Powered by Deep Web Technologies
Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Efficiency Trends in Residential and Commercial Buildings...  

Energy Savers [EERE]

Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building...

2

Presentation Slides: Solar Finance for Residential and Commercial...  

Broader source: Energy.gov (indexed) [DOE]

Presentation Slides: Solar Finance for Residential and Commercial Customers and Potential Roles of State and Local Government Presentation Slides: Solar Finance for Residential and...

3

Commercial and Residential Hourly Load Profiles for all TMY3...  

Open Energy Info (EERE)

hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House...

4

Lane Electric Cooperative- Residential and Commercial Weatherization Grant Program  

Broader source: Energy.gov [DOE]

Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a residential cash grant for 25% of measure costs up to $1,000,...

5

Longmont Power and Communications- Residential and Commercial Appliance Rebate Program  

Broader source: Energy.gov [DOE]

Longmont Power and Communications offers an incentive for its residential and commercial customers to install energy efficient washing machines and dishwashers. The rebate [http://www.ci.longmont...

6

Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

7

CenterPoint Energy- Residential and Small Commercial Efficiency Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy's (CNP) Residential and Small Commercial Standard Offer Program (SOP) provides incentives to encourage contractors to install energy efficiency measures in homes and small...

8

Energy conservation in commercial and residential buildings  

SciTech Connect (OSTI)

Energy experts have indicated that we can, by exploiting currently available technology, cut energy consumption by 30 to 50% in new buildings and 10 to 30% in existing buildings, with no significant loss in standard of living, comfort, or convenience. This book surveys the many architectural/engineering techniques for combating energy waste in residential and commercial buildings. The experts in these 10 chapters acquaint us with what is being done and with what can be done in the design, construction, and maintenance of buildings in order to foster energy efficiency; they emphasize life-cycle costing as the only sound approach toward energy conservation. A separate abstract was prepared for each chapter; all abstracts will appear in Energy Abstracts for Policy Analysis (EAPA), with 5 appearing in Energy Research Abstracts (ERA).

Chiogioji, M.H.; Oura, E.N.

1982-01-01T23:59:59.000Z

9

Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work  

Broader source: Energy.gov [DOE]

Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work Presentation

10

Fort Collins Utilities- Residential and Small Commercial Appliance Rebate Program  

Broader source: Energy.gov [DOE]

Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers. The appliance rebate program offers a $50 rebate for Energy Star rated...

11

Residential Refrigerator Recycling Ninth Year Retention Study  

E-Print Network [OSTI]

Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

12

Residential and commercial buildings data book: Third edition  

SciTech Connect (OSTI)

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

1988-02-01T23:59:59.000Z

13

Many exterior entry and walkway lights in residential and commercial  

E-Print Network [OSTI]

Many exterior entry and walkway lights in residential and commercial applications use incandescent combines cutting-edge LED technology with an occupancy sensor and incandescent lighting to reduce operating costs below those of incandescent lamps and CFL fixtures. The low wattage LED light turns on at dusk

14

Compliance Verification Paths for Residential and Commercial Energy Codes  

SciTech Connect (OSTI)

This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.

2011-10-10T23:59:59.000Z

15

File:App Commercial Leases and Easements or Amendment or Residential...  

Open Energy Info (EERE)

App Commercial Leases and Easements or Amendment or Residential Coastal Easements HOA.pdf Jump to: navigation, search File File history File usage Metadata File:App Commercial...

16

Analysis of institutional mechanisms affecting residential and commercial buildings retrofit  

SciTech Connect (OSTI)

Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

Not Available

1980-09-01T23:59:59.000Z

17

Residential and commercial buildings data book. Second edition  

SciTech Connect (OSTI)

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

18

Evaluation of advanced technologies for residential appliances and residential and commercial lighting  

SciTech Connect (OSTI)

Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

1995-01-01T23:59:59.000Z

19

Rank Residential Sector Commercial Sector Industrial Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) Year

20

Air Barriers for Residential and Commercial Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas: Transmission, StorageIndustry andAir Barriers

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

State Commercial Electric Power Residential Industrial Transportation  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10: "The

22

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

SciTech Connect (OSTI)

Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock, it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-08-02T23:59:59.000Z

23

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

24

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

25

Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program  

Broader source: Energy.gov [DOE]

Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

26

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

residential/commercial primary energy consumption and carbonthe savings in primary energy consumption using factors forsite energy to primary energy consumption. The model uses

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

27

New England Gas Company- Residential and Commercial Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In conjunction with Gas Networks, New England Gas Company offers its residential and commercial customers rebates for buying energy efficient gas boilers, furnaces, high efficiency water heaters,...

28

Maine Public Service Company- Residential and Small Commercial Heat Pump Program (Maine)  

Broader source: Energy.gov [DOE]

The Public Service Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to cover...

29

Bangor Hydro Electric Company- Residential and Small Commercial Heat Pump Program (Maine)  

Broader source: Energy.gov [DOE]

Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to...

30

Lumbee River EMC- Residential and Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

31

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

Refrigerators, Refrigerator-Freezers, and Freezers,and Updates RESIDENTIAL Refrigerators Freezers Central Aira given year for refrigerators, freezers, clothes washers,

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

32

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...  

U.S. Energy Information Administration (EIA) Indexed Site

COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND...

33

Entergy Texas- Residential and Small Commercial Standard Offer Program  

Broader source: Energy.gov [DOE]

The Hard to Reach, A/C Heat Pump, and Residential Standard Offer Programs provides incentives for the retrofit or new construction installation of a wide range of energy efficiency measures. The...

34

City of Frisco- Residential and Commercial Green Building Codes  

Broader source: Energy.gov [DOE]

'''''Note: In the spring on 2012, the city of Frisco was working to update the residential requirements. No official city council action had been taken at the time this summary was updated. Check...

35

Northern Plains EC- Residential and Commercial Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Northern Plains Electric Cooperative is a member-owned electric cooperative that serves customers in east-central North Dakota. This EMC offers a low-interest loan program residential and...

36

ENERGY SAVINGS POTENTIALS IN RESIDENTIAL AND SMALL COMMERCIAL THERMAL DISTRIBUTION SYSTEMS - AN UPDATE  

SciTech Connect (OSTI)

This is an update of a report (Andrews and Modera 1991) that quantified the amounts of energy that could be saved through better thermal distribution systems in residential and small commercial buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling from the space-conditioning equipment to the conditioned space. This update involves no basic change in methodology relative to the 1991 report, but rather a review of the additional information available in 2003 on the energy-use patterns in residential and small commercial buildings.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

37

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial  

E-Print Network [OSTI]

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual aspects of ESPCs, and Industrial Energy Efficiency Group (865) 574-1013 kelleyjs@ornl.gov 9/08 r1 ORNL helps organizations

38

Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models  

Reports and Publications (EIA)

This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

2003-01-01T23:59:59.000Z

39

Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011  

SciTech Connect (OSTI)

Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

2011-08-26T23:59:59.000Z

40

Climate Change Impacts on Residential and Commercial Loads in the Western U.S. Grid  

SciTech Connect (OSTI)

This report presents a multi-disciplinary modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building cooling load in 10 major cities across the Western United States and Canada. Our results have shown that by the mid-century, building yearly energy consumption and peak load will increase in the Southwest. Moreover, the peak load months will spread out to not only the summer months but also spring and autumn months. The Pacific Northwest will experience more hot days in the summer months. The penetration of the air conditioning (a/c) system in this area is likely to increase significantly over the years. As a result, some locations in the Pacific Northwest may be shifted from winter peaking to summer peaking. Overall, the Western U.S. grid may see more simultaneous peaks across the North and South in summer months. Increased cooling load will result in a significant increase in the motor load, which consumes more reactive power and requires stronger voltage support from the grid. This study suggests an increasing need for the industry to implement new technology to increase the efficiency of temperature-sensitive loads and apply proper protection and control to prevent possible adverse impacts of a/c motor loads.

Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Xie, YuLong; Leung, Lai R.; Correia, James; Wong, Pak C.; Mackey, Patrick S.; Paget, Maria L.

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report  

SciTech Connect (OSTI)

A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

1980-05-01T23:59:59.000Z

42

July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances  

Broader source: Energy.gov [DOE]

These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

43

Presentation Slides: Solar Finance for Residential and Commercial Customers and Potential Roles of State and Local Government  

Broader source: Energy.gov [DOE]

This webinar provides an overview of how residential and commercial solar projects are financed and the various roles that state and local governments can play to support the deployment of solar within their jurisdictions.

44

Commercial and Residential Hourly Load Data Question | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaftColumbiaCommercial and Residential Hourly

45

Clean Energy Finance Guide for Residential and Commercial Building...  

Broader source: Energy.gov (indexed) [DOE]

new financing programs sustainable for many years beyond the life of the original infusion of ARRA funds. This chapter addresses how to create self-sustaining clean energy...

46

Distributed thermal energy storage in the residential sector: commercialization-readiness assessment and implementation strategy  

SciTech Connect (OSTI)

The readiness of each of three candidate TES systems for near-term commercialization was examined. It was concluded that of these, TES for residential space and hot-water heating are technically and economically ready for commercialization. TES systems are unlikely to be more attractive than standard-heat-pump systems in all areas of the country; however, in many regions, particularly in the northeast and north central states, TES appears to be more attractive. In the not-too-distant future, use of TES with heat pumps may prove to be the best system nationwide. For the third system, TES for residential space cooling, it was found that those units that are presently technically viable would be too costly except in a few parts of the country; more development will be required before these systems could be commercialized on a national scale. TES systems that might be used in commercial buildings (e.g., stores and office buildings) were not examined. Environmental, market and economic, and institutional-readiness studies are presented. Market penetration and benefit analysis are summarized. Barriers to commercialization are identified along with strategies for overcoming the barriers. Schedules and resource requirements are discussed. Summaries of the study techniques and additional information are given in the appendices. (MCW)

None

1980-08-01T23:59:59.000Z

47

Franklin College Teaching Application residential, year-round study abroad programs  

E-Print Network [OSTI]

Franklin College Teaching Application for residential, year-round study abroad programs ~ Cortona ~ Costa Rica ~ Oxford ~ Name: Department: Name of UGA residential study abroad program: Request teaching study abroad program. For example, a faculty member with a four-course academic year teaching load, who

Arnold, Jonathan

48

Clean Energy Finance Guide for Residential and Commercial Building  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment ofPublishesUnsecured Lending

49

Lighting in Residential and Commercial Buildings (1993 and 1995 Data)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After8986 Lighting

50

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After8986 LightingLit

51

Lighting in Residential and Commercial Buildings (1993 and 1995 data) --  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After8986

52

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.34.3226Types

53

Energy Efficiency Trends in Residential and Commercial Buildings - August  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sites offerDelaware Program Type2010 |

54

EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

55

Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy  

E-Print Network [OSTI]

3/20/09 Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual, Commercial, and Industrial Energy Efficiency Group kelleyjs@ornl.gov ORNL helps organizations with training

Oak Ridge National Laboratory

56

2014-06-27 Issuance: Test Procedures for Residential and Commercial Water Heaters; Final Rule  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register final rule regarding test procedures for residential and commercial water heaters, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 27, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

57

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

Standards for Consumer Products: Room Air Conditioners,Energy Savings -- Residential Products Room Air Conditionersfor Consumer Products: Residential Central Air Conditioners

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

58

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

SciTech Connect (OSTI)

This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2006 period, and of energy efficiency standards for fluorescent lamp ballasts and distribution transformers. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. It also performed new analysis for the first (1990) fluorescent ballast standards, which had been introduced in the NAECA legislation without a rulemaking. We estimate that the considered standards will reduce residential/ commercial primary energy consumption and carbon dioxide emissions in 2030 by 4percent compared to the levels expected without any standards. The reduction for the residential sector is larger, at 8percent. The estimated cumulative energy savings from the standards amount to 39 quads by 2020, and 63 quads by 2030. The standards will also reduce emissions of carbon dioxide by considerable amounts.The estimated cumulative net present value of consumer benefit amounts to $241 billion by 2030, and grows to $269 billion by 2045. The overall ratio of consumer benefits to costs (in present value terms) in the 1987-2050 period is 2.7 to 1. Although the estimates made in this study are subject to a fair degree of uncertainty, we believe they provide a reasonable approximation of the national benefits resulting from Federal appliance efficiency standards.

Meyers, Stephen P.; McMahon, James; Atkinson, Barbara

2008-05-08T23:59:59.000Z

59

Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump  

E-Print Network [OSTI]

#12;Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump technology are supported by the Office of Building Energy Research and Development%) allocated to elec- tric and heat-actuated heat pump research. The remaining 15% is allocated to appliance

Oak Ridge National Laboratory

60

EA-1463: 10 CFR 433: Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings and 10 CFR 435: Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings  

Broader source: Energy.gov [DOE]

The EA examines the potential environmental impacts of the Final Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the Final Rule for new Federal commercial and residential buildings, DOE compared the Final Rule with the “no-action alternative” of using the current Federal standards – 10 CFR Part 434 and 10 CFR Part 435 Subpart C (referred to as the “no-action alternative”).

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report  

SciTech Connect (OSTI)

This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

Cole, Henry E.; Fullen, Robert E.

1980-09-01T23:59:59.000Z

62

2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances  

Broader source: Energy.gov [DOE]

These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

63

Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B C D EHistorical Resources

64

Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffect ofNational Laboratory This bar N coarse grained, s

65

1999 Commercial Buildings Characteristics--Year Constructed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use Equipment

66

A Temporal Motif Mining Approach to Unsupervised Energy Disaggregation: Applications to Residential and Commercial Buildings  

E-Print Network [OSTI]

A Temporal Motif Mining Approach to Unsupervised Energy Disaggregation: Applications to Residential consumers with detailed feedback on their energy consumption pat- terns. By contrasting such `drill monitoring has emerged as an attractive approach to study energy consumption patterns without instrumenting

Ramakrishnan, Naren

67

EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ?Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings? and 10 CFR 435, ?Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings? Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

68

Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020  

SciTech Connect (OSTI)

The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).

Ardani, K.; Seif, D.; Margolis, R.; Morris, J.; Davidson, C.; Truitt, S.; Torbert, R.

2013-08-01T23:59:59.000Z

69

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

and Heat Pumps Room Air Conditioners Water Heaters Gas Furnaces Clothes Washers Clothes Dryers Dishwashers COMMERCIAL

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

70

Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems  

SciTech Connect (OSTI)

Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

Feldman, D.; Friedman, B.; Margolis, R.

2013-10-01T23:59:59.000Z

71

Financing Non-Residential Photovoltaic Projects: Options and Implications  

E-Print Network [OSTI]

of panel titled “Financing Residential and Small CommercialL ABORATORY Financing Non-Residential Photovoltaic Projects:1 2. Policy Support for Non-Residential PV

Bolinger, Mark

2009-01-01T23:59:59.000Z

72

A note from Residential Life Students and their families tend to view the housing assignment as a significant part of the first-year  

E-Print Network [OSTI]

A note from Residential Life Students and their families tend to view the housing assignment as a significant part of the first-year experience. We have found that students' residential experiences depend residence hall. When parents help their sons and daughters begin their residential experience

Royer, Dana

73

Improved Design of Motors for Increased Efficiency in Residential Commercial Buildings  

SciTech Connect (OSTI)

Research progress on understanding magnetic steel core losses is presented in this report. Three major aspects have been thoroughly investigated: 1, experimental characterization of core losses, 2, fundamental physical understanding of core losses and development of core loss formulas, and 3, design of more efficient machine based on the new formulations. Considerable progress has been achieved during the four years of research and the main achievements are summarized in the following: For the experimental characterization, a specially designed advanced commercial test bench was commissioned in addition to the development of a laboratory system with advanced capabilities. The measured properties are core losses at low and higher frequencies, with sinusoidal and non-sinusoidal excitations, at different temperatures, with different measurement apparatus (Toroids, Epstein etc). An engineering-based core loss formula has been developed which considers skin effect. The formula can predict core losses for both sinusoidal and non-sinusoidal flux densities and frequencies up to 4000 Hz. The formula is further tested in electric machines. The formula error range is 1.1% - 7.6% while the standard formulas can have % errors between -8.5% {-+} 44.7%. Two general core loss formulas, valid for different frequencies and thickness, have been developed by analytically and numerically solving Maxwell's equations based on a physical investigation of the dynamic hysteresis effects of magnetic materials. To our knowledge, they are the first models that can offer accurate core loss prediction over a wide range of operating frequencies and lamination thicknesses without a massive experimental database of core losses. The engineering core loss formula has been used with commercial software. The formula performs better than the modified Steinmetz and Bertotti's model used in Cedrat/Magsoft Flux 2D/3D. The new formula shows good correlation with measured results under both sinusoidal and non-sinusoidal excitations. A permanent magnet synchronous motor has been designed with the use of the engineering formula with Flux2D. There was acceptable agreement between predictions and measurements. This was further tested on an induction motor with toroid results.

Pragasen Pillay

2008-12-31T23:59:59.000Z

74

Not-In-Kind Technologies for Residential and Commercial Unitary Equipment  

SciTech Connect (OSTI)

This project was initiated by the Department of Energy in response to a request from the HVAC industry for consolidated information about alternative heating and cooling cycles and for objective comparisons of those cycles in space conditioning applications. Twenty-seven different heat pumping technologies are compared on energy use and operating costs using consistent operating conditions and assumptions about component efficiencies for all of them. This report provides a concise summary of the underlying principals of each technology, its advantages and disadvantages, obstacles to commercial development, and economic feasibility. Both positive and negative results in this study are valuable; the fact that many of the cycles investigated are not attractive for space conditioning avoids any additional investment of time or resources in evaluating them for this application. In other cases, negative results in terms of the cost of materials or in cycle efficiencies identify where significant progress needs to be made in order for a cycle to become commercially attractive. Specific conclusions are listed for many of the technologies being promoted as alternatives to electrically-driven vapor compression heat pumps using fluorocarbon refrigerants. Although reverse Rankine cycle heat pumps using hydrocarbons have similar energy use to conventional electric-driven heat pumps, there are no significant energy savings due to the minor differences in estimated steady-state performance; higher costs would be required to accommodate the use of a flammable refrigerant. Magnetic and compressor-driven metal hydride heat pumps may be able to achieve efficiencies comparable to reverse Rankine cycle heat pumps, but they are likely to have much higher life cycle costs because of high costs for materials and peripheral equipment. Both thermoacoustic and thermionic heat pumps could have lower life cycle costs than conventional electric heat pumps because of reduced equipment and maintenance costs although energy use would be higher. There are strong opportunities for gas-fired heat pumps to reduce both energy use and operating costs outside of the high cooling climates in the southeast, south central states, and the southwest. Diesel and IC (Otto) engine-driven heat pumps are commercially available and should be able to increase their market share relative to gas furnaces on a life cycle cost basis; the cost premiums associated with these products, however, make it difficult to achieve three or five year paybacks which adversely affects their use in the U.S. Stirling engine-driven and duplex Stirling heat pumps have been investigated in the past as potential gas-fired appliances that would have longer lives and lower maintenance costs than diesel and IC engine-driven heat pumps at slightly lower efficiencies. These potential advantages have not been demonstrated and there has been a low level of interest in Stirling engine-driven heat pumps since the late 1980's. GAX absorption heat pumps have high heating efficiencies relative to conventional gas furnaces and are viable alternatives to furnace/air conditioner combinations in all parts of the country outside of the southeast, south central states, and desert southwest. Adsorption heat pumps may be competitive with the GAX absorption system at a higher degree of mechanical complexity; insufficient information is available to be more precise in that assessment.

Fischer, S.K.

2001-01-11T23:59:59.000Z

75

Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey  

SciTech Connect (OSTI)

The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

Davis, J.; Swenson, A.

1998-07-01T23:59:59.000Z

76

Residential Colleges NORTHWESTERN  

E-Print Network [OSTI]

Residential Colleges NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

Shull, Kenneth R.

77

RESIDENTIAL COLLEGES NORTHWESTERN  

E-Print Network [OSTI]

c RESIDENTIAL COLLEGES NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

Apkarian, A. Vania

78

Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.

Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

2014-06-18T23:59:59.000Z

79

April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances  

Broader source: Energy.gov [DOE]

These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

80

Distributed Generation Potential of the U.S. Commercial Sector  

E-Print Network [OSTI]

residential and commercial sector installations, for a total of 9 GW. Clearly, commercial DG with CHP

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

82

Catalog of thermal bridges in commercial and multi-family residential construction  

SciTech Connect (OSTI)

The catalog comprises a collection of 21 thermal bridges commonly encountered in commercial buildings, as well as alternative construction techniques which reduce the deleterious effects of these bridges. The thermal bridges presented here are conduction-dominated. Construction details which transfer heat mostly through convection or radiation are not addressed. The benefits of the alternate designs are expressed for each thermal bridge as (1) reductions in U-values and (2) reductions in moisture condensation. These reductions, in turn, are extrapolated at the whole building level in order to predict changes in the energy used for space heating and cooling and to estimate changes in the magnitude of the surface areas affected by moisture condensation. Finally, technical notes address the probable effects (thermal and moisture) of minor variations in the construction details presented in this catalog. The technical notes also give a more detailed prediction of the potential for moisture condensation due to thermal bridging.

Tuluca, A.N.; Evans, D.M.; Kumar, D.; Krarti, M. (Winter (Steven) Associates, Inc., New York, NY (USA)); Childs, K.; Courville, G. (Oak Ridge National Lab., TN (USA)); Vonier, T. (Vonier (Thomas) Associates, Inc., Washington, DC (USA)); Tye, R. (Holometrix, Inc., Cambridge, MA (USA))

1989-12-01T23:59:59.000Z

83

Ohio Average Price of Natural Gas Delivered to Residential and Commercial  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0Year Jan FebCubicSeparation

84

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

LBNL-37208 Huang, J. , Hanford, J. , et al. (1999).44636 Ritschard, R. L. , Hanford, J. W. , et al. (1992).Estimated by Huang, Hanford, et al. (1999) Climate Zone Year

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

85

Energy Efficiency Trends in Residential and Commercial Buildings Â… August 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y. |Technologies onDepartment

86

Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting Jobs and DiversifyingSavingsContracts

87

Residential Energy Audits  

E-Print Network [OSTI]

A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

Brown, W.

1985-01-01T23:59:59.000Z

88

UTILITY CHARACTERISTICS",,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRA  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual DownloadReserves20,798 18,578Year116,987Lower 48

89

UTILITY CHARACTERISTICS",,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRA  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual DownloadReserves20,798 18,578Year116,987Lower

90

UTILITY CHARACTERISTICS",,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRA  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual DownloadReserves20,798 18,578Year116,987Lower5,1,0,"Adjustment

91

Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration Project  

E-Print Network [OSTI]

Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration that began in 1985. Twenty-eight commercial buildings were designed and constructed to use 30% less was a research-oriented demonstration of energy efficiency in 28 new commercial buildings that provided Northwest

Diamond, Richard

92

Housing and Residential Life  

E-Print Network [OSTI]

1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

Fernandez, Eduardo

93

Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential  

SciTech Connect (OSTI)

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

NONE

1995-04-01T23:59:59.000Z

94

Bryant Residential Tutorship BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013  

E-Print Network [OSTI]

Bryant Residential Tutorship 1 BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013 BACKGROUND The D, Bryant Hall has provided a supportive residential environment for first-year students and has also in the Waikato region continues in the form of the Bryant Residential Tutorships. These Tutorships were offered

Waikato, University of

95

Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings  

SciTech Connect (OSTI)

In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project.

Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

1993-12-01T23:59:59.000Z

96

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998throughThousand CubicWashington Natural GasResidential Residential

97

Planning for an energy-efficient future: The experience with implementing energy conservation programs for new residential and commercial buildings: Volume 1  

SciTech Connect (OSTI)

This report is one of a series of program experience reports that seek to synthesize current information from both published and unpublished sources to help utilities, state regulatory commissions, and others to identify, design, and manage demand-side programs. This report evaluates the experience with implementing programs promoting energy efficiency in new residential and commercial construction. This investigation was guided by our perspective on how programs address the barriers to widespread adoption of energy-efficient design and better end-use technologies in new buildings. We considered four types of barriers: lack of information, high initial costs, degree of technological development, and perceived risk. We developed a typology that reflects different approaches to overcome these barriers to energy-efficient construction. 234 refs., 5 tabs.

Vine, E.; Harris, J.

1988-09-01T23:59:59.000Z

98

Types of Lighting in Commercial Buildings - Building Size and Year  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6Constructed

99

RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING  

E-Print Network [OSTI]

RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING Live on-campus in 2014-15 and participate in a unique as part of a residential community in Arroyo Vista! Open to all undergraduate students with 2-3 years

Loudon, Catherine

100

National radon database documentation. Volume 5. The EPA/state residential radon surveys: Years 5 and 6. Final report 1986-1992  

SciTech Connect (OSTI)

The National Radon Database has been developed by the U.S. Environmental Protection Agency (EPA) to distribute information collected in two recently completed radon surveys: the EPA/State Residential Radon Surveys, Years 1 to 6; and The National Residential Radon Survey. The goals of the state radon surveys were twofold. Some measure of the distribution of radon levels among residences was desired for major geographic areas within each state and for each state as a whole. In addition, it was desired that each state survey would be able to identify areas of potentially high residential radon concentrations (hot spots) in the state, enabling the state to focus its attention on areas where indoor radon concentrations might pose a greater health threat. The document discusses year 5, 1990-91. The areas surveyed are: Arkansas; Illinois; Maryland; Eastern Cherokee Nation; Mississippi; Texas; and Washington.

Not Available

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

RESIDENTIAL EXCHANGE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

establishes the right of Pacific Northwest electric utilities to participate in the Residential Exchange Program that provides wholesale power cost benefits for residential and...

102

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network [OSTI]

solid door refrigerators and freezers Commercial steamthermostats 3 Refrigerators and freezers Residential clothescabinets, commercial refrigerators and freezers, commercial

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

103

ASHRAE and residential ventilation  

SciTech Connect (OSTI)

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

104

Kenergy- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

105

sttesuhcassa RESIDENTIAL  

E-Print Network [OSTI]

University Apartments To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm RESIDENTIAL AREA Lorden Field ATHLETIC FIELDS To Telecom, UMass Outreach & UMass Extension at 101 University Drive NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center

Schweik, Charles M.

106

sttesuhcassa RESIDENTIAL  

E-Print Network [OSTI]

Gordon To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm & Intermediate ORCHARD HILL DR. Track & Field ACO SDT KKG SK ADP IGU ZBT BUTTERFIELDTERRACE DZ SOUTHWEST RESIDENTIAL AREA NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center Textbook

Mountziaris, T. J.

107

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

108

Austin Energy's Residential Solar Rate  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Leslie Libby Austin Energy Project Manager 2020 Utility Scale Solar Goal 175 MW 30 MW PPA at Webberville 2020 Distributed Solar Goal 25 MW Residential - 7.0 MW Commercial - 1.4 MW...

109

Electric Storage in California's Commercial Buildings  

E-Print Network [OSTI]

CHP system at the commercial building could be used to offset EV charging at home at the residential

Stadler, Michael

2014-01-01T23:59:59.000Z

110

STORM WATER Residential  

E-Print Network [OSTI]

STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

California at Santa Cruz, University of

111

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Automated Demand Response for Small Commercial Buildings. ”Demand Response Strategies and Commissioning Commercial Buildingfor Automated Demand Response in Commercial Buildings Sila

Kiliccote, Sila

2010-01-01T23:59:59.000Z

112

Best Management Practice #11: Commercial Kitchen Equipment  

Broader source: Energy.gov [DOE]

Commercial kitchen equipment represents a large set of water users in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high volume...

113

Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection  

SciTech Connect (OSTI)

Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

Choi, J.; Ludwig, P.; Brand, L.

2013-08-01T23:59:59.000Z

114

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

SciTech Connect (OSTI)

California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

2010-05-14T23:59:59.000Z

115

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

of Residential Source Heat Pump Gas Furnace HeatingResidential Heating Equipment (1) Database Year Minimum Type Code Fuel Effective (2) Efficiency (3) Heat Pumpheating technology of choice for almost 40% of the residential sector. Heat pumps

Wenzel, T.P.

2010-01-01T23:59:59.000Z

116

Design and thermal modeling of a residential building  

E-Print Network [OSTI]

Recent trends of green energy upgrade in commercial buildings show promise for application to residential houses as well, where there are potential energy-saving benefits of retrofitting the residential heating system from ...

Yeh, Alice Su-Chin

2009-01-01T23:59:59.000Z

117

Financing Non-Residential Photovoltaic Projects: Options and Implications  

SciTech Connect (OSTI)

Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years.ii Specifically, due to financial innovation, non-residential entities interested in PV no longer face prohibitively high up-front costs, no longer need to be able to absorb Tax Benefits in order to make the economics pencil out, no longer need to be able to operate and maintain the system, and no longer need to accept the risk that the system does not perform as expected.

Bolinger, Mark

2009-01-09T23:59:59.000Z

118

COMMERCIALIZING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma Physics

119

Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysis of Partondefault Sign In

120

Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean CommunitiesEFRC seekschief-science-officer/ Joint Center

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Residential Mail Procedures Residential Mail Services  

E-Print Network [OSTI]

Residential Mail Procedures Residential Mail Services 23 Owens Hall Blacksburg, VA 24061 Phone.mailservices.vt.edu #12;Residential Mail Procedures Table of Contents General information.................................................................................8 #12;Residential Mail Procedures The following procedures have been establishes by the University

Buehrer, R. Michael

122

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network [OSTI]

solid door refrigerators and freezers Commercial steamProfessional Displays Refrigerators and freezers ResidentialCommercial Refrigerators and Freezers • Computers •

Homan, GregoryK

2010-01-01T23:59:59.000Z

123

Financing Non-Residential Photovoltaic Projects: Options and Implications  

E-Print Network [OSTI]

Coggeshall. 2008. Solar Photovoltaic Financing: DeploymentEconomics of Commercial Photovoltaic Systems in California.Financing Non-Residential Photovoltaic Projects: Options and

Bolinger, Mark

2009-01-01T23:59:59.000Z

124

CenterPoint Energy (Gas)- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in eligible homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial...

125

NW Natural (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregon administers energy efficiency rebate programs for both residential and commercial customers of NW Natural in Washington. Energy Trust is awarding the rebates and providing...

126

Apply: Increase Residential Energy Code Compliance Rates (DE...  

Broader source: Energy.gov (indexed) [DOE]

view the webinar or presentation slides. Buildings Home About Emerging Technologies Residential Buildings Commercial Buildings Appliance & Equipment Standards Building Energy Codes...

127

DOE Publishes Notice of Proposed Rulemaking for Residential Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

has published a notice of proposed rulemaking regarding test procedures for residential water heaters and certain commercial water heaters. 78 FR 66201 (November 4, 2013). DOE...

128

Grays Harbor PUD- Non-Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Grays Harbor PUD's Non-Residential Rebate Program offers financial incentives to its commercial, agricultural, industrial, and institutional customers for the installation of energy efficient...

129

Optimal Technology Selection and Operation of Microgrids in Commercial Buildings  

E-Print Network [OSTI]

CHP and SQRA reflects some real technical challenges posed by commercial and residentialon the residential and commercial sectors in which CHP

Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

2008-01-01T23:59:59.000Z

130

Berkshire Gas- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Berkshire Gas offers all commercial customers various energy efficiency rebates. Berkshire Gas will pay residential customers that use gas to heat their homes 75% of the installed cost (up to $2...

131

Bryant Residential Scholarships This Scholarship is not currently  

E-Print Network [OSTI]

Bryant Residential Scholarships 1 This Scholarship is not currently open as the regulations have;Bryant Residential Scholarships 2 BRYANT RESIDENTIAL SCHOLARSHIPS REGULATIONS FOR 2013 BACKGROUND The D, Bryant Hall has provided a supportive residential environment for first-year students and has also

Waikato, University of

132

Residential Mechanical Precooling  

SciTech Connect (OSTI)

This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

German, A.; Hoeschele, M.

2014-12-01T23:59:59.000Z

133

Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 2  

SciTech Connect (OSTI)

This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

NONE

1995-04-01T23:59:59.000Z

134

CALIFORNIA ENERGY Residential Duct Placement  

E-Print Network [OSTI]

through the integrated design, construction, and operation of building systems. The Integrated Energy Systems Integrated Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting;#12;ACKNOWLEDGEMENTS The products and outcomes presented in this report are part of the Integrated Design

135

West Penn Power SEF Commercial Loan Program  

Broader source: Energy.gov [DOE]

The West Penn Power Sustainable Energy Fund (WPPSEF) promotes the use of renewable energy and clean energy among commercial, industrial, institutional and residential customers in the West Penn...

136

Residential Services Headlease residents  

E-Print Network [OSTI]

Residential Services Headlease residents handbook 2013-2014 #12;Map of Brighton inside front cover packs Rent 5 Residential Advisor (RA) network 6 Senior residential advisors Residential Student Support Contents Contents Brighton 1 #12;Welcome Congratulations on securing your place at Sussex. Residential

Sussex, University of

137

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

138

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andcan be measured using energy consumption per capita values.

Zhou, Nan

2010-01-01T23:59:59.000Z

139

American Municipal Power (Public Electric Utilities)- Residential Efficiency Smart Program (Ohio)  

Broader source: Energy.gov [DOE]

Efficiency Smart ™ provides energy efficiency incentives to the American Municipal Power, Inc (AMP) network of public power communities. Efficiency Smart assists residential, commercial , and...

140

Residential Learning University Housing  

E-Print Network [OSTI]

Residential Learning & University Housing Handbook 2008 - 2009 A Guide for Residential Living on the Campus of Rowan University #12;Welcome to Residential Learning & University Housing! The primary purpose of the Office of Residential Life & University Housing is to assist and support students in the pursuit

Rusu, Adrian

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MOVE-IN GUIDE Housing and Residential Life  

E-Print Network [OSTI]

MOVE-IN GUIDE Fall 2013 Housing and Residential Life #12;Become a leader, excel academically and give you memories that will last well after college. The Housing and Residential Life staff knows and guidelines for how our residential communities operate and come together throughout the academic year. Please

Finley Jr., Russell L.

142

Northern Colorado Residential Survey 2010 Everitt Real Estate Center  

E-Print Network [OSTI]

Northern Colorado Residential Survey 2010 Everitt Real Estate Center Supported by the efforts of... #12;NoCo residential summary findings · Broad geographic base, majority 10+ years · Brokers , % distribution Source: Northern Colorado Residential Survey Respondents, Everitt Real Estate Center, March 2010

Rutledge, Steven

143

EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

144

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network [OSTI]

solid door refrigerators and freezers Commercial steamProfessional Displays Refrigerators and freezers ResidentialCommercial Refrigerators and Freezers • Compact Florescent

Homan, Gregory K

2011-01-01T23:59:59.000Z

145

Co-Mo Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Co-Mo Electric Cooperative provides rebates to residential and commercial members who install air source, dual fuel, and/or geothermal heat pumps, and certain energy efficient appliances. The...

146

Platte-Clay Electric Cooperative- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Platte-Clay Electric Cooperative offers a variety of rebates to residential and commercial customers who wish to upgrade to energy efficient equipment. Newly installed ground source heat pumps are...

147

Central Electric Cooperative- Non-Residential Lighting Rebate  

Broader source: Energy.gov [DOE]

The Central Electric Cooperative offers a commercial lighting system improvement incentive for any customer not on a residential utility rate. To use the program and learn how much the rebates can...

148

Clallam County PUD- Residential and Small Business Solar Loan Program  

Broader source: Energy.gov [DOE]

In conjunction with First Federal Savings and Loan, Clallam County PUD offers residential and small commercial customers a low-interest loan program for the purchase of solar photovoltaic systems....

149

Benton PUD- Commercial and Agricultural Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Benton PUD offers a variety of incentives to non-residential customers for energy efficiency improvements. Projects are available for commercial customers interested in energy efficient lighting...

150

Chicopee Electric Light- Commercial Energy Efficiency Rebate Program (Massachusetts)  

Broader source: Energy.gov [DOE]

Chicopee Electric Light (CEL) offers a Pilot Energy Efficiency Program to encourage non-residential, commercial, and industrial facilities to pursue energy saving measures and install energy...

151

Long Island Power Authority- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Long Island Power Authority offers a variety of incentives for its non-residential customers to increase the energy efficiency of facilities through the Commercial Efficiency Program. Major...

152

Mason County PUD 3- Commercial and Industrial Energy Rebates  

Broader source: Energy.gov [DOE]

Mason County PUD 3 offers rebates to its non-residential customers for implementing energy efficient lighting, motor rewinds, refrigeration, commercial cooking equipment, and custom projects....

153

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014 Residential

154

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014 Residential05,

155

Monthly Variable-based Degree Day Template: A Spreadsheet Procedure Calculating a 3 Parameter Change-point Model for Residential or Commercial Buildings  

E-Print Network [OSTI]

Laboratory Texas Engineering Experiment Station Texas A&M University System College Station, TX p. 17 In the PRISM (*.mtr) file the first line contains various labels and the beginning date of the first metering period. The following nine lines contain... the energy use, moth, day, and year. The (-1) indicates a missing reading and the (-99) indicates the end of the input file. Table B: Data Input File (school.mtr) Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System...

Landman, D. S.; Haberl, J. S.

1996-01-01T23:59:59.000Z

156

Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Apropane pricespropane

157

Better Buildings Residential Network Peer Exchange Call: Commercial and Multi-family Building Benchmarking and Disclosure, Call Slides, July 25, 2013  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 BetterOctober25, 2013 Better Buildings

158

Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities  

SciTech Connect (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

Goodrich, A.; James, T.; Woodhouse, M.

2012-02-01T23:59:59.000Z

159

National Grid (Electric)- Non-Residential Energy Efficiency Program (Upstate New York)  

Broader source: Energy.gov [DOE]

National Grid’s Non-Residential Program is for electric business customers in upstate New York. Incentives are available for both small commercial and large commercial customers in the Upstate New...

160

Central Georgia EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes. This year,...

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Guide for Benchmarking Residential Energy Efficiency Program...  

Energy Savers [EERE]

Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential...

162

Better Buildings Residential Program Solution Center Demonstration...  

Energy Savers [EERE]

Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution...

163

Presentation: Better Buildings Residential Program Solution Center...  

Energy Savers [EERE]

Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

164

Membership Criteria: Better Buildings Residential Network | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network...

165

PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION  

E-Print Network [OSTI]

PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION MANUAL (ACM) APPROVAL METHOD for the 2013 2012 CEC400201200715DAY #12;201308 Residential ACM Approval Manual 2-2 1. Overview Minimum Modeling Capabilities 1. Overview This Manual explains the requirements for approval of residential Alternative

166

AREA COORDINATOR RESIDENTIAL EDUCATION  

E-Print Network [OSTI]

AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

Bordenstein, Seth

167

Residential Wood Residential wood combustion (RWC) is  

E-Print Network [OSTI]

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

168

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming

169

DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual.  

E-Print Network [OSTI]

1 Appendix A DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual. Residential Life Program Listing #12;2 MISSOURI S&T RESIDENTIAL LIFE DEPARTMENT Staff Resource Manual 2010--2012 Department of Residential Life Mission: To create educational environments emphasizing learning and development. Service

Missouri-Rolla, University of

170

Strategy Guideline: High Performance Residential Lighting  

SciTech Connect (OSTI)

The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

Holton, J.

2012-02-01T23:59:59.000Z

171

Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India  

SciTech Connect (OSTI)

The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

McNeil, Michael A.; Iyer, Maithili

2009-05-30T23:59:59.000Z

172

Austin Energy- Commercial PV Incentive Program  

Broader source: Energy.gov [DOE]

Austin Energy, a municipal utility, offers a production incentive to its commercial and multi-family residential customers for electricity generated by qualifying photovoltaic (PV) systems of up to...

173

CALIFORNIA ENERGY Residential Duct Placement Field Test and  

E-Print Network [OSTI]

efficiency is improved through the integrated design, construction, and operation of building systems of Small Commercial HVAC Systems Integrated Design of Commercial Building Ceiling Systems Integrated Design of the Integrated Design of Residential Ducting & Air Flow Systems research project. The reports are a result

174

Solar Photovoltaic Financing: Residential Sector Deployment  

SciTech Connect (OSTI)

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

175

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network [OSTI]

solid door refrigerator and freezer Commercial steam cooker4, 5 New home Refrigerator and freezer 6 Residential clothesdoor commercial refrigerators and freezers, refrigerated

Sanchez, Marla

2010-01-01T23:59:59.000Z

176

RESIDENTIAL SERVICES STUDENT CHARTER Introduction  

E-Print Network [OSTI]

RESIDENTIAL SERVICES STUDENT CHARTER Introduction This Charter sets out the standards of provision. Residential Services are committed to encouraging diversity and inclusiveness within University residences via the Residential Services Annual Report and the internet. Consultation This Charter was developed

Oakley, Jeremy

177

CONSULTANT REPORT 2009 CALIFORNIA RESIDENTIAL  

E-Print Network [OSTI]

CONSULTANT REPORT 2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY funded and administered a Residential Appliance Saturation Study that serves as an update to the 2003 electric and 10 natural gas residential enduses and appliance saturations for households

178

Essays on residential desegregation  

E-Print Network [OSTI]

Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

Wong, Maisy

2008-01-01T23:59:59.000Z

179

Residential Solar Rights  

Broader source: Energy.gov [DOE]

In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar...

180

Residential Rewards Program  

Broader source: Energy.gov [DOE]

The Focus on Energy Program offers a Residential Rewards Program to eligible residents for purchasing and installing furnaces, boilers, heat pumps, air sealing, attic insulation, and water heaters....

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Citizens Gas- Residential Efficiency Rebates  

Broader source: Energy.gov [DOE]

Citizens Gas of Indiana offers rebates to its residential customers for the installation of several types of efficient natural gas appliances. Rebates are generally available for residential homes...

182

Efficiency Maine Residential Lighting Program  

Broader source: Energy.gov [DOE]

Efficiency Maine's Residential Lighting Program works directly with retailers and manufacturers to encourage residential customers to purchase energy-efficient lighting. Rebate amounts average $1...

183

Residential Retrofit Program Design Guide  

Broader source: Energy.gov [DOE]

This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

184

Residential Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. EnergyEnergy EfficiencyLighting

185

Residential Segmentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. EnergyEnergy53 2.370

186

Residential Weatherization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. EnergyEnergy53 2.370Weatherization

187

RESIDENTIAL EXCHANGE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.Office ofMayPVREPORT TO THE2 NMED2

188

Commercial | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaftColumbiaCommercial and Residential

189

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

SciTech Connect (OSTI)

On August 8, 2005, the Energy Policy Act of 2005 (EPAct 2005) increased the Section 48 investment tax credit (ITC) for commercial photovoltaic (PV) systems from 10% to 30% of the project's 'tax credit basis' (i.e., the dollar amount to which the ITC applies), and also created in Section 25D of the Internal Revenue Code a new 30% ITC (capped at $2,000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 both credits were extended 'as is' for an additional year (through 2008). In early 2006, Berkeley Lab published an LBNL/CESA case study that examined the financial impact of EPAct 2005's solar tax credits on PV system owners, in light of the $2,000 cap on the residential credit, as well as the fact that most PV systems in the U.S. also receive cash incentives from state-, local-, or utility-administered PV programs, and that these cash incentives may reduce the value of federal tax credits in certain situations. That case study was subsequently revised in February 2007 to reflect new Internal Revenue Service (IRS) guidance. The findings of that case study, which are briefly recapped in the next section, remained relevant up until October 2008, when the Energy Improvement and Extension Act of 2008 extended both solar credits for an unprecedented eight years, removed the $2,000 cap on the residential credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax (AMT). These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely to spur significant growth in residential, commercial, and utility-scale PV installations in the years ahead. In light of these substantial changes to the solar ITC, this report takes a fresh look at the value of these revised credits, focusing specifically on the Section 25D residential credit. After first setting the stage by briefly reviewing our previous findings, the document proceeds to cover four specific areas in which the removal of the $2,000 cap on the residential ITC will have significant implications for PV program administrators, PV system owners, and the PV industry that go beyond the obvious market growth potential created by these more-lucrative federal incentives. These four areas include: (1) The financial implications of whether or not residential cash rebates are considered to be taxable income; (2) The role of low-interest loan programs and other forms of 'subsidized energy financing' under an uncapped ITC; (3) The degree to which taxable and nontaxable rebate levels might be reduced in response to the extra value provided by an uncapped ITC; and (4) The impact of an uncapped ITC on third-party financing and ownership models that are just beginning to emerge in the residential sector. The document concludes by highlighting a common thread that runs throughout: the need for PV program managers to understand whether or not their rebates are considered to be taxable income before they can react in an appropriate manner to the recent changes in federal solar policy and, if financing programs are offered, the need to understand whether the IRS considers these programs to be 'subsidized'. Finally, we note that this paper is based on current law; future legislative changes to the ITC could, of course, alter the conclusions reached here.

Bolinger, Mark; Barbose, Galen; Wiser, Ryan

2008-11-12T23:59:59.000Z

190

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect (OSTI)

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

191

INSTRUCTIONS FOR THE RESIDENTIAL STAFF RECOMMENDER FROM THE PRISE SELECTION COMMITTEE Applicant Name  

E-Print Network [OSTI]

INSTRUCTIONS FOR THE RESIDENTIAL STAFF RECOMMENDER FROM THE PRISE SELECTION COMMITTEE Applicant (PRISE), to participate in the 10-week summer residential community of undergraduate scientists to the academic year residential community. The applicant has selected you to provide a letter of recommendation

Mekalanos, John

192

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network [OSTI]

465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

193

RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES  

E-Print Network [OSTI]

Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air

Meier, Alan K.

2008-01-01T23:59:59.000Z

194

Fact Sheet: Better Buildings Residential Network  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fact Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn What Is the Residential Network? The Better Buildings Residential Network connects...

195

Fact Sheet: Better Buildings Residential Network | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

196

Residential Retrofit Program Design Guide Overview Transcript...  

Broader source: Energy.gov (indexed) [DOE]

Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide...

197

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

SciTech Connect (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

198

Residential Wind Power  

E-Print Network [OSTI]

This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

Willis, Gary

2011-12-16T23:59:59.000Z

199

Residential Energy Disclosure (Hawaii)  

Broader source: Energy.gov [DOE]

A residential property owner is required to disclose electricity costs for the most recent three-month period in which the property was occupied as a condition of selling it. No proof or copies of...

200

Residential Solar Tax Credit  

Broader source: Energy.gov [DOE]

Enacted in August 1997, this personal income tax credit originally applied to expenditures on solar-electric (PV) equipment used on residential property. The credit, equal to 25% percent of the...

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Commercial thermal distribution systems, Final report for CIEE/CEC  

SciTech Connect (OSTI)

According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related

Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

1999-12-01T23:59:59.000Z

202

NREL: Buildings Research - Residential Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below are upcoming eventsResidential

203

National Residential Efficiency Measures Database Webinar Slides...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies...

204

Building America Webinar: National Residential Efficiency Measures...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

205

Better Buildings Residential Program Solution Center Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Solution Center Demonstration Webinar Transcript Better Buildings Residential Program Solution Center Demonstration Webinar Transcript The Better Buildings Residential...

206

Conference Agenda: Residential Energy Efficiency Solutions 2012...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conference Agenda: Residential Energy Efficiency Solutions 2012 Conference Agenda: Residential Energy Efficiency Solutions 2012 Presents conference agenda including a general...

207

Behavioral Assumptions Underlying California Residential Sector...  

Broader source: Energy.gov (indexed) [DOE]

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy...

208

Better Buildings Residential Program Solution Center Demonstration...  

Energy Savers [EERE]

Better Buildings Residential Program Solution Center Demonstration Webinar Better Buildings Residential Program Solution Center Demonstration Webinar Demonstration webinar slides...

209

Residential Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998throughThousand CubicWashington Natural GasResidential Residential9

210

Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for the State of New York  

SciTech Connect (OSTI)

This analysis was conducted by Pacific Northwest National Laboratory (PNNL) in support of the U.S. Department of Energy’s (DOE) Building Energy Codes Program (BECP). DOE supports the development and adoption of energy efficient and cost-effective residential and commercial building energy codes. These codes set the minimum requirements for energy-efficient building design and construction and ensure energy savings on a national level. The basis of the residential building energy codes is the International Energy Conservation Code (IECC) published by the International Code Council (ICC). The IECC is developed and published on a three-year cycle, with a new edition published at the end of each cycle.

Mendon, Vrushali V.; Selvacanabady, Abinesh

2014-12-01T23:59:59.000Z

211

DYNAMIC MODELING RESIDENTIAL DATA AND APPLICATION  

E-Print Network [OSTI]

was determined between electrolyzer H2 energy production and solar irradiance Yearly residential energy needs well as a replacement for rechargeable lead acid batteries when integrated with solar photovoltaic (PV in other applications such as cooking, heating, and transportation. One of the inherent advantages

Mease, Kenneth D.

212

MICRO-CHP System for Residential Applications  

SciTech Connect (OSTI)

This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

Joseph Gerstmann

2009-01-31T23:59:59.000Z

213

YEAR  

National Nuclear Security Administration (NNSA)

5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 22 NN (Engineering) 23 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska...

214

YEAR  

National Nuclear Security Administration (NNSA)

96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

215

Progress Energy Carolinas- SunSense Residential PV Incentive Program  

Broader source: Energy.gov [DOE]

'''''Note: This program is budgeted to support a total of 1 MW of residential systems per year. The program is now fully subscribed for 2013. New applications will be accepted starting January 1,...

216

The residential demand for electricity in New England,  

E-Print Network [OSTI]

The residential demand for electricity, studied on the national level for many years, is here investigated on the regional level. A survey of the literature is first presented outlining past econometric work in the field ...

Levy, Paul F.

1973-01-01T23:59:59.000Z

217

CenterPoint Energy (Gas)- Commercial Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in their homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial customers...

218

Empire District Electric- Commercial and Industrial Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

219

Lakeview Light and Power- Commercial Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

220

Sample Residential Program Term Sheet  

Broader source: Energy.gov (indexed) [DOE]

Goal DRAFT U.S. DOE Sample Residential Program Term Sheet - DRAFT Introduction is seeking to develop an energy...

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Four-State Residential Retrofit and Energy Labeling Project: Process Evaluation and Results Webinar  

Broader source: Energy.gov [DOE]

The State Energy Offices in Alabama, Massachusetts, Virginia, and Washington recently completed a multi-year residential energy efficiency pilot program funded by a competitive State Energy Program...

222

Questions Asked during the Financing Residential Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

223

Residential & Business Services Director's Office  

E-Print Network [OSTI]

Residential & Business Services Director's Office Butts Wynd, North Street, St Andrews, Fife, KY16 by students for students are an integral part of student life and intrinsic to the student residential the residential environment. However, experience tells us that events require careful planning and organisation

Brierley, Andrew

224

STATE OF CALIFORNIA RESIDENTIAL LIGHTING  

E-Print Network [OSTI]

STATE OF CALIFORNIA RESIDENTIAL LIGHTING CEC-CF-6R-LTG-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-LTG-01 Residential Lighting (Page 1 of 6) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 1. Kitchen Lighting Does project

225

Permanent Home Number: Residential Number  

E-Print Network [OSTI]

Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

Viglas, Anastasios

226

YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL REVENUE ($1,000  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: SulfurBase4,"Ames City of",6,1,"OmahaThousand Cubic Feet) Year Jan Feb7 Volumes of

227

YEAR","MONTH","STATE","UTILITY_ID","UTILITY_NAME","RESIDENTIAL_GP REVENUES (Tho  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: SulfurBase4,"Ames City of",6,1,"OmahaThousand Cubic Feet) Year Jan Feb7 Volumes

228

Yearly  

E-Print Network [OSTI]

In 2009, a new activity was launched under the International Energy Agency Wind Implementing Agreement (IEA Wind) for the small wind sector. The main focus of this activity, called Task 27, is to develop recommended practices for consumer labeling of existing commercial small wind turbines. Participants will also exchange information about the status of the small wind industry in the member countries. This report outlines the status of the small wind sector in 2009 in the countries participating in Task 27. (For more information about IEA Wind and the consumer label developed under Task 27, see www.ieawind.org.)

unknown authors

2009-01-01T23:59:59.000Z

229

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

SciTech Connect (OSTI)

The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

2009-03-31T23:59:59.000Z

230

Final Report of Sixth Residential College Program Committee The Sixth College Program Committee has concluded that the addition of 500  

E-Print Network [OSTI]

Final Report of Sixth Residential College Program Committee Summary The Sixth College Program by the University Trustees provides an excellent opportunity to offer a new residential college option for third- and fourth-year students. While maintaining the benefits of the current residential college experience

Rowley, Clarence W.

231

High SEER Residential AC  

SciTech Connect (OSTI)

This article discusses the new offerings of residential air conditioning systems with very high Seasonal Energy Efficiency Ratio (SEER) ratings, the two regional areas dictating operations standards ("hot, humid" and "hot, dry"), and the potential energy savings these new systems can provide. The article concludes with a brief review of current market potential.

Hastbacka, Mildred; Dieckmann, John; Brodrick, James

2012-07-31T23:59:59.000Z

232

Residential Furnace Blower Performance  

E-Print Network [OSTI]

conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

233

DAYLIGHTING METRICS FOR RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

It is now widely accepted that the standard method for daylighting evaluation- the daylight factor- is due for replacement with metrics founded on absolute values for luminous quantities predicted over the course of a full year using sun and sky conditions derived from standardised climate files. The move to more realistic measures of daylighting introduces significant levels of additional complexity in both the simulation of the luminous quantities and the reduction of the simulation data to readily intelligible metrics. The simulation component, at least for buildings with standard glazing materials, is reasonably well understood. There is no consensus however on the composition of the metrics, and their formulation is an ongoing area of active research. Additionally, non-domestic and residential buildings present very different evaluation scenarios and it is not yet clear if a single metric would be applicable to both. This study uses a domestic dwelling as the setting to investigate and explore the applicability of daylighting metrics for residential buildings. In addition to daylighting provision for task and disclosing the potential for reducing electric lighting usage, we also investigate the formulation of metrics for non-visual effects such as entrainment of the circadian system.

unknown authors

234

YEAR  

National Nuclear Security Administration (NNSA)

8 Females 25 PAY PLAN YEAR 2014 SES 1 EJEK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 25 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native...

235

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males42 YEAR

236

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR 2013

237

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR 20135

238

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR

239

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR17 111

240

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR17

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR179

242

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR1794

243

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR17949

244

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR17949

245

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296 YEAR179495

246

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689 YEAR

247

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689 YEAR64

248

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689 YEAR643

249

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892 YEAR

250

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892 YEAR94

251

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892707 YEAR

252

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 8731 YEAR 2012

253

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 8731 YEAR 201233

254

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 8731 YEAR

255

PowerChoice Residential Customer Response to TOU Rates  

E-Print Network [OSTI]

Savings from Residential Energy Demand Feedback Devices. ”residential energy consumption, load shifting, consumption feedback

Peters, Jane S.

2010-01-01T23:59:59.000Z

256

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137 YEAR 2013

257

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137 YEAR

258

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137 YEAR49

259

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137 YEAR4993

260

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK013702 YEAR

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK013702 YEAR

262

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK01370274 YEAR

263

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males 19

264

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males 1916

265

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males 191686

266

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males

267

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males42

268

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males427

269

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males4278

270

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males427825

271

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012 Males4278251

272

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012

273

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296

274

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689

275

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892

276

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 201296892707

277

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 2012968927072659

278

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR 20129689270726598

279

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR

280

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38% ↓

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38% ↓558

282

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38%

283

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38%563

284

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38%56378

285

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87 -9.38%5637831

286

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A0 YEAR6 87

287

Residential Absorption Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL| DepartmentResidential

288

Residential Buildings Integration (RBI)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL| DepartmentResidential|

289

Detailed residential electric determination  

SciTech Connect (OSTI)

Data on residential loads has been collected from four residences in real time. The data, measured at 5-second intervals for 53 days of continuous operation, were statistically characterized. An algorithm was developed and incorporated into the modeling code SOLCEL. Performance simulations with SOLCEL using these data as well as previous data collected over longer time intervals indicate that no significant errors in system value are introduced through the use of long-term average data.

Not Available

1984-06-01T23:59:59.000Z

290

The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings  

E-Print Network [OSTI]

In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

Xiang, C.; Xie, G.

2006-01-01T23:59:59.000Z

291

Lehigh University Office of Residential Services  

E-Print Network [OSTI]

Lehigh University Office of Residential Services Resident Check-Out Form Students are expected and furniture of all personal property. Residential Services is not responsible for any personal items left and residential administration staff for billing purposes. Signature

Napier, Terrence

292

Vanderbilt University Office of Housing & Residential Education  

E-Print Network [OSTI]

Vanderbilt University Office of Housing & Residential Education RESIDENTADVISERRECRUITMENT2015 Adviser (RA) is a paraprofessional student staff member for the Office of Housing and Residential Coordinators, Head Residents, and faculty to create a premiere residential experience where students can learn

Bordenstein, Seth

293

2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY  

E-Print Network [OSTI]

2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY Volume 1 and administered a Residential Appliance Saturation Study that serves as an update to the 2003 RASS, with the same residential enduses and appliance saturations for households. These consumption estimates were developed

294

2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY  

E-Print Network [OSTI]

2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY Executive and administered a Residential Appliance Saturation Study that serves as an update to the 2003 RASS, with the same residential enduses and appliance saturations for households. These consumption estimates were developed

295

Your Resource Guide to WVU's Residential  

E-Print Network [OSTI]

Your Resource Guide to WVU's Residential Learning Communities Eyes&'Eers 2014­ 2015 Academic throughout the summer. welcomeweek.wvu.edu Residential Education Programming Opportunities Volleypalooza Scarehouse Rich's Fright Farm (Haunted House) Kennywood Fright Night Residential Education Octoberfest

Mohaghegh, Shahab

296

http://warren.ucsd.edu 1 Residential  

E-Print Network [OSTI]

http://warren.ucsd.edu 1 Warren Resources Residential Life Student Conduct University Resources Off and Employment 10 Section II: Residential Life Introduction 11 Residential Life Policies 13 Section III: Student

Tsien, Roger Y.

297

RESIDENTIAL BURGLARY DATE: November 25, 2014  

E-Print Network [OSTI]

RESIDENTIAL BURGLARY DATE: November 25, 2014 INCIDENT / LOCATION: Residential Burglary in Vista Del 22, 2014, at approximately 11:07 pm, the UCI Police Department received a report of a residential

Rose, Michael R.

298

YEAR  

National Nuclear Security Administration (NNSA)

YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

299

Commercial Weatherization  

Broader source: Energy.gov [DOE]

Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

300

Commercial Lighting  

Broader source: Energy.gov [DOE]

Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Third-Party Finance for Commercial Photovoltaic Systems: The Rise of the PPA  

SciTech Connect (OSTI)

Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. This article, which is excerpted from a longer report, focuses specifically on just one subset of the non-residential PV market: systems hosted (and perhaps owned) by commercial, tax-paying entities. Tax-exempt entities (e.g., non-profits or municipalities) face unique issues and have different financing options at their disposal; readers interested in PV financing options for tax-exempt entities can find more information in the Bolinger report.

Bolinger, Mark A

2009-02-15T23:59:59.000Z

302

Unitil- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Unitil offers New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air...

303

NYSEG (Gas)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

NYSEG is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as...

304

SMUD- Residential Solar Loan Program  

Broader source: Energy.gov [DOE]

The Sacramento Municipal Utility District's (SMUD) Residential Loan Program provides 100% financing to customers who install solar water heating systems. All solar water heating systems must meet...

305

Evaluation of evolving residential electricity tariffs  

E-Print Network [OSTI]

residential electricity tariffs Judy Lai, Nicholas DeForest,residential electricity tariffs Judy Lai – Senior Researchfrom the current 5-tiered tariff to time variable pricing,

Lai, Judy

2011-01-01T23:59:59.000Z

306

Tacoma Power- Residential Weatherization Rebate Program  

Broader source: Energy.gov [DOE]

Tacoma Power helps residential customers increase the energy efficiency of homes through the utility's residential weatherization program. Weatherization upgrades to windows are eligible for an...

307

Building America Residential Energy Efficiency Research Planning...  

Broader source: Energy.gov (indexed) [DOE]

Research Planning meeting in October 2011, held in Washington, D.C. Residential Energy Efficiency Planning Meeting Summary Report More Documents & Publications Residential Energy...

308

Residential Energy Efficiency Customer Service Best Practices...  

Energy Savers [EERE]

Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call January 22, 2015...

309

Building America Residential Energy Efficiency Technical Update...  

Energy Savers [EERE]

Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

310

Residential Tax Credits Boost Maryland Geothermal Business |...  

Broader source: Energy.gov (indexed) [DOE]

Residential Tax Credits Boost Maryland Geothermal Business Residential Tax Credits Boost Maryland Geothermal Business June 18, 2010 - 12:09pm Addthis Paul Lester Communications...

311

Better Buildings Residential Network Case Study: Partnerships...  

Energy Savers [EERE]

Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of...

312

RESIDENTIAL WEATHERIZATION SPECIFICATIONS August 30, 2011  

E-Print Network [OSTI]

RESIDENTIAL WEATHERIZATION SPECIFICATIONS August 30, 2011 Index to Sections Section Page I. GENERAL............................................................................................35 #12;1 I. GENERAL SPECIFICATIONS 1. These specifications apply to existing residential (retro

313

Better Buildings Residential Network Orientation Peer Exchange...  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Residential Network Orientation Peer Exchange Webinar Better Buildings Residential Network Orientation Peer Exchange Webinar September 11, 2014 7:00PM to 8:3...

314

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

315

Quality Assurance for Residential Retrofit Programs | Department...  

Broader source: Energy.gov (indexed) [DOE]

Quality Assurance for Residential Retrofit Programs Quality Assurance for Residential Retrofit Programs Blue version of the EERE PowerPoint template, for use with PowerPoint 2007....

316

Residential Waste Do not mix in  

E-Print Network [OSTI]

Residential Waste Do not mix in Newspaper Cardboard Paper ScrapsMagazines and Miscellaneous Paper Experiment-Relatedand ResidentialWastebyType #12;

Nakamura, Iku

317

Effect of Water Education on Reducing Residential Consumption in San Antonio, Texas  

E-Print Network [OSTI]

cities in the southwest found that nearly 60% percent of water was used outdoors.(Mayer 1999). Municipal water conservation programs focus on reducing residential, commercial and industrial consumption. Residential water conservation relies on five... of week limitations; (4) rebate programs encouraging a change of landscape material to drought tolerant native landscapes and (5) water pricing. San Antonio has employed all five conservation strategies. Currently, the San Antonio Water System (SAWS...

Rice, Jeremy Joseph

2010-10-12T23:59:59.000Z

318

Toward a national plan for the accelerated commercialization of solar energy. Workbook summaries  

SciTech Connect (OSTI)

These workbooks contain preliminary data and assumptions used during the preparation of inputs to a National Plan for the Accelerated Commercialization of Solar Energy (NPAC). The workbooks indicate the market potential, competitive position, market penetration, and technological characteristics of solar technologies over the next twenty years for five market sectors: residential buildings; commercial and institutional buildings; agricultural and industrial process heat; utility applications; and synthetic fuels and chemicals. The workbooks also present projections of the mix of solar technologies by US Census Region. In some cases, data have been aggregated to the national level. Emphasis of the workbooks is on a mid-price fuel scenario, Option II, that meets about a 20 percent solar goal by the year 2000. The energy demand for the mid-price scenario is projected at 115 quads in the year 2000.

Gerstein, R.E.; Kannan, N.P.; Miller, C.G.; Shulman, M.J.; Taul, J.W. Jr.; de Jong, D.L.

1980-01-01T23:59:59.000Z

319

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0

320

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK013702

322

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK01370274

323

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137027440

324

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK01370274403

325

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK013702744038

326

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A GUIDEBOOK0137027440384

327

YEAR  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review 2008 A

328

Transforming the market for residential windows: design considerations for DOE's Efficient Window Collaborative  

SciTech Connect (OSTI)

Market adoption of recent, commercially available technological advances that improve the energy performance of windows will lead to immediate economic and energy savings benefits to the nation. This paper is a scoping study intended to inform the design of a major DOE initiative to accelerate market adoption of these windows in the residential sector. We describe the structure of the US residential window market and the interests of the various market players. We then briefly review five recent market transformation initiatives. Finally, we summarize our findings in a list of considerations we believe will be important for the DOE's initiative to transform the US residential window market.

Eto, J.; Arasteh, D.; Selkowitz, S.

1998-08-01T23:59:59.000Z

329

Most new recessed downlights in the commercial sector use compact  

E-Print Network [OSTI]

CFL downlight systems--one each for commercial and residential markets--that reduce both energy: · PIER project site: www.energy.ca.gov/pier/buildings/ projects/500-01-041-0-4-4_3.html · PIER contractorMost new recessed downlights in the commercial sector use compact fluorescent lamps (CFLs

330

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

SciTech Connect (OSTI)

An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

2011-10-13T23:59:59.000Z

331

National Residential Efficiency Measures Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

332

Residential appliances technology atlas  

SciTech Connect (OSTI)

Residential appliance technology and efficiency opportunities for refrigerators and freezers, cooking appliances, clothes washers and dryers, dishwashers, and some often-ignored household devices such as spas, pool pumps, waterbed heaters, televisions, and home computers are thoroughly covered in this Atlas. The US appliance market, fuel shares, efficiency standards, labeling, and advances in home automation, design for recycling, and CFC issues are also discussed. The resource section contains lists of appliance manufacturers and distributors, and trade, professional, and governmental organizations, a summary of key resources for further information, and an index.

NONE

1994-12-31T23:59:59.000Z

333

Energy Optimization (Electric)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

334

MODELING THE DIFFUSION OF MICRO-CHP IN A RESIDENTIAL AREA  

E-Print Network [OSTI]

i MODELING THE DIFFUSION OF MICRO-CHP IN A RESIDENTIAL AREA by Christian Chemaly A thesis submitted OF MICRO-CHP IN A RESIDENTIAL AREA by Christian Chemaly A thesis presented on the diffusion of micro-CHP shows that micro-CHP will not reach 50% of the market in less than 20 years. Furthermore it analyses

335

New Energy Efficiency Standards for Residential Clothes Washers...  

Office of Environmental Management (EM)

June 2011 - Residential furnaces and residential central air conditioners and heat pumps September 2011 - Residential refrigerators, freezers, and refrigerator-freezers...

336

Residential Forced Air System Cabinet Leakage and Blower Performance  

E-Print Network [OSTI]

CA.   CEC (2008b).  Residential Alternative Calculation Standard for Air Handlers in Residential Space Conditioning of Standards Options for Residential Air Handler Fans.   

Walker, Iain S.

2010-01-01T23:59:59.000Z

337

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network [OSTI]

Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

Sherman, Max H.

2011-01-01T23:59:59.000Z

338

Residential implementation of critical-peak pricing of electricity  

E-Print Network [OSTI]

L.R. Modeling alternative residential peak-load electricitydemand response to residential critical peak pricing (CPP)analysis of California residential customer response to

Herter, Karen

2006-01-01T23:59:59.000Z

339

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

McNeil, Michael A.

2010-01-01T23:59:59.000Z

340

Guide to Benchmarking Residential Program Progress Webcast Slides...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential...

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Highly Insulating Residential Windows Using Smart Automated Shading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with...

342

Focus Series: Maine-Residential Direct Install Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Maine-Residential Direct Install Program Focus Series: Maine-Residential Direct Install Program Better Buildings Neighborhood Program Focus Series: MAINE-Residential Direct Install...

343

Better Buildings Residential Network: Lessons Learned: Peer Exchange...  

Energy Savers [EERE]

Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential...

344

About the Better Buildings Residential Network | Department of...  

Office of Environmental Management (EM)

About the Better Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and...

345

Residential Retrofit Design Guide Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Webinar. Res Retro Design Guide Webinar 5-3-11...

346

Jasper County REMC- Residential Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential customers for the purchase and installation of energy...

347

INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE  

E-Print Network [OSTI]

and Analysis of Swedish Residential Energy Use Data 1960-80.1980. International Residential Energy Use and ConservationInternational Comparison of Residential Energy ! Js~. Report

Schipper, L.

2013-01-01T23:59:59.000Z

348

Think inside the box : an analysis of converting commercial property into self storage facilities  

E-Print Network [OSTI]

The modern self storage facility is a multi-tenant operating business that reflects the needs of residential and commercial customers. The industry has evolved from a transition asset to a property type that adheres to ...

McKinley, Sean Jeffrey

2006-01-01T23:59:59.000Z

349

The Commercial Energy Consumer: About Whom Are We Speaking?  

SciTech Connect (OSTI)

Who are commercial sector customers, and how do they make decisions about energy consumption and energy efficiency investment? The energy policy field has not done a thorough job of describing energy consumption in the commercial sector. First, the discussion of the commercial sector itself is dominated by discussion of large businesses/buildings. Second, discussion of this portion of the commercial sectors consumption behavior is driven primarily by theory, with very little field data collected on the way commercial sector decision-makers describe their own options, choices, and reasons for taking action. These limitations artificially constrain energy policy options. This paper reviews the extant literature on commercial sector energy consumption behavior and identifies gaps in our knowledge. In particular, it argues that the primary energy policy model of commercial sector energy consumption is a top-down model that uses macro-level investment data to make conclusions about commercial behavior. Missing from the discussion is a model of consumption behavior that builds up to a theoretical framework informed by the micro-level data provided by commercial decision-makers themselves. Such a bottom-up model could enhance the effectiveness of commercial sector energy policy. In particular, translation of some behavioral models from the residential sector to the commercial sector may offer new opportunities for policies to change commercial energy consumption behavior. Utility bill consumption feedback is considered as one example of a policy option that may be applicable to both the residential and small commercial sector.

Payne, Christopher

2006-05-12T23:59:59.000Z

350

Residential Solar Water Heating Rebates  

Broader source: Energy.gov [DOE]

New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

351

Residential Solar Sales Tax Exemption  

Broader source: Energy.gov [DOE]

New York enacted legislation in July 2005 exempting the sale and installation of residential solar-energy systems from the state's sales and compensating use taxes. The exemption was extended to...

352

Portland's Residential Solar Permitting Guide  

Broader source: Energy.gov [DOE]

This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

353

Residential Renewable Energy Tax Credit  

Broader source: Energy.gov [DOE]

Established by ''The Energy Policy Act of 2005'', the federal tax credit for residential energy property initially applied to solar-electric systems, solar water heating systems and fuel cells. '...

354

2013 Retail Power Marketers Sales- Residential  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports35Residential (Data

355

2013 Utility Bundled Retail Sales- Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I.Plasma Camp ViewResidential (Data from

356

Residential Energy Efficiency Messaging | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergyHydrokineticClothes Washers (Appendix J2)Residential

357

Evaluation of flow hood measurements for residential register flows  

SciTech Connect (OSTI)

Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large--on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue.

Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

2001-09-01T23:59:59.000Z

358

PROGRESS IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY PERSPECTIVE -  

E-Print Network [OSTI]

Conference, "New Energy Conservation Technologies", Berlin,IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRYIN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY

Schipper, Lee

2013-01-01T23:59:59.000Z

359

Meeting Residential Ventilation Standards  

E-Print Network [OSTI]

, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark quality (IAQ), ventilation is a critical element for improving the energy efficiency of buildings. IAQ

360

Presentation Slides: Solar Finance for Residential and Commercial...  

Broader source: Energy.gov (indexed) [DOE]

Customers Potential Roles of State and Local Government Learning Objectives Solar Financing Basics The Roles of State and Local Governments Session Summary...

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Burbank Water and Power- Residential and Commercial Solar Support Program  

Broader source: Energy.gov [DOE]

'''''Burbank Water and Power (BWP) accepted applications for photovoltaic (PV) rebates throughout July 2013. Winners were determined through a lottery on August 12, 2013. Only systems under 30 kW...

362

Chapter 4, Small Commercial and Residential Unitary and Split...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

than 65,000 Btuhr (5.4 tons). 1 Small systems are rated using the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) standard 210240, while the large systems are...

363

Redding Electric- Residential and Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Redding Electric Utility offers a variety of financial incentives for energy efficiency through its Earth Advantage Rebate Program. Rebates are for weatherization measures, HVAC equipment, and...

364

Not-In-Kind Technologies for Residential and Commercial Unitary  

E-Print Network [OSTI]

Fischer Solomon Labinov Oak Ridge National Laboratory Oak Ridge, Tennessee Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U National Laboratory, Rick Murphy and Robert DeVault of Oak Ridge National Laboratory, and many others

Oak Ridge National Laboratory

365

Clean Energy Finance Guide for Residential and Commercial Building...  

Broader source: Energy.gov (indexed) [DOE]

are likely to ask them and why. In this chapter, the term "financial institutions" (FIs) includes not only the primary (or initial) lenders that provide loan capital to...

366

Clean Energy Finance Guide for Residential and Commercial Building...  

Broader source: Energy.gov (indexed) [DOE]

Perspective (Chapter 8 of the Clean Energy Finance Guide, 3rd Edition) Path to Self-Sustainability Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss...

367

City of Austin- Commercial and Residential Green Building Requirements  

Broader source: Energy.gov [DOE]

'''''Note: The requirements listed below are current only up to the date of last review (see the top of this page). The City of Austin may also make additional requirements depending on the...

368

Clean Energy Finance Guide for Residential and Commercial Building...  

Broader source: Energy.gov (indexed) [DOE]

- Chapter 7 This chapter discusses the clean energy financing's path to self-sustainability. ch07pathtoself-sustainability.pdf More Documents & Publications Path to...

369

Air Barriers for Residential and Commercial Buildings | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJulyDepartment of

370

Cost-Effectiveness Analysis of the 2009 and 2012 IECC Residential Provisions – Technical Support Document  

SciTech Connect (OSTI)

This analysis was conducted by Pacific Northwest National Laboratory (PNNL) in support of the U.S. Department of Energy’s (DOE) Building Energy Codes Program (BECP). DOE supports the development and adoption of efficient residential and commercial building energy codes. These codes set the minimum requirements for energy efficient building design and construction and ensure energy savings on a national level. This analysis focuses on one and two family dwellings, townhomes, and low-rise multifamily residential buildings. For these buildings, the basis of the energy codes is the International Energy Conservation Code (IECC). This report does not address commercial and high-rise residential buildings, which reference ANSI/ASHRAE/IES Standard 90.1.

Mendon, Vrushali V.; Lucas, Robert G.; Goel, Supriya

2012-12-04T23:59:59.000Z

371

EK101 Engineering Light Project: Evaluate Residential Lighting  

E-Print Network [OSTI]

for residential lighting (LED, Compact Fluorescent, Incandescent). Develop a plan of experiments to be conducted, CF, and Incandescent bulbs for the past ten years. (try the wayback time machine if other sources fail). Discuss the key challenges associated with a transition from incandescent lighting

Bifano, Thomas

372

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period  

Broader source: Energy.gov [DOE]

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

373

Residential Transactive Control Demonstration  

SciTech Connect (OSTI)

Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

2014-02-19T23:59:59.000Z

374

Global residential appliance standards  

SciTech Connect (OSTI)

In most countries, residential electricity consumption typically ranges from 20% to 40% of total electricity consumption. This energy is used for heating, cooling, refrigeration and other end-uses. Significant energy savings are possible if new appliance purchases are for models with higher efficiency than that of existing models. There are several ways to ensure or encourage such an outcome, for example, appliance rebates, innovative procurement, and minimum efficiency standards. This paper focuses on the latter approach. At the present time, the US is the only country with comprehensive appliance energy efficiency standards. However, many other countries, such as Australia, Canada, the European Community (EC), Japan and Korea, are considering enacting standards. The greatest potential impact of minimum efficiency standards for appliances is in the developing countries (e.g., China and India), where saturations of household appliances are relatively low but growing rapidly. This paper discusses the potential savings that could be achieved from global appliance efficiency standards for refrigerators and freezers. It also could be achieved from global appliance efficiency standards for refrigerators and freezers. It also discusses the impediments to establishing common standards for certain appliance types, such as differing test procedures, characteristics, and fuel prices. A methodology for establishing global efficiency standards for refrigerators and freezers is described.

Turiel, I.; McMahon, J.E. (Lawrence Berkeley Lab., CA (United States)); Lebot, B. (Agence Francaise pour la Maitrise de l'Energie, Valbonne (France))

1993-03-01T23:59:59.000Z

375

Similar effects of residential and non-residential vegetation on bird diversity in suburban neighbourhoods  

E-Print Network [OSTI]

Similar effects of residential and non-residential vegetation on bird diversity in suburban the Queen in Right of Canada 2013 Abstract Estimating the relative importance of vegetation on residential land (gardens, yards, and street-trees) and vegetation on non-residential land (parks and other large

Dawson, Jeff W.

376

Wave Impact Study on a Residential Building Wave Impact Study on a Residential Building  

E-Print Network [OSTI]

Wave Impact Study on a Residential Building Paper: Wave Impact Study on a Residential Building John residential light- frame wood buildings and wave and surge loading be- cause often little is left residential structures and wave loading. To do this, one-sixth scale residen- tial building models typical

Cox, Dan

377

2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview  

E-Print Network [OSTI]

2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview #12;2008 Residential Energy Plan2008 Residential Energy Plan Review ChecklistReview Checklist Simplification ChecklistsOther Available Checklists 2005 and 2008 Residential Energy Documentation2005 and 2008 Residential

378

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

379

Edmond Electric- Residential Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

380

Residential Load Management Program and Pilot  

E-Print Network [OSTI]

In 1986 LCRA embarked on residential load management to control peak summer loads. At that time, LCRA was considered a summer peaking utility, and residential air conditioning and water heating systems were selected for control. The program...

Haverlah, D.; Riordon, K.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Charlotte Green Supply Chain: Residential Retrofitting | Department...  

Broader source: Energy.gov (indexed) [DOE]

Charlotte Green Supply Chain: Residential Retrofitting Charlotte Green Supply Chain: Residential Retrofitting July 30, 2010 - 10:50am Addthis Joshua DeLung What does this mean for...

382

BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE  

E-Print Network [OSTI]

BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE PROCEDURES FOR THE USE OF HOLIDAY DECORATIONS in a location established by the Office of Residential Life. In these instances, candles and incense may never

Suzuki, Masatsugu

383

BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE  

E-Print Network [OSTI]

BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE PROCEDURES FOR THE USE OF HOLIDAY DECORATIONS by the Office of Residential Life. In these instances, candles and incense may never be left unattended and any

Suzuki, Masatsugu

384

CC: Security, Residential Life Evacuation Assistance Form  

E-Print Network [OSTI]

CC: Security, Residential Life Evacuation Assistance Form Voluntary Self-Identification If you have will be kept confidential and used only by Environmental Health and Safety, Residential Life (if applicable

Mahon, Bradford Z.

385

Department of Residential Life University of Missouri  

E-Print Network [OSTI]

Department of Residential Life University of Missouri may 11 >> halls close, 5 p.m. summer to June 1). Sign up forms are available at 0780 Defoe-Graham in the Residential Life Administration Office

Taylor, Jerry

386

Residential Properties 5100 South Dorchester Avenue  

E-Print Network [OSTI]

Residential Properties 5100 South Dorchester Avenue Chicago, Illinois 60615 T 773.753-2200 F 733 for specific answers to: residential@uchicago.edu. Thank you, in advance, for your patience during this process

He, Chuan

387

Summary of Components of the "Best of the Region" Standard for New Non-Residential Buildings  

E-Print Network [OSTI]

Summary of Components of the "Best of the Region" Standard for New Non-Residential Buildings Specifications for Implementation of Fifth Power Plan Model Conservation Standards for New Commercial Buildings Adapted from: Northwest Energy NWBest Project Summary of Components of the "Best of the Region" Standard

388

E-Print Network 3.0 - america residential system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Housing, Dining & Residential Services Housing, Dining... & Residential Services Housing, Dining & Residential ... Source: Balandin, Alexander- Department of...

389

System design and dynamic signature identification for intelligent energy management in residential buildings.  

E-Print Network [OSTI]

for Intelligent Energy Management in Residential Buildingsfor Intelligent Energy Management in Residential Buildingsthat can provide autonomous energy management to residential

Jang, Jaehwi

2008-01-01T23:59:59.000Z

390

Children in Residential Care: A wicked problem?  

E-Print Network [OSTI]

#12;Children in Residential Care: A wicked problem? Mary McKenna Flinders Law School 29 Nov 11 Mary in residential care · At what level of the system should changes occur? · Numbers in residential care in SA-discovery of child abuse in 1970s · Legislation & policy changes · Reporting and investigation · Types of abuse #12

391

Renovating Residential HVAC Systems HVAC Systems  

E-Print Network [OSTI]

- 1 - LBNL 57406 Renovating Residential HVAC Systems HVAC Systems J.A. McWilliams and I.S. Walker and Air Conditioning), and Stacy Hunt and Ananda Harzell (IBACOS). #12;- 3 - Renovating Residential HVAC Guideline for Residential HVAC Retrofits (http

392

living and learning Department of Residential Life  

E-Print Network [OSTI]

living and learning Accessible housing at Mizzou Department of Residential Life University is important to us. The Department of Residential Life at MU is committed to providing and improving accessible spaces for students with disabilities. Residential Life will help provide appropriate housing

Missouri-Columbia, University of

393

Residential Building Stockg Assessment (RBSA)for  

E-Print Network [OSTI]

9/4/2013 1 Residential Building Stockg Assessment (RBSA)for Multi-Family Housing Tom Eckman Objectives Characterize Residential Sector Building Stock ­ Single Family (Four-plex and below) l if il ( i Pacific Northwest Residential Energy Survey (PNWRES92)Survey (PNWRES92) NEEA Survey of Baseline

394

CC: Security, Residential Life Evacuation Assistance Form  

E-Print Network [OSTI]

CC: Security, Residential Life Evacuation Assistance Form Voluntary Self-Identification If you have will be kept confidential and used only by Environmental Health and Safety, Residential Life (if applicable:_______________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ #12;CC: Security, Residential Life If this is a temporary request, please provide a date when

Cantlon, Jessica F.

395

Housing & Residential Life Contracts, Assignments & Billing  

E-Print Network [OSTI]

Housing & Residential Life Contracts, Assignments & Billing Comstock Hall-East 210 Delaware St. SE.housing.umn.edu/contractbook. I hereby agree to comply with all University of Minnesota and Housing & Residential Life policies to promptly notify Housing & Residential Life of any felony or misdemeanor charge or conviction prior

Amin, S. Massoud

396

Residential Life Luggage Program Summer 2014  

E-Print Network [OSTI]

Residential Life Luggage Program Summer 2014 International and out-of-state students who should be addressed as follows: Residential Life Luggage Program Physical Plant/CDS University. · Residential Life will not be held responsible for items lost or damaged in handling. We advise against sending

Massachusetts at Amherst, University of

397

Graduate Hall Director Office of Residential Programs  

E-Print Network [OSTI]

Page 1 Graduate Hall Director Office of Residential Programs Housing Guidelines #12;Page 2 Graduate Hall Director for Residential Programs Guidelines for Residence This document is intended for the Office of Residential Programs Graduate Hall Directors (GHDs) who obtain housing on campus as part

Hone, James

398

NORTHWESTERN UNIVERSITY DEPARTMENT OF RESIDENTIAL SERVICES  

E-Print Network [OSTI]

NORTHWESTERN UNIVERSITY DEPARTMENT OF RESIDENTIAL SERVICES FALL 2013/WINTER 2014/SPRING 2014 of the Contract by the Executive Director of Residential Services ("Director") or their designee and receipt for residence in the premises, I am responsible to advise the Department of Residential Services immediately

Reber, Paul J.

399

Housing & Residential Life Contracts, Assignments & Billing  

E-Print Network [OSTI]

Housing & Residential Life Contracts, Assignments & Billing Comstock Hall-East 210 Delaware St. SE & Residential Life. For the fall semester, I will cancel on or before August 7. For the spring semester, I day until Housing & Residential Life is able to fill my assigned space with a student from the waiting

Minnesota, University of

400

Characterizing Residential Broadband Networks Marcel Dischinger  

E-Print Network [OSTI]

Characterizing Residential Broadband Networks Marcel Dischinger MPI for Software Systems mdischin and rapidly growing proportion of users connect to the Internet via residential broadband networks such as Dig- ital Subscriber Lines (DSL) and cable. Residential networks are often the bottleneck in the last mile

Saroiu, Stefan

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

WARREN RESIDENTIAL LIFE RESIDENT ASSISTANT POSITION DESCRIPTION  

E-Print Network [OSTI]

WARREN RESIDENTIAL LIFE RESIDENT ASSISTANT POSITION DESCRIPTION The position of Resident Assistant for students living within the Warren College residential community. Resident Assistant's (RA's) are principle members of the Warren Residential Life staff. In accordance with the University of California's Personnel

Russell, Lynn

402

Residential Lighting: Title 24 and Technology Update  

E-Print Network [OSTI]

Residential Lighting: Title 24 and Technology Update Best practices in lighting design to comply;INTRODUCTION Course Topics Part 1: Technology Overview · Common lighting terminology · Residential lighting residential lighting regulation · Design examples to reach or exceed code Part 5: Compliance Process · Step

California at Davis, University of

403

Siena College Office of Residential Life  

E-Print Network [OSTI]

Siena College Office of Residential Life New Student Housing Application Instructions #12;Welcome students who are admitted as "Residential" students. Commuters DO NOT need to complete the application for "Residential Life (My Housing)" is under the "Personal Information" Tab #12;Within the "Personal Information

404

Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

2012-07-01T23:59:59.000Z

405

FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.  

SciTech Connect (OSTI)

A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

RICH, LAUREN

2013-09-30T23:59:59.000Z

406

Comparing Residential Furnace Blowers for  

E-Print Network [OSTI]

of air conditioner performance, standby power, as well as igniter and combustion air blower power results in 10% lower air conditioner efficiency. For heating, the advantage of the BPM blower was to assess the performance of residential furnace blowers for both heating, cooling and air distribution

407

Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990  

SciTech Connect (OSTI)

One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

Balsavich, J.C.; Breault, R.W.

1990-10-01T23:59:59.000Z

408

Passive Solar Commercial Demonstration Program: Phase I. Final report  

SciTech Connect (OSTI)

The passive solar retrofit of a small existing commercial/residential building is described. An add on gallery/sunspace is integrated into the existing structure both in terms of energy and architectural functioning. The sunspace solution maximizes the amount of south facing glass for solar heat gain, while still allowing a deep penetration of daylight into the existing buildings. (MHR)

none,

1981-02-10T23:59:59.000Z

409

EIS-0050-S: Commercial and Apartment Conservation Service Program, Supplemental  

Broader source: Energy.gov [DOE]

The Office of Buildings Energy Research and Development prepared this SEIS to analyze the potential environmental impacts resulting from national implementation of the Commercial and Apartment Conservation Service Program. This SEIS is a supplement to DOE/EIS-0050, Residential Conservation Service Program.

410

NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82Ă?ÂşC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

2012-04-01T23:59:59.000Z

411

PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82Ă?ÂşC (180Ă?ÂşF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

2011-07-01T23:59:59.000Z

412

Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities  

SciTech Connect (OSTI)

This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units. The manufacturers should work with ''do-it-yourself'' (DIY) stores to facilitate introduction of th

Ashdown, BG

2004-08-04T23:59:59.000Z

413

Residential Services Area Missing Students living in University Managed Accommodation  

E-Print Network [OSTI]

Residential Services Area Missing Students living in University Managed Accommodation 1.0 Where then report to the Building Manager or to the Residential Student Support Team or the Residential Services issues Residential Student Support Manager or the Residential Services Manager should be contacted

Sussex, University of

414

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect (OSTI)

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

415

Washington Natural Gas % of Total Residential Deliveries (Percent)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb% of Total Residential

416

Average Residential Price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5: Oil andCitygate

417

Average Residential Price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5: Oil

418

Average Residential Price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5: OilCitygate Price

419

Average Residential Price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5: OilCitygate Price

420

Commercial Norms, Commercial Codes, and International Commercial Arbitration  

E-Print Network [OSTI]

The article defends the incorporation of commercial norms into commercial codes, through provisions such as statute 1-205 of the Uniform Commercial Code. It finds significant reliance on trade usages in international ...

Drahozal, Christopher R.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PowerChoice Residential Customer Response to TOU Rates  

E-Print Network [OSTI]

Dennis J. 1985. “The Residential Electricity Time-of-Use1989. “Self-Selection in Residential Electricity Time-of-UseAnalysis of California Residential Critical Peak Pricing of

Peters, Jane S.

2010-01-01T23:59:59.000Z

422

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

J.E. 1986. The LBL Residential Energy Model. LawrenceInc. MEANS. 1992. Residential Cost Data: 11th Annual EditionInstitute. 1989. Residential End-Use Energy Consumption: A

Wenzel, T.P.

2010-01-01T23:59:59.000Z

423

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

38 3.2.1. SDG&E Residential Electric Rates and TheirFootprint of Single-Family Residential New Construction.Solar photovoltaic financing: residential sector deployment,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

424

THE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION  

E-Print Network [OSTI]

research in the areas of residential building design and construction, sustainable buildings, energy issues in residential buildings, lifecycle analysis of buildings and related infrastructure, and sustainable landTHE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION The College

Guiltinan, Mark

425

RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY  

E-Print Network [OSTI]

RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY UC Davis-Caltrans Air control measure. #12;RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY.......................................................... 3 2.2 The Role of Residential Location Choice

Levinson, David M.

426

Residential Landscapes Synthesis of the Literature and Preliminary Survey Results  

E-Print Network [OSTI]

Residential Landscapes Synthesis of the Literature and Preliminary Survey Results Elizabeth M. Cook comprehensive understanding of residential landscapes in urban ecosystems. · Highlight the social, ecological and integrated socio- ecological themes and current findings about residential landscapes. · Identify gaps

Hall, Sharon J.

427

Office for Residential Life & Housing Services University of Rochester  

E-Print Network [OSTI]

Office for Residential Life & Housing Services University of Rochester RESIDENT ADVISOR POSITION DESCRIPTION Resident Advisors help build healthy and inclusive residential communities that complement and extend classroom learning. RAs are expected to create intellectually active residential environments

Cantlon, Jessica F.

428

Evaluation of evolving residential electricity tariffs  

SciTech Connect (OSTI)

Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

2011-05-15T23:59:59.000Z

429

Ameren Illinois (Gas)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

430

Xcel Energy (Gas)- Residential Conservation Programs  

Broader source: Energy.gov [DOE]

Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

431

Entergy Arkansas- Residential Energy Efficiency Program (Arkansas)  

Broader source: Energy.gov [DOE]

Entergy Arkansas offers the Home Energy Solutions Program to help residential customers understand and make energy efficiency improvements in participating homes. Customers can call a toll-free...

432

Chelan County PUD- Residential Weatherization Rebate Program  

Broader source: Energy.gov [DOE]

Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

433

Lincoln Electric System (Residential)- Sustainable Energy Program  

Broader source: Energy.gov [DOE]

Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment. The program includes rebates for insulation...

434

Better Buildings Residential Network Orientation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Summary More Documents & Publications How Can the Network Meet Your Needs? Better Buildings Residential Program - 2014 BTO Peer Review Outreach to Multifamily Landlords and Tenants...

435

Collaborating With Utilities on Residential Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Collaborating With Utilities on Residential Energy Efficiency, Call Slides and Discussion Summary, June 12, 2014. Call Slides and Discussion Summary More Documents & Publications...

436

Optional Residential Program Benchmarking | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. Call Slides and Discussion Summary...

437

Building America Residential Energy Efficiency Stakeholders Meeting...  

Broader source: Energy.gov (indexed) [DOE]

2011, held in Atlanta, Georgia. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting More Documents & Publications Summary of...

438

CPS Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

439

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

440

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Residential Energy Efficiency Research Planning Meeting Summary...  

Broader source: Energy.gov (indexed) [DOE]

Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings and outcomes from the U.S. Department of Energy's...

442

Tampa Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

443

Duquesne Light Company- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Duquesne Light provides rebates to its residential customers for purchasing and installing energy-saving equipment. Eligible equipment includes dehumidifiers, freezers, refrigerators, air...

444

Vermont Gas- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Equipment Replacement program offers rebates for residential customers who replace existing heating equipment or water heater with a more energy efficient one. Rebates vary depending on...

445

Residential Energy Star Appliance Rebate Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregon offers rebates for Energy Star refrigerators, freezers and clothes washers to Oregon residential electric service customers of Portland General Electric (PGE) and Pacific...

446

Tacoma Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Tacoma Power offers a variety of incentives for residential customers to improve the energy efficiency in participating homes. Prescriptive rebates are available for equipment such as heat pumps,...

447

Better Buildings Residential Network Program Sustainability Series...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Call: Connecting the Dots Between the Real Estate Market and Residential Energy Efficiency Featuring Host: Rich Dooley, Arlington County, VA Call Slides and Discussion Summary...

448

Empire District Electric- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

449

Black Hills Power- Residential Customer Rebate Program  

Broader source: Energy.gov [DOE]

Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

450

Idaho Falls Power- Residential Weatherization Loan Program  

Broader source: Energy.gov [DOE]

Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

451

Farmers RECC- Residential Insulation Rebate Program  

Broader source: Energy.gov [DOE]

The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

452

Entergy New Orleans- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Entergy New Orleans has designed an incentive program to help residential customers understand and make energy efficiency improvements in eligible homes. Incentives are geared towards both...

453

Covered Product Category: Residential Electric Resistance Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management Program (FEMP) sets Federal efficiency...

454

El Paso Electric Company- Residential Solutions Program  

Broader source: Energy.gov [DOE]

'''The El Paso Electric Residential Solutions Program funding has been expended in Texas for 2012. New funding will be available January 1, 2013. '''

455

MassSAVE (Electric)- Residential Retrofit Programs  

Broader source: Energy.gov [DOE]

MassSAVE organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities include Columbia Gas of...

456

MassSAVE (Gas)- Residential Rebate Program  

Broader source: Energy.gov [DOE]

MassSAVE, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities...

457

Sawnee EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes....

458

OTEC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Oregon Trail Electric Cooperative (OTEC) assists residential members in reducing electric consumption by providing rebates for energy efficient equipment. Rebates are for appliances, heat pumps,...

459

Questar Gas- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Questar Gas provides rebates for residential customers who make their homes more energy efficient by installing certain energy saving appliances, efficient heating equipment, and certain...

460

PSNH- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Public Service of New Hampshire, in collaboration with [http://www.nhsaves.com/ nhsaves], provides incentives for residential customers to increase the energy efficiency of participating homes....

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ameren Illinois (Electric)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

462

Residential Energy Efficiency Stakeholders Meeting: March 2011...  

Broader source: Energy.gov (indexed) [DOE]

Stakeholders Meeting: March 2011 Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report and presentations for the Building...

463

Residential Energy Efficiency Technical Update Meeting: August...  

Broader source: Energy.gov (indexed) [DOE]

Technical Update Meeting: August 2011 Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary report and presentations for the...

464

Residential Energy Efficiency Research Planning Meeting: October...  

Broader source: Energy.gov (indexed) [DOE]

Meeting: October 2011 Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and presentations for the Building...

465

Better Buildings Residential Network Membership Form  

Energy Savers [EERE]

Membership Form BETTER BUILDINGS RESIDENTIAL NETWORK Type of Organization (Check all that apply) ConsultantAdvisor Manufacturer ContractorTrade ally Nonprofit organization...

466

Meade County RECC- Residential Rebate Program  

Broader source: Energy.gov [DOE]

Meade County RECC offers rebates to residential members who install energy-efficient systems and equipment. New homebuilders can also access rebates for installing energy-efficient equipment...

467

RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES  

E-Print Network [OSTI]

Measures on Residential Air Conditioner Loads. Proc. ACEEEDeterminants of Central Air Conditioner Duty Cycles. Proc.at the number of air conditioners that might actually

Meier, Alan K.

2008-01-01T23:59:59.000Z

468

East Central Electric Cooperative- Residential Rebate Program  

Broader source: Energy.gov [DOE]

East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and appliances. To qualify for the rebate...

469

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A

470

Residential Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnaires

471

ASSOCIATED RESIDENTIAL COMMUNITY HOUSING (ARCH) PROGRAM UC San Diego's Associated Residential Community Housing (ARCH) is committed to supporting the academic  

E-Print Network [OSTI]

ASSOCIATED RESIDENTIAL COMMUNITY HOUSING (ARCH) PROGRAM I. MISSION UC San Diego's Associated Residential Community Housing (ARCH) is committed to supporting the academic mission of the university, Associated Residential Community Housing (ARCH) offers campus housing to graduate and professional students

California at San Diego, University of

472

Sustainable Energy Resources for Consumers Webinar on Residential...  

Broader source: Energy.gov (indexed) [DOE]

Publications Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Residential Retrofit Program Design Guide Overview Transcript.doc Residential...

473

awaiting residential aged: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of human... Willis, Gary 2011-12-16 14 Meeting Residential Ventilation Standards Energy Storage, Conversion and Utilization Websites Summary: LBNL 4591E Meeting Residential...

474

Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program  

Broader source: Energy.gov [DOE]

Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

475

Preliminary/Sample Residential EE Loan Term Sheet and Underwriting...  

Broader source: Energy.gov (indexed) [DOE]

sample or preliminary term sheet for single family residential energy efficiency loans. Author: Energy Efficiency Finance Corp. PreliminarySample Residential Energy Efficiency...

476

Alliant Energy Interstate Power and Light (Electric) - Residential...  

Broader source: Energy.gov (indexed) [DOE]

Multi-Family Residential Residential Savings Category Heat Pumps Lighting Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: 100 -...

477

2011 Residential Energy Efficiency Technical Update Meeting Summary...  

Energy Savers [EERE]

2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 2011 Residential Energy Efficiency Technical Update Meeting Summary...

478

Energy Department Announces $5 Million for Residential Building...  

Office of Environmental Management (EM)

Announces 5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy...

479

2014-04-11 Issuance: Test Procedures for Residential Clothes...  

Broader source: Energy.gov (indexed) [DOE]

Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking 2014-04-11 Issuance: Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking...

480

Colorado Springs Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

Note: This page contains sample records for the topic "year residential commercial" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

2014-06-25 Issuance: Energy Conservation Standards for Residential...  

Broader source: Energy.gov (indexed) [DOE]

6-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule...

482

Laclede Gas Company- Residential High Efficiency Heating Rebate Program  

Broader source: Energy.gov [DOE]

Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

483

Black Hills Energy (Electric)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Black Hills Energy (BHE) offers rebates for residential Colorado customers who purchase energy efficient residential equipment. This program offers rebates for customers who purchase and install...

484

Cape Light Compact- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Cape Light Compact (CLC) offers a variety of financial incentives to customers for purchasing energy efficient residential equipment. Residential customers can take advantage of incentives on...

485

El Paso Electric Company- Residential Efficiency Program (New Mexico)  

Broader source: Energy.gov [DOE]

EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

486

Efficient Residential Water Heaters Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Efficient Residential Water Heaters Webinar Efficient Residential Water Heaters Webinar On Feb. 22, 2011, Jerone Gagliano,...

487

Detroit Public Lighting Department- Residential Energy Wise Program  

Broader source: Energy.gov [DOE]

The Detroit Public Lighting Department (PLD) offers residential customers rebates for energy efficient lights. In addition, low-income residential customers may qualify for free compact fluorescent...

488

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Test Procedures for Water Heaters; Kitchen Ranges, Ovens,Use of Residential Water Heaters. Lawrence Berkeley NationalEnergy Use of Residential Water Heaters. Lawrence Berkeley

Wenzel, T.P.

2010-01-01T23:59:59.000Z

489

Urgent Action on Energy Conservation Standards for Residential...  

Energy Savers [EERE]

Urgent Action on Energy Conservation Standards for Residential Water Heaters (Docket Number: EERE-2012-BT-STD-0022) Urgent Action on Energy Conservation Standards for Residential...

490

Sample Residential Program Term Sheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sample Residential Program Term Sheet Sample Residential Program Term Sheet A sample for defining and elaborating on the specifics of a clean energy loan program. Sample...

491

Residential Building Audits and Retrofits | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Building Audits and Retrofits Residential Building Audits and Retrofits Blue version of the EERE PowerPoint template, for use with PowerPoint 2007. Transcript...

492

Break-out Discussion i: Modeling Consumer Behavior Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Break-out Discussion i: Modeling Consumer Behavior Residential Scale Break-out Discussion i: Modeling Consumer Behavior Residential Scale This presentaion summarizes the...

493

Webinar: Residential Energy Code Compliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Webinar: Residential Energy Code Compliance Webinar: Residential Energy Code Compliance View the Code Compliance Funding Opportunity video or see the slides below. This webinar...

494

WESLEYAN UNIVERSITY OFFICES OF PHYSICAL PLANT & RESIDENTIAL LIFE  

E-Print Network [OSTI]

WESLEYAN UNIVERSITY OFFICES OF PHYSICAL PLANT & RESIDENTIAL LIFE MURAL REQUEST FORM ***SMALL SCALE SIGNATURE: DATE: APPROVED BY: **Area Coordinator: DATE: Associate Director of Residential Life: DATE

Royer, Dana

495

Residential Windows and Window Coverings: A Detailed View of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior Residential Windows and Window Coverings: A Detailed View of the Installed Base...

496

AVTA: ARRA EV Project Residential Charging Infrastructure Maps...  

Broader source: Energy.gov (indexed) [DOE]

Residential Charging Infrastructure Maps AVTA: ARRA EV Project Residential Charging Infrastructure Maps The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries...

497

Financing Residential Energy Efficiency with Carbon Offsets Transcript...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets Transcript This document contains the transcript for the...

498

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministration (EIA)

499

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministration (EIA)heating

500

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministration