Powered by Deep Web Technologies
Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Direct SNG production by the CS/R hydrogasification process  

Science Conference Proceedings (OSTI)

The CS/R Hydrogasification Process utilizes a short residence-time entrained-flow reactor, derived from aerospace rocket reactor technology, for quickly reacting pulverized coal with hot hydrogen to directly produce substitute natural gas (SNG). Development testing has indicated the feasibility of two primary process options: the production of SNG as the sole major product or the coproduction of SNG and chemical-grade benzene. Recent emphasis has focused on process design, optimization, and economics. Preliminary design studies of commercial-scale (250 x 10/sup 9/ Btu/day) grassroots SNG plants have been completed for two widely different types of feedstock: Kentucky No. 9 hvAb coal and Minnesota peat. This paper summarizes the pertinent experimental data and analytical modeling studies of flash hydropyrolysis used as a basic input to the process design effort. The commercial process flowsheets for each feedstock are described, and the resultant capital and operating costs are discussed. Sensitivity analyses are presented relating the cost of gas to the major process operating variables and economic parameters.

Kahn, D.R.; Combs, L.P.; Garey, M.P.

1983-08-01T23:59:59.000Z

2

Economics of methanol and SNG production from biomass via catalytic gasification  

Science Conference Proceedings (OSTI)

The steam gasification of wood in the presence of catalysts was studied to determine the technical feasibility of the process to produce specific products and to evaluate the economics of the technical feasible processes. From the results of bench-scale and process development unit (PDU) studies, the production of MeOH and CH4 (SNG) from wood via catalytic gasification is technically feasible. The PDU was operated to obtain data for the design of gasifiers. The cost of MeOH from wood is competitive with the current price of MeOH from natural gas. The cost of SNG from wood is competitive with projected future prices of natural gas. Some advantage of the catalytic steam gasification of biomass over steam-O gasification are discussed.

Mudge, L.K.; Robertus, R.J.; Mitchell, D.H.; Sealock, L.J. Jr.; Weber, S.L.

1981-01-01T23:59:59.000Z

3

ASPEN simulation of the SNG production process in an indirect coal-liquefaction plant  

DOE Green Energy (OSTI)

The synthetic natural gas (SNG) production process (methanation, CO-shift, and hydrogen removal) in an indirect coal-liquefaction plant was simulated using the Advanced System for Process Engineering (ASPEN). The simulation of the methanation unit agreed to within 12% of Fluor's design for converting carbon monoxide and carbon dioxide. A parametric study examined the effect of four important operating parameters on product composition, process thermal efficiency, and outlet temperature from the second methanation reactor. The molar split of gas feed to the CO-shift unit before methanation was varied from 0.2 to 0.6; variations of molar recycle ratio (0.01 - 0.67), molar steam-to-feed ratio (0.04 - 0.19), and feed temperature (478 - 533 K, 400-500/sup 0/F) to the first methanation reactor were also studied. A 50%-lower split improved thermal efficiency by 6%, but the mole % hydrogen and carbon monoxide in the product SNG required to meet pipeline-quality standards and temperature constraints were not met. Increasing the steam-to-feed ratio from 0.04 to 0.19 improved product quality but decreased thermal efficiency by 8%. By decreasing the feed temperature from 533 to 477 K (500 to 400/sup 0/F), product specifications and temperature constraints were met with no effect on thermal efficiency. However, it may be impractical to operate the reactor at 477 K (400/sup 0/F) because the kinetics are too slow. Increasing the recycle ratio from 0.4 to 0.67 had no effect on thermal efficiency, and temperature constraints and product specifications were met. The SNG production process should be optimized at recycle ratios above 0.67.

Bistline, J E; Shafer, T B

1982-08-01T23:59:59.000Z

4

Coal gasification via the Lurgi process: Topical report: Volume 1, Production of SNG (substitute material gas)  

Science Conference Proceedings (OSTI)

A Lurgi baseline study was requested by the DOE/GRI Operating Committee of the Joint Coal Gasification Program for the purpose of updating the economics of earlier Lurgi coal gasification plant studies for the production of substitute natural gas (SNG) based on commercially advanced technologies. The current study incorporates the recent experience with large size Lurgi plants in an effort to improve capital and operating costs of earlier plant designs. The present coal gasification study is based on a mine mouth plant producing 250 billion Btu (HHV) per day of SNG using the Lurgi dry bottom coal gasification technology. A Western subbituminous coal was designated as the plant food, obtained from the Rosebud seam at Colstrip, Montana. This study presents the detailed description of an integrated facility which utilizes coal, air, and water to produce 250 billion Btu (HHV) per day of SNG. The plant consists of coal handling and preparation, twenty-six Lurgi dry bottom gasifiers, shift conversion, acid gas removal, methanation, compression and drying of product gas, sulfur recovery, phenol and ammonia recovery, as well as necessary support facilities. The plant is a grass roots, mine mouth facility located in a Western location similar to the town of Colstrip in Rosebud County, Montana. The Lurgi Corporation assisted in this study, under subcontract to Foster Wheeler, by supplying the heat and material balances, flow sheets, utilities, catalysts and chemical requirements, and cost data for Lurgi designed process sections. Details of material supplied by Lurgi Corporation are presented in Appendix A. 52 refs., 36 figs., 64 tabs.

Zahnstecher, L.W.

1984-09-01T23:59:59.000Z

5

Assessment of potential domestic fossil-fuel resources for SNG (substitute natural gas) production. Final report, February 1983-August 1984  

Science Conference Proceedings (OSTI)

Quality and availability of naturally occurring resources and industrial by-products which could be gasified and thereby serve as feedstock for SNG plants were studied to identify those resources with the greatest potential for exploitation in this regard. KRSI accumulated information from a large number of literature sources relative to the resources identified by GRI for study. To the extent possible, KRSI then organized this information to highlight for each resource the grades available, typical chemical compositions, quantities and locations of reserves, recovery methods and rates of production and consumption. This information clearly shows that coal is the most practical source of long-term feedstock for SNG in the contiguous USA. Coal resources amount to 84% (by quads) of the energy resources which were studied. In comparison, peat, shale oil and tar sand contain about 11% of the total.

Cover, A.E.; Hubbard, D.A.; Shah, K.V.; Koneru, P.B.

1984-08-01T23:59:59.000Z

6

SNG seen bolstering LP-gas traffic  

SciTech Connect

A surge in SNG production from LPG, which could stem in part from government policies, may raise the declining profits of marine transporters and U.S. importers of LPG; such SNG would have a distinct cost advantage over Alaskan gas and coal-derived gas and could compete with LNG; if LNG costs $5/million Btu in 1984, it would equal the cost of SNG made from butane at $0.30/gal (butane will probably be the favored SNG feed); an industrial market for LPG would develop immediately if there were a 10% cut in the price spread between LPG and No. 2 fuel oil, which were priced at $3.50 and $2.47/million Btu, respectively, in the summer 1977. At the seminar, H. Nygaard (Norw. Guarantee Inst. Ships and Drilling Vessels A/S) proposed a plan calling for independent tanker-owners to charter-in their tankers, probably for a two-year period; inefficient tankers would be laid up, and over-all profits from working tankers would be redistributed between their owners and owners of laid-up tankers. U.S. Government crude-import policies and tanker safety standards are discussed.

Becraft, J.; Nygaard, H.

1978-03-27T23:59:59.000Z

7

Southern cone energy network coal gasification for SNG production and pipeline system feasibility study (Brazil). Volume 2. Export trade information  

Science Conference Proceedings (OSTI)

Part I of the volume reports on the coal gasification plant study performed by the Advanced Technology Division of Fluor Engineers and Constructors, Inc., together with information on coal resources and markets, gas demand, and by-product markets provided by Jaakko Poyry. Jaakko Poyry also supported the study with site, cost, economic, and other required local Brazilian data. Part II of the volume presents the results of Fluor's study of an SNG gas transport and gas distribution system. Also included are the results of an alternate study into barging coal north to a gasification plant located in the Santos area.

Not Available

1992-08-01T23:59:59.000Z

8

Production of SNG from shale oil by catalytic gasification in a steam-hydrogen atmosphere  

DOE Green Energy (OSTI)

This report presents the results from experiments performed at the Laramie Energy Technology Center (LETC) of the Department of Energy (DOE) to produce a substitute natural gas (SNG) from shale oil via catalytic gasification in a steam-hydrogen atmosphere. Also contained is a comparison of the yields of SNG obtained with those from previous experiments performed at LETC in which shale oil was catalytically gasified in a pure hydrogen atmosphere. The maximum yield of gas obtained in the Stream-hydrogen experiments corresponded to 75 wt % of the feed carbon being recovered as gas. This maximum yield was obtained at the highest temperature (1300/sup 0/F (978/sup 0/K)) and hydrogen partial pressure (900 psig (6205 kPa)) tested, while the gas yield for gasification in a pure hydrogen atmosphere was 86 wt % of feed carbon at similar operating conditions. The reduced yield was attributed to poisoning of the cobalt-molybdate catalyst employed by carbon monoxide generated in small amounts from the reaction of steam with carbon and/or hydrocarons in the gasification reactor.

Stagner, M.J.; Barker, L.K.

1979-12-01T23:59:59.000Z

9

Thermo-economic assessment of CO2 separation technologies in the framework of synthetic natural gas (SNG) production.  

E-Print Network (OSTI)

??Synthetic Natural Gas (SNG) is one of the alternative fuels that can be produced from biomass. Its potential advantages are the possibility of mixing with… (more)

Alamia, Alberto

2010-01-01T23:59:59.000Z

10

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power From Western Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Daniel C. Cicero Daniel C. Cicero Hydrogen & Syngas Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4826 daniel.cicero@netl.doe.gov Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Elaine Everitt Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4491 elaine.everitt@netl.doe.gov 4/2009 Hydrogen & Syngas Technologies Gasification Technologies Development of a HyDrogasification process for co-proDuction of substitute natural gas (sng) anD electric power from western coals Description In the next two decades, electric utilities serving the Western United States must install

11

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

synthetic natural gas (SNG) via anaerobic decomposition byof algal substrate for an SNG process involves increasingof characteristics for SNG production. Limiting factors in

Haven, Kendall F.

2011-01-01T23:59:59.000Z

12

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I  

DOE Green Energy (OSTI)

The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

Raymond Hobbs

2007-05-31T23:59:59.000Z

13

Southern cone energy network coal gasification for SNG production and pipeline system. Feasibility study. Volume 1. Executive summary. Export trade information  

SciTech Connect

The Executive Summary document summarizes the study report on the economic and technical feasibility of gasifying coal to produce a substitute natural gas (SNG) for distribution to the industrial areas of Southern Brazil. The report includes data surveys, technology assessments, process evaluations, and conceptual designs and analyses. The study contributes to the Brazilian Government efforts to investigate feasible crude oil substitution programs that will meet the nation's energy needs by utilizing domestic resources, thereby reducing the severe negative impact of foreign crude oil importation on Brazil's balance of payments.

Not Available

1992-08-01T23:59:59.000Z

14

Environment assessment: allocation of petroleum feedstock, Algonquin SNG Inc. , Freetown SNG Plant, Bristol County, MA. [Effects of 100, 78, 49% allocations  

DOE Green Energy (OSTI)

The proposed administrative action to deny, grant or modify the Algonquin SNG, Inc. (Algonquin) petition for an adjusted allocation of naphtha feedstock may significantly affect the ehuman environment. The volume of feedstock requested is 4,425,571 barrels per year of naphtha to be used in Algonquin's Freetown, MA synthetic natural gas (SNG) plant. Environmental impacts of 100, 78, and 49% allocations were evaluated.

Not Available

1980-01-01T23:59:59.000Z

15

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

16

Polygeneration of SNG, hydrogen, power, and carbon dioxide from Texas lignite  

Science Conference Proceedings (OSTI)

This feasibility study has shown that siting a mine mouth lignite fed gasification plant in Texas to produce hydrogen, SNG, electric power, and carbon dioxide could be economically feasible in an era of high natural gas prices. Because of the high moisture content of the lignite the choice of gasification system becomes an important issue. Hydrogen produced from Texas lignite in a coproduction plant could be produced in the range $5.20-$6.20/MMBTU (HHV basis) equivalent to between $0.70 and $0.84 per kilogram. This range of hydrogen costs is equivalent to hydrogen produced by steam methane reforming of natural gas if the natural gas feed price was between $3.00 and $4.00/MMBTU. With natural gas prices continuing to remain above $5.00/MMBTU this concept of using Texas lignite for hydrogen production would be economically viable. For the production of SNG from Texas lignite, the costs range from $6.90-$5.00/MMBTU (HHV basis). If natural gas prices remain above $5.00/MMBTU then the configuration using the advanced dry feed gasification system would be economically viable for production of SNG. This option may be even more attractive with other low rank coals such as Wyoming subbituminous and North Dakota lignite coals that are priced lower than Texas lignite. Production of electric power from these conceptual coproduction plants provides a valuable revenue stream. The opportunity to sell carbon dioxide for EOR in Texas provided another valuable revenue stream for the plants. The break even cost of recovering the carbon dioxide ranged from about $5.50 to $7.75 per ton depending on whether SNG or hydrogen was the product.

Gray, D.; Salerno, S.; Tomlinson, G.; Marano, J.J. [Mitretek Systems, Falls Church, VA (United States)

2004-12-15T23:59:59.000Z

17

Underground coal gasification: Its potential for long-term supply of sng. Occasional pub  

Science Conference Proceedings (OSTI)

The paper examines the viability of underground coal gasification (UCU) as a future source of substitute natural gas (SNG). The economics of commercial scale UCG technology at a western site is estimated and compared with aboveground gasification and also with an extrapolation of GRI's Baseline Projection for natural gas prices. Although much technical and economic uncertainty exists regarding UCG, the potential reserve base for unmineable coals is very large, about four times that of currently mineable coals. Assuming that only 10 percent of the 1.8 trillion tons of marginal U.S. coal resources may be amendable to UCG, this represents 1000 trillion cubic feet of potential SNG production. The UCG economics of the paper are based on a techno-economic study conducted by Williams Brothers Engineering Company; the cosponsors included GRI, Amoco Production Company, Hunt Oil Company, and Williams Brothers Engineering Company.

Hill, V.L.; Burnham, K.B.; Barone, S.P.; Rosenberg, J.I.; Ashby, A.B.

1984-02-01T23:59:59.000Z

18

Allocation of petroleum feedstock: Baltimore Gas and Electric Company, Sollers Point SNG Plant, Sollers Point, Baltimore County, Maryland. Final environmental impact statement  

DOE Green Energy (OSTI)

An allocation of naphtha feedstock up to 2,186,000 barrels per year to Baltimore Gas and Electric Company (BG and E) to operate its synthetic natural gas (SNG) facility is being considered. The allocation would enable BG and E to produce 10,800,000 mcf of SNG during a 180 day period. Operation of the plant at design capacity is expected to result in annual pollution emissions as follows: 626.4 tons of sulfur oxides, 168.5 tons of nitrogen oxides and 21.6 tons of particulate matter. Incremental emissions due to plant operations relative to existing emissions in Baltimore County are less than 1%. All Federal and State air quality standards should be met. Treated effluent is to be discharged into the Patapasco River where the environmental impacts are not expected to be significant. The SNG facility has been designed to be in compliance with all applicable Federal, State and local effluent standards. Water consumption requirements of 335,000 gallons per day are not expected to significantly tax the area's water resources. Sound generated by the SNG facility will be inaudible or imperceptible. All other operational impacts on land use, population, visual quality, roadways, community facilities and services and ecological systems were judged to be minimal. Environmental impacts resulting from various alternatives ranging from full allocation through denial of an allocation are discussed.

Not Available

1978-04-01T23:59:59.000Z

19

Process to produce SNG from residue oil shows promise  

Science Conference Proceedings (OSTI)

As supplies of natural gas from the more accessible fields dwindle, manufactured substitute natural gas (SNG) will become increasingly valuable as an energy source. To begin with it will be used to supplement supplies during peak load periods in cold weather; but eventually its role will be extended to base load supplies. Feedstock availability is an important factor in producing gas economically; therefore, the gas industry in Britain has developed a number of processes using a range of coal and oil feedstocks. British Gas has now successfully completed a major research program that will enable it to produce SNG from low value residue oil. This is the near solid ''bottom of the barrel'' oil that previously only power plants and refineries were able to use with any success. The process has been developed in collaboration with Osaka Gas of Japan. British Gas signed an agreement in 1981 to extend the existing range of oil feedstocks suitable for gasification, and the Japanese company has contributed some pounds9 million ($10.8 million).

Wood, R.

1985-02-01T23:59:59.000Z

20

Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers with in-line conversion of by-product liquids to methane. Topical report (Final), December 1985-November 1986  

SciTech Connect

A first-pass conceptual design and screening cost estimate was prepared for a hypothetical plant to convert lignite to methane using Lurgi dry-bottom gasifiers and employing a black box reactor to convert by-product liquids in the gas phase to methane. Results were compared to those from conventional and modified Lurgi-plant designs. The in-line conversion plant can potentially reduce the cost of gas from a Lurgi plant by about 20%. Due to reduced capital investment, over $200 million could be invested in the reactor before the cost of gas from the in-line conversion plant is as high as that of a Lurgi plant.

Smelser, S.C.

1986-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Year of Peak Production  

U.S. Energy Information Administration (EIA)

When world conventional oil production will peak is, of course, the bottom-line question. It has already peaked in the United States, in 1970.

22

SNG completes deepest underwater pipelay in Gulf of Mexico  

SciTech Connect

This paper reports that gas began flowing this spring in the deepest underwater, large-diameter pipeline in the U.S. Gulf of Mexico. Water depth along the route of the pipeline varies from approximately 460 ft at the Alabaster platform, increasing to the record depth of 1,220 ft in the Mississippi Canyon area, and decreasing to negligible water depth at the landfall site southwest of Venice. The SNG Mississippi Canyon Block 397 pipeline project exemplifies how a pipeline project can encounter an array of conditions which prompt special design considerations and installation techniques. Important considerations for this project were related to pipe properties, anti-corrosion and weight coatings, span and buckle considerations, and installation equipment. A team effort was used to study, research, test, design, and install this pipeline.

Vogt, G.B. (Project Consulting Services Inc., Metairie, LA (US))

1992-08-24T23:59:59.000Z

23

Coal catalyzation to simplify the conversion of coal to SNG. Final report, March 1988-May 1990  

Science Conference Proceedings (OSTI)

The process implications of catalyzing coal with impregnated calcium on the production of Synthetic Natural Gas (SNG) were evaluated. An Illinois No. 6 was catalyzed with calcium at various treatment conditions and then gasified in a thermal gravimetric analyzer (TGA) to determine empirical relationships relating its reactivity to treatment and gasification conditions. Catalyzed coal was also gasified in a continuous bench-scale fluid bed steam/oxygen gasifier. Results of these tests indicate catalyzation eliminates agglomeration and substantially increases gasification reactivity. In addition, the calcium acts as a sulfur adsorbent. Process cost modeling studies indicated that the greatest economic potential for the utilization of catalyzed coal is to take advantage of the reactivity by utilizing a system for steam gasification of the coal using heat supplied by combustion of the gasified char in a separate combustor thereby eliminating the need for oxygen while maintaining production of a medium BTU gas. The results of this work are also directly applicable to gasification systems for electric power generation as well as for the production of synthesis gas for chemical production.

Feldmann, H.F.; Creamer, K.S.

1990-05-01T23:59:59.000Z

24

Crow Tribe of Indians: synfuels feasibility study. Volume II. Process design and cost estimate. Book III. Sections 6. 5 through 6. 9. [Crow Synfuels Project; coproducts (methanol and SNG)  

Science Conference Proceedings (OSTI)

The principal difference in the design for the Coproduction Case is that methanol and substitute natural gas (SNG) are the major products as opposed to only SNG in the Base Case. The pure syngas is fed to a methanol synthesis unit producing methanol which is purified. The purge gas from the Methanol Synthesis unit is converted to SNG by methanation. Other process and utility/offsite units are similar to the Base Case except there is no requirement for a CO Shift unit and there is a slight variation in size of some units to accommodate the change in processing scheme. Coal feed to gasification and boilers is identical to the Base Case. Feed and product rates for this case are given in Section 6.5.2. Other than the methanol and SNG products, the byproduct rates are only marginally different from the Base Case. Power available for export is less than the Base Case, due mainly to the additional energy consumed in the Methanol Synthesis unit.

Not Available

1982-08-01T23:59:59.000Z

25

Advanced gasifier-desulfurizer process development for SNG (substitute natural gas) application. Final report, August 1987-December 1988  

Science Conference Proceedings (OSTI)

KRW conducted investigations of calcium-promoted coal pyrolysis and gasification by means of bench-scale studies and an oxygen-blown PDU test. Results were used in a design study of a commercial KRW gasifier-desulfurizer, operating on Pittsburgh No. 8 coal and limestone for production of SNG. Bench-scale fluid-bed reactor studies were conducted with various fluidizing gases at temperatures and pressures of 1650 to 1950 F and 40 to 450 psig, with and without limestone, to give methane-yield and tar-yield data. The gasification kinetics studies of chars produced gave data which showed that limestone increases char reactivity and exerts a catalytic effect. Methane yields correlated exponentially to pressure. The bench-scale test results lead to an expectation that feeding some of the coal to the upper portion of the gasifier will increase methane yield and decrease oxygen consumption. In two PDU test-set points, expected operability and performance of the oxygen-blown gasifier-desulfurizer were confirmed. In Set Point 2, in-bed desulfurization efficiency was 88% and the product-gas higher heating value was 302 Btu/scf. The test results provided inputs to the design study of a KRW gasifier-desulfurizer island for production of 125 MM Btu/day of SNG. Results included a 4 to 6% improvement in feedstock inputs when compared to an earlier GRI-sponsored study. Methane yield decreased but the number of operating gasifier-desulfurizers remained at five. Equipment costs are expected to remain well within the previous + or - 25% cost estimate.

Blinn, M.B.; Cover, A.E.; Haldipur, G.B.; Datta, S.C.; Holmgren, J.D.

1989-06-01T23:59:59.000Z

26

SNG (Substitute Natural Gas) supply research program status report. December 1985  

SciTech Connect

The status (1985) report contains information on activities within GRI's Substitute Natural Gas (SNG) Supply Research Program. Contract summary reports are provided for research projects in the Gasification of Fossil Fuels (Coal Gasification Processes, Associated Coal Gasification Technology, and In Situ Coal Gasification Technology); and Methane From Biomass and Wastes (Methane From Wastes, and Methane From Biomass).

Not Available

1985-12-01T23:59:59.000Z

27

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

28

Six-Year Review of Covered Products | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Six-Year Review of Covered Products Six-Year Review of Covered Products This memorandum explains that the Energy Independence and Security Act of 2007 (EISA) requires the...

29

On the Relation between Perfect Tunneling and Band Gaps for SNG Metamaterial Structures  

E-Print Network (OSTI)

In this article we have proposed a compact classification of isotropic and homogenous single negative (SNG) electromagnetic metamaterial based perfect tunneling unit cells. This has been made by means of the band gap theories and properties of the arrays made up of these unit cells. Based on their reported characteristics, we have proposed new structures that simultaneously show perfect tunneling band and complete band gap (CBG - omni directional stop band for both polarizations). Besides, we have identified perfect tunneling which can be considered as "phase shifted perfect tunneling". Several interesting and new phenomena like Complete Perfect Tunneling (CPT - omni-directional perfect tunneling for both polarizations), Band Gap Shifting, CBG in Double Positive (DPS) material range, etc. have been reported with proper physical and mathematical explanations.

Mahdy, M R C; Shawon, Jubayer; Al-Quaderi, Golam Dastegir; Matin, M A

2013-01-01T23:59:59.000Z

30

SNG or syn-gas from wet solid waste and low grade fuels  

SciTech Connect

The substitute natural gas (SNG) or a synthesis gas (syngas) is prepared by partly oxidizing wastes and low-grade fuels (peat, lignite, many forms of biomass) containing 0.5-30 times as much water as the dry solids with O or air at 240-300/sup 0/C and 70-100 atmospheres. Sulfur in high S coal is oxidized selectively to SO/sub 4//sup -2/, and the heat to bring the combustible to the necessary temperature is supplied by burning part of the combustible itself. The residual solids (now 70-95% of the original fuel) are mechanically separated from all but 0.5-2 lb water. These solids come from the dewatering unit at a high pressure and may be passed, without loss of pressure or temperature to be gasified in conventional processes and gasifiers by partial oxidation.

Othmer, D.F.

1981-02-17T23:59:59.000Z

31

Ethanol production capacity little changed in past year - Today in ...  

U.S. Energy Information Administration (EIA)

U.S. fuel ethanol production capacity was 13.9 billion gallons per year (903,000 barrels per day), as of January 1, 2013, according to a report released by EIA on May ...

32

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Labeled Products ENERGY STAR Labeled Products Title Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products Publication Type Journal Article LBNL Report Number LBNL-1217E Year of Publication 2008 Authors Sanchez, Marla C., Gregory K. Homan, and Richard E. Brown Date Published 10/2008 Publisher Lawrence Berkeley National Laboratory ISBN Number LBNL-1217E Keywords Enduse, Energy End-Use Forecasting, EUF Abstract ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

33

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

SciTech Connect

This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

2010-08-24T23:59:59.000Z

34

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

SciTech Connect

This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

2010-08-24T23:59:59.000Z

35

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

Science Conference Proceedings (OSTI)

ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

2010-11-15T23:59:59.000Z

36

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

requirements in sleep mode, standby mode and on or idlerequirements (sleep and standby) depending on a product’ssystem starts by default. Standby mode refers to a product’s

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

37

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

charge (full battery), and standby. BAU power consumption is2003). The ENERGY STAR standby power consumption is set torequirements (sleep and standby) depending on a product’s

Homan, Gregory K

2011-01-01T23:59:59.000Z

38

Assessing initial-cost growth and subsequent long-term cost improvement in coal-to-SNG processes. Final report  

Science Conference Proceedings (OSTI)

The overall objective of the study was the development of guidance that would enable gas-industry R and D managers to make more-reliable assessments of the potential for both initial-cost growth and subsequent long-run cost improvement in alternative coal-gasification technologies. The first phase of the research assessed the reasonableness of the GRI contingency methodology by comparing the results obtained from applying the GRI method and the RAND Pioneer Plant Study (PPS) method to an identical set of eight coal-to-SNG processes. The second phase of the research, which addressed the issue of cost improvement, found that between process introduction and process maturity, overall cost reductions of between 30% (for moderately innovative technologies) and 60% (for highly innovative technologies) are possible. However, these results were highly dependent on a number of key assumptions including: similarity of site characteristics for successive plants; access to prior plant's experience base; and appropriate management attitudes.

Hess, R.W.; Myers, C.W.

1989-06-01T23:59:59.000Z

39

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

requirements (sleep and standby) depending on a product’ssystem starts by default. Standby mode refers to a product’sof a device in its standby mode. Savings are assumed to

Homan, GregoryK

2010-01-01T23:59:59.000Z

40

The Year of Peak Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

When world conventional oil production will peak is, of course, the bottom-line question. It has already peaked in the United States, in 1970.

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network (OSTI)

gases. 2.3.5 Synthetic natural gas (SNG) systems Asynthetic natural gas (SNG) can be manufactured from coal orthe use of biomass-derived SNG in motor vehicles. SNG from

Delucchi, Mark

1997-01-01T23:59:59.000Z

42

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

Science Conference Proceedings (OSTI)

ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

2008-10-31T23:59:59.000Z

43

Polygeneration Integration of Gasoline Synthesis and IGCC Power Production Using  

E-Print Network (OSTI)

gas produced by gasification in a gas turbine. This synthesis gas is also an excellent raw material for a gas turbine in a combined cycle power generation scheme. Coal Residue Gasification Gas Cleaning for chemicals production such as methanol, DiMethyl Ether (DME), gasoline, Synthetic Natural Gas (SNG), hydrogen

44

Comparison of coal-based systems: marketability of medium-Btu gas and SNG (substitute natural gas) for industrial applications. Final report, July 1979-March 1982  

Science Conference Proceedings (OSTI)

In assessing the marketability of synthetic fuel gases from coal, this report emphasizes the determination of the relative attractiveness of substitute natural gas (SNG) and medium-Btu gas (MBG) for serving market needs in eight industrial market areas. The crucial issue in predicting the marketability of coal-based synthetic gas is the future price level of competing conventional alternatives, particularly oil. Under a low oil-price scenario, the market outlook for synthetic gases is not promising, but higher oil prices would encourage coal gasification.

Olsen, D.L.; Trexel, C.A.; Teater, N.R.

1982-05-01T23:59:59.000Z

45

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

Cost Biomass Cost TOTAL EXPENSES SNG Revenues Power RevenuesE. Synthetic natural gas (SNG): Technology, Environmentaland Substitute Natural Gas (SNG) production from coal and

Lu, Xiaoming

2012-01-01T23:59:59.000Z

46

YEAR  

National Nuclear Security Administration (NNSA)

0.00% White Male (W,M) 85 71 -16.47% White Female (W,F) 33 30 -9.09% Change DIVERSITY Change NNSA Production Office (NPO) As of September 26, 2013 TOTAL WORKFORCE Change...

47

YEAR  

National Nuclear Security Administration (NNSA)

32 TOTAL WORKFORCE GENDER NNSA Production Office (NPO) As of March 23, 2013 PAY PLAN DIVERSITY 1.5% 0.7% 21.9% 21.9% 1.5% 16.8% 32.8% 2.9% Pay Plan Males 65.7% Females 34.3%...

48

U.S. crude oil production expected to exceed oil imports later this year  

U.S. Energy Information Administration (EIA) Indexed Site

crude oil production expected to exceed oil imports later crude oil production expected to exceed oil imports later this year U.S. crude oil production is expected to surpass U.S. crude oil imports by the fourth quarter of this year. That would mark the first time since February 1995 that domestic crude oil output exceeds imports, according to the latest monthly energy outlook from the U.S. Energy Information Administration. The United States will still need to import crude oil to help meet domestic demand. However, total crude oil imports this year are on track to fall to their lowest level since 1997. U.S. oil production is expected to continue to rise over the next two years as imports fall. As a result, the share of total U.S. petroleum consumption met by net imports is forecast to fall to 32 percent next year, the lowest level since 1985 and nearly half the peak level of 60 percent seen in

49

HETEROGENEOUS CATALYSIS RESEARCH MEETING  

E-Print Network (OSTI)

costs for the production of SNG or Fischer-Tropsch productsof substitute natural gas (SNG) are highly susceptible to

Authors, Various

2011-01-01T23:59:59.000Z

50

YEAR  

National Nuclear Security Administration (NNSA)

1 1 YEAR 2011 Males 18 Females 23 YEAR 2011 SES 2 EJ/EK 2 NQ (Prof/Tech/Admin) 35 NU (Tech/Admin Support) 2 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 9 Asian Male 0 Asian Female 0 Hispanic Male 2 Hispanic Female 6 White Male 12 White Female 6 DIVERSITY Workforce Diversity Associate Administrator for Information Management & Chief Information Officer, NA-IM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 18 43.9% 23 56.1% Gender Males Females 4.9% 4.9% 85.4% 4.9% Pay Plan SES EJ/EK NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 2.4% 4.9% 7.3% 22.0% 0.0% 0.0% 4.9% 14.6% 29.3% 14.6% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

51

YEAR  

National Nuclear Security Administration (NNSA)

4 4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 31 NU (Tech/Admin Support) 5 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 2 Asian Male 1 Asian Female 1 Hispanic Male 6 Hispanic Female 10 White Male 13 White Female 10 DIVERSITY Workforce Diversity Office of General Counsel, NA-GC As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 21 47.7% 23 52.3% Gender Males Females 6.8% 2.3% 2.3% 6.8% 70.5% 11.4% Pay Plan SES EJ/EK EN 03 NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.0% 0.0% 2.3% 4.5% 2.3% 2.3% 13.6% 22.7% 29.5% 22.7% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

52

YEAR  

National Nuclear Security Administration (NNSA)

6 6 YEAR 2011 Males 7 Females 9 YEAR 2011 SES 1 NQ (Prof/Tech/Admin) 9 GS 15 2 GS 13 2 GS 12 1 GS 11 1 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 3 Asian Male 1 Asian Female 0 Hispanic Male 1 Hispanic Female 0 White Male 4 White Female 6 DIVERSITY Workforce Diversity Associate Administrator of External Affairs, NA-EA As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 7 43.8% 9 56.3% Gender Males Females 6.3% 56.3% 12.5% 12.5% 6.3% 6.3% Pay Plan SES NQ (Prof/Tech/Admin) GS 15 GS 13 GS 12 GS 11 0.0% 0.0% 6.3% 18.8% 6.3% 0.0% 6.3% 0.0% 25.0% 37.5% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male Hispanic Female White Male White Female FY11 Workforce Diversity

53

YEAR  

National Nuclear Security Administration (NNSA)

40 40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJ/EK 1 NN (Engineering) 16 NQ (Prof/Tech/Admin) 115 NU (Tech/Admin Support) 3 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 7 Asian Male 4 Asian Female 0 Hispanic Male 25 Hispanic Female 26 White Male 35 White Female 37 DIVERSITY Workforce Diversity Associate Administrator for Acquistion & Project Management, NA-APM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 68 48.6% 72 51.4% Gender Males Females 3.6% 0.7% 11.4% 82.1% 2.1% Pay Plan SES EJ/EK NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.7% 1.4% 2.1% 5.0% 2.9% 0.0% 17.9% 18.6% 25.0% 26.4% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male

54

Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela  

Science Conference Proceedings (OSTI)

Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of {sup 18}F labeled FDG, operation and radiation monitoring experience are included. We conclude that {sup 18}FDG CT-PET is the most effective technique for patient diagnosis.

Colmenter, L.; Coelho, D.; Esteves, L. M.; Ruiz, N.; Morales, L.; Lugo, I. [Centro Diagnostico Docente, Las Mercedes, Caracas (Venezuela); Sajo-Bohus, L.; Liendo, J. A.; Greaves, E. D.; Barros, H. [Universidad Simon Bolivar, Seccion de Fisica Nuclear, Caracas (Venezuela); Castillo, J. [University of Applied Science of Aachen (Germany)

2007-10-26T23:59:59.000Z

55

U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Domestic Oil Production Exceeds Imports for First Time in 18 U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook Allison Lantero Allison Lantero Public Affairs Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of the Billboard charts, and the Yahoo! search engine had not yet been unveiled. It was also the last month the U.S. produced more oil than it imported. Until last month. During remarks in Cleveland yesterday, President Obama noted this historic milestone: in October, America produced more oil here at home than we imported from overseas.

56

U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Domestic Oil Production Exceeds Imports for First Time in 18 Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook Allison Lantero Allison Lantero Public Affairs Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of the Billboard charts, and the Yahoo! search engine had not yet been unveiled. It was also the last month the U.S. produced more oil than it imported. Until last month. During remarks in Cleveland yesterday, President Obama noted this historic milestone: in October, America produced more oil here at home than we imported from overseas.

57

Years  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology in and Technology in the National Interest 60 Years of Excellence Lawrence Livermore National Laboratory FY 2012 Annual Report About the Cover: Lawrence Livermore National Laboratory (LLNL) engineers Chris Spadaccini (left) and Eric Duoss are shown experimenting with direct ink-writing to create micro- to macroscale structures with extreme precision. The Laboratory is advancing this process and other additive manufacturing technologies to develop new materials with extraordinary properties for use in a wide range of national-security and other applications. About the Laboratory: Lawrence Livermore National Laboratory was founded in 1952 to enhance the security of the United States by advancing nuclear weapons science and technology. With a talented and dedicated workforce and

58

Name Address Place Zip Sector Product Stock Symbol Year founded Number  

Open Energy Info (EERE)

Address Place Zip Sector Product Stock Symbol Year founded Number Address Place Zip Sector Product Stock Symbol Year founded Number of employees Number of employees Telephone number Website Coordinates Region ABS Alaskan Inc Van Horn Rd Fairbanks Alaska Gateway Solar Wind energy Marine and Hydrokinetic Solar PV Solar thermal Wind Hydro Small scale wind turbine up to kW and solar systems distributor http www absak com United States AER NY Kinetics LLC PO Box Entrance Avenue Ogdensburg Marine and Hydrokinetic United States AW Energy Lars Sonckin kaari Espoo FI Marine and Hydrokinetic http www aw energy com Finland AWS Ocean Energy formerly Oceanergia Redshank House Alness Point Business Park Alness Ross shire IV17 UP Marine and Hydrokinetic http www awsocean com United Kingdom Able Technologies Audubon Road Englewood Marine and Hydrokinetic http

59

Deepwater royalty relief product of 3 1/2 year U.S. political effort  

SciTech Connect

Against the backdrop of more than 20 years of increasingly stringent environmental regulation, ever-expanding exploration and development moratoria on the Outer Continental Shelf (OCS), and reductions in producer tax incentives, oil and natural gas exploration companies active in deep waters of the Gulf of Mexico recently won a significant legislative victory. On Nov. 28, 1995, President Clinton signed into law S.395, the Alaska Power Administration Sale Act. Title 3 of S.395 embodies the Outer Continental Shelf Deep Water Royalty Relief Act. This landmark legislation provides substantial incentives for oil and natural gas production in the gulf of Mexico by temporarily eliminating royalties on certain deepwater leases. It is the first direct incentive for oil and gas production enacted at the federal level in many years. This paper reviews the elements used to arrive at this successful legislation including the congressional leadership. It describes debates, cabinet level discussions, and use of parlimentary procedures.

Davis, R.E. [Stuntz and Davis, Washington, DC (United States); Neff, S. [Senate Energy and Natural Resources Committee, Washington, DC (United States)

1996-04-01T23:59:59.000Z

60

Demonstration plant engineering and design. Phase I. The pipeline gas demonstration plant. Volume 9. Plant Section 800: product gas compression and drying  

SciTech Connect

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. This design effort has been completed. A report of the design effort is being issued in 24 volumes. This is Volume 9 which reports the design of Plant Section 800 - Product Gas Compression and Drying. Plant Section 800 compresses, cools, and drys the SNG product to conditions and specifications required for pipeline use. A conventional triethylene glycol (TEG) gas drying unit is employed to reduce the moisture content of the SNG to less than 7 pounds per million standard cubic feet. The product SNG has a minimum pressure of 800 psig and a maximum temperature of 100/sup 0/F. This section also includes the product gas analysis, metering, and totalizing instruments. It is designed to remove 3144 pounds of water from 19 million SCFC of SNG product. Volume 9 contains the following design information: process operation; design basis; heat and material balance; stream compositions; utility, chemical and catalyst summary; major equipment and machinery list; major equipment and machinery requisitions; instrument list; instrument requisitions; line lists; process flow diagram; engineering flow diagrams; and section plot plan.

Not Available

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Polarizabilities and Effective Parameters for Collections of Spherical Nano-Particles Formed by Pairs of Concentric Double-Negative (DNG), Single-Negative (SNG) and/or Double-Positive (DPS) Metamaterial Layers  

E-Print Network (OSTI)

Unusual scattering effects from tiny spherical particles may be obtained when concentric shells are designed by pairing together 'complementary' double-negative (DNG), single-negative (SNG), and/or standard double-positive (DPS) materials. By embedding these highly polarizable scatterers in a host medium one can achieve a bulk medium with interesting effective parameters. Some physical insights and justifications for the anomalous polarizability of these concentric spherical nano-particles and the effective parameters of the bulk composite medium are discussed.

Alu, A; Alu, Andrea; Engheta, Nader

2004-01-01T23:59:59.000Z

62

Polarizabilities and Effective Parameters for Collections of Spherical Nano-Particles Formed by Pairs of Concentric Double-Negative (DNG), Single-Negative (SNG) and/or Double-Positive (DPS) Metamaterial Layers  

E-Print Network (OSTI)

Unusual scattering effects from tiny spherical particles may be obtained when concentric shells are designed by pairing together 'complementary' double-negative (DNG), single-negative (SNG), and/or standard double-positive (DPS) materials. By embedding these highly polarizable scatterers in a host medium one can achieve a bulk medium with interesting effective parameters. Some physical insights and justifications for the anomalous polarizability of these concentric spherical nano-particles and the effective parameters of the bulk composite medium are discussed.

Andrea Alu; Nader Engheta

2004-10-01T23:59:59.000Z

63

Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8  

SciTech Connect

This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

Arora, J.L.; Tsaros, C.L.

1980-02-01T23:59:59.000Z

64

Isotope Production and Distribution Program`s Fiscal Year 1997 financial statement audit  

SciTech Connect

The Department of Energy Isotope Production and Distribution Program mission is to serve the national need for a reliable supply of isotope products and services for medicine, industry and research. The program produces and sells hundreds of stable and radioactive isotopes that are widely utilized by domestic and international customers. Isotopes are produced only where there is no U.S. private sector capability or other production capacity is insufficient to meet U.S. needs. The Department encourages private sector investment in new isotope production ventures and will sell or lease its existing facilities and inventories for commercial purposes. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund established by the Fiscal Year (FY) 1990 Energy and Water Appropriations Act and maintains financial viability by earning revenues from the sale of isotopes and services and through annual appropriations. The FY 1995 Energy and Water Appropriations Act modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Although the Isotope Program functions as a business, prices set for small-volume, high-cost isotopes that are needed for research purposes may not achieve full-cost recovery. As a result, isotopes produced by the Isotope Program for research and development are priced to provide a reasonable return to the U.S. Government without discouraging their use. Commercial isotopes are sold on a cost-recovery basis. Because of its pricing structure, when selecting isotopes for production, the Isotope Program must constantly balance current isotope demand, market conditions, and societal benefits with its determination to operate at the lowest possible cost to U.S. taxpayers. Thus, this report provides a financial analysis of this situation.

1998-03-27T23:59:59.000Z

65

Design and economics of a plant to convert western subbituminous coal to SNG (substitute natural gas) using KRW (KRW Energy Systems Inc. ) gasifiers. Topical report (Final) May 1985-January 1986  

SciTech Connect

A first-pass design and cost estimate indicates that the levelized constant-dollar cost of gas for a 125 billion Btu/day plant to convert western subbituminous coal to substitute natural gas (SNG) using KRW gasifiers is $4.70/MMBtu. Process development allowances (PDA) increase the gas cost to $5.09/MMBtu. The levelized constant-dollar gas cost for a scaled-up 250 billion Btu/day plant is estimated at $4.17/MMBtu, indicating that smaller plants can be constructed with less capital risk while producing methane at only slightly higher costs.

Smith, J.T.; Hanny, D.J.; Smelser, S.C.

1986-01-01T23:59:59.000Z

66

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

Science Conference Proceedings (OSTI)

This report provides a top-level summary of national savings achieved by the Energy Star voluntary product labeling program. To best quantify and analyze savings for all products, we developed a bottom-up product-based model. Each Energy Star product type is characterized by product-specific inputs that result in a product savings estimate. Our results show that through 2007, U.S. EPA Energy Star labeled products saved 5.5 Quads of primary energy and avoided 100 MtC of emissions. Although Energy Star-labeled products encompass over forty product types, only five of those product types accounted for 65percent of all Energy Star carbon reductions achieved to date, including (listed in order of savings magnitude)monitors, printers, residential light fixtures, televisions, and furnaces. The forecast shows that U.S. EPA?s program is expected to save 12.2 Quads of primary energy and avoid 215 MtC of emissions over the period of 2008?2015.

Sanchez, Marla; Homan, Gregory; Lai, Judy; Brown, Richard

2009-09-24T23:59:59.000Z

67

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Advanced Coal-Wind Non-Hybrid SNG IGCC+CCS PC CCGT Windor a synthetic natural gas (SNG) production facility) and anwithout Fuel With with SNG Production or Syncrude Production

Phadke, Amol

2008-01-01T23:59:59.000Z

68

Isotope production and distribution Programs Fiscal Year (FY) 1995 Financial Statement Audit (ER-FC-96-01)  

SciTech Connect

The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium and deuterium, and related isotope services. Services provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund, as established by the Fiscal Year 1990 Energy and Water Appropriations Act (Public Law 101-101). The Fiscal Year 1995 Appropriations Act (Public Law 103-316) modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Prices set for small-volume, high-cost isotopes that are needed for research may not achieve full-cost recovery. Isotope Program costs are financed by revenues from the sale of isotopes and associated services and through payments from the isotope support decision unit, which was established in the DOE fiscal year 1995 Energy, Supply, Research, and Development appropriation. The isotope decision unit finances the production and processing of unprofitable isotopes that are vital to the national interest.

1996-02-12T23:59:59.000Z

69

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network (OSTI)

Glossary .146 iii List of Equations Equation 4-1. EnergyGlossary Market Transformation - lasting change in a product market as a result of Energy

Sanchez, Marla

2010-01-01T23:59:59.000Z

70

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

71

Wine-grape production trends reflect evolving consumer demand over 30 years  

E-Print Network (OSTI)

t Wine-grape production trends reflect evolving consumerregions. We examine the major trends in the California wine-Wine Institute 2007). This trend was kick-started in large

Volpe, Richard J. III; Green, Richard; Heien, Dale; Howitt, Richard

2010-01-01T23:59:59.000Z

72

Health, safety, and environmental risks from energy production: A year-long reality check  

SciTech Connect

Large-scale carbon dioxide capture and storage (CCS) offers the benefit of reducing CO{sub 2} emissions and thereby mitigating climate change risk, but it will also bring its own health, safety, and environmental risks. Curtis M. Oldenburg, Editor-in-Chief, considers these risks in the context of the broader picture of energy production. Over the last year, there have been major acute health, safety, and environmental (HSE) consequences related to accidents involving energy production from every major primary energy source. These are, in chronological order: (i) the Upper Big Branch (coal) Mine disaster, (ii) the Gulf of Mexico Macondo (oil) well blowout, (iii) the San Bruno (natural gas) pipeline leak and explosion, and (iv) the Fukushima (nuclear) reactor radioactivity releases. Briefly, the Upper Big Branch Mine disaster occurred in West Virginia on April 5, 2010, when natural methane in the mine ignited, causing the deaths of 29 miners, the worst coal mine disaster in the USA since 1970. Fifteen days later, the Macondo oil well in the Gulf of Mexico suffered a blowout, with a gas explosion and fire on the floating drilling platform that killed 11 people. The oil and gas continued to flow out of the well at the seafloor until July 15, 2010, spilling a total of approximately 5 million barrels of oil into the sea. On September 9, 2010, a 30-inch (76-cm) buried, steel, natural gas pipeline in San Bruno, California, leaked gas and exploded in a residential neighborhood, killing 8 people in their homes and burning a total of 38 homes. Flames were up to 1000 ft (300 m) high, and the initial explosion itself reportedly measured 1.1 on the Richter scale. Finally, on March 11, 2011, a magnitude 9.0 earthquake off the coast of Japan's main island, Honshu, caused a tsunami that crippled the backup power and associated cooling systems for six reactor cores and their spent fuel storage tanks at the Fukushima nuclear power plant. At time of writing, workers trying to bring the crisis under control have been exposed to dangerous levels of radiation, and radioactive water and particulates have been released to the sea and atmosphere. These four disasters, all of which occurred within the past 12 months, were not unprecedented; similar events differing only in detail have happened around the world before, and such events will occur again. Today, developed nations primarily use fossil fuels to create affordable energy for comforts such as lighting, heating and air-conditioning, refrigeration, transportation, education, and entertainment, as well as for powering manufacturing, which creates jobs and a wealth of material goods. In addition to the risks of the existing energy infrastructure that have become obvious through these recent disasters, there is also the ongoing risk of climate change that comes from the vast emissions of greenhouse gases, primarily CO{sub 2}, from the burning of fossil fuels. The implementation of CO{sub 2} capture and storage (CCS) will help mitigate CO{sub 2} emissions from fossil fuel energy, but it also carries with it HSE risks. In my personal interactions with the public and with students, the main concern voiced is whether CO{sub 2} could leak out of the deep reservoirs into which it is injected and rise up out of the ground, smothering people and animals at the ground surface. Another concern expressed is that CO{sub 2} pipelines could fail and cause similar gaseous plumes of CO{sub 2}. The widespread concerns about CO{sub 2} leaking out over the ground surface may be inspired by events that have happened within natural systems in equatorial Africa, in Indonesia, and in Italy. Researchers have been investigating a wide variety of HSE risks of geologic CO{sub 2} storage for some time and have determined that wells are the main potential pathways for significant leakage from the deep subsurface. I discuss the acute HSE risks of CO{sub 2} leakage through wells and from pipelines, and compare the behavior of failures in CO{sub 2} wells and pipelines with oil and gas analogues from which most of our experien

Oldenburg, C.M.

2011-04-01T23:59:59.000Z

73

Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers for lignite gasification with KRW gasifiers for gasification of coal fines. Topical report (Final), April 1985-January 1986  

Science Conference Proceedings (OSTI)

A first-pass design and cost estimate was prepared for a plant to convert lignite to substitute natural gas (SNG) using Lurgi dry-bottom gasifiers to gasify the coal and the KRW fluid-bed gasifiers to gasify the coal fines. The overall plant thermal efficiency is between that of the Lurgi and KRW base case designs. The study-case design is of commercial interest compared to a Lurgi plant when the Lurgi plant coal fines cannot be sold. The study case is more capital-intensive because it requires more-expensive boilers and more of different types of process units than either base case. There is no advantage over a KRW plant design that provides a 30% lower cost of gas.

Smelser, S.C.

1986-01-01T23:59:59.000Z

74

Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day  

DOE Green Energy (OSTI)

A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

75

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

SNG from Coal: Process & Commercialization SNG from Coal: Process & Commercialization The Great Plains Synfuels Plant in Beulah, North Dakota source: Dakota Gasification Great Plains Synfuels Plant The Great Plains Synfuels Plant (GPSP) in Beulah, North Dakota has been in operation producing synthetic natural gas (SNG) from lignite coal for 25 years and remains the only coal-to-SNG facility in the United States. In addition to the production of SNG, the plant also produces high purity carbon dioxide (CO2), which is distributed through a pipeline to end users in Canada for enhanced oil recovery (EOR) operations. The plant also produces and sells anhydrous ammonia, as well as the following byproducts: ammonium sulfate, krypton, xenon, dephenolized cresylic acid, liquid nitrogen, phenol, and naphtha, most of the last of which is burned as fuel

76

Legend and legacy: Fifty years of defense production at the Hanford Site  

SciTech Connect

Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ``flagship`` of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program.

Gerber, M.S.

1992-09-01T23:59:59.000Z

77

Public Health in East and Southeast Asia: Challenges and Opportunities in the Twenty-First Century  

E-Print Network (OSTI)

9. Occupational Health Judy Sng and David Koh 0. EconomicS. Rajan, Adeline Seow, Judy Sng, Sheena G. Sullivan, ChorhOccupational Health Judy Sng and David Koh In recent years,

Detels, Roger; Sullivan, Sheena G.; Tan, Chorh Chuan

2012-01-01T23:59:59.000Z

78

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

by methanol, ethanol, and SNG plants in the year 2000 havemethanol, biodiesel, SNG). GHGLC E,F = CO 2-equivalentrequirements with natural gas. SNG/wood: For 1994, I assume

Delucchi, Mark

2003-01-01T23:59:59.000Z

79

Development of a tar decomposition model for application in a Chemical-Looping Reformer operated with raw gas from a biomass gasifier.  

E-Print Network (OSTI)

??The production of Synthetic Natural Gas (SNG) represents one of the promising alternatives for biofuel manufacture. The transport sector is where SNG has been identified… (more)

Pestana, Maria Inês

2011-01-01T23:59:59.000Z

80

A household carbon footprint calculator for islands: Case study of the United States Virgin Islands  

E-Print Network (OSTI)

transportation fuels, bio-ethanol, electricity, SNG, hydrogen and other chemical products such as fertilizers time SNG synthetic natural gas TCOD total chemical oxygen demand TOP combined torrefaction

Kammen, Daniel M.

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994  

Science Conference Proceedings (OSTI)

The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

NONE

1996-02-01T23:59:59.000Z

82

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology for SNG Production Technology for SNG Production Synthetic natural gas (SNG) is one of the commodities that can be produced from coal-derived syngas through the methanation process. The economic viability of producing synthetic natural gas (SNG) through coal gasification is heavily dependent on the market prices of natural gas and the coal feedstock to be used, the value of by-products such as CO2 (which could be used for EOR), and additionally the capital cost of the gasification plant. Currently, there is only one coal-to-SNG plant currently in commercial operation worldwide. In the middle years of the previous decade, when natural gas prices spiked at previously unencountered high levels, many proposals were made for new coal-to-SNG plants in the United States. In 2010, ten were still proposed or in various stages of development. As natural gas prices have fallen to low levels in the last few years, many or all of these proposed SNG projects as originally envisioned may not move forward to implementation.

83

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet Audit, OAS-FS-12-08  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's Isotope Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet OAS-FS-12-08 March 2012 ISOTOPE DEVELOPMENT AND PRODUCTION FOR RESEARCH AND APPLICATIONS PROGRAM Fiscal Year 2009 Annual Report and Balance Sheet September 30, 2009 i UNITED STATES DEPARTMENT OF ENERGY ISOTOPE DEVELOPMENT AND PRODUCTION FOR RESEARCH AND APPLICATIONS PROGRAM Fiscal Year 2009 Annual Report and Balance Sheet Table of Contents Page Management's Discussion and Analysis 1 Isotope Program Overview 2 Isotope Program Funding 4 Isotope Program Performance 5 Financial Performance 6 Management Challenges and Significant Issues 7 Balance Sheet Limitations 7

84

Great Plains Gasification Project status report  

SciTech Connect

The Great Plains Gasification Project is the first commercial synthetic fuels project based on coal conversion in the US. The goal is to convert North Dakota lignite into pipeline quality synthetic natural gas (SNG). The project consists of an open pit coal mine, a gasification plant, and an SNG pipeline in Mercer County, North Dakota. The project took 12 years from its conception to the production in 1984 of SNG for users. The author describes the plant's basic processes, the start-up activities and schedule, and some of the more interesting start-up problems.

Pollock, D.C.

1985-08-01T23:59:59.000Z

85

Audit Report - Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit, OAS-FS-13-09  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audits and Inspections Audits and Inspections Audit Report Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit OAS-FS-13-09 January 2013 MEMORANDUM FOR THE DIRECTOR, OFFICE OF SCIENCE FROM: Daniel M. Weeber Assistant Inspector General for Office of Inspector General SUBJECT: INFORMATION Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit The attached report presents the results of the independent certified public accountants' audit of the Department of Energy's Isotope Development and Production for Research and Applications Program's (Isotope Program) and 2009. The Office of Inspector General (OIG) engaged the independent public accounting firm of

86

Evolution of plant-specific Snf2 proteins and RNA polymerases and their function in maintaining paramutations in Zea mays  

E-Print Network (OSTI)

LSPLCVSQVKK------------SNG-----LPPLCVAEVKK------------SNG-----PDALSPLAIDGRKSSL-SNG- --Q-GKPTIDKCIIVCPSSLVNNWANEIVKWL-

Stonaker, Jennifer Lynn

2010-01-01T23:59:59.000Z

87

Economic benefits of R and D on gas supply technologies. [Unconventioal natural gas resources which are tight sands, Devonian shale, coal seam gas, and gas co-produced with water  

SciTech Connect

Advanced natural gas supply technologies, if successful, could lower the average cost of gas to consumers by 18% and increase the expected gas demand by 2 quads/year by the year 2000. Advanced production techniques for unconventional gas will have by far the greatest impact on future gas prices, providing economic benefits of between $200 billion and $320 billion. Advanced SNG from coal will provide only a $9 billion benefit if unconventional gas meets all of its performance targets. However, higher demand and failure of unconventional gas R and D could raise the benefits of SNG research to $107 billion. SNG research provides a hedge value that increases the likelihood of receiving a positive payoff from gas supply R and D. Changing the performance goals for SNG research to emphasize cost reduction rather than acceleration of the date of commercialization would greatly increase the potential benefits of the program. 9 references, 8 figures, 5 tables.

Darrow, K.G.; Ashby, A.B.; Nesbitt, D.M.; Marshalla, R.A.

1985-01-01T23:59:59.000Z

88

Florida Shale Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Florida Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ... Shale Gas Production;

89

Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

90

Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses  

Science Conference Proceedings (OSTI)

Coleman, M.D., et. al. 2003. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses. Report. USDA Forest Service, Savannah River, Aiken, SC. 26 pp. Abstract: Many researchers have studied the productivity potential of intensively managed forest plantations. However, we need to learn more about the effects of fundamental growth processes on forest productivity; especially the influence of aboveground and belowground resource acquisition and allocation. This report presents installation, establishment, and first-year results of four tree species (two cottonwood clones, sycamore, sweetgum, and loblolly pine) grown with fertilizer and irrigation treatments. At this early stage of development, irrigation and fertilization were additive only in cottonwood clone ST66 and sweetgum. Leaf area development was directly related to stem growth, but root production was not always consistent with shoot responses, suggesting that allocation of resources varies among treatments. We will evaluate the consequences of these early responses on resource availability in subsequent growing seasons. This information will be used to: (1) optimize fiber and bioenergy production; (2) understand carbon sequestration; and (3) develop innovative applications such as phytoremediation; municipal, industrial, and agricultural wastes management; and protection of soil, air, and water resources.

D.R. Coyle; J. Blake; K. Britton; M. Buford; R.G. Campbell; J. Cox; B. Cregg; D. Daniels; M. Jacobson; K. Johnsen; T. McDonald; K. McLeod; E. Nelson; D. Robison; R. Rummer; F. Sanchez; J. Stanturf; B. Stokes; C. Trettin; J. Tuskan; L. Wright; S. Wullschleger

2003-12-31T23:59:59.000Z

91

How to convert biomass to SNG  

Science Conference Proceedings (OSTI)

The conversion of biomass to methane by thermal gasification and by anaerobic digestion is described. The problems common to most digester designs such as long start-up times and rates of formation of organic acids are mentioned and current research on kelp digestion is reviewed.

Frank, J.R.

1980-04-01T23:59:59.000Z

92

Producing SNG and other fuels from peat  

SciTech Connect

During 1981, PEATGAS process testing advanced into the pilot-plant stage. The modification now in progress is the installation of a pressurized lockhopper system. Along with a series of fluidized-bed gasification tests, studies of a wet-carbonization peat-beneficiation process are underway. Other work includes mapping US peat resources.

Not Available

1982-01-01T23:59:59.000Z

93

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit, OAS-FS-13-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit OAS-FS-13-11 February 2013 January 31, 2013 Mr. Gregory Friedman, Inspector General Dr. Jehanne Gillo, Director, Facilities and Project Management Division, Office of Nuclear Physics U.S. Department of Energy Washington, DC 20585 Dear Mr. Friedman and Dr. Gillo: We have audited the balance sheet of the United States Department of Energy's (Department or DOE) Isotope Development and Production for Research and Applications Program (the Program) (a component of the Department) as of September 30, 2010, and have issued our report thereon dated December 21, 2012. In planning and performing our audit of the balance sheet, in accordance with auditing standards

94

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

95

Chemistry and Biology of the Caged Garcinia Xanthones Oraphin Chantarasriwong,[a, b  

E-Print Network (OSTI)

), Rotation student Shao, Shuang (3) - Cresswell Lab Sng, Joel (1), SOM, first year Storer, Alex (James) (1

Theodorakis, Emmanuel

96

Hawaii Bioenergy Master Plan Business Partnering  

E-Print Network (OSTI)

, Texaco, and Shell gasifiers, Fischer-Tropsch synthesis, SNG production, and synthesis gas production by simulation of coal and NG conversion to hydrogen, FT fuels, SNG, synthesis gas and power. - Glen Tomlinson--Mechanical engineer--Simulation of coal and NG conversion systems for production of power, FT, SNG, syngas, hydrogen

97

ON THE NORMALITY OF NUMBERS Adrian Belshaw  

E-Print Network (OSTI)

, Texaco, and Shell gasifiers, Fischer-Tropsch synthesis, SNG production, and synthesis gas production by simulation of coal and NG conversion to hydrogen, FT fuels, SNG, synthesis gas and power. - Glen Tomlinson--Mechanical engineer--Simulation of coal and NG conversion systems for production of power, FT, SNG, syngas, hydrogen

98

Office of Facilities and Grounds Future Power Distribution Grid Requirements for  

E-Print Network (OSTI)

). · This will require the combination of alternate generation (PV, SNG, HFC, etc.), storage, Demand Response switchable circuits ­ Scalable power production (Diesel, SNG, HFC, Batteries) ­ Combine Thermal power

99

Arkansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3...

100

Alabama Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Kansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38...

102

Virginia Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

103

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

104

Oklahoma Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 58 68...

105

Montana Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

106

Pennsylvania Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

107

Kentucky Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Kentucky Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 5 2010's 4 4...

108

Michigan Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Michigan Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 148 122 132...

109

Montana Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Montana Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 13 7 2010's 13...

110

Colorado Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Colorado Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 1 2010's 1 3...

111

Arkansas Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Arkansas Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 94 279 527 2010's...

112

Pennsylvania Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Shale Production (Billion Cubic Feet) Pennsylvania Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 1 65...

113

Oklahoma Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Oklahoma Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 40 168 249 2010's...

114

This report was originally a thesis submitted in partial fulfillment of the requirements for the Master of Science degree in Mechanical  

E-Print Network (OSTI)

methanation reactor limits somewhat the production of methane. In SNG plants using the full HICOM and TREMP = National Energy Technology Laboratory O&M = operation and maintenance SNG = substitute natural gas SOFC to substitute natural gas (SNG) using TREMPTM", www.topsoe.com (last accessed October 31, 2011) [45]Gerdes, K

Oak Ridge National Laboratory

115

Renewable Energy Projections as Published in the National  

E-Print Network (OSTI)

methanation reactor limits somewhat the production of methane. In SNG plants using the full HICOM and TREMP = National Energy Technology Laboratory O&M = operation and maintenance SNG = substitute natural gas SOFC to substitute natural gas (SNG) using TREMPTM", www.topsoe.com (last accessed October 31, 2011) [45]Gerdes, K

116

SOLID-PHASE METHANE FERMENTATION OF SOLID WASTES  

E-Print Network (OSTI)

of Oahu by The Gas Company (TGC), a division of Citizens Communications. Synthetic natural gas (SNG) is produced at an SNG plant adjacent to the refineries and distributed at modest pressures through several Propane Jet Fuel Gasoline SNG Diesel Residual Fuel Finished Product Energy End

Columbia University

117

Great Plains Coal Gasification Project: Quarterly technical progress report, third fiscal quarter 1987-1988, January-March 1988  

SciTech Connect

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-05-31T23:59:59.000Z

118

Great Plains Coal Gasification Project: Quarterly technical progress report, April-June 1988 (Fourth fiscal quarter, 1987-1988)  

Science Conference Proceedings (OSTI)

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-07-29T23:59:59.000Z

119

New Mexico Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 56...

120

New Mexico--West Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico--West Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Louisiana--North Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Louisiana--North Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

122

Lower 48 States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Lower 48 States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

123

New Mexico--East Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico--East Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

124

West Virginia Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

125

Nevada Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

126

U.S. Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 91 1990's...

127

Miscellaneous States Shale Gas Production (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Miscellaneous States Shale Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2...

128

Federal Offshore California Natural Gas Marketed Production ...  

Gasoline and Diesel Fuel Update (EIA)

Marketed Production (Million Cubic Feet) Federal Offshore California Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

129

Ohio Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) No chart available. Ohio Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

130

Management Letter on the Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet Audit, OAS-FS-12-09  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Balance 09 Balance Sheet Audit OAS-FS-12-09 June 2012 January 30, 2012 Mr. Gregory Friedman, Inspector General Dr. Jehanne Gillo, Director, Facilities and Project Management Division, Office of Nuclear Physics U.S. Department of Energy Washington, DC 20585 Dear Mr. Friedman and Dr. Gillo: We have audited the balance sheet of the United States Department of Energy's (Department or DOE) Isotope Development and Production for Research and Applications Program (the Program) (a component of the Department) as of September 30, 2009, and have issued our report thereon dated January 30, 2012. In planning and performing our audit of the balance sheet, in accordance with auditing standards generally accepted in the United States of America, we considered the Program's internal control over financial

131

Eastern States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Coalbed Methane Production (Billion Cubic Feet) Eastern States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

132

Missouri Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet) Missouri Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

133

Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

134

Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology  

SciTech Connect

Air Products and Chemicals, Inc., is developing the sour pressure swing adsorption (PSA) technology which can be used to reject acid gas components (hydrogen sulfide [H{sub 2}S] and carbon dioxide [CO{sub 2}]) from sour syngas streams such as coal gasification syngas. In the current work, tests were conducted to investigate the impact of continuous exposure of real sour syngas and dilute levels of hydrochloric acid (HCl) and ammonia (NH{sub 3}) on the preferred adsorbent of that process. The results show a modest (~10%–15%) decrease in CO{sub 2} adsorption capacity after sour syngas exposure, as well as deposition of metals from carbonyl decomposition. Continuous exposure to HCl and NH{sub 3} yield a higher degree of CO{sub 2} capacity degradation (up to 25%). These tests represent worst-case approaches since the exposure is continuous and the HCl and NH{sub 3} levels are relatively high compare to an industrial sour syngas stream. Long-term PSA tests are needed to unequivocally evaluate the impact of cyclic exposure to these types of streams.

Dunham, Grant

2012-03-15T23:59:59.000Z

135

Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology  

Science Conference Proceedings (OSTI)

The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

2012-04-30T23:59:59.000Z

136

International Energy Agency Programme of Research and Development on  

E-Print Network (OSTI)

Fischer- Tropsch or Methanol Synthesis 2nH2 + nCO (- CH2-)n + nH2O CO + 2H2 CH3OHMethane (SNG) Methanation StorageH2 in ICEs H2 & NG Blends Indirect Liquefaction SNG Carbon Products 26.1% H2 Separation Membranes Coal Strategies Central Hydrogen Production Liquid Fuel Production SNG Production Regional or Local

Oak Ridge National Laboratory

137

Polygeneration of SNG, Hydrogen, Power, and Carbon Dioxide from...  

NLE Websites -- All DOE Office Websites (Extended Search)

a potentially valuable resource close to the oil fields. Site Selection In the 1970s, concerns over a potential shortage of natural gas fostered considerable interest in the...

138

Polygeneration of SNG, Hydrogen, Power, and Carbon Dioxide from...  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is recycled to the gasifier exit to cool the effluent synthesis gas to below the ash fusion temperature before the gas enters the waste heat boiler. In these dry feed systems...

139

SNG process is a potential CO/sub 2/ source  

Science Conference Proceedings (OSTI)

The Hoffman single-step coal gasification process produces approximately equal quantities of high-Btu gas and CO/sub 2/. There is an increasing use of CO/sub 2/ for enhanced oil recovery and this potential market has added a new dimension to the economics of the gasification process.

Not Available

1982-01-28T23:59:59.000Z

140

West Virginia Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) West Virginia Shale Production (Billion Cubic Feet) West Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Eastern States Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Eastern States Shale Production (Billion Cubic Feet) Eastern States Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

142

North Dakota Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) North Dakota Shale Production (Billion Cubic Feet) North Dakota Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

143

Wyoming Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) No chart available. Wyoming Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

144

California Imputed Wellhead Value of Marketed Production (Cost...  

U.S. Energy Information Administration (EIA) Indexed Site

Imputed Wellhead Value of Marketed Production (Cost) California Imputed Wellhead Value of Marketed Production (Cost) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

145

Alabama--State Offshore Natural Gas Marketed Production (Million...  

Annual Energy Outlook 2012 (EIA)

Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

146

Alaska--State Offshore Natural Gas Marketed Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Marketed Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

147

Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

148

Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

149

Kentucky Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

150

Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

151

Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

152

Michigan Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

153

Virginia Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

154

Kansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

155

Montana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

156

Alabama Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

157

Colorado Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

158

New Mexico Imputed Wellhead Value of Marketed Production (Cost...  

U.S. Energy Information Administration (EIA) Indexed Site

Imputed Wellhead Value of Marketed Production (Cost) New Mexico Imputed Wellhead Value of Marketed Production (Cost) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

159

Texas--State Offshore Natural Gas Marketed Production (Million...  

Annual Energy Outlook 2012 (EIA)

Marketed Production (Million Cubic Feet) Texas--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

160

Texas Dry Natural Gas Reserves Estimated Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Estimated Production (Billion Cubic Feet) Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

SciTech Connect

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

162

Year Supply Disposition Dry Production Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

8,056,848 246,802 9,225 -240,445 8,072,430 404,838 28,322 7,639,270 8,072,430 1954... 8,388,198 330,177 6,847 -215,709 8,509,513 432,283 28,726...

163

Illinois Natural Gas Marketed Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Illinois Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 5,144: 4,380 ...

164

Texas Natural Gas Marketed Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Texas Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 7,188,900: 7,495,414 ...

165

Texas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 932,350: 908,217: 882,911 ...

166

Alaska North Slope Crude Oil Production (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Alaska North Slope Crude Oil Production (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 1,524: 1,621 ...

167

Alaska North Slope Crude Oil Production (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Alaska North Slope Crude Oil Production (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 556,265: 591,506 ...

168

Gulf of Mexico Federal Offshore Crude Oil Production (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 267 266...

169

Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

170

Federal Offshore--Gulf of Mexico Natural Gas Marketed Production ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

171

U.S. Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1850's: 2: 1860's: 500: 2,114 ...

172

California Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 365,370: 373,176 ...

173

North Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

North Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 45,424: 47,271 ...

174

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

175

Ohio Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 13,551: 14,571: 14,971 ...

176

Alaska Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Alaska Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 198: 193: 191 ...

177

Colorado Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 30,303: 30,545: 29,050 ...

178

U.S. Natural Gas Marketed Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1900's: 128,000: 180,000 ...

179

Michigan Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Michigan Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 32,665: 31,462: 31,736 ...

180

Michigan Natural Gas Marketed Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 33,589: 40,480 ...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

South Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

South Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 973: 1,158: 1,172 ...

182

Gulf of Mexico Federal Offshore Natural Gas Liquids Production...  

Annual Energy Outlook 2012 (EIA)

(Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

183

Texas Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Texas Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 6,112,411: 5,562,712 ...

184

Microsoft Word - Final Report- Engineering-Economic Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

... 133 4 List of Figures Figure 1. Methanation Capital Costs Versus SNG Production Output (Mozaffarian and Zwart 2003; Gray, Salerno et al. 2004;...

185

Development of an ASPEN Plus Model of a Chemical-Looping Reformer Reactor.  

E-Print Network (OSTI)

??Synthetic Natural Gas (SNG) from biomass gasification is viewed as a promising option for production of transport fuels. A major problem associated is the removal… (more)

Lohse, Daniel

2011-01-01T23:59:59.000Z

186

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation.  

E-Print Network (OSTI)

??This thesis is aimed at the process development, design, modeling and optimization of synthetic fuels, power and Substitute Natural Gas (SNG) production from coal and… (more)

Lu, Xiaoming

2012-01-01T23:59:59.000Z

187

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Website KBR's Transport Gasifier (TRIG(tm)) - An Advanced Gasification Technology for SNG Production from Low-Rank Coals PDF Update on Gasification Testing at the Power...

188

THE TOTAL SYNTHESIS OF INDOLOCARBAZOLE NATURAL PRODUCTS K252c, (+)-K252a, (+)-RK-286c, (+)-MLR-52,  

E-Print Network (OSTI)

and T. Sevenet, J. Nat. Prod., 2000, 63, 441­446. 7 S.-G. Cao, V. H. L. Sng, X.-H. Wu, K.-Y. Sim, B. H

Stoltz, Brian M.

189

Utah Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

190

Florida Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

191

Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

192

Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

193

Montana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

194

Utah Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

195

Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

196

Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

197

Western States Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) No chart available. Western States Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

198

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

199

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

200

Kentucky Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Kansas Natural Gas Plant Liquids, Reserves Based Production ...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

202

Utah Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

203

Florida Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

204

Montana Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

205

Oklahoma Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

206

Michigan Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

207

Arkansas Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

208

Federal Offshore--Alabama Natural Gas Marketed Production (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

209

Louisiana--State Offshore Natural Gas Marketed Production (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketed Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

210

Federal Offshore--Louisiana Natural Gas Marketed Production ...  

Annual Energy Outlook 2012 (EIA)

Marketed Production (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

211

California Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

212

California--State Offshore Natural Gas Marketed Production (Million...  

Annual Energy Outlook 2012 (EIA)

Marketed Production (Million Cubic Feet) California--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

213

Mississippi Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

214

Louisiana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

215

Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

216

Virginia Shale Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Natural Gas > Navigator Energy Glossary ... Download Data (XLS File) No chart available. Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3

217

Rocky Mountain (PADD 4) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

218

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal to SNG Process Coal to SNG Process The Dakota Gasification Company's (DGC) Great Plains Synfuels Plant (GPSP) located near Beulah, North Dakota, is the only coal-to-SNG gasification plant in operation worldwide, producing approximately 153 MM scf/day of SNG [56 billion scf/year] from 6 million tons/year of lignite. In addition to SNG, a variety of byproduct process trains have been incorporated to add flexibility to plant economics: GPSP also produces ammonia for use as fertilizer and pipes captured pre-combustion CO2 to two Canadian oil fields for Enhanced Oil Recovery (EOR). The plant uses 14 Lurgi dry-ash gasifiers for syngas generation, adding an equilibrium-limited fixed bed bulk-methanation process for SNG synthesis. The technology is commercially proven, evidenced by the GPSP having been in operation since 1984.

219

U.S. Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Based Production (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

220

Natural Gas Year-In-Review  

Reports and Publications (EIA)

Natural gas production grew by 7.9 percent in 2011, with large gains in onshore production offsetting continuing declines in the Gulf of Mexico. Production grew despite a year over year decline in prices. Growth in the electric power and industrial sectors drove overall increases in total consumption. Strength in domestic supplies, as well as mild weather in the fourth quarter of the year, reduced the need for pipeline imports, while pipeline exports from the U.S. to Mexico increased substantially.

Katie Teller

2012-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

New Mexico Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico Shale Production (Billion Cubic Feet) New Mexico Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

222

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

223

Western States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

224

New Mexico Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

225

Louisiana--North Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

226

North Dakota Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

227

Utah Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

228

Alabama--onshore Natural Gas Marketed Production (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Marketed Production (Million Cubic Feet) Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

229

Calif--onshore Natural Gas Marketed Production (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Marketed Production (Million Cubic Feet) Calif--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

230

New Mexico - West Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

231

Texas--onshore Natural Gas Marketed Production (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

onshore Natural Gas Marketed Production (Million Cubic Feet) Texas--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

232

The flash pyrolysis and methanolysis of biomass (wood) for production of ethylene, benzene and methanol  

DOE Green Energy (OSTI)

The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H{sub 2} and CH{sub 4} and with the non-reactive gases He and N{sub 2} is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000{degrees}C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000{degrees}C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 25% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH{sub 4} and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates a potentially economical competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 10 refs., 18 figs., 1 tab.

Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

1990-02-01T23:59:59.000Z

233

Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

234

Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

235

Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

236

Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Annual Energy Outlook 2012 (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

237

Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

238

West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

239

CONSOLIDATED CERAMIC PRODUCTS, INC.  

Science Conference Proceedings (OSTI)

For 40 years, Consolidated Ceramic Products, Inc. has been of service to the aluminum industries worldwide. An innovative manufacturer and marketer of ...

240

Domestic Uranium Production Report  

Annual Energy Outlook 2012 (EIA)

6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ... Fuel Ethanol Oxygenate Production;

242

U.S. Imputed Value of Natural Gas Market Production (Cost)  

Gasoline and Diesel Fuel Update (EIA)

Imputed Value of Natural Gas Market Production (Cost) U.S. Imputed Value of Natural Gas Market Production (Cost) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

243

U.S. Propane Production  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: The chart provides a picture of propane production over the past three years compared to the five-year average. Total propane production in the first five months of this...

244

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 295,460 ...

245

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

246

Federal Offshore--Gulf of Mexico Field Production of Crude Oil ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

247

U.S. Refinery Hydrogen Production Capacity as of January 1 ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Hydrogen Production Capacity as of January 1 (Million Cubic Feet per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

248

U.S. Imports from Puerto Rico of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

U.S. Imports from Puerto Rico of Crude Oil and Petroleum Products (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's:

249

U.S. Exports to Puerto Rico of Total Petroleum Products (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Exports to Puerto Rico of Total Petroleum Products (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 3,518 ...

250

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

251

U.S. Exports to Venezuela of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

U.S. Exports to Venezuela of Crude Oil and Petroleum Products (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's ...

252

U.S. Imports from Canada of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

U.S. Imports from Canada of Crude Oil and Petroleum Products (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's ...

253

U.S. Exports to Canada of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

U.S. Exports to Canada of Crude Oil and Petroleum Products (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's ...

254

U.S. Crude Oil + Lease Condensate Estimated Production from Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production from Reserves (Million Barrels) U.S. Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

255

U.S. Natural Gas Plant Liquids Reserves, Estimated Production...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Reserves, Estimated Production (Million Barrels) U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

256

Louisiana--onshore Natural Gas Marketed Production (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Marketed Production (Million Cubic Feet) Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

257

U.S. Shale Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) U.S. Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,293 2,116 3,110...

258

Natural gas prices near 10-year low amid mild weather, higher ...  

U.S. Energy Information Administration (EIA)

Production from the Marcellus formation accounted for much of the year-over-year growth in dry natural gas production. Natural gas demand was down, ...

259

Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110  

E-Print Network (OSTI)

Trichosporonoides megachiliensis SNG-42). Biosci BiotechnolTrichosporonoides megachiliensis SNG-42. The intact codingan Trichosporonoides megachiliensis SNG-42 that produces

Lee, Dae-Hee; Lee, Ye-Ji; Ryu, Yeon-Woo; Seo, Jin-Ho

2010-01-01T23:59:59.000Z

260

U.S. Net Imports of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

U.S. Net Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

U.S. Imports from Nigeria of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

U.S. Imports from Nigeria of Crude Oil and Petroleum Products (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

262

U.S. Imports of Crude Oil and Petroleum Products (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

263

U.S. Net Imports of Crude Oil and Petroleum Products (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Net Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

264

Alabama (with State Offshore) Shale Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Annual Download Data (XLS File) No chart available. Alabama (with State Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

265

Louisiana--South Onshore Shale Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

History: Annual Download Data (XLS File) No chart available. Louisiana--South Onshore Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

266

Alaska (with Total Offshore) Shale Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Annual Download Data (XLS File) No chart available. Alaska (with Total Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

267

Texas--RRC District 10 Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

History: Annual Download Data (XLS File) No chart available. Texas--RRC District 10 Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

268

Louisiana--North Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Louisiana--North Shale Production (Billion Cubic Feet) Louisiana--North Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

269

New Mexico--East Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

270

New Mexico--West Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

271

Great Plains Coal Gasification project. Quarterly technical progress report, third quarter 1985  

Science Conference Proceedings (OSTI)

The operations of the Great Plains Gasification Plant are reported for the third quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1985-10-31T23:59:59.000Z

272

Great Plains Coal Gasification project. Quarterly technical progress report fourth quarter, 1985  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the fourth quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical service; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1986-01-31T23:59:59.000Z

273

(Great Plains Gasification Associates) quarterly technical progress report, 1st quarter 1985  

SciTech Connect

This quarterly report covers the following subjects: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) raw material and energy consumption for the mine; (8) plant modifications-1985 budget; (9) plant maintenance; (10) safety; (11) industrial hygiene; (12) medical services; and (13) quality assurance/quality control activities.

Not Available

1985-04-30T23:59:59.000Z

274

Offshore Development and Production  

Reports and Publications (EIA)

Natural gas production in the Federal offshore has increased substantially in recent years, gaining more than400 billion cubic feet between 1993 and 1997 to a level of 5.14 trillion cubic feet.

Information Center

1999-04-01T23:59:59.000Z

275

2009 Reporting Year  

U.S. Energy Information Administration (EIA)

FRS Accumu- Book Value Year End Year's Foot Line # Gross Lated DD&A Net Additions DD&A of Disposals Other Balance Additions Other note Petroleum: A BCD E F G H IJ

276

Glass Production  

E-Print Network (OSTI)

40, pp. 162 - 186. Glass Production, Shortland, UEE 2009AINES Short Citation: Shortland 2009, Glass Production. UEE.Andrew, 2009, Glass Production. In Willeke Wendrich (ed. ),

Shortland, Andrew

2009-01-01T23:59:59.000Z

277

Production Targets  

E-Print Network (OSTI)

Hall (2005), “Prices, Production, and Inventories over theProduction Targets ? Guillermo Caruana CEMFI caruana@cem?.esthe theory using monthly production targets of the Big Three

Caruana, Guillermo; Einav, Liran

2005-01-01T23:59:59.000Z

278

Pottery Production  

E-Print Network (OSTI)

Paul T. Nicholson. ) Pottery Production, Nicholson, UEE 2009Short Citation: Nicholson 2009, Pottery Production. UEE.Paul T. , 2009, Pottery Production. In Willeke Wendrich (

Nicholson, Paul T.

2009-01-01T23:59:59.000Z

279

Cordage Production  

E-Print Network (OSTI)

294: fig. 15-3). Cordage Production, Veldmeijer, UEE 2009Short Citation: Veldmeijer, 2009, Cordage Production. UEE.André J. , 2009, Cordage Production. In Willeke Wendrich (

Veldmeijer, André J.

2009-01-01T23:59:59.000Z

280

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

udrilling 2012 Domestic Uranium Production Report Next Release Date: May 2014 Table 1. U.S. uranium drilling activities, 2003-2012 Year Exploration Drilling

282

Great Plains Gasification Project status report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Project is designed to convert North Dakota lignite into pipeline quality high Btu synthetic natural gas (SNG). Located in Mercer County, North Dakota, the project consists of a coal gasification plant, coal mine, and an SNG pipeline. Construction of the project started in the summer of 1981 and was essentially complete by the fourth quarter of 1984. The plant operating staff started initial start-up planning in early 1982 and moved to the plant site in late 1982. The first unit taken over from construction was the secondary water treating unit and initial operations began on August 19, 1983. The remainder of the plant was commissioned and started up in a planned sequence with initial production of SNG occurring on July 28, 1983. Both trains were in operation and the plant was producing at about 70 percent of design capacity by December 1984-a date that has been targeted for in a start-up schedule prepared some 4-5 years earlier.

Pollock, D.C.; Stockwell, R.E.

1985-01-01T23:59:59.000Z

283

Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy...

284

U.S. Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1930's: 1,903,771: 1,659,614 ...

285

South Dakota Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

South Dakota Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 2,331: 1,846: 1,947 ...

286

HETEROGENEOUS CATALYSIS RESEARCH MEETING  

E-Print Network (OSTI)

production of SNG or Fischer-Tropsch products Therefore, abe trying to obtain from Fischer-Tropsch synthesis? Answer:intermediates in Fischer-Tropsch synthesis? Answer: It was

Authors, Various

2011-01-01T23:59:59.000Z

287

Natural Gas Year-in-Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Production. Total marketed production grew by 7.9 percent in 2011, from 61.4 Bcf/d in 2010 to 66.2 Bcf/d in 2011. 2011 was the sixth consecutive year of growth in ...

288

Allocation Year Rollover  

NLE Websites -- All DOE Office Websites (Extended Search)

Allocation Year Rollover Allocation Year Rollover Allocation Year Rollover: 2013 to 2014 Note: Allocation Year 2013 (AY13) ends at 23:59:59 on Monday, January 13, 2014. AY14 runs from Tuesday, January 14, 2014 through Monday, January 12, 2015. Below are major changes that will go into effect with the beginning of AY14 on Tuesday, January 14, 2014. All times listed are PST. Scheduled System Downtimes There will be no service disruption during the allocation year rollover this year. Interactive and batch use will continue uninterrupted (except for "premium" jobs on Hopper; see below). Charging Across AY Boundary All batch jobs will continue running during the rollover. Time accrued before midnight will be charged to AY13 repos; time accrued after midnight will be charged to AY14 repos. Running batch jobs that are associated with

289

Global product development in semiconductor industry : Intel -- Tick-Tock product development cadence  

E-Print Network (OSTI)

This thesis investigates on changes in semiconductor industry's product development methodology by following Intel's product development from year 2000. Intel was challenged by customer's preference change, competitors new ...

Park, Cheolmin, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

290

Table 5.2 Crude Oil Production and Crude Oil Well ...  

U.S. Energy Information Administration (EIA)

Table 5.2 Crude Oil Production and Crude Oil Well Productivity, 1954-2011: Year: Crude Oil Production: Crude Oil Well 1 Productivity: 48 States 2: ...

291

Sustainable hydrogen production  

SciTech Connect

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

292

Applied Science and Technology Task Order Fiscal Year 2009 Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End...

293

Applied Science and Technology Task Order Fiscal Year 2010 Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End...

294

Applied Science and Technology Task Order Fiscal Year 2011 Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End...

295

Applied Science and Technology Task Order Fiscal Year 2008 Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End...

296

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

297

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

Substitute natural gas (SNG) Hydrogen Biochemical Biosolidssubsti- tute natural gas (SNG) and hydrogen. Biochemical

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

298

Previous Year Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards Awards Previous Year Awards 2013 Allocation Awards This page lists the allocation awards for NERSC for the 2013 allocation year (Jan 8, 2013 through Jan 13, 2014). Read More » NERSC Initiative for Scientific Exploration (NISE) 2013 Awards NISE is a mechanism used for allocating the NERSC reserve (10% of the total allocation). In 2013 we made the second year of the two-year awards made in 2012, supplemented by projects selected by the NERSC director. Read More » Data Intensive Computing Pilot Program 2012/2013 Awards NERSC's new data-intensive science pilot program is aimed at helping scientists capture, analyze and store the increasing stream of scientific data coming out of experiments, simulations and instruments. Read More » 2012 Allocation Awards This page lists the allocation awards for NERSC for the 2012 allocation

299

Welcome Year in Review  

National Nuclear Security Administration (NNSA)

1 NMMSS Users Annual Training Meeting Orlando, Florida-May 23-25, 2006 Sponsored by the U.S. Department of Energy & the U.S. Nuclear Regulatory Commission Welcome & Year In Review...

300

Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improvement Plan For Fiscal Year 2006 and Fiscal Year 2007 More Documents & Publications U.S> Department of Energy, Fiscal Year 2007 Buy American Act Report. Audit Report:...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

Energy Information Administration, Office of Energy MarketsEnergy Information Administration, Office of Energy Markets

Homan, Gregory K

2011-01-01T23:59:59.000Z

302

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

Energy Information Administration, Office of Energy MarketsEnergy Information Administration, Office of Energy Markets

Homan, GregoryK

2010-01-01T23:59:59.000Z

303

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

Energy Information Administration, Office of Energy MarketsEnergy Information Administration, Office of Energy Markets

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

304

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

for an Energy Efficient Economy, Washington, DC. August.for an Energy Efficient Economy, Washington, DC. Beavers, D.Washington DC: American Council for an Energy Efficient

Homan, Gregory K

2011-01-01T23:59:59.000Z

305

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

for an Energy Efficient Economy, Washington, DC. August.for an Energy Efficient Economy, Washington, DC. Beavers, D.Washington DC: American Council for an Energy Efficient

Homan, GregoryK

2010-01-01T23:59:59.000Z

306

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

for an Energy Efficient Economy, Washington, DC. August.Washington DC: American Council for an Energy Efficientfor an Energy Efficient Economy, Washington, DC. Brown, R. ,

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

307

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

contract 68-W6-0050. Washington, DC. November. Cadmus Group.contract 68-W6-0050. Washington, DC. September. Cadmus (theunder contract 68-W6-0050. Washington, DC. June. Cadmus (the

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

308

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

contract 68-W6-0050. Washington, DC. November. Cadmus Group.contract 68-W6-0050. Washington, DC. September. Cadmus (thecontract 68-W6-0050. Washington, DC. February. Calwell, C.

Homan, Gregory K

2011-01-01T23:59:59.000Z

309

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

contract 68-W6-0050. Washington, DC. November. Cadmus Group.contract 68-W6-0050. Washington, DC. September. Cadmus (theunder contract 68-W6-0050. Washington, DC. June. Cadmus (the

Homan, GregoryK

2010-01-01T23:59:59.000Z

310

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

energy using electricity heat rates as shown in Table 3. 3)energy using electricity heat rates as shown in Table 3. 3)energy using electricity heat rates as shown in Table 3. 3)

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

311

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

power consumption, usage, total energy, and ENERGY STARusage pattern: the amount of time the device spends in that mode. Total annual energy

Homan, Gregory K

2011-01-01T23:59:59.000Z

312

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

Res. Gas Price Oil Price Price Sources Elec. Carbon EmissionGas or Oil) Central Air Conditioner Air-Source Heat PumpGas or Oil) Central Air Conditioner Air-Source Heat Pump

Homan, Gregory K

2011-01-01T23:59:59.000Z

313

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

Res. Gas Price Oil Price Price Sources Elec. Carbon EmissionGas or Oil) Central Air Conditioner Air-Source Heat PumpGas or Oil) Central Air Conditioner Air-Source Heat Pump

Homan, GregoryK

2010-01-01T23:59:59.000Z

314

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

Price MBtu Oil Price $/MBtu Price Sources, US DOE 3 CarbonGas or Oil) - Central Air Conditioner - Air-Source HeatGas or Oil) - Central Air Conditioner - Air-Source Heat

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

315

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

to limited data regarding energy and usage patterns. The UECconsumption, usage, total energy, and ENERGY STAR marketBAU and ENERGY STAR cases, using power consumption and usage

Homan, Gregory K

2011-01-01T23:59:59.000Z

316

CALENDAR YEAR 2012 SCHEDULE Workshops to Improve Industrial Productivity by  

E-Print Network (OSTI)

. It covers material in steam generation efficiency, steam distribution system losses, and resource. For complete course information: http://www.eere.energy.gov/industry/bestpractices/pumping_systems.html Steam System Assessment Many facilities can save energy through the installation of more efficient steam

317

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

for clothes washers and dishwashers are derived from PG&Efans CFLs Commercial dishwasher Commercial fryers Commercialwashers Residential dishwashers Residential light fixtures

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

318

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

for clothes washers and dishwashers are derived from PG&Efans CFL Commercial dishwasher Commercial fryers Commercialwashers Residential dishwashers Residential light fixtures

Homan, Gregory K

2011-01-01T23:59:59.000Z

319

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

fans CFL Commercial dishwasher Commercial fryers Commercialwashers Residential dishwashers Residential light fixturesCeiling Fans • Commercial Dishwashers • Commercial Hot Food

Homan, GregoryK

2010-01-01T23:59:59.000Z

320

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

Administration, Office of Energy Markets and End Use.Administration, Office of Energy Markets and End Use.Protection Agency: ENERGY STAR Market Share of computers,

Homan, GregoryK

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

Administration, Office of Energy Markets and End Use.Administration, Office of Energy Markets and End Use.ICF Consulting. 2003. Energy Star Market Penetration Report

Homan, Gregory K

2011-01-01T23:59:59.000Z

322

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network (OSTI)

Administration, Office of Energy Markets and End Use.Administration, Office of Energy Markets and End Use.Protection Agency: ENERGY STAR Market Share of computers,

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

323

Name Address Place Zip Sector Product Stock Symbol Year founded...  

Open Energy Info (EERE)

Coordinates Region ABS Alaskan Inc Van Horn Rd Fairbanks Alaska Gateway Solar Wind energy Marine and Hydrokinetic Solar PV Solar thermal Wind Hydro Small scale wind turbine...

324

Outlook: The Next Twenty Years  

E-Print Network (OSTI)

all this discussion, the outlook for the next twenty yearsLBNL-54470 OUTLOOK: THE NEXT TWENTY YEARS H. MURAYAMAUniversity of California. OUTLOOK: THE NEXT TWENTY YEARS H.

Murayama, Hitoshi

2009-01-01T23:59:59.000Z

325

TABLE OF CONTENTS  

E-Print Network (OSTI)

Biomass and waste-related SNG production technologies; technical, economic and ecological feasibility......................................................................................................................5 Biomass biochemical data in Phyllis database...............................................................................9 Ammonia recycling and destruction in a CFB gasifier................................................................15

unknown authors

2004-01-01T23:59:59.000Z

326

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling system with half of the turbine exhaust steam condensed in an air-cooled condenser and half in a water-cooled condenser. The SNG and ammonia co-production cases (third...

327

Energy Independence and Security Act Six-Year Review of Covered...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independence and Security Act Six-Year Review of Covered Products Energy Independence and Security Act Six-Year Review of Covered Products This memorandum explains that the Energy...

328

Year 2000: energy enough  

SciTech Connect

The growing needs for energy in the U.S. are reviewed, and it is predicted that energy supplies will need be more than doubled by the year 2000. The solution lies in three areas: goal targeting, resource management, and timing. A no-growth economy and an economy continuing growth at an appropriate rate are two scenarios discussed. The second major area of choice in fixing energy capabilities for the year 2000 involves management of fuel resources. Shortages of oil and gas dictate that the increase in energy consumption be changed to coal and uranium, both of which are available domestically; utilization of these energy sources will mean increased electrification. It is concluded, then, that the best avenues toward ensuring a national energy supply are utilization of coal and uranium and the practice of energy conservation through greater efficiency. Timing is the third critical area of decision making that affects future energy supply. The long lead time required to bring about a change in the national energy mix is cited. Current estimates indicate that now is the time to push toward a national electricity target of at least 7500 billion kWh for the year 2000. Meeting the target means almost four times the present electricity supply, at a growth rate of about 5.7 percent per year. This target assumes a reasonable measure of energy conservation. (MCW)

Starr, C.

1976-06-01T23:59:59.000Z

329

Fiscal Year Justification of  

E-Print Network (OSTI)

, epidemiology, laboratory services strengthen support for state, tribal, local, and territorial public healthDEPARTMENT of HEALTH and HUMAN SERVICES Fiscal Year 2012 Justification of Estimates Justification is one of several documents that fulfill the Department of Health and Human Services` (HHS

330

Through the years  

NLE Websites -- All DOE Office Websites (Extended Search)

Through the years Through the years Early 1960s Researchers at PNL (now called PNNL) developed the standards and devices for setting and measuring radiation doses received by nuclear industry work- ers. Tens of thousands of people, including children, have been mea- sured by whole-body counters since the 1960s to relate their physical content of radioactive materials to sources such as food and water. 1960s PNL formulated the first use of a digital computer for complete process control of a mass spectrometer. Mid-1960s PNL devised a computer code, called COBRA for COolant Boiling in Rod Arrays, which allowed for three-dimensional, multiphase hydrothermal modeling of reactor and other complex systems. 1967 PNL researchers continued the fundamental scientific and

331

RMOTC - Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production RMOTC Pumpjack in action During the process of the sale of NPR-3, RMOTC will focus on maximizing the value of the NPR-3 site and will continue with its Production Optimization Projects. NPR-3 includes 9,481 acres with more than 400 oil-producing wells. Current oil production is at approximately 240 barrels of oil per day. In July 2013, RMOTC began working on a number of Production Optimization Projects within the NPR-3 field, with the goal to optimize and improve flow and efficiency. Production Optimization Projects include repairing and replacing existing infrastructure with new infrastructure in order to optimize current wells and bring additional wells online. These Production Optimization Projects will continue throughout 2013 and are focused on improving current production and creating revenue for the America tax payer.

332

Antihydrogen production  

SciTech Connect

Antihydrogen production in ATHENA is analyzed more carefully. The most important peculiarities of the different experimental situations are discussed. The protonium production via the first matter-antimatter chemical reaction is commented too.

Rizzini, Evandro Lodi; Venturelli, Luca; Zurlo, Nicola [Dipartimento di Chimica e Fisica per l'Ingegneria e per i Materiali, Universita di Brescia, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, 25133 Brescia (Italy)

2008-08-08T23:59:59.000Z

333

Powering the World: Offshore Oil & Gas Production  

E-Print Network (OSTI)

rate of production of oil is peaking now, coal will peak in 2-5 years, and natural gas in 20-30 yearsPowering the World: Offshore Oil & Gas Production Macondo post-blowout operations Tad Patzek Gulf of Mexico's oil and gas production Conclusions ­ p.5/59 #12;Summary of Conclusions. . . The global

Patzek, Tadeusz W.

334

Tin Production  

Science Conference Proceedings (OSTI)

...descending order, Brazil, Indonesia, Malaysia, Thailand, Bolivia, and Australia. These countries supply more than 85% of total world production....

335

Gulf of Mexico Federal Offshore Crude Oil Production from Less...  

Annual Energy Outlook 2012 (EIA)

Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

336

Texas--RRC District 7C Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

History: Annual Download Data (XLS File) No chart available. Texas--RRC District 7C Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

337

Texas--RRC District 3 onsh Shale Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

History: Annual Download Data (XLS File) No chart available. Texas--RRC District 3 onsh Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

338

Demonstrating the Feasibility of Molten Aluminum for Destroying Polymeric Encapsulants in SNG-Bearing Metallographic Mounts  

SciTech Connect

DOE-owned spent nuclear fuel (SNF) rods have been cross sectioned and mounted for metallography throughout the history of nuclear reactors. Many hundreds of these ''met mounts'' have accumulated in storage across the DOE complex. However, because of potential hydrogen generation from radiolysis of the polymeric encapsulants, the met mounts are problematic for eventual disposal in a geologic repository.

Dan Stout; Scott Ploger

2004-08-31T23:59:59.000Z

339

Texas Dry Natural Gas Production (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Dry Natural Gas Production (Million Cubic Feet) Texas Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar...

340

Texas Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Dry Natural Gas Production (Million Cubic Feet) Texas Dry Natural Gas Production (Million Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative 2010 Corn Production Scenarios and Policy Implications  

E-Print Network (OSTI)

The quantity of U.S. corn used for domestic ethanol production has grown rapidly in recent years, driven by mandated production levels of renewable biofuels, tax

Scott Irwin; Darrel Good

2010-01-01T23:59:59.000Z

342

Annual Production with 2 Percent Annual Growth & Decline  

U.S. Energy Information Administration (EIA)

It is unlikely that any single constant growth or decline rate would persist before or after the year of peak production. World oil production has sometimes ...

343

Property:Incentive/SWHComYears | Open Energy Information  

Open Energy Info (EERE)

SWHComYears SWHComYears Jump to: navigation, search Property Name Incentive/SWHComYears Property Type String Description The number of years of energy production to which the commercial incentive applies. For commercial/Non-profit/gov't systems, this is may be an upfront rebate based on an estimate of first-year production or this may be actual measured output over several years. Ex: APS's (AZ) RE incentive for commercial SWH is $0.057/kWh over 10 years. Format: 10.0 [1] References ↑ DSIRE Pages using the property "Incentive/SWHComYears" Showing 21 pages using this property. A APS - Renewable Energy Incentive Program (Arizona) + 1 + C CPS Energy - Solar Hot Water Rebate Program (Texas) + 1 + California Solar Initiative - Solar Thermal Program (California) + 1 +

344

STEO September 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

oil production forecast to rise almost 700,000 bpd this oil production forecast to rise almost 700,000 bpd this year, help cut U.S. petroleum imports U.S. crude oil production is expected to average 6.3 million barrels per day in 2012. That's up nearly 700,000 barrels per day from last year and the highest annual oil output since 1997 says the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil nationwide has increased by around 200 so far this year to just under 1,400 rigs." Higher domestic oil production will help cut U.S. petroleum imports. The share of total U.S.

345

Calendar Year 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Office of Inspector General 
1000 3 Office of Inspector General 
1000 Independence Avenue, SW 
 Washington, DC 20585 202-586-4128 en Audit Report: OAS-FS-14-03 http://energy.gov/ig/downloads/audit-report-oas-fs-14-03 Audit Report: OAS-FS-14-03

346

Gulf of Mexico Federal Offshore Production  

Annual Energy Outlook 2012 (EIA)

Federal Offshore Gulf of Mexico production volumes are presented as a separate data series beginning in 2001. Production data for the Gulf of Mexico for years prior to 2001 are...

347

2013 Director's New Year Address  

NLE Websites -- All DOE Office Websites (Extended Search)

Director's New Year Address 2013 Director's New Year Address Print Looking Forward and Celebrating 20 Years in 2013 falocne We recently sat down with ALS Director Roger Falcone to...

348

Topic: Productivity  

Science Conference Proceedings (OSTI)

... General Information: 301-975-5020 mfg@nist ... competitive in the global market, companies need to ... become more efficient in energy, production and ...

2013-09-26T23:59:59.000Z

349

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

350

Hydrogen Production  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Increase your H2IQ More information Making...

351

Silicon Production  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... An Investigation into the Electrochemical Production of Si by the FFC Cambridge Process: Emre Ergül1; ?shak Karakaya2; Metehan Erdo?an2; ...

352

production | OpenEI  

Open Energy Info (EERE)

production production Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

353

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

354

Product Price Volatility - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Product Price Volatility-This Year and in the Future. Crude Oil -- Continued tight balance leaves world on thin edge Distillate Winter Price Retrospective – Why a ...

355

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

356

WMAP First Year Results  

E-Print Network (OSTI)

The Wilkinson Microwave Anisotropy Probe (WMAP) science team has released results from the first year of operation at the Earth-Sun L2 Lagrange point. The maps are consistent with previous observations but have much better sensitivity and angular resolution than the COBE DMR maps, and much better calibration accuracy and sky coverage than ground-based and balloon-borne experiments. The angular power spectra from these ground-based and balloon-borne experiments are consistent within their systematic and statistical uncertainties with the WMAP results. WMAP detected the large angular-scale correlation between the temperature and polarization anisotropies of the CMB caused by electron scattering since the Universe became reionized after the "Dark Ages", giving a value for the electron scattering optical depth of 0.17+/-0.04. The simplest Lambda-CDM model with n=1 and Omega_tot=1 provides an adequate fit to the WMAP data and gives parameters which are consistent with determinations of the Hubble constant and observations of the accelerating Universe using supernovae. The time-ordered data, maps, and power spectra from WMAP can be found at http://lambda.gsfc.nasa.gov along with 13 papers by the WMAP science team describing the results in detail.

E. L. Wright

2003-06-05T23:59:59.000Z

357

New Mexico--West Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico--West Shale Production (Billion Cubic Feet) New Mexico--West Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

358

New Mexico--East Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) New Mexico--East Shale Production (Billion Cubic Feet) New Mexico--East Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

359

China's forest products trade falls nearly 18% China's forest products trade falls nearly 18%  

E-Print Network (OSTI)

China's forest products trade falls nearly 18% China's forest products trade falls nearly 18% 11/08/2009 - 09:05 According to China's latest Customs statistics, foreign trade of China's forest products in the first five months showed a year-on-year general downturn. The total value of foreign trade of China

360

Projects of the year  

SciTech Connect

The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

Hansen, T.

2007-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Monthly petroleum product price report  

SciTech Connect

Monthly report supplies national weighted average prices on a monthly basis at different levels of the marketing chain, for petroleum products sold by refiners, large resellers, gas plant operators, and importers. Data are for the year to date and previous year. Some historic data are included to indicate trends. Gasoline price data are collected from retail gasoline dealers. Heating oil prices come from sellers of heating oil to ultimate consumers. A glossary of petroleum products is appended. Petroleum products include motor gasoline, distillate fuel oil, diesel fuel, heating oil, residual fuel oil, aviation fuel, kerosene, petrochemical feedstocks, propane, butane, ethane, and natural gasoline. 12 tables.

1977-11-01T23:59:59.000Z

362

PEATGAS process development status  

SciTech Connect

Since 1976, IGT has conducted over 200 peat-gasification tests in both laboratory- and process-development-unit (PDU)-scale equipment. The encouraging results demonstrate that on the basis of chemistry and kinetics, peat is an excellent raw material for the production of SNG. Based on a peat-gasification kinetic model developed from the laboratory and PDU data, cost estimates for commercial operation show that the conversion of peat to SNG by the PEATGAS process is competitive with other alternative SNG sources. If the results of a 19-month, $4 million feasibility study funded by the US Department of Energy are favorable, Minnesota Gas Co. plans to participate in the construction and operation of an 80 million SCF/day industrial plant for making SNG from peat.

Punwani, D.V.; Biljetina, R.

1986-01-01T23:59:59.000Z

363

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

364

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

365

Twenty Years of Lighting Research  

NLE Websites -- All DOE Office Websites (Extended Search)

our lighting laboratory, including the goniophotometer and luminaire thermal performance instrumentation, support the development of new products, such as efficient...

366

UNITED STATES Calendar Year 2004  

E-Print Network (OSTI)

, upgrading, and refining processes, at a cost, but there is so little demand for petroleum products which) gasoline c) diesel d) heavy fuel oil e) petroleum coke and f) other petroleum products. The physical flows products (gasoline, diesel) with weak demand growth for others (e.g. heavy oil, petroleum coke

US Army Corps of Engineers

367

UNITED STATES Calendar Year 2003  

E-Print Network (OSTI)

, upgrading, and refining processes, at a cost, but there is so little demand for petroleum products which) gasoline c) diesel d) heavy fuel oil e) petroleum coke and f) other petroleum products. The physical flows products (gasoline, diesel) with weak demand growth for others (e.g. heavy oil, petroleum coke

US Army Corps of Engineers

368

Neutron capture therapy: Years of experimentation---Years of reflection  

Science Conference Proceedings (OSTI)

This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program.

Farr, L.E.

1991-12-16T23:59:59.000Z

369

LANL PDMLink Product Structure Implementation  

Science Conference Proceedings (OSTI)

Over the past 2 and a half years LANL has done both functionality exploration as well as production implementations of PDMLink Product Structure to control the configuration of many of the LANL Design Agency Products. Based on this experience LANL has been recommending for over a year that future product structure implementation in PDMLink do not use the two digit suffix in the number field of enterprise parts (or WTParts). The suffix will be part of one of the attributes for Part Number. Per the TBP's the two digit suffix represents a change in form, fit, or function in a part or a change in the production agency or a number of other conditions. It also denotes backward compatibility with earlier suffixed parts (see TBP 402 section 3.1).

Scully, Christopher J. [Los Alamos National Laboratory

2012-08-29T23:59:59.000Z

370

MTBE Production Economics  

Gasoline and Diesel Fuel Update (EIA)

MTBE Production MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne market) of MTBE rose from $1.00 per gallon to over $1.60 per gallon. This represented an increase in the price premium for MTBE over the wholesale price of conventional gasoline from its normal (1995 though 2000 average) $0.26 per gallon to $0.60 per gallon. The MTBE

371

Cause Marketing: Spillover Effects of Cause-Related Products in a Product Portfolio  

Science Conference Proceedings (OSTI)

The number of firms carrying a cause-related product has significantly increased in recent years. We consider a duopoly model of competition between firms in two products to determine which products a firm will link to a cause. We first test the behavioral ... Keywords: cause marketing, experimental economics, marketing and pricing strategy, product policy

Aradhna Krishna; Uday Rajan

2009-09-01T23:59:59.000Z

372

Introduction: Twenty Years of ACCESS  

E-Print Network (OSTI)

vision of future priorities in transportation research ands 20th Transportation Center. A year ago, UCTC’s future, and

Cervero, Robert

2012-01-01T23:59:59.000Z

373

Gulf of Mexico Federal Offshore Crude Oil Production from Greater...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2...

374

Waste management fiscal year 1998 progress report  

SciTech Connect

The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.

1998-12-31T23:59:59.000Z

375

Mathematics Competition  

E-Print Network (OSTI)

and Applications Sng 4- Sng 3- Sng 2- Figure 2.6.3 Schematic MO diagrams (left) of nine-atom tin clusters

Le Roy, Robert J.

376

Lifecycle Analyses of Biofuels  

E-Print Network (OSTI)

from soybeans; methanol, SNG and hydrogen from wood. GREETgrass, and wheat; methanol and SNG from wood; biodiesel fromwood; hydrogen, methanol, and SNG from wood; biodiesel from

Delucchi, Mark

2006-01-01T23:59:59.000Z

377

Going Smoke-free in the Land of Lakes: Law and Politics in Minnesota Smoke-free Campaigns  

E-Print Network (OSTI)

enforcing the ordinance. 19 SNG Research Corp. , supra notewas to follow. In April 2001, the SNG Research Corporationthe state. ” In August 2006, the SNG Research Corporation

2010-01-01T23:59:59.000Z

378

Ties That Do Not Bind: Russia and the International Liberal Order  

E-Print Network (OSTI)

30, 2009 Sergei Zhiltsov, “SNG ugotovlena uchast sanitarnogoof petrodollars, Sergei Zhiltsov, “SNG ugotovlena uchastthan they would Lev Moskvin, SNG: Raspad ili vozrozhdenie?

Krickovic, Andrej

2012-01-01T23:59:59.000Z

379

Indiana Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Indiana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 135 394 367 365 217 412 416 1990's 399 232 174 192 107 249 360 526 615 855 2000's 899 1,064 1,309 1,464 3,401 3,135 2,921 3,606 4,701 4,927 2010's 6,802 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Indiana Natural Gas Wellhead Value and Marketed Production

380

South Dakota Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) South Dakota Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,846 1,947 2,558 2,231 3,431 3,920 4,369 1990's 881 93 1,006 854 1,000 848 0 687 772 702 2000's 648 563 531 550 531 446 455 422 1,099 NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value South Dakota Natural Gas Wellhead Value and Marketed Production

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

STEO December 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in 2012, the biggest annual increase in oil output since U.S. commercial crude oil production began in 1859. American oil producers are expected to pump a daily average of 6.4 million barrels of crude oil this year, according to the U.S. Energy Information Administrator's new monthly energy forecast. The annual increase in oil output tops the previous record set in 1951 and marks the largest yearly production increase ever. Most of the increase in crude oil production is driven by drilling activity in shale formations located in Texas, North Dakota and Montana. U.S. crude oil production next year is expected to top 7 million barrels per day for the first time

382

Neutron capture therapy: Years of experimentation---Years of reflection  

SciTech Connect

This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven`s Medical Research Center program.

Farr, L.E.

1991-12-16T23:59:59.000Z

383

Hydrogen production  

SciTech Connect

The production of hydrogen by reacting an ash containing material with water and at least one halogen selected from the group consisting of chlorine, bromine and iodine to form reaction products including carbon dioxide and a corresponding hydrogen halide is claimed. The hydrogen halide is decomposed to separately release the hydrogen and the halogen. The halogen is recovered for reaction with additional carbonaceous materials and water, and the hydrogen is recovered as a salable product. In a preferred embodiment the carbonaceous material, water and halogen are reacted at an elevated temperature. In accordance with another embodiment, a continuous method for the production of hydrogen is provided wherein the carbonaceous material, water and at least one selected halogen are reacted in one zone, and the hydrogen halide produced from the reaction is decomposed in a second zone, preferably by electrolytic decomposition, to release the hydrogen for recovery and the halogen for recycle to the first zone. There also is provided a method for recovering any halogen which reacts with or is retained in the ash constituents of the carbonaceous material.

Darnell, A.J.; Parkins, W.E.

1978-08-08T23:59:59.000Z

384

Product Forms  

Science Conference Proceedings (OSTI)

Table 1 Wrought alloy products and tempers...or cold-finished Rivets Forgings and forging stock Foil Fin stock Drawn Extruded Rod Bar Wire 1050 . . . . . . . . . H112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060 O, H12, H14, H16, H18 O, H12, H14, H112 O, H12, H14, H18, H113 O, H112 . . . .

385

Yearly  

E-Print Network (OSTI)

In 2009, a new activity was launched under the International Energy Agency Wind Implementing Agreement (IEA Wind) for the small wind sector. The main focus of this activity, called Task 27, is to develop recommended practices for consumer labeling of existing commercial small wind turbines. Participants will also exchange information about the status of the small wind industry in the member countries. This report outlines the status of the small wind sector in 2009 in the countries participating in Task 27. (For more information about IEA Wind and the consumer label developed under Task 27, see www.ieawind.org.)

unknown authors

2009-01-01T23:59:59.000Z

386

YEAR  

National Nuclear Security Administration (NNSA)

M) 15 Hispanic Female (H, F) 11 White Male (W, M) 49 White Female (W, F) 12 PAY PLAN DIVERSITY TOTAL WORKFORCE GENDER Los Alamos Field Office As of March 23, 2013 1.0% 9.4% 28.1%...

387

YEAR  

National Nuclear Security Administration (NNSA)

Female 0 Hispanic Male 1 Hispanic Female 0 White Male 28 White Female 6 Workforce Diversity Kansas City Site Office As of March 24, 2012 PAY PLAN TOTAL WORKFORCE GENDER...

388

YEAR  

National Nuclear Security Administration (NNSA)

29 Hispanic Male 220 Hispanic Female 202 White Male 1340 White Female 519 Workforce Diversity National Nuclear Security Administration As of March 24, 2012 PAY PLAN TOTAL...

389

YEAR  

National Nuclear Security Administration (NNSA)

M) 5 Hispanic Female (H, F) 4 White Male (W, M) 25 White Female (W, F) 17 PAY PLAN DIVERSITY TOTAL WORKFORCE GENDER Livermore Field Office As of March 23, 2013 1.2% 4.7% 3.5%...

390

YEAR  

National Nuclear Security Administration (NNSA)

7 Asian Female 6 Hispanic Male 8 Hispanic Female 7 White Male 128 White Female 83 DIVERSITY Workforce Diversity Immedidate Office of the Deputy Administrator (NA-20) As of...

391

YEAR  

National Nuclear Security Administration (NNSA)

M) 12 Hispanic Female (H, F) 11 White Male (W, M) 34 White Female (W, F) 16 PAY PLAN DIVERSITY TOTAL WORKFORCE GENDER Sandia Field Office As of March 23, 2013 2.5% 8.8% 13.8% 1.3%...

392

YEAR  

National Nuclear Security Administration (NNSA)

3 Asian Female 0 Hispanic Male 23 Hispanic Female 24 White Male 36 White Female 35 DIVERSITY Workforce Diversity Associate Administrator for Acquistion & Project Management...

393

YEAR  

National Nuclear Security Administration (NNSA)

White Male (W,M) 29 26 -10.34% White Female (W,F) 19 16 -15.79% Change DIVERSITY Change Livermore Field Office As of September 26, 2013 TOTAL WORKFORCE Change GENDER...

394

YEAR  

National Nuclear Security Administration (NNSA)

3 Asian Female 4 Hispanic Male 21 Hispanic Female 47 White Male 61 White Female 92 DIVERSITY Workforce Diversity Associate Administrator for Management & Budget, NA-MB As of Sep...

395

YEAR  

National Nuclear Security Administration (NNSA)

Male 1 Asian Female 0 Hispanic Male 0 Hispanic Female 0 White Male 8 White Female 3 DIVERSITY Workforce Diversity As of March 24, 2012 PAY PLAN TOTAL WORKFORCE 9 64.3% 5 35.7%...

396

YEAR  

National Nuclear Security Administration (NNSA)

Female 4 Hispanic Male 5 Hispanic Female 4 White Male 30 White Female 19 Workforce Diversity Livermore Site Office As of March 24, 2012 PAY PLAN TOTAL WORKFORCE GENDER DIVERSITY...

397

YEAR  

National Nuclear Security Administration (NNSA)

Female (W, F) 474 Total includes 2561 permanent and 21 temporary employees. PAY PLAN DIVERSITY TOTAL WORKFORCE GENDER National Nuclear Security Administration As of March 23, 2013...

398

YEAR  

National Nuclear Security Administration (NNSA)

M) 74 Hispanic Female (H, F) 22 White Male (W, M) 393 White Female (W, F) 19 PAY PLAN DIVERSITY TOTAL WORKFORCE GENDER Assistant Deputy Administrator for Secure Transportation...

399

YEAR  

National Nuclear Security Administration (NNSA)

Female 1 Hispanic Male 0 Hispanic Female 1 White Male 46 White Female 22 Workforce Diversity Y-12 Site Office As of March 24, 2012 PAY PLAN TOTAL WORKFORCE DIVERSITY GENDER 51...

400

YEAR  

National Nuclear Security Administration (NNSA)

Female 0 Hispanic Male 0 Hispanic Female 3 White Male 9 White Female 1 Workforce Diversity Office of the Administrator (NA-1) As of March 24, 2012 PAY PLAN TOTAL WORKFORCE...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

YEAR  

National Nuclear Security Administration (NNSA)

0 Asian Female 0 Hispanic Male 7 Hispanic Female 18 White Male 40 White Female 28 DIVERSITY Workforce Diversity Associate Administrator for Defense Nuclear Security, NA-70 As...

402

YEAR  

National Nuclear Security Administration (NNSA)

-8.33% White Male (W,M) 34 34 0.00% White Female (W,F) 17 16 -5.88% Change DIVERSITY Change Sandia Field Office As of September 26, 2013 TOTAL WORKFORCE Change GENDER...

403

YEAR  

National Nuclear Security Administration (NNSA)

0.00% White Male (W,M) 15 13 -13.33% White Female (W,F) 8 6 -25.00% Change DIVERSITY Change Savannah River Field Office As of September 26, 2013 TOTAL WORKFORCE Change...

404

YEAR  

National Nuclear Security Administration (NNSA)

M) 6 Hispanic Female (H, F) 6 White Male (W, M) 51 White Female (W, F) 14 PAY PLAN DIVERSITY TOTAL WORKFORCE GENDER Nevada Field Office As of March 23, 2013 1.1% 3.4% 1.1% 31.8%...

405

YEAR  

National Nuclear Security Administration (NNSA)

Male 1 Asian Female 0 Hispanic Male 0 Hispanic Female 0 White Male 14 White Female 8 DIVERSITY GENDER Workforce Diversity Savannah River Site Office As of March 24, 2012 PAY PLAN...

406

YEAR  

National Nuclear Security Administration (NNSA)

Male 2 Asian Female 0 Hispanic Male 5 Hispanic Female 3 White Male 29 White Female 5 DIVERSITY Workforce Diversity Associate Administrator for Safety & Health, NA-SH As of Sep 24,...

407

YEAR  

National Nuclear Security Administration (NNSA)

Male 3 Asian Female 1 Hispanic Male 1 Hispanic Female 0 White Male 76 White Female 22 DIVERSITY Workforce Diversity Deputy Administrator for Naval Reactors (NA-30) As of March 24,...

408

YEAR  

National Nuclear Security Administration (NNSA)

Male 2 Asian Female 1 Hispanic Male 3 Hispanic Female 6 White Male 50 White Female 11 DIVERSITY GENDER Workforce Diversity Associate Administrator for Emergency Operations (NA-40)...

409

YEAR  

National Nuclear Security Administration (NNSA)

F) 6 TOTAL WORKFORCE GENDER Kansas City Field Office As of March 23, 2013 PAY PLAN DIVERSITY 2.6% 2.6% 28.9% 21.1% 39.5% 5.3% Pay Plan Males 71.1% Females 28.9% Gender AIAN, M...

410

YEAR  

National Nuclear Security Administration (NNSA)

Female 0 Hispanic Male 5 Hispanic Female 5 White Male 44 White Female 13 Workforce Diversity Pantex Site Office As of March 24, 2012 PAY PLAN TOTAL WORKFORCE DIVERSITY GENDER 57...

411

YEAR  

National Nuclear Security Administration (NNSA)

Female 0 Hispanic Male 20 Hispanic Female 11 White Male 53 White Female 17 Workforce Diversity Los Alamos Site Office As of March 24, 2012 PAY PLAN TOTAL WORKFORCE GENDER...

412

YEAR  

National Nuclear Security Administration (NNSA)

9 Asian Female 5 Hispanic Male 18 Hispanic Female 12 White Male 101 White Female 49 DIVERSITY Workforce Diversity Immediate Office of the Deputy Administrator (DP) (NA-10) As of...

413

YEAR  

National Nuclear Security Administration (NNSA)

Administration As of September 26, 2013 TOTAL WORKFORCE Change GENDER PAY PLAN Change DIVERSITY Change 4.2% 0.1% 0.0% 3.5% 1.6% 6.8% 0.7% 17.6% 49.5% 2.6% 13.1% 0.0% 0.0% 0.1% 0.1%...

414

YEAR  

National Nuclear Security Administration (NNSA)

Male 2 Asian Female 4 Hispanic Male 7 Hispanic Female 5 White Male 53 White Female 19 DIVERSITY Workforce Diversity Nevada Site Office As of September 25, 2010 PAY PLAN TOTAL...

415

YEAR  

National Nuclear Security Administration (NNSA)

Female 3 Hispanic Male 7 Hispanic Female 5 White Male 52 White Female 20 Workforce Diversity Nevada Site Office As of March 24, 2012 PAY PLAN TOTAL WORKFORCE GENDER DIVERSITY 64...

416

YEAR  

National Nuclear Security Administration (NNSA)

F) 7 TOTAL WORKFORCE GENDER Savannah River Field Office As of March 23, 2013 PAY PLAN DIVERSITY 6.5% 12.9% 38.7% 38.7% 3.2% Pay Plan Males 64.5% Females 35.5% Gender AIAN, M AIAN,...

417

YEAR  

National Nuclear Security Administration (NNSA)

0 Asian Female 0 Hispanic Male 7 Hispanic Female 18 White Male 40 White Female 25 DIVERSITY GENDER Workforce Diversity As of March 24, 2012 PAY PLAN TOTAL WORKFORCE Associate...

418

YEAR  

National Nuclear Security Administration (NNSA)

White Male (W,M) 389 400 2.83% White Female (W,F) 21 19 -9.52% Change DIVERSITY Change Assistant Deputy Administrator for Secure Transportation (NA-15) As of...

419

YEAR  

National Nuclear Security Administration (NNSA)

2 Asian Female 0 Hispanic Male 13 Hispanic Female 17 White Male 37 White Female 17 DIVERSITY GENDER Workforce Diversity Sandia Site Office As of March 24, 2012 PAY PLAN TOTAL...

420

YEAR  

National Nuclear Security Administration (NNSA)

Reactors (120) and Assistant Deputy Administrator for Secure Transportation (586) DIVERSITY Workforce Diversity National Nuclear Security Administration As of Apr 10, 2011 PAY...

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

YEAR  

National Nuclear Security Administration (NNSA)

<30 30-39 40-49 50-59 60-69 70+ 6.1% 21.6% 26.7% 34.5% 10.6% 0.6% Age Groups as a Percentage of Workforce 0% 5% 10% 15% 20% 25% 30% 35% 3.5% 30.8% 34.2% 31.5% Education J.D....

422

YEAR  

National Nuclear Security Administration (NNSA)

50% <30 30-39 40-49 50-59 60-69 70+ 7.5% 22.5% 30.0% 32.5% 7.5% 0.0% Age Groups as a Percentage of Workforce 0.0% 32.5% 27.5% 40.0% Education J.D.Ph.DSc.D Degrees Masters Degrees...

423

YEAR  

National Nuclear Security Administration (NNSA)

<30 30-39 40-49 50-59 60-69 70+ 35.3% 29.4% 17.6% 5.9% 11.8% 0.0% Age Groups as a Percentage of Workforce 0.0% 23.5% 58.8% 17.6% Education J.D.Ph.DSc.D Degrees Masters Degrees...

424

YEAR  

National Nuclear Security Administration (NNSA)

<30 30-39 40-49 50-59 60-69 70+ 24.8% 15.0% 21.7% 31.8% 5.6% 1.0% Age Groups as a Percentage of Workforce 0.3% 31.5% 37.4% 30.8% Education J.D.Ph.DSc.D Degrees Masters Degrees...

425

YEAR  

National Nuclear Security Administration (NNSA)

50% <30 30-39 40-49 50-59 60-69 70+ 2.3% 2.3% 20.5% 50.0% 22.7% 2.3% Age Groups as a Percentage of Workforce 6.8% 38.6% 45.5% 9.1% Education J.D.Ph.DSc.D Degrees Masters Degrees...

426

YEAR  

National Nuclear Security Administration (NNSA)

50% <30 30-39 40-49 50-59 60-69 70+ 6.6% 41.7% 32.7% 16.0% 3.0% 0.0% Age Groups as a Percentage of Workforce 0.4% 7.6% 16.0% 76.0% Education J.D.Ph.DSc.D Degrees Masters Degrees...

427

YEAR  

National Nuclear Security Administration (NNSA)

<30 30-39 40-49 50-59 60-69 70+ 11.6% 27.9% 18.6% 18.6% 23.3% 0.0% Age Groups as a Percentage of Workforce 41.9% 16.3% 25.6% 16.3% Education J.D.Ph.DSc.D Degrees Masters...

428

World coal outlook to the year 2000  

SciTech Connect

The 1983 edition of the World Coal Outlook to the Year 2000 examines the worldwide impact of lower oil prices and lower economic activity on the demand, production, and international trade in coal. The report includes detailed regional forecasts of coal demand by end-use application. Regions include the US, Canada, Western Europe, Japan, Other Asia, Latin America, Africa, Australia/New Zealand, Communist Europe, and Communist Asia. In addition, regional coal production forecasts are provided with a detailed analysis of regional coal trade patterns. In all instances, the changes relative to Chase's previous forecasts are shown. Because of the current situation in the oil market, the report includes an analysis of the competitive position of coal relative to oil in the generation of electricity, and in industrial steam applications. The report concludes with an examination of the impact of an oil price collapse on the international markets for coal.

1983-01-01T23:59:59.000Z

429

U.S. Department of Energy Fiscal Year 2007 Buy American Act Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 U.S. Department of Energy Fiscal Year 2007 Buy American Act Report Total Mfg End Products Total Mfg End Products Department Actions Dollars Mfg in U.S. Actions ENERGY, DEPARTMENT...

430

Hydrogen program summary Fiscal Year 1994  

DOE Green Energy (OSTI)

The annual program summary provides stakeholders within the hydrogen community with a snapshop of important advances that have occurred in the National Hydrogen Program over the fiscal year, including industry interactions and cooperation. The document will also be used to encourage additional potential industrial partners to join the Hydrogen Program Team. Fiscal Year 1994 marked a turning point for the Hydrogen Program, with a budget that grew significantly. The focus of the program was broadened to include development of hydrogen production technologies using municipal solid waste and biomass, in addition to an increased emphasis on industrial involvement and near-term demonstration projects. In order to maintain its near- and long-term balance, the Hydrogen Program will continue with basic, fundamental research that provides the long-term, high-risk, high-payoff investment in hydrogen as an energy carrier.

Not Available

1995-03-01T23:59:59.000Z

431

Indexes of Consumption and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Figure on manufacturing production indexes and purchased energy consumption Figure on manufacturing production indexes and purchased energy consumption Source: Energy Information Administration and Federal Reserve Board. History of Shipments This chart presents indices of 14 years (1980-1994) of historical data of manufacturing production indexes and Purchased (Offsite-Produced) Energy consumption, using 1992 as the base year (1992 = 100). Indexing both energy consumption and production best illustrates the trends in output and consumption. Taken separately, these two indices track the relative growth rates within the specified industry. Taken together, they reveal trends in energy efficiency. For example, a steady increase in output, coupled with a decline in energy consumption, represents energy efficiency gains. Likewise, steadily rising energy consumption with a corresponding decline in output illustrates energy efficiency losses.

432

Production Practice  

Science Conference Proceedings (OSTI)

...Figure 1 shows the sequence of shapes in the production of a hollow handle for a table knife formed and coined in a 410 kg (900 lb) pneumatic drop hammer. The work metal was 0.81 mm (0.032 in.) thick copper alloy C75700 (nickel silver, 65â??12) annealed to a hardness of 35 to 45 HRB; blank size was 25 by...

433

Biofuel Production  

E-Print Network (OSTI)

Copyright © 2011 Hiroshi Sakuragi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society. 1.

Hiroshi Sakuragi; Kouichi Kuroda; Mitsuyoshi Ueda

2010-01-01T23:59:59.000Z

434

U.S. natural gas imports fall for third year in a row - Today ...  

U.S. Energy Information Administration (EIA)

U.S. net imports of natural gas have fallen for three consecutive years, due largely to growing domestic production from shale gas formations.

435

CALENDAR YEAR 2011 ANNUAL SECURITY  

E-Print Network (OSTI)

CALENDAR YEAR 2011 ANNUAL SECURITY FIRE SAFETY REPORT& #12;University of North Dakota Annual Security & Fire Safety Report: Calendar Year 2011 n Page 1 Dear Community Member: I am pleased to introduce the 2011 Annual Security and Fire Safety Report for the University of North Dakota. This report

Delene, David J.

436

Outlook: The Next Twenty Years  

SciTech Connect

I present an outlook for the next twenty years in particle physics. I start with the big questions in our field, broken down into four categories: horizontal, vertical, heaven, and hell. Then I discuss how we attack the bigquestions in each category during the next twenty years. I argue for a synergy between many different approaches taken in our field.

Murayama, Hitoshi

2003-12-07T23:59:59.000Z

437

Outlook: The Next Twenty Years  

E-Print Network (OSTI)

I present an outlook for the next twenty years in particle physics. I start with the big questions in our field, broken down into four categories: horizontal, vertical, heaven, and hell. Then I discuss how we attack the big questions in each category during the next twenty years. I argue for a synergy between many different approaches taken in our field.

Hitoshi Murayama

2003-12-07T23:59:59.000Z

438

Synthetic fuels: production and products  

DOE Green Energy (OSTI)

A brief primer on synthetic fuels is given. The paper includes brief descriptions of generic conversion technologies that can be used to convert various raw materials such as coal, oil shale, tar sands, peat, and biomass into synthetic fuels similar in character to petroleum-derived fuels currently in commerce. References for additional information on synthetic fuel processes and products are also given in the paper.

Singh, S.P.N.

1984-01-01T23:59:59.000Z

439

Synthetic fuels: production and products  

DOE Green Energy (OSTI)

A brief review on synthetic fuels is given. The paper includes brief descriptions of generic conversion technologies that can be used to convert various raw materials such as coal, oil shale, tar sands, peat and biomass into synthetic fuels similar in character to petroleum-derived fuels currently in commerce. Because the subject is vast and the space is limited, references for additional information on synthetic fuel processes and products are also given in the paper. 24 references.

Singh, S.P.

1985-08-01T23:59:59.000Z

440

Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania Natural Gas Plant Processing

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

STEO January 2013 - oil production increase  

U.S. Energy Information Administration (EIA) Indexed Site

oil production to increase in 2013 and 2014 oil production to increase in 2013 and 2014 U.S. crude oil production is expected to keep rising over the next two years. America's oil output will jump nearly 900,000 barrels per day in 2013 to an average 7.3 million barrels a day, according to the latest monthly forecast from the U.S. Energy Information Administration. This would mark the biggest one-year increase in output since U.S. commercial crude oil production began in 1859. U.S. daily oil production is expected to rise by another 600,000 barrels in 2014 to nearly 8 million barrels a day, the highest level since 1988. Most of America's oil production growth over the next two years will come from more drilling activity in tight shale rock formations located in North Dakota and Texas

442

Great Plains Coal Gasification Project. Quarterly technical progress report, second quarter 1986. [Lurgi process  

SciTech Connect

The operations of the Great Plains coal gasification plant are reported for the second quarter of 1986. The following areas are covered: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities. (AT)

Not Available

1986-07-31T23:59:59.000Z

443

(Great Plains Coal Gasification Associates). Quarterly technical progress report. [Lurgi Process  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the first quarter of 1986. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-04-30T23:59:59.000Z

444

Great Plains coal gasification project: Quarterly technical progress report, Third quarter 1986. [Lurgi process  

Science Conference Proceedings (OSTI)

Accomplishments for the third quarter of 1986 are presented for the Great Plains coal gasification plant. The following areas are discussed: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) onstream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-10-31T23:59:59.000Z

445

Electronic Materials - The Early Years  

Science Conference Proceedings (OSTI)

Sep 22, 2008 ... TMS Member price: 0.00. Non-member price: 0.00. TMS Student Member price: 0.00. If the price of this product displays as $0.00 for your ...

446

Sugar Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Sugar Production Sugar Production Name: Lauren Location: N/A Country: N/A Date: N/A Question: This is the experiment I did: our class took 6 sugars, placed them in test tubes and put three drops of yeast in each test tube. we then placed them in the incubator for one day and the next day looked at our results. the purpose was to find out with sugar would produce the most carbon dioxide. two of the sugars that we tested were LACTOSE and STARCH. my question is, why are lactose and starch the only sugars who didn't produce any, or very very little, carbon dioxide? and how is this process related to glycolysis? Replies: Bacteria and yeast are very efficient with their enzyme systems. They don't make enzymes they can't use. Yeast don't have the enzymes necessary to metabolize lactose. Starch is a complex sugar and yeast needs certain enzymes to break starch down into sugar. Every chemical reaction needs its own enzyme.

447

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

448

70 Images for 70 Years  

NLE Websites -- All DOE Office Websites (Extended Search)

70 Images for 70 Years 70 Images for 70 Years 70 Images for 70 Years Los Alamos has a proud history and heritage of almost 70 years of science and innovation. The people of the Laboratory work on advanced technologies to provide the best scientific and engineering solutions to many of the nation's most crucial security challenges. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. 1938 Hahn and Meitner Fission 1938 Hahn and Meitner Fission 1939 Einstein-Szilard 1939 Einstein-Szilard 1940s Main Guard Gate (671938) 1940s Main Guard Gate (671938) 1940s Security check 1940s Security check 1940 Boys Ranch School hockey on Ashley Pond 1940 Boys Ranch School hockey on Ashley Pond 1942 Fuller Lodge 1942 Fuller Lodge

449

Microsoft Word - The Oppenheimer Years  

NLE Websites -- All DOE Office Websites (Extended Search)

Years 1943-1945 At 5:29:45 am MWT on July 16, 1945, the world's first atomic bomb exploded 100 feet over a portion of the southern New Mexico desert known as the Jornada...

450

Accountability report - fiscal year 1997  

SciTech Connect

This document contains the US NRC`s accountability report for fiscal year 1997. Topics include uses of funds, financial condition, program performance, management accountability, and the audited financial statement.

1998-04-01T23:59:59.000Z

451

FEMP Year in Review 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

identifying and implementing energy saving projects, the 2003 award winners have created energy cost savings of more than 62 million and 3.4 trillion Btu in one year. Our winners...

452

Independent Statistics & Analysis Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis Independent Statistics & Analysis Drilling Productivity Report The six regions analyzed in this report accounted for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth during 2011-12. December 2013 For key tight oil and shale gas regions U.S. Energy Information Administration Contents Year-over-year summary 2 Bakken 3 Eagle Ford 4 Haynesville 5 Marcellus 6 Niobrara 7 Permian 8 Explanatory notes 9 Sources 10 Bakken Marcellus Niobrara Haynesville Eagle Ford Permian U. S. Energy Information Administration | Drilling Productivity Report 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville

453

Facility Representative Program: Facility Representative of the Year  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative of the Year Award Facility Representative of the Year Award Annual Facility Representative Workshop Facility Representative of the Year Award Process Facility Representative of the Year Award 2012 WINNER: John C. Barnes, Savannah River Operations Office Letter from DNFSB Chairman Peter S. Winokur, Ph.D 2012 Nominees: Peter W. Kelley, Brookhaven Site Office James E. Garza, Idaho Operations Office (EM) William R. Watson, Idaho Operations Office (NE) Darlene S. Rodriguez, Los Alamos Field Office Robert R. Robb, Livermore Field Office Kenneth W. Wethington, Grand Junction Project Office's Moab site Thomas P. Denny, Nevada Field Office Michael J. Childers, NNSA Production Office Pantex Site Catherine T. Schidel, NNSA Production Office Y12 Site Chelsea D. Hubbard, Oak Ridge Operations Office (EM)

454

World Year of Physics 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

IMAGE: World Year of Physics 2005 nameplate Berkeley Lab logo Berkeley Lab Celebrates World Year of Physics 2005 Berkeley Lab Web Search Berkeley Lab Phone Book Berkeley Lab A-Z Index Berkeley Lab Privacy and Security Notice IMAGE: World Year of Physics 2005 nameplate Berkeley Lab logo Berkeley Lab Celebrates World Year of Physics 2005 Berkeley Lab Web Search Berkeley Lab Phone Book Berkeley Lab A-Z Index Berkeley Lab Privacy and Security Notice IMAGE: World of Physics graphic Symposia page link Special Events page link Lectures page link Education page link The World Year of Physics is a worldwide celebration of physics and its importance in our everyday lives. Physics not only plays an important role in the development of science and technology but also has a tremendous impact on our society. WYP aims to raise the worldwide awareness of physics and physical science. The United Nations has declared 2005 to be the International Year of Physics. This declaration coincides with the 100th anniversary of physicist

455

Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome The Production Services site contains links to each of the division's groups with descriptions of their services. Our goal is to update this website frequently to reflect ongoing service upgrades which, by planning and design, are added so that we can continue to meet your needs in a constantly changing work environment. Note: The Graphic Design Studio has been relocated to the second floor in the north wing of the Research Support Building 400. The telephone number remains the same, X7288. If you have any questions, please call supervisor, Rick Backofen, X6183. Photography Photography services are available at no charge to BNL and Guest users. See a list of the complete range of photography services available. Video Video services are available at no charge to BNL and Guest users. See a list of the complete range of video services available.

456

EIA - Annual Energy Outlook 2008 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2008 with Projections to 2030 Coal Production Figure 93. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 94. U.S. coal production, 2006, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Western Coal Production Continues To Increase Through 2030 In the AEO2008 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 0.3 percent per year from 2006 to 2015, when total production is 24.5 quadrillion Btu. In the absence of restrictions on CO2 emissions, the growth in coal production

457

Production I/O Characterization on the Cray XE6 | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production IO Characterization on the Cray XE6 Title Production IO Characterization on the Cray XE6 Publication Type Conference Paper Year of Publication 2013 Authors Carns, PH,...

458

Development of rapid methods to determine the quality of corn for ethanol production.  

E-Print Network (OSTI)

??As ethanol production greatly increased in recent years in the U.S., there has been interest to make the ethanol production process more efficient and economical,… (more)

Burgers, Allison Palmer

2009-01-01T23:59:59.000Z

459

Table D1. Population, U.S. Gross Domestic Product, and ...  

U.S. Energy Information Administration (EIA)

Table D1. Population, U.S. Gross Domestic Product, and Implicit Price Deflator, 1949-2011: Year: Population: U.S. Gross Domestic Product: United States 1

460

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

Science Conference Proceedings (OSTI)

This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Production Planning Models  

SciTech Connect

>This report describes the innovative modeling approach developed as a result of a 3-year Laboratory Directed Research and Development project. The overall goal of this project was to provide an effective suite of solvers for advanced production planning at facilities in the nuclear weapons complex (NWC). We focused our development activities on problems related to operations at the DOE's Pantex Plant. These types of scheduling problems appear in many contexts other than Pantex--both within the NWC (e.g., Neutron Generators) and in other commercial manufacturing settings. We successfully developed an innovative and effective solution strategy for these types of problems. We have tested this approach on actual data from Pantex, and from Org. 14000 (Neutron Generator production). This report focuses on the mathematical representation of the modeling approach and presents three representative studies using Pantex data. Results associated with the Neutron Generator facility will be published in a subsequent SAND report. The approach to task-based scheduling described here represents a significant addition to the literature for large-scale, realistic scheduling problems in a variety of production settings.

JONES,DEAN A.; LAWTON,CRAIG R.; KJELDGAARD,EDWIN A.; WRIGHT,STEPHEN TROY; TURNQUIST,MARK A.; NOZICK,LINDA K.; LIST,GEORGE F.

2000-12-01T23:59:59.000Z

462

Production Will Meet Demand Increase This Summer  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Production must meet increases in demand this year. Last year, increased imports met most of the summer demand increase, and increases in stock draws met almost all of the remainder. Production did not increase much. But this year, inventories will not be available, and increased imports seem unlikely. Thus, increases in production will be needed to meet increased demand. Imports availability is uncertain this summer. Imports in 1999 were high, and with Phase II RFG product requirements, maintaining this level could be challenging since not all refineries exporting to the U.S. will be able to meet the new gasoline specifications. Stocks will also contribute little supply this summer. Last year's high gasoline stocks allowed for a stock draw that was 58 MB/D higher than

463

Product Development Processes, Three Vectors Of Improvement  

E-Print Network (OSTI)

Product Development Processes have achieved a state of some maturity in recent years, but have focused primarily on structuring technical activities from the initiation of development to launch. We advocate major advances ...

Holmes, Maurice

2003-01-01T23:59:59.000Z

464

Photovoltaics Overview: Fiscal Year 2001  

DOE Green Energy (OSTI)

In Fiscal Year 2001, for the third year in a row, the solar electric market grew at more than 30%. Fueling this growth is the U.S. photovoltaic industry - the companies that design, manufacture, install, operate, and maintain all components of solar generating systems. The messages of the U.S. PV industry roadmap are taken very seriously by the U.S. Department of Energy's Office of Solar Energy Technologies. Achieving industry's goals will demand aggressive work in fundamental and exploratory research, manufacturing, and system applications to reduce the cost of solar electric systems. This is an annual report of the DOE PV Program, FY2001.

Not Available

2002-02-01T23:59:59.000Z

465

Buying an Appliance this Holiday Season? ENERGY STAR Products...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an Appliance this Holiday Season? ENERGY STAR Products will Save You Money and Energy All Year Buying an Appliance this Holiday Season? ENERGY STAR Products will Save You Money...

466

Current Production Status of Alloy 718 Turbine Disks in China  

Science Conference Proceedings (OSTI)

For the past few years the production of high quality alloy 7 18 turbine disks has made great strides ... The main technology studies which led to the production of.

467

Texas--RRC District 8 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 8 Shale Production (Billion Cubic Feet) Texas--RRC District 8 Shale Production (Billion Cubic Feet) Decade Year-0...

468

Texas--RRC District 6 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 6 Shale Production (Billion Cubic Feet) Texas--RRC District 6 Shale Production (Billion Cubic Feet) Decade Year-0...

469

Texas--RRC District 9 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 9 Shale Production (Billion Cubic Feet) Texas--RRC District 9 Shale Production (Billion Cubic Feet) Decade Year-0...

470

Texas--RRC District 1 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 1 Shale Production (Billion Cubic Feet) Texas--RRC District 1 Shale Production (Billion Cubic Feet) Decade Year-0...

471

Texas--RRC District 5 Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 5 Shale Production (Billion Cubic Feet) Texas--RRC District 5 Shale Production (Billion Cubic Feet) Decade Year-0...

472

Stone Tool Production  

E-Print Network (OSTI)

by the author. ) Stone Tool Production, Hikade, UEE 2010Short Citation: Hikade 2010, Stone Tool Production. UEE.Thomas, 2010, Stone Tool Production. In Willeke Wendrich (

Hikade, Thomas

2010-01-01T23:59:59.000Z

473

FCT Hydrogen Production: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Production: Contacts on Facebook Tweet about FCT Hydrogen Production: Contacts on Twitter Bookmark FCT Hydrogen Production:...

474

Calendar Year 2008 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Calendar Year 2008 RSS December 23, 2008 Special Report: IG-0808 Management Challenges at the Department of Energy December 11, 2008 Inspection Report: INS-O-09-01 Security Clearances at Lawrence Livermore National Laboratory and Sandia National Laboratory-California December 9, 2008 Audit Report: IG-0807 Cyber Security Risk Management Practices at the Bonneville Power Administration November 25, 2008 Inspection Report: IG-0806 40 MM Grenade Launcher Qualification Requirements at Department of Energy Sites November 20, 2008 Audit Report: IG-0805 Cyber Security Risk Management Practice at the Southeastern, Southwestern, and Western AreaPower Administrations November 19, 2008 Inspection Summary Report Issues Related to the Production of Components for the W76 Weapon System

475

Calendar Year 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 17, 2013 January 17, 2013 Examination Report: OAS-RA-13-06 Montgomery County Department of Housing and Community Affairs - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 January 17, 2013 Examination Report: OAS-RA-13-05 Prince George's County Department of Housing and Community Development - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 January 16, 2013 Audit Report: OAS-L-13-05 The Department of Energy's International Offices and Foreign Assignments January 15, 2013 Audit Report: OAS-FS-13-09 Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2010 Balance Sheet Audit January 11, 2013 Audit Report: OAS-L-13-04

476

Assessment of synfuel transportation to year 2000  

DOE Green Energy (OSTI)

This report identifies and discusses potential problems in the transportation of synthetic fuels (synfuels) which if allowed to persist unresolved will hamper the development of these energy materials between now and the year 2000. The emergence of transportation-related problems in shale oil and coal synfuel development will be highly dependent upon their chemical similitude with analagous fossil fuels. Hence, definitive resolution of the question of whether new transportation problems exist is dependent upon clear characterization of the synfuels chemical composition. Hydrogen and methanol represent unique cases since these materials are already in commercial production. The major transportation problem identified with fuel economics based on these materials is related to bulk use. To date, shipment volumes have been relatively small and, in the case of hydrogen, can be accommodated with costly, more specialized packaging. Scale-up for major energy use may introduce a new set of transportation problems.

Wakamiya, W.; Sebelien, K.B.; Parkhurst, M.A.

1979-03-01T23:59:59.000Z

477

Single Top Quark Production at the Tevatron  

E-Print Network (OSTI)

While the heaviest known elementary particle, the top quark, has been discovered in 1995 by the CDF and D0 collaborations in ttbar events, it took 14 more years until the observation of single top quark production. In this article, we discuss recent studies of single top quark production by the CDF and D0 collaborations at the Tevatron. In particular, we present the measurement of single top quark s- and t-channel production combined, the first observation of t-channel production, the simultaneous measurement of s- and t-channel production cross sections as well as the extraction of the CMK matrix element |Vtb}|.

Yvonne Peters; for the CDF; D0 Collaborations

2012-10-26T23:59:59.000Z

478

Multi-Year SSL Market Development Support Plan  

Science Conference Proceedings (OSTI)

This plan sets out a strategic, five year framework for guiding DOE's market development support activities for high-performance solid-state lighting (SSL) products for the U.S. general illumination market. The market development support activities described in this plan, which span federal fiscal years 2012 to 2016, are intended to affect the types of SSL general illumination products adopted by the market, to accelerate commercial adoption of those products, and to support appropriate application of those products to maximize energy savings. DOE has established aggressive FY16 goals for these activities, including goals for the types of products brought to market, the market adoption of those products, and the energy savings achieved through use of SSL products. These goals are for the combined effect of DOE's SSL market development support and R and D investment, as well as the leveraged activities of its partners. Goals include: (1) inducing the market introduction of SSL products achieving 140 lumens per Watt (lm/W) for warm white products, and 155 lm/W for cool white products, and (2) inducing sales of high-performance SSL products that achieve annual site electricity savings of 21 terawatt hours (0.25 quadrillion Btus primary energy) by FY16. To overcome identified market barriers and to achieve the above five year goals, DOE proposes to carry out the following strategy. DOE will implement a multi-year program to accelerate adoption of good quality, high performance SSL products that achieve significant energy savings and maintain or improve lighting quality. Relying on lessons learned from past emerging technology introductions, such as compact fluorescent lamps, and using newly developed market research, DOE will design its efforts to minimize the likelihood that the SSL market will repeat mistakes that greatly delayed market adoption of earlier emerging technology market introductions. To achieve the maximum effect per dollar invested, DOE will work closely with lighting industry organizations 'such as the Next Generation Lighting Industry Alliance, North American Illuminating Engineering Society, and the International Association of Lighting Designers' and with other government programs seeking to improve lighting energy efficiency. While DOE will work closely with these organizations and others from lighting and electric utility industry, the program will focus primarily on assisting buyers of SSL products and others acting on their behalf because satisfied buyers are essential to the success of SSL market adoption. The work product of DOE's efforts will primarily be information, of the right type, at the right time, and provided efficiently to those who can best use it. A secondary work product of DOE's program will be market opportunities, in which DOE will seek to reduce the risks and costs for manufacturers of SSL products to sell good quality, high performance products to motivated buyers. In short, DOE plans to implement a multi-year program that produces highly useful and widely available information for buyers and their agents, while producing important market opportunities for producers, avoids the mistakes of the past, and is closely coordinated with industry and government. The market needs and the overall strategy were used for deciding which types of programs and projects DOE should create, and what general form they should take. Progress toward achieving plan goals with the above program elements will be monitored and periodically reported.

Ledbetter, Marc R.

2012-05-01T23:59:59.000Z

479

AQUA Products | Open Energy Information  

Open Energy Info (EERE)

AQUA Products AQUA Products Jump to: navigation, search Name AQUA Products Place Prosperity, SC Zip 29127 Product Manufacturer of small tonnage chiller systems Year founded 1993 Website http://www.aquaproducts.us/ Coordinates 34.2093079°, -81.5331602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.2093079,"lon":-81.5331602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review  

SciTech Connect

The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

Thiel, E.C.; Fuhrman, P.W.

2002-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "year sng production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review  

Science Conference Proceedings (OSTI)

The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

Thiel, Elizabeth Chilcote

2002-05-01T23:59:59.000Z

482

FIVE-YEAR FINANCIAL OUTLOOK  

E-Print Network (OSTI)

Outlook) for the City of San Diego which presented a comprehensive examination of the City’s long range fiscal condition. The Financial Outlook has proven to be an important planning tool for the City of San Diego. The Outlook guided the City in establishing the fiscal year 2008 annual budget and has served throughout the year as the basis for longer term fiscal decisionmaking. The Outlook has communicated the City’s fiscal priorities along with the City’s strengths and the challenges that remain in achieving a balanced General Fund budget and fiscal health. The updated Five-Year Financial Outlook (2009-2013 Outlook) includes revised revenue and expenditure projections for fiscal years 2009 through 2013 as well as additional fiscal commitments that have emerged since the 2008-2012 Outlook was issued. Similar to the 2008-2012 Outlook, the revised revenue and expenditure estimates in the 2009-2013 Outlook are based on a variety of assumptions in the context of current and projected economic conditions. The updated Outlook not only identifies revenue and expenditure trends but also discusses risks and opportunities that affect fiscal decisions and the City’s ability to accomplish its strategic goals over the next five-year period. Those goals include: • Preservation of City services to the fullest extent possible. Fund the operations of new public facilities. • Meet contractual obligations and fund mandated programs. • Contribute the full payment of the Annual Required Contribution (ARC) for the City’s pension system. • Establish and maintain adequate General Fund reserves according to City Charter Section 91 and the City Reserve Policy recently approved by the City Council. • Address other significant financial obligations with a longer-term strategy.

Jerry Sanders; Jay M. Goldstone

2006-01-01T23:59:59.000Z

483

ANNUAL REPORT OF THE ORIGIN OF NATURAL GAS LIQUIDS PRODUCTION  

U.S. Energy Information Administration (EIA)

Form Approved XXXXXX XXXX ANNUAL REPORT OF THE ORIGIN OF NATURAL GAS LIQUIDS PRODUCTION FORM EIA-64A . REPORT YEAR 2012 . This report is . mandatory

484

Decommissioning of U.S. Uranium Production Facilities  

Reports and Publications (EIA)

This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

Information Center

1995-02-01T23:59:59.000Z

485

Gulf of Mexico Federal Offshore Percentage of Crude Oil Production...  

Gasoline and Diesel Fuel Update (EIA)

from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Crude Oil Production from Greater than 200 Meters Deep (Percent) Decade Year-0...

486

Gulf of Mexico Federal Offshore Natural Gas Liquids Production...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

487

Graphene as a manufactured product : a look forward  

E-Print Network (OSTI)

Graphene's unique electrical and mechanical properties have brought it into the spotlight in recent years. With the number of patents increasing rapidly every year, production of the material is becoming more and more ...

Frost, Stephen T

2013-01-01T23:59:59.000Z

488

Gulf of Mexico Federal Offshore Natural Gas Liquids Production...  

Gasoline and Diesel Fuel Update (EIA)

Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1...

489

Gulf of Mexico Federal Offshore Dry Natural Gas Production from...  

Annual Energy Outlook 2012 (EIA)

Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1...

490

U.S. Domestic Oil Production Exceeds Imports for First Time in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis...

491

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2008,2009,2010,2011,2012 "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

492

The More Important Price Indicator This Year is Low Stocks  

Gasoline and Diesel Fuel Update (EIA)

6 of 6 6 of 6 Notes: Crude prices this year at the beginning of the second quarter are likely to be higher -- not lower -- as a result of the current shortfall in crude oil production relative to demand on top of low stocks. OECD stocks of crude oil and products plunged steeply in 1999. By year end, they were below the low levels at end December 1996 -- OPEC's stated target. This does not take into consideration the growth in demand that these stocks must help supply. EIA expects OECD stocks to stay very low throughout the year 2000. The projection shows end March levels remain well below those seen at the end of the first quarter 1996. The build during the summer will not be adequate to make up for the draws, resulting in a net draw of over 300 thousand barrels in an already tight market.

493

Petroleum - Exploration & Production - EIA  

U.S. Energy Information Administration (EIA)

Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity. ... Oil Production Capacity Expansion Costs for the Persian Gulf.

494

Fiscal Year 2012 Revegetation Assessment  

Science Conference Proceedings (OSTI)

This report summarizes the Fiscal Year 2012 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Actions and Resolutions for each site. Ten disturbed sites were evaluated for this assessment. Six have achieved final stabilization. The remaining four sites not meeting the criteria for final stabilization will be evaluated again in the next fiscal year.

Jenifer Nordstrom

2012-11-01T23:59:59.000Z

495

10-Year Outlook Executive Summary  

E-Print Network (OSTI)

Ontario’s electricity system faces significant challenges over the next 10 years. The uncertainty surrounding the return to service of Pickering A nuclear units, the lack of new generation investment and the commitment to shut down 7,500 MW of coal fired generation by December 31, 2007, all contribute to a potentially severe shortfall. New transmission, supply and demand side initiatives are urgently needed to address this gap and secure Ontario’s energy future. The need is most pressing in the Toronto area, to deal with the immediate impact of the April 30, 2005 shutdown of the Lakeview Thermal Generating Station. Plans are being implemented to address this in the short term. In the longer term, additional generation is also required in the Toronto area to replace the Lakeview generating capacity and to meet load growth in the Greater Toronto Area (GTA). Each year the Independent Electricity Market Operator (IMO) publishes an integrated assessment of the security and adequacy of the Ontario electricity system over the next 10 years. This report presents the IMO assessment for the 10-year period from 2005 to 2014. It is based on the IMO’s forecast of electricity demand, information provided by Ontario generators on the supply that will be available and the latest information on the configuration and capability of the transmission system. Electricity Supply Outlook Additional Ontario electricity supply and demand-side measures are required to maintain supply adequacy into the future and to reduce Ontario’s dependency on supply from other jurisdictions.

unknown authors

2005-01-01T23:59:59.000Z

496

Year STB EIA STB EIA  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: November 16, 2012 Release Date: November 16, 2012 Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample

497

10-Year Outlook Executive Summary  

E-Print Network (OSTI)

The provincial government?s plan to phase out coal?fired generation in favour of cleaner forms of generation represents one of the most significant undertakings in the 100?year history of Ontario?s electricity sector. Aging generation facilities and the continued increase in demand for electricity add to the urgency of proceeding with new generating and transmission facilities over the next 10 years. Over the last 12 months 650 MW of new gas?fired generation has been put in place and 515 MW of nuclear generation and 370 MW of renewable generation is expected to be in service within the next 18 months. There are also a number of projects totalling more than 9,000 MW of additional capacity that are in various stages of discussion, development or negotiation. Timely progress to achieve this additional capacity must continue if Ontario is to ensure a reliable supply of electricity over the next decade and beyond. This 10?year Outlook from the Independent Electricity System Operator (IESO) provides an assessment of the demand?supply picture for the province over the next decade and provides a plan identifying the timing and requirements of system changes needed to meet the government’s coal shutdown timeframe. Under the provisions of Bill 100, the Ontario Power

unknown authors

2005-01-01T23:59:59.000Z

498

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen & Synthetic Natural Gas from Coal Hydrogen & Synthetic Natural Gas from Coal Production of gaseous fuels from coal or carbonaceous-fuel sources includes not only hydrogen (H2), but synthetic natural gas (SNG). SNG is equivalent to natural gas, which is mostly methane, and can be substituted for it in all the same natural gas applications. Market Hydrogen production is already a large industry, with most of the produced H2 used in refineries for hydrocracking-in which H2 is reacted with heavy petroleum products to form lighter, more useable hydrocarbons-and in the production of ammonia (for use as a fertilizer). In 2004, 50 million metric tons of H2 was produced globally. In recent years, the United States alone has been producing and consuming around 11 million metric tons. 95% of U.S. production was done at the site of use. In the United States for the year 2006, 65% of H2 was used by refineries, 21% for ammonia synthesis, and the remainder for methanol and other industrial applications. Worldwide, H2 is used more for ammonia production1 (57%) than refining (27%), with an additional 10% used for methanol production. As refining applications, such as the hydrocracking of heavy tar sands, increase, the near-term market for H2 is expected to grow. Hydrogen for use as a transportation fuel is still a long way off, with some models predicting slow growth starting in 2015, but H2 for other fuel cell applications, particularly electricity generation, may be more near-term. For more information on current and future hydrogen markets, consult the report DOE's Argonne National Laboratory, located in the References/Further Reading section below.

499

MONTHLY NATURAL GAS PRODUCTION REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

No. 1905-0205 No. 1905-0205 Expiration Date: 05/31/2015 Burden: 3 hours MONTHLY NATURAL GAS PRODUCTION REPORT Version No.: 2011.001 REPORT PERIOD: Month: Year: If any respondent identification data has changed since the last report, enter an "X" in the box: - - - - Mail to: - Oklahoma 2. Natural Gas Lease Production 1. Gross Withdrawals of Natural Texas Contact Title: COMMENTS: Identify any unusual aspects of your operations during the report month. (To start a new line, use alt + enter.) Wyoming Other States Alaska New Mexico City: Gas Louisiana Company Name: Address 1:

500

Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production  

E-Print Network (OSTI)

shales, depressurization is rapid and effective, leading to fast hydrate dissociation and considerable cooling during the 5 years of production

Rutqvist, J.

2009-01-01T23:59:59.000Z