National Library of Energy BETA

Sample records for year state code

  1. State building energy codes status

    SciTech Connect (OSTI)

    1996-09-01

    This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

  2. Building Energy Codes: State and Local Code Implementation Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Lessans Fellow Building Energy Codes: State and Local Code Implementation Overview ... building code regarding energy efficiency to the revised model code and submit a ...

  3. UTILITYID","UTILNAME","STATE_CODE","YEAR","MONTH","RESIDENTIAL REVENUES ($1,000)

    U.S. Energy Information Administration (EIA) Indexed Site

    STATE_CODE","YEAR","MONTH","RESIDENTIAL REVENUES ($1,000)","RESIDENTIAL SALES (MWh)","RESIDENTIAL CUSTOMERS","COMMERCIAL REVENUES ($1,000)","COMMERCIAL SALES (MWh)","COMMERCIAL CUSTOMERS","INDUSTRIAL REVENUES ($1,000)","INDUSTRIAL SALES (MWh)","INDUSTRIAL CUSTOMERS","TRANSPORTATION REVENUES ($1,000)","TRANSPORTATION SALES (MWh)","TRANSPORTATION

  4. State and Local Code Implementation: State Energy Officials ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review Presenter: Chris Wagner, National Association of State Energy Officials View the Presentation PDF ...

  5. The United States Code - Printing, Title 44 Excerpts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts PDF icon The United ...

  6. State and Local Code Implementation: State Energy Offices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * State Funding for Energy Codes 9 Approach Distinctive Characteristics: 1. Utilize NASEO's network of 56 State and Territory Energy Offices, Affiliate members, and NASEO's ...

  7. State and Local Code Implementation: Northwest Region - 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Local Code Implementation: Northwest Region - 2014 BTO Peer Review Presenter: Ken Baker, Northwest Energy Efficiency Alliance View the Presentation State and Local Code ...

  8. State and Local Code Implementation: Southwest Region - 2014 BTO Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy and Local Code Implementation: Southwest Region - 2014 BTO Peer Review State and Local Code Implementation: Southwest Region - 2014 BTO Peer Review Presenter: Jim Meyers, Southwest Energy Efficiency Project View the Presentation State and Local Code Implementation: Southwest Region - 2014 BTO Peer Review (1.1 MB) More Documents & Publications State and Local Code Implementation: Southeast Region - 2014 BTO Peer Review DOE Codes Program Overview - 2015 Peer

  9. Colorado - State Highway Access Code | Open Energy Information

    Open Energy Info (EERE)

    - State Highway Access Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Colorado - State Highway Access CodeLegal...

  10. Building Energy Codes Collaborative Technical Assistance for States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Collaborative Technical Assistance for States Building Energy Codes Collaborative Technical Assistance for States Building Codes Project for the 2013 Building Technologies Office's Program Peer Review bldgcodes01_wagner_040213.pdf (510.35 KB) More Documents & Publications State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through

  11. State and Local Code Implementation: Northeast Region - 2014 BTO Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Northeast Region - 2014 BTO Peer Review State and Local Code Implementation: Northeast Region - 2014 BTO Peer Review Presenter: Carolyn Sarno, Northeast Energy Efficiency Partnerships View the Presentation State and Local Code Implementation: Northeast Region - 2014 BTO Peer Review (1.04 MB) More Documents & Publications State and Local Code Implementation: South-central Region - 2014 BTO Peer Review Building Energy Codes Program - 2014 BTO Peer Review State

  12. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building Technologies Office's Program Peer Review bldgcodes03_guttman_040213.pdf (544.21 KB) More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review Atmospheric Pressure Deposition for Electrochromic Windows Building America System Research

  13. State and Local Code Implementation: State Energy Officials - 2014 BTO Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy State Energy Officials - 2014 BTO Peer Review State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review Presenter: Chris Wagner, National Association of State Energy Officials View the Presentation State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review (632.04 KB) More Documents & Publications Building Energy Codes Collaborative Technical Assistance for States DOE Codes Program Overview - 2015 Peer Review

  14. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in ... More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review ...

  15. Country Report on Building Energy Codes in the United States

    SciTech Connect (OSTI)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  16. State and Local Code Implementation: Southeast Region - 2014 BTO Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Southeast Region - 2014 BTO Peer Review State and Local Code Implementation: Southeast Region - 2014 BTO Peer Review Presenter: Lauren Westmoreland, Southeast Energy Efficiency Alliance View the Presentation State and Local Code Implementation: Southeast Region - 2014 BTO Peer Review (1.24 MB) More Documents & Publications Southeast Energy Efficiency Alliance's Building Energy Codes Project EA-1872: Draft Environmental Assessment EA-1871: Final Environmental

  17. How Building Energy Codes Can Support State Climate and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Building Energy Codes Can Support State Climate and Energy Planning Provides states and their stakeholders with a short synopsis for what it would look like to include building ...

  18. Webtrends Archives by Fiscal YearStates

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the State Activities and State and Local Energy Efficiency Action Network sites by fiscal year.

  19. State and Local Code Implementation: Northwest Region - 2014 BTO Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Northwest Region - 2014 BTO Peer Review State and Local Code Implementation: Northwest Region - 2014 BTO Peer Review Presenter: Ken Baker, Northwest Energy Efficiency Alliance View the Presentation State and Local Code Implementation: Northwest Region - 2014 BTO Peer Review (1002.06 KB) More Documents & Publications CX-100507 Categorical Exclusion Determination Hit the Road: Applying Lessons from National Campaigns to a Local Context (201) CX-007529:

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  1. Colorado Code of Regulations 2 CCR 601-18, State Utility Accommodation...

    Open Energy Info (EERE)

    Colorado Code of Regulations 2 CCR 601-18, State Utility Accommodation Code (Redirected from CDOT - Rules Pertaining to Accommodating Utilities in the State Highway Rights of Way)...

  2. New York State Code Adoption Analysis: Lighting Requirements

    SciTech Connect (OSTI)

    Richman, Eric E.

    2004-10-20

    The adoption of the IECC 2003 Energy code will include a set of Lighting Power Density (LPD) values that are effectively a subset of the values in Addendum g to the ASHRAE/IESNA/ANSI 90.1-2001 Standard which will soon be printed as part of the 90.1-2004 version. An analysis of the effectiveness of this adoption for New York State can be provided by a direct comparison of these values with existing LPD levels represented in the current IECC 2000 code, which are themselves a subset of the current ASHRAE/IESNA/ANSI 90.1-2001 Standard (without addenda). Because the complete ASHRAE 2001 and 2004 sets of LPDs are supported by a set of detailed models, they are best suited to provide the basis for an analysis comparison of the two code levels of lighting power density stringency. It is important to note that this kind of analysis is a point-to-point comparison where a fixed level of real world activity is assumed. It is understood that buildings are not built precisely to code levels and that actual percentage of compliance above and below codes will vary among individual buildings and building types. However, without specific knowledge of this real world activity for all buildings in existence and in the future (post-code adoption) it is not possible to analyze actual effects of code adoption. However, it is possible to compare code levels and determine the potential effect of changes from one code requirement level to another. This is the comparison and effectiveness assessment

  3. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    SciTech Connect (OSTI)

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  4. Buildings Energy Data Book: 7.8 State Building Energy Codes

    Buildings Energy Data Book [EERE]

    2 Status of State Energy Codes: Commercial Sector(1) Note(s): Source(s): 1) These are the current Commercial codes as of March 2012. DOE/EERE, The Status of State Energy Codes, http://www

  5. Buildings Energy Data Book: 7.8 State Building Energy Codes

    Buildings Energy Data Book [EERE]

    1 Status of State Energy Codes: Residential Sector (1) Note(s): Source(s): 1) These are the current residential codes as of March 2012. DOEEERE, The Status of State Energy Codes, ...

  6. Code of Colorado Regulations 2 CCR 601-1, State Highway Access...

    Open Energy Info (EERE)

    Code of Colorado Regulations 2 CCR 601-1, State Highway Access Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Code of...

  7. State and Local Code Implementation: South-central Region - 2014 BTO Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy South-central Region - 2014 BTO Peer Review State and Local Code Implementation: South-central Region - 2014 BTO Peer Review Presenter: Christine Herbert, South-central Partnership for Energy Efficiency as a Resource View the Presentation State and Local Code Implementation: South-central Region - 2014 BTO Peer Review (515.19 KB) More Documents & Publications Building Energy Codes Program - 2014 BTO Peer Review State and Local Code Implementation: Northeast

  8. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAFETY, CODES AND STANDARDS SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use

  9. United States Marks 20 Years without Underground Nuclear Explosive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Marks 20 Years without Underground Nuclear Explosive Testing September 21, 2012 WASHINGTON, DC -- Twenty years ago, on September 23, 1992, the United States conducted ...

  10. Homes Weatherized by State for Calendar Year 2009 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Calendar Year 2009 Homes Weatherized by State for Calendar Year 2009 PDF icon HomesWeatherizedByStateDec2009.pdf More Documents & Publications TOTALARRAHomesWeatherized...

  11. Colorado Code of Regulations 2 CCR 601-18, State Utility Accommodation...

    Open Energy Info (EERE)

    Colorado Code of Regulations 2 CCR 601-18, State Utility Accommodation Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  12. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,36821,36,0,0,0,26141,213643,157797 7601,"Green Mountain Power Corp","VT",2008,1,8988,6341....914,413072.399,125374 15500,"Puget Sound Energy Inc","WA",2008,1,121907,1271939,934919,70...

  13. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...0,0,183241,2189905,1081602 12919,"Morenci Water and Electric","AZ","2007R",1,154,1330,1816... 17612,"Southern California Water Co","CA","2007R",1,1831,8334,21746,1030,47...

  14. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...0,0,152914,1973624,1040286 12919,"Morenci Water and Electric","AZ",2006,1,113,1023,1765,14... 17612,"Southern California Water Co","CA",2006,1,1816,8220,21451,957,4369,1...

  15. State and Local Code Implementation: Midwest Region - 2014 BTO Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Midwest Region - 2014 BTO Peer Review State and Local Code Implementation: Midwest Region - 2014 BTO Peer Review Presenter: Isaac Elencave, Midwest Energy Efficiency Alliance View the Presentation State and Local Code Implementation: Midwest Region - 2014 BTO Peer Review (637.53 KB) More Documents & Publications Midwest Building Energy Program Technical Assistance: Increasing Code Compliance - 2014 BTO Peer Review DOE Codes Program Overview - 2015 Peer Review

  16. Program Year 2008 State Energy Program Formula | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Year 2008 State Energy Program Formula Program Year 2008 State Energy Program Formula U.S. Department of Energy (DOE) State Energy Program (SEP), SEP Program Guidance Fiscal Year 2008, Program Year 2008, energy efficiency and renewable energy programs in the states, DOE Office of Energy Efficiency and Renewable Energy fy08_grant_guidance.pdf (65.88 KB) More Documents & Publications State Energy Program Operations Manual State Energy Program Formula Grant Guidance Program Year 2007

  17. State and Local Code Implementation: South-central Region - 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code Implementation: South-central Region - 2014 BTO Peer Review Presenter: Christine Herbert, South-central Partnership for Energy Efficiency as a Resource View the Presentation...

  18. State and Local Code Implementation: Southeast Region - 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 2014 BTO Peer Review More Documents & Publications Southeast Energy Efficiency Alliance's Building Energy Codes Project EA-1872: Draft Environmental Assessment EA-1871: ...

  19. Title 49 United States Code (USC) Section 40118 01/03/05 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Title 49 United States Code (USC) Section 40118 010305 (20.07 KB) More Documents & Publications Appendix B Patent and copyright cases GuidanceApplicationFederalVacanciesRefor...

  20. State Energy Program Formula Grant Guidance Program Year 2007 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Guidance Program Year 2007 State Energy Program Formula Grant Guidance Program Year 2007 This document provides instructions to the states for program year 2007 about how they should administer their DOE grants provided through the State Energy Program. fy07_grant_guidance.pdf (142.21 KB) More Documents & Publications State Energy Program Fiscal Year 2006 Formula Grant Guidance Program Year 2008 State Energy Program Formula Audit Report: OAS-M-06-05

  1. New residential construction compliance: Evaluation of the Washington State Energy Code program

    SciTech Connect (OSTI)

    Warwick, W.M.; Lee, A.D.; Sandahl, L.J.; Durfee, D.L.; Richman, E.E.

    1993-07-01

    This report describes the Pacific Northwest Laboratory`s (PNL`s) evaluation of the Washington State Energy Code Program (WSECP). In 1990, the Washington State Legislature passed a residential energy efficiency code to be effective July 1, 1992. Bonneville supported passage and implementation of the code to ensure that new residences in the State of Washington were as energy efficient as economically feasible. The Washington State Energy Office (WSEO) is conducting the WSECP for Bonneville to support code implementation. This support takes several forms, including providing training to code enforcement officials, technical support both in the field and through telephone ``hot lines,`` and computerized tools to review house plans for code compliance. WSEO began implementing the WSECP in 1992, prior to the effective date of the new code. This first phase of the WSECP was the subject of an earlier process evaluation conducted by PNL. From that evaluation PNL found that most new homes being built immediately after the code went into effect were ``grand-fathered`` under the old code. The training program for the new code was in place and sessions were being attended by the jurisdictions but it was too early to determine if the training was effective in improving code compliance and easing the transition to the new energy code. That is the subject of this evaluation.

  2. State Energy Program Fiscal Year 2016 Competitive Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2016 Competitive Funding Opportunity Announcement State Energy Program Fiscal Year 2016 Competitive Funding Opportunity Announcement The U.S. Department of Energy's ...

  3. Reducing Energy Demand in Buildings Through State Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office eere.energy.gov Distinctive Characteristics * BCAP is the catalyst for developing state-based, long- term solutions: - Convene state experts; train ...

  4. State Energy Program Formula Grant Guidance Program Year 2007

    Broader source: Energy.gov (indexed) [DOE]

    Energy U.S. Department of Energy State Energy Program (SEP) Formula Grant allocations to the states in Fiscal Year 2008. state_allocations_fy2008.pdf (14.92 KB) More Documents & Publications WPN 16-2A: Program Year 2016 Grantee Allocations - Revised Funding for state, city, and county governments in the state includes: Microsoft Word - DE-FOA-0000013 Amendment 000003.doc

    STATE ENERGY PROGRAM FORMULA GRANT GUIDANCE PROGRAM YEAR 2007 STATE ENERGY PROGRAM NOTICE 07-01 EFFECTIVE DATE:

  5. Hawaii Revised Statutes 174C, State Water Code | Open Energy...

    Open Energy Info (EERE)

    Statute released by the Hawaii Department of Land and Natural Resource Commission on Water Resource Management. Published NA Year Signed or Took Effect 2013 Legal Citation...

  6. How Building Energy Codes Can Support State Climate and Energy Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Can Support State Climate and Energy Planning energy.gov/eere/slsc/EEopportunities March 18, 2016 2 About this Presentation Slide Overview * Summary * Purpose and Benefits * Current Status * State and Local Role * Best Practices in Implementation * Complementary / Related Programs * National Savings Estimates * Savings Examples from States * Cost-Effectiveness * Evaluation, Measurement, & Verification * DOE Support * Additional Resources This short presentation is

  7. WPN 07-2: Program Year 2007 State Allocations

    Broader source: Energy.gov [DOE]

    To provide final State allocations for preparation and submission of applications for funding of the Low-Income Weatherization Assistance Program for Program Year (PY) 2007.

  8. WPN 05-2: Program Year 2005 State Allocations

    Broader source: Energy.gov [DOE]

    To provide final state allocations for preparation and submission of applications for funding of the low-income Weatherization Assistance Program for Program Year 2005.

  9. State Energy Program Fiscal Year 2006 Formula Grant Guidance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fiscal Year 2006 Formula Grant Guidance State Energy Program Fiscal Year 2006 Formula Grant Guidance State Energy Program (SEP) Program Notice 06-1 Fiscal Year 2006 Formula Grant Guidance fy06_grant_guidance.pdf (256.49 KB) More Documents & Publications WPN 06-8: Dun and Bradstreet Universal Numbering System (DUNS) and Central Contractor Registration (CCR) and Grants.Gov Reminder Audit Report: OAS-RA-10-05 State Energy Program Formula Grant Guidance Program Year 2007

  10. How Building Energy Codes Can Support State Climate and Energy Planning

    Broader source: Energy.gov [DOE]

    Provides states and their stakeholders with a short synopsis for what it would look like to include building energy codes in their climate and energy plans, including current activity at the national and state levels, best practices, energy savings examples, cost-effectiveness, EM&V and DOE support.

  11. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On March 9, 2016, the State Fire Prevention and Building Code Council adopted major updates to the State Uniform Code and the State Energy Code. The State Energy Code has been updated to 2015...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  13. SNL-ESSC (Sandia National Laboratories - Extreme Sea State Contour) Code

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESSC (Sandia National Laboratories - Extreme Sea State Contour) Code - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  14. Cost Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States

    SciTech Connect (OSTI)

    Fairey, Philip

    2012-11-01

    This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous United States. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

  15. An Evaluation of State Energy Program Accomplishments: 2002 Program Year

    SciTech Connect (OSTI)

    Schweitzer, M.

    2005-07-13

    SEP activities performed by the states during the 2002 program year, based on primary data provided by the states themselves. This is the second systematic evaluation of SEP accomplishments performed by Oak Ridge National Laboratory (ORNL) for DOE. A report documenting the findings of the first study was published in January 2003 (Schweitzer et.al., 2003).

  16. Equation-of-State Test Suite for the DYNA3D Code

    SciTech Connect (OSTI)

    Benjamin, Russell D.

    2015-11-05

    This document describes the creation and implementation of a test suite for the Equationof- State models in the DYNA3D code. A customized input deck has been created for each model, as well as a script that extracts the relevant data from the high-speed edit file created by DYNA3D. Each equation-of-state model is broken apart and individual elements of the model are tested, as well as testing the entire model. The input deck for each model is described and the results of the tests are discussed. The intent of this work is to add this test suite to the validation suite presently used for DYNA3D.

  17. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  18. SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements

    SciTech Connect (OSTI)

    Hayes, S.L.

    1993-12-01

    SAFE is a computer code developed for both the steady-state and transient thermal analysis of single LMR fuel elements. The code employs a two-dimensional control-volume based finite difference methodology with fully implicit time marching to calculate the temperatures throughout a fuel element and its associated coolant channel for both the steady-state and transient events. The code makes no structural calculations or predictions whatsoever. It does, however, accept as input structural parameters within the fuel such as the distributions of porosity and fuel composition, as well as heat generation, to allow a thermal analysis to be performed on a user-specified fuel structure. The code was developed with ease of use in mind. An interactive input file generator and material property correlations internal to the code are available to expedite analyses using SAFE. This report serves as a complete design description of the code as well as a user`s manual. A sample calculation made with SAFE is included to highlight some of the code`s features. Complete input and output files for the sample problem are provided.

  19. FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations

    SciTech Connect (OSTI)

    Ding, Jianmin; Lyczkowski, R.W.; Burge, S.W.

    1993-02-01

    A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B & W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL`s pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  20. FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations

    SciTech Connect (OSTI)

    Ding, Jianmin; Lyczkowski, R.W. ); Burge, S.W. . Research Center)

    1993-02-01

    A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL's pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  1. Prediction of explosive cylinder tests using equations of state from the PANDA code

    SciTech Connect (OSTI)

    Kerley, G.I.; Christian-Frear, T.L.

    1993-09-28

    The PANDA code is used to construct tabular equations of state (EOS) for the detonation products of 24 explosives having CHNO compositions. These EOS, together with a reactive burn model, are used in numerical hydrocode calculations of cylinder tests. The predicted detonation properties and cylinder wall velocities are found to give very good agreement with experimental data. Calculations of flat plate acceleration tests for the HMX-based explosive LX14 are also made and shown to agree well with the measurements. The effects of the reaction zone on both the cylinder and flat plate tests are discussed. For TATB-based explosives, the differences between experiment and theory are consistently larger than for other compositions and may be due to nonideal (finite dimameter) behavior.

  2. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  3. UNITED STATES DEPARTMENT OF ENERGY (US DOE) DATA PRIVACY AND THE SMART GRID: A VOLUNTARY CODE OF CONDUCT (VCC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY (US DOE) DATA PRIVACY AND THE SMART GRID: A VOLUNTARY CODE OF CONDUCT (VCC) Draft: 8/12/2014 MISSION STATEMENT The purpose of the Privacy Voluntary Code of Conduct, facilitated by the United States Department of Energy's Office of Electricity Delivery and Energy Reliability and the Federal Smart Grid Task Force, is to describe principles for voluntary adoption that: (1) encourage innovation while appropriately protecting the privacy and confidentiality of Customer Data and

  4. Program Year 2013 State Energy Program Formula Grant Guidance

    Broader source: Energy.gov [DOE]

    This document contains State Energy Program Formula grant guidance for 2013, effective April 16, 2013.

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  6. FRAPCON-2: A Computer Code for the Calculation of Steady State Thermal-Mechanical Behavior of Oxide Fuel Rods

    SciTech Connect (OSTI)

    Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.

    1981-01-01

    FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.

  7. Table 1. State energy-related carbon dioxide emissions by year...

    U.S. Energy Information Administration (EIA) Indexed Site

    State energy-related carbon dioxide emissions by year (2000-2011)" "million metric tons of carbon dioxide" ,,,"Change" ,,,"2000 to 2011" "State",2000,2001,2002,...

  8. "Solid-state Lighting: 'The case' 10 Years After and FutureProspects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-state Lighting: 'The case' 10 Years After and Future Prospects" paper will be ... Twitter Google + Vimeo GovDelivery SlideShare "Solid-state Lighting: 'The case' 10 Years ...

  9. Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004

    SciTech Connect (OSTI)

    Richman, Eric E.

    2006-09-29

    This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.

  10. State Energy Program Fiscal Year 2016 Competitive Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Weatherization and Intergovernmental Programs Office, a Funding Opportunity Announcement (FOA) entitled “State Energy Program 2016 Competitive Awards."

  11. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK ...

  12. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ...

  13. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011,1,"AZ",12919,"Morenci Water and Electric",2032,167,0,0,2199,,,,,0,,,,,... Angeles Department of Water & Power",52250,55209,11041,0,118500,1000,5...

  14. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER...

    U.S. Energy Information Administration (EIA) Indexed Site

    2012,1,"AZ",12919,"Morenci Water and Electric",2078,167,,,2245,,,,,0,,,,,0 ... Angeles Department of Water & Power",97627,2401,2987,136,103151,2405,3...

  15. YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,,,1186,3099,193,,,3292 2012,1,"VT",7601,"Green Mountain Power Corp",9.7,0.7,0,0,10.4,321.... 2012,1,"WA",15500,"Puget Sound Energy Inc",297.159,19.546,54.389,,371.094,23772...

  16. Mandating better buildings: a global review of building codes and prospects for improvement in the United States

    SciTech Connect (OSTI)

    Sun, Xiaojing; Brown, Marilyn A.; Cox, Matt; Jackson, Roderick

    2015-03-11

    This paper provides a global overview of the design, implementation, and evolution of building energy codes. Reflecting alternative policy goals, building energy codes differ significantly across the United States, the European Union, and China. This review uncovers numerous innovative practices including greenhouse gas emissions caps per square meter of building space, energy performance certificates with retrofit recommendations, and inclusion of renewable energy to achieve “nearly zero-energy buildings”. These innovations motivated an assessment of an aggressive commercial building code applied to all US states, requiring both new construction and buildings with major modifications to comply with the latest version of the ASHRAE 90.1 Standards. Using the National Energy Modeling System (NEMS), we estimate that by 2035, such building codes in the United States could reduce energy for space heating, cooling, water heating and lighting in commercial buildings by 16%, 15%, 20% and 5%, respectively. Impacts on different fuels and building types, energy rates and bills as well as pollution emission reductions are also examined.

  17. Mandating better buildings: a global review of building codes and prospects for improvement in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiaojing; Brown, Marilyn A.; Cox, Matt; Jackson, Roderick

    2015-03-11

    This paper provides a global overview of the design, implementation, and evolution of building energy codes. Reflecting alternative policy goals, building energy codes differ significantly across the United States, the European Union, and China. This review uncovers numerous innovative practices including greenhouse gas emissions caps per square meter of building space, energy performance certificates with retrofit recommendations, and inclusion of renewable energy to achieve “nearly zero-energy buildings”. These innovations motivated an assessment of an aggressive commercial building code applied to all US states, requiring both new construction and buildings with major modifications to comply with the latest version of themore » ASHRAE 90.1 Standards. Using the National Energy Modeling System (NEMS), we estimate that by 2035, such building codes in the United States could reduce energy for space heating, cooling, water heating and lighting in commercial buildings by 16%, 15%, 20% and 5%, respectively. Impacts on different fuels and building types, energy rates and bills as well as pollution emission reductions are also examined.« less

  18. The Ohio State University Defends Title, Wins Second Year of EcoCAR 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition | Department of Energy The Ohio State University Defends Title, Wins Second Year of EcoCAR 3 Competition The Ohio State University Defends Title, Wins Second Year of EcoCAR 3 Competition May 27, 2016 - 4:06pm Addthis The Ohio State University won year two of the four-year EcoCAR 3 Competition. | Photo by Advanced Vehicle Technology Competition The Ohio State University won year two of the four-year EcoCAR 3 Competition. | Photo by Advanced Vehicle Technology Competition NEWS

  19. Cal. Pub. Res. Code 6009 | Open Energy Information

    Open Energy Info (EERE)

    Code 6009Legal Abstract Statutory section containing general provisions for administration and control of state lands in California. Published NA Year Signed or Took Effect...

  20. Title 11 Alaska Administrative Code Chapter 93 Water Management...

    Open Energy Info (EERE)

    Chapter 93 Water ManagementLegal Abstract This administrative code chapter governs water management by the State of Alaska Department of Natural Resources. Published NA Year...

  1. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 CODE I FACILITY ...

  2. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  4. WPN 06-2a: Program Year 2006 Final State Allocations

    Broader source: Energy.gov [DOE]

    To provide final state allocations to the states for their preparation and submission of applications for funding of the low-income Weatherization Assistance Program for Program Year (PY) 2006.

  5. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  9. EcoCAR 2 Announces Year One Winner: Mississippi State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces Year One Winner: Mississippi State University EcoCAR 2 Announces Year One Winner: Mississippi State University May 24, 2012 - 10:40am Addthis NEWS MEDIA CONTACT (202) 586-4940 Los Angeles, Calif. - EcoCAR 2: Plugging In to the Future today named Mississippi State University its Year One winner at the EcoCAR 2012 Competition in Los Angeles. The 15 universities competing in EcoCAR 2 gathered for six days of judged competition this week with $100,000 in prize

  10. EcoCAR 2 Competition Announces Year Two Winner: Penn State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Competition Announces Year Two Winner: Penn State University EcoCAR 2 Competition Announces Year Two Winner: Penn State University May 24, 2013 - 2:14pm Addthis News Media Contact (202) 586-4940 SAN DIEGO, Calif. - EcoCAR 2: Plugging In to the Future today named Pennsylvania State University its Year Two winner at the EcoCAR 2013 Competition in San Diego. The 15 universities competing in EcoCAR 2 gathered in Yuma, Arizona last week for six days of rigorous vehicle

  11. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  12. Code System for Transient and Steady-State Temperature Distribution in Multidimensional Systems.

    SciTech Connect (OSTI)

    EDWARDS, ARTHUR L.

    2005-10-24

    Version 01 TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady‑state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time‑steps or on the computer time, and attainment of steady state.

  13. Code System for Transient and Steady-State Temperature Distribution in Multidimensional Systems.

    Energy Science and Technology Software Center (OSTI)

    2005-10-24

    Version 01 TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady‑state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complexmore » shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time‑steps or on the computer time, and attainment of steady state.« less

  14. Buildings Energy Data Book: 7.8 State Building Energy Codes

    Buildings Energy Data Book [EERE]

    3 Building Energy Rating and Disclosure Policies in the United States Commercial Buildings Commercial Buildings Public Buildings Homes Existing Policy Policy Being Considered Rating Requirement Disclosure Requirement Austin, TX Connecticut Arlington County, VA Alaska California Colorado Denver, CO Austin, TX District of Columbia Illinois Hawaii Kansas New York, NY Maine Michigan Montgomery County, MD San Francisco, CA Maryland Minnesota Nevada Seattle, WA Massachusetts Ohio New York Washington

  15. State Energy Program Program Year 2014 Administrative and Legal Requirements Document (ALRD)

    Broader source: Energy.gov (indexed) [DOE]

    4-01 ADMINISTRATIVE AND LEGAL REQUIREMENTS DOCUMENT (ALRD) U.S. Department of Energy Energy Efficiency and Renewable Energy Golden Service Center State Energy Program (SEP) Program Year 2014 Formula Awards SEP-ALRD-2014 CFDA Number: 81.041, State Energy Program Issue Date: 3/19/2014 SEP Program Year Ending Application Due Date June 30, 2014 5/2/2014 August 31, 2014 5/15/2014 September 30, 2014 5/29/2014 The complete application package will be due in accordance with each applicant's program year

  16. YEAR

    National Nuclear Security Administration (NNSA)

    69 YEAR 2014 Males 34 Females 35 YEAR 2014 SES 5 EJEK 1 EN 05 8 EN 04 5 NN (Engineering) 27 NQ (ProfTechAdmin) 22 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    42 YEAR 2014 Males 36 Females 6 PAY PLAN YEAR 2014 SES 2 EJEK 5 EN 05 7 EN 04 6 EN 03 1 NN (Engineering) 15 NQ (ProfTechAdmin) 6 YEAR 2014 American Indian Alaska Native Male...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 65 Females 29 YEAR 2012 SES 3 EJEK 5 EN 04 3 NN (Engineering) 21 NQ (ProfTechAdmin) 61 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 5 YEAR 2011 American Indian Male 0 American...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    92 YEAR 2012 Males 52 Females 40 YEAR 2012 SES 1 EJEK 7 EN 04 13 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 38 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    558 YEAR 2013 Males 512 Females 46 YEAR 2013 SES 2 EJEK 2 EN 04 1 NN (Engineering) 11 NQ (ProfTechAdmin) 220 NU (TechAdmin Support) 1 NV (Nuc Mat Courier) 321 YEAR 2013...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    11 YEAR 2012 Males 78 Females 33 YEAR 2012 SES 2 EJEK 9 EN 05 1 EN 04 33 NN (Engineering) 32 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 2...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    300 YEAR 2011 Males 109 Females 191 YEAR 2011 SES 9 EJEK 1 NN (Engineering) 2 NQ (ProfTechAdmin) 203 NU (TechAdmin Support) 38 NF (Future Ldrs) 47 YEAR 2011 American Indian...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    02 YEAR 2011 Males 48 Females 54 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 13 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 0 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2012 Males 84 Females 32 YEAR 2012 SES 26 EJEK 2 EN 05 9 NN (Engineering) 39 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 10 YEAR 2012 American Indian Male 0 American...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    34 YEAR 2012 Males 66 Females 68 YEAR 2012 SES 6 NN (Engineering) 15 NQ (ProfTechAdmin) 110 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 1 American Indian Female 2...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    86 YEAR 2012 Males 103 Females 183 YEAR 2012 SES 7 EJEK 1 NN (Engineering) 1 NQ (ProfTechAdmin) 202 NU (TechAdmin Support) 30 NF (Future Ldrs) 45 YEAR 2012 American Indian Male...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    80 YEAR 2012 Males 51 Females 29 YEAR 2012 SES 1 EJEK 22 EN 04 21 NN (Engineering) 14 NQ (ProfTechAdmin) 21 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2012 Males 30 Females 11 YEAR 2012 SES 1 EN 05 1 EN 04 11 NN (Engineering) 9 NQ (ProfTechAdmin) 17 NU (TechAdmin Support) 2 YEAR 2012 American Indian Male 0 American...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2012 Males 19 Females 12 YEAR 2012 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American Indian...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 16 NQ (ProfTechAdmin) 115 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 1 American Indian...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    00 YEAR 2012 Males 48 Females 52 YEAR 2012 SES 5 EJEK 1 NN (Engineering) 11 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 0 American Indian...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    137 YEAR 2013 Males 90 Females 47 YEAR 2013 SES 2 SL 1 EJEK 30 EN 04 30 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 45 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    of Employees 14 GENDER YEAR 2012 Males 9 Females 5 YEAR 2012 SES 2 EJEK 2 NN (Engineering) 4 NQ (ProfTechAdmin) 6 YEAR 2012 American Indian Male 0 American Indian Female 0...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2012 Males 21 Females 22 YEAR 2012 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0 American...

  20. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    SciTech Connect (OSTI)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing; Xu, Guang-Hua

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  1. YEAR

    National Nuclear Security Administration (NNSA)

    Males 139 Females 88 YEAR 2012 SES 13 EX 1 EJEK 8 EN 05 23 EN 04 20 EN 03 2 NN (Engineering) 91 NQ (ProfTechAdmin) 62 NU (TechAdmin Support) 7 YEAR 2012 American Indian...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American ...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2012 Males 518 Females 45 YEAR 2012 SES 1 EJEK 2 EN 04 1 EN 03 1 NN (Engineering) 12 NQ (ProfTechAdmin) 209 NU (TechAdmin Support) 2 NV (Nuc Mat Courier) 335 YEAR 2012...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2012 Males 64 Females 33 YEAR 2012 SES 2 EJEK 3 EN 05 1 EN 04 30 EN 03 1 NN (Engineering) 26 NQ (ProfTechAdmin) 32 NU (TechAdmin Support) 2 YEAR 2012 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 37 Females 7 YEAR 2012 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 17 NQ (ProfTechAdmin) 6 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 2...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2011 Males 38 Females 9 YEAR 2011 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 19 NQ (ProfTechAdmin) 7 NU (TechAdmin Support) 1 YEAR 2011 American Indian Male 2...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    6 YEAR 2012 Males 64 Females 32 YEAR 2012 SES 1 EJEK 5 EN 05 3 EN 04 23 EN 03 9 NN (Engineering) 18 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 4 YEAR 2012 American Indian...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    78 YEAR 2012 Males 57 Females 21 YEAR 2012 SES 2 SL 1 EJEK 12 EN 04 21 EN 03 2 NN (Engineering) 12 NQ (ProfTechAdmin) 24 NU (TechAdmin Support) 4 YEAR 2012 American Indian Male...

  11. State Energy Program - Program Year 2014 - Formula Award - Administrative and Legal Requirement Doc

    Broader source: Energy.gov (indexed) [DOE]

    Weatherization and Intergovernmental Programs Office (WIPO) STATE: Mult PROJECT TITLE : State Energy Program - Program Year 2014 - Formula Award - Administrative and Legal Requirement Doc (ALRD) Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number SEP-ALRD-2014 GFO-SEP-ALRD-2014 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following

  12. State Energy Program (SEP) Program Year 2015 Formula Awards Administrative and Legal Requirements Document (ALRD)

    Broader source: Energy.gov (indexed) [DOE]

    5-01 ADMINISTRATIVE AND LEGAL REQUIREMENTS DOCUMENT (ALRD) U.S. Department of Energy Energy Efficiency and Renewable Energy Golden Service Center State Energy Program (SEP) Program Year 2015 Formula Awards SEP-ALRD-2015 CFDA Number: 81.041, State Energy Program Issue Date: 03/02/2015 SEP Program Year Ending Application Due Date June 30, 2015 4/29/2015 August 31, 2015 5/13/2015 September 30, 2015 5/27/2015 The complete application package will be due in accordance with each applicant's program

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  14. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  16. FRAPCON-2: a computer code for the calculation of steady state thermal-mechanical behavior of oxide fuel rods. Technical report

    SciTech Connect (OSTI)

    Berna, G.A.; Bohn, M.P.; Rausch, W.N.; Williford, R.E.; Lanning, D.D.

    1981-01-01

    FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and failure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include: (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e) fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version2.

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    2012 Males 149 Females 115 YEAR 2012 SES 17 EX 1 EJEK 7 EN 05 2 EN 04 9 EN 03 2 NN (Engineering) 56 NQ (ProfTechAdmin) 165 NU (TechAdmin Support) 4 GS 13 1 YEAR 2012 American...

  19. Cal. Wat. Code 13376 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code...

  20. Cal. Wat. Code 13320 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13320Legal Abstract Cal. Wat. Code 13320, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  1. Cal. Wat. Code 13369 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13369Legal Abstract Cal. Wat. Code 13369, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  2. Cal. Wat. Code 13373 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13373Legal Abstract Cal. Wat. Code 13373, current through August 14, 2014. Published NA Year Signed or Took Effect 1987 Legal Citation Cal. Wat. Code...

  3. Cal. Wat. Code 13160 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13160Legal Abstract Cal. Wat. Code 13160, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 22 NN (Engineering) 23 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 13 Hispanic Female (H F) 10 White Male (W M) 43 White Female (W F) 11

  5. YEAR

    National Nuclear Security Administration (NNSA)

    2 YEAR 2014 Males 57 Females 25 PAY PLAN YEAR 2014 SES 3 EJ/EK 4 EN 04 2 NN (Engineering) 20 NQ (Prof/Tech/Admin) 53 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 9 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 3 Hispanic Female (H F) 5 White Male (W M) 43 White Female (W F) 10 DIVERSITY TOTAL WORKFORCE

  6. YEAR

    National Nuclear Security Administration (NNSA)

    93 YEAR 2014 Males 50 Females 43 PAY PLAN YEAR 2014 EJ/EK 3 NN (Engineering) 13 NQ (Prof/Tech/Admin) 74 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 5 African American Female (AA F) 6 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 6 Hispanic Female (H F) 14 White Male (W M) 39 White Female (W F) 21 DIVERSITY

  7. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 Males 11 Females 2 PAY PLAN YEAR 2014 SES 2 EJ/EK 1 EN 04 1 NN (Engineering) 5 NQ (Prof/Tech/Admin) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 10 White Female (W F) 2 DIVERSITY TOTAL WORKFORCE GENDER

  8. YEAR

    National Nuclear Security Administration (NNSA)

    9 YEAR 2014 Males 9 Females 10 YEAR 2014 SES 7 ED 1 EJ/EK 1 EN 05 1 NQ (Prof/Tech/Admin) 8 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 5 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 3 White Male (W M) 7 White Female (W F) 1 PAY PLAN DIVERSITY TOTAL

  9. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 92 Females 43 YEAR 2014 SES 8 EX 1 EJ/EK 4 EN 05 9 EN 04 12 EN 03 2 NN (Engineering) 57 NQ (Prof/Tech/Admin) 42 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 9 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 12 Hispanic Female (H F) 7 White Male (W M) 66 White Female (W F) 22 PAY PLAN

  10. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2014 Males 517 Females 46 PAY PLAN YEAR 2014 SES 2 EJ/EK 2 EN 04 1 NN (Engineering) 11 NQ (Prof/Tech/Admin) 218 NU (Tech/Admin Support) 2 NV (Nuc Mat Courier) 327 YEAR 2014 American Indian Alaska Native Male (AIAN M) 14 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 18 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 8 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 76 Hispanic Female (H F) 21 White Male

  11. YEAR

    National Nuclear Security Administration (NNSA)

    89 YEAR 2014 Males 98 Females 91 PAY PLAN YEAR 2014 SES 14 EX 1 EJ/EK 3 EN 05 1 EN 04 4 EN 03 1 NN (Engineering) 32 NQ (Prof/Tech/Admin) 130 NU (Tech/Admin Support) 2 GS 15 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 5 African American Female (AA F) 14 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 7 Hispanic Male (H M) 7 Hispanic Female (H F) 10 White Male

  12. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 162 Females 81 PAY PLAN YEAR 2014 SES 26 EJ/EK 3 EN 05 7 NN (Engineering) 77 NQ (Prof/Tech/Admin) 108 NU (Tech/Admin Support) 22 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 0 White Male (W M) 154 White Female (W F)

  13. YEAR

    National Nuclear Security Administration (NNSA)

    74 YEAR 2014 Males 96 Females 78 PAY PLAN YEAR 2014 SES 8 EJ/EK 4 EN 04 11 EN 03 1 NN (Engineering) 34 NQ (Prof/Tech/Admin) 113 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 5 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 25 Hispanic Female (H F) 25 White Male (W M) 61 White

  14. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2014 Males 7 Females 7 PAY PLAN YEAR 2014 SES 1 NQ (Prof/Tech/Admin) 7 GS 15 1 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 3 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 4 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER

  15. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2014 Males 72 Females 144 PAY PLAN YEAR 2014 SES 8 EJ/EK 1 NQ (Prof/Tech/Admin) 198 NU (Tech/Admin Support) 9 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 10 African American Female (AA F) 38 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 3 Hispanic Male (H M) 15 Hispanic Female (H F) 33 White Male (W M) 44 White Female (W F) 68 DIVERSITY TOTAL

  16. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJ/EK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (Prof/Tech/Admin) 44 NU (Tech/Admin Support) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 68 White

  17. YEAR

    National Nuclear Security Administration (NNSA)

    446 YEAR 2014 Males 1626 Females 820 YEAR 2014 SES 97 EX 2 ED 1 SL 1 EJ/EK 84 EN 05 38 EN 04 162 EN 03 18 NN (Engineering) 427 NQ (Prof/Tech/Admin) 1216 NU (Tech/Admin Support) 66 NV (Nuc Mat Courier) 327 GS 15 2 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 27 American Indian Alaskan Native Female (AIAN F) 24 African American Male (AA M) 90 African American Female (AA F) 141 Asian American Pacific Islander Male (AAPI M) 63 Asian American Pacific Islander Female

  18. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (Prof/Tech/Admin) 29 NU (Tech/Admin Support) 5 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 12 Hispanic Female (H F) 12 White Male (W M) 34 White Female

  19. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (Prof/Tech/Admin) 9 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 4 African American Female (AA F) 4 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5

  20. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 20 PAY PLAN YEAR 2014 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 1 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 4 Hispanic Female (H F) 7 White Male (W M) 13 White Female (W F) 11

  1. Nevada Energy Code for Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    White Male (W M) 26 White Female (W F) 16 DIVERSITY TOTAL WORKFORCE GENDER Livermore Field ... YEARS OF FEDERAL SERVICE SUPERVISOR RATIO AGE Livermore Field Office As of March 22, 2014 ...

  3. Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 2001

    SciTech Connect (OSTI)

    Margorie Stockton

    2003-04-01

    Los Alamos National Laboratory is subject to annual emissions-reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. For calendar year 2001, the Technical Area 3 steam plant was the primary source of criteria air pollutants from the Laboratory, while research and development activities were the primary source of volatile organic compounds. Emissions of beryllium and aluminum were reported for activities permitted under 20.2.72 NMAC. Hazardous air pollutant emissions from chemical use for research and development activities were also reported.

  4. Energy Extension Service Pilot Program: evaluation report after two years. Volume II. State reports

    SciTech Connect (OSTI)

    1980-04-01

    This report, Vol. II, presents a discussion of the operations of the ten EES pilot state programs during the period from October 1, 1977 through September 30, 1979. Each of the ten pilot states - Alabama, Connecticut, Michigan, New Mexico, Pennsylvania, Tennessee, Texas, Washington, Wisconsin, and Wyoming - received a grant of approximately $1.1 million to develop and implement an 18-month program beginning on October 1, 1977. In September 1978, each State received an additional $370,000 for service-delivery programs for the extension of the pilot program, April 1979 through September 1979. A case-study description of the operations of the pilot program in each State is provided here, with special attention given to the two programs selected in each State for more-detailed study and survey research. Although the thrust of this volume is descriptive, some survey data and analyses are presented for the emphasis programs. Two telephone surveys of clients and a non-client sample were conducted, one at the end of the first year of the pilot program (October 1977 - September 1978) and one at the end of the second year (October 1978 - September 1979).

  5. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (Prof/Tech/Admin) 13 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City

  6. YEAR

    National Nuclear Security Administration (NNSA)

    9 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (Prof/Tech/Admin) 27 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 21 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 5 Hispanic Female (H F) 3 White Male (W M) 26 White Female (W F) 16

  7. YEAR

    National Nuclear Security Administration (NNSA)

    17 Females 18 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 NQ (Prof/Tech/Admin) 30 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 6 White Male (W M) 10 White Female (W F) 3 DIVERSITY TOTAL WORKFORCE GENDER Associate

  8. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (Prof/Tech/Admin) 25 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 46 White Female (W F) 13

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Office of the State Fire Marshal is granted the authority to promulgate amendments, revisions, and alternative compliance methods for the code.

  12. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV (Nuc Mat Courier) 321...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    Females 942 YEAR 2012 SES 108 EX 4 SL 1 EJEK 96 EN 05 45 EN 04 196 EN 03 20 NN (Engineering) 452 NQ (ProfTechAdmin) 1291 NU (TechAdmin Support) 106 NV (Nuc Mat Courier) 335...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  16. Idaho Code 40-310 | Open Energy Information

    Open Energy Info (EERE)

    duties -- State highway system Published NA Year Signed or Took Effect 2014 Legal Citation Idaho Code 40-310 DOI Not Provided Check for DOI availability: http:crossref.org...

  17. Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 1997

    SciTech Connect (OSTI)

    1999-01-01

    Los Alamos National Laboratory (the Laboratory) is subject to emissions reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73, (20 NMAC 2.73), Notice of Intent and Emissions Inventory Requirements. The Laboratory has the potential to emit 100 tons per year of suspended particulate matter (PM), nitrogen oxides (NO{sub x}), carbon monoxide (CO), and volatile organic compounds (VOCs). For 1997, combustion products from the industrial sources contributed the greatest amount of regulated air emissions from the Laboratory. Research and development activities contributed the greatest amount of VOCs. Emissions of beryllium and aluminum were reported for activities permitted under 20 NMAC 2.72, Construction Permits.

  18. Emissions Inventory Report Summary Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 1998

    SciTech Connect (OSTI)

    Air Quality Group, ESH-17

    1999-09-01

    Los Alamos National Laboratory (the Laboratory) is subject to emissions reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20 NMAC 2.73), Notice of Intent and Emissions Inventory Requirements. The Laboratory has the potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, and volatile organic compounds. For 1998, combustion products from the industrial sources contributed the greatest amount of criteria air pollutants from the Laboratory. Research and development activities contributed the greatest amount of volatile organic compounds. Emissions of beryllium and aluminum were reported for activities permitted under 20 NMAC 2.72 Construction Permits.

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    Both State building codes adoption and enforcement efforts fall under the purview of the State Fire Marshal’s Office within the Department of Commerce and Insurance (C&I). Any changes to the...

  20. Steady-State Gyrokinetics Transport Code (SSGKT), A Scientific Application Partnership with the Framework Application for Core-Edge Transport Simulations, Final Report

    SciTech Connect (OSTI)

    Fahey, Mark R.; Candy, Jeff

    2013-11-07

    This project initiated the development of TGYRO ? a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two

  1. Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20.2.73 NMAC) for Calendar Year 2003

    SciTech Connect (OSTI)

    M. Stockton

    2005-01-01

    Los Alamos National Laboratory is subject to annual emissions-reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. For calendar year 2003, the Technical Area 3 steam plant and the air curtain destructors were the primary sources of criteria air pollutants from the Laboratory, while the air curtain destructors and chemical use associated with research and development activities were the primary sources of volatile organic compounds and hazardous air pollutants. Emissions of beryllium and aluminum were reported for activities permitted under 20.2.72 NMAC. Hazardous air pollutant emissions were reported from chemical use as well as from all combustion sources. In addition, estimates of particulate matter with diameter less than 2.5 micrometers and ammonia were provided as requested by the New Mexico Environment Department, Air Quality Bureau.

  2. International Code Assessment and Applications Program: Summary of code assessment studies concerning RELAP5/MOD2, RELAP5/MOD3, and TRAC-B. International Agreement Report

    SciTech Connect (OSTI)

    Schultz, R.R.

    1993-12-01

    Members of the International Code Assessment Program (ICAP) have assessed the US Nuclear Regulatory Commission (USNRC) advanced thermal-hydraulic codes over the past few years in a concerted effort to identify deficiencies, to define user guidelines, and to determine the state of each code. The results of sixty-two code assessment reviews, conducted at INEL, are summarized. Code deficiencies are discussed and user recommended nodalizations investigated during the course of conducting the assessment studies and reviews are listed. All the work that is summarized was done using the RELAP5/MOD2, RELAP5/MOD3, and TRAC-B codes.

  3. Cost-Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States

    SciTech Connect (OSTI)

    Fairey, P.; Parker, D.

    2012-11-01

    This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous U.S. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are as follows: to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

  4. Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States

    SciTech Connect (OSTI)

    Conover, David R.

    2014-08-22

    This report acquaints stakeholders and interested parties involved in the development and/or deployment of energy storage systems (ESS) with the subject of safety-related codes, standards and regulations (CSRs). It is hoped that users of this document gain a more in depth and uniform understanding of safety-related CSR development and deployment that can foster improved communications among all ESS stakeholders and the collaboration needed to realize more timely acceptance and approval of safe ESS technology through appropriate CSR.

  5. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  6. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT TECHNOLOGY DEVELOPMENT REPORT FISCAL YEAR 2010

    SciTech Connect (OSTI)

    Bush, S.

    2010-10-22

    The mission of the Department of Energy's (DOE's) Office of Environmental Management (EM) is to clean up the environmental legacy of nuclear weapons research and production during the Cold War. That mission includes cleaning up nuclear waste, contaminated groundwater and soil, nuclear materials, and contaminated facilities covering two million acres of land in thirty-five states. EM's principal program goals include timely completion of tank waste treatment facilities, reduction of the life-cycle costs and acceleration of the cleanup of the Cold War legacy, and reduction of the EM footprint. The mission of the EM Technology Innovation and Development program is to transform science and innovation into practical solutions to achieve the EM mission. During fiscal year 2010 (October 2009-September 2010), EM focused upon accelerating environmental cleanup by expeditiously filling identified gaps in available knowledge and technology in the EM program areas. This report describes some of the approaches and transformational technologies in tank waste processing, groundwater and soil remediation, nuclear materials disposition, and facility deactivation and decommissioning developed during fiscal year 2010 that will enable EM to meet its most pressing program goals.

  7. National radon database documentation. Volume 4. The EPA/state residential radon surveys: Year 4. Final report 1986-1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The National Radon Database has been developed by the U.S. Environmental Protection Agency (EPA) to distribute information collected in two recently completed radon surveys: the EPA/State Residential Radon Surveys, Years 1 to 6; and The National Residential Radon Survey. The goals of the state radon surveys were twofold. Some measure of the distribution of radon levels among residences was desired for major geographic areas within each state and for each state as a whole. In addition, it was desired that each state survey would be able to identify areas of potentially high residential radon concentrations (hot spots) in the state, enabling the state to focus its attention on areas where indoor radon concentrations might pose a greater health threat. The document discusses year 4, 1989-90. The areas surveyed are: California; Hawaii; Idaho; Louisiana; Nebraska; Billings, MT IHS Area; Nevada; North Carolina; Oklahoma; South Carolina; and Navajo Nation.

  8. Economic Impact of Pacific Northwest National Laboratory on the State of Washington in Fiscal Year 2013

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2014-12-18

    Pacific Northwest National Laboratory (PNNL) is a large economic entity, with $1.06 billion in annual funding, $936 million in total spending, and 4,344 employees in fiscal year (FY) 2013. Four thousand, one hundred and one (4,101) employees live in Washington State. The Laboratory directly and indirectly supports almost $1.31 billion in economic output, 6,802 jobs, and $514 million in Washington State wage income from current operations. The state also gains more than $1.21 billion in output, more than 6,400 jobs, and $459 million in income through closely related economic activities, such as visitors, health care spending, spending by resident retirees, and spinoff companies. PNNL affects Washington’s economy through commonly recognized economic channels, including spending on payrolls and other goods and services that support Laboratory operations. Less-commonly recognized channels also have their own impacts and include company-supported spending on health care for its staff members and retirees, spending of its resident retirees, Laboratory visitor spending, and the economic activities in a growing constellation of “spinoff” companies founded on PNNL research, technology, and managerial expertise. PNNL also has a significant impact on science and technology education and community nonprofit organizations. PNNL is an active participant in the future scientific enterprise in Washington with the state’s K-12 schools, colleges, and universities. The Laboratory sends staff members to the classroom and brings hundreds of students to the PNNL campus to help train the next generation of scientists, engineers, mathematicians, and technicians. This investment in human capital, though difficult to measure in terms of current dollars of economic output, is among the important lasting legacies of the Laboratory. Finally, PNNL contributes to the local community with millions of dollars’ worth of cash and in-kind corporate and staff contributions, all of which

  9. WPN 00-4- Estimated 25% State Cost Share Requirement for the Weatherization Assistance Program for Program Year 2001

    Broader source: Energy.gov [DOE]

    To provide estimated figures for the states to begin their planning for the enacted 25% cost share requirement for funding of the low-income Weatherization Assistance Program beginning with Program Year 2001.

  10. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  11. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  12. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  13. Building Energy Codes Collaborative Technical Assistance for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Technical Assistance for States Building Energy Codes Collaborative Technical ... 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes ...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  18. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically provide the necessary MPI include files and libraries. For Fortran source code use mpif90: % mpif90 -o example.x example.f90 For C source code use...

  19. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

  20. The economic impact of the Department of Energy on the State of New Mexico Fiscal Year 1995

    SciTech Connect (OSTI)

    Lansford, R.R.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.

    1996-08-01

    The U.S. Department of Energy (DOE) provides a major source of economic benefits in New Mexico, second only to the activities of the U.S. Department of Defense. The agency`s far-reaching economic influence within the state is the focus of this report. Economic benefits arising from the various activities and functions of both the Department and its contractors have accrued to the state continuously for over 45 years. For several years, DOE/Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained inter-industry, input-output modeling capabilities to assess DOE`s impacts on the state of New Mexico and the other substate regions most directly impacted by DOE activities. One of the major uses of input-output techniques is to assess the effects of developments initiated outside the economy such as federal DOE monies that flow into the state, on an economy.

  1. Building Codes Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes Resources Building Codes Resources Some commercial and/or residential construction codes mandate certain energy performance requirements for the design, materials, and equipment used in new construction and renovations. State-wide minimum codes may be amended by local jurisdictions to be more stringent if energy performance requirements are lacking or liberal. Find building codes resources below. DOE Resources Building Energy Codes Program: Resource Center Building Energy Codes Program:

  2. Codes and Standards Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Activities » Codes and Standards Activities Codes and Standards Activities The Fuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards that cover emerging hydrogen technologies for consideration by the various code enforcing jurisdictions. DOE's codes and standards activities are focused on: Developing training programs for state and local officials that

  3. Property:Incentive/CodeChgCycle | Open Energy Information

    Open Energy Info (EERE)

    state Building Code Bureau. All suggested code revisions are processed through the state administrative rule-making process involving publication, public comments, and public...

  4. Annual report to the President and the Congress on the State Energy Conservation Program for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The Department is required by Section 365(c) of Title 3, Part C, of the Energy Policy and Conservation Act (EPCA), 42 U.S.C. 6321-6327, as amended by Title 4, Part B of the Energy Conservation and Production Act (ECPA), to report annually to the President and the Congress on the operation of the State Energy Conservation Program. The report is to include an estimate of the energy conservation achieved, and the degree of state participation and achievement as well as a description of innovative conservation programs undertaken by individual states. Together the EPCA and the ECPA constitute the State Energy Conservation Program (SECP) which has provided the states (any one of the 50 states, the District of Columbia, Puerto Rico, and the Territories and possessions of the United States) with funding to help establish and maintain their capability to plan, design, implement and coordinate a variety of programs and initiatives designed to promote energy conservation and efficiency at state and local levels. All states have operational programs funded under EPCA (no monies have been appropriated under ECPA since FY 1981). In addition, the majority of states have augmented the SECP with oil overcharge funding they have received over the past several years. Each state is required to provide a twenty-percent match for the Federal funds received, and its Base Plan must include the following program measures: (1) mandatory lighting efficiency standards for state public buildings; (2) programs to promote the availability and use of carpool, vanpool, and public transportation; (3) mandatory standards and policies relating to energy efficiency to govern the state procurement practices; (4) mandatory thermal efficiency standards and insulation requirements for new and renovated buildings; and (5) a traffic law or regulation, which permits the operator of a motor vehicle to turn right at a red stop light after stopping. 6 tabs.

  5. Oil and Gas Field Code Master List 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  6. PNNL Energy Codes Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNNL Energy Codes Portfolio 2015 Building Technologies Office Peer Review ADOPT COMPLY DEVELOP Bing Liu bing.liu@pnnl.gov Rosemarie Bartlett rosemarie.bartlett@pnnl.gov Pacific Northwest National Laboratory Project Summary Timeline: Multi-year program in support of DOE statutory requirements Key Milestones: 1. DOE's Determinations on 90.1-2013 and 2015 IECC 2. Update DOE's Energy odes ost-Effectiveness Methodology 3. Commercial Codes Roadmap 4. 90.1-2013 and 2015 IECC Cost Analyses 5.

  7. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1

    SciTech Connect (OSTI)

    1995-12-01

    As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

  8. Multi-Year Program Plan FY'09-FY'15 Solid-State Lighting Research and Development

    SciTech Connect (OSTI)

    2009-03-01

    President Obama's energy and environment agenda calls for deployment of 'the Cheapest, Cleanest, Fastest Energy Source - Energy Efficiency.' The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) plays a critical role in advancing the President's agenda by helping the United States advance toward an energy-efficient future. Lighting in the United States is projected to consume nearly 10 quads of primary energy by 2012.3 A nation-wide move toward solid-state lighting (SSL) for general illumination could save a total of 32.5 quads of primary energy between 2012 and 2027. No other lighting technology offers the DOE and our nation so much potential to save energy and enhance the quality of our built environment. The DOE has set forth the following mission statement for the SSL R&D Portfolio: Guided by a Government-industry partnership, the mission is to create a new, U.S.-led market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy, reduce costs and enhance the quality of the lighted environment.

  9. Building Energy Codes Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provide funding to help measure & improve code compliance The Building Energy Codes Program aims to "lock in" savings from energy codes by participating in code development processes and supporting local and state governments in the adoption and implementation of progressively more advanced building energy codes across the country. External Influences: DOE budget, Construction industry, Real estate market, State/local policies & budget Objectives Activities / Partners Outputs

  10. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995

    SciTech Connect (OSTI)

    1995-12-01

    This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  11. Risk Code?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identify the Task Risk Code >2 Determine if a Work Control Document is needed What is the Unmitigated Risk Code? Rev.1 09/05/14 Read and Agree to Comply with appropriate mitigation and sign Work Control Documents Is there an approved Work Control Document (WCD)? WORK PLANNING, CONTROL AND AUTHORIZATION FLOW DIAGRAM 1. Define Scope of Work 2. Analyze Hazards 3. Develop and Implement Hazard Controls 4. Perform Work Within Controls 5. Feedback and Continuous Improvement Analyze Hazards and

  12. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    SciTech Connect (OSTI)

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L.

    1982-08-01

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

  13. S. 2424: A Bill to amend the Internal Revenue Code of 1986. Introduced in the Senate of the United States, One Hundredth First Congress, Second Session, April 5, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Bill S.2424 has been introduced in the Senate of the United States on April 5, 1990. The purpose of this bill is to amend the Internal Revenue Code of 1986 to provide for the imposition of certain excise taxes related to the enforcement of provisions of the Clean Air Act added by the Clean Air Act Amendments of 1990. Chapter 38 of the Internal Revenue Code of 1986 (relating to environmental taxes) is amended by adding a new subchapter regarding taxes relating to the Clean Air Act requirements. Attention is focused on the following: tax on permits for air quality nonattainment areas; fees not collected by states; and taxes on certain products.

  14. Economic Impact of Pacific Northwest National Laboratory on the State of Washington in Fiscal Year 2014

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2015-11-09

    PNNL is a large economic entity with a total of 4,308 employees, $939 million (M) in total funding, and $1.02 billion (B) in total spending during FY 2014. The number of employees that live in Washington State is 4,026 or 93 percent of the Laboratory staff. he Laboratory directly and indirectly supported $1.45 billion in economic output, 6,832 jobs, and $517 million in Washington State wage income from current operations. The state also gained more than $1.19 billion in output, over 6,200 jobs, and $444 million in income through closely related economic activities such as visitors, health care spending, spending by resident retirees, and spinoff companies. PNNL affects Washington’s economy through commonly recognized economic channels, including spending on payrolls and other goods and services that support Laboratory operations. Less commonly recognized channels also have their own impacts and include company-supported spending on health care for its staff members and retirees, spending of its resident retirees, Laboratory visitor spending, and the economic activities in a growing constellation of “spinoff” companies founded on PNNL research, technology, and managerial expertise. PNNL also has a significant impact on science and technology education and community not-for-profit organizations. PNNL is an active participant in the future scientific enterprise in Washington with the state’s K-12 schools, colleges, and universities. The Laboratory sends staff members to the classroom and brings hundreds of students to the PNNL campus to help train the next generation of scientists, engineers, mathematicians, and technicians. This investment in human capital, though difficult to measure in terms of current dollars of economic output, is among the important lasting legacies of the Laboratory. Finally, PNNL contributes to the local community with millions of dollars’ worth of cash and in-kind corporate and staff contributions, all of which strengthen the

  15. The economic impact of the Department of Energy on the State of New Mexico Fiscal Year 1998

    SciTech Connect (OSTI)

    Lansford, Robert R.; Adcock, Larry D.; Gentry, Lucille M.; Ben-David, Shaul; Temple, John

    1999-08-05

    The U.S. Department of Energy (DOE) provides a major source of economic benefits in New Mexico, second only to the activities of the U.S. Department of Defense. The agency's far-reaching economic influence within the state is the focus of this report. Economic benefits arising from the various activities and functions of both the Department and its contractors have accrued to the state continuously for over 50 years. For several years, DOE/Albuquerque Operations Office (AL) and New Mexico State University (NMSU) have maintained inter-industry, input-output modeling capabilities to assess DOE's impacts on the state of New Mexico and the other substate regions most directly impacted by DOE activities. One of the major uses of input-output techniques is to assess the effects of developments initiated outside the economy such as Federal DOE monies that flow into the state, on an economy. The information on which the models are based is updated periodically to ensure the most accurate depiction possible of the economy for the period of reference. For this report, the reference periods are Fiscal Year (FY) 1997 (October 1, 1996, through September 30, 1997), and FY 1998 (October 1, 1997, through September 30, 1998). Total impact represents both direct and indirect impacts (resending by business), including induced (resending by households) effects. The standard multipliers used in determining impacts result from the inter-industry, input-output models uniquely developed for New Mexico. This report includes seven main sections: (1) Introduction; (2) Profile of DOE Activities in New Mexico; (3) DOE Expenditure Patterns; (4) Measuring DOE/New Mexico's Economic Impact: (5) Technology Transfer within the Federal Labs funded by DOE/New Mexico; (6) Glossary of Terms; and (7) Technical Appendix containing a description of the model.

  16. Oil and gas field code master list 1997

    SciTech Connect (OSTI)

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  17. United States Department of Energy, Nevada Operations Office, completion report Operation KLAXON, Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), Completion Report provides a summary of activities conducted at the Nevada Test Site (NTS) between October 1, 1992, and September 30, 1993, associated with Operation KLAXON. (In the past, each annual Completion Report dealt with a series of underground nuclear detonations; however, because no nuclear tests were conducted during FY 1993, this Report summarizes continuing nonnuclear and nuclear test readiness activities at the NTS sponsored by DOE/NV.) The report serves as a reference for those involved with the planning and execution of Operation KLAXON and also serves as a planning guide for future operations. Information in the report covers the logistics and management of activities. Scientific information and data associated with NTS activities are presented in technical documents published by participating agencies. In September 1992, Congress legislated a nine-month moratorium on the testing of nuclear weapons. The bill also provided for a resumption of testing (with no more than five tests per year, or a total of 15 during the next three years) in July 1993, and mandated an end to nuclear testing, entirely, by 1996. President Bush signed the bill into law in October 1992.

  18. Environmental Monitoring Report - United States Department of Energy, Oak Ridge Facilities, Calendar Year 1984

    SciTech Connect (OSTI)

    Jordan, R.G.

    1999-01-01

    Each year since 1972, a report has been prepared on the environmental monitoring activities for the DOE facilities in oak Ridge, Tennessee, for the previous calendar year. previously, the individual facilities published quarterly and annual progress reports that contained some environmental monitoring data. The environmental monitoring program for 1984 includes sampling and analysis of air, water from surface streams, groundwater, creek sediment, biota, and soil for both radioactive and nonradioactive (including hazardous) materials. Special environmental studies that have been conducted in the Oak Ridge area are included in this report, primarily as abstracts or brief summaries. The annual report for 1984 on environmental monitoring and surveillance of the Oak Ridge community by Oak Ridge Associated Universities (ORAU) is included as an appendix. A brief description of the topography and climate of the Oak Ridge area and a short description of the three DOE facilities are provided below to enhance the reader's understanding of the direction and contents of the environmental monitoring program for Oak Ridge.

  19. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  20. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High Performance Computing. The default compiler suite is from the Portland Group which is loaded by default at login, along with the PGI compiled Open MPI environment. % module list Currently Loaded Modulefiles: 1) pgi/10.8 2) openmpi/1.4.2 Basic Example Open MPI provides a convenient set of wrapper commands which you should use in

  1. State of a Bentonite Barrier After 8 Years of Heating and Hydration in the Laboratory

    SciTech Connect (OSTI)

    Villar, Maria Victoria; Fernandez, Ana Maria; Gomez, Roberto; Martin, Pedro Luis; Barcala, Jose Miguel; Barrenechea, Jose F.; Luque, Javier F.

    2007-07-01

    The conditions of the bentonite in an engineered barrier for HLW disposal have been simulated in a laboratory test. Six cylindrical blocks of bentonite compacted at a dry density of 1.64 g/cm{sup 3} were piled up in a hermetic Teflon cell. The total length of the clay column inside the cell was 60 cm. The bottom surface of the bentonite was heated at 100 deg. C while the top surface was injected with granitic water. The duration of the test was 7.6 years. The water intake was measured during the test and, at the end, the cell was dismounted and the dry density, water content, mineralogy, geochemistry, and swelling capacity of the clay were measured in different sections along the column. At the end of the test no full water saturation was reached and water content and dry density gradients were found along the column. No mineralogical changes have been detected, although the pore water chemistry and the exchangeable complex of the smectite have changed along the bentonite. None of these changes affect drastically its swelling capacity, which remains high. The material used in this test is the FEBEX bentonite. (authors)

  2. Gender Trends in Radiation Oncology in the United States: A 30-Year Analysis

    SciTech Connect (OSTI)

    Ahmed, Awad A.; Egleston, Brian; Holliday, Emma; Eastwick, Gary; Takita, Cristiane; Jagsi, Reshma

    2014-01-01

    Purpose: Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women's participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. Methods and Materials: We examined the gender of first and senior US physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010, and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared with female representation in journals of general medicine and other major medical specialties. Findings were also placed in the context of trends in the representation of women among radiation oncology faculty and residents over the past 3 decades, using Association of American Medical Colleges data. Results: The proportion of women among Red Journal first authors increased from 13.4% in 1980 to 29.7% in 2012, and the proportion among senior authors increased from 3.2% to 22.6%. The proportion of women among radiation oncology full-time faculty increased from 11% to 26.7% from 1980 to 2012. The proportion of women among radiation oncology residents increased from 27.1% to 33.3% from 1980 to 2010. Conclusions: Female first and senior authorship in the Red Journal has increased significantly, as has women's participation among full-time faculty, but women remain underrepresented among radiation oncology residents compared with their representation in the medical student body. Understanding such trends is necessary to develop appropriately targeted interventions to improve gender equity in radiation oncology.

  3. United States transuranium and uranium registries - 25 years of growth, research, and service. Annual report, April 1992--September 1993

    SciTech Connect (OSTI)

    Kathren, R.L.; Harwick, L.A.; Toohey, R.E.; Russell, J.J.; Filipy, R.E.; Dietert, S.E.; Hunacek, M.M.; Hall, C.A.

    1994-10-01

    The Registries originated in 1968 as the National Plutonium Registry with the name changed to the United States Transuranium Registry the following year to reflect a broader concern with the heavier actinides as well. Initially, the scientific effort of the USTR was directed towards study of the distribution and dose of plutonium and americium in occupationally exposed persons, and to assessment of the effects of exposure to the transuranium elements on health. This latter role was reassessed during the 1970`s when it was recognized that the biased cohort of the USTR was inappropriate for epidemiologic analysis. In 1978, the administratively separate but parallel United States Uranium Registry was created to carry out similar work among persons exposed to uranium and its decay products. A seven member scientific advisory committee provided guidance and scientific oversight. In 1992, the two Registries were administratively combined and transferred from the purview of a Department of Energy contractor to Washington State University under the provisions of a grant. Scientific results for the first twenty-five years of the Registries are summarized, including the 1985 publication of the analysis of the first whole body donor. Current scientific work in progress is summarized along with administrative activities for the period.

  4. California Water Code | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: California Water CodeLegal Abstract Code governing the usage of water resources in the state of...

  5. code release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    code release - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  6. Introduction to Hydrogen for Code Officials | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen for Code Officials Jump to: navigation, search Tool Summary Name: Introduction to Hydrogen for Code Officials AgencyCompany Organization: United States Department of...

  7. Oil and Gas field code master list 1995

    SciTech Connect (OSTI)

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  8. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

  9. User Instructions for the CiderF Individual Dose Code and Associated Utility Codes

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Napier, Bruce A.

    2013-08-30

    Historical activities at facilities producing nuclear materials for weapons released radioactivity into the air and water. Past studies in the United States have evaluated the release, atmospheric transport and environmental accumulation of 131I from the nuclear facilities at Hanford in Washington State and the resulting dose to members of the public (Farris et al. 1994). A multi-year dose reconstruction effort (Mokrov et al. 2004) is also being conducted to produce representative dose estimates for members of the public living near Mayak, Russia, from atmospheric releases of 131I at the facilities of the Mayak Production Association. The approach to calculating individual doses to members of the public from historical releases of airborne 131I has the following general steps: Construct estimates of releases 131I to the air from production facilities. Model the transport of 131I in the air and subsequent deposition on the ground and vegetation. Model the accumulation of 131I in soil, water and food products (environmental media). Calculate the dose for an individual by matching the appropriate lifestyle and consumption data for the individual to the concentrations of 131I in environmental media at their residence location. A number of computer codes were developed to facilitate the study of airborne 131I emissions at Hanford. The RATCHET code modeled movement of 131I in the atmosphere (Ramsdell Jr. et al. 1994). The DECARTES code modeled accumulation of 131I in environmental media (Miley et al. 1994). The CIDER computer code estimated annual doses to individuals (Eslinger et al. 1994) using the equations and parameters specific to Hanford (Snyder et al. 1994). Several of the computer codes developed to model 131I releases from Hanford are general enough to be used for other facilities. This document provides user instructions for computer codes calculating doses to members of the public from atmospheric 131I that have two major differences from the Hanford

  10. CBP PHASE I CODE INTEGRATION

    SciTech Connect (OSTI)

    Smith, F.; Brown, K.; Flach, G.; Sarkar, S.

    2011-09-30

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and credible set of software tools to predict the structural, hydraulic, and chemical performance of cement barriers used in nuclear applications over extended time frames (greater than 100 years for operating facilities and greater than 1000 years for waste management). The simulation tools will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems including waste forms, containment structures, entombments, and environmental remediation. These cementitious materials are exposed to dynamic environmental conditions that cause changes in material properties via (i) aging, (ii) chloride attack, (iii) sulfate attack, (iv) carbonation, (v) oxidation, and (vi) primary constituent leaching. A set of state-of-the-art software tools has been selected as a starting point to capture these important aging and degradation phenomena. Integration of existing software developed by the CBP partner organizations was determined to be the quickest method of meeting the CBP goal of providing a computational tool that improves the prediction of the long-term behavior of cementitious materials. These partner codes were selected based on their maturity and ability to address the problems outlined above. The GoldSim Monte Carlo simulation program (GTG 2010a, GTG 2010b) was chosen as the code integration platform (Brown & Flach 2009b). GoldSim (current Version 10.5) is a Windows based graphical object-oriented computer program that provides a flexible environment for model development (Brown & Flach 2009b). The linking of GoldSim to external codes has previously been successfully demonstrated (Eary 2007, Mattie et al. 2007). GoldSim is capable of performing deterministic and probabilistic simulations and of modeling radioactive decay and constituent transport. As part of the CBP project, a general Dynamic Link Library (DLL) interface was

  11. State

    U.S. Energy Information Administration (EIA) Indexed Site

    Created on: 8/26/2016 3:22:30 PM Table 2. Natural gas consumption in the United States, 2011-2016 (billion cubic feet, or as indicated) Year and Month Lease and Plant Fuel a Pipeline and Distribution Use b Delivered to Consumers Total Consumption Heating Value c (Btu per cubic foot) Residential Commercial Industrial Electric Power Vehicle Fuel Total 2011 Total 1,323 688 4,714 3,155 6,994 7,574 30 22,467 24,477 1,022 2012 Total 1,396 731 4,150 2,895 7,226 9,111 30 23,411 25,538 1,024 2013 Total

  12. Title 22 California Code of Regulations | Open Energy Information

    Open Energy Info (EERE)

    Abstract Title 22 California Code of Regulations, current through August 7, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Title 22 California Code...

  13. Building Energy Codes Newsletter: Setting the Standard-February 2010

    SciTech Connect (OSTI)

    U.S. Department of Energy

    2010-02-01

    This newsletter from the U.S. Department of Energy Buildng Energy Codes Program keeps readers up to date on energy code standards; the February 2010 issue focuses on helping states with code adoption, compliance, and resources.

  14. GPU Acceleration of the Locally Selfconsistent Multiple Scattering Code for First Principles Calculation of the Ground State and Statistical Physics of Materials

    SciTech Connect (OSTI)

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; Rennich, Steven; Rogers, James H

    2016-01-01

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.

  15. DOE Codes Program Overview - 2015 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes Program Overview - 2015 Peer Review DOE Codes Program Overview - 2015 Peer Review Presenter: David Cohan, DOE View the Presentation DOE Codes Program Overview - 2015 Peer Review (571.96 KB) More Documents & Publications Building Energy Codes Program Overview - 2015 BTO Peer Review State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review Building Energy Codes Program Overview - 2016 BTO Peer Review

  16. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    9","AK",2009,1,6541.05,26261.245,30585,8314.598,32767.826,10631,1391.23,7394.973,534,0,0,0,16246.878,66424.044,41750 213,"Alaska Electric Light&Power Co","AK",2009,1,3587,16219,13713,2198,10943,2143,1053,5362,91,0,0,0,6838,32524,15947 219,"Alaska Power Co","AK",2009,1,676.033,2544.992,4478,879.743,3565.976,2065,0,0,0,0,0,0,1555.776,6110.968,6543 599,"Anchorage Municipal Light and

  17. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,41959 213,"Alaska Electric Light&Power Co","AK",2010,1,1535.941,15011.6,13783,980.665,11721.382,2156,987.54,11255.996,91,0,0,0,3504.146,37988.978,16030 219,"Alaska Power and Telephone Co","AK",2010,1,668.02,2319.376,4592,921.903,3261.675,2099,0,0,0,0,0,0,1589.923,5581.051,6691 599,"Anchorage Municipal Light and

  18. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    1","AK",2011,1,6234.999,25389.363,30394,8864.339,33363.108,11226,1796.286,8445.807,406,0,0,0,16895.624,67198.278,42026 213,"Alaska Electric Light&Power Co","AK",2011,1,1913.906,15780.043,13800,1191.056,11892.612,2172,749.249,8392.574,93,0,0,0,3854.211,36065.229,16065 219,"Alaska Power and Telephone Co","AK",2011,1,776.905,2477.956,4683,989.646,3281.279,2102,0,0,0,0,0,0,1766.551,5759.235,6785 599,"Anchorage Municipal Light and

  19. An English translation of the 50-year chronicle of historical events of the State Scientific Center - Russian Federation Physico-Energetics Institute 1946-1996

    SciTech Connect (OSTI)

    Berman, G.; Gudowski, W.; Doolen, G.

    1998-02-01

    This document is an English translation of a Russian document which gives a brief overview of the historical events of the Russian State Scientific Center over the first 50 years of its existence.

  20. Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk

    Broader source: Energy.gov [DOE]

    A report to the US-Canada Power System Outage Task Force on steps taken in the United States and Canada to reduce blackout risk one year after the August 14, 2003 blackout.

  1. Securing mobile code.

    SciTech Connect (OSTI)

    Link, Hamilton E.; Schroeppel, Richard Crabtree; Neumann, William Douglas; Campbell, Philip LaRoche; Beaver, Cheryl Lynn; Pierson, Lyndon George; Anderson, William Erik

    2004-10-01

    If software is designed so that the software can issue functions that will move that software from one computing platform to another, then the software is said to be 'mobile'. There are two general areas of security problems associated with mobile code. The 'secure host' problem involves protecting the host from malicious mobile code. The 'secure mobile code' problem, on the other hand, involves protecting the code from malicious hosts. This report focuses on the latter problem. We have found three distinct camps of opinions regarding how to secure mobile code. There are those who believe special distributed hardware is necessary, those who believe special distributed software is necessary, and those who believe neither is necessary. We examine all three camps, with a focus on the third. In the distributed software camp we examine some commonly proposed techniques including Java, D'Agents and Flask. For the specialized hardware camp, we propose a cryptographic technique for 'tamper-proofing' code over a large portion of the software/hardware life cycle by careful modification of current architectures. This method culminates by decrypting/authenticating each instruction within a physically protected CPU, thereby protecting against subversion by malicious code. Our main focus is on the camp that believes that neither specialized software nor hardware is necessary. We concentrate on methods of code obfuscation to render an entire program or a data segment on which a program depends incomprehensible. The hope is to prevent or at least slow down reverse engineering efforts and to prevent goal-oriented attacks on the software and execution. The field of obfuscation is still in a state of development with the central problem being the lack of a basis for evaluating the protection schemes. We give a brief introduction to some of the main ideas in the field, followed by an in depth analysis of a technique called 'white-boxing'. We put forth some new attacks and improvements

  2. Company Company Code Fiscal Year Submission Date

    Gasoline and Diesel Fuel Update (EIA)

    ... Gas to Liquids ...... Wind Generation ... U.S. Federal, before Investment Tax Credit and Alternative Minimum Tax (AMT) ......

  3. Company Company Code Fiscal Year Submission Date

    U.S. Energy Information Administration (EIA) Indexed Site

    NAME: TITLE: SIGNATURE: DATE: Mail to: U.S. Department of Energy Financial Reporting System, EI-24 Attention: Robert Schmitt Forrestal Building, Room 2G-089 1000 Independence Ave., ...

  4. TNRC 191 - Antiquities Code | Open Energy Information

    Open Energy Info (EERE)

    Code section for preservation of antiquities. Published NA Year Signed or Took Effect 1977 Legal Citation TNRC 191 (1977) DOI Not Provided Check for DOI availability: http:...

  5. Alaska Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    library Legal Document- RegulationRegulation: Alaska Administrative CodeLegal Published NA Year Signed or Took Effect 2013 Legal Citation Not provided DOI Not Provided Check for...

  6. Texas Natural Resources Code | Open Energy Information

    Open Energy Info (EERE)

    Resources CodeLegal Abstract This regulation governs the law pertaining to natural resources management in Texas. Published NA Year Signed or Took Effect 2014 Legal...

  7. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  8. Comparison of linac simulation codes

    SciTech Connect (OSTI)

    Nath, S.; Ryne, Robert D.; Stovall, J.; Takeda, H.; Xiang, J.; Young, L.; Pichoff, N.; Uriot, D.; Crandall, K.

    2001-01-25

    The Spallation Neutron Source (SNS) project is a collaborative effort between Brookhaven, Argonne, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge National Laboratories. Los Alamos is responsible for the design of the linac for this accelerator complex. The code PARMILA, developed at Los Alamos is widely used for proton linac design and beam dynamics studies. The most updated version includes superconducting structures among others. In recent years, some other codes have also been developed which primarily focuses on the studies of the beam dynamics. In this paper, we compare the simulation results and discuss physics aspects of the different linac design and beam dynamics simulation codes.

  9. Pretest predictions of the Fast Flux Test Facility Passive Safety Test Phase IIB transients using United States derived computer codes and methods

    SciTech Connect (OSTI)

    Heard, F.J.; Harris, R.A.; Padilla, A.

    1992-07-01

    The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios can be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.

  10. Southeast Energy Efficiency Alliance's Building Energy Codes Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 Building Technologies Office's Program Peer Review bldgcodes04_zweig_040213.pdf (708.72 KB) More Documents & Publications State and Local Code Implementation: Southeast Region - 2014 BTO Peer Review Stretch/Reach Codes Energy Code Compliance and Enforcement Best Practices