prototype component models which would be incorporated in a more sophisticated system code, developed specifically for GCFBR's. (auth)

Ludewig, H.

1975-07-01T23:59:59.000Z

329

Network coding: an instant primer  

Science Conference Proceedings (OSTI)

Network coding is a new research area that may have interesting applications in practical networking systems. With network coding, intermediate nodes may send out packets that are linear combinations of previously received information. There are two ... Keywords: network coding

Christina Fragouli; Jean-Yves Le Boudec; Jrg Widmer

2006-01-01T23:59:59.000Z

330

Building codes as barriers to solar heating and cooling of buildings  

SciTech Connect

The application of building codes to solar energy systems for heating and cooling of buildings is discussed, using as typical codes the three model building codes most widely adopted by states and localities. Some potential barriers to solar energy systems are found, federal and state programs to deal with these barriers are discussed, and alternatives are suggested. To remedy this, a federal program is needed to encourage state adoption of standards and acceptance of certification of solar systems for code approval, and to encourage revisions to codes based on model legislation prepared for the federal government by the model codes groups.

Meeker, F.O. III

1978-04-01T23:59:59.000Z

331

RH-TRU Waste Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

Washington TRU Solutions

2007-07-01T23:59:59.000Z

332

Connecticut | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

333

Maryland | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

334

Oregon | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

335

Indiana | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

336

California | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

337

BECP News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

BECP News BECP News BECP News January 2012 Introduction The BECP News newsletter encourages the exchange of information among building professionals and organizations, state and local code officials, and researchers. Its goal is to facilitate timely development and early adoption of the building energy conservation standards. What can be done to curb the significant and ever-growing impact of building energy use? Adoption and implementation of building energy codes in communities across the United States are critical components in overall efforts to promote energy savings in buildings. Building energy codes lead to long-term energy savings by promoting construction of new energy-efficient buildings and introducing energy-efficient construction methods and technologies during

338

RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployed Deployed Widely Used and Maintained Argonne National Laboratory, Environmental Science Division - RESRAD Program RESRAD codes are used at more than 300 sites since its first release in 1989. Page 1 of 2 Argonne National Laboratory Multiple States & Sites Illinois RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites Challenge The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989. The RESRAD code has been updated since then to improve the models within the codes, to operate on new computer platforms, to use new state of science radiation dose and risk factors, and to calculate cleanup criteria ("Authorized Limits") for radioactively contaminated sites. A series of similar codes have been developed to address radiation dose, risk, and cleanup criteria

339

Product Service Codes @ Headquarters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Service Codes @ Headquarters Product Service Codes @ Headquarters A listing of Product Service Codes used at Headquarters Procurement Services Produce Service Codes @...

340

Additive semisimple multivariable codes over F4  

Science Conference Proceedings (OSTI)

The structure of additive multivariable codes over Keywords: 11T61, 13M10, 81P70, 94B99, Abelian codes, Additive multivariable codes, Duality, Quantum codes

E. Martnez-Moro; A. Piera-Nicols; I. F. Ra

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Code Tables | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

The Obligation Code table shows the valid country of obligation codes. Type of Inventory ChangeUse Code The type of inventory changeuse code (UC) identifies the category...

342

The EGS5 Code System  

Science Conference Proceedings (OSTI)

In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version, a deliberate attempt was made to present example problems in order to help the user ''get started'', and we follow that spirit in this report. A series of elementary tutorial user codes are presented in Chapter 3, with more sophisticated sample user codes described in Chapter 4. Novice EGS users will find it helpful to read through the initial sections of the EGS5 User Manual (provided in Appendix B of this report), proceeding then to work through the tutorials in Chapter 3. The User Manuals and other materials found in the appendices contain detailed flow charts, variable lists, and subprogram descriptions of EGS5 and PEGS. Included are step-by-step instructions for developing basic EGS5 user codes and for accessing all of the physics options available in EGS5 and PEGS. Once acquainted with the basic structure of EGS5, users should find the appendices the most frequently consulted sections of this report.

Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

2005-12-20T23:59:59.000Z

343

1994 Building energy codes and standards workshops: Summary and documentation  

SciTech Connect

During the spring of 1994, Pacific Northwest Laboratory (PNL), on behalf of the U.S. Department of Energy (DOE) Office of Codes and Standards, conducted five two-day Regional Building Energy Codes and Standards workshops across the United States. Workshops were held in Chicago, Philadelphia, Atlanta, Dallas, and Denver. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing state building codes in their states. The workshops provided an opportunity for state and other officials to learn more about the Energy Policy Act of 1992 (EPAct) requirements for residential and commercial building energy codes, the Climate Change Action Plan, the role of the U.S. Department of Energy and the Building Energy Standards Program at Pacific Northwest Laboratory, the commercial and residential codes and standards, the Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. In addition to receiving information on the above topics, workshop participants were also encouraged to inform DOE of their needs, particularly with regard to implementing building energy codes, enhancing current implementation efforts, and building on training efforts already in place. This paper documents the workshop findings and workshop planning and follow-up processes.

Sandahl, L.J.; Shankle, D.L.

1994-09-01T23:59:59.000Z

344

NIST Global Standards Information The United States  

Science Conference Proceedings (OSTI)

... Canada: Canadian Energy Efficient Building Policies. ... States: Beyond the Code -- Energy, Carbon, and ... Privacy policy / security notice / accessibility ...

345

Non-US data compression and coding research. FASAC Technical Assessment Report  

Science Conference Proceedings (OSTI)

This assessment of recent data compression and coding research outside the United States examines fundamental and applied work in the basic areas of signal decomposition, quantization, lossless compression, and error control, as well as application development efforts in image/video compression and speech/audio compression. Seven computer scientists and engineers who are active in development of these technologies in US academia, government, and industry carried out the assessment. Strong industrial and academic research groups in Western Europe, Israel, and the Pacific Rim are active in the worldwide search for compression algorithms that provide good tradeoffs among fidelity, bit rate, and computational complexity, though the theoretical roots and virtually all of the classical compression algorithms were developed in the United States. Certain areas, such as segmentation coding, model-based coding, and trellis-coded modulation, have developed earlier or in more depth outside the United States, though the United States has maintained its early lead in most areas of theory and algorithm development. Researchers abroad are active in other currently popular areas, such as quantizer design techniques based on neural networks and signal decompositions based on fractals and wavelets, but, in most cases, either similar research is or has been going on in the United States, or the work has not led to useful improvements in compression performance. Because there is a high degree of international cooperation and interaction in this field, good ideas spread rapidly across borders (both ways) through international conferences, journals, and technical exchanges. Though there have been no fundamental data compression breakthroughs in the past five years--outside or inside the United State--there have been an enormous number of significant improvements in both places in the tradeoffs among fidelity, bit rate, and computational complexity.

Gray, R.M.; Cohn, M.; Craver, L.W.; Gersho, A.; Lookabaugh, T.; Pollara, F.; Vetterli, M.

1993-11-01T23:59:59.000Z

346

Oil and Gas Field Code Master List 1997  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 1997 is the seventeenth annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

1998-02-01T23:59:59.000Z

347

Oil and Gas Field Code Master List 1998  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 1998 is the eighteenth annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through October 1998. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

1999-01-01T23:59:59.000Z

348

Oil and Gas Field Code Master List 2000  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 2000 is the nineteenth annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through November 2000. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

2001-01-01T23:59:59.000Z

349

Oil and Gas Field Code Master List 2003  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 2001 is the twenty second annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through November 2002. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

2004-03-01T23:59:59.000Z

350

Oil and Gas Field Code Master List 2001  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 2001 is the twentieth annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through November 2001. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

2002-01-01T23:59:59.000Z

351

Oil and Gas Field Code Master List 2002  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 2001 is the twenty first annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through November 2002. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

2003-01-01T23:59:59.000Z

352

Remote-Handled Transuranic Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

Washington TRU Solutions

2006-12-01T23:59:59.000Z

353

NAICS Codes Description:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes Codes Description: Filters: Date Signed only show values between '10/01/2006' and '09/30/2007', Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001') Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Actions Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 251 $164,546,671 541611 ADMINISTRATIVE MANAGEMENT AND GENERAL MANAGEMENT CONSULTING SERVICES 236 $52,396,806 514210 DATA PROCESSING SERVICES 195 $28,941,727 531210 OFFICES OF REAL ESTATE AGENTS AND BROKERS 190 $6,460,652 541330 ENGINEERING SERVICES 165 $33,006,079 163 $11,515,387 541690 OTHER SCIENTIFIC AND TECHNICAL CONSULTING SERVICES 92 $40,527,088 531390 OTHER ACTIVITIES RELATED TO REAL ESTATE 79 -$659,654 337214 OFFICE FURNITURE (EXCEPT WOOD) MANUFACTURING 78 $1,651,732

354

Missouri River Basin state and Federal water and related land resource program: fiscal years 1979-1985. Volume 10. South Dakota  

SciTech Connect

This report, Volume 10 in a series of 11, documents state and Federal water and related land resources planning, development, and management activities for the state of South Dakota. The other reports cover information on Colorado, Iowa, Kansas, Minnesota, Missouri, North Dakota, Wyoming, Nebraska, and Montana. Many planning and study activities are discussed.

1978-12-01T23:59:59.000Z

355

Annual Coded-Wire Tag Program : Washington : Missing Production Groups Annual Report for 2000.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) funds the 'Annual Coded-wire Tag Program - Missing Production Groups for Columbia River Hatcheries' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-00 was met with few modifications to the original FY-00 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-00 were decoded. Under Objective 3, this report summarizes available recovery information through 2000 and includes detailed information for brood years 1989 to 1994 for chinook and 1995 to 1997 for coho.

Mills, Robin D.

2002-02-01T23:59:59.000Z

356

Thermodynamics Software/Codes - TMS  

Science Conference Proceedings (OSTI)

FORUMS > THERMODYNAMICS SOFTWARE/CODES, Replies, Views, Originator ... Thermodynamic calculations in multicomponent systems, 0, 1887, Cathy...

357

LDPC codes from Singer cycles  

Science Conference Proceedings (OSTI)

The main goal of coding theory is to devise efficient systems to exploit the full capacity of a communication channel, thus achieving an arbitrarily small error probability. Low Density Parity Check (LDPC) codes are a family of block codes-characterised ... Keywords: LDPC Codes, Projective spaces, Singer cycles

Luca Giuzzi; Angelo Sonnino

2009-04-01T23:59:59.000Z

358

"NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 8.1;" 1 Relative Standard Errors for Table 8.1;" " Unit: Percents." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Participation in One or More of the Following Types of Activities",1.3,1.7,"--","--","--","--","--","--" ," Energy Audit or Assessment",0.7,2.6,3.9,4.9,6.3,16.5,12.3,6.8

359

Existing Generating Unit in the United States by State and Energy Source, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts) ","Winter Capacity (Megawatts) ","Prime Mover","Energy Source 1","Energy Source 2 ","Initial Month of Operation","Initial Year

360

Existing Generating Unit in the United States by State and Energy Source, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5" 5" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts) ","Winter Capacity (Megawatts) ","Prime Mover","Energy Source 1","Energy Source 2 ","Initial Month of Operation","Initial Year

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Existing Generating Unit in the United States by State and Energy Source, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

4" 4" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts) ","Winter Capacity (Megawatts) ","Prime Mover","Energy Source 1","Energy Source 2 ","Initial Month of Operation","Initial Year

362

Existing Generating Unit in the United States by State and Energy Source, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

6" 6" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts) ","Winter Capacity (Megawatts) ","Prime Mover","Energy Source 1","Energy Source 2 ","Initial Month of Operation","Initial Year

363

Fuel Reliability Program: Falcon Fuel Performance Code Version 1.2  

Science Conference Proceedings (OSTI)

Falcon Fuel Rod Performance Code, Version 1.2, is a combined steady-state and transient thermal/mechanical finite element (FE) code for analyzing light water reactor fuel behavior. The modeling ...

2012-09-30T23:59:59.000Z

364

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Electricity: Components of Net Demand, 2002;" 1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases"," In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

365

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,,"Sales and","Net Demand","RSE" "NAICS"," ",,,"Total Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

366

The Woodland Carbon Code  

E-Print Network (OSTI)

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

367

BUILDING TECHNOLOGIES PROGRAM | Green Building Codes A Guide to Creating Effective  

NLE Websites -- All DOE Office Websites (Extended Search)

i i BUILDING TECHNOLOGIES PROGRAM | Green Building Codes A Guide to Creating Effective Green Building Programs for Energy Efficient and Sustainable Communities Going Beyond Code Preface The Going Beyond Code Guide is designed to help state and local governments design and implement successful "beyond code" programs for new commercial and residential buildings. The goal is to help states and localities establish voluntary or mandatory programs that go well beyond traditional minimum code requirements for new buildings. The guide addresses keys to successful adoption and implementation and discusses the primary areas that are typically included in beyond code or green building programs, including energy efficiency materials and resource conservation, water efficiency,

368

Energy standards and model codes development, adoption, implementation, and enforcement  

Science Conference Proceedings (OSTI)

This report provides an overview of the energy standards and model codes process for the voluntary sector within the United States. The report was prepared by Pacific Northwest Laboratory (PNL) for the Building Energy Standards Program and is intended to be used as a primer or reference on this process. Building standards and model codes that address energy have been developed by organizations in the voluntary sector since the early 1970s. These standards and model codes provide minimum energy-efficient design and construction requirements for new buildings and, in some instances, existing buildings. The first step in the process is developing new or revising existing standards or codes. There are two overall differences between standards and codes. Energy standards are developed by a consensus process and are revised as needed. Model codes are revised on a regular annual cycle through a public hearing process. In addition to these overall differences, the specific steps in developing/revising energy standards differ from model codes. These energy standards or model codes are then available for adoption by states and local governments. Typically, energy standards are adopted by or adopted into model codes. Model codes are in turn adopted by states through either legislation or regulation. Enforcement is essential to the implementation of energy standards and model codes. Low-rise residential construction is generally evaluated for compliance at the local level, whereas state agencies tend to be more involved with other types of buildings. Low-rise residential buildings also may be more easily evaluated for compliance because the governing requirements tend to be less complex than for commercial buildings.

Conover, D.R.

1994-08-01T23:59:59.000Z

369

Coded modulation in the block-fading channel: coding theorems and code construction  

Science Conference Proceedings (OSTI)

We consider coded modulation schemes for the block-fading channel. In the setting where a codeword spans a finite number N of fading degrees of freedom, we show that coded modulations of rate R bit per complex dimension, over a finite signal set ??C ... Keywords: Block-fading channels, bit-interleaved coded modulation, concatenated codes, distance spectrum, diversity, iterative decoding, maximum distance-separable (MDS) codes, maximum-likelihood (ML) decoding, outage probability

A. Guillen i Fabregas; G. Caire

2006-01-01T23:59:59.000Z

370

Summary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary Summary The impact of energy codes on our future is apparent. From environmental and resource conservation to national security, energy concerns, and our economic challenges, energy codes will continue to be a key component of a sound public policy. For further information on building energy code adoption, compliance, and enforcement, review the ACE toolkits Adoption Compliance Enforcement Popular Links ACE Learning Series ACE Overview Top 10 Reasons for Energy Codes Development of Energy Codes Adoption of Energy Codes Compliance with Energy Codes Enforcement of Energy Codes Going Beyond Code Summary Acronyms and Abbreviations Toolkit Definitions Adoption Toolkit Compliance Toolkit Enforcement Toolkit Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Thursday, January 31, 2013 - 15:19

371

City of San Francisco - Green Building Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City of San Francisco - Green Building Code City of San Francisco - Green Building Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State California Program Type Building Energy Code Provider San Francisco San Francisco adopted a mandatory green building code for new construction projects in September 2008, establishing strict guidelines for residential and commercial buildings according to the following schedule:

372

Coded modulation with Low Density Parity Check codes  

E-Print Network (OSTI)

This thesis proposes the design of Low Density Parity Check (LDPC) codes for cases where coded modulation is used. We design these codes by extending the idea of Density Evolution (DE) that has been introduced as a powerful tool to analyze LDPC codes. We first discuss methods by which we can design these codes for higher order constellations like 8 Phase Shift Keying (PSK) and 16 Quadrature Amplitude Modulation (QAM). We present simulation results that are within 0.22 dB and 0.4 dB within the constrained capacity of 8 PSK and 16 QAM constellations respectively in an Additive White Gaussian Noise (AWGN) channel. In the second part, we investigate serial concatenation of LDPC codes and minimum shift keying (MSK) with iterative decoding. We show that the design of LDPC codes is crucially dependent on the realization of the MSK modulator. For MSK modulators with non-recursive continuous phase encoders (CPEs), optimal codes for BPSK are optimal whereas for MSK modulators with recursive CPEs the BPSK codes are not optimal. We show that for non-recursive CPEs, iterative demodulation and decoding is not required even though the CPE has memory. However, iterative demodulation is essential for recursive CPEs. For recursive CPEs, we design LDPC codes using density evolution and differential evolution by looking at the graph structure of the CPE and considering message passing between both these codes. The resulting codes provide significantly improved performance over the existing codes.

Narayanaswami, Ravi

2001-01-01T23:59:59.000Z

373

Missouri | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri Missouri Last updated on 2013-11-05 Current News The Division of Energy conducted a survey in June 2012 regarding adoption activities within the state. In summary large jurisdictions in Missouri have adopted 2009 IECC or equivalent codes: - St. Louis metropolitan area cities of St. Louis, St. Charles, O'Fallon, Florissant, Wildwood, Affton, Manchester, Clayton and other smaller cities adopted the 2009 IECC along with St. Louis County. - Kansas City adopted the 2012 IECC with many metropolitan area cities planning to follow. The Kansas City metropolitan area city of Independence, the 4th largest Missouri city, adopted the 2012 IECC with energy conservation provisions mostly optional but encouraged. - The 3rd largest Missouri city, Springfield, located in southwest Missouri,

374

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NAECA NAECA The National Appliance Energy Conservation Act of 1987, 42 USC 6291 et seq., as amended, Public Law 100-12. NAGDM National Association of Garage Door Manufacturers. NCSBCS The National Conference of States on Building Codes and Standards. NEEA Northwest Energy Efficiency Alliance. NEEP Northeast Energy Efficiency Partnerships. Net Wall Area The net wall area includes the opaque wall area of all above-grade walls enclosing conditioned spaces, the opaque area of conditioned basement walls less than 50% below grade (including the below-grade portions), and peripheral edges of floors. The net wall area does not include windows, doors, or other such openings, because they are treated separately. NFPA National Fire Protection Association. NFRC National Fenestration Rating Council.

375

COMcheck | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance » Software & Web Tools Compliance » Software & Web Tools Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center COMcheck Subscribe to updates To receive updates about compliance tools subscribe to the BECP Mailing List. Commercial Compliance Using COMcheck(tm) The COMcheck product group makes it easy for architects, builders, designers, and contractors to determine whether new commercial or high-rise residential buildings, additions, and alterations meet the requirements of the IECC and ASHRAE Standard 90.1, as well as several state-specific codes. COMcheck also simplifies compliance for building officials, plan checkers, and inspectors by allowing them to quickly determine if a building project

376

Oil and Gas Field Code Master List 2006  

U.S. Energy Information Administration (EIA)

Preface The Oil and Gas Field Code Master List 2006 is the twenty-fifth annual listing of all identified oil and gas fields in the United States. It ...

377

Coping with qubit leakage in topological codes  

E-Print Network (OSTI)

Many physical systems considered promising qubit candidates are not, in fact, two-level systems. Such systems can leak out of the preferred computational states, leading to errors on any qubits that interact with leaked qubits. Without specific methods of dealing with leakage, long-lived leakage can lead to time-correlated errors. We study the impact of such time-correlated errors on topological quantum error correction codes, which are considered highly practical codes, using the repetition code as a representative case study. We show that, under physically reasonable assumptions, a threshold error rate still exists, however performance is significantly degraded. We then describe simple additional quantum circuitry that, when included in the error detection cycle, restores performance to acceptable levels.

Austin G. Fowler

2013-08-30T23:59:59.000Z

378

Erasure Techniques in MRD codes  

E-Print Network (OSTI)

This book is organized into six chapters. The first chapter introduces the basic algebraic structures essential to make this book a self contained one. Algebraic linear codes and their basic properties are discussed in chapter two. In chapter three the authors study the basic properties of erasure decoding in maximum rank distance codes. Some decoding techniques about MRD codes are described and discussed in chapter four of this book. Rank distance codes with complementary duals and MRD codes with complementary duals are introduced and their applications are discussed. Chapter five introduces the notion of integer rank distance codes. The final chapter introduces some concatenation techniques.

W. B. Vasantha Kandasamy; Florentin Smarandache; R. Sujatha; R. S. Raja Durai

2012-05-03T23:59:59.000Z

379

Building Energy Codes Resource Guide: Code Officials Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

in it FOR ME? DOE's Building Energy Codes Program (www.energycodes.gov) and ICC (www.iccsafe.org) offer many resources for commercial code of cials. Examples in this section...

380

An Analysis of Statewide Adoption Rates of Building Energy Code by Local Jurisdictions  

Science Conference Proceedings (OSTI)

The purpose of this study is to generally inform the U.S. Department of Energys Building Energy Codes Program of the local, effective energy code adoption rate for a sample set of 21 states, some which have adopted statewide codes and some that have not. Information related to the residential energy code adoption process and status at the local jurisdiction was examined for each of the states. Energy code status information was gathered for approximately 2,800 jurisdictions, which effectively covered approximately 80 percent of the new residential building construction in the 21 states included in the study.

Cort, Katherine A.; Butner, Ryan S.

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Energy Code for the District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code for the District of Columbia Building Energy Code for the District of Columbia Building Energy Code for the District of Columbia < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State District of Columbia Program Type Building Energy Code Provider District Department of the Environment ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The DC Energy Conservation Code is updated regularly as national codes are

382

Methane Hydrates Code Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Code Comparison Code Comparison Set-up for Problem 7 (Long-term simulations for Mt Elbert and PBU L- Pad "Like" Deposits) As discussed in the phone conference held on 11/9/2007, it is proposed that Problem 7 be made up of three separate cases: Problem 7a will look at a deposit similar to the Mt Elbert site. Problem 7b will be based on the PBU L-Pad site, and Problem 7c will be a down-dip version of the L-Pad site. In all three cases, a standard set of parameters will be used based on those found in Problem 6 (the history matches to the MDT data). The parameters chosen were consensus values based on the experiences of the various groups in attempting to match the MDT data for the C2 formation at Mount Elbert. Given below are the detailed descriptions of the three problems and the proposed

383

DOE Hydrogen and Fuel Cells Program: Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards Standards Printable Version Codes and Standards Codes and standards have repeatedly been identified as a major institutional barrier to deploying hydrogen technologies. To enable the commercialization of hydrogen in consumer products, new model building codes and equipment and other technical standards will need to be developed and recognized by federal, state, and local governments. DOE is working to identify those codes and standards, to facilitate the development of such standards, and to support publicly available research and certification investigations that are necessary to develop a basis for such codes and standards. Photo of hydrogen fueling pump in Las Vegas, Nevada Led by the Office of Energy Efficiency and Renewable Energy, DOE is working with code

384

Status of MARS Code  

SciTech Connect

Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

N.V. Mokhov

2003-04-09T23:59:59.000Z

385

MELCOR computer code manuals  

Science Conference Proceedings (OSTI)

MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

1995-03-01T23:59:59.000Z

386

Arkansas Air Pollution Control Code (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Air Pollution Control Code (Arkansas) Arkansas Air Pollution Control Code (Arkansas) Arkansas Air Pollution Control Code (Arkansas) < Back Eligibility Fuel Distributor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Air Pollution Control code is adopted pursuant to Subchapter 2 of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-4-101). ) By authority of the same State law, the Commission has also adopted Regulation 19, Regulations of the Arkansas Plan of Implementation for Air Pollution Control (Regulation 19) and Regulation 26, Regulations of the Arkansas Operating Air Permit Program (Regulation 26)

387

Step 1. Know the Requirements | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

1. Know the Requirements 1. Know the Requirements Current national model energy codes and standards are limited to the design and construction of buildings. That is, the operation and maintenance of the building, however important that might be to the overall energy usage of the building, is not considered in current national model energy codes and standards.1 This toolkit is focused on the codes and standards called out in the American Recovery and Reinvestment Act of 2009 (ARRA), but most of the principles apply to any code. For the residential build community, ARRA requires states to meet or exceed the 2009 International Energy Conservation Code (IECC) or achieve equivalent or greater energy savings. For the commercial build community, states must meet or exceed ANSI/ASHRAE/IESNA Standard 90.1-2007 (ASHRAE

388

Energy and water development appropriations for fiscal year 1994. Hearings before a Subcommittee of the Committee on Appropriations, United States Senate, One Hundred Third Congress, First Session  

SciTech Connect

The hearings (H.R. 2445) address the Energy & Water Development Appropriations for Fiscal Year 1994. The Bonneville Power Administrations budget proposal were discussed. The need for cost cutting and a competitive rate structure were stressed. Statements and documents submitted for record by government officials are included.

1993-12-31T23:59:59.000Z

389

Environmental Controls on the Surface Energy Budget over a Large Southern Inland Water in the United States: An Analysis of One-Year Eddy Covariance Flux Data  

Science Conference Proceedings (OSTI)

The authors analyzed the surface energy fluxes that were measured by an eddy covariance system over the Ross Barnett Reservoir in Mississippi for a 1-yr period in 2008. On a monthly basis over the course of the year, positive vertical temperature ...

Heping Liu; Qianyu Zhang; Gordon Dowler

2012-12-01T23:59:59.000Z

390

Administrative Code Title 83, Public Utilities (Illinois) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administrative Code Title 83, Public Utilities (Illinois) Administrative Code Title 83, Public Utilities (Illinois) Administrative Code Title 83, Public Utilities (Illinois) < Back Eligibility Commercial Municipal/Public Utility Rural Electric Cooperative Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Environmental Regulations Generating Facility Rate-Making Renewables Portfolio Standards and Goals Safety and Operational Guidelines Training/Technical Assistance Provider Illinois Commerce Commission In addition to general rules for utilities, this article states regulations for the protection of underground utilities, promotional practices of electric and gas public utilities construction of electric power and

391

Nevada Energy Code for Buildings  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

392

Matlab-Kinect Interface Code  

E-Print Network (OSTI)

This .zip file contains code and installation instructions for acquiring 3d arm movements in Matlab using the Microsoft Kinect 3d camera. The provided code has been validated in 32-bit and 64-bit Matlab with 32-bit and ...

Kowalski, Kevin

2012-06-01T23:59:59.000Z

393

Code Completion From Abbreviated Input  

E-Print Network (OSTI)

Abbreviation Completion is a novel technique to improve the efficiency of code-writing by supporting code completion of multiple keywords based on non-predefined abbreviated input - a different approach from conventional ...

Miller, Robert C.

394

Quantum codes on Hurwitz surfaces  

E-Print Network (OSTI)

Ever since the birth of the first quantum error correcting code, many error correcting techniques and formalism has been constructed so far. Among those, generating a quantum code on a locally planar geometry have lead to ...

Kim, Isaac H. (Isaac Hyun)

2007-01-01T23:59:59.000Z

395

SURVEY","YEAR","MONTH","CO_CODE","CO_NAME","PLT_CODE","PLT_NAME...  

U.S. Energy Information Administration (EIA) Indexed Site

4,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",13,"AL","U","Jefferson",73,"Supplier Record Number 1",86770,24.544,0.73,12.5,185.7 "FERC423",2004,1,195,"Alabama Power...

396

SURVEY","YEAR","MONTH","CO_CODE","CO_NAME","PLT_CODE","PLT_NAME...  

U.S. Energy Information Administration (EIA) Indexed Site

2,1,195,"Alabama Power Co",3,"Barry","AL","C",,"Coal","BIT",13,"AL","U","Jefferson",73,"Supplier Record Number 1",88600,25.122,0.81,11,186.9 "FERC423",2002,1,195,"Alabama Power...

397

CO_CODE","PLT_CODE","YEAR","MONTH","BLANK1","BOM_DIST","ORIG...  

U.S. Energy Information Administration (EIA) Indexed Site

,5,0,279900,1026,0,0,235.5,,1 052053,2539,92,09,,,,,,02,36,,3,"NG",,5,0,121000,1026,0,0,241.1,,1 052053,2539,92,09,,,,,,02,36,,3,"NG",,5,0,176700,1026,0,0,238.1,,1...

398

CO_CODE","PLT_CODE","YEAR","MONTH","BLANK1","BOM_DIST","ORIG...  

U.S. Energy Information Administration (EIA) Indexed Site

227000,1041,0,0,267.7,,1 050154,1560,90,04,,,,,,05,24,,2,"FO6",,1,1,53000,149092,0.96,0,241.1,,1 050159,1470,90,04,,,,,,01,23,,2,"FO6",,1,0,18503,151289,0.69,0.6,386.9,,1...

399

CO_CODE","PLT_CODE","YEAR","MONTH","BLANK1","BOM_DIST","ORIG...  

U.S. Energy Information Administration (EIA) Indexed Site

7,13466,0.71,8.2,176.98,,1,133 051385,0892,91,03,,,,,,03,17,,3,"NG",,4,0,13467,1020,0,0,241.1,,1 051385,0892,91,03,,10,17,"S",,03,17,,1,"BIT",,1,0,16708,10458,3,11.1,155.63,,1,157...

400

Rights-of-Way Stability: A 15-year Appraisal of Plant Dynamics on Electric Power Rights-of-Way in New York State  

Science Conference Proceedings (OSTI)

Operational, selective removal of trees on rights-of-way (ROWs) can create relatively stable, compositionally constant low-density tree populations. This report presents the results of studies on 21 electric transmission line ROWs in New York State. The results show that selective vegetation management of undesirable species, an ecologically based management technique, helps promote or maintain plant species richness and diversity on upland landscapes, but appears to have no effect in wetlands. In additi...

1999-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Degrees Awarded by Year This information is based on the Coordinating Board Graduation Report (CBM009) which is certified by the state. The  

E-Print Network (OSTI)

on the Coordinating Board Graduation Report (CBM009) which is certified by the state. The College information is based,485 27.0% Public Policy 231 5.0% 270 5.6% 300 6.1% 313 6.0% 328 6.0% Sciences 624 13.6% 616 12.8% 605 12 Policy Sciences University College Degrees Awarded by College * The Honors College includes only students

Jiménez, Daniel A.

402

2009 Solar Decathlon Building Code  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING CODE Last Updated: September 29, 2008 2009 Solar Decathlon Building Code i September 29, 2008 Contents Section 1. Introduction ............................................................................................................................................................. 1 Section 2. Adopted Codes ........................................................................................................................................................ 1 Section 3. Building Planning and Construction .............................................................................................................. 1 3-1. Fire Protection and Prevention ................................................................................................................................. 1

403

Code for Hydrogen Hydrogen Pipeline  

E-Print Network (OSTI)

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

404

Coded output support vector machine  

Science Conference Proceedings (OSTI)

The authors propose a coded output support vector machine (COSVM) by introducing the idea of information coding to solve multi-class classification problems for large-scale datasets. The COSVM is built based on the support vector regression (SVR) machine ... Keywords: coded output, multi-class classification, number system, parallel implementation, support vector machine (SVM)

Tao Ye; Xuefeng Zhu

2012-07-01T23:59:59.000Z

405

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT_CODE","PORT_CITY  

U.S. Energy Information Administration (EIA) Indexed Site

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT_CODE","PORT_CITY","PORT_STATE","PORT_PADD","GCTRY_CODE","CNTRY_NAME","QUANTITY","SULFUR","APIGRAVITY","PCOMP_RNAM","PCOMP_SNAM","PCOMP_STAT","STATE_NAME","PCOMP_PADD" RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT_CODE","PORT_CITY","PORT_STATE","PORT_PADD","GCTRY_CODE","CNTRY_NAME","QUANTITY","SULFUR","APIGRAVITY","PCOMP_RNAM","PCOMP_SNAM","PCOMP_STAT","STATE_NAME","PCOMP_PADD" 41547,"AEROPRES CORP ",1,253,"Isobutane/Ngl",3402,"NOYES, MN","MINNESOTA",2,260,"CANADA",2,0,0,,,,," " 41547,"AEROPRES CORP ",2,252,"Normal Butane/Ngl",3402,"NOYES, MN","MINNESOTA",2,260,"CANADA",5,0,0,,,,," "

406

Standards, building codes, and certification programs for solar technology applicatons  

DOE Green Energy (OSTI)

This report is a primer on solar standards development. It explains the development of standards, building code provisions, and certification programs and their relationship to the emerging solar technologies. These areas are important in the commercialization of solar technology because they lead to the attainment of two goals: the development of an industry infrastructure and consumer confidence. Standards activities in the four phases of the commercialization process (applied research, development, introduction, and diffusion) are discussed in relation to institutional issues. Federal policies have been in operation for a number of years to accelerate the development process for solar technology. These policies are discussed in light of the Office of Management and Budget (OMB) Circular on federal interaction with the voluntary consensus system, and in light of current activities of DOE, HUD, and other interested federal agencies. The appendices cover areas of specific interest to different audiences: activities on the state and local level; and standards, building codes, and certification programs for specific technologies. In addition, a contract for the development of a model solar document let by DOE to a model consortium is excerpted in the Appendix.

Riley, J. D.; Odland, R.; Barker, H.

1979-07-01T23:59:59.000Z

407

International comparison of passive solar simulation codes  

DOE Green Energy (OSTI)

Two software-software comparisons of passive solar simulation codes have been conducted by the Passive Solar Applications Group of the Committee on the Challenges to Modern Society. These exercises have involved the simulation of hypothetical Trombe wall and direct gain buildings located in Madison, Wisconsin. The countries that have participated in the exercise include Canada, Denmark, France, and the United States. All results available at the time of writing are discussed in this report.

Wray, W.O.

1980-01-01T23:59:59.000Z

408

AMENDMENT OF SOLlClTATlONlMODlFlCATlON OF CONTRACT ( I. ID CODE  

National Nuclear Security Administration (NNSA)

subject matter where 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) X feasible.) Contract Clause B.2 entitled, "Contract Type and Value,"...

409

Mr. Roland Risser, Building Energy Codes Program Manager U.S...  

NLE Websites -- All DOE Office Websites (Extended Search)

(IECC) and ANSIASHRAEIESNA Standard 90.1-2007 (ASHRAE), respectively, the State of Ohio certifies that it has reviewed the energy provisions of its building codes and have...

410

Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

411

Northern Mariana Islands | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

No Code Change Process Legislative Code Change Cycle None Timeline of Cycle None Adoption Process The Building Safety Code was developed through legislative action. The rules and...

412

Renewable Energy and Energy Efficiency Technologies in Residential Building Codes: June 15, 1998 to September 15, 1998  

SciTech Connect

This report is an attempt to describe the building code requirements and impediments to the application of EE and RE technologies in residential buildings. Several modern model building codes were reviewed. These are representative of the codes that will be adopted by most locations in the coming years. The codes reviewed for this report include: International Residential Code, First Draft, April 1998; International Energy Conservation Code, 1998; International Mechanical Code, 1998; International Plumbing Code, 1997; International Fuel Gas Code, 1997; National Electrical Code, 1996. These codes were reviewed as to their application to (1) PV systems in buildings and building-integrated PV systems and (2) active solar domestic hot water and space-heating systems. A discussion of general code issues that impact these technologies is also included. Examples of this are solar access and sustainability.

Wortman, D.; Echo-Hawk, L.

2005-02-01T23:59:59.000Z

413

NETL: News Release - Ohio State Develops Game-Changing CO Carbon Storage Partner Completes First Year of CO Research Projects Addressing Technical Challenges to Environmentally  

NLE Websites -- All DOE Office Websites (Extended Search)

Injection Operations in Illinois 2 Capture Membranes in DOE-Funded Injection Operations in Illinois 2 Capture Membranes in DOE-Funded Project Publications News Release Release Date: November 28, 2012 Research Projects Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE Washington, D.C. - Fifteen research projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously reducing environmental footprints and risks, have been selected to receive a total of $28 million in funding from the U.S. Department of Energy's Office of Fossil Energy (FE). The projects, valued at just over $36.6 million over two years, add to the research portfolio for FE's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, which develops technologies and strategies to improve the safety and minimize the environmental impacts of oil and natural gas exploration and production.

414

State Energy Program in Hawaii  

DOE Green Energy (OSTI)

The Hawaii Strategic Industry Division administers DOE's State Energy Program in Hawaii. The division's current accomplishments include establishing a Model Energy Code for the state, instituting a successful solar program, and making energy performance contracts available for government facilities.

Not Available

2003-05-01T23:59:59.000Z

415

Step 2. Choose a compliance path within the applicable energy code |  

NLE Websites -- All DOE Office Websites (Extended Search)

2. Choose a compliance path within the applicable energy code 2. Choose a compliance path within the applicable energy code For some designers, an ideal energy code would tell them exactly what they need to do for their building. For other designers, being told exactly what they need to do might be viewed as limiting their creativity. Energy codes attempt to cater to both types of designers by offering multiple compliance paths within the code. BECP's Commercial Buildings for Architects Resource Guide (Resource 1) states the issue as An energy code's format can significantly influence design, sometimes more than the actual requirements. A prescriptive code clearly states what applies, but may limit design freedom and foster the view that the building is composed of separate, non-related systems. A performance-based code

416

Top 10 Reasons for Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Top 10 Reasons for Energy Codes Top 10 Reasons for Energy Codes The projected energy savings attributable to energy codes translates into an estimated cumulative savings of 800 million metric tons of carbon dioxide by 2030-that's equivalent to removing 145 million vehicles from our nation's roadways. Here are the top 10 reasons for adopting and implementing energy codes. Today's global energy, economic, and environmental challenges necessitate a U.S. strategy identifying a suite of energy-efficiency-related initiatives that is implemented by the building industry and relevant stakeholders. Energy codes are a core component of that strategy and, in addition, have an impact on other strategies to improve our built environment. Energy Codes... SAVE money and help reduce needless consumption of energy to heat,

417

Jacobian code generated by source transformation and vertex elimination is as efficient as hand coding  

E-Print Network (OSTI)

Jacobian code generated by source transformation and vertex elimination is as efficient as hand coding

Forth, S A; Pryce, J D; Reid, J K

2002-01-01T23:59:59.000Z

418

Commercial Codes and Standards | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

(or non-residential) buildings, in the context of building energy codes and standards, are all buildings other than low-rise residential buildings, including multi-family...

419

Network Coded Transmission of Fountain Codes over Cooperative Relay Networks  

E-Print Network (OSTI)

In this paper, a transmission strategy of fountain codes over cooperative relay networks is proposed. When more than one relay nodes are available, we apply network coding to fountain-coded packets. By doing this, partial information is made available to the destination node about the upcoming message block. It is therefore able to reduce the required number of transmissions over erasure channels, hence increasing the effective throughput. Its application to wireless channels with Rayleigh fading and AWGN noise is also analysed, whereby the role of analogue network coding and optimal weight selection is demonstrated.

Kurniawan, E; Yen, K; Chong, K F E

2010-01-01T23:59:59.000Z

420

Building Energy Code Resource Guide: Code Officials Edition ...  

NLE Websites -- All DOE Office Websites (Extended Search)

includes practical plan review and inspection resources, including the U.S. Department of Energy Building Energy Codes Program's REScheck(tm) and COMcheck(tm) quick reference...

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in...

422

Step 5. Determine Crucial Components of the Energy Code: Scope and  

NLE Websites -- All DOE Office Websites (Extended Search)

5. Determine Crucial Components of the Energy Code: Scope and 5. Determine Crucial Components of the Energy Code: Scope and Applicability, Format, Adoption Date, and Effective Date Description There are four crucial components that must be considered during the adoption process: scope and applicability, format, adoption date and effective date. The scope of a code dictates which requirements will be covered by the code while the format relates to the manner in which code requirements are presented. Based on the energy goals of a state or jurisdiction, the scope and format of a code will greatly influence which code is selected for adoption and the adoption process used. For example, if a jurisdiction wishes to include only the HVAC system in its local code, a national model code may be amended to reflect these changes or a locally

423

Helium trimer calculations with a public quantum three-body code  

Science Conference Proceedings (OSTI)

We present an illustration of using a quantumthree-body code being prepared for public release. The code is based on iterative solving of the three-dimensional Faddeev equations. The code is easy to use and allows users to perform highly-accurate calculations of quantum three-body systems. The previously known results for He{sub 3} ground state are well reproduced by the code.

Kolganova, E. A. [Joint Institute for Nuclear Research (Russian Federation); Roudnev, V.; Cavagnero, M. [University of Kentucky, Department of Physics and Astronomy (United States)

2012-10-15T23:59:59.000Z

424

Through the years  

NLE Websites -- All DOE Office Websites (Extended Search)

Through the years Through the years Early 1960s Researchers at PNL (now called PNNL) developed the standards and devices for setting and measuring radiation doses received by nuclear industry work- ers. Tens of thousands of people, including children, have been mea- sured by whole-body counters since the 1960s to relate their physical content of radioactive materials to sources such as food and water. 1960s PNL formulated the first use of a digital computer for complete process control of a mass spectrometer. Mid-1960s PNL devised a computer code, called COBRA for COolant Boiling in Rod Arrays, which allowed for three-dimensional, multiphase hydrothermal modeling of reactor and other complex systems. 1967 PNL researchers continued the fundamental scientific and

425

Seminar on building codes and standards  

SciTech Connect

A seminar was conducted for state building code officials and state energy officials to discuss the following: status of the states regulatory activities for energy conservation standards for buildings; the development, administration, and enforcement processes for energy conservation standards affecting new construction; lighting and thermal standards for existing buildings; status of the development and implementation of the Title III Program, Building Energy Performance Standards (BEPS); and current status of the State Energy Conservation Program. The welcoming address was given by John Wenning and the keynote address was delivered by John Millhone. Four papers presented were: Building Energy Performance Standards Development, James Binkley; Lighting Standards in Existing Buildings, Dorothy Cronheim; Implementation of BEPS, Archie Twitchell; Sanctions for Building Energy Performance Standards, Sue Sicherman.

Not Available

1980-01-01T23:59:59.000Z

426

ACE Learning Series - Overview | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our environment and economy are impacted. Building energy codes and standards provide an effective response. The Building Energy Codes Program designed the Adoption, Compliance, and Enforcement (ACE) Learning Series for those in the building industry having the greatest potential to influence the adoption of and compliance with building energy codes and standards. Each toolkit in the ACE Learning Series delivers essential information to enable designers, specifiers, builders, building owners, policy makers, code officials, and others involved in building design and construction to understand the important role building energy codes play in helping us all address our

427

Oil and Gas Field Code Master List 1996 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1996 represents a departure from past Energy Information Administration (EIA) practice. This publication does not provide a list of all identified oil and gas fields in the United States as did the fourteen prior annual volumes of the Oil and Gas Field Code Master List. It provides updates to the Field Code Master File that were made subsequent to the publication of Oil and Gas Field Code Master List 1995, based on information collected through October 1996. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. This publication is therefore a supplement to theOil and Gas Field Code Master List 1995, which its recipients were requested to retain.

Robert F. King

1996-12-01T23:59:59.000Z

428

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Eligibility Commercial Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial...

429

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Code Building Energy Code Eligibility Commercial Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling...

430

The Building Codes Assistance Project (BCAP) | Open Energy Information  

Open Energy Info (EERE)

The Building Codes Assistance Project (BCAP) The Building Codes Assistance Project (BCAP) Jump to: navigation, search BCAP was established in 1994 as a joint initiative of the Alliance to Save Energy, the American Council for an Energy-Efficient Economy, and the Natural Resources Defense Council. BCAP provides custom-tailored assistance on building energy code adoption and implementation. We assist state and local regulatory and legislative bodies and help coordinate others representing environmental interests, consumers, labor, and industry. BCAP provides states with code advocacy assistance on behalf of the U.S. Department of Energy and coordinates with DOE on technical assistance (see www.energycodes.gov for more information). In addition, BCAP receives funding from multiple foundations, the U.S. EPA,

431

Gas Code of Conduct (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Code of Conduct (Connecticut) Gas Code of Conduct (Connecticut) Gas Code of Conduct (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Safety and Operational Guidelines Provider Public Utilities Regulatory Authority The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote competitive

432

SEAMOPT - Stirling engine optimization code  

SciTech Connect

Experience is described with use of a fast-running Stirling engine optimization code developed at Argonne intended for public release. Stirling engine modeling is provided by the SEAM1 thermodynamic code. An interface was written to combine SEAM1 with a general optimization code and assess maximum component stress levels. Thus full engine thermodynamic and structural simulation is done during the optimization process. Several examples of the use of this code to optimize the GPU-3 engine are described. In one case efficiency was improved by over 25%.

Heames, T.J.; Daley, J.G.

1984-01-01T23:59:59.000Z

433

CQ - Code selection through query.  

E-Print Network (OSTI)

??This thesis proposes a query language for code selection. It is designed to work on virtual machine based languages and is intended to be used (more)

ZENZARO, SIMONE

2010-01-01T23:59:59.000Z

434

The Fireball integrated code package  

Science Conference Proceedings (OSTI)

Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state of the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.

Dobranich, D.; Powers, D.A.; Harper, F.T.

1997-07-01T23:59:59.000Z

435

An Analysis of Building Energy Code Statewide Adoption Rates by Local  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Building Energy Code Statewide Adoption Rates by Local An Analysis of Building Energy Code Statewide Adoption Rates by Local Jurisdiction The purpose of this study is to quantify the energy code adoption rate by local jurisdictions from a sample set of 21 states. Some of the states within this sample have statewide energy codes, while others do not. Using construction starts and weighting results by localities that have or have not adopted energy codes, the findings can suggest a means of identifying which states have "effectively" adopted state-wide codes through local adoption and enforcement. Publication Date: Monday, December 31, 2012 BEC_Statewide_Adoption.pdf Document Details Last Name: Cort Initials: KA Affiliation: Pacific Northwest National Laboratory Document Number: PNNL-21963 Prepared by:

436

Fiscal Year 2010 Greenhouse Gas Inventory  

E-Print Network (OSTI)

Fiscal Year 2010 Greenhouse Gas Inventory OREGON STATE UNIVERSITY #12;OREGON STATE UNIVERSITYGHG . 2 . Carbon dioxide equivalent (CO2e) represents the quantity of a greenhouse gas multiplied

Escher, Christine

437

Energy codes and the building design process: Opportunities for improvement  

SciTech Connect

The Energy Policy Act (EPAct), passed by Congress in 1992, requires states to adopt building energy codes for new commercial buildings that meet or exceed the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) and Illuminating Engineers Society of North America (IES) Standard 90.1-1989 by October 24, 1994. In response to EPAct many states will be adopting a state-wide energy code for the first time. Understanding the role of stakeholders in the building design process is key to the successful implementation of these codes. In 1993, the Pacific Northwest Laboratory (PNL) conducted a survey of architects and designers to determine how much they know about energy codes, to what extent energy-efficiency concerns influence the design process, and how they convey information about energy-efficient designs and products to their clients. Findings of the PNL survey, together with related information from a survey by the American Institute of Architects (AIA) and other reports, are presented in this report. This information may be helpful for state and utility energy program managers and others who will be involved in promoting the adoption and implementation of state energy codes that meet the requirements of EPAct.

Sandahl, L.J.; Shankle, D.L.; Rigler, E.J.

1994-05-01T23:59:59.000Z

438

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006;" 2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

439

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010;" 1.1 Electricity: Components of Net Demand, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",75652,21,5666,347,80993

440

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006;" 4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006;" 1.1 Electricity: Components of Net Demand, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",73242,309,4563,111,78003

442

Oil and Gas Field Code Master List 1998 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1998 is an addendum to the 1997 edition of the EIA publication Oil and Gas Field Code Master List, an annual listing of all identified oil and gas fields in the United States. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. The current publication is based on field information collected through October 1998.

Robert F. King

1999-01-01T23:59:59.000Z

443

Oil and Gas Field Code Master List 1999 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1999 is an addendum to the 1998 edition of the EIA publication Oil and Gas Field Code Master List, an annual listing of all identified oil and gas fields in the United States. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. The current publication is based on field information collected through November 1999.

Robert F. King

2000-01-01T23:59:59.000Z

444

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010;" 2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

445

Establishment, Implementation and Enforcement of Building Codes and Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establishment, Implementation and Enforcement Establishment, Implementation and Enforcement of Building Codes and Standards Nanette Lockwood Global Director Government Affairs Solutia Inc. 2 Crystex ® Solutia Inc. Advanced Interlayers Performance Films Technical Specialties 2010 Revenue $1.9 billion USD Facilities 50+ Employees 3,300 U.S. Building Codes and Standards * Developed, updated and published on regular intervals at the national level for use locally * Adopted by federal agencies, state and local governments * Typically enforced by local building departments * Applies to new construction, additions and major renovations for nearly all buildings Model Building Codes * National development committees - Architects, engineers, builders, scientists, insurers, government researchers, agencies and building officials

446

How to find sponsors & supporters for energy codes legislation  

NLE Websites -- All DOE Office Websites (Extended Search)

FIND SPONSORS & SUPPORTERS FIND SPONSORS & SUPPORTERS FOR ENERGY CODES LEGISLATION PRESENTED BY JIM O"REILLY NORTHEAST ENERGY EFFICIENCY PARTNERSHIPS TO DOE ENERGY CODES 2011 SALT LAKE CITY, UT July 27, 2011 NORTHEAST ENERGY EFFICIENCY PARTNERSHIPS "Accelerating Energy Efficiency" 1 MISSION Accelerate the efficient use of energy in the Northeast and Mid-Atlantic Regions APPROACH Overcome barriers to efficiency through Collaboration, Education & Advocacy VISION Transform the way we think about and use energy in the world around us. OUR OBJECTIVES  Provide you with some general points about how to identify and gain support from state legislators on building energy codes related bills  Relate an example from practical experiences of

447

Aspen Code Development Collaboration  

Science Conference Proceedings (OSTI)

Wyoming has a wealth of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming?s coal and gas resources are exported from the state in unprocessed form rather than as refined higher value products. Wyoming?s leadership recognizes the opportunity to broaden the state?s economic base energy resources to make value-added products such as synthetic vehicle fuels and commodity chemicals. Producing these higher value products in an environmentally responsible manner can benefit from the use of clean energy technologies including Wyoming?s abundant wind energy and nuclear energy such as new generation small modular reactors including the high temperature gas-cooled reactors.

none,; Cherry, Robert S. [INL] INL; Richard, Boardman D. [INL] INL

2013-10-03T23:59:59.000Z

448

Bureau of Construction Codes - 2009 Michigan Uniform Energy Code - Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

These rules take effect March 9, 2011 (By authority conferred on the director of the department of energy, labor, and economic growth by section 4 of 1972 PA 230, MCL 125.1504, and Executive Reorganization Order Nos. 2003-1 and 2008-20, MCL 445.2011 and MCL 445.2025) R 408.31087, R 408.31088, R 408.31089, and R 408.31090 of the Michigan Administrative Code are amended and R 408.31087a is added to the code as follows: PART 10a MICHIGAN UNIFORM ENERGY CODE R 408.31087 Applicable code. Rule 1087. Rules governing the energy efficiency for the design and construction of buildings and structures, not including residential buildings, shall be those contained in the international energy conservation code, 2009 edition, section 501.1 and the ASHRAE

449

Federal Energy Management Year 2001 In Review  

NLE Websites -- All DOE Office Websites (Extended Search)

FEDERAL ENERGY MANAGEMENT YEAR IN REVIEW 2001 United States Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program YEAR IN REVIEW...

450

Energy and water development appropriations for fiscal year 1986. Part 1. Hearings before a Subcommittee of the Committee on Appropriations, United States Senate, Ninety-Ninth Congress, First Session on H. R. 2959  

SciTech Connect

Part 1 of the hearing record covers fiscal year 1986 appropriations for the Corps of Engineers' civil work, the Department of the Interior's Bureau of Reclamation, and the Tennessee Valley Authority as authorized in H.R. 2959. Four witnesses for the Corps of Engineers described the civil works program and requested legislative action to reverse some of the retrenchment of recent years. A specific request for a new Congressional charter for water resources development and management would put the federal, state, and local governments in partnership. Interior Secretary Hodel and two other witnesses spoke of the need for a water management strategy that would serve national interests, one that would address supply, quality, and cost together. Two directors of the Tennessee Valley Authority described the impact of the proposed budget cuts and their effect on TVA programs.

1985-01-01T23:59:59.000Z

451

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance Code  

Science Conference Proceedings (OSTI)

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code is a new, three-dimensional, multi-physics tool that uses state-of-the-art solution methods and validated nuclear fuel models to simulate the nominal operation and anticipated operational transients of nuclear fuel. The AMP Nuclear Fuel Performance code leverages existing validated material models from traditional fuel performance codes and the Scale/ORIGEN-S spent-fuel characterization code to provide an initial capability that is shown to be sufficiently accurate for a single benchmark problem and anticipated to be accurate for a broad range of problems. The thermomechanics-chemical foundation can be solved in a time-dependent or quasi-static approach with any variation of operator-split or fully-coupled solutions at each time step. The AMP Nuclear Fuel Performance code provides interoperable interfaces to leading computational mathematics tools, which will simplify the integration of the code into existing parallel code suites for reactor simulation or lower-length-scale coupling. A baseline validation of the AMP Nuclear Fuel Performance code has been performed through the modeling of an experiment in the Halden Reactor Project (IFA-432), which is the first validation problem incorporated in the FRAPCON Integral Assessment report.

Clarno, Kevin T [ORNL; Philip, Bobby [ORNL; Cochran, Bill [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Barai, Pallab [ORNL; Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL; Pannala, Sreekanth [ORNL; Dilts, Gary A [ORNL; Mihaila, Bogdan [ORNL; Yesilyurt, Gokhan [ORNL; Lee, Jung Ho [Argonne National Laboratory (ANL); Banfield, James E [ORNL; Berrill, Mark A [ORNL

2012-01-01T23:59:59.000Z

452

1995 building energy codes and standards workshops: Summary and documentation  

SciTech Connect

During the spring of 1995, Pacific Northwest National Laboratory (PNNL) conducted four two-day Regional Building Energy Codes and Standards workshops across the US. Workshops were held in Chicago, Denver, Rhode Island, and Atlanta. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing building energy codes in their states. The workshops provided an opportunity for state and other officials to learn more about residential and commercial building energy codes and standards, the role of the US Department of Energy and the Building Standards and Guidelines Program at Pacific Northwest National Laboratory, Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. Participants heard success stories, got tips on enforcement training, and received technical support materials. In addition to receiving information on the above topics, workshop participants had an opportunity to provide input on code adoption issues, building industry training issues, building design issues, and exemplary programs across the US. This paper documents the workshop planning, findings, and follow-up processes.

Sandahl, L.J.; Shankle, D.L.

1996-02-01T23:59:59.000Z

453

United States Environmental Monitoring EPA  

Office of Legacy Management (LM)

United United States Environmental Monitoring EPA 600/R-93/141 Environmental Protection Systems Laboratory January 1992 Agency P.O. Box 93478 Las Vegas NV 89193-3478 Research and Development _EPA Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1991 Available to DOE and DOE contractors from the Office of Scientificand Technical Information, P.O. Box 62, Oak ridge,TN 39831; pricesavailablefrom (615) 576-8401 Availableto the publicfrom the NationalTechnicalInformationService, U.S. Departmentof Commerce, 5285 Port Royal Road, Springfield, VA 22161 Price Code: PrintedCopyof MicroficheA01 Frontand back cover: CommunityMonitorStation (front) and Whole BodyLaboratory(back), Craig A. Tsosle EnvironmentalMonitoringSystemsLaboratory-LasVegas, Nevada Offsite Environmental Monitoring Report:

454

FY 2007 FAIR ACT INVENTORY REASON CODES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 FAIR ACT INVENTORY REASON CODES 08 FAIR ACT INVENTORY REASON CODES Office of Procurement and Assistance Management A The Commercial Activity is not appropriate for private sector performance pursuant to a written determination by the CSO. B The Commercial Activity is suitable for a streamlined or standard competition. D The Commercial Activity is performed by government personnel as the result of a standard or streamlined competition (or a cost comparison, streamlined cost comparison, or direct conversion) within the past five years. D1 Graphics FTEs representing the implemented MEO resulting from the 2002-2003 Competitive Sourcing Studies. D2 Financial Services FTEs representing the implemented MEO resulting from the 2002-2003 Competitive Sourcing Studies. D3 NNSA Logistics FTEs representing the implemented MEO resulting from the 2002-2003 Competitive Sourcing Studies.

455

Signal compression by subband coding  

Science Conference Proceedings (OSTI)

This is a survey/tutorial paper on data compression using the technique of subband coding. This is widely used in practice, for example, in the MPEG audio coder. A subband coder has two main components: a filter bank that decomposes the source into components, ... Keywords: Compression, Filter banks, Subband coding

Bruce Francis; Soura Dasgupta

1999-12-01T23:59:59.000Z

456

Fiscal Year Justification of  

E-Print Network (OSTI)

, epidemiology, laboratory services strengthen support for state, tribal, local, and territorial public healthDEPARTMENT of HEALTH and HUMAN SERVICES Fiscal Year 2012 Justification of Estimates Justification is one of several documents that fulfill the Department of Health and Human Services` (HHS

457

ALOHA Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALOHA Code ALOHA Code ALOHA Code Central Registry Toolbox Code Version(s): V5.2.3 Code Owner: National Oceanic and Atmospheric Administration (NOAA) Description: The Arial Locations of Hazardous Atmospheres (ALOHA) is atmospheric dispersion model maintained by the Hazardous Materials Division of National Oceanic and Atmospheric Administration (NOAA). ALOHA is one of three separate, integrated software applications in the Computer-Aided Management of Emergency Operations (CAMEO) suite. While the other two software applications: Cameo is primarily a database application and Marplot is the mapping application. ALOHA is used primarily for the evaluations of the consequences of atmospheric releases of chemical species. In addition to safety analysis applications in the Department of Energy (DOE) Complex, ALOHA is applied

458

Wisconsin Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Wisconsin Uniform Dwelling Code  

Science Conference Proceedings (OSTI)

The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Wisconsin homeowners. Moving to either the 2009 or 2012 IECC from the current Wisconsin state code is cost effective over a 30-year life cycle. On average, Wisconsin homeowners will save $2,484 over 30 years under the 2009 IECC, with savings still higher at $10,733 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $149 for the 2009 IECC and $672 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-04-01T23:59:59.000Z

459

Eastern States Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Eastern States Shale Production (Billion Cubic Feet) Eastern States Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

460

Adaptive rate coding using convolutional codes for asynchronous code division multiple access communications over slowly fading channels  

Science Conference Proceedings (OSTI)

This paper presents a method of code rate adaptation using punctured convolutional codes for direct sequence spread spectrum communication systems over slowly fading channels. A blind channel estimation technique is used to estimate the nature of the ... Keywords: Adaptive rate coding, Asynchronous code division multiple access communication systems, Punctured convolutional codes, Rayleigh/Rician fading channels

Vidhyacharan Bhaskar; Laurie L. Joiner

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "year state code" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Repeatability of measurements of residential magnetic fields and wire codes  

SciTech Connect

Several epidemiological studies have been based on wire codes (i.e., categories of electrical wiring configurations near residences) or on in-home spot measurements of magnetic flux density (MFD) as surrogates for short- and long-term exposure of children and adults to residential magnetic fields. We used wire code and MFD measurements that were made in 81 Colorado homes in 1985 and again in 1990 to assess their repeatability over periods of 0-24 h and 5 years. These homes, a subset of those lived in by subjects from the case-control study of Savitz et al. [Am J Epidemiol 128:21-38, 1988], were divided into four approximately equally sized groups that were differentiated by wire code and by case-control status. Eight homes were assigned wire codes in 1990 that differed from the 1985 coding of Savitz and colleagues [1988]; of these, seven were coded as high-current configuration (HCC) and one as low-current configuration (LCC) in 1985. Overall, 37 homes were coded as HCC in 1990 compared with 38 homes in 1985. Coding differences were due to differing distance measurements (four homes), differing thick vs. thin categorization of primary-distribution line-conductor sizes (two homes), differing first-span vs. second-span categorization of secondary wires (one home), and physical changes in proximate electrical wiring (one home). Coefficients of correlation between MFD spot measurements that were separated in time by 0-24 h range between 0.70 and 0.90. The coefficient between spot measurements made in 1985 and then again in 1990 is 0.70. These coefficients are similar for HCC and LCC homes and do not depend on whether residential appliances were turned on or off. The data show (at least for the portion of Colorado studied) that residential wire code and, more surprisingly, spot MFD measurements, are fairly reliable over 0-24-h and 5-year periods.

Dovan, T.; Kaune, W.T.; Savitz, D.A. (ENERTECH Consultants, Campbell, CA (United States))

1993-01-01T23:59:59.000Z

462

Colorado State Certification of Commercial and Residential Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

State Certification of Commercial and Residential Building Energy Codes The State of Colorado provides the following information to certify compliance with Title III of the Energy...

463

Parallel Scaling Characteristics of Selected NERSC User ProjectCodes  

Science Conference Proceedings (OSTI)

This report documents parallel scaling characteristics of NERSC user project codes between Fiscal Year 2003 and the first half of Fiscal Year 2004 (Oct 2002-March 2004). The codes analyzed cover 60% of all the CPU hours delivered during that time frame on seaborg, a 6080 CPU IBM SP and the largest parallel computer at NERSC. The scale in terms of concurrency and problem size of the workload is analyzed. Drawing on batch queue logs, performance data and feedback from researchers we detail the motivations, benefits, and challenges of implementing highly parallel scientific codes on current NERSC High Performance Computing systems. An evaluation and outlook of the NERSC workload for Allocation Year 2005 is presented.

Skinner, David; Verdier, Francesca; Anand, Harsh; Carter,Jonathan; Durst, Mark; Gerber, Richard

2005-03-05T23:59:59.000Z

464

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Compliance Regulations Resource Center About Building Energy Codes U.S. Energy Consumption by Sector (2011) Source: U.S. Energy Information Administration, Annual Energy Review According to the U.S. Energy Information Administration's Electric Power Annual, U.S. residential and commercial buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in significant cost savings in both the private and public sectors of the U.S. economy. Efficient buildings reduce power demand and have less of an environmental impact. The Purpose of Building Energy Codes Energy codes and standards set minimum efficiency requirements for new and renovated buildings, assuring reductions in energy use and emissions over

465

Code Booster: Award-winning research on code optimization explores...  

NLE Websites -- All DOE Office Websites (Extended Search)

make a popular scientific analysis code run smoothly on different types of multicore computers. >> Read the full article (off-site link) About NERSC and Berkeley Lab The National...

466

Development of Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Energy Codes Both the IECC and ASHRAE Standard 90.1 are maintained and updated in open public forums. The openness and transparency of these processes is critical to...

467

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

468

Fifty years of . . . State of the I  

E-Print Network (OSTI)

-consumer fiber paper that is chlorine-free and manufactured using biogas energy. #12;"If I have arthritis

Rosenberg, Noah

469

Building Energy Codes Survey Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Program Codes Program Building Energy Codes Survey Tool The following surveys are available: No available surveys Please contact ( webmaster@energycode.pnl.gov ) for further assistance. English Albanian Arabic Basque Belarusian Bosnian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional; Hong Kong) Chinese (Traditional; Taiwan) Croatian Czech Danish Dutch Dutch Informal English Estonian Finnish French Galician German German informal Greek Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Italian (formal) Japanese Korean Latvian Lithuanian Macedonian Malay Maltese Norwegian (Bokmal) Norwegian (Nynorsk) Persian Polish Portuguese Portuguese (Brazilian) Punjabi Romanian Russian Serbian Sinhala Slovak Slovenian Spanish Spanish (Mexico) Swedish Thai Turkish Urdu Vietnamese Welsh

470

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Fan Efficiency Residential Fan Efficiency 2012 IECC Over the past several code cycles, mechanical ventilation requirements have been added to ensure adequate outside air is provided for ventilation whenever residences are occupied. These ventilation requirements can be found in the International Residential Code for homes and the International Mechanical Code for dwelling units in multifamily buildings. As a result of the new ventilation requirements, fans designated for whole-house ventilation will have many more operating hours than bathroom or kitchen exhaust fans that are temporarily operated to remove local humidity or odors. Earlier ventilation practices relied on infiltration or operable windows as the primary source of ventilation air. Homes and

471

DOE Patents Database - Widget Code  

Office of Scientific and Technical Information (OSTI)

Widget Inclusion Code Widget Inclusion Code Download and install the DOepatents widget by copying and pasting its HTML inclusion code.