National Library of Energy BETA

Sample records for year residential commercial

  1. Longmont Power & Communications - Residential and Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    50 per appliance Residential: 1 clothes washer and 1 dishwasher per year Commercial: 3 clothes washers and 3 dishwashers per year Program Info Sector Name Utility...

  2. Lane Electric Cooperative - Residential and Commercial Weatherization...

    Broader source: Energy.gov (indexed) [DOE]

    Washer: 75 Solar Water Heater: 500 Summary Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a...

  3. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean ...

  4. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends ...

  5. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 8 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 This ...

  6. Air Barriers for Residential and Commercial Buildings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Barriers for Residential and Commercial Buildings Air Barriers for Residential and Commercial Buildings Emerging Technologies Project for the 2013 Building Technologies ...

  7. Presentation Slides: Solar Finance for Residential and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Slides: Solar Finance for Residential and Commercial Customers and Potential Roles of State and Local Government Presentation Slides: Solar Finance for Residential and ...

  8. Residential and Commercial ITC Factsheets

    Broader source: Energy.gov [DOE]

    The 30% federal investment tax credit (ITC) is among the most important incentives currently available for solar PV. These two guides–one for homeowners and one on the commercial ITC–provide a concise, yet thorough, overview of the ITC, demystifying the tax code with intuitive explanations and examples, answering frequently asked questions, and explaining the process of claiming the ITC. Designed for readers unacquainted with the ITC, these guides clearly outline the most important aspects of the ITC, while still providing the specificity and comprehensiveness to be a useful reference for more seasoned professionals in the solar industry.

  9. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  10. Lane Electric Cooperative- Residential and Commercial Weatherization & Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a residential cash grant for 25% of measure costs up to $1,000,...

  11. Entity State Ownership Residential Commercial Industrial Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue for Delivery Service Providers (Data from form EIA-861 schedule 4C) Entity State Ownership Residential Commercial Industrial Transportation Total Pacific Gas & Electric Co CA Investor Owned 58,038 366,593 243,892 4,112 672,635 San Diego Gas & Electric Co CA Investor Owned 596 91,379 113,352 0 205,326 Southern California Edison Co CA Investor Owned 4,502 517,154 90,847 0 612,503 Connecticut Light & Power Co CT Investor Owned 351,392 489,607 96,889 4,242 942,130 United

  12. Remote Duct Sealing in Residential and Commercial Buildings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings: "Saving Money, Saving Energy and Improving Performance," Lawrence Berkeley National Laboratory, presented by Dr. Mark Modera, staff scientist, Environmental Energy Technologies Division. PDF icon LBNL Duct Sealing Presentation More Documents & Publications Ventilation in Multifamily Buildings

  13. Longmont Power & Communications- Residential and Commercial Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Longmont Power & Communications offers an incentive for its residential and commercial customers to install ENERGY STAR certified clothes washers. The rebate application is available on the...

  14. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  15. Redding Electric- Residential and Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Redding Electric Utility offers a variety of financial incentives for energy efficiency through its Residential and Commercial Rebate Programs. Rebates are for weatherization measures, HVAC...

  16. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  17. New England Gas Company - Residential and Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    500 High-Efficiency Pre-Rinse Spray Valves 50 Summary In conjunction with Gas Networks, New England Gas Company offers its residential and commercial customers rebates for buying...

  18. Fort Collins Utilities- Residential and Small Commercial Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers. The appliance rebate program offers a $50 rebate for Energy Star rated...

  19. Commercial and Residential Hourly Load Data Question | OpenEI...

    Open Energy Info (EERE)

    Commercial and Residential Hourly Load Data Question Home Hi, I saw that you were actively replying to the questions on that page, so thought I'd contact you to ask about the data...

  20. Clean Energy Finance Guide for Residential and Commercial Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvements - Chapter 8 | Department of Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 This chapter discusses clean energy lending from the financial institution perspective. PDF icon Chapter 8 More Documents & Publications Clean Energy Lending From the Financial Institution Perspective (Chapter 8 of the Clean Energy Finance Guide, 3rd Edition) Path to

  1. Redding Electric - Residential and Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    REU for Commercial Program Info Sector Name Utility Administrator Redding Electric Utility Website http:www2.reupower.comrebates.asp State California Program Type Rebate...

  2. Residential and commercial buildings data book: Third edition

    SciTech Connect (OSTI)

    Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

    1988-02-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

  3. Compliance Verification Paths for Residential and Commercial Energy Codes

    SciTech Connect (OSTI)

    Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.

    2011-10-10

    This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

  4. RESIDENTIAL",,,,"COMMERCIAL",,,,"INDUSTRIAL",,,,"TRANSPORTATION",,,,"OTHER",,,,"

    U.S. Energy Information Administration (EIA) Indexed Site

    "RESIDENTIAL",,,,"COMMERCIAL",,,,"INDUSTRIAL",,,,"TRANSPORTATION",,,,"OTHER",,,,"TOTAL"

  5. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  6. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  7. Residential and commercial buildings data book. Second edition

    SciTech Connect (OSTI)

    Crumb, L.W.; Bohn, A.A.

    1986-09-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

  8. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  9. Kissimmee Utility Authority- Residential & Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kissimmee Utility Authority (KUA) offers several rebates to residential customers for energy efficiency improvements. Residential customers can earn a $75 rebate for repairing duct leaks in...

  10. Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program

    Broader source: Energy.gov [DOE]

    Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

  11. Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work

    Broader source: Energy.gov [DOE]

    This presentation, presented July 8, 2010, covered energy efficiency potential, examined specific energy efficiency opportunities in residential, commercial, industrial facilities, identified market barriers, and more.

  12. New England Gas Company- Residential and Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    In conjunction with Gas Networks, New England Gas Company offers its residential and commercial customers rebates for buying energy efficient gas boilers, furnaces, high efficiency water heaters,...

  13. Energy Efficiency Trends in Residential and Commercial Buildings – August 2010

    Broader source: Energy.gov [DOE]

    Overview of building trends and energy use in commercial and residential buildings, including environmental impacts of buildings and trends in select product specification and market insights.

  14. 2014-06-27 Issuance: Test Procedures for Residential and Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    solely as a means to facilitate the public's access to this document. 2014-06-27 Test Procedures for Residential and Commercial Water Heaters; Final Rule More Documents &...

  15. Webtrends Archives by Fiscal Year - Commercialization | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization Webtrends Archives by Fiscal Year - Commercialization From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Commercialization site by ...

  16. ISSUANCE 2015-06-25: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

  17. City of Frisco- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    In October 2013, existing green building codes were repealed and the 2012 International Residential Code with amendments was adopted. Among the amendments were energy efficiency requirements appr...

  18. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  19. Entergy Texas- Residential and Small Commercial Standard Offer Program

    Broader source: Energy.gov [DOE]

    The Hard to Reach and Residential Standard Offer Programs provides incentives for the retrofit or new construction installation of a wide range of energy efficiency measures. The program does not...

  20. City of Houston- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    In 2014, the City Council of Houston passed Ordinance No. 2014-5, requiring new residential construction to exceed the energy efficiency requirements under the 2009 International Energy Conservat...

  1. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  2. DOE Publishes Notice of Proposed Rulemaking for Residential Water Heater and Certain Commercial Water Heater Test Procedures

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for residential water heaters and certain commercial water heaters.

  3. Lighting in Residential and Commercial Buildings (1993 and 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    of different kinds of lighting equipment with data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), building floorspace can be described in three different...

  4. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ...

  5. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK ...

  6. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  7. City of Dallas- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    Notably, Dallas became the first U.S. city to adopt the 2012 International Green Construction Code (with amendments, hereafter Dallas Green Construction Code) as mandatory for new commercial cons...

  8. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications (EIA)

    2003-01-01

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  9. Natural Gas Marketer Prices and Sales To Residential and Commercial Customers: 2002-2005

    Reports and Publications (EIA)

    2007-01-01

    This report compares residential and commercial prices collected from natural gas marketers and local distribution companies in Maryland, New York, Ohio and Pennsylvania from 2002-2005 and gives the history and status of natural gas choice programs in those states.

  10. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    SciTech Connect (OSTI)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  11. Commercial and Residential Hourly Load Data Now Available on...

    Open Energy Info (EERE)

    Login to post comments Russmach32 Russmach321 year 8 weeks ago Validation of dataset Hello, in the description of this dataset it states that these load profiles are simulated....

  12. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment December 2013 i NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  13. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    SciTech Connect (OSTI)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  14. Presentation Slides: Solar Finance for Residential and Commercial Customers and Potential Roles of State and Local Government

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of how residential and commercial solar projects are financed and the various roles that state and local governments can play to support the deployment of solar within their jurisdictions.

  15. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  16. Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  17. Residential and Commercial Property Assessed Clean Energy (PACE) Financing in California Rooftop Solar Challenge Areas

    Broader source: Energy.gov [DOE]

    This version of the report updates the original report published in March 2013. It identifies and describes the current state of residential and commercial property assessed clean energy (PACE) financing programs in California. The report discusses the Improvement Act of 1911, the Mello-Roos Act of 1982, the different philosophies cities have adopted in implementing PACE financing, and various PACE program structures. It also discusses the first implementation of PACE by cities that used their charter authority to create programs under the Mello-Roos Act of 1982 before the enactment of AB 811 and SB 555.1. This report focuses on PACE as a mechanism to increase the amount of rooftop solar systems installed, but also recognizes that these programs provide an effective means to finance energy and water efficiency projects. The updated report provides new information on California’s Residential PACE Loss Reserve Program, the Federal Housing Finance Agency, program requirements, and program performance.

  18. Webtrends Archives by Fiscal Year - Commercialization | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Commercialization Webtrends Archives by Fiscal Year - Commercialization From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Commercialization site by fiscal year. Microsoft Office document icon Commercialization FY09 Microsoft Office document icon Commercialization FY10 Microsoft Office document icon Commercialization FY11 More Documents & Publications Webtrends Archives by Fiscal Year - Deployment Webtrends Archives by Fiscal Year - Office of EERE

  19. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  20. 2014-06-27 Issuance: Test Procedures for Residential and Commercial Water Heaters; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding test procedures for residential and commercial water heaters, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 27, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. 1999 Commercial Buildings Characteristics--Year Constructed

    U.S. Energy Information Administration (EIA) Indexed Site

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  2. Solarnorth '81 by Tymura Solardesigns: diverse residential, commercial and industrial projects at and above the 48th parallel in Ontario, Canada

    SciTech Connect (OSTI)

    Tymura, E.J.

    1981-01-01

    Solar Energy Heating Applications are On the Rise in and above the Northwestern City of Thunder Bay, on the northern shore of Lake Superior. Unique in their diversifications, the architectural commissions range from pure passive residential design thru hybrid systems; residential Greenhouse-Solarium active swimming pool and commercial hotel pool to inexpensive hybrid system for Canada's First Commercial Solar Lumber Drying Kiln; as well as combined earth sheltered with solar system design for a dormitory complex and shopping center. By May 1981, 7 buildings designed by Tymura Solardesigns in the Thunder Bay area will have been subjected to the Extreme Canadian climate (10,500/sup 0/F degree days, yearly temperature maximums from -41/sup 0/F to 90/sup 0/F, and solar fractions vary from 50% to 75%, with economic payback periods ranging between 7 and 10 years.

  3. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    SciTech Connect (OSTI)

    Meyers, Stephen P.; McMahon, James; Atkinson, Barbara

    2008-05-08

    This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2006 period, and of energy efficiency standards for fluorescent lamp ballasts and distribution transformers. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. It also performed new analysis for the first (1990) fluorescent ballast standards, which had been introduced in the NAECA legislation without a rulemaking. We estimate that the considered standards will reduce residential/ commercial primary energy consumption and carbon dioxide emissions in 2030 by 4percent compared to the levels expected without any standards. The reduction for the residential sector is larger, at 8percent. The estimated cumulative energy savings from the standards amount to 39 quads by 2020, and 63 quads by 2030. The standards will also reduce emissions of carbon dioxide by considerable amounts.The estimated cumulative net present value of consumer benefit amounts to $241 billion by 2030, and grows to $269 billion by 2045. The overall ratio of consumer benefits to costs (in present value terms) in the 1987-2050 period is 2.7 to 1. Although the estimates made in this study are subject to a fair degree of uncertainty, we believe they provide a reasonable approximation of the national benefits resulting from Federal appliance efficiency standards.

  4. DOE Five Year Commercialization Support Plan

    Broader source: Energy.gov [DOE]

    On July 2, 2007, Marc Ledbetter, Pacific Northwest National Laboratory, provided an overview of DOE's Commercialization Support Plan. Key elements of the Plan include buyer guidance such as ENERGY...

  5. EA-1463: 10 CFR 433: Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings and 10 CFR 435: Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The EA examines the potential environmental impacts of the Final Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the Final Rule for new Federal commercial and residential buildings, DOE compared the Final Rule with the “no-action alternative” of using the current Federal standards – 10 CFR Part 434 and 10 CFR Part 435 Subpart C (referred to as the “no-action alternative”).

  6. Average Residential Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Average Residential Price Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average Commercial Price Commercial Price - Local Distribution Companies Commerical Price - Marketers Commercial % Sold by Local Distribution Companies Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011

  7. Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report

    SciTech Connect (OSTI)

    Cole, Henry E.; Fullen, Robert E.

    1980-09-01

    This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  8. U.S. Photovoltaic Prices and Cost Breakdowns. Q1 2015 Benchmarks for Residential, Commercial, and Utility-Scale Systems

    SciTech Connect (OSTI)

    Chung, Donald; Davidson, Carolyn; Fu, Ran; Ardani, Kristen; Margolis, Robert

    2015-09-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has continued to decline across all major market sectors. This report provides a Q1 2015 update regarding the prices of residential, commercial, and utility scale PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variations in business models, labor rates, and system architecture choice. We estimate a weighted-average cash purchase price of $3.09/W for residential scale rooftop systems, $2.15/W for commercial scale rooftop systems, $1.77/W for utility scale systems with fixed mounting structures, and $1.91/W for utility scale systems using single-axis trackers. All systems are modeled assuming standard-efficiency, polycrystalline-silicon PV modules, and further assume installation within the United States.

  9. Remote Duct Sealing in Residential and Commercial Buildings: Saving Money, Saving Energy and Improving PerformanceŽ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Duct Sealing in Residential and Commercial Buildings: "Saving Money, Saving Energy and Improving Performance" Lawrence Berkeley National Laboratory Presented by Dr. Mark Modera Staff Scientist, Environmental Energy Technologies Division 2 Presentation Overview Lawrence Berkeley National Laboratory * Introduction to Duct Leakage - Single-family residences - leakage rates, energy impacts, other impacts - Larger buildings - Duct leakage in codes, standards and utility programs *

  10. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  11. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  12. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  13. Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020

    SciTech Connect (OSTI)

    Ardani, K.; Seif, D.; Margolis, R.; Morris, J.; Davidson, C.; Truitt, S.; Torbert, R.

    2013-08-01

    The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).

  14. Condensing heat-exchanger systems for oil-fired residential/commercial furnaces and boilers Phase I and II

    SciTech Connect (OSTI)

    Ball, D.A.; White, E.L.; Lux, J.J. Jr.; Locklin, D.W.

    1982-10-01

    The objective of the program reported was to provide supporting research to aid in the development and demonstration of oil-fired residential and commercial heating equipment that will operate in a condensing mode. Materials for heat exchangers are screened through coupon testing in a furnace simulator test rig and in an alternate immersion test rig. Condensate from oil-fired systems is characterized. Some general issues related to field application are treated, including heat exchanger fouling, venting of combustion gases, disposal of flue gas condensate, other means of condensate disposal, and evaluation of codes and standards. A heat transfer analysis is presented for general heat exchangers. (LEW)

  15. 120 years of U.S. residential housing stock and floor space

    SciTech Connect (OSTI)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.

  16. 120 Years of U.S. Residential Housing Stock and Floor Space

    SciTech Connect (OSTI)

    Pinto de Moura, Maria C.; Smith, Steven J.; Belzer, David B.

    2015-08-11

    Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions. Floor space is a major driver of building energy demand. This paper develops a historical time series of total residential floor space for 1891-2010 and examines the role of socio-economic drivers GDP, population and household size on floor space. Using primarily data from the U.S. Census Bureau, we develop new construction and vintage-disaggregated housing stock for three building types, and address various data inconsistency issues. An examination of the long-term relationship of GDP and total residential floor space shows a remarkably constant trend over the period. While population increases five times over the period, a 50% decrease in household size contributes towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. Total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years.

  17. YEAR","MONTH","STATE","UTILITY_ID","UTILITY_NAME","RESIDENTIAL_GP REVENUES (Tho

    U.S. Energy Information Administration (EIA) Indexed Site

    UTILITY_ID","UTILITY_NAME","RESIDENTIAL_GP REVENUES (Thousand $)","COMMERCIAL_GP REVENUES (Thousand $)","INDUSTRIAL_GP REVENUES (Thousand $)","TRANS_GP REVENUES (Thousand $)","TOTAL_GP REVENUES (Thousand $)","RESIDENTIAL_GP SALES (MWh)","COMMERCIAL_GP SALES (MWh)","INDUSTRIAL_GP SALES (MWh)","TRANS_GP SALES (MWh)","TOTAL_GP SALES (MWh)","RESIDENTIAL_GP

  18. Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Feldman, D.; Friedman, B.; Margolis, R.

    2013-10-01

    Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

  19. Improved Design of Motors for Increased Efficiency in Residential Commercial Buildings

    SciTech Connect (OSTI)

    Pragasen Pillay

    2008-12-31

    Research progress on understanding magnetic steel core losses is presented in this report. Three major aspects have been thoroughly investigated: 1, experimental characterization of core losses, 2, fundamental physical understanding of core losses and development of core loss formulas, and 3, design of more efficient machine based on the new formulations. Considerable progress has been achieved during the four years of research and the main achievements are summarized in the following: For the experimental characterization, a specially designed advanced commercial test bench was commissioned in addition to the development of a laboratory system with advanced capabilities. The measured properties are core losses at low and higher frequencies, with sinusoidal and non-sinusoidal excitations, at different temperatures, with different measurement apparatus (Toroids, Epstein etc). An engineering-based core loss formula has been developed which considers skin effect. The formula can predict core losses for both sinusoidal and non-sinusoidal flux densities and frequencies up to 4000 Hz. The formula is further tested in electric machines. The formula error range is 1.1% - 7.6% while the standard formulas can have % errors between -8.5% {-+} 44.7%. Two general core loss formulas, valid for different frequencies and thickness, have been developed by analytically and numerically solving Maxwell's equations based on a physical investigation of the dynamic hysteresis effects of magnetic materials. To our knowledge, they are the first models that can offer accurate core loss prediction over a wide range of operating frequencies and lamination thicknesses without a massive experimental database of core losses. The engineering core loss formula has been used with commercial software. The formula performs better than the modified Steinmetz and Bertotti's model used in Cedrat/Magsoft Flux 2D/3D. The new formula shows good correlation with measured results under both sinusoidal and non-sinusoidal excitations. A permanent magnet synchronous motor has been designed with the use of the engineering formula with Flux2D. There was acceptable agreement between predictions and measurements. This was further tested on an induction motor with toroid results.

  20. 120 years of U.S. residential housing stock and floor space

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less

  1. Not-In-Kind Technologies for Residential and Commercial Unitary Equipment

    SciTech Connect (OSTI)

    Fischer, S.K.

    2001-01-11

    This project was initiated by the Department of Energy in response to a request from the HVAC industry for consolidated information about alternative heating and cooling cycles and for objective comparisons of those cycles in space conditioning applications. Twenty-seven different heat pumping technologies are compared on energy use and operating costs using consistent operating conditions and assumptions about component efficiencies for all of them. This report provides a concise summary of the underlying principals of each technology, its advantages and disadvantages, obstacles to commercial development, and economic feasibility. Both positive and negative results in this study are valuable; the fact that many of the cycles investigated are not attractive for space conditioning avoids any additional investment of time or resources in evaluating them for this application. In other cases, negative results in terms of the cost of materials or in cycle efficiencies identify where significant progress needs to be made in order for a cycle to become commercially attractive. Specific conclusions are listed for many of the technologies being promoted as alternatives to electrically-driven vapor compression heat pumps using fluorocarbon refrigerants. Although reverse Rankine cycle heat pumps using hydrocarbons have similar energy use to conventional electric-driven heat pumps, there are no significant energy savings due to the minor differences in estimated steady-state performance; higher costs would be required to accommodate the use of a flammable refrigerant. Magnetic and compressor-driven metal hydride heat pumps may be able to achieve efficiencies comparable to reverse Rankine cycle heat pumps, but they are likely to have much higher life cycle costs because of high costs for materials and peripheral equipment. Both thermoacoustic and thermionic heat pumps could have lower life cycle costs than conventional electric heat pumps because of reduced equipment and maintenance costs although energy use would be higher. There are strong opportunities for gas-fired heat pumps to reduce both energy use and operating costs outside of the high cooling climates in the southeast, south central states, and the southwest. Diesel and IC (Otto) engine-driven heat pumps are commercially available and should be able to increase their market share relative to gas furnaces on a life cycle cost basis; the cost premiums associated with these products, however, make it difficult to achieve three or five year paybacks which adversely affects their use in the U.S. Stirling engine-driven and duplex Stirling heat pumps have been investigated in the past as potential gas-fired appliances that would have longer lives and lower maintenance costs than diesel and IC engine-driven heat pumps at slightly lower efficiencies. These potential advantages have not been demonstrated and there has been a low level of interest in Stirling engine-driven heat pumps since the late 1980's. GAX absorption heat pumps have high heating efficiencies relative to conventional gas furnaces and are viable alternatives to furnace/air conditioner combinations in all parts of the country outside of the southeast, south central states, and desert southwest. Adsorption heat pumps may be competitive with the GAX absorption system at a higher degree of mechanical complexity; insufficient information is available to be more precise in that assessment.

  2. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  3. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  4. EA-2001: Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings' Baseline Standards Update (RIN 1904-AD39)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  5. Ohio Average Price of Natural Gas Delivered to Residential and Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers by Local Distribution and Marketers 24.31 15.36 9.68 7.40 6.48 6.44 1989-2016 Commercial Average Price 7.99 6.79 6.03 5.53 5.32 5.30

  6. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    SciTech Connect (OSTI)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

    2014-06-18

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.

  7. Kenergy- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

  8. National radon database documentation. Volume 4. The EPA/state residential radon surveys: Year 4. Final report 1986-1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The National Radon Database has been developed by the U.S. Environmental Protection Agency (EPA) to distribute information collected in two recently completed radon surveys: the EPA/State Residential Radon Surveys, Years 1 to 6; and The National Residential Radon Survey. The goals of the state radon surveys were twofold. Some measure of the distribution of radon levels among residences was desired for major geographic areas within each state and for each state as a whole. In addition, it was desired that each state survey would be able to identify areas of potentially high residential radon concentrations (hot spots) in the state, enabling the state to focus its attention on areas where indoor radon concentrations might pose a greater health threat. The document discusses year 4, 1989-90. The areas surveyed are: California; Hawaii; Idaho; Louisiana; Nebraska; Billings, MT IHS Area; Nevada; North Carolina; Oklahoma; South Carolina; and Navajo Nation.

  9. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  10. EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

  11. 1999 Commercial Building Characteristics--Detailed Tables--Year...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Constructed > Detailed Tables-Year Constructed Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Year Constructed Table B8. Year Constructed, Number of Buildings...

  12. YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL REVENUE ($1,000

    U.S. Energy Information Administration (EIA) Indexed Site

    REVENUE ($1,000)","COMMERCIAL REVENUE ($1,000)","INDUSTRIAL REVENUE ($1,000)","TRANSPORTATION REVENUE ($1,000)","TOTAL REVENUE ($1,000)","RESIDENTIAL SALES (MWh)","COMMERCIAL SALES (MWh)","INDUSTRIAL SALES (MWh)","TRANSPORTATION SALES (MWh)","TOTAL SALES SALES (MWh)","RESIDENTIAL CUSTOMERS","COMMERCIAL CUSTOMERS","INDUSTRIAL CUSTOMERS","TRANSPORTATION

  13. Adjusted Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  14. 1999 Commercial Building Characteristics--Year Constructed Comparison

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Constructed Comparison Percentage of Floorspace and Buildings by Year Constructed, 1999 Percentage of Floorspace and Buildings by Year Constructed, 1999. If having trouble...

  15. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Commercial Incentive Pilot Program (CIPP). Final Impact Evaluation Report. Cambridge Systematics. (1292) Commercial Incentives Pilot Program (CIPP) Database for the...

  16. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  17. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large efficiency program in Commercial and Industrial Lighting. BPA continues to invest in improving the lighting program as a critical component to achieving regional...

  18. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  19. The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings

    SciTech Connect (OSTI)

    Desjarlais, Andre Omer; Kriner, Scott; Miller, William A

    2013-01-01

    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

  20. LADWP - Non-Residential Energy Efficiency Incentive Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Residential Energy Efficiency Incentive Program LADWP - Non-Residential Energy Efficiency Incentive Program < Back Eligibility Commercial Industrial Local Government Nonprofit ...

  1. EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ―Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings‖ and 10 CFR 435, ―Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings‖ Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

  2. Chapter 4, Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 4 - 1 Chapter 4 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application

  3. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMERCIALIZING TECHNOLOGIES & CREATING JOBS Our location in the SS&TP plays a vital role in our ability to leverage the deep domain expertise of Sandia. Our proximity to the Labs has facilitated teaming with them on Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) efforts that develop cutting-edge technology in the areas of precision pointing and inertial measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my

  4. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  5. Residential Weatherization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  6. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  7. Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major Sources 2

  8. New Mexico Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  9. Maine Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  10. Virginia Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  11. Washington Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. Kansas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  13. Arizona Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  14. Waseca Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Develops innovative products and services to help them deliver value to customers. With help from SMMPA, Waseca Utilities provides incentives for residential and commercial customers to improve t...

  15. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  16. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  17. UTILITY CHARATERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",,...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...055,1197718.168,433523 2014,1,471,"Amana Society Service Co","IA","Investor ... 2014,1,12341,"MidAmerican Energy Co","IA","Investor Owned","Final",51877.2...

  18. UTILITY CHARACTERISTICS",,,,,,"RESIDENTIAL",,,"COMMERCIAL",,...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....04,1144493.302,434617 2013,1,471,"Amana Society Service Co","IA","Final",70,644,707,69,71... 2013,1,12341,"MidAmerican Energy Co","IA","Final",45501.781,574786.749,556...

  19. UTILITY CHARACTERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2015,1,16655,"City of Santa Clara - (CA)","CA","Municipal","Preliminar... 2015,2,16655,"City of Santa Clara - (CA)","CA","Municipal","Preliminar...

  20. UTILITY CHARACTERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2016,1,16655,"City of Santa Clara - (CA)","CA","Municipal","Preliminar... 2016,2,16655,"City of Santa Clara - (CA)","CA","Municipal","Preliminar...

  1. Minnesota Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  3. Maine Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. Arizona Natural Gas Number of Residential Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  5. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 2.5 cents from a week ago to 2.83 per gallon. That's up 56 cents from a year ago, based on the residential ...

  6. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 3.2 cents from a week ago to 2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential ...

  7. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 9.1 cents from a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential ...

  8. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 3.9 cents from a week ago to 2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential ...

  9. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 4.8 cents from a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential ...

  10. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 10.3 cents from a week ago to 2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential ...

  11. Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000

    SciTech Connect (OSTI)

    Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

    2000-10-12

    A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

  12. Commercial and Multifamily Building Benchmarking and Disclosure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Multifamily Building Benchmarking and Disclosure Commercial and Multifamily Building Benchmarking and Disclosure Better Buildings Residential Network Peer Exchange Call: ...

  13. Connecticut Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  14. California Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. Commercial % Sold by Local Distribution Companies

    Gasoline and Diesel Fuel Update (EIA)

    Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average Commercial Price Commercial Price - Local Distribution Companies Commerical Price - Marketers Commercial % Sold by Local Distribution Companies Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 View History District of

  16. EA-2001: Energy Efficiency Design Standards: New Federal Commercial...

    Energy Savers [EERE]

    2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings EA-2001: Energy...

  17. Financing Non-Residential Photovoltaic Projects: Options and Implications

    SciTech Connect (OSTI)

    Bolinger, Mark

    2009-01-09

    Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years.ii Specifically, due to financial innovation, non-residential entities interested in PV no longer face prohibitively high up-front costs, no longer need to be able to absorb Tax Benefits in order to make the economics pencil out, no longer need to be able to operate and maintain the system, and no longer need to accept the risk that the system does not perform as expected.

  18. Average Residential Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  19. Average Residential Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  20. Residential Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2009 10:18 AM http:www.eia.govconsumptioncommercialdataarchivecbecspba99residential.html If you are having any technical problems with this site, please contact the EIA...

  1. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) MissionVision The Residential Buildings ...

  2. Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 3

    SciTech Connect (OSTI)

    1995-04-01

    This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

  3. Residential Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2, 2013 Residential Buildings Integration Program Building Technologies Office ... Overview of the Residential Integration Program Research Implementation tools ...

  4. City of Boulder - EnergySmart Commercial Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Commercial Industrial Nonprofit Multifamily Residential Institutional Savings Category Solar Photovoltaics Dishwasher Lighting Lighting ControlsSensors Furnaces...

  5. Wells Public Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SMMPA develops innovative products and services to help them deliver value to customers. With help from SMMPA, Wells Public Utilities provides incentives for residential and commercial customers ...

  6. Saint Peter Municipal Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Develops innovative products and services to help them deliver value to customers. With help from SMMPA, Saint Peter Municipal Utilities provides incentives for its residential and commercial cus...

  7. Grays Harbor PUD- Non-Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Grays Harbor PUD's Non-Residential Rebate Program offers financial incentives to its small and large commercial customers, agricultural customers, industrial customers, and institutional customers...

  8. NW Natural (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon administers energy efficiency rebate programs for both residential and commercial customers of NW Natural in Washington. Interested customers can see the program website...

  9. AEP Appalachian Power- Non-Residential Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    The Appalachian Power Commercial and Industrial Standard Program helps non-residential customers implement standard energy efficiency projects through financial incentives to offset project costs....

  10. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  11. Fort Collins Utilities- Residential Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers. The appliance rebate program offers a $50 rebate for Energy Star rated...

  12. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England ...

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year ...

  14. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to 2.10 per gallon. That's down 1.11 from a year ...

  15. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago, ...

  16. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year ...

  17. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to 3.03 per gallon. That's down 1.20 from a year ...

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to 2.10 per gallon. That's down 94 cents from a year ago, ...

  19. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year ...

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year ...

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year ...

  2. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to 3.19 per gallon. That's down 1.06 from a year ...

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to 2.09 per gallon. That's down 1.20 from a year ...

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to 2.09 per gallon. That's down 1.09 from a year ...

  5. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year ...

  6. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year ...

  7. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to 2.12 per gallon. That's down 91 cents from a year ago, ...

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to 2.13 per gallon. That's down 80 cents from a year ago, based ...

  9. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 32.7 cents from a year ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England ...

  10. Minnesota Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries Minnesota Share of Total U.S. ...

  11. California Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries California Share of Total U.S. ...

  12. UES (Gas)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers the Commercial Energy Solutions Program for non-residential gas customers to install energy efficient equipment. Incentives are provided for qualified...

  13. Fact Sheet - Better Buildings Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet - Better Buildings Residential Fact Sheet - Better Buildings Residential Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Residential Program. PDF icon bb_residential_factsheet_12-17-14.pdf More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review Home Performance with ENERGY STAR -- 10 Years of Continued Growth! Home Performance with ENERGY STAR®

  14. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  15. Residential Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  16. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle ... Target MarketAudience: Residential gas water heating Key Partners: GE CRADA partner SRA ...

  17. residential-lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Progress Report Evaluation Utility Toolkit Residential Lighting Market Research The Residential Lighting Market Research Project will estimate market savings from...

  18. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA,

  19. ENERGY STAR Residential Water Heaters to Save Americans Up to...

    Energy Savers [EERE]

    STAR Residential Water Heaters to Save Americans Up to 823 Million in the Next Five Years ENERGY STAR Residential Water Heaters to Save Americans Up to 823 Million in the Next ...

  20. Best Management Practice #11: Commercial Kitchen Equipment

    Broader source: Energy.gov [DOE]

    Commercial kitchen equipment can be a significant water use in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high-volume applications...

  1. NREL’s Record-Setting Year Highlights Clean Energy Innovation and Commercialization at National Labs

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) in Golden, Colorado—the Energy Department’s primary national lab for renewable energy and energy efficiency research and development—recognized the people behind the lab’s greatest innovations and industry partnership accomplishments from the past year at its annual Innovation and Technology Transfer Awards on Thursday, May 7. Dr. David Danielson, the Energy Department’s Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), delivered keynote remarks at the awards ceremony.

  2. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities

    SciTech Connect (OSTI)

    Goodrich, A.; James, T.; Woodhouse, M.

    2012-02-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

  3. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  4. Better Buildings Summit Residential Sessions Engage Energy Pros |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking place May 27 to 29, 2015, will be the first to engage the residential sector with targeted sessions for home performance professionals. Join us in Washington, D.C., to network with other Better Buildings Residential Network members and discuss a vision for the coming year, including how to overcome

  5. Residential Water Heaters Webinar | Department of Energy

    Energy Savers [EERE]

    Engine-Driven Heat Pump for the Residential Sector Introduction Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that will provide space cooling, heating, and hot water. Various electric heat pump systems are used to provide heating and cooling for a wide range of buildings, from commercial fa- cilities to single family homes. The market for heat pumps is

  6. Draft Multi-Year Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energys Building Technologies Office (BTO) has released its draft Multi-Year Program Plan (MYPP) for public comment. The draft MYPP provides a broad overview of buildings energy use and efficiency opportunities, and the strategies and goals of BTO to substantially accelerate the rate of efficiency improvements in both new and existing residential and commercial buildings.

  7. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  8. Air Barriers for Residential and Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... eere.energy.gov Field Tests: Wall Assembly General Material Layout Horizontal Cross Section of Wall T, RH T, RH, HF T T, RH, HF T, RH, P T T, RH, P, MP T T, MP General Sensor ...

  9. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  10. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  11. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.02 per gallon, down 5-tenths of a cent from last week, based on the residential heating fuel survey ...

  12. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 1.92 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey ...

  13. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2015 Residential propane price increases The average retail price for propane is 1.90 per gallon, up 2-tenths of a cent from last week, based on the residential heating fuel ...

  14. Residential propane prices surges

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential propane price decreases The average retail price for propane fell to 3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel ...

  15. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    05, 2014 Residential propane price decreases The average retail price for propane fell to 2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel ...

  16. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.03 per gallon, down 2-tenths of a cent from last week, based on the residential heating fuel survey ...

  17. Residential propane prices surges

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential propane price decreases The average retail price for propane fell to 3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel ...

  18. Residential propane prices surges

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential propane price decreases The average retail price for propane fell to 3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel ...

  19. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2015 Residential propane price increases The average retail price for propane is 2.36 per gallon, up half of a cent from last week, based on the residential heating fuel survey ...

  20. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.03 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey ...

  1. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2015 Residential propane price increases The average retail price for propane is 1.94 per gallon, up 2 cents from last week, based on the residential heating fuel survey by the ...

  2. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 1.91 per gallon, down 6.7 cents from last week, based on the residential heating fuel survey by the ...

  3. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2015 Residential propane price increases The average retail price for propane is 1.91 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by ...

  4. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane virtually unchanged The average retail price for propane is 2.02 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey ...

  5. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price virtually unchanged The average retail price for propane is 2.03 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel ...

  6. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential propane price decreases The average retail price for propane fell to 3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel ...

  7. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2015 Residential propane price increases The average retail price for propane is 1.92 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by ...

  8. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.01 per gallon, down 8-tenths of a cent from last week, based on the residential heating fuel survey ...

  9. Residential propane prices decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential propane prices decreases The average retail price for propane fell to 3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating ...

  10. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2015 Residential propane price decreases The average retail price for propane is 2.34 per gallon, down 1.7 cents from last week, based on the residential heating fuel survey by ...

  11. Better Buildings Residential

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Better Buildings Residential programs  work with residential energy efficiency programs and their partners to improve homeowners' lives, the economy, and the...

  12. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  13. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  14. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers energy efficiency incentives to eligible commercial and multifamily residential customers. More information regarding the rebate programs, including application...

  15. Cowlitz County PUD- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Cowlitz County PUD offers the Commercial Energy Efficiency Program (CEEP) for non-residential customers to improve the efficiency of facilities. The program offers incentives on lighting, custom...

  16. Chicopee Electric Light- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light Department (CELD) is participating in the Massachusetts Municipal Whoesale Electric Company's Green Opportunity Proagram to encourage non-residential, commercial, and...

  17. Clallam County PUD- Residential and Small Business Solar Loan Program

    Broader source: Energy.gov [DOE]

    In conjunction with First Federal Savings and Loan, Clallam County PUD offers residential and small commercial customers a low-interest loan program for the purchase of solar photovoltaic systems....

  18. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 4.23 per gallon. That's up 5.1 cents from a year ...

  19. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 3.1 cents from a week ago to 4.20 per gallon. That's up 13.6 cents from a year ago, ...

  20. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.2 cents from a week ago to 4.12 per gallon. That's up 9.4 cents from a year ...

  1. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 4.23 per gallon. That's up 14.9 cents from a year ...

  2. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  3. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional ...

  4. National Grid (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential InstallersContractors Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Equipment Insulation Water Heaters...

  5. National Grid (Electric) - Residential Energy Efficiency Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Dehumidifiers Water Heaters Lighting Heat Pumps Air conditioners...

  6. Better Buildings Summit Residential Sessions Engage Energy Pros...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking place May 27 to 29, 2015, will be the first to engage the ...

  7. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore » mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.« less

  8. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  9. Residential Building Activities

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building...

  10. UES (Electric)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers the Commercial Energy Solutions Program for non-residential electric customers to upgrade existing equipment with more energy efficient measures. Rebates are...

  11. West Penn Power SEF Commercial Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The West Penn Power Sustainable Energy Fund (WPPSEF) promotes the use of renewable energy and clean energy among commercial, industrial, institutional and residential customers in the West Penn m...

  12. NW Natural (Gas)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon administers energy efficiency rebate programs for both residential and commercial customers of NW Natural in Washington. To be eligible for the commercial gas rebate program,...

  13. Residential Conservation Service: a retrospective

    SciTech Connect (OSTI)

    Praul, C.G.; Gunther, A.; Maier, G.

    1981-08-01

    A background of the Residential Conservation Service (RCS) program is presented and outstanding program design issues which include effectiveness, audit effectiveness, equity concerns, anticompetitive and antitrust considerations, and general concerns in state plan development are discussed. The purpose of the review is to provide background information to legislators and other decision makers who, though not immediately involved in program administration, will be evaluating the mandate and implementation progress over the next year. (MCW)

  14. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  15. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  16. ENERGY STAR Residential Water Heaters to Save Americans Up to $823 Million

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Next Five Years | Department of Energy STAR Residential Water Heaters to Save Americans Up to $823 Million in the Next Five Years ENERGY STAR Residential Water Heaters to Save Americans Up to $823 Million in the Next Five Years December 31, 2008 - 9:18am Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced the availability of ENERGY STAR® residential water heaters. With today's announcement, the ENERGY STAR® program now addresses every major residential appliance

  17. Residential Retrofit Program Design Guide

    Broader source: Energy.gov [DOE]

    This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

  18. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect (OSTI)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  19. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect (OSTI)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  20. DOE Increases Energy Efficiency Standards for Residential Furnaces &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers | Department of Energy Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule,

  1. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  2. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to the solar ...

  3. Residential | Open Energy Information

    Open Energy Info (EERE)

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  4. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

  5. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices available The average retail price for propane is 2.30 per gallon, based ... residential heating fuel survey. Propane prices in the Midwest region, which has the most ...

  6. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.11 per gallon, up ...

  7. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  8. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 2.84 per gallon, down 5.4 cents from last week

  9. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.98 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  10. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.02 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  11. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.36 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  12. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.96 per gallon, up 1.8 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  13. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.96 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  14. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.29 per gallon, down 3.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  15. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.00 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  16. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.39 per gallon, down 2.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  17. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.36 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  18. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices available The average retail price for propane is 1.94 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. ...

  19. Residential propane prices stable

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  20. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.97 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  1. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  2. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.01 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  3. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.37 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  4. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy ...

  5. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.99 per gallon, up 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  6. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose to 2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy ...

  7. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.39 per gallon, up 3.9 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  8. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decrease The average retail price for propane is 2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  9. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.32 per gallon, down 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  10. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.01 per gallon, up 1.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  11. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.03 per gallon, up 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy ...

  12. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  13. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.36 per gallon, down 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  14. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.38 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  15. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.98 per gallon, up 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  16. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.35 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  17. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  18. Residential propane prices surges

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices surges The average retail price for propane rose to an all-time high of 4.01 a gallon, that's up 1.05 from a week ago, based on the residential heating fuel survey ...

  19. Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Residential New Construction Program includes two levels that can be achieved by completing various energy efficiency measures: Base Level and High Performance Level. Projects meeting the req...

  20. Fact Sheet: Better Buildings Residential Network | Department...

    Energy Savers [EERE]

    Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

  1. Benefits of Better Buildings Residential Network Reporting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits of Better Buildings Residential Network Reporting Benefits of Better Buildings Residential Network Reporting Better Buildings Residential Network All-Member Peer Exchange ...

  2. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  3. Commercial and Multifamily Building Benchmarking and Disclosure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Multifamily Building Benchmarking and Disclosure Commercial and Multifamily Building Benchmarking and Disclosure Better Buildings Residential Network Peer Exchange Call: Commercial and Multifamily Building Benchmarking and Disclosure, Call Slides, July 25, 2013. PDF icon Call Slides and Discussion Summary More Documents & Publications Information Technology Tools for Multifamily Building Programs Working with Condominium Owners and Associations Moving Multifamily

  4. Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC

    SciTech Connect (OSTI)

    Bolinger, Mark; Barbose, Galen; Wiser, Ryan

    2008-11-12

    On August 8, 2005, the Energy Policy Act of 2005 (EPAct 2005) increased the Section 48 investment tax credit (ITC) for commercial photovoltaic (PV) systems from 10% to 30% of the project's 'tax credit basis' (i.e., the dollar amount to which the ITC applies), and also created in Section 25D of the Internal Revenue Code a new 30% ITC (capped at $2,000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 both credits were extended 'as is' for an additional year (through 2008). In early 2006, Berkeley Lab published an LBNL/CESA case study that examined the financial impact of EPAct 2005's solar tax credits on PV system owners, in light of the $2,000 cap on the residential credit, as well as the fact that most PV systems in the U.S. also receive cash incentives from state-, local-, or utility-administered PV programs, and that these cash incentives may reduce the value of federal tax credits in certain situations. That case study was subsequently revised in February 2007 to reflect new Internal Revenue Service (IRS) guidance. The findings of that case study, which are briefly recapped in the next section, remained relevant up until October 2008, when the Energy Improvement and Extension Act of 2008 extended both solar credits for an unprecedented eight years, removed the $2,000 cap on the residential credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax (AMT). These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely to spur significant growth in residential, commercial, and utility-scale PV installations in the years ahead. In light of these substantial changes to the solar ITC, this report takes a fresh look at the value of these revised credits, focusing specifically on the Section 25D residential credit. After first setting the stage by briefly reviewing our previous findings, the document proceeds to cover four specific areas in which the removal of the $2,000 cap on the residential ITC will have significant implications for PV program administrators, PV system owners, and the PV industry that go beyond the obvious market growth potential created by these more-lucrative federal incentives. These four areas include: (1) The financial implications of whether or not residential cash rebates are considered to be taxable income; (2) The role of low-interest loan programs and other forms of 'subsidized energy financing' under an uncapped ITC; (3) The degree to which taxable and nontaxable rebate levels might be reduced in response to the extra value provided by an uncapped ITC; and (4) The impact of an uncapped ITC on third-party financing and ownership models that are just beginning to emerge in the residential sector. The document concludes by highlighting a common thread that runs throughout: the need for PV program managers to understand whether or not their rebates are considered to be taxable income before they can react in an appropriate manner to the recent changes in federal solar policy and, if financing programs are offered, the need to understand whether the IRS considers these programs to be 'subsidized'. Finally, we note that this paper is based on current law; future legislative changes to the ITC could, of course, alter the conclusions reached here.

  5. Micro-CHP Systems for Residential Applications

    SciTech Connect (OSTI)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the homeowner. In its proposed embodiment, the system has a 2kW prime mover integrated to a furnace platform. The second version is a Micro-Trigen system with heating, cooling and power. It has the same Micro-Cogen platform integrated with a 14kW thermally activated chiller. A Stirling engine is suggested as a promising path for the prime mover. A LiBr absorption chiller is today's best technology in term of readiness level. Paybacks are acceptable for the Micro-Cogen version. However, there is no clear economically viable path for a Micro-Trigen version with today's available technology. This illustrates the importance of financial incentives to home owners in the initial stage of micro-CHP commercialization. It will help create the necessary conditions of volume demand to start transitioning to mass-production and cost reduction. Incentives to the manufacturers will help improve efficiency, enhance reliability, and lower cost, making micro-CHP products more attractive. Successful development of a micro-CHP system for residential applications has the potential to provide significant benefits to users, customers, manufacturers, and suppliers of such systems and, in general, to the nation as a whole. The benefits to the ultimate user are a comfortable and healthy home environment at an affordable cost, potential utility savings, and a reliable supply of energy. Manufacturers, component suppliers, and system integrators will see growth of a new market segment for integrated energy products. The benefits to the nation include significantly increased energy efficiency, reduced consumption of fossil fuels, pollutant and CO{sub 2} emissions from power generation, enhanced security from power interruptions as well as enhanced economic activity and job creation. An integrated micro-CHP energy system provides advantages over conventional power generation, since the energy is used more efficiently by means of efficient heat recovery. Foreign companies are readily selling products, mostly in Europe, and it is urgent to react promptly to these offerings that will soon emerge on the U.S

  6. National Residential Efficiency Measures Database Webinar Slides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies ...

  7. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview ...

  8. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Residential Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management ...

  9. Behavioral Assumptions Underlying California Residential Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy ...

  10. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    11, 2014. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation...

  11. Designing Effective Incentives to Drive Residential Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incentives to Drive Residential Retrofit Program Participation Designing Effective Incentives to Drive Residential Retrofit Program Participation This webinar covered retrofit ...

  12. Shark Tank: Residential Energy Efficiency Edition

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, call slides and discussion summary.

  13. Chapter 21: Residential Lighting Evaluation Protocol

    SciTech Connect (OSTI)

    Dimetrosky, S.; Parkinson, K.; Lieb, N.

    2015-02-01

    In recent years, residential lighting has represented a significant share of ratepayer-funded energy-efficiency electricity savings. Utilities have achieved the majority of these savings by promoting the purchase and installation of compact fluorescent lamps (CFLs), both standard 'twister' bulbs and specialty CFLs such as reflectors, A-Lamps, globes, and dimmable lights.

  14. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  15. Residential propane price is unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    13, 2014 Residential propane price is unchanged The average retail price for propane is 2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating ...

  16. Commercial thermal distribution systems, Final report for CIEE/CEC

    SciTech Connect (OSTI)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related background information, the research methods employed, new measurement techniques developed, the results, and discussion.

  17. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 AVERAGE AGE 48.6 UNDER 30 2 30-39 5 40-49 8 50-59 17 60-69 3 70 AND UP 0 YEAR 2014 AVERAGE LENGTH 16.3 LESS THAN 10 YEARS 11 10-19 YEARS 10 20-29 YEARS 11 30-39 YEARS 3 ...

  18. Residential Retrofit Design Guide Overview

    Broader source: Energy.gov [DOE]

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  19. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  20. Central Georgia EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes.  This year,...

  1. City of Cleveland- Residential Property Tax Abatement for Green Buildings

    Broader source: Energy.gov [DOE]

    The City of Cleveland, in cooperation with the Cuyahoga County Auditor's Office, provides a 10 to 15 year 100% tax abatement for increases in assessed real estate value for eligible residential...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    69 YEAR 2014 Males 34 Females 35 YEAR 2014 SES 5 EJEK 1 EN 05 8 EN 04 5 NN (Engineering) 27 NQ (ProfTechAdmin) 22 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    42 YEAR 2014 Males 36 Females 6 PAY PLAN YEAR 2014 SES 2 EJEK 5 EN 05 7 EN 04 6 EN 03 1 NN (Engineering) 15 NQ (ProfTechAdmin) 6 YEAR 2014 American Indian Alaska Native Male...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 65 Females 29 YEAR 2012 SES 3 EJEK 5 EN 04 3 NN (Engineering) 21 NQ (ProfTechAdmin) 61 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 5 YEAR 2011 American Indian Male 0 American...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    92 YEAR 2012 Males 52 Females 40 YEAR 2012 SES 1 EJEK 7 EN 04 13 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 38 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    558 YEAR 2013 Males 512 Females 46 YEAR 2013 SES 2 EJEK 2 EN 04 1 NN (Engineering) 11 NQ (ProfTechAdmin) 220 NU (TechAdmin Support) 1 NV (Nuc Mat Courier) 321 YEAR 2013...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    11 YEAR 2012 Males 78 Females 33 YEAR 2012 SES 2 EJEK 9 EN 05 1 EN 04 33 NN (Engineering) 32 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 2...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    300 YEAR 2011 Males 109 Females 191 YEAR 2011 SES 9 EJEK 1 NN (Engineering) 2 NQ (ProfTechAdmin) 203 NU (TechAdmin Support) 38 NF (Future Ldrs) 47 YEAR 2011 American Indian...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    02 YEAR 2011 Males 48 Females 54 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 13 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 0 American Indian...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2012 Males 84 Females 32 YEAR 2012 SES 26 EJEK 2 EN 05 9 NN (Engineering) 39 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 10 YEAR 2012 American Indian Male 0 American...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    34 YEAR 2012 Males 66 Females 68 YEAR 2012 SES 6 NN (Engineering) 15 NQ (ProfTechAdmin) 110 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 1 American Indian Female 2...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    86 YEAR 2012 Males 103 Females 183 YEAR 2012 SES 7 EJEK 1 NN (Engineering) 1 NQ (ProfTechAdmin) 202 NU (TechAdmin Support) 30 NF (Future Ldrs) 45 YEAR 2012 American Indian Male...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    80 YEAR 2012 Males 51 Females 29 YEAR 2012 SES 1 EJEK 22 EN 04 21 NN (Engineering) 14 NQ (ProfTechAdmin) 21 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2012 Males 30 Females 11 YEAR 2012 SES 1 EN 05 1 EN 04 11 NN (Engineering) 9 NQ (ProfTechAdmin) 17 NU (TechAdmin Support) 2 YEAR 2012 American Indian Male 0 American...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2012 Males 19 Females 12 YEAR 2012 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 16 NQ (ProfTechAdmin) 115 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 1 American Indian...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    00 YEAR 2012 Males 48 Females 52 YEAR 2012 SES 5 EJEK 1 NN (Engineering) 11 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 0 American Indian...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    137 YEAR 2013 Males 90 Females 47 YEAR 2013 SES 2 SL 1 EJEK 30 EN 04 30 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 45 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    of Employees 14 GENDER YEAR 2012 Males 9 Females 5 YEAR 2012 SES 2 EJEK 2 NN (Engineering) 4 NQ (ProfTechAdmin) 6 YEAR 2012 American Indian Male 0 American Indian Female 0...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2012 Males 21 Females 22 YEAR 2012 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0 American...

  6. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  7. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  8. PSEG Long Island- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PSEG Long Island offers a variety of incentives for its non-residential customers to increase the energy efficiency of facilities through the Commercial Efficiency Program. Major renovations of...

  9. Lakeview Light and Power- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  10. Empire District Electric- Commercial & Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  11. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    SciTech Connect (OSTI)

    Nangle, John; Simon, Joseph

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  12. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  13. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for the State of New York

    SciTech Connect (OSTI)

    Mendon, Vrushali V.; Selvacanabady, Abinesh

    2014-12-01

    This analysis was conducted by Pacific Northwest National Laboratory (PNNL) in support of the U.S. Department of Energy’s (DOE) Building Energy Codes Program (BECP). DOE supports the development and adoption of energy efficient and cost-effective residential and commercial building energy codes. These codes set the minimum requirements for energy-efficient building design and construction and ensure energy savings on a national level. The basis of the residential building energy codes is the International Energy Conservation Code (IECC) published by the International Code Council (ICC). The IECC is developed and published on a three-year cycle, with a new edition published at the end of each cycle.

  14. Four-State Residential Retrofit and Energy Labeling Project: Process Evaluation and Results Webinar

    Broader source: Energy.gov [DOE]

    The State Energy Offices in Alabama, Massachusetts, Virginia, and Washington recently completed a multi-year residential energy efficiency pilot program funded by a competitive State Energy Program...

  15. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide...

  16. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  17. YEAR

    National Nuclear Security Administration (NNSA)

    Males 139 Females 88 YEAR 2012 SES 13 EX 1 EJEK 8 EN 05 23 EN 04 20 EN 03 2 NN (Engineering) 91 NQ (ProfTechAdmin) 62 NU (TechAdmin Support) 7 YEAR 2012 American Indian...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2012 Males 518 Females 45 YEAR 2012 SES 1 EJEK 2 EN 04 1 EN 03 1 NN (Engineering) 12 NQ (ProfTechAdmin) 209 NU (TechAdmin Support) 2 NV (Nuc Mat Courier) 335 YEAR 2012...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2012 Males 64 Females 33 YEAR 2012 SES 2 EJEK 3 EN 05 1 EN 04 30 EN 03 1 NN (Engineering) 26 NQ (ProfTechAdmin) 32 NU (TechAdmin Support) 2 YEAR 2012 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 37 Females 7 YEAR 2012 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 17 NQ (ProfTechAdmin) 6 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 2...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2011 Males 38 Females 9 YEAR 2011 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 19 NQ (ProfTechAdmin) 7 NU (TechAdmin Support) 1 YEAR 2011 American Indian Male 2...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    6 YEAR 2012 Males 64 Females 32 YEAR 2012 SES 1 EJEK 5 EN 05 3 EN 04 23 EN 03 9 NN (Engineering) 18 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 4 YEAR 2012 American Indian...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    78 YEAR 2012 Males 57 Females 21 YEAR 2012 SES 2 SL 1 EJEK 12 EN 04 21 EN 03 2 NN (Engineering) 12 NQ (ProfTechAdmin) 24 NU (TechAdmin Support) 4 YEAR 2012 American Indian Male...

  6. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  7. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Guide to Benchmarking Residential Program Progress Webcast Slides Lessons Learned: Measuring Program Outcomes and Using Benchmarks Guide for Benchmarking

  8. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. PDF icon Solution Center Demo More Documents & Publications Building Science Solutions … Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  9. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  10. National Residential Efficiency Measures Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Residential Efficiency Measures Database Development Document, v3.0 Final Draft, June 2012 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado i Executive Summary The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most

  11. YEAR

    National Nuclear Security Administration (NNSA)

    2012 Males 149 Females 115 YEAR 2012 SES 17 EX 1 EJEK 7 EN 05 2 EN 04 9 EN 03 2 NN (Engineering) 56 NQ (ProfTechAdmin) 165 NU (TechAdmin Support) 4 GS 13 1 YEAR 2012 American...

  12. Pacific Power- Residential wattsmart Program

    Broader source: Energy.gov [DOE]

    Pacific Power offers incentives for residential customers to improve the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program website.

  13. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  14. Cleco- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Cleco energy efficiency program provides a number of incentives to its residential customers for energy efficiency upgrades. Rebates and cash incentives are available for qualifying Air...

  15. UES (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to...

  16. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the adoption of cost-effective energy...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 22 NN (Engineering) 23 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 13 Hispanic Female (H F) 10 White Male (W M) 43 White Female (W F) 11

  18. YEAR

    National Nuclear Security Administration (NNSA)

    82 YEAR 2014 Males 57 Females 25 PAY PLAN YEAR 2014 SES 3 EJ/EK 4 EN 04 2 NN (Engineering) 20 NQ (Prof/Tech/Admin) 53 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 9 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 3 Hispanic Female (H F) 5 White Male (W M) 43 White Female (W F) 10 DIVERSITY TOTAL WORKFORCE

  19. YEAR

    National Nuclear Security Administration (NNSA)

    93 YEAR 2014 Males 50 Females 43 PAY PLAN YEAR 2014 EJ/EK 3 NN (Engineering) 13 NQ (Prof/Tech/Admin) 74 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 5 African American Female (AA F) 6 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 6 Hispanic Female (H F) 14 White Male (W M) 39 White Female (W F) 21 DIVERSITY

  20. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 Males 11 Females 2 PAY PLAN YEAR 2014 SES 2 EJ/EK 1 EN 04 1 NN (Engineering) 5 NQ (Prof/Tech/Admin) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 10 White Female (W F) 2 DIVERSITY TOTAL WORKFORCE GENDER

  1. YEAR

    National Nuclear Security Administration (NNSA)

    9 YEAR 2014 Males 9 Females 10 YEAR 2014 SES 7 ED 1 EJ/EK 1 EN 05 1 NQ (Prof/Tech/Admin) 8 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 5 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 3 White Male (W M) 7 White Female (W F) 1 PAY PLAN DIVERSITY TOTAL

  2. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 92 Females 43 YEAR 2014 SES 8 EX 1 EJ/EK 4 EN 05 9 EN 04 12 EN 03 2 NN (Engineering) 57 NQ (Prof/Tech/Admin) 42 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 9 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 12 Hispanic Female (H F) 7 White Male (W M) 66 White Female (W F) 22 PAY PLAN

  3. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2014 Males 517 Females 46 PAY PLAN YEAR 2014 SES 2 EJ/EK 2 EN 04 1 NN (Engineering) 11 NQ (Prof/Tech/Admin) 218 NU (Tech/Admin Support) 2 NV (Nuc Mat Courier) 327 YEAR 2014 American Indian Alaska Native Male (AIAN M) 14 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 18 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 8 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 76 Hispanic Female (H F) 21 White Male

  4. YEAR

    National Nuclear Security Administration (NNSA)

    89 YEAR 2014 Males 98 Females 91 PAY PLAN YEAR 2014 SES 14 EX 1 EJ/EK 3 EN 05 1 EN 04 4 EN 03 1 NN (Engineering) 32 NQ (Prof/Tech/Admin) 130 NU (Tech/Admin Support) 2 GS 15 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 5 African American Female (AA F) 14 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 7 Hispanic Male (H M) 7 Hispanic Female (H F) 10 White Male

  5. YEAR

    National Nuclear Security Administration (NNSA)

    43 YEAR 2014 Males 162 Females 81 PAY PLAN YEAR 2014 SES 26 EJ/EK 3 EN 05 7 NN (Engineering) 77 NQ (Prof/Tech/Admin) 108 NU (Tech/Admin Support) 22 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 0 White Male (W M) 154 White Female (W F)

  6. YEAR

    National Nuclear Security Administration (NNSA)

    74 YEAR 2014 Males 96 Females 78 PAY PLAN YEAR 2014 SES 8 EJ/EK 4 EN 04 11 EN 03 1 NN (Engineering) 34 NQ (Prof/Tech/Admin) 113 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 5 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 25 Hispanic Female (H F) 25 White Male (W M) 61 White

  7. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2014 Males 7 Females 7 PAY PLAN YEAR 2014 SES 1 NQ (Prof/Tech/Admin) 7 GS 15 1 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 3 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 4 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER

  8. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2014 Males 72 Females 144 PAY PLAN YEAR 2014 SES 8 EJ/EK 1 NQ (Prof/Tech/Admin) 198 NU (Tech/Admin Support) 9 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 10 African American Female (AA F) 38 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 3 Hispanic Male (H M) 15 Hispanic Female (H F) 33 White Male (W M) 44 White Female (W F) 68 DIVERSITY TOTAL

  9. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJ/EK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (Prof/Tech/Admin) 44 NU (Tech/Admin Support) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 68 White

  10. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (Prof/Tech/Admin) 9 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 4 African American Female (AA F) 4 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5

  11. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 20 PAY PLAN YEAR 2014 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 1 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 4 Hispanic Female (H F) 7 White Male (W M) 13 White Female (W F) 11

  12. Guide for Benchmarking Residential Program Progress with Examples

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network: Guide for Benchmarking Residential Program Progress with Examples.

  13. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (Prof/Tech/Admin) 13 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City

  14. YEAR

    National Nuclear Security Administration (NNSA)

    9 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (Prof/Tech/Admin) 27 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 21 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 5 Hispanic Female (H F) 3 White Male (W M) 26 White Female (W F) 16

  15. YEAR

    National Nuclear Security Administration (NNSA)

    17 Females 18 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 NQ (Prof/Tech/Admin) 30 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 6 White Male (W M) 10 White Female (W F) 3 DIVERSITY TOTAL WORKFORCE GENDER Associate

  16. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (Prof/Tech/Admin) 25 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 46 White Female (W F) 13

  17. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  18. Better Buildings Residential Network Case Study: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. ...

  19. Residential Freezers (Appendix B) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File Residential Freezers Appendix B -- v2.0 More Documents & Publications Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) Residential Refrigerators-Freezer...

  20. Energy Intensity Indicators: Residential Source Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Source Energy Consumption Energy Intensity Indicators: Residential Source Energy Consumption Figure R1 below reports as index numbers over the period 1970 through 2011: ...

  1. Better Buildings Residential Program Solution Center Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Program Solution Center Demonstration Webinar Transcript The Better Buildings Residential Program Solution Center is a robust online collection of ...

  2. Residential Energy Efficiency Customer Service Best Practices

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Customer Service Best Practices, call slides and discussion summary, January 22, 2015.

  3. Residential Solar Energy Property Tax Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Exemption Residential Solar Energy Property Tax Exemption < Back Eligibility Residential Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics...

  4. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WV2" "Date","West Virginia Natural Gas Residential Consumption ...

  5. Residential Building Industry Consulting Services | Open Energy...

    Open Energy Info (EERE)

    Residential Building Industry Consulting Services Jump to: navigation, search Name: Residential Building Industry Consulting Services Place: New York, NY Information About...

  6. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2015. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  7. Better Buildings Residential Network Orientation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Summary, March 27, 2014. Call Slides and Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  8. Residential Geothermal Systems Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Low Income Residential Savings Category Geothermal Heat Pumps Geothermal Direct-Use Maximum Rebate 1,500 Program Info Sector Name State Administrator Montana...

  9. SMECO- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Maryland Electric Cooperative's (SMECO) Residential Energy Efficiency Program helps residential customers save energy by providing rebates for home weatherization and the installation of...

  10. Sharyland Utilities- Residential Standard Offer Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  11. Guide for Benchmarking Residential Energy Efficiency Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress as ...

  12. Residential Energy Services Network (RESNET) Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Services Network (RESNET) Conference Residential Energy Services Network (RESNET) Conference February 29, 2016 9:00AM EST to March 2, 2016 5:0

  13. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Members Residential Resources Download the Social Media Toolkit. New ... Successful Quality Assurance and Quality Control Programs (101) January 28, 2016 Einstein ...

  14. El Paso Electric Company- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Some incentives, including insulation,...

  15. Steven Winter Associates (Consortium for Advanced Residential...

    Open Energy Info (EERE)

    Steven Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name: Steven Winter Associates (Consortium for Advanced Residential Buildings)...

  16. Building America Residential Energy Efficiency Stakeholders Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 Building America Residential Energy Efficiency Technical ...

  17. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Energy Savers [EERE]

    Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air ...

  18. SRP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. See program web site for a...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV (Nuc Mat Courier) 321...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    Females 942 YEAR 2012 SES 108 EX 4 SL 1 EJEK 96 EN 05 45 EN 04 196 EN 03 20 NN (Engineering) 452 NQ (ProfTechAdmin) 1291 NU (TechAdmin Support) 106 NV (Nuc Mat Courier) 335...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  3. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  4. Hawaii Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 947 959 990 1,005 1,011 965 989 996 996 997 2016 998 1,004

    % of Total Residential Deliveries (Percent) Hawaii Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2000's 0.01 0.01 0.01

  5. Idaho Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 1,019 1,046 1,039 2015 1,047 1,037 1,030 1,023 1,000 1,010 1,034 1,028 1,024 1,033 1,035 1,041 2016 1,034 1,038

    % of Total Residential Deliveries (Percent) Idaho Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.25

  6. Year

    U.S. Energy Information Administration (EIA) Indexed Site

    . U.S. Coal Production, 2009 - 2015 (thousand short tons) Year January - March April - June July - September October - December Total 2009 282,772 263,017 269,339 259,796 1,074,923 2010 265,702 264,982 277,505 276,180 1,084,368 2011 273,478 264,291 275,006 282,853 1,095,628 2012 266,865 241,047 258,956 249,591 1,016,458 2013 244,867 243,211 257,595 239,169 984,842 2014 245,271 245,844 255,377 253,557 1,000,049 2015 240,189 211,130 237,263 207,355 895,936 Note: Total may not equal sum of

  7. Minnesota Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Connecticut Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Arizona Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. City of San Antonio- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    In December 2011, the City Council adopted the 2009 International Energy Conservation Code, Chapters 2 through 5. 

  11. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Like the community banks mentioned above, credit unions tend to be highly community focused, but in some cases they lack the broad geographic reach of a large national or ...

  12. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CODES AND INCENTIVES 31 Chapter Six VOLUNTARY PROGRAMS AND LOCAL AND STATE POLICIES FOR GREEN AND ENERGY-EFFICIENT BUILDINGS 38 Chapter Seven RESOURCES FOR MORE INFORMATION 50...

  13. Energy Efficiency Trends in Residential and Commercial Buildings - August 2010

    SciTech Connect (OSTI)

    none,

    2010-08-01

    This report overviews trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption. It begins with an executive summary of the key findings found in the body of the report, so some of the data and charts are replicated in this section. Its intent is to provide in a concise place key data points and conclusions. The remainder of the report provides a specific profile of the construction industry and patterns of energy use followed by sections providing product and market insights and information on policy efforts, such as taxes and regulations, which are intended to influence building energy use. Information on voluntary programs is also offered.

  14. Lighting in Residential and Commercial Buildings (1993 and 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ballast Electronic ballast operates lights using electronic switching power supply circuits and operates at cooler temperatures, weighs less, and is quieter than the magnetic...

  15. Burbank Water and Power- Residential and Commercial Solar Support Program

    Broader source: Energy.gov [DOE]

    Burbank Water and Power (BWP) offers customers an up-front capacity-based rebate for photovoltaic (PV) systems up to 30 kW. These incentives decline over time as defined capacity goals are met, e...

  16. Residential, Commercial, and Utility-Scale Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In addition, broad German market acceptance of PV provides a considerable savings by reducing the high cost of onerous permitting processes. A lack of standard permit requirements ...

  17. Lighting in Residential and Commercial Buildings (1993 and 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    require upgrading existing lights and lighting systems. To maximize energy savings, analysis must also consider the hours the lights are used and the amount of floorspace lit by...

  18. Fort Collins Utilities - Residential and Small Commercial Appliance...

    Broader source: Energy.gov (indexed) [DOE]

    Star dishwashers. Applications for equipment rebates are available on the Fort Collins web site as well as at select local manufacturers and retailers. Fort Collins Utilities...

  19. Carbon Power & Light- Residential and Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Carbon Power and Light, in collaboration with Tri-State Generation and Transmission Association, offers financial incentives for members to increase the energy efficiency of homes and facilities....

  20. CenterPoint Energy- Residential and Small Commercial Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: Rebate Incentives are only available to CenterPoint Energy electric customers in the greater Houston area, Texas.

  1. City of El Paso- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    El Paso offers several incentives for projects meeting the Alternative Energy Conservation Code. First, all approved applicants receive expedited plan review. Second, approved applicants receive ...

  2. Better Buildings Residential Network Peer Exchange Call: Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & resources Newsletter updates on trends Recognition: Media, materials ... provides meaningful information and education for business owners to be able to see ...

  3. Lighting in Residential and Commercial Buildings (1993 and 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    Control can be obtained at this site U.S. Department of Energy's Office of Federal Energy Management Programs lights basic training will be completed in FY '98 Lighting mailing...

  4. Salem Electric- Residential, Commercial, and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric provides incentives for members to increase the energy efficiency of eligible homes and facilities. Available rebates include:

  5. Newbie question: How to view commercial/residential load profile...

    Open Energy Info (EERE)

    Help TIA. Submitted by Baritone700 on 12 January, 2015 - 09:49 3 answers Points: 0 Hello, I provide user support for SAM. We do not use .tar files to distribute SAM, so I'm a...

  6. Commercial and Residential Hourly Load Profiles for all TMY3...

    Open Energy Info (EERE)

    Software Sectors Buildings washarvested true Package Relationships Relationship Dataset License CC0 1.0 Open Data Author Office of Energy Efficiency & Renewable Energy (EERE)...

  7. Carbon Power & Light - Residential and Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    EE Maximum Rebate Water Heater: 75 Program Info Sector Name Utility Administrator Carbon Power & Light, Inc. Website http:www.carbonpower.comrebates.html State Wyoming...

  8. Philadelphia Gas Works- Residential and Commercial Construction Incentives Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works (PGW) provides incentives to developers, home builders and building owners that build new facilities or undergo gut-rehab projects to conserve gas beyond the level consumed...

  9. City of Austin - Residential and Commercial Green Building Requirement...

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics Wind (All) Biomass Geothermal Heat Pumps Daylighting Comprehensive MeasuresWhole Building Wind (Small)...

  10. Fact Sheet: Better Buildings Residential Network

    Broader source: Energy.gov [DOE]

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient.

  11. Noble REMC- Residential Energy Efficiency Rebate Incentives

    Broader source: Energy.gov [DOE]

    Through Wabash Valley Power Association, POWER MOVES program, Noble REMC offers residential rebates.

  12. Residential Energy Efficiency Messaging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Messaging, call slides and discussion summary, April 9, 2015. PDF icon Call Slides and Discussion Summary More Documents & Publications Nothing But Networking for Residential Network Members Social Media and Messages that Matter - Top Tips and Tools Generating Energy Efficiency Project Leads and Allocating Leads to Contractors

  13. Better Buildings Residential Network Orientation Webinar

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, September 11, 2014.

  14. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  15. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  16. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  17. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  18. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 -

  19. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 414,020 418,569 432,377 1990's 453,023 455,649 467,664 484,438 503,583 523,622 562,343 567,786 588,364 609,603 2000's 641,111 657,728 660,677 678,833 701,255 743,761 754,554 778,644 794,880 810,442 2010's 821,525 830,219 840,687 854,389 869,052 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Vermont Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,553 16,616 16,920 1990's 18,300 19,879 20,468 21,553 22,546 23,523 24,383 25,539 26,664 27,931 2000's 28,532 29,463 30,108 30,856 31,971 33,015 34,081 34,937 35,929 37,242 2010's 38,047 38,839 39,917 41,152 42,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. Virginia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 550,318 573,731 601,906 1990's 622,883 651,203 664,500 690,061 721,495 753,003 789,985 812,866 847,938 893,887 2000's 907,855 941,582 982,521 996,564 1,029,389 1,066,302 1,085,509 1,101,863 1,113,016 1,124,717 2010's 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 - = No Data Reported; -- = Not

  2. Washington Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 392,469 413,008 425,624 1990's 458,013 492,189 528,913 565,475 604,315 638,603 673,357 702,701 737,208 779,104 2000's 813,319 841,617 861,943 895,800 926,510 966,199 997,728 1,025,171 1,047,319 1,059,239 2010's 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 - = No Data Reported; -- = Not

  3. West Virginia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 351,024 349,765 349,347 1990's 349,673 350,489 352,463 352,997 352,929 353,629 358,049 362,432 359,783 362,292 2000's 360,471 363,126 361,171 359,919 358,027 374,301 353,292 347,433 347,368 343,837 2010's 344,131 342,069 340,256 340,102 338,652 - = No Data Reported; -- = Not

  4. Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,054,347 1,072,585 1,097,514 1990's 1,123,557 1,151,939 1,182,834 1,220,500 1,253,333 1,291,424 1,324,570 1,361,348 1,390,068 1,426,909 2000's 1,458,959 1,484,536 1,514,700 1,541,455 1,569,719 1,592,621 1,611,772 1,632,200 1,646,644 1,656,614 2010's 1,663,583 1,671,834 1,681,001 1,692,891

  5. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  6. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  7. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  10. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  13. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  14. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  16. New Hampshire Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,078 61,969 64,059 1990's 65,310 67,991 69,356 70,938 72,656 74,232 75,175 77,092 78,786 80,958 2000's 82,813 84,760 87,147 88,170 88,600 94,473 94,600 94,963 67,945 96,924 2010's 95,361 97,400 99,738 98,715 99,146 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  17. North Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435,826 472,928 492,821 1990's 520,140 539,321 575,096 607,388 652,307 678,147 699,159 740,013 777,805 815,908 2000's 858,004 891,227 905,816 953,732 948,283 992,906 1,022,430 1,063,871 1,095,362 1,102,001 2010's 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 - = No Data

  18. North Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 83,517 84,059 84,643 1990's 85,646 87,880 89,522 91,237 93,398 95,818 97,761 98,326 101,930 104,051 2000's 105,660 106,758 108,716 110,048 112,206 114,152 116,615 118,100 120,056 122,065 2010's 123,585 125,392 130,044 133,975 137,972 - = No Data Reported; -- = Not Applicable; NA =

  19. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  20. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  3. Alaska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Alaska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.31 0.31 0.31 0.30 0.35 0.37 2000's 0.32 0.35 0.33 0.33 0.37 0.37 0.47 0.42 0.44 0.42 2010's 0.39 0.43 0.52 0.39 0.35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  4. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  7. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  8. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  9. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  10. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  11. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  15. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  19. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    SciTech Connect (OSTI)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

  20. Washington Gas- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas as a part of the Maryland EmPOWER program offers incentives to its residential customer for making energy efficiency improvements. Rebates are available for qualifying water heaters,...

  1. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  2. Residential propane price decreases slightly

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by ...

  3. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent ...

  4. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increase slightly The average retail price for propane is 2.41 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the ...

  5. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 4.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are ...

  6. Portland's Residential Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

  7. Commercialization of Bulk Thermoelectric Materials for Power Generation |

    Broader source: Energy.gov (indexed) [DOE]

    The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Commercial Water Heaters -- v2.0 More Documents & Publications Residential Freezers (Appendix B) Residential

  8. U.S. Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Deliveries (Percent) U.S. Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Share of Total U.S. Natural Gas

  9. Nothing But Networking for Residential Network Members | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nothing But Networking for Residential Network Members Nothing But Networking for Residential Network Members Better Buildings Residential Network Peer Exchange Call: Nothing But...

  10. Tracking the Sun VIII: The Installed Price of Residential and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Non-Residential Photovoltaic Systems in the United States Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United ...

  11. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide This Residential Retrofit Program Design Guide focuses on the key elements and design...

  12. Texas Price of Natural Gas Delivered to Residential Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Texas Price of ... Referring Pages: Average Residential Price Texas Natural Gas Prices Average Residential

  13. Partner With DOE and Residential Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Partner With DOE and Residential Buildings Partner With DOE and Residential Buildings The U.S. Department of Energy (DOE) partners with a variety of ...

  14. About the Better Buildings Residential Network | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Better Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and ...

  15. Guide for Benchmarking Residential Program Progress with Examples...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Progress with Examples Guide for Benchmarking Residential Program Progress with Examples Better Buildings Residential Network: Guide for Benchmarking Residential Program ...

  16. Guide to Benchmarking Residential Program Progress Webcast Slides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential ...

  17. Staged Upgrades as a Strategy for Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Strategy for Residential Energy Efficiency Staged Upgrades as a Strategy for Residential Energy Efficiency Better Buildings Residential Network Peer Exchange Call Series: ...

  18. Residential Building Audits and Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in residential buildings, programmatic elements of residential building audit and retrofit programs, and resources that you can access to address residential retrofit issues. ...

  19. Focus Series: Maine - Residential Direct Install Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine - Residential Direct Install Program Focus Series: Maine - Residential Direct Install Program Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct ...

  20. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with ...