Powered by Deep Web Technologies
Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Model Year 1999 Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL FUEL ECONOMY GUIDE MODEL YEAR 1999 DOE/EE-0178 Fuel Economy Estimates October 1998 1 CONTENTS PAGE Purpose of the Guide ..................................................... 1 Interior Volume ................................................................ 1 How the Fuel Economy Estimates are Obtained ........... 1 Factors Affecting MPG .................................................... 2 Fuel Economy and Climate Change ............................... 2 Gas Guzzler Tax ............................................................. 2 Vehicle Classes Used in This Guide. .............................. 2 Annuel Fuel Costs .......................................................... 3 How to Use the Guide .................................................... 4 Where to Re-order Guides

2

Fuel Guide Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

3

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

4

EPA Fuel Economy Ratings  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Window Sticker Current Window Sticker The U.S. Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) recently redesigned and enhanced the window sticker that appears on new vehicles. The new Fuel Economy and Environment Label will be mandatory on all new vehicles beginning with the 2013 model year. For the 2012 model year, manufacturers can use the new window sticker or the older window sticker shown below. Roll over the highlighted elements on the label below to learn more about EPA's current fuel economy label. EPA's Current Fuel Economy Label EPA's New Fuel Economy Label Estimated Annual Fuel Cost: $2,039 based on 15,000 mile at $2.80 per gallon Your fuel cost may differ depending on annual miles and fuel prices. Combined Fuel Economy for this Vehicle: 21 MPG, Range for all SUVs: 10-31

5

Print the Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Print the Fuel Economy Guide Print the Fuel Economy Guide 2014 Fuel Economy Guide 2014 Fuel Economy Guide Adobe Acrobat Icon MPG data updated December 19, 2013 The annual fuel cost estimates in the 2008-2014 electronic fuel economy guides are updated weekly to match EIA's current national average prices for gasoline and diesel fuel. Order a printed copy: Order Note that the published guides may not be as up-to-date at the downloadable version. View vehicles from 1984 to the present: Go to Find-a-Car Unlike the annual guides which cover only one model year, Find-a-Car provides the most up-to-date fuel economy information for vehicles from model year 1984 to the present, along with environmental and safety data. Find a Car Developer Tools 2013 Fuel Economy Guide 2013 Fuel Economy Guide Adobe Acrobat Icon

6

Fuel Economy Web Services  

NLE Websites -- All DOE Office Websites (Extended Search)

FuelEconomy.gov Web Services FuelEconomy.gov Web Services Data Description atvtype - alternative fuel or advanced technology vehicle Bifuel (CNG) - Bi-fuel gasoline and compressed natural gas vehicle Bifuel (LPG) - Bi-fuel gasoline and propane vehicle CNG - Compressed natural gas vehicle Diesel - Diesel vehicle EV - Electric vehicle FFV - Flexible fueled vehicle (gasoline or E85) Hybrid - Hybrid vehicle Plug-in Hybrid - Plug-in hybrid vehicle drive - drive axle type 2-Wheel Drive 4-Wheel Drive* 4-Wheel or All-Wheel Drive* All-Wheel Drive* Front-Wheel Drive Part-time 4-Wheel Drive* Rear-Wheel Drive *Prior to Model Year 2010 EPA did not differentiate between All Wheel Drive and Four Wheel Drive salesArea - EPA sales area code. The area of the country where the vehicle can legally be sold. New federally certified vehicles can be sold in all states except California

7

"Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Economy, Selected Survey Years (Miles Per Gallon)" Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census Region and Division" " Northeast",15.6,"NA",19.6,20.9,20.7,20.85531 " New England",16.5,"NA",19.7,21.1,20.4,20.97907 " Middle Atlantic ",15.3,"NA",19.6,20.8,20.8,20.79659 " Midwest ",14.8,"NA",18.2,19,20.1,20.18362 " East North Central",14.9,"NA",18.4,19.4,20.1,20.26056 " West North Central ",14.5,"NA",17.8,17.9,20,20.01659 " South",15,"NA",18,19.2,19.6,20.17499 " South Atlantic",15.6,"NA",19,20.2,20.2,20.5718

8

Download Fuel Economy Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Download Fuel Economy Data Download Fuel Economy Data Fuel economy data are the result of vehicle testing done at the Environmental Protection Agency's National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan, and by vehicle manufacturers with oversight by EPA. 2013 Ford C-MAX Hybrid Data Revised (August 15, 2013) 2011-2013 Hyundai and Kia data revised (November 2, 2012) Downloadable Fuel Economy Data Find and Compare Cars data - MPG data for all 1984-2014 vehicles (Updated: Friday December 20 2013) For Developers: Fueleconomy.gov Web Services CSV: /feg/epadata/vehicles.csv.zip (Documentation) XML: /feg/epadata/vehicles.xml.zip (Documentation) Fuel Economy Datafile* Fuel Economy Guide Adobe Acrobat Icon Green Vehicle Guide Datafile Green Vehicle Guide Adobe Acrobat Icon

9

Car buyers and fuel economy?  

E-Print Network (OSTI)

corporate average fuel economy standards. Economic InquiryAll rights reserved. Keywords: Fuel economy; Fuel ef?ciency;improvement in the fuel economy of an SUV they have designed

Turrentine, Tom; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

10

Fuel Economy Mobile  

NLE Websites -- All DOE Office Websites (Extended Search)

and used cars New Window Sticker Learn more about the new fuel economy label Calculate My MPG Enter your MPG data at the pump Gas Mileage Tips Tips to save you fuel and money Full...

11

Getting to Know the New Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting to Know the New Fuel Economy Getting to Know the New Fuel Economy and Environment Labels / 1 * Understanding the Guide Listings / 2 * Why Some Vehicles Are Not Listed / 2 * Vehicle Classes Used in This Guide / 3 * Tax Incentives and Disincentives / 3 * Why Consider Fuel Economy / 3 * Fueling Options / 4 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 4 * Model Year 2013 Fuel Economy Leaders / 5 * 2013 Model Year Vehicles / 6 * Diesel Vehicles / 26 * Electric Vehicles / 27 * Plug-in Hybrid Electric Vehicles / 29 * Hybrid Electric Vehicles / 28 * Compressed Natural Gas Vehicles / 31 * Fuel Cell Vehicles / 31 * Ethanol Flexible Fuel Vehicles / 32 * Index / 37 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most

12

Predicting Individual Fuel Economy  

SciTech Connect

To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2011-01-01T23:59:59.000Z

13

Why is fuel Economy Important?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Is Fuel Economy Important? Why Is Fuel Economy Important? Saves You Money Save as much as $1,700 in fuel costs each year by choosing the most efficient vehicle that meets your needs. See how much you can save! Photo of gasoline receipt on top of money Reduces Climate Change Carbon dioxide (CO2) from burning gasoline and diesel contributes to global climate change. You can do your part to reduce climate change by reducing your carbon footprint! Photo of Earth from space Reduces Oil Dependence Costs Our dependence on oil makes us vulnerable to oil market manipulation and price shocks. Find out how oil dependence hurts our economy! Chart showing annual cost of oil imports increasing from $21 billion per year in 1975 to approximately $330 billion in 2011 Increases Energy Sustainability

14

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

15

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

16

Used Car Fuel Economy Label  

NLE Websites -- All DOE Office Websites (Extended Search)

Actual fuel economy will vary for many reasons, including driving conditions and how the car was driven and maintained. Aftermarket modifications to the vehicle can affect fuel...

17

Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency  

E-Print Network (OSTI)

Automotive Technology and Fuel Economy Trends: 1975 Throughof the Corporate Average Fuel Economy Standards. ” EconomicImplications for Fuel Economy Policy. ” Presentation to SAE

Kurani, Ken; Turrentine, Thomas

2004-01-01T23:59:59.000Z

18

Fuel Prices and New Vehicle Fuel Economy in Europe  

E-Print Network (OSTI)

This paper evaluates the effect of fuel prices on new vehicle fuel economy in the eight largest European markets. The analysis spans the years 2002–2007 and uses detailed vehicle registration and specification data to ...

Klier, Thomas

19

1998 Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

purpose vehicles (2-wheel drive and 4-wheel drive). By using this Guide consumers can estimate the average yearly fuel cost for any vehicle. The mileage figures included in...

20

Moving Forward With Fuel Economy Standards  

E-Print Network (OSTI)

Council. Automotive Fuel Economy: How Far Can We Go? (Lee Schipper. Automobile Fuel. Economy and CO 2 Emissions inGraham. The Effect of Fuel Economy Standards on Automobile

Schipper, Lee

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel Economy Web Services  

NLE Websites -- All DOE Office Websites (Extended Search)

rating for fuelType1 scoreAlt - EPA 1-10 smog rating for fuelType2 smartwayScore - SmartWay Code standard - Vehicle Emission Standard Code stdText - Vehicle Emission Standard...

22

Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy Test Fuel Economy Test Procedures and Labeling to someone by E-mail Share Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Facebook Tweet about Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Twitter Bookmark Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Google Bookmark Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Delicious Rank Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Digg Find More places to share Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Economy Test Procedures and Labeling

23

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual Fuel Economy Guide Now Available 10 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

24

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

25

Fuel Economy Widgets  

NLE Websites -- All DOE Office Websites (Extended Search)

widget and many other great free widgets at Widgetbox Not seeing a widget? (More info) Gas Mileage Tips Widget This widget displays a new fuel-saving tip each week and provides...

26

Fuel Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Fuel Economy Fuel Economy Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel. Featured New Investment in Energy-Efficient Manufacturing The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility.

27

Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Vehicle Fuel State Vehicle Fuel Economy Requirements to someone by E-mail Share Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Facebook Tweet about Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Twitter Bookmark Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Google Bookmark Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Delicious Rank Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Digg Find More places to share Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Vehicle Fuel Economy Requirements State contracts for the purchase or lease of new passenger automobiles must

28

What is FuelEconomy.gov  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FuelEconomy.gov? FuelEconomy.gov? FuelEconomy.gov is an Internet resource that helps consumers make informed fuel economy choices when purchasing a vehicle and achieve the best fuel economy possible from the cars they own. FuelEconomy.gov is maintained by the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy with data provided by the U.S. Environmental Protection Agency (EPA). The site helps fulfill DOE and EPA's responsibility under the Energy Policy Act of 1992 to provide accurate miles per gallon (MPG) information to consumers. What has FuelEconomy.gov accomplished? In 2011 alone, FuelEconomy.gov is estimated to have helped to

29

Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Fuel Economy Vehicle Fuel Economy and Greenhouse Gas Emissions Standards to someone by E-mail Share Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Facebook Tweet about Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Twitter Bookmark Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Google Bookmark Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Delicious Rank Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Digg Find More places to share Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on AddThis.com...

30

Fuel Economy in the News  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Economy in the News Fuel Economy in the News Disclaimer: The opinions expressed in the following articles belong to the original authors and do not necessarily reflect the opinions or policies of the U.S. Department of Energy or the Environmental Protection Agency. May 31, 2013 Drive On: Ford rocks hybrid sales - USA Today 2014 Chevrolet Cruze Diesel: Could this be the anti-TDI? - Car and Driver Tips for Buying and Servicing a Used Hybrid Car - The New York Times May 30, 2013 Mercedes' GLK250 joins fuel efficiency with luxury - The Detroit News Honda Fit EV lease drops to $259 with no down payment, unlimited miles - Autoblog Tesla tripling supercharger network for LA to NY trip - CNN May 29, 2013 Musk sticking to plan for 'affordable' Tesla model - Autoblog 2015 Toyota Prius Spy Shots: Next-Gen Hybrid Breaks Cover - Green

31

2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2004 FUEL ECONOMY GUIDE BEST IN CLASS 2004 FUEL ECONOMY GUIDE BEST IN CLASS A chart describing the 2004 fuel economy best in class vehicles. 2004 FUEL ECONOMY GUIDE BEST IN CLASS...

32

Effect of Fuel Economy on Automobile Safety: A Reexamination  

NLE Websites -- All DOE Office Websites (Extended Search)

75, the fuel economy of passenger cars and light trucks has been 75, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards and their impact on highway safety. A seminal study of the link between CAFE and traffic fatalities was published by R. W. Crandall and J. D. Graham in 1989. They linked higher fuel economy levels to decreases in vehicle weight and correlated the decline in new car weight with about a 20% increase in occupant fatalities. The time series available to them, 1947-1981, includes only the first 4 years of fuel economy regulation, but any statistical relationship estimated over such

33

Fuel Economy and Environment Labels  

NLE Websites -- All DOE Office Websites (Extended Search)

note that these labels are examples and do not represent real automobiles. The sample labels are intended to note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 1 A New Fuel Economy Label for a New Generation of Cars Gasoline Label Please note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 2 Flexible Fuel Vehicle: Gasoline-Ethanol (E85) Without Driving Range

34

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

35

Global Fuel Economy Initiative | Open Energy Information  

Open Energy Info (EERE)

Global Fuel Economy Initiative Global Fuel Economy Initiative Jump to: navigation, search Tool Summary Name: Global Fuel Economy Initiative Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.globalfueleconomy.org/ The Global Fuel Economy Initiative has launched the 50by50 challenge to facilitate large reductions of greenhouse gas emissions and oil use through improvements in automotive fuel economy. The website provides access to working papers, a map showing countries with fuel economy standards, and other related information. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel

36

2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Fuel Economy Guide and FuelEconomy.gov 09 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than 30 seconds, as Elizabeth pointed out last week. Driving conservatively and buying a fuel efficient car can make even more of an impact. The 2009 Fuel Economy Guide, released on October 15, can help you choose the most fuel efficient car for your needs, both new and used. Whether

37

Fuel Economy of the 2013 Mazda 5  

NLE Websites -- All DOE Office Websites (Extended Search)

(S5) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 24 Combined 22...

38

Fuel Economy of the 2013 Mazda 5  

NLE Websites -- All DOE Office Websites (Extended Search)

6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 24 Combined 2...

39

Car buyers and fuel economy?  

E-Print Network (OSTI)

Fuel ef?ciency; Automobiles; Car buyers 1. Introduction 1.1.M. , ‘‘We probably drive each car about 7000 or 6000 milesgallons per year [for one car]; B. thinks this might be too

Turrentine, Tom; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

40

Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety  

SciTech Connect

The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2007-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EPA-Fuel Economy Guide | Open Energy Information  

Open Energy Info (EERE)

Fuel Economy Guide Jump to: navigation, search Name Fuel Economy Guide AgencyCompany Organization United States Environmental Protection Agency Focus Area Energy Efficiency,...

42

Fuel Economy Valentines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy Valentines Fuel Economy Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model of your vehicle, you'll choose a way to keep track of your fill-ups at the pump, recording your odometer and/or the amount of fuel you put in your vehicle. The tool then calculates your gallons per mile and saves this information in your account; you can log back in anytime to update and monitor your

43

Fuel Economy Valentines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy Valentines Fuel Economy Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model of your vehicle, you'll choose a way to keep track of your fill-ups at the pump, recording your odometer and/or the amount of fuel you put in your vehicle. The tool then calculates your gallons per mile and saves this information in your account; you can log back in anytime to update and monitor your

44

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Fuel Economy Standards Will Continue to Inspire Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and

45

Fuel Economy of the 2013 Bugatti Veyron  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 16 cyl, 8.0 L Automatic (AM-S7) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 10 Combined 8 City 15 Highway...

46

Fuel Economy of the 2013 Bentley Mulsanne  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 6.8 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 13 Combined 11 City 18 Highway...

47

Fuel Economy of the 2013 Maserati Quattroporte  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 4.7 L Automatic 6-spd Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

48

Fuel Economy of the 2013 Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

1.8 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 50 Combined 51 City 48 Highway...

49

Fuel Economy of the 2013 Ferrari California  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 8 cyl, 4.3 L Auto(AM7) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 15 Combined 13 City 19 Highway...

50

Fuel Economy of the 2013 Nissan Leaf  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 115 Combined 129 City 102 Highway...

51

Fuel Economy of the 2013 Chevrolet Spark  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 4 cyl, 1.2 L Manual 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 34 Combined 32 City 38 Highway...

52

Fuel Economy of the 2013 Chevrolet Camaro  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 6.2 L Automatic (S6) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

53

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So it’s unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

54

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So it’s unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

55

Vehicle Technologies Office: Fact #684: July 18, 2011 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2011 Fuel Economy versus Fuel Savings to someone by E-mail Share Vehicle Technologies Office: Fact 684: July 18, 2011 Fuel Economy versus Fuel Savings on Facebook Tweet about...

56

Increased fuel economy in transportation systems by use of energy management. Third year's program. Final report, May 1, 1976--July 1, 1976  

DOE Green Energy (OSTI)

A report is given of the results accomplished during the third year of a three-year research program, the overall goal of which has been to conceive and evaluate practical ways to increase automobile fuel economy by energy management within the engine-transmission-vehicle system. The third year was devoted primarily to the detailed design, construction, and preliminary evaluation of a Flywheel Energy Management Powerplant (FEMP) installed in a Pinto. The vehicle has been built to experimentally verify performance simulations and to allow the practical aspects of a real flywheel vehicle to be studied. The FEMP consists basically of an internal combustion engine, a high-speed energy-storage flywheel, and a hydrostatic power-split continuously-variable transmission (CVT) system. The flywheel drives the car, and the engine comes on to ''recharge'' it (with efficient wide-open throttle operation) only when the flywheel speed drops below a predetermined value. The concept also permits effective and efficient regenerative braking. Computer simulations have indicated an improvement in city fuel mileage of about 50%, with improvements of 100% appearing feasible with further research. Preliminary testing of the car shows favorable performance.

Beachley, N.H.; Frank, A.A.

1976-07-01T23:59:59.000Z

57

Effect of Intake Air Filter Condition on Vehicle Fuel Economy  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2009-02-01T23:59:59.000Z

58

New EPA Fuel Economy and Environment Label - Gasoline Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Vehicles Gasoline Vehicles Gasoline Vehicles Fuel Economy In addition to the MPG estimates displayed on previous labels, combined city/highway fuel use is also given in terms of gallons per 100 miles. New! Fuel Economy & Greenhouse Gas Rating Use this scale to compare vehicles based on tailpipe greenhouse gas emissions, which contribute to climate change. New! Smog Rating You can now compare vehicles based on tailpipe emissions of smog-forming air pollutants. New! Five-Year Fuel Savings This compares the five-year fuel cost of the vehicle to that of an average gasoline vehicle. The assumptions used to calculate these costs are listed at the bottom of the label. Annual Fuel Cost This cost is based on the combined city/highway MPG estimate and assumptions about driving and fuel prices listed at the bottom of the

59

Vehicle Technologies Office: Fact #772: March 25, 2013 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2013 Fuel Economy by Speed: Slow Down to Save Fuel to someone by E-mail Share Vehicle Technologies Office: Fact 772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save...

60

USING THE FUEL ECONOMY GUIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

allows you to insert your local gasoline prices and typical driving conditions (% city & highway) to achieve the most accurate fuel cost information for your vehicle. Strengthen...

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sipping fuel and saving lives: increasing fuel economy without sacrificing safety  

E-Print Network (OSTI)

delays plans to boost fuel economy of its SUVs. Wall St.without impacting fuel economy. Honda Motor Company, OctoberGreene, D.L. 2006. Fuel economy policy and highway safety.

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2008-01-01T23:59:59.000Z

62

MotorWeek: Fuel Economy Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Navigational links Navigational links Site Map | Videos | Links | More Info | Search | Contacts | HOME www.fueleconomy.gov Photograph of Cars Find and Compare Cars | Gas Mileage Tips | Gasoline Prices | Your MPG Will Vary | Why is Fuel Economy Important? | Your MPG | Hybrids, Diesels, Alt Fuels, Etc. | Tax Incentives | Extreme MPG U.S. Department of Energy | Print the Fuel Economy Guide | U.S. Environmental Protection Agency Gas Mileage Tips Driving more efficiently Keeping your car in shape Planning and combining trips Choosing a more efficient vehicle More Info MotorWeek: Text Version Video: MotorWeek test showing impact of driving style on MPG. Fuel Economy Focus John Davis The window sticker on a new car contains lots of information besides just the price. For instance, down at the bottom are the all important government fuel economy estimates. But just like the price on the sticker may have little in common with what you actually pay for the car, the mileage estimates may also be far different from real world results. So, why does gas mileage vary so much? Well, the answers are as varied as your mileage.

63

Fuel Economy Driver Interfaces: Driving Simulator Study of Component Concepts  

E-Print Network (OSTI)

A fuel economy driver interface (FEDI) gives a driver an indication of fuel usage or efficiency. Many passenger vehicles in recent model years have FEDIs and they have been included in some vehicle models for decades. FEDIs present fuel economy information in a variety of forms. Some show fuel economy in miles per gallon (mpg) while others provide a relative measure of economy or provide an alert if fuel economy is especially poor. The appearances of FEDIs vary drastically between vehicle makes and models. FEDIs can provide numerical output, analog or digital gauges, bar charts, illuminator lamps, and a variety of other display features. With the recent emergence of high-resolution LCD screens in cars, detailed and complex color displays are possible, and these make feasible a variety of new FEDI concepts. FEDIs may even include vehicle-adaptive features that influence some aspect of vehicle performance in response to inefficient driver behaviors. While FEDIs have the potential to encourage efficient and safe driving, it is possible that the displays themselves might cause distraction at the expense

unknown authors

2010-01-01T23:59:59.000Z

64

Best and Worst Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Best and Worst MPG 2013 Most and Least Efficient Vehicles Cars Cars (excluding EVs) Trucks Trucks (excluding EVs) 2013 Most Fuel Efficient Cars by...

65

DOE and EPA Release 2012 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Release 2012 Annual Fuel Economy Guide EPA Release 2012 Annual Fuel Economy Guide DOE and EPA Release 2012 Annual Fuel Economy Guide November 16, 2011 - 2:37pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) are releasing the 2012 Fuel Economy Guide, providing consumers with information that can help them choose a more efficient new vehicle that saves them money and reduces greenhouse gas emissions. While fuel efficient vehicles come in a variety of fuel types, classes, and sizes, many new advanced technology vehicles debut on this year's annual list of top fuel economy performers. Fuel economy leaders within each vehicle category - from two-seaters to large SUVs - include widely available products such as conventional gasoline models and clean

66

Vehicle Technologies Office: Fact #170: June 18, 2001 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2001 Fuel Economy Saves to someone by E-mail Share Vehicle Technologies Office: Fact 170: June 18, 2001 Fuel Economy Saves on Facebook Tweet about Vehicle Technologies...

67

Vehicle Technologies Office: Fact #680: June 20, 2011 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2011 Fuel Economy is "Most Important" When Buying a Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 680: June 20, 2011 Fuel Economy is "Most Important"...

68

Vehicle Technologies Office: Fact #773: April 1, 2013 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2013 Fuel Economy Penalty at Higher Speeds to someone by E-mail Share Vehicle Technologies Office: Fact 773: April 1, 2013 Fuel Economy Penalty at Higher Speeds on Facebook...

69

Vehicle Technologies Office: Fact #626: June 7, 2010 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2010 Fuel Economy for Light and Heavy Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact 626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles on...

70

Vehicle Technologies Office: Fact #730: June 4, 2012 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2012 Fuel Economy of New Light Vehicles is Up 19% from 1980 to 2011 to someone by E-mail Share Vehicle Technologies Office: Fact 730: June 4, 2012 Fuel Economy of New Light...

71

2011 Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel economy information online as more 2011 vehicles, including electric and plug-in hybrid cars, become available. You can view the guide either on the Fuel Economy Web site...

72

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The 2014 Fuel Economy Guide Can Help You Choose Your Next The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - 1:10pm Addthis Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy Other ways to save money at the pump You can save money and use less fuel even without the purchase of a new car. Check out these easy tips to boost your gas mileage and save money. Are you in the market for a new car to start off the New Year? Choosing the

73

Natural Gas Pathways and Fuel Economy Guide Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

I presentation slides: Natural Gas pathways and Fuel economy Guide Comparison Bob Wimmer, Toyota Natural Gas Pathways Toyota estimation Vehicle Total Fuel efficiency Range...

74

New Fuel Economy and Environment Label  

NLE Websites -- All DOE Office Websites (Extended Search)

New Window Sticker Beyond Tailpipe Emissions About the Label Gasoline Vehicles Plug-in Hybrid Vehicles Electric Vehicles QR Codes | Share Learn About the New Label Greenhouse gas emissions from vehicles are an important contributor to climate change. Visit EPA's climate change page for more details. View a video about the new labels. Click on a tab to view the new labels for various vehicle/fuel types. Move the cursor over parts of the label to learn more. Gasoline Vehicle Plug-In Hybrid Electric Vehicle (PHEV) Electric Vehicle Shows the type of fuel or fuels the vehicle can use. You will most commonly see "Gasoline Vehicle," "Flexible Fuel Vehicle: Gasoline-Ethanol," or "Diesel Vehicle." Learn more Find the MPG fuel economy estimates here. The Combined City/Highway

75

Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

8: September 14, 8: September 14, 2009 Fuel Economy Changes Due to Ethanol Content to someone by E-mail Share Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Facebook Tweet about Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Twitter Bookmark Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Google Bookmark Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Delicious Rank Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Digg Find More places to share Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on

76

Fuel Economy Fact and Fiction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy Fact and Fiction Fuel Economy Fact and Fiction Fuel Economy Fact and Fiction April 4, 2011 - 1:01pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With gas prices soaring higher than ever, there's a lot of information-true and false-floating around about fuel economy. From well-intentioned friends to salespeople trying to make a buck, everyone has an opinion on how you can use less gas. Thankfully, the Department of Energy has solid facts based on data that will help you sort out the reality from the myth. Check out FuelEconomy.gov for even more tips. Just the facts... The best device for improving your fuel economy is a tire gauge. There are all sorts of products out there that claim they can help improve your fuel economy, from inserts for your exhaust pipe to magnets clamped on

77

Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

78

Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

79

Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

80

Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

82

Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

83

Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

84

Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

85

Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

86

Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

87

Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

88

Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

89

New Methodology for Estimating Fuel Economy by Vehicle Class  

SciTech Connect

Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

Chin, Shih-Miao [ORNL; Dabbs, Kathryn [University of Tennessee, Knoxville (UTK); Hwang, Ho-Ling [ORNL

2011-01-01T23:59:59.000Z

90

Fuel Economy Driver Interfaces: Usability Study of Display Component Concepts  

E-Print Network (OSTI)

A fuel economy driver interface (FEDI) gives drivers an indication of fuel usage or efficiency. Many passenger vehicles in recent model years have FEDIs, and they have been included in some vehicle models for decades. FEDIs present fuel economy information in a variety of forms. Some show fuel economy in miles per gallon (mpg) while others provide a relative measure of economy or provide an alert if fuel economy is especially poor. The appearances of FEDIs vary drastically between vehicle makes and models. FEDIs can provide numerical output, analog or digital gauges, bar charts, illuminator lamps, and a variety of other display features. With the recent emergence of high-resolution LCD screens in cars, detailed and complex color displays are possible, and these make feasible a variety of new FEDI concepts. FEDIs may even include vehicle-adaptive features that influence some aspect of vehicle performance in response to inefficient driver behaviors. While FEDIs have the potential to encourage efficient and safe driving, it is possible that the displays themselves cause distraction at the expense of attending to the roadway. Overall goals of this research program are to understand how characteristics of FEDIs influence driver behavior, and to identify best practices for FEDI design to meet drivers ’ needs and minimize distraction and undesirable behavior. Previous work on this project has included documenting the range of existing FEDI designs and conducting focus groups with vehicle owners to discuss fuel efficient driving behaviors and FEDI designs (Jenness, Singer, Walrath, & Lubar, 2009). The purpose of the usability study presented here was to narrow down the range of possible FEDI designs so that the most usable concepts could be tested in a subsequent driving simulator study.

Cs Intensity-changing Light

2010-01-01T23:59:59.000Z

91

Chapter 11. Fuel Economy: The Case for Market Failure  

Science Conference Proceedings (OSTI)

The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

Greene, David L [ORNL; German, John [Environmental and Energy Analysis; Delucchi, Mark A [University of California, Davis

2009-01-01T23:59:59.000Z

92

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual Fuel Economy Guide 1 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

93

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

94

CleanFleet. Final report: Volume 4, fuel economy  

DOE Green Energy (OSTI)

Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

NONE

1995-12-01T23:59:59.000Z

95

Fuel Economy on the Fly | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy on the Fly Fuel Economy on the Fly Fuel Economy on the Fly January 19, 2011 - 5:06pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Fuel Economy information at your fingertips Cross Post from the Energy Savers Blog. Written by Shannon Brescher Shea. With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new car, FuelEconomy.gov can help you pick the most fuel-efficient vehicle for your needs. Although most people don't bring their computer with them to the dealership, you're in luck if you have a smartphone or other mobile internet device. FuelEconomy.gov has a mobile version of its popular Find and Compare Cars

96

Fuel Economy on the Fly | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy on the Fly Fuel Economy on the Fly Fuel Economy on the Fly January 18, 2011 - 1:45pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new car, FuelEconomy.gov can help you pick the most fuel-efficient vehicle for your needs. Although most people don't bring their computer with them to the dealership, you're in luck if you have a smartphone or other mobile internet device. FuelEconomy.gov has a mobile version of its popular Find and Compare Cars tool that allows you to search anytime, anywhere. The mobile tool works just like the one on the FuelEconomy.gov website. You

97

Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

2: September 12, 2: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Google Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Delicious Rank Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Digg

98

The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States  

E-Print Network (OSTI)

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

99

Learn More About the Fuel Economy Label for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles Electric Vehicles Learn More About the New Label Electric Vehicle Fuel Economy and Environment Label Vehicle Technology & Fuel Fuel Economy Comparing Fuel Economy to Other Vehicles You Save Fuel Consumption Rate Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating Details in Fine Print QR Code Fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that is powered by electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

100

Fuel economy standards have affected vehicle efficiency - Today in ...  

U.S. Energy Information Administration (EIA)

This new footprint standard required that all vehicle manufacturers improve their fuel economy at a similar rate, regardless of the types and sizes of vehicles sold.

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Trends and new developments in automotive fuel economy  

Science Conference Proceedings (OSTI)

The significant improvements in passenger car fuel economy that have been achieved up to the present time are identified, and the changes that have produced these improvements are examined in detail. Included are several comparisons of domestic versus foreign vehicles. The potential for further increases in fuel economy is then reviewed by examining the technological, marketing/economic, and other significant factors that will affect future fuel economy levels. Special attention is given to the effect that changing market mix has on corporate average fuel economy and to the future benefits that may be realized through the use of continuously variable transmissions, adiabatic diesel engines, and improved lubricants.

Simpson, B.H.

1985-01-01T23:59:59.000Z

102

Examining new fuel economy standards for the United States.  

Science Conference Proceedings (OSTI)

After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

Plotkin, S. E.; Energy Systems

2007-01-01T23:59:59.000Z

103

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Release Annual Fuel Economy Guide with 2013 Models EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013 models include efficient and low-emission vehicles in a variety of classes and sizes, but notable this year is the growing availability of hybrids and the increasing number of electric vehicles. "This Administration has been working to foster a new generation of clean, fuel-efficient American vehicles, and part of that effort is

104

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

E-Print Network (OSTI)

for Federal Fuel Economy Regulation Final Report preparedand have higher fuel economy, and safer than conventionaland have higher fuel economy, without sacrificing safety. 1.

Wenzel, Thomas P.

2010-01-01T23:59:59.000Z

105

EPA-Fuel Economy Guide | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » EPA-Fuel Economy Guide (Redirected from EPA Fuel Economy Guide) Jump to: navigation, search Tool Summary Name: Fuel Economy Guide Agency/Company /Organization: United States Environmental Protection Agency Focus Area: Energy Efficiency, Transportation Resource Type: Guide/manual User Interface: Website Website: www.fueleconomy.gov/ Research light duty vehicles by fuel economy and greenhouse gas emissions. Retrieved from "http://en.openei.org/w/index.php?title=EPA-Fuel_Economy_Guide&oldid=375897" Categories: Tools Community Energy Tools

106

Fueling South Carolina's Clean Energy Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Julie McAlpin Communications Liaison, State Energy Program What does this mean for me? Pure Power increased energy efficiency while expanding plant

107

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles Plug-in Hybrid Electric Vehicles Learn More About the New Label Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that can be powered by both gasoline and electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

108

What Steps Do You Take to Improve Your Fuel Economy? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improve Your Fuel Economy? What Steps Do You Take to Improve Your Fuel Economy? April 7, 2011 - 7:30am Addthis On Monday, Shannon told you some facts about fuel economy and how you...

109

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network (OSTI)

K. , 1993b, Fuel Prices and Economy: Factors Effecting LandCar Test and Actual Fuel Economy: Yet Another Gap? Transportof automobile fuel economy in Europe. Energy Policy 34 14.

Schipper, Lee

2008-01-01T23:59:59.000Z

110

Increasing the Fuel Economy and Safety of New Light-Duty Vehicles  

E-Print Network (OSTI)

Automotive Technology and Fuel Economy Trends: 1975 Through2004. “The effect of fuel economy on automobile safety: aM. , 2002. “Near-term fuel economy potential for light-duty

Wenzel, Tom; Ross, Marc

2006-01-01T23:59:59.000Z

111

Energy Department and Environmental Protection Agency Release Fuel Economy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department and Environmental Protection Agency Release Fuel Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles September 12, 2013 - 9:00am Addthis News Media Contact DOE: (202) 586-4940 EPA: (202) 564-4355 WASHINGTON - As part of the Obama Administration's ongoing efforts to increase fuel efficiency, reduce carbon pollution and address climate change, the U.S. Energy Department and the Environmental Protection Agency (EPA) today released a new label that features EPA fuel economy estimates and CO2 estimates for used vehicles sold in the United States since 1984. Consumers may create the new label electronically as part of a new tool on FuelEconomy.gov. This electronic graphic can be downloaded and included in

112

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013 models include efficient and low-emission vehicles in a variety of classes and sizes, but notable this year is the growing availability of hybrids and the increasing number of electric vehicles. "This Administration has been working to foster a new generation of

113

Assessment of California reformulated gasoline impact on vehicle fuel economy  

DOE Green Energy (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CAROB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4 %, with a 95% upper confidence bound of 6 %. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CAROB with respect to the impact of CaRFG on fuel economy.

Aceves, S.; Glaser, R.; Richardson, J.

1997-01-01T23:59:59.000Z

114

Fuel Economy of the 2013 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 105 Combined 110 City 99 Highway...

115

Fuel Economy of the 2013 Toyota Tacoma 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 4 cyl, 2.7 L Manual 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 23 Combined 21 City 25 Highway...

116

Fuel Economy of the 2013 Ford Transit Connect Wagon FWD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 4 cyl, 2.0 L Automatic 4-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 24 Combined 22 City 27 Highway...

117

Fuel Economy of the 2013 Toyota Prius v  

NLE Websites -- All DOE Office Websites (Extended Search)

1.8 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 42 Combined 44 City 40 Highway...

118

Fuel Economy of the 2013 Rolls-Royce Phantom  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.7 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 11 City 19 Highway...

119

Fuel Economy of the 2013 Ford E350 Wagon  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 10 cyl, 6.8 L Automatic 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 11 Combined 10 City 13 Highway...

120

Fuel Economy of the 2013 Volkswagen Jetta SportWagen  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 4 cyl, 2.0 L Manual 6-spd Diesel Compare Side-by-Side Diesel EPA Fuel Economy Miles per Gallon Personalize Diesel 34 Combined 30 City 42 Highway Unofficial...

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fuel Economy of the 2013 Mercedes-Benz CL600  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 5.5 L Automatic 5-spd Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

122

Fuel Economy of the 2013 Toyota Prius c  

NLE Websites -- All DOE Office Websites (Extended Search)

1.5 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 50 Combined 53 City 46 Highway...

123

Fuel Economy of the 2013 Cadillac CTS Wagon  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 6.2 L Automatic (S6) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

124

Fuel Economy of the 2013 Toyota Sienna AWD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 6 cyl, 3.5 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 19 Combined 16 City 23 Highway...

125

Fuel Economy of the 2013 smart fortwo electric drive convertible  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 107 Combined 122 City 93 Highway...

126

Fuel Economy of the 2013 Rolls-Royce Phantom Coupe  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.7 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 11 City 19 Highway...

127

Fuel Economy of the 2013 Rolls-Royce Phantom EWB  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.7 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 11 City 19 Highway...

128

Fuel Economy of the 2013 Toyota FJ Cruiser 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 6 cyl, 4.0 L Manual 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 16 Combined 15 City 18 Highway...

129

Fuel Economy of the 2013 Infiniti FX50 AWD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 5.0 L Automatic (S7) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 16 Combined 14 City 20 Highway...

130

Fuel Economy of the 2013 smart fortwo electric drive coupe  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 107 Combined 122 City 93 Highway...

131

Fuel Economy of the 2013 Ram 1500 HFE 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 6 cyl, 3.6 L Automatic 8-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 21 Combined 18 City 25 Highway...

132

Fuel Economy of the 2013 Toyota Tacoma 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 6 cyl, 4.0 L Manual 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 17 Combined 16 City 19 Highway...

133

Fuel Economy of the 2013 Audi A3  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 4 cyl, 2.0 L Auto(AM-S6) Diesel Compare Side-by-Side Diesel EPA Fuel Economy Miles per Gallon Personalize Diesel 34 Combined 30 City 42 Highway Unofficial...

134

Fuel Economy of the 2013 Honda CR-Z  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 4 cyl, 1.5 L Auto(AV-S7) Regular Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 37 Combined 36 City 39 Highway...

135

Fuel Economy of the 2013 Lexus RX 450h  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 6 cyl, 3.5 L Auto(AV-S6) Premium Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 30 Combined 32 City 28 Highway...

136

Fuel Economy of the 2013 Lincoln MKT Livery AWD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 6 cyl, 3.7 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 19 Combined 17 City 24 Highway...

137

Fuel Economy of the 2013 Mitsubishi i-MiEV  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 112 Combined 126 City 99 Highway...

138

Fuel Economy of the 2013 Ford E350 Van  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 10 cyl, 6.8 L Automatic 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 14 Highway...

139

Fuel Economy of the 2013 Scion iQ  

NLE Websites -- All DOE Office Websites (Extended Search)

4 cyl, 1.3 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 37 Combined 36 City 37 Highway...

140

Fuel Economy.gov - Mobile | Open Energy Information  

Open Energy Info (EERE)

Economy.gov - Mobile Economy.gov - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy.gov - Mobile Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: fueleconomy.gov/ Web Application Link: fueleconomy.gov/m/ Cost: Free References: www.fueleconomy.gov[1] Logo: Fuel Economy.gov - Mobile Calculate gas mileage (MPG), annual fuel costs, annual petroleum use, and the carbon footprint information for your car or truck. Overview Calculate gas mileage (MPG), annual fuel costs, annual petroleum use, and the carbon footprint information for your car or truck. Highlights Find a Car MPG ratings for new and used cars.

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel Economy of the 2013 Chevrolet Suburban 2500 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

This Page 8 cyl, 6.0 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 16 Highway...

142

Fuel Economy of the 2013 GMC Savana 1500 AWD (Passenger)  

NLE Websites -- All DOE Office Websites (Extended Search)

Page Compare Side-by-Side 8 cyl, 5.3 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 17 Highway E85 10...

143

Fuel Economy of the 2013 Chevrolet Express 1500 AWD Passenger  

NLE Websites -- All DOE Office Websites (Extended Search)

Page Compare Side-by-Side 8 cyl, 5.3 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 17 Highway E85 10...

144

Fuel Economy of the 2013 Chevrolet Suburban 2500 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

This Page 8 cyl, 6.0 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 15 Highway...

145

Fuel Economy of the 2014 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Focus Electric Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per...

146

On Road Fuel Economy Performance of Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Fuel Economy Performance of Hybrid Electric Vehicles Lee Slezak Office of FreedomCAR and Vehicle Technologies U.S. Department of Energy Jim Francfort Advanced Vehicle Testing...

147

Fuel Economy of the 2014 Toyota Tacoma 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD Search for Other Vehicles View the Mobile Version of This Page 4 cyl, 2.7 L Manual 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize...

148

Fuel Economy of the 2014 Toyota Sienna AWD  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Sienna AWD Search for Other Vehicles View the Mobile Version of This Page 6 cyl, 3.5 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon...

149

Fuel Economy of the 2014 Toyota Tacoma 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD Search for Other Vehicles View the Mobile Version of This Page 6 cyl, 4.0 L Manual 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize...

150

Fuel Economy of the 2014 Toyota FJ Cruiser 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota FJ Cruiser 4WD Search for Other Vehicles View the Mobile Version of This Page 6 cyl, 4.0 L Manual 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per...

151

Fuel Economy of the 2013 Bentley Continental GTC  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 12 cyl, 6.0 L Automatic (S6) Premium Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Premium Gas 14 Combined 11 City 19...

152

Fuel Economy of the 2013 Bentley Continental Supersports Convertible  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 12 cyl, 6.0 L Automatic (S6) Premium Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Premium Gas 14 Combined 12 City 19...

153

Fuel Economy of the 2013 Ford E150 Wagon FFV  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 8 cyl, 4.6 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 16...

154

Fuel Economy of the 2013 Bentley Continental GT  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 12 cyl, 6.0 L Automatic (S6) Premium Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Premium Gas 14 Combined 12 City 19...

155

Fuel Economy of the 2014 Fiat 500e  

NLE Websites -- All DOE Office Websites (Extended Search)

Fiat 500e Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

156

Fuel Economy of the 2014 Chevrolet Spark EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

157

Fuel Economy of the 2014 Honda Fit EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Fit EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

158

2011 Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

will provide additional fuel economy information online as more 2011 vehicles, including electric and plug-in hybrid cars, become available. You can view the guide either on the...

159

Fuel Economy of the 2013 Scion iQ EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Scion iQ EV Search for Other Vehicles View the Mobile Version of This Page Automatic (variable gear ratios) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon...

160

Fuel Economy of the 2013 Honda Fit EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Fit EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize...

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Analysis of the fuel economy benefit of drivetrain hybridization  

DOE Green Energy (OSTI)

Parallel- and series-configured hybrid vehicles likely feasible in next decade arc defined and evaluated using NREL's flexible ADvanced VehIcle SimulatOR ADVISOR. Fuel economics of these two diesel-powered hybrid vehicles are compared to a comparable-technology diesel- powered internal-combustion-engine vehicle. Sensitivities of these fuel economies to various vehicle and component parameters are determined and differences among them are explained. The fuel economy of the parallel hybrid defined here is 24% better than the internal- combustion-engine vehicle and 4% better than the series hybrid.

Cuddy, M.R.; Wipke, K.B.

1997-01-01T23:59:59.000Z

162

Feature - Fuel Economy for Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles heavy duty trucks Argonne researcher Aymeric Rousseau was part of a National Academy of Science (NAS) committee established to make recommendations on improving and regulating fuel consumption for medium- and heavy-duty vehicles. On March 31, the committee issued a report that evaluates various technologies and methods that could improve the fuel economy of these vehicles. As a system analysis engineer at Argonne's Center for Transportation Research, Rousseau contributed his expertise on vehicle modeling and simulation to the committee, which was comprised of 19 members from industry, research organizations and academia. Rousseau, who leads the development of Argonne's PSAT and Autonomie software tools, helped the committee determine how modeling and simulation tools can be used to:

163

Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2012-04-01T23:59:59.000Z

164

Demonstration of the fuel economy potential associated with M85-fueled vehicles  

DOE Green Energy (OSTI)

A gasoline-fueled 1988 Chevrolet Corsica was converted to operate on M85 to demonstrate that the characteristics of methanol fuels can be exploited to emphasize vehicle fuel economy rather than vehicle performance. The results of the tests performed indicated fuel economy improvements of up to 21% at steady highway speeds, and almost 20% on the US Environmental Protection Agency`s federal test procedure city and highway cycles.

Hodgson, J.W.; Huff, S.P. [Tennessee Univ., Knoxville, TN (United States)

1993-12-01T23:59:59.000Z

165

Motor vehicle fuel economy, the forgotten HC control stragegy?  

DOE Green Energy (OSTI)

Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

Deluchi, M.; Wang, Quanlu; Greene, D.L.

1992-06-01T23:59:59.000Z

166

The Effect of Fuel Economy on Automobile Safety: A Reexamination  

NLE Websites -- All DOE Office Websites (Extended Search)

TRB 05-1336 TRB 05-1336 The Effect of Fuel Economy on Automobile Safety: A Reexamination November 16, 2004 Word Count: 5,966 (including 3 tables and 1 figure) Sanjana Ahmad Research Assistant The University of Tennessee, Knoxville 2360 Cherahala Boulevard Knoxville, Tennessee 37932 Phone: (865) 946-1311 Fax: (865) 946-1314 Email: sahmad2@utk.edu David L. Greene Corporate Research Fellow Oak Ridge National Laboratory National Transportation Research Center 2360 Cherahala Boulevard Knoxville, Tennessee 37932 Phone: (865) 946-1310 Fax: (865) 946-1314 Email: dlgreene@ornl.gov Ahmad and Greene 1 ABSTRACT Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the Corporate Average Fuel Economy (CAFE) standards, established during the energy crises of the 1970s. Calls to

167

Prospects on fuel economy improvements for hydrogen powered vehicles.  

DOE Green Energy (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

168

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas station—if that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

169

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas station—if that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

170

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

E-Print Network (OSTI)

on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA–

Wenzel, Thomas P

2010-01-01T23:59:59.000Z

171

How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis...

172

Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and  

NLE Websites -- All DOE Office Websites (Extended Search)

4: October 26, 4: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes to someone by E-mail Share Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Facebook Tweet about Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Twitter Bookmark Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Google Bookmark Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Delicious Rank Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Digg

173

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Vehicles Topics: Best Practices Website: www.unep.org/transport/gfei/autotool/ This tool is designed to provide policymakers and interested individuals and groups with overviews of policy tools and approaches to improving fleet-wide automobile fuel efficiency and promote lower CO2 and non-CO2 emissions from cars, along with case studies that depict these approaches from developed and developing countries. How to Use This Tool

174

Microsoft Word - NearTermOptionsforFuelEconomy Greene _2_.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel economy have two drawbacks. First, some car buyers would have bought a hybrid vehicle anyway, especially at today's high fuel prices. Second, the incentives will be a...

175

Fuel Economy Guide - Model Year 1997  

NLE Websites -- All DOE Office Websites (Extended Search)

31 2.04DOHC TP TALON (4WD) . . . .L4 19 25 2.04DOHC TP M5 21 28 2.04DOHC TP FERRARI 456 . . . . . . . . . . . .L4 9 15 5.512 GP M6 10 16 5.512 GP FORD ASPIRE . . . . . . . ....

176

Optimization of Driving Styles for Fuel Economy Improvement  

SciTech Connect

Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

Malikopoulos, Andreas [ORNL; Aguilar, Juan P. [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

177

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

178

Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs.  

NLE Websites -- All DOE Office Websites (Extended Search)

0: July 5, 2010 0: July 5, 2010 Fuel Economy vs. Weight and Performance to someone by E-mail Share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Facebook Tweet about Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Twitter Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Google Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Delicious Rank Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Digg Find More places to share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on AddThis.com...

179

Economy  

E-Print Network (OSTI)

Dynasty. (Davies 1943: pl. XXIX). Economy, Haring, UEE 2009J OHN B AINES Short Citation: Haring, 2009, Economy. UEE.Citation: Haring, Ben, 2009, Economy. In Elizabeth Frood and

Haring, Ben

2009-01-01T23:59:59.000Z

180

Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 (2005) 757-775 Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy $ David L. Greene a, *, Philip D. Patterson b , Margaret Singh c , Jia Li d a Oak Ridge National Laboratory, National Transportation Research Center, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA b Office of Planning, Budget Formulation and Analysis, US Department of Energy, Forestall Building (EE-3B), 1000 Independence Avenue, S.W., Washington, DC 20585, USA c Argonne National Laboratory, 955 L'Enfant Plaza, S.W., Suite 6000, Washington, DC 20024, USA d National Transportation Research Center, The University of Tennessee, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA Abstract US fuel economy standards have not been changed significantly in 20 years. Feebates are a market-based alternative in which vehicles with fuel consumption rates above a ''pivot point''

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Híbridos Eléctricos Enchufables Híbridos Eléctricos Enchufables Aprenda más acerca del Nuevo Engomado Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Tecnología y Combustible para Vehículos La esquina superior derecha del engomado muestra el texto y el ícono que identifica que el vehículo puede utilizar gasolina y electricidad. Usted verá otro texto e íconos diferentes en los engomados de otros vehículos; Vehículo de Gasolina Vehículo de Diesel Vehículo de Gas Natural Comprimido Vehículo de Célula de Combustible

182

How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Does Your Fuel Economy Compare to the Test Ratings on How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis On Monday, you read about the resources on Fueleconomy.gov and how they can help you compare the fuel economy of vehicles. Fueleconomy.gov also offers a tool called Your MPG, where you can track your own fuel economy and compare it to that of other users and to the test ratings. Many factors affect your mileage, and you may see different numbers than those list on Fueleconomy.gov. Whether you are using Your MPG or just keeping track on your own: How does your fuel economy compare to the test ratings on Fueleconomy.gov? Each Thursday, you have the chance to share your thoughts on a question

183

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon)  

U.S. Energy Information Administration (EIA)

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon) U.S. Energy Information Administration / Monthly Energy Review August 2013 17

184

Vehicle fuel economy benefit and aftertreatment requirement of an HCCI-SI engine system.  

E-Print Network (OSTI)

??This body of work dimensions the HCCI fuel economy benefits and required aftertreatment performance for compliance with emissions regulations in North America and Europe. The… (more)

Hardy, AliciA Jillian Jackson, 1978-

2007-01-01T23:59:59.000Z

185

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

DOE Green Energy (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

186

Impacts of Renewable Fuel and Electricity Standards on State Economies (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, discusses the impacts of renewable fuel and electricity standards on state economies.

Brown, E.; Cory, K.; Brown, J.; Bird, L.; Sweezey, B.

2006-10-03T23:59:59.000Z

187

Modeling and control of a hybrid electric drivetrain for optimum fuel economy, performance and driveability.  

E-Print Network (OSTI)

??Automotive manufacturers have been striving for decades to produce vehicles which satisfy customers’ requirements at minimum cost. Many of their concerns are on fuel economy,… (more)

Wei, Xi

2004-01-01T23:59:59.000Z

188

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2006-11-01T23:59:59.000Z

189

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2007-01-01T23:59:59.000Z

190

Revised projections of fuel economy and technology for highway vehicles. Task 22. Final report  

SciTech Connect

Both the methodology used to forecast fuel economy and the technological and tooling plan data central to the derivation of the forecast for all those vehicle classes are updated here. Forecasts were prepared for a scenario where oil prices stay flat through 1985 (in current real dollars) and increase at the rate of one percent per year in the 1985 to 1995 period. Estimates of the mix of vehicles sold and projections for diesel penetration are documented. Revised forecasts for cars and light duty truck analysis are detailed. Heavy-duty truck fuel economy forecast revisions are described. The DOE automotive R and D programs are examined in the context of the newly revised projections. (MHR)

1983-06-15T23:59:59.000Z

191

Survey Evidence on the Willingness of U.S. Consumers to Pay for Automotive Fuel Economy  

Science Conference Proceedings (OSTI)

Prospect theory, which was awarded the Nobel Prize in Economics in 2002, holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from four random sample surveys of 1,000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfront payment. Payback periods inferred from household responses are consistent over time and across different formulations of questions. Mean calculated payback periods are short, about 3 years, but there is substantial dispersion among individual responses. Calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on this stated uncertainty illustrate how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value.

Greene, David L [ORNL; Evans, David H [Sewanee, The University of the South; Hiestand, John [Indiana University

2013-01-01T23:59:59.000Z

192

Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles  

DOE Green Energy (OSTI)

This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

1998-12-31T23:59:59.000Z

193

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

194

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be used in vehicles. | Photo courtesy of Oak Ridge National Laboratory. Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be

195

Global Fuel Economy Initiative: 50by50 Prospects and Progress | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative: 50by50 Prospects and Progress Global Fuel Economy Initiative: 50by50 Prospects and Progress Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative: 50by50 Prospects and Progress Focus Area: Clean Transportation Topics: Potentials & Scenarios Website: www.globalfueleconomy.org/Documents/Publications/prospects_and_progres Equivalent URI: cleanenergysolutions.org/content/global-fuel-economy-initiative-50by50 Language: English Policies: Regulations Regulations: "Fuel Efficiency Standards,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

196

Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.  

SciTech Connect

This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

1999-06-18T23:59:59.000Z

197

Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles  

DOE Green Energy (OSTI)

This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

1997-12-18T23:59:59.000Z

198

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2014 models include efficient and low-emission vehicles in a variety of classes and sizes, ensuring a wide variety of choices available for consumers. "For American families, the financial and environmental bottom line are high priorities when shopping for a new vehicle," said Administrator Gina

199

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2014 models include efficient and low-emission vehicles in a variety of classes and sizes, ensuring a wide variety of choices available for consumers. "For American families, the financial and environmental bottom line are high priorities when shopping for a new vehicle," said Administrator Gina

200

Modeling the effect of engine assembly mass on engine friction and vehicle fuel economy  

DOE Green Energy (OSTI)

In this paper, an analytical model is developed to estimate the impact of reducing engine assembly mass (the term engine assembly refers to the moving components of the engine system, including crankshafts, valve train, pistons, and connecting rods) on engine friction and vehicle fuel economy. The relative changes in frictional mean effective pressure and fuel economy are proportional to the relative change in assembly mass. These changes increase rapidly as engine speed increases. Based on the model, a 25% reduction in engine assembly mass results in a 2% fuel economy improvement for a typical mid-size passenger car over the EPA Urban and Highway Driving Cycles.

An, Feng [University of California, Riverside, CA (United States); Stodolsky, F. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, NHTSA finalized CAFE standards requiring higher fuel economy performance for light-duty trucks in MY 2008 through 2011. Unlike the proposed CAFE standards discussed in AEO2006 [13], which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

Information Center

2007-02-22T23:59:59.000Z

202

Fuel Economy of the 2013 Ford F150 Pickup 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

View the Mobile Version of This Page 8 cyl, 6.2 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 13 Combined 12...

203

Fuel Economy of the 2013 Rolls-Royce Phantom Drophead Coupe  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.7 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 11 City 19 Highway...

204

Fuel Economy of the 2013 Mercedes-Benz CL65 AMG  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.0 L Automatic 5-spd Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

205

Fuel Economy of the 2013 Mercedes-Benz E63 AMG (wagon)  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 5.5 L Automatic 7-spd Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 18 Combined 15 City 23 Highway...

206

Figure 71. Average fuel economy of new light-duty vehicles, 1980 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 71. Average fuel economy of new light-duty vehicles, 1980-2040 (miles per gallon, CAFE compliance values) History Reference case

207

Fuel Economy of the 2013 Ford F150 Raptor Pickup 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

View the Mobile Version of This Page 8 cyl, 6.2 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 13 Combined 11...

208

Fuel Economy of the 2013 Tesla Model S (60 kW-hr battery pack...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 95 Combined 94 City 97 Highway...

209

Fuel Economy of the 2013 GMC Yukon XL 2500 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

This Page 8 cyl, 6.0 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 16 Highway...

210

Fuel Economy of the 2013 GMC Yukon XL 2500 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

This Page 8 cyl, 6.0 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 15 Highway...

211

Quantifying the Effects of Idle-Stop Systems on Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-12-27320 Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light- Duty Passenger Vehicles Jeffrey Wishart Matthew Shirk Contract No. DE-FC26-05NT42486...

212

Vehicle fuel economy benefit and aftertreatment requirement of an HCCI-SI engine system  

E-Print Network (OSTI)

This body of work dimensions the HCCI fuel economy benefits and required aftertreatment performance for compliance with emissions regulations in North America and Europe. The following parameters were identified as key ...

Hardy, AliciA Jillian Jackson, 1978-

2007-01-01T23:59:59.000Z

213

Fuel economy regulations and efficiency technology improvements in U.S. cars since 1975  

E-Print Network (OSTI)

Light-duty vehicles account for 43% of petroleum consumption and 23% of green- house gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum ...

MacKenzie, Donald Warren

2013-01-01T23:59:59.000Z

214

New-vehicle fuel economy continues to increase - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Other qualified vehicles are non-hybrid natural gas and electric vehicles, for which the NHTSA fuel economy values are 6.667 times the EPA motor gasoline-based values.

215

Fuel Economy of the 2013 GMC Savana 1500 2WD (Passenger)  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 8 cyl, 5.3 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 17...

216

Fuel Economy of the 2013 Chevrolet Express 1500 2WD Passenger  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 8 cyl, 5.3 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 17...

217

Fuel Economy of the 2014 Ford Fusion Energi Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Page Compare Side-by-Side 4 cyl, 2.0 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 43 Combined 44 City...

218

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, NHTSA published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck CAFE standards for model years 2008 through 2011 [8]. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

Information Center

2006-02-01T23:59:59.000Z

219

Engineering-economic analyses of automotive fuel economy potential in the United States  

SciTech Connect

Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

Greene, D.L.; DeCicco, J.

2000-02-01T23:59:59.000Z

220

Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

Greene, David L [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

222

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Duleep, K.G. [Energy and Environmental Analysis, Inc., Arlington, VA (United States)

1992-03-01T23:59:59.000Z

223

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

224

We Can't Wait: Driving Forward with New Fuel Economy Standards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Can't Wait: Driving Forward with New Fuel Economy Standards Can't Wait: Driving Forward with New Fuel Economy Standards We Can't Wait: Driving Forward with New Fuel Economy Standards November 16, 2011 - 4:04pm Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. Heather Zichal Deputy Assistant to the President for Energy and Climate Change What does this project do? Saves you money by increasing the fuel efficiency equivalent of light-duty trucks and cars to 54.5 miles per gallon by 2025. Drives innovation in the manufacturing sector and helps create

225

BioFacts: Fueling a stronger economy, Biodiesel. Revision 2  

DOE Green Energy (OSTI)

Biodiesel is a substitute for or an additive to diesel fuel that is derived from the oils and fats of plants. It is an alternative fuel that can be used in diesel engines and provides power similar to conventional diesel fuel. It is a biodegradable transportation fuel that contributes little, if any, net carbon dioxide or sulfur to the atmosphere, and is low in particulate emission. It is a renewable, domestically produced liquid fuel that can help reduce US dependence on foreign oil imports. This overview presents the resource potential, history, processing techniques, US DOE programs cost and utilization potential of biodiesel fuels.

NONE

1995-01-01T23:59:59.000Z

226

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

227

Learn More About the Fuel Economy Label for Gasoline Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

different text and icons in the labels for other vehicles: Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)...

228

Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)  

DOE Green Energy (OSTI)

Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

Deluchi, M.; Wang, Quanlu; Greene, D.L.

1992-06-01T23:59:59.000Z

229

Property:RenewableFuelStandard/Year | Open Energy Information  

Open Energy Info (EERE)

RenewableFuelStandard/Year RenewableFuelStandard/Year Jump to: navigation, search This is a property of type Date. Pages using the property "RenewableFuelStandard/Year" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 2022 + Renewable Fuel Standard Schedule + 2016 + Renewable Fuel Standard Schedule + 2010 + Renewable Fuel Standard Schedule + 2017 + Renewable Fuel Standard Schedule + 2011 + Renewable Fuel Standard Schedule + 2018 + Renewable Fuel Standard Schedule + 2012 + Renewable Fuel Standard Schedule + 2019 + Renewable Fuel Standard Schedule + 2013 + Renewable Fuel Standard Schedule + 2020 + Renewable Fuel Standard Schedule + 2014 + Renewable Fuel Standard Schedule + 2008 + Renewable Fuel Standard Schedule + 2021 + Renewable Fuel Standard Schedule + 2015 +

230

Fuel Economy of the 2014 Toyota RAV4 EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota RAV4 EV Search for Other Vehicles View the Mobile Version of This Page Automatic (variable gear ratios) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel...

231

New EPA Fuel Economy and Environment Label - Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

you compare to gasoline vehicles Kilowatt-hours per 100 miles to help you estimate fuel costs Driving Range Driving range is an estimate of the distance the vehicle can travel on...

232

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy  

E-Print Network (OSTI)

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic coordinated design of future climate and energy policy. In this work we use a computable general equilibrium No. 217 May 2012 #12;The MIT Joint Program on the Science and Policy of Global Change

233

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

234

Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)  

DOE Green Energy (OSTI)

Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

Gonder, J.

2011-11-01T23:59:59.000Z

235

Sipping fuel and saving lives: increasing fuel economy without sacrificing safety  

E-Print Network (OSTI)

consumers. As vehicle manufacturers strive to improve theinfluenced by the vehicles that manufacturers design andfuel economy, manufacturers can develop stronger vehicle

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2008-01-01T23:59:59.000Z

236

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

237

Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting “raw” fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such “raw” PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

2009-09-01T23:59:59.000Z

238

MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPRESSED NATURAL GAS VEHICLES ... 5 LIQUEFIED PETROLEUM GAS (PROPANE) VEHICLES ...... 5 DIESEL VEHICLES ......

239

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses  

DOE Green Energy (OSTI)

The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

Brooker, A. D.; Ward, J.; Wang, L.

2013-01-01T23:59:59.000Z

240

Data Collection for Class-8 Long-Haul Operations and Fuel Economy Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Haul Long-Haul Operations and Fuel Economy Analysis A s part of a long-term study sponsored by the U.S. Department of Energy (DOE) Office of Vehicle Technologies (OVT), the Oak Ridge National Laboratory (ORNL) in conjunction with a number of industry partners (Michelin Americas Research Company - Michelin), have collected data and information related to Class-8 heavy truck long-haul operations in real-world

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

242

Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower  

Science Conference Proceedings (OSTI)

Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.

West, Brian H [ORNL; Lopez Vega, Alberto [ORNL; Theiss, Timothy J [ORNL; Graves, Ronald L [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL

2007-01-01T23:59:59.000Z

243

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the CAFE standards set by NHTSA. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

Information Center

2005-02-01T23:59:59.000Z

244

1994 U.S. Department of Energy Strategic Plan: Fueling a Competitive Economy  

SciTech Connect

The Department of Energy has a rich heritage of meeting important national goals in the areas of energy, national security, science, and technology. The end of the Cold War, and the election of President Clinton, have given us a new national agenda. Through a comprehensive strategic planning process, we have determined that the Department must now unleash its extraordinary scientific and technical talent and resources on new and more sharply focused goals: fueling a competitive economy, improving the environment through waste management and pollution prevention, and reducing the nuclear danger.

None,

1994-04-01T23:59:59.000Z

245

Analysis of the capabilities of domestic auto-manufacturers to improve corporate average fuel economy (information current as of November 1985)  

SciTech Connect

Since 1978, the Department of Energy (DOE) has conducted periodic reviews of the ability of domestic automobile manufacturers to improve their corporate average fuel economy (CAFE) values. This work has allowed DOE to develop a detailed understanding of manufacturer technological capabilities and to forecast the cost, fuel economy improvement, and rate of introduction of individual technologies over a ten-year horizon. DOE uses these forecasts to fulfill its responsibilities under the Energy Policy and Conservation Act (EPCA), to support its forecasts of energy demand and to conduct policy analyses relevant to automobile and energy production industries. Chapters are given for the following areas: (1) review of 1985 CAFE, (2) analysis of current capabilities, (3) modifications of the Technology Cost Segment Model (TCSM), (4) review of market share forecasts, and (5) forecasts of CAFE using the TCSM.

1986-04-01T23:59:59.000Z

246

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of vehicle. Looking for the most fuel-efficient 2014 family sedan hybrid? The 2014 Toyota Prius tops the online guide at 50 combined cityhighway MPG. Need something larger,...

247

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D...

248

Fuel Economy of the 2014 Toyota Prius Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius Plug-in Hybrid Toyota Prius Plug-in Hybrid Search for Other Vehicles View the Mobile Version of This Page Compare Side-by-Side 4 cyl, 1.8 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 50 Combined 51 City 49 Highway Elec+Reg. Gas 95 Combined 29 kw-hrs/100 miles *Miles per Gallon Equivalent - 1 gallon of gasoline=33.7 kw-hr Unofficial MPG Estimates Shared by Vehicle Owners My MPG Owner MPG Estimates are not yet available for this vehicle. How can I Share My MPG? Vehicle Specification Data EPA Size Class Additional Information Midsize Cars Drive Front-Wheel Drive Gas Guzzler no Turbocharger no Supercharger no Passenger Volume 94ft3 (Hatchback) Luggage Volume 22ft3 (Hatchback) Engine Descriptor Additional Information PHEV

249

Effect of Intake Air Filter Condition on Vehicle Fuel Economy--ORNL/TM-2009/021  

NLE Websites -- All DOE Office Websites (Extended Search)

021 021 Effect of Intake Air Filter Condition on Vehicle Fuel Economy February 2009 Prepared by Kevin Norman Shean Huff Brian West DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

250

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

DOE Green Energy (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

251

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Air- Vehicle Air- Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range Preprint September 2000 * NREL/CP-540-28960 R. Farrington and J. Rugh To Be Presented at the Earth Technologies Forum Washington, D.C. October 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

252

Argonne TTRDC - TransForum v10n1 - Fuel Consumption vs. Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Great Debate: Fuel Consumption versus Fuel Economy Graphs for Fuel Consumption vs. Fuel Economy What is the difference between fuel consumption and fuel economy? In Europe,...

253

One Hundred Years of Oil Income and the Iranian Economy: A Curse or a Blessing?  

E-Print Network (OSTI)

This paper examines the impact of oil revenues on the Iranian economy over the past hundred years, spanning the period 1908–2010. It is shown that although oil has been produced in Iran over a very long period, its importance in the Iranian economy was relatively small up until the early 1960s. It is argued that oil income has been both a blessing and a curse. Oil revenues when managed appropriately are a blessing, but their volatility (which in Iran is much higher than oil price volatility) can have adverse e¤ects on real output, through excessively high and persistent levels of in‡ation. Lack of appropriate institutions and policy mechanisms which act as shock absorbers in the face of high levels of oil revenue volatility have also become a drag on real output. In order to promote growth, policies should be devised to control in‡ation; to serve as shock absorbers negating the adverse e¤ects of oil revenue volatility; to reduce rent seeking activities; and to prevent excessive dependence of government …nances on oil income. We are grateful to Parvin Alizadeh, Hassan Hakimian and conference participants at the University of

Kamiar Mohaddes A; M. Hashem Pesaran B

2013-01-01T23:59:59.000Z

254

Model Year 2013: Alternative Fuel Vehicles and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

13: Alternative Fuel and Advanced Technology Vehicles 13: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 3/6/13) 1 Source: http:/afdc.energy.gov/vehicles/search/light/ Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy HEV Acura ILX Sedan 1.5L I4 ECVT Tier 2 Bin 3 LEVII PZEV 39 / 38 N/A FFV E85 Audi A4 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Cabriolet Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi Allroad Quatro Wagon 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 27 14 / 18 FFV E85 Audi Q5 SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 28 14 / 19 HEV Audi Q5 Hybrid SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 24 / 30 N/A FFV E85 Bentley

255

Vehicle Technologies Office: Fact #243: November 18, 2002 Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2002 Fuel Economy Leaders for 2003 Model Year Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact 243: November 18, 2002 Fuel Economy Leaders for 2003...

256

The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV  

SciTech Connect

On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicle’s fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energy’s Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

Richard Barney Carlson

2009-10-01T23:59:59.000Z

257

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 1.0: Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction Multi-Year Research, Development and Demonstration Plan Page 1 - 1 Multi-Year Research, Development and Demonstration Plan Page 1 - 1 1.0 Introduction The U. S. Department of Energy's (DOE's or the Department's) hydrogen and fuel cell efforts are part of a broad portfolio of activities to build a competitive and sustainable clean energy economy to secure the nation's energy future. Reducing greenhouse gas emissions 80 percent by 2050 1 and eliminating dependence on imported fuel will require the use of diverse domestic energy sources and advanced fuels and technologies in all sectors of the economy. Achieving these goals requires a robust, comprehensive research and development (R&D) portfolio that balances short-term

258

As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises. The rising price of fuel has another consequence: refiners tend to purchase cheaper fuels of poorer quality. These poor quality fuels contain increasing amounts of sulfur and other pollutants leading to a decline

259

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic Impact in the United States  

E-Print Network (OSTI)

The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use, as well as (more recently) greenhouse gas (GHG) ...

Karplus, V.J.

260

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

Science Conference Proceedings (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles  

SciTech Connect

Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

Jeff Wishart; Matthew Shirk

2012-12-01T23:59:59.000Z

262

New-vehicle fuel economy continues to increase - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Most manufacturers, even those that do not receive credits for qualified alternative fuel vehicles, ...

263

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network (OSTI)

Economy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid Tax

Martin, Elliott William

2009-01-01T23:59:59.000Z

264

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network (OSTI)

Economy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid Tax

Martin, Elliot William

2009-01-01T23:59:59.000Z

265

Where can I find more information on improving the fuel economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

The sites below provide information on maximizing the fuel efficiency of your car. "Gas-Saving" Products: Fact or Fuelishness? (U.S. Federal Trade Commission) The...

266

New Fuel Economy and Environment Label - How does a QR code work...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrids Hybrids Diesels Alternative Fuel Vehicles Frequently Asked Questions Gasoline Prices Local Prices State and Metro Area Prices National & Regional Prices Questions About...

267

Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles  

Science Conference Proceedings (OSTI)

In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

2012-10-01T23:59:59.000Z

268

Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint  

DOE Green Energy (OSTI)

Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

2009-08-01T23:59:59.000Z

269

Ris Energy Report 3 Interest in the hydrogen economy and in fuel cells has  

E-Print Network (OSTI)

directly to yield hydro- gen. Solid fuels such as coal and biomass can be gasified, followed by reforming to store in a cost-effective way smaller amounts in cars and portable devices. Possible answers

270

Trends and drivers of the performance : fuel economy tradeoff in new automobiles  

E-Print Network (OSTI)

Cars sold in the United States have steadily become more fuel-efficient since the 1970s, and assessments of emerging technologies demonstrate a significant potential for continued evolutionary improvements. However, historic ...

MacKenzie, Donald Warren

2009-01-01T23:59:59.000Z

271

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network (OSTI)

International Journal of Hydrogen Energy, 30(7): 701-718.of a fossil fuel-based hydrogen infrastructure with carbonPartnering for the Global Hydrogen Future, NHA Conference,

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

272

New EPA Fuel Economy and Environment Label - Plug-in Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

you compare to gasoline vehicles Kilowatt-hours per 100 miles to help you estimate fuel costs Driving Range Driving range estimates are provided for all-electric operation and...

273

Fuel Economy Videos and Information from DOE/EPA fueleconomy.gov  

DOE Data Explorer (OSTI)

This website combines information from both DOE and EPA to provide up-to-the-minute information on gas mileage, fuel costs, greenhouse gas emissions, air pollution ratings, and safety information. The site includes several video clips.

274

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels  

E-Print Network (OSTI)

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels modern industries and societies worldwide, oil in the Middle East has become a key strategic commodity influencing international affairs

275

BioFacts: Fueling a stronger economy, Thermochemical conversion of biomass  

DOE Green Energy (OSTI)

A primary mission of the US DOE is to stimulate the development, acceptance, and use of transportation fuels made from plants and wastes called biomass. Through the National Renewable Energy Laboratory (NREL), Doe is developing and array of biomass conversion technologies that can be easily integrated into existing fuel production and distribution systems. The variety of technology options being developed should enable individual fuel producers to select and implement the most cost-effective biomass conversion process suited to their individual needs. Current DOE biofuels research focuses on the separate and tandem uses of biochemical and thermochemical conversion processes. This overview specifically addresses NREL`s thermochemical conversion technologies, which are largely based on existing refining processes.

NONE

1994-12-01T23:59:59.000Z

276

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network (OSTI)

Oil ICE Running cost Coal ST Hydroelectric Nuclear ImportsPumped Hydro Coal Nuclear Hydroelectric Imports Hours/year (Pumped Hydro Coal Nuclear Hydroelectric Imports Hours/year (

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

277

Emission & Power Solutions (EPS) Improving Fuel Economy and Reducing Exhaust Emissions  

E-Print Network (OSTI)

developed a proprietary multi-phase process for restructuring fuel hydro- carbons that results in a cleaner warranties. Potentiometric Sensor Since the 1980s, oxygen sensors have been placed in all cars and trucks, designed to fit directly into a car's engine control unit (ECU), can replace all existing sensors in both

Jawitz, James W.

278

Effects of Air Conditioner Use on Real-World Fuel Economy  

Science Conference Proceedings (OSTI)

Vehicle data were acquired on-road and on a chassis dynamometer to assess fuel consumption under several steady cruise conditions and at idle. Data were gathered for various air conditioner (A/C) settings and with the A/C off and the windows open. Two vehicles were used in the comparisonstudy: a 2009 Ford Explorer and a 2009 Toyota Corolla. At steady speeds between 64.4 and 112.7 kph (40 and 70 mph), both vehicles consumed more fuel with the A/C on at maximum cooling load (compressor at 100% duty cycle) than when driving with the windows down. The Explorer maintained this trend beyond 112.7 kph (70 mph), while the Corolla fuel consumption with the windows down matched that of running the A/C at 120.7 kph (75 mph), and exceeded it at 128.7 kph (80 mph). The largest incremental fuel consumption rate penalty due to air conditioner use occurred was nearly constant with a weakslight trend of increasing consumption with increasing compressor (and vehicle) speed. Lower consumption is seenobserved at idle for both vehicles, likely due to the low compressor speed at this operating point

Huff, Shean P [ORNL; West, Brian H [ORNL; Thomas, John F [ORNL

2013-01-01T23:59:59.000Z

279

Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks  

DOE Green Energy (OSTI)

In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

Franzese, Oscar [ORNL; Davidson, Diane [ORNL

2011-11-01T23:59:59.000Z

280

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

DOE Green Energy (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

variety of other fuels, including natural gas and renewable fuels such as methanol or biogas. Fuel cells provide these benefits and address critical challenges in all energy...

282

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network (OSTI)

on electricity and natural gas demand projections from theabout 0.9% per year, and natural gas demand is projected toResidential Year (a) Natural gas demands (excluding hydrogen

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

283

Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)  

DOE Green Energy (OSTI)

Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.

Not Available

2009-04-01T23:59:59.000Z

284

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network (OSTI)

with projections to 2030. Energy Information Administration,the next 25 years (2005-2030): Institute of Transportationwhich we extrapolated through 2030 (Figure 2). Assuming no

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

285

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel ...  

U.S. Energy Information Administration (EIA)

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, 1949-2010: Year: Light-Duty Vehicles, Short Wheelbase 1: Light-Duty Vehicles, Long Wheelbase 2:

286

Examination of Spent CANDU (TM) Fuel Following 27 Years of Pool Storage  

Science Conference Proceedings (OSTI)

After 27 years in pool storage, the Zircaloy cladding of CANDU fuel showed no deterioration. Further, in deliberately defected fuel elements, uranium oxide surface oxidation appeared to have no impact on fuel-cladding integrity. These results increase utilities' confidence that the fuel can be stored in pools for periods of at least 50 years.

1992-05-01T23:59:59.000Z

287

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum gas (LPG, consisting predominantly of propane) or renewable fuels such as biogas from wastewater treatments plants. Fuel cells for auxiliary power units in trucks will...

288

UW Madison Fleet Fiscal Year 2010 Rates: Fuel, maintenance and insurance costs are included. If fuel prices exceed the budgeted  

E-Print Network (OSTI)

UW Madison Fleet Fiscal Year 2010 Rates: Fuel, maintenance and insurance costs are included. If fuel prices exceed the budgeted amount by a significant margin, the rates will be amended with a fuel surcharge at that time and the change notice will be posted in the fleet web site, rates page. Some rate

Sheridan, Jennifer

289

Fuel cell systems program plan, Fiscal year 1994  

DOE Green Energy (OSTI)

Goal of the fuel cell program is to increase energy efficiency and economic effectiveness through development and commercialization of fuel cell systems which operate on fossil fuels in multiple end use sectors. DOE is participating with the private sector in sponsoring development of molten carbonate fuel cells and solid oxide fuel cells for application in the utility, commercial, and industrial sectors. Commercialization of phosphoric acid fuel cells is well underway. Besides the introduction, this document is divided into: goal/objectives, program strategy, technology description, technical status, program description/implementation, coordinated fuel cell activities, and international activities.

Not Available

1994-07-01T23:59:59.000Z

290

Energy Economy  

Energy.gov (U.S. Department of Energy (DOE))

Energy is beneficial to America's economy, creating jobs and reducing our dependence on foreign oil.

291

Fuel cell systems program plan, Fiscal year 1993  

DOE Green Energy (OSTI)

DOE Office of Fossil Energy (OoFE) is participating with private sector in developing molten carbon fuel cell (MCFC) and advanced concepts including solid oxide fuel cell for application in utility/commercial/industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by OoFE and is now being commercialized. In 1993 DOD is undertaking use and demonstration of PAFC and other fuel cells. DOE Office of Conservation and Renewable Energy is sponsoring fuel cell development for propulsion. The Conservation program is focused on polymer electrolyte or proton exchange membrane fuel cells, although they also are implementing a demonstration program for PAFC buses. DOE fuel cell research, development and demonstration efforts are also supported by private sector funding. This Plan describes the fuel cell activities of the Office of Fossil Energy.

Not Available

1993-07-01T23:59:59.000Z

292

NETL: News Release - Full Scale Direct FuelCell? Completes One Year of  

NLE Websites -- All DOE Office Websites (Extended Search)

March 31, 2000 March 31, 2000 Full Scale Direct FuelCellTM Completes One Year of Operation Confirms Performance and Durability of New Energy Generating Technology A commercial design of an advanced fuel cell - the building block of a family of environmentally super-clean, fuel-flexible power plants - has passed several milestones in a joint public-private development effort. FuelCell Energy's Direct Fuel Cell The Direct FuelCell is a versatile, combustion-less power source being developed in the Department of Energy's fuel cell research program. It can use natural gas, methanol, ethanol, bio-gas or other hydrogen-rich fuels. FuelCell Energy, Inc. has completed one year of commercial design validation and endurance testing of a 250 kilowatt-class Direct FuelCellTM

293

NEW FUEL ECONOMY TESTING  

NLE Websites -- All DOE Office Websites (Extended Search)

drive Highlander Hybrid. This crossover boasts a 3.3-liter V6 gas engine and three electric motors for 270 horsepower. Mileage ratings are 27 city 25 highway. Toyota's full...

294

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

Economy Improvemen t Battery Capacity (Ah) Figure 7 FuelFuel Economy Improvemen t Battery Capacity (Ah) Figure 15Fuel Economy Improvemen t Battery Capacity (Ah) Figure 16

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

295

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1 Executive Summary The United States pioneered the development of hydrogen and fuel cell technologies, and we continue to lead the way as these technologies emerge from the...

296

Search for Model Year 2014 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Type Model Year: 2014 Select Class... Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles...

297

Fuel cell systems multi-year program plan, fiscal years 1995 to 2000  

SciTech Connect

Fuel cell power systems are emerging power generation technologies for the efficient, economical and environmentally acceptable production of electricity. In some applications the by-product heat can also be efficiently used in cogeneration. Fuel cells produce electricity through the electrochemical oxidation of a fuel. They can be operated on a variety of fuels, including natural gas, coal gas, land fill gas and renewable fuels. First market entry units are fueled by natural gas. Fuel cells offer the opportunity for a major new manufacturing industry. System studies have shown that fuel cell power plants can be designed with overall system efficiencies in the 50 to 60 percent range (higher heating value basis) (55 to 65 percent on lower heating value basis). Fuel cell power plants are unique in that they offer high efficiency and low emissions even at part-load and in small sizes. Because of their efficiency, fuel cells will help in reducing CO{sub 2} emissions. Additional benefits are the environmentally desirable operating characteristics offered by fuel cells. Because electricity is produced through an electrochemical reaction rather than by combustion, fuel cells generate very little NO{sub x} and are extremely quiet. This combination of operating characteristics and high efficiency make fuel cells attractive for future electric utility applications. On-site industrial and commercial applications where the by-product heat can be utilized are also attractive. The DOE Office of Fossil Energy, the Gas Research Institute (GRI), and the Electric Power Research Institute (EPRI) are cooperatively sponsoring the development of fuel cell systems for applications in the utility, commercial and industrial sectors. Funding of development and demonstration is also provided by fuel cell developers and potential users. This document describes the fuel cell program of the DOE Office of Fossil Energy and its coordination with other fuel cell activities.

NONE

1995-07-01T23:59:59.000Z

298

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GTC (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 20...

299

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Page 3.8 - 1 3.8 Education and Outreach Expanding the role of hydrogen and fuel cell technologies as an integral part of the Nation's energy portfolio requires sustained...

300

Alternative Fuels Data Center: Clean Cities Reflects on 20 Years...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Relies on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in...

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Sustainable Hydrogen Economy  

DOE Green Energy (OSTI)

Identifying and building a sustainable energy system is perhaps one of the most critical issues that today's society must address. Replacing our current energy carrier mix with a sustainable fuel is one of the key pieces in that system. Hydrogen as an energy carrier, primarily derived from water, can address issues of sustainability, environmental emissions and energy security. The hydrogen economy then is the production of hydrogen, its distribution and utilization as an energy carrier. A key piece of this hydrogen economy is the fuel cell. A fuel cell converts the chemical energy in a fuel into low-voltage dc electricity and when using hydrogen as the fuel, the only emission is water vapor. While the basic understanding of fuel cell technology has been known since 1839, it has only been recently that fuel cells have shown their potential as an energy conversion device for both transportation and stationary applications. This talk will introduce the sustainable hydrogen economy and address some of the issues and barriers relating to its deployment as part of a sustainable energy system.

Turner, John (NREL)

2005-07-06T23:59:59.000Z

302

Is there a new economy  

E-Print Network (OSTI)

Unexpectedly strong economic performance in recent years has sparked a wide debate about the evolution of the U.S. economy with observers from academia, business, and government claiming that the 1990s mark the beginning of a unique era of economic prosperity. These “new economy ” proponents view globalization and computerization as powerful forces that are reshaping the modern economy in a

Kevin J. Stiroh

1999-01-01T23:59:59.000Z

303

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Page B - 1 Multi-Year Research, Development and Demonstration Plan Page B - 2 Multi-Year Research, Development and Demonstration Plan Page B - 3 Multi-Year Research,...

304

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network (OSTI)

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliot William

2009-01-01T23:59:59.000Z

305

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network (OSTI)

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliott William

2009-01-01T23:59:59.000Z

306

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

307

NETL: News Release - Solid Oxide Fuel Cell Reaches One Year of Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

January 31, 2000 January 31, 2000 Solid Oxide Fuel Cell Reaches One Year of Operations Netherlands Test Boosts Confidence for Commercial Introduction by 2004 An experimental all solid-state fuel cell - the possible prototype for a future "combustion-less" power plant - has passed a key milestone in a joint public-private development effort. Schematic Diagram of Tubular Solid Oxide Fuel Cell The Siemens Westinghouse solid oxide fuel cell is a tubular arrangement of concentric ceramic electrodes and a solid-state electrolyte. Siemens-Westinghouse Power Corp., headquartered in Orlando, FL, announced this week that its 100-kilowatt solid oxide fuel cell power system, the world's largest, has completed one year of total operating time, the longest any fuel cell of this type and size has run. The milestone marked

308

The Effect of Improved Fuel Economy on Vehicle Miles Traveled: Estimates Using U.S. State Panel Data  

E-Print Network (OSTI)

respect to new-car price are: 12 S M , PV ? mv ? 1 v 1 ? ?new vehicle prices (1987=100) (logarithm: pv ). We includevalue -0.021, and pv with value -0.221. The price of fuel is

Van Dender, Kurt

2004-01-01T23:59:59.000Z

309

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appendix D - Project Evaluation Form Multi-Year Research, Development and Demonstration Plan Page D- 1 DOE Hydrogen Program 2011 Annual Merit Review Project Evaluation Form...

310

Alternative Fuels Data Center: Alabama Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy Efficiency to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Fuel Economy Efficiency on Facebook Tweet about Alternative...

311

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

SciTech Connect

I appreciate the opportunity to provide comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicles. My comments are directed at the choice of vehicle footprint as the attribute by which to vary fuel economy and greenhouse gas emission standards, in the interest of protecting vehicle occupants from death or serious injury. I have made several of these points before when commenting on previous NHTSA rulemakings regarding CAFE standards and safety. The comments today are mine alone, and do not necessarily represent the views of the US Department of Energy, Lawrence Berkeley National Laboratory, or the University of California. My comments can be summarized as follows: (1) My updated analysis of casualty risk finds that, after accounting for drivers and crash location, there is a wide range in casualty risk for vehicles with the same weight or footprint. This suggests that reducing vehicle weight or footprint will not necessarily result in increased fatalities or serious injuries. (2) Indeed, the recent safety record of crossover SUVs indicates that weight reduction in this class of vehicles resulted in a reduction in fatality risks. (3) Computer crash simulations can pinpoint the effect of specific design changes on vehicle safety; these analyses are preferable to regression analyses, which rely on historical vehicle designs, and cannot fully isolate the effect of specific design changes, such as weight reduction, on crash outcomes. (4) There is evidence that automakers planned to build more large light trucks in response to the footprint-based light truck CAFE standards. Such an increase in the number of large light trucks on the road may decrease, rather than increase, overall safety.

Wenzel, Thomas P

2009-10-27T23:59:59.000Z

312

Department of Energy - Energy Economy  

313

Search for Model Year 2005 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Year: 2005 Select Class... Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

314

Search for Model Year 2009 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Year: 2009 Select Class... Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

315

Search for Model Year 2010 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Year: 2010 Select Class... Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

316

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

317

Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

318

Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

319

Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

320

Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Washington Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

322

Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

323

Alternative Fuels Data Center: California Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

324

Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

325

Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State

326

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

327

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

328

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flying Spur (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 21 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg...

329

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mercedes-Benz - E350 (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 21 mpg city, 31 mpg highway Fuel Economy (Flex Fuel (E85)): 16 mpg...

330

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flying Spur (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 21 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg...

331

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Regal (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 19 mpg city, 31 mpg highway Fuel Economy (Flex Fuel (E85)): 15 mpg city, 22...

332

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GT (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 19 mpg highway Fuel Economy (Flex Fuel (E85)): 8 mpg city, 14 mpg highway...

333

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Verano (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 21 mpg city, 32 mpg highway Fuel Economy (Flex Fuel (E85)): 15 mpg city, 23...

334

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Allroad Quatro (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 20 mpg city, 27 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg city, 18...

335

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 20 mpg city, 28 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg city, 19...

336

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Super Sport (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 19 mpg highway Fuel Economy (Flex Fuel (E85)): 8 mpg city, 14...

337

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GTC (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 11 mpg city, 19 mpg highway Fuel Economy (Flex Fuel (E85)): 8 mpg city, 13...

338

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Regal (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 18 mpg city, 29 mpg highway Fuel Economy (Flex Fuel (E85)): 13 mpg city, 20 mpg...

339

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cadillac - ATS RWD AWD (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 19 mpg city, 28 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg...

340

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Supersports (2014) Fuel: Flex Fuel (E85) Class: SedanWagon Fuel Economy (gasoline): 12 mpg city, 20...

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative fuel vehicles for the state fleets: Results of the 5-year planning process  

DOE Green Energy (OSTI)

This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

Not Available

1993-05-01T23:59:59.000Z

342

Alternative fuel vehicles for the Federal fleet: Results of the 5-year planning process. Executive Order 12759, Section 11  

DOE Green Energy (OSTI)

This report describes five-year plans for acquisition of alternative fuel vehicles (AFVs) by the Federal agencies. These plans will be used to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. This effort supplements and extends the demonstration and testing of AFVs established by the Department of Energy under the alternative Motor Fuels Act of 1988.

Not Available

1992-08-01T23:59:59.000Z

343

Kinetic Economies  

E-Print Network (OSTI)

We study a minimalist kinetic model for economies. A system of agents with local trading rules display emergent demand behaviour. We examine the resulting wealth distribution to look for non-thermal behaviour. We compare and contrast this model with other similar models.

Abdullah, Wan Ahmad Tajuddin Wan

2007-01-01T23:59:59.000Z

344

Public Attitudes toward a Market Economy in Vietnam  

E-Print Network (OSTI)

Practices in a Transition Economy: An Exploration of WorkerConference on Transition Economies, 31 May – 1 June 2004,Office. 2002. Vietnam Economy in the Years of Reform. Hanoi:

Minh Hac, Pham; Thanh Nghi, Pham

2006-01-01T23:59:59.000Z

345

Clean Cities Now, Vol. 12, No. 2 - May 2008; Official Publication of Clean Cities and the Alternative Fuels and Advanced Vehicles Data Center (Newsletter)  

NLE Websites -- All DOE Office Websites (Extended Search)

Law to Increase Fuel Economy to 35 mpg by 2020 Law to Increase Fuel Economy to 35 mpg by 2020 A new law signed by President George W. Bush in December authorizes the U.S. Department of Transporta- tion to set tougher fuel economy standards starting in model year (MY) 2011. Outlined in the Energy Inde- pendence and Security Act (EISA) of 2007, the new standard authorizes vehicles sold in the United States to achieve a combined corporate average fuel economy of at least 35 miles per gallon (mpg) by 2020. It applies

346

International Partnerships for the Hydrogen Economy Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships for the Hydrogen Economy Fact Sheet Partnerships for the Hydrogen Economy Fact Sheet "I am proposing $1.2 billion in research funding so that America can lead the world in developing clean, hydrogen powered automobiles" President George Bush, 2003 State of the Union Address, January 28, 2003 A growing number of countries have committed to accelerate the development of hydrogen and fuel cell technologies in order to improve their energy, environment and economic security. For example, those countries that have made commitments include: * The United States has committed $1.7 billion for the first five years of a long- term hydrogen infrastructure, fuel cells, and hybrid vehicle technologies development program. * The European Union has committed up to 2 billion Euros over five years to

347

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jeep - Grand Cherokee 2WD AWD (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 17 mpg city, 24 mpg highway Fuel Economy (Flex...

348

Where's the Hydrogen Economy? | Open Energy Information  

Open Energy Info (EERE)

Where's the Hydrogen Economy? Where's the Hydrogen Economy? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Where's the Hydrogen Economy? Agency/Company /Organization: Canada Library of Parliament Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Market Analysis Website: www2.parl.gc.ca/Content/LOP/ResearchPublications/2010-16-e.pdf Equivalent URI: cleanenergysolutions.org/content/wheres-hydrogen-economy Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This paper examines the state of the Canadian hydrogen and fuel cell industry and the general state of the global hydrogen economy, along with reasons why the hydrogen economy has not, thus far, lived up to expectations. How to Use This Tool This tool is most helpful when using these strategies:

349

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms  

NLE Websites -- All DOE Office Websites (Extended Search)

E - Acronyms E - Acronyms Multi-Year Research, Development and Demonstration Plan Page E - 1 Appendix E - Acronyms AEI Advanced Energy Initiative AEO Annual Energy Outlook AFC Alkaline Fuel Cell AHJ Authorities Having Jurisdiction AMFC Alkaline Membrane Fuel Cells AMR Annual Merit Review ANL (DOE) Argonne National Laboratory APU Auxiliary Power Unit ARRA American Recovery and Reinvestment Act of 2009 ASES American Solar Energy Society ASME American Society of Mechanical Engineers AST Accelerated Stress Test ASTM American Society for Testing and Materials ATP Adenosine-5'-Triphosphate Bchl Bacteriochlorophyll BES (DOE Office of) Basic Energy Sciences BEV Battery Electric Vehicle BNL (DOE) Brookhaven National Laboratory BOP Balance of Plant

350

Vehicle Technologies Office: Fact #777: April 29, 2013 For the Second Year  

NLE Websites -- All DOE Office Websites (Extended Search)

7: April 29, 7: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle on Facebook Tweet about Vehicle Technologies Office: Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle on Twitter Bookmark Vehicle Technologies Office: Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle on Google Bookmark Vehicle Technologies Office: Fact #777: April 29, 2013 For

351

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

SciTech Connect

This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

Wenzel, Thomas P.

2010-03-02T23:59:59.000Z

352

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

353

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

354

Car buyers and fuel economy?  

E-Print Network (OSTI)

and sales of Toyota’s Prius are reaching 100,000 units percommitment, buyers of Toyota’s Prius generally had to waittruck, and another bought a Prius rather than a compact SUV.

Turrentine, Tom; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

355

Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

356

Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

357

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

358

Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

359

Alternative Fuels Data Center: New York Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

360

Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Economy  

U.S. Energy Information Administration (EIA) Indexed Site

Adam Sieminski (202) 662-1624 April 2010 Adam Sieminski (202) 662-1624 April 2010 Energy and the Economy US EIA & JHU SAIS 2010 Energy Conference April 6, 2010 All prices are those current at the end of the previous trading session unless otherwise indicated. Prices are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank and subject companies. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. Adam Sieminski, CFA Chief Energy Economist adam.sieminski@db.com +1 202 662 1624 Adam Sieminski (202) 662-1624 April 2010 1 Energy Demand Simplified Population, economic growth, and energy intensity Source: Deutsche Bank Global Energy Demand = Population X Per Capita Income X Energy Demand / Dollar of Output Adam Sieminski (202) 662-1624 April 2010

362

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

363

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

LaCrosse, FWDAWD (2014) Fuel: Flex Fuel (E85) Class: SedanWagon Fuel Economy (gasoline): 18 mpg city, 28 mpg highway Fuel Economy (E85): 14 mpg city, 20 mpg highway Emission...

364

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 AWD (2014) Fuel: Flex Fuel (E85) Class: Sport Utility Vehicle Fuel Economy (gasoline): 20 mpg city, 28 mpg highway Fuel Economy (E85): 14 mpg city, 19...

365

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Allroad quattro (2014) Fuel: Flex Fuel (E85) Class: SedanWagon Fuel Economy (gasoline): 20 mpg city, 27 mpg highway Fuel Economy (E85): 14 mpg city, 18...

366

Nuclear fuels technologies fiscal year 1998 research and development test plan  

Science Conference Proceedings (OSTI)

A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO{sub 2} and UO{sub 2} feed materials. Fuel fabrication development efforts include studies with a new UO{sub 2} feed material, alternate sources of PuO{sub 2}, and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities.

Alberstein, D.; Blair, H.T.; Buksa, J.J. [and others

1998-06-01T23:59:59.000Z

367

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 Hybrid (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 24 mpg city, 30...

368

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 25 mpg city, 33...

369

Energy Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Economy Energy Economy Energy Economy January 6, 2014 The Clean Energy Economy in Three Charts Over the last five years, American inventors and investors have made significant progress in developing and deploying key clean energy technologies -- supported by Energy Department policies. December 3, 2013 Additional Funding & Financing Resources Want to know more about funding and financing for energy projects and businesses? Check out general resources at the Energy Department and other parts of the federal government. December 3, 2013 Funding & Financing for Energy Businesses Do you own or represent an energy business? Learn about funding and financing resources from the Energy Department and other U.S. government agencies. November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG

370

Green Economy Toolbox | Open Energy Information  

Open Energy Info (EERE)

Green Economy Toolbox Green Economy Toolbox Jump to: navigation, search Tool Summary Name: Green Economy Toolbox Agency/Company /Organization: United Nations Economic Commission for Europe Sector: Climate Focus Area: Renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Fuels & Efficiency, Greenhouse Gas, Industry, Standards - Incentives - Policies - Regulations Transportation"Standards - Incentives - Policies - Regulations Transportation" cannot be used as a page name in this wiki., Vehicles, Water Power Phase: Create a Vision Topics: Analysis Tools, Low emission development planning, -LEDS Resource Type: Software/modeling tools User Interface: Website Website: www.unece.org/fileadmin/DAM/GET/ Cost: Free Language: English

371

Hydrogen: NIST WMD Five Year Plan  

Science Conference Proceedings (OSTI)

... United States transition to a hydrogen economy. ... marking requirements; (4) fuel quality standards ... competition, and facilitate economic growth and ...

2012-12-17T23:59:59.000Z

372

The Effect of Improved Fuel Economy on Vehicle Miles Traveled: Estimating the Rebound Effect Using U.S. State Data, 1966-2001  

E-Print Network (OSTI)

respect to new-car price are: S ? M , PV = ? mv ? 1 v 1 ? ?new vehicle prices (1987=100) (logarithm: pv). P F : Priceof ( fint ) t-1 , D7479 , and pv . The price of fuel is not

Small, Kenneth A; Van Dender, Kurt

2005-01-01T23:59:59.000Z

373

Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

2: April 3, 2000 2: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy to someone by E-mail Share Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Facebook Tweet about Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Twitter Bookmark Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Google Bookmark Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Delicious Rank Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Digg Find More places to share Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on

374

E3: Economy, Energy Environment  

Science Conference Proceedings (OSTI)

E3: Economy, Energy, and Environment. "Our goal is to ... in 2012. Download E3: Economy, Energy, Environment. For more ...

2012-10-17T23:59:59.000Z

375

An Econometric Analysis of the Elasticity of Vehicle Travel with Respect to Fuel Cost per Mile Using RTEC Survey Data  

Science Conference Proceedings (OSTI)

This paper presents the results of econometric estimation of the ''rebound effect'' for household vehicle travel in the United States based on a comprehensive analysis of survey data collected by the U.S. Energy Information Administration (EIA) at approximately three-year intervals over a 15-year period. The rebound effect is defined as the percent change in vehicle travel for a percent change in fuel economy. It summarizes the tendency to ''take back'' potential energy savings due to fuel economy improvements in the form of increased vehicle travel. Separate vehicles use models were estimated for one-, two-, three-, four-, and five-vehicle households. The results are consistent with the consensus of recently published estimates based on national or state-level data, which show a long-run rebound effect of about +0.2 (a ten percent increase in fuel economy, all else equal, would produce roughly a two percent increase in vehicle travel and an eight percent reduction in fuel use). The hypothesis that vehicle travel responds equally to changes in fuel cost-per-mile whether caused by changes in fuel economy or fuel price per gallon could not be rejected. Recognizing the interdependency in survey data among miles of travel, fuel economy and price paid for fuel for a particular vehicle turns out to be crucial to obtaining meaningful results.

Greene, D.L.; Kahn, J.; Gibson, R.

1999-03-01T23:59:59.000Z

376

Search for Model Year 2001 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

377

Search for Model Year 2004 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Bifuel (Propane) Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

378

Search for Model Year 2008 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

379

Search for Model Year 2003 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

380

Search for Model Year 2002 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Search for Model Year 2000 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

382

Energy and the economy: Soaring development in Thailand  

SciTech Connect

Thailand's economy is one of the fastest growing in the world. Spectacular economic growth has brought a number of growing pains, energy being one of the many notables. Thailand's growth campaign has been fueled by oil, and as the economy shows little sign of slowing, energy use continues to grow. The government must balance a surging economy while scrambling to maintain sufficient energy supplies and infrastructure.

1993-08-25T23:59:59.000Z

383

Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles  

DOE Green Energy (OSTI)

As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

2010-01-01T23:59:59.000Z

384

Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles  

SciTech Connect

As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

2010-01-01T23:59:59.000Z

385

Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on

386

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Validation Technology Validation Multi-Year Research, Development and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real-world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D required to move the technologies forward or to determine whether the technologies are ready for commercialization. Evaluations conducted include the following: * Applications - transportation; primary power; combined heat and power (CHP); combined

387

Federal Alternative Fuel Program Light Duty Vehicle Operations. Second annual report to Congress for fiscal year 1992  

DOE Green Energy (OSTI)

This annual report to Congress details the second year of the Federal light duty vehicle operations as required by Section 400AA(b)(1)(B) of the Energy Policy and Conservation Act as amended by the Alternative Motor Fuels Act of 1988, Public Law 100-494. In 1992, the Federal alternative fuel vehicle fleet expanded significantly, from the 65 M85 (85 percent methanol and 15 percent unleaded gasoline) vehicles acquired in 1991 to an anticipated total of 3,267 light duty vehicles. Operating data are being collected from slightly over 20 percent, or 666, of these vehicles. The 601 additional vehicles that were added to the data collection program in 1992 include 75 compressed natural gas Dodge full-size (8-passenger) vans, 25 E85 (85 percent denatured ethanol and 15 percent unleaded gasoline) Chevrolet Lumina sedans, 250 M85 Dodge Spirit sedans (planned to begin operation in fiscal year 1993), and 251 compressed natural gas Chevrolet C-20 pickup trucks. Figure ES-1 illustrates the locations where the Federal light duty alternative fuel vehicles that are participating in the data collection program are operating. The primary criteria for placement of vehicles will continue to include air quality attainment status and the availability of an alternative fuel infrastructure to support the vehicles. This report details the second year of the Federal light duty vehicle operations, from October 1991 through September 1992.

Not Available

1993-07-01T23:59:59.000Z

388

TransForum v6n1 - Two Hydrogen Economies Needed to Address World...  

NLE Websites -- All DOE Office Websites (Extended Search)

in transportation for its clean, efficient propulsion of cars and light trucks using fuel cells whose only exhaust is ordinary water. A hydrogen economy that meets all our...

389

Search for Model Year 2013 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

390

Search for Model Year 2012 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

391

Search for Model Year 2011 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

392

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.2 Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Plan - Delivery Technical Plan - Delivery Multi-Year Research, Development and Demonstration Plan Page 3.2 - 1 3.2 Hydrogen Delivery Delivery is an essential component of any future hydrogen infrastructure. It encompasses those processes needed to transport hydrogen from a central or semi-central production facility to the final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen-fueled fuel cell systems, including those used in vehicles, back-up power sources, and distributed power generators, will likely depend on a hydrogen delivery infrastructure that provides the same level of safety, convenience, and functionality as existing liquid and gaseous fossil

393

Alternative Fuels Data Center: Publications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports National Renewable Energy Laboratory, Golden, Colorado The U.S. Department of Energy's (DOE) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. A national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge.Each year DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterizes the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this report.

394

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, 1949-2010:

395

Spent Nuclear Fuel Project technical baseline document. Fiscal year 1995: Volume 1, Baseline description  

SciTech Connect

This document is a revision to WHC-SD-SNF-SD-002, and is issued to support the individual projects that make up the Spent Nuclear Fuel Project in the lower-tier functions, requirements, interfaces, and technical baseline items. It presents results of engineering analyses since Sept. 1994. The mission of the SNFP on the Hanford site is to provide safety, economic, environmentally sound management of Hanford SNF in a manner that stages it to final disposition. This particularly involves K Basin fuel, although other SNF is involved also.

Womack, J.C. [Westinghouse Hanford Co., Richland, WA (United States); Cramond, R. [TRW (United States); Paedon, R.J. [SAIC (United States)] [and others

1995-03-13T23:59:59.000Z

396

IMPACTT5A model : enhancements and modifications since December 1994 - with special reference to the effect of tripled-fuel-economy vehicles on fuel-cycle energy and emissions.  

DOE Green Energy (OSTI)

Version 5A of the Integrated Market Penetration and Anticipated Cost of Transportation Technologies (IMPACTT5A) model is a spreadsheet-based set of algorithms that calculates the effects of advanced-technology vehicles on baseline fuel use and emissions. Outputs of this Argonne National Laboratory-developed model include estimates of (1) energy use and emissions attributable to conventional-technology vehicles under a baseline scenario and (2) energy use and emissions attributable to advanced- and conventional-technology vehicles under an alternative market-penetration scenario. Enhancements to IMPACIT made after its initial documentation in December 1994 have enabled it to deal with a wide range of fuel and propulsion system technologies included in Argonne's GREET model in a somewhat modified three-phased approach. Vehicle stocks are still projected in the largely unchanged STOCK module. Vehicle-miles traveled, fuel use, and oil displacement by advanced-technology vehicles are projected in an updated USAGE module. Now, both modules can incorporate vehicle efficiency and fuel share profiles consistent with those of the Partnership for a New Generation of Vehicles. Finally, fuel-cycle emissions of carbon monoxide, volatile organic compounds, nitrogen oxides, toxics, and greenhouse gases are computed in the EMISSIONS module via an interface with the GREET model that was developed specifically to perform such calculations. Because of this interface, results are now more broadly informative than were results from earlier versions of IMPACTT.

Mintz, M. M.; Saricks, C. L.

1999-08-28T23:59:59.000Z

397

Economic Development for a Growing Economy Tax Credit (Indiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development for a Growing Economy Tax Credit (Indiana) Economic Development for a Growing Economy Tax Credit (Indiana) Economic Development for a Growing Economy Tax Credit (Indiana) < Back Eligibility Commercial Agricultural Industrial Construction Retail Supplier Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Provider Indiana Economic Development Corporation The Economic Development for a Growing Economy Tax Credit is awarded to businesses with projects that result in net new jobs. The tax credit must be a major factor in the company's decision to move forward with the project in Indiana. The refundable tax credit is calculated as a percentage of the expected increased tax withholdings generated from the new jobs. The

398

Energy Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 22, 2011 September 22, 2011 Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. New Technologies Bring New Opportunities for Meter Reader Brian Andrews leveraged training programs to transition from being a meter reader at CenterPoint Energy in Houston, Texas to implementing the company's smart meter and intelligent electric grid projects. September 22, 2011 Recovery Act Energy Jobs Bring New Era of Opportunity Hundreds of thousands of people found work in the past few years thanks to Recovery Act and Energy Department programs designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

399

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

400

Vehicle Technologies Office: Fact #372: May 16, 2005 Truck Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2005 Truck Fuel Economy by Size Class to someone by E-mail Share Vehicle Technologies Office: Fact 372: May 16, 2005 Truck Fuel Economy by Size Class on Facebook Tweet about...

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: Fact #4: September 23, 1996 Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

September 23, 1996 Fuel Economy Declines at Higher Speeds to someone by E-mail Share Vehicle Technologies Office: Fact 4: September 23, 1996 Fuel Economy Declines at Higher Speeds...

402

Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices: June 2004  

DOE Green Energy (OSTI)

This paper addresses the impact of fuel efficiency characteristics on vehicle system efficiency, fuel economy from downsizing different fuel cells, as well as the energy storage system.

Zolot, M.; Markel, T.; Pesaran, A.

2007-01-01T23:59:59.000Z

403

Spent nuclear fuels project: FY 1995 multi-year program plan, WBS {number_sign}1.4  

SciTech Connect

The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan.

Denning, J.L.

1994-09-01T23:59:59.000Z

404

AND THE NEW ECONOMY  

E-Print Network (OSTI)

The new economy of the late 1990s was an invention of the media and Wall Street, not economic scholars. As The Economist wrote in 1999, the stunning American economic growth

Jeff Madrick; Jeff Madrick; Jeff Madrick

2001-01-01T23:59:59.000Z

405

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 4.0 Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Multi-Year Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the FCT Program's decision- making process by evaluating technologies and pathways and determining technology gaps, risks, and benefits. The Systems Analysis sub-program works at all levels of the program, including technology analysis for specific sub-programs, policy and infrastructure analysis, and high-level implementation and

406

ANNUAL PROGRESS REPORT ON FUEL ELEMENT DEVELOPMENT FOR FISCAL YEAR 1961  

SciTech Connect

Progress in fuels and materials development is summarized. Major areas of investigation include a materials study by means of sample fuel plates containing uranium alloys or cermets, burnable poisons, non-uniform fuel and poison distributions and clad with various aluminum alloys; and an engineering study of fuel element geometries optimized in heat transfer, hydraulics, and materials strength. Up to 45 wt% U-Al alloys, 6 to 65 wt% UO/-Al and U3O6-Al dispersions, including enrichments ranging from 20% to 93%, were tested to 70% burnup in de-ionized water at 200 deg F in the MTR. Their performance at higher temperature is still being investigated. Test results for the MTR conditions indicate that all of the compositions investigated to date will successfully withstand even the longest irradiation at these conditions if properly fabricated. Some high strength aluminum alloy claddings, not yet fully tested, show some peculiar surface effects which may be related to corrosion. Metallographic studies of irradiated cermets reveal a reaction'' (diffusion) zone produced around UO/sub 2/ particles in contact with aluminum. These zones are being studied by means of x-ray diffraction, electron microscopy, and electron microprobe analysis. From engineering studies has come promise of improved heat removal and lower pumping requlrements for reactors through artificial roughening of fuel plates. Computer optimizatlon studies and hydraulic tests indicated 80% improvement in heat transfer or 60% less flow for the same heat load are obtainable for MTR conditions. Heat transfer test results from 0.110 x 2.624 ' electrically-heated channels using heat fluxes up to 2.88 x 10/sup 6/ Btu/hr-ft/ sup 2/, sgree better with correlations based on bulk temperatures than with the more widely used modified Colburn equation. In this range, a modifled Colburn equation with a 20% safety factor, as is presently used, seems adequate. However, an equation based on the bulk coolant temperature could be used employing a smaller safety factor because of its greater accuracy. ( auth)

Gibson, G.W.; Shupe, O.K.

1962-03-01T23:59:59.000Z

407

YEAR  

National Nuclear Security Administration (NNSA)

1 1 YEAR 2011 Males 18 Females 23 YEAR 2011 SES 2 EJ/EK 2 NQ (Prof/Tech/Admin) 35 NU (Tech/Admin Support) 2 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 9 Asian Male 0 Asian Female 0 Hispanic Male 2 Hispanic Female 6 White Male 12 White Female 6 DIVERSITY Workforce Diversity Associate Administrator for Information Management & Chief Information Officer, NA-IM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 18 43.9% 23 56.1% Gender Males Females 4.9% 4.9% 85.4% 4.9% Pay Plan SES EJ/EK NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 2.4% 4.9% 7.3% 22.0% 0.0% 0.0% 4.9% 14.6% 29.3% 14.6% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

408

YEAR  

National Nuclear Security Administration (NNSA)

4 4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 31 NU (Tech/Admin Support) 5 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 2 Asian Male 1 Asian Female 1 Hispanic Male 6 Hispanic Female 10 White Male 13 White Female 10 DIVERSITY Workforce Diversity Office of General Counsel, NA-GC As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 21 47.7% 23 52.3% Gender Males Females 6.8% 2.3% 2.3% 6.8% 70.5% 11.4% Pay Plan SES EJ/EK EN 03 NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.0% 0.0% 2.3% 4.5% 2.3% 2.3% 13.6% 22.7% 29.5% 22.7% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

409

YEAR  

National Nuclear Security Administration (NNSA)

6 6 YEAR 2011 Males 7 Females 9 YEAR 2011 SES 1 NQ (Prof/Tech/Admin) 9 GS 15 2 GS 13 2 GS 12 1 GS 11 1 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 3 Asian Male 1 Asian Female 0 Hispanic Male 1 Hispanic Female 0 White Male 4 White Female 6 DIVERSITY Workforce Diversity Associate Administrator of External Affairs, NA-EA As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 7 43.8% 9 56.3% Gender Males Females 6.3% 56.3% 12.5% 12.5% 6.3% 6.3% Pay Plan SES NQ (Prof/Tech/Admin) GS 15 GS 13 GS 12 GS 11 0.0% 0.0% 6.3% 18.8% 6.3% 0.0% 6.3% 0.0% 25.0% 37.5% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male Hispanic Female White Male White Female FY11 Workforce Diversity

410

YEAR  

National Nuclear Security Administration (NNSA)

40 40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJ/EK 1 NN (Engineering) 16 NQ (Prof/Tech/Admin) 115 NU (Tech/Admin Support) 3 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 7 Asian Male 4 Asian Female 0 Hispanic Male 25 Hispanic Female 26 White Male 35 White Female 37 DIVERSITY Workforce Diversity Associate Administrator for Acquistion & Project Management, NA-APM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 68 48.6% 72 51.4% Gender Males Females 3.6% 0.7% 11.4% 82.1% 2.1% Pay Plan SES EJ/EK NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.7% 1.4% 2.1% 5.0% 2.9% 0.0% 17.9% 18.6% 25.0% 26.4% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male

411

Checklist for transition to new highway fuel(s).  

DOE Green Energy (OSTI)

Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

Risch, C.; Santini, D.J. (Energy Systems)

2011-12-15T23:59:59.000Z

412

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acura - ILX (2014) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 39 mpg city, 38 mpg highway Emission Certification: California PZEV, Tier 2...

413

Develop Improved Materials to Support the Hydrogen Economy  

DOE Green Energy (OSTI)

The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

Dr. Michael C. Martin

2012-07-18T23:59:59.000Z

414

Fuel Cell Technologies Office: International Partnership for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership for Hydrogen and Fuel Cells in the Economy to someone by E-mail Share Fuel Cell Technologies Office: International Partnership for Hydrogen and Fuel Cells in the...

415

Years  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology in and Technology in the National Interest 60 Years of Excellence Lawrence Livermore National Laboratory FY 2012 Annual Report About the Cover: Lawrence Livermore National Laboratory (LLNL) engineers Chris Spadaccini (left) and Eric Duoss are shown experimenting with direct ink-writing to create micro- to macroscale structures with extreme precision. The Laboratory is advancing this process and other additive manufacturing technologies to develop new materials with extraordinary properties for use in a wide range of national-security and other applications. About the Laboratory: Lawrence Livermore National Laboratory was founded in 1952 to enhance the security of the United States by advancing nuclear weapons science and technology. With a talented and dedicated workforce and

416

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

system-efficiency Go system-efficiency Go Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-1fnxsdr Average Per-Passenger Fuel Economy of Various Travel Modes Generated_thumb20130810-31804-1fnxsdr Comparison of per-passenger fuel economy for various modes of transportation. Last update April 2013 View Graph Graph Download Data Average Annual Fuel Use of Major Vehicle Categories Class 8 Truck Transit Bus Refuse Truck Para. Shuttle Taxi Delivery Truck School Bus Police Light Truck Light-Duty Vehicle Car Motorcycle Annual Fuel Use (GGE) 11500 10063 9876.738 2695 3392 1814 1896.33375 1423.474 853.56725 528.8785 459.4805 33

417

Year 2000: energy enough  

SciTech Connect

The growing needs for energy in the U.S. are reviewed, and it is predicted that energy supplies will need be more than doubled by the year 2000. The solution lies in three areas: goal targeting, resource management, and timing. A no-growth economy and an economy continuing growth at an appropriate rate are two scenarios discussed. The second major area of choice in fixing energy capabilities for the year 2000 involves management of fuel resources. Shortages of oil and gas dictate that the increase in energy consumption be changed to coal and uranium, both of which are available domestically; utilization of these energy sources will mean increased electrification. It is concluded, then, that the best avenues toward ensuring a national energy supply are utilization of coal and uranium and the practice of energy conservation through greater efficiency. Timing is the third critical area of decision making that affects future energy supply. The long lead time required to bring about a change in the national energy mix is cited. Current estimates indicate that now is the time to push toward a national electricity target of at least 7500 billion kWh for the year 2000. Meeting the target means almost four times the present electricity supply, at a growth rate of about 5.7 percent per year. This target assumes a reasonable measure of energy conservation. (MCW)

Starr, C.

1976-06-01T23:59:59.000Z

418

Economic Development for a Growing Economy Tax Credit Program (Illinois) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development for a Growing Economy Tax Credit Program Economic Development for a Growing Economy Tax Credit Program (Illinois) Economic Development for a Growing Economy Tax Credit Program (Illinois) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Corporate Tax Incentive Provider Illinois Department of Commerce and Economic Opportunity The Economic Development for a Growing Economy Tax Credit Program encourages companies to remain, expand, or locate in Illinois. The program provides tax credits to qualifying companies equal to the amount of state income taxes withheld from salaries for newly created jobs. A company must

419

Clean Cities Now, Vol.9, No. 2 - May 2005; Official Publication of Clean Cities and the Alternative Fuels Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Cities, an initiative of the U.S. Department of Energy designed to reduce petroleum con- sumption in the transportation sector by advancing the use of alternative fuel vehicles, idle reduction technologies, hybrid electric vehicles, fuel blends, and fuel economy. National Partner Award Winners Clean Cities is built on public-private partnerships. And every year at this time we recognize the most outstanding of these partners. The 2005 National Partner Award winners were

420

Fuel Economy Guide Privacy/Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Protocol (IP) address of the domain from which you access the Internet (e.g., 123.456.789.012), whether yours individually or provided as a proxy by your Internet Service...

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fuel Economy of the 2013 Ferrari FF  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Highway Unofficial MPG Estimates Shared by Vehicle Owners My MPG Owner MPG Estimates are not yet available for this vehicle. How can I Share My MPG? Vehicle Specification Data...

422

Fuel Economy of the 2013 Ferrari FF  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Highway Unofficial MPG Estimates Shared by Vehicle Owners My MPG Owner MPG Estimates are not yet available for this vehicle. How can I Share My MPG? Vehicle Specification Data...

423

Fuel Economy Guide Website.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

smog-forming airborne pollutants the vehicle emits compared to other vehicles. EPA SmartWay or SmartWay Elite certification is given to those vehicles with top-tier smog and...

424

What is FuelEconomy.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

smog-forming airborne pollutants the vehicle emits compared to other vehicles. EPA SmartWay or SmartWay Elite certification is given to those vehicles with top-tier smog and...

425

Fuel Economy: Where the Energy Goes  

NLE Websites -- All DOE Office Websites (Extended Search)

and lighter-weight technologies. Hybrids, plug-in hybrids, and electric vehicles use regenerative braking to recover some braking energy that would otherwise be lost. more......

426

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

and even buyers of hybrid vehicles. The interviews unfoldedarticles contended that hybrid vehicles cost $2,000 to $Our small group of hybrid vehicle buyers confessed they had

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

427

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

and even buyers of hybrid vehicles. The interviews unfoldedarticles contended that hybrid vehicles cost $2,000 to $Our small group of hybrid vehicle buyers confessed they had

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

428

Fuel Economy of the 2014 Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius Search for Other Vehicles View the Mobile Version of This Page 4 cyl, 1.8 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side Hybrid Vehicle EPA...

429

Moving Forward With Fuel Economy Standards  

E-Print Network (OSTI)

$1.85 a gallon. Crude oil prices in early 2009 were stillBut in light of fluctuating oil prices and concerns aboutwhen the inevitable rise in oil prices occurs with economic

Schipper, Lee

2009-01-01T23:59:59.000Z

430

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles,” Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

431

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles,” Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

432

REQUIREMENTS FOR RAW MATERIALS IN AN EXPANDING NUCLEAR POWER ECONOMY  

SciTech Connect

The need for breeding does not appear to be highly cost for a moderately optimistic expanding nuclear power economy between 1960 and 2000. Since the expansion rate of the US nuclear economy is assumed to be high at least 2/3 of the U-235 recovered from natural uranium is used to supply reactor inventory. It is the remaining 1/3 of the available U-235 that can be saved by breeder breeders or a breeder and converter are the doubling time and a parameter expressing the total fissile inventory per magawatt of electricity. In fact, the need for new raw material in any given year is reduced more by specific power than by changing from a converter to a value of total inventory per magawatt of electricity and the content and value of plutonium or U-233 than on raw material cost. The use of 12% vs. 4% annual lease charge can change the inventory costs more significantly than either the Pu (or U-233)/U-235 value ratio or raw material cost. Net fuel burn costs vary more with the product of net conversion ratio and Pu (or U-233)/U-235 value ratio than with the cost of raw material. (auth)

Arnold, E.D.; Ullmann, J.W.

1959-01-20T23:59:59.000Z

433

Bioethanol: Fueling sustainable transportation  

Science Conference Proceedings (OSTI)

Ethanol made from biomass, or bioethanol, can positively impact the national energy security, the economy, and the environment. Producing and using bioethanol can help alleviate some of the negative impacts of the dependence on fossil fuels.

Neufeld, S.

2000-05-25T23:59:59.000Z

434

Comparative economics: evolution and the modern economy  

E-Print Network (OSTI)

A comparison of primate economies. Journal of Bioeconomics,1999). Complexity and the economy. Science, 284, 107–109.evolution and the modern economy Ghabrial, A. S. , &

Vermeij, Geerat J.

2009-01-01T23:59:59.000Z

435

Open economy politics: A critical review  

E-Print Network (OSTI)

brain. New Political Economy. forthcoming. Zysman, J. , & D’Press. Bates, R. H. (1997). Open-economy politics:The political economy of the world coffee trade. Princeton,

Lake, David A.

2009-01-01T23:59:59.000Z

436

The political economy of labor market liberalization  

E-Print Network (OSTI)

Strategies in the World Economy. New York: CambridgeYusof. 1993. The Political Economy of Poverty, Equity, andExpansion of the Public Economy: A Comparative Analysis. ”

Choung, Jinhee Lee

2009-01-01T23:59:59.000Z

437

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 5.0 Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 3.8 Page 3.8 2012 Systems Integration Multi-Year Research, Development and Demonstration Plan Page 5 - 1 5.0 Systems Integration The Systems Integration function of the DOE Hydrogen and Fuel Cells Program (the Program) provides independent, strategic, systems-level expertise and processes to enable system-level planning, data-driven decision-making, effective portfolio management, and program integration. System Integration ensures that system-level targets are developed, verified, and met and that the sub- programs are well-coordinated. Systems Integration provides tailored technical and programmatic support to ensure a disciplined approach to the research, design, development, and validation of complex systems. Systems Integration provides

438

Spent nuclear fuel project multi-year work plan WBS {number_sign}1.4.1  

Science Conference Proceedings (OSTI)

The Spent Nuclear Fuel (SNF) Project Multi-Year Work Plan (MYWP) is a controlled living document that contains the current SNF Project Technical, Schedule and Cost Baselines. These baselines reflect the current Project execution strategies and are controlled via the change control process. Other changes to the MYWP document will be controlled using the document control process. These changes will be processed as they are approved to keep the MYWP a living document. The MYWP will be maintained continuously as the project baseline through the life of the project and not revised annually. The MYWP is the one document which summarizes and links these three baselines in one place. Supporting documentation for each baseline referred to herein may be impacted by changes to the MYWP, and must also be revised through change control to maintain consistency.

Wells, J.L.

1997-03-01T23:59:59.000Z

439

Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling, Revision 1  

Science Conference Proceedings (OSTI)

In 2010, EPRI performed a study of the accelerated transfer of spent fuel from pools to dry storage in response to the threat of terrorist activities at nuclear power plants (report 1021049). Following the March 2011 Great East Japan Earthquake and the subsequent accident at the Fukushima Daiichi nuclear power plant, some organizations issued a renewed call for accelerated transfer of used fuel from spent fuel ...

2012-08-31T23:59:59.000Z

440

The closed fuel cycle  

Science Conference Proceedings (OSTI)

Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

Froment, Antoine; Gillet, Philippe [AREVA NC (France)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000  

Science Conference Proceedings (OSTI)

The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

Das, S.

1991-12-01T23:59:59.000Z

442

Factor of two : halving the fuel consumption of new U.S. Automobiles by 2035  

E-Print Network (OSTI)

This thesis examines the vehicle design and sales mix changes necessary to double the average fuel economy of new U.S. cars and light-trucks by model year 2035. To achieve this factor of two target, three technology options ...

Cheah, Lynette W

2008-01-01T23:59:59.000Z

443

NIST: Neutron Imaging Facility - Hydrogen Economy  

Science Conference Proceedings (OSTI)

Hydrogen Economy. There is a current effort to transition our current hydrocarbon based economy to one based on hydrogen. ...

444

Nuclear fuels technologies: Thermally induced gallium removal system (TIGRS), fiscal year 1998 research and development test plan  

SciTech Connect

This document details the research and development (R and D) activities that will be conducted in Fiscal Year 1998 (FY98) by the Thermally Induced Gallium Removal System (TIGRS) team for the Department of Energy Office of Fissile Materials Disposition. This work is a continuation and extension of experimental activities that have been conducted in support of using weapons-derived plutonium in the fabrication of mixed-oxide (MOX) nuclear fuel for reactor-based plutonium disposition. The ultimate purpose of this work is to demonstrate adequate Thermally Induced Gallium Removal with a prototypic system. This Test Plan presents more than the FY98 R and D efforts in order to frame the Task in its entirety. To achieve the TIGRS Program objectives, R and D activities during the next two years will be focused on (1) process development leading to a prototypic TIGRS design, and (2) prototypic TIGRS design and testing leading to and including a prototypic demonstration of TIGRS operation. Both the process development and system testing efforts will consist of a series of surrogate-based cold tests and plutonium-based hot tests. Some of this testing has already occurred and will continue into FY99.

Buksa, J.J.; Butt, D.P.; Chidester, K.; DeMuth, S.F.; Havrilla, G.J.; James, C.A.; Kolman, D.G.

1997-12-24T23:59:59.000Z

445

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Appendix C: Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Page C - 1 Page C - 1 2012 Appendix C: Hydrogen Quality Appendix C - Hydrogen Quality The hydrogen fuel quality specification in Table C.1 below is based on the SAE International Surface Vehicle Standard SAE-2719 - Hydrogen Fuel Quality Guideline for Fuel Cell Vehicles, June 2011. This specification has been harmonized to the extent possible with the draft international standard, ISO/DIS 14687-2, Hydrogen Fuel - Product Specification - Part 2: Proton exchange membrane (PEM) fuel cell applications for road vehicles, recently approved by the International Organization for Standardization (ISO). The primary purpose of this specification is to ensure that the effects of possible fuel contaminants on fuel cell performance and durability in early commercial vehicles are acceptable. Modeling and

446

2010 Hydrogen and Fuel Cell Global Commercialization & Development Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen is a clean fuel. When used in fuel cells, the Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat. * Clean hydrogen technology has the potential to strengthen national economies and create high-quali- ty jobs in industries such as fuel cell manufacturing. * Hydrogen can be derived from renewable sources and is fully interchangeable with electricity - hydrogen can be used to generate electricity, while electricity can be used to produce hydrogen. * Over 100 years of safe production, transportation and use of hydrogen shows that it carries no more risk than natural gas or gasoline. * Hydrogen can be produced from diverse domestic sources and processes, freeing it from the political instabilities that affect the world's oil and gas supplies. * Fuel cells have more than double the energy-efficien-

447

Globalization and the Future of the National Economy  

E-Print Network (OSTI)

Many observers are concerned that the growth of globalization will undermine and destroy national economies. For the past six years, Professor Suzanne Berger, the Raphael Dorman and Helen Starbuck Professor of Political ...

Boyd, James Patrick

2006-03-17T23:59:59.000Z

448

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011  

DOE Green Energy (OSTI)

This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

Eudy, L.; Chandler, K.; Gikakis, C.

2011-11-01T23:59:59.000Z

449

Fuel oil and kerosene sales 1994  

SciTech Connect

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

450

Hydrogen and Fuel Cell Technologies Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Source: US DOE 10/2010 Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel Cell Seminar & Exposition San Antonio, TX October 19, 2010 Agenda * Overview * RD&D Progress * Analysis & Key Publications * Budget Update * Next Steps - DOE Releases Program Plan for Stakeholder Input - Upcoming Workshops & Solicitations Source: US DOE 10/2010 2  Double Renewable Energy Capacity by 2012  Invest $150 billion over ten years in energy R&D to transition to a clean energy economy  Reduce GHG emissions 83% by 2050 Administration's Clean Energy Goals 3 Key Examples US DOE 10/2010 4 Fuel Cells: Addressing Energy Challenges

451

System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint  

DOE Green Energy (OSTI)

From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

Duffy, M.; Sandor, D.

2008-06-01T23:59:59.000Z

452

System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint  

SciTech Connect

From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

Duffy, M.; Sandor, D.

2008-06-01T23:59:59.000Z

453

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

DOE Green Energy (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

454

Vehicle Technologies Office: Fact #21: March 3, 1997 The Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 1997 The Fuel Savings Benefits of Increasing Fuel Economy to someone by E-mail Share Vehicle Technologies Office: Fact 21: March 3, 1997 The Fuel Savings Benefits of Increasing...

455

World nuclear fuel cycle requirements 1990  

Science Conference Proceedings (OSTI)

This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

Not Available

1990-10-26T23:59:59.000Z

456

Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1  

SciTech Connect

This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE.

NONE

1995-09-01T23:59:59.000Z

457

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

458

NAFOA Finance & Tribal Economies Conference  

Energy.gov (U.S. Department of Energy (DOE))

The Native American Finance Officers Association (NAFOA) will host their fall conference on finance and tribal economies at the Hard Rock Hotel in San Diego, California. 

459

Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency  

E-Print Network (OSTI)

another (and thus be a two hybrid car, one medium-duty truckhybrid and so she felt she had to settle for a conventional mid-size sedan, putting off her desired carhybrid. However, she was involved in an accident and her insurer declared her previous car

Kurani, Ken; Turrentine, Thomas

2004-01-01T23:59:59.000Z

460

Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency  

E-Print Network (OSTI)

sectors”—for example hybrid vehicle buyers, financialthe exception is hybrid vehicles and their drivers. Onesmall sample of eight hybrid vehicle buyers. In closing, and

Kurani, Ken; Turrentine, Thomas

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Clean Economy Network Foundation | Open Energy Information  

Open Energy Info (EERE)

Clean Economy Network Foundation Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name Clean Economy Network Foundation Address 1301 Pennsylvania Ave NW, Suite 700 Place Washington, DC Zip 20004 Number of employees 1-10 Year founded 2009 Website http://cleaneconomynetwork.org Notes Includes what was formerly known as the Renewable Energy Business Network (REBN) Coordinates 38.89597°, -77.030353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89597,"lon":-77.030353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel  

SciTech Connect

The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

McCoy, G.A.; Kerstetter, J.

1983-10-01T23:59:59.000Z

464

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

465

The Hydrogen Economy  

SciTech Connect

Since the industrial revolution began in the 18th century, fossil fuels in the form of coal, oil, and natural gas have powered the technology and transportation networks that drive society. But continuing to power the world from fossil fuels threatens our energy supply and puts enormous strains on the environment. The world's demand for energy is projected to double by 2050 in response to population growth and the industrialization of developing countries. The supply of fossil fuels is limited, with restrictive shortages of oil and gas projected to occur within our lifetimes (see the article by Paul Weisz in PHYSICS TODAY, July 2004, page 47). Global oil and gas reserves are concentrated in a few regions of the world, while demand is growing everywhere; as a result, a secure supply is increasingly difficult to assure. Moreover, the use of fossil fuels puts our own health at risk through the chemical and particulate pollution it creates. Carbon dioxide and other greenhouse gas emissions that are associated with global warming threaten the stability of Earth's climate.

Dresselhaus, M [Massachusetts Institute of Technology (MIT); Buchanan, Michelle V [ORNL; Crabtree, George [Argonne National Laboratory (ANL)

2004-01-01T23:59:59.000Z

466

Hydrogen and Fuel Cell Activities, Progress, and Plans  

E-Print Network (OSTI)

“(a) … not later than 2 years after the date of enactment of this Act, and triennially thereafter, the Secretary shall submit to Congress a report describing--(1) activities carried out by the Department under this title, for hydrogen and fuel cell technology; (2) measures the Secretary has taken during the preceding 3 years to support the transition of primary industry (or a related industry) to a fully commercialized hydrogen economy; (3) any change made to the strategy relating to hydrogen and fuel cell technology to reflect the results of learning demonstrations; (4) progress, including progress in infrastructure, made toward achieving the goal of producing and deploying not less than- (A) 100,000 hydrogen-fueled vehicles in the United States by 2010; and (B) 2,500,000 hydrogen-fueled vehicles in the United States by 2020; (5) progress made toward achieving the goal of supplying hydrogen at a

unknown authors

2009-01-01T23:59:59.000Z

467

The California Economy: Singing the Housing Blues  

E-Print Network (OSTI)

THE CALIFORNIA ECONOMY: SINGING THE HOUSING  BLUES Many  parts  of  the  economy  are  doing  better  than towards 2007 the entire economy is being threatened by the 

Thornberg, Christopher

2007-01-01T23:59:59.000Z

468

Political Economy and Natural Resource Use  

E-Print Network (OSTI)

Journal of Political Economy, 103, 903-37. Birdsall, Nancy,Journal of Political Economy 62:124-42. Gylfason, T. ,Affect the Political Economy of Economic Growth,” Middlebury

Deacon, Robert; Mueller, Bernardo

2004-01-01T23:59:59.000Z

469

Pipe Insulation Economies  

E-Print Network (OSTI)

Pipe Insulation Economies is a computer program written in IBM basic to simplify the economic insulation thickness for an insulated pipe. Many articles have been written on this subject, from simple nomographs to a small book written in 1976 by the Federal Energy Administration, called "Economic Thickness for Industrial Insulation (ETI)." This paper is meant to fall somewhere between these extremes without sacrificing the accuracy necessary for economic considerations. Within this text, insulation is dealt with not as a material but as a method to slow heat transfer. To simplify the various mechanisms by which heat is transferred, the variable "thermal conductivity" is used. This is modeled for average insulation temperature. Another variable which has caused problems in the past is the ambient air film coefficient, or surface resistance. This program deals with this coefficient by making an initial assumption, then using an iterative process to refine the actual values before making the economic calculations. The program will use the input data to determine first of all the heat loss in BTU per hr/ft. of pipe. Using this result the lowest annual cost, therefore the most economical insulation thickness, is determined.

Schilling, R. E.

1986-06-01T23:59:59.000Z

470

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Local Laws and Incentives There are a variety of local laws and incentives that support reducing U.S. petroleum consumption by encouraging or requiring individuals and/or public and private organizations to use alternative fuels, advanced vehicles, and strategies to decrease fuel use or increase fuel economy. Local city and county governments create such laws and incentives to ensure people use

471

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Recent Federal Actions This list includes recent federal actions, such as Federal Register notices and rulemaking actions, agency directives or agency communications, that are all publicly available. These actions relate to alternative fuels and vehicles, fuel blends, hybrid vehicles, and idle reduction and fuel economy measures. When rulemakings are finalized, they will move to the list of

472

Fuel Cell Technologies Office: 2011 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Webinar Archives 1 Webinar Archives Increase your H2IQ Learn about Fuel Cell Technologies Office webinars and state and regional initiatives webinars held in 2011 through the descriptions and linked materials below. Also view webinar archives from other years. Webinars presented in 2011: Hydrogen Storage Materials Database Demonstration Hydrogen Production by PEM Electrolysis - Spotlight on Giner and Proton Science Magazine Article Highlight: Moving Towards Near Zero Platinum Fuel Cells I2CNER: An International Collaboration to Enable a Carbon-Neutral, Energy Economy Photosynthesis for Hydrogen and Fuels Production Hydrogen Storage Materials Database Demonstration December 13, 2011 The U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) has launched a hydrogen storage materials database to collect and disseminate materials data and accelerate advanced materials research and development. Marni Lenahan of BCS Incorporated demonstrated the functionality of the database including accessing and extracting data, submitting new material property data for inclusion, and performing organized searches.

473

Vehicle Technologies Office: Fact #501: January 14, 2008 Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

class has the greatest range in fuel economy, followed by compact cars, subcompact cars and SUVs. These four vehicle classes all contain hybrid models which greatly extend...

474

Study Reveals Fuel Injection Timing Impact on Particle Number...  

NLE Websites -- All DOE Office Websites (Extended Search)

In an ongoing quest to meet ever-more-rigorous fuel economy and emissions requirements, vehicle manufacturers are increasingly turning to gasoline direct injection (GDI) coupled...

475

Google+ Hangout Energy 101: Fuel Cells | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Davis Policy Institute for Energy, Environment and the Economy. Eggert can talk about the future of fuel cells in transportation and accelerating the transition to cleaner, more...

476

Contra Costa County's one-year experience with gasohol  

Science Conference Proceedings (OSTI)

Starting August 1, 1979, a one-year gasohol test was conducted by Contra Costa County. A total of 30 county pool cars were on test - 15 on gasohol and 15 similar cars on gasoline as a control group. Findings were as follows. There were no fuel-related maintenance problems in either the gasohol or gasoline groups of cars. Cool weather driveability for the gasohol cars was the same or better than gasoline cars. No vapor lock or other hot driveability problems were reported for either fuel. Fuel economy of the gasohol cars was about 5% poorer than that of the gasoline cars. Fuel system deposits with gasohol were increased and differed in character compared to gasoline. Also, the gasohol carburetors showed more inlet needle valve tip wear. However, to date, the observed deposits and wear with gasohol have not caused any apparent problems.

Gibbs, L.M.; Gilbert, B.J.

1981-01-01T23:59:59.000Z

477

Energy Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2, 2011 March 2, 2011 E. coli for Energy: Ginkgo BioWorks and the Entrepreneurial Mentorship Program Ginkgo BioWorks, a small business founded by five PhDs from MIT, who are working to re-engineer organisms like E. coli into something else. In this case, they want to use the bacteria to turn carbon dioxide into a liquid transportation fuel. February 28, 2011 Profiling 1366 Technologies: One Year Later February 27, 2011 How ARPA-e is "Winning the Future" February 16, 2011 New Mentor Program to Help Clean Energy Small Businesses The Department announced the launch of an "Entrepreneurial Mentor Corps" pilot program, which will connect clean energy startups with knowledgeable mentors. February 14, 2011 Secretary Chu Hosts FY 2012 Budget Briefing Secretary Chu hosted a media briefing on the Department's Fiscal Year 2012

478

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

479

Biomass Multi-Year Program Plan  

E-Print Network (OSTI)

In recent years, biomass-derived fuels have received increasing attention as one solution to our nation’s continued and growing dependence on imported oil, which exposes the country to critical disruptions in fuel supply, creates economic and social uncertainties for businesses and individuals, and impacts our national security. The Energy Independence and Security Act of 2007 (EISA) aims to increase the supply of alternative fuels by setting a mandatory Renewable Fuel Standard (RFS) requiring transportation fuel sold in the U.S. to contain a minimum of 36 billion gallons of renewable fuels, including advanced and cellulosic biofuels and biomass-based diesel, by 2022. President Obama has affirmed his support for advanced biofuels as part of his commitment to “invest in a clean energy economy that will lead to new jobs, new businesses and reduce our dependence on foreign oil. " 1 Program Goals The U.S. Department of Energy (DOE) recognizes the importance of a diverse energy portfolio in meeting the nation’s energy security challenges. DOE has, therefore, set a goal in its Strategic Plan to promote energy security through a diverse energy supply that is reliable, clean, and affordable. As a key strategy for attaining both EISA and Department goals, the DOE Office of

unknown authors

2009-01-01T23:59:59.000Z

480

Biomass Multi-Year Program Plan  

E-Print Network (OSTI)

In recent years, biomass-derived fuels have received increasing attention as one solution to our nation’s continued and growing dependence on imported oil, which exposes the country to critical disruptions in fuel supply, creates economic and social uncertainties for businesses and individuals, and impacts our national security. The Energy Independence and Security Act of 2007 (EISA) aims to increase the supply of alternative fuels by setting a mandatory Renewable Fuel Standard (RFS) requiring transportation fuel sold in the U.S. to contain a minimum of 36 billion gallons of renewable fuels, including advanced and cellulosic biofuels and biomass-based diesel, by 2022. President Obama has affirmed his support for advanced biofuels as part of his commitment to “invest in a clean energy economy that will lead to new jobs, new businesses and reduce our dependence on foreign oil. " 1 Program Goals The U.S. Department of Energy (DOE) recognizes the importance of a diverse energy portfolio in meeting the nation’s energy security challenges. DOE has, therefore, set a goal in its Strategic Plan to promote energy security through a diverse energy supply that is reliable, clean, and affordable. As a key strategy for attaining both EISA and Department goals, the DOE Office of

unknown authors

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Future fuels from Montana  

SciTech Connect

To make America less dependent on foreign oil, Montana Governor Brain Schweitzer pushes for investment in synfuel technology. He advocates coal as the 'new fuel' for cars and believes synfuels from coal can bridge the gap between the petroleum economy of the past and the hydrogen economy of the future. He is pushing for a 'Future Fuels' project to form a public-private partnership to build 20 coal conversion, synfuel manufacturing plants. This could contribute to making the USA energy self-sufficient, more quickly than the FutureGen project, he believes.

Buchsbaum, L.

2006-04-15T23:59:59.000Z

482

AN ANALYSIS OF POWER REACTOR FUEL REPROCESSING  

SciTech Connect

This report presents an analysis of the projected economies and processing capacity requirements for a power reactor fuel reprocessing industry based on the recovery of fertile and fissionable materials from presently proposed power reactors within tbe confines of the continental United 8tates for the next five to ten years. An analysis of the present general state of development of a technology required for such an Industry is given. A summary of results of power reactor reprocessing chemical and engineering development at Oak Ridge National Laboratory from July 1955 through December 1956 is given. (auth)

Culler, F.L. Jr.; Blanco, R.E.; Goeller, H.E.; Watson, C.D.

1957-03-27T23:59:59.000Z

483

A Boost for Hydropower (and the Economy) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Boost for Hydropower (and the Economy) A Boost for Hydropower (and the Economy) A Boost for Hydropower (and the Economy) September 20, 2010 - 5:29pm Addthis The 91-year old Cheoah Dam in Robbinsville, North Carolina. The 91-year old Cheoah Dam in Robbinsville, North Carolina. Jacques Beaudry-Losique Director, Wind & Water Program There are approximately 2,400 hydropower dams in the U.S., many of which have not undergone a significant upgrade in decades. These older dams present a great opportunity to expand clean energy across the country, allowing us to rapidly increase generation capacity through the installation of new high-efficiency equipment. I recently got a firsthand look at one such effort when I helped kick off a project to modernize the 91-year old Cheoah Dam in Robbinsville, North

484

How Competitive Market Dynamics Affect Coal, Nuclear and Gas Generation and Fuel Use -- A 10-Year Look Ahead  

Science Conference Proceedings (OSTI)

This report, the fourth in a series by EPRI and GRI addressing power industry deregulation, examines how restructuring is unleashing a new wave of merchant gas-fired plants. This phenomenon can lead to substantial regional changes in generation and fuel use, energy prices, and profitability-changes that have eluded analysts to date. Focusing on several regions in depth, this report breaks new ground in understanding the effects of turbulent, competitive market dynamics.

1999-05-22T23:59:59.000Z

485

International Partnership for a Hydrogen Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Partnership for the Hydrogen Economy (IPHE) U.S. Department of Energy Why Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation Transportation Biomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With Carbon Sequestration HIGH EFFICIENCY & RELIABILITY ZERO/NEAR ZERO EMISSIONS 3 President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1.2 billion in research funding .... "With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution-free. President George W. Bush 2003 State of the Union Address January 28, 2003

486

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Codes and Standards Safety, Codes and Standards Multi-Year Research, Development and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use with market deployment and commercialization underway. The Safety, Codes and Standards sub-program (SCS) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing information resources for their safe use. SCS relies on extensive input from automobile

487

DOE Hydrogen and Fuel Cells Program Record 11002: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year  

NLE Websites -- All DOE Office Websites (Extended Search)

02 Date: January 5, 2011 02 Date: January 5, 2011 Title: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year Originator: Andrea Chew & Tien Nguyen Approved by: Sunita Satyapal Date: January 25, 2011 A conventional mid-size gasoline car emits 0.45 kg of greenhouse gases (GHG) per mile. 1 One hundred (100) metric tons (t) of GHG per year are equivalent to emissions from 17 conventional gasoline cars. Item: The GHG emissions cited above are from an analysis record prepared by the Department of Energy's Fuel Cell Technologies and Vehicle Technologies Programs on life-cycle emissions of greenhouse gases and petroleum use for several light-duty vehicles. 1 For cars that are between 1 and 5 years old, the average mileage is approximately 13,000,

488

Estimating the impact on fuel tax revenues from a changing light vehicle fleet with increased advanced internal combustion engine vehicles and electric vehicles.  

E-Print Network (OSTI)

??Advanced fuel economies in both traditional internal combustion engine vehicles (ICEs) and electric vehicles (EVs) have a strong influence on transportation revenue by reducing fuel… (more)

Hall, Andrea Lynn

2013-01-01T23:59:59.000Z

489

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

490

Economy of Yak Herders  

E-Print Network (OSTI)

yield) from male yaks is around I kg per year and in females around 0.3 kg from measurements made from hair shorn of 8 males and 22 females. The males are clipped of all the wool growing inside the outer layer of long hairs at the upper and lower...

Gyamtsho, Pema

2000-01-01T23:59:59.000Z

491

INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Road to Fuel Efficiency The Road to Fuel Efficiency INFOGRAPHIC: The Road to Fuel Efficiency November 27, 2012 - 11:01am Addthis This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by Sarah Gerrity. This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by Sarah Gerrity. Sarah Gerrity Sarah Gerrity Multimedia Editor, Office of Public Affairs The Obama Administration's new national fuel economy standards for passenger vehicles will improve vehicle efficiency and save Americans money at the pump, all while reducing our dependence on foreign oil and growing

492

Energy Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 7, 2010 January 7, 2010 Kansas Business Rebuilds Greener After Destruction After 95 percent of Greensburg, Kan., was leveled by a tornado, a major dealership rebuilds to achieve energy savings of nearly 50 percent over similar structures built to code. January 5, 2010 Maine Company Growing with Weatherization Work Maine's BIOSAFE Environmental Services expands into weatherization, assisting low-income families with their services and creating jobs as business grows. December 9, 2009 Weatherization Fueling Iowa Job Opportunities A community action agency usually weatherizes 91 homes each year in four counties -- which they expect to rise to about 650 with the help of federal stimulus money -- creating jobs for laid-off manufacturing workers. December 4, 2009 Business on Track with Focus on Energy Efficiency