Sample records for year forecast 4

  1. 1995 shipment review & five year forecast

    SciTech Connect (OSTI)

    Fetherolf, D.J. Jr. [East Penn Manufacturing Co., Inc., Lyon Station, PA (United States)

    1996-01-01T23:59:59.000Z

    This report describes the 1995 battery shipment review and five year forecast for the battery market. Historical data is discussed.

  2. 1992 five year battery forecast

    SciTech Connect (OSTI)

    Amistadi, D.

    1992-12-01T23:59:59.000Z

    Five-year trends for automotive and industrial batteries are projected. Topic covered include: SLI shipments; lead consumption; automotive batteries (5-year annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by area/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.

  3. 1994 battery shipment review and five-year forecast report

    SciTech Connect (OSTI)

    Fetherolf, D. [East Penn Manufacturing Co., Lyon Station, PA (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a 1994 battery shipment review and five year forecast report. Data is presented on replacement battery shipments, battery shipments, car and truck production, truck sales, original equipment, shipments for passenger cars and light commercial vehicles, and ten year battery service life trend.

  4. Forecast of contracting and subcontracting opportunities. Fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

  5. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    SciTech Connect (OSTI)

    Das, S.

    1991-12-01T23:59:59.000Z

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  6. Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS

    SciTech Connect (OSTI)

    Thomas, L.C.

    1994-10-01T23:59:59.000Z

    This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.

  7. FAA (federal Aviation Administration) aviation forecasts - fiscal years 1983-1994

    SciTech Connect (OSTI)

    Not Available

    1983-02-01T23:59:59.000Z

    This report contains the Fiscal Years 1983-1994 Federal Aviation Administration (FAA) forecasts of aviation activity at FAA facilities. These include airports with FAA control towers, air route traffic control centers, and flight service stations. Detailed forecasts were made for the four major users of the national aviation system: air carriers, air taxi/commuters, general aviation and the military. The forecasts have been prepared to meet the budget and planning needs of the constituent units of the FAA and to provide information that can be used by state and local authorities, by the aviation industry and the general public. The overall outlook for the forecast period is for moderate economic growth, relatively stable real fuel prices, and decreasing inflation. Based upon these assumptions, aviation activity is forecast to increase by Fiscal Year 1994 by 97 percent at towered airports, 50 percent at air route traffic control centers, and 54 percent in flight services performed. Hours flown by general aviation is forecast to increase 56 percent and helicopter hours flown 80 percent. Scheduled domestic revenue passenger miles (RPM's) are forecast to increase 81 percent, with scheduled international RPM's forecast to increase by 80 percent and commuter RPM's forecast to increase by 220 percent.

  8. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 4 AUGUST 17, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  9. Navy Mobility Fuels Forecasting System Phase 4 report

    SciTech Connect (OSTI)

    Das, S.; Hadder, G.R.; Leiby, P.N.; Lee, R.; Davis, R.M.

    1988-09-01T23:59:59.000Z

    The Department of Navy's Maritime Strategy is designed to maintain military readiness and the ability to operate in all major theaters of the world. Mobility fuels required for sea, air, and land operations are vital components of the Navy's peacetime and wartime strategies. The purpose of the Navy's Mobility Fuels Technology Program is to understand fuel supply and fuel property impacts on Navy equipment performance and fleet readiness and operations. Oak Ridge National Laboratory (ORNL) has assisted the Department of Navy in developing and testing a methodology for forecasting mobility fuel availability, quality, and relative price, as well as evaluating options to increase fuel supplies during world oil supply disruptions. Publicly available models developed by the Energy Information Administration of the Department of Energy were selected as the foundation of the Navy Mobility Fuels Forecasting System (NMFFS). The NMFFS was enhanced as ORNL reviewed data on world oil reserves, production and prices, trends in crude oil and refined product quality, and changes in refinery process technology. The system was used to analyze the availability, quality, and relative price of military fuels that could be produced in several domestic and foreign refining regions under Business-As-Usual (BAU) and two hypothetical world crude oil disruption scenarios in the year 1995. 25 refs., 11 figs., 29 tabs.

  10. Thirty-year solid waste generation forecast for facilities at SRS

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.

  11. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01T23:59:59.000Z

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  12. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01T23:59:59.000Z

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  13. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  14. CSUF Economic Outlook and Forecasts Mid-Year Update -April 2012

    E-Print Network [OSTI]

    de Lijser, Peter

    . Second, oil prices have risen steadily during this year, posing a significant risk to the world economy at a moderate pace -- a notch below the U.S. long-run potential growth and well below the historical rates in the first half by higher energy prices and a "soft-landing" of emerging market economies. Developments

  15. Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study Hydrology and Earth System Sciences, 9(4), 457466 (2005) EGU

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study 457 Hydrology and Earth System Sciences, 9(4), 457466 (2005) © EGU Operational hydro forecasting system in the context of the Piemonte Regions hydro-meteorological operational alert procedure

  16. HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12NevadaPROCEEDINGS, R e s

  17. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  18. Volume 7, No.4Volume 7, No.4 2012 Year in Review

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Volume 7, No.4Volume 7, No.4 2012 Year in Review Special Focus: Taking Care of our Wounded Warriors Focus: Year in Review onthecover The Southwestern Division takes a look back at the year 2012 through

  19. Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo

    E-Print Network [OSTI]

    Heinemann, Detlev

    Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University have been presented more than twenty years ago (Jensenius, 1981), when daily solar radiation forecasts

  20. BACHELOR OF ARTS IN BROADCAST COMMUNICATIONS (Suggested 4 Year Plan)

    E-Print Network [OSTI]

    Benos, Panayiotis "Takis"

    BACHELOR OF ARTS IN BROADCAST COMMUNICATIONS (Suggested 4 Year Plan) FIRST YEAR, 1ST TERM CREDITS English Composition I 3 GE: Mathematics (MATH 0110 recommended) 3 COMM 0102 Survey of Broadcasting 3 COMM Production 4 COMM 1302 Media Advertising OR COMM 1401 Broadcasting Programming & Management 3 Minor Course 3

  1. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 9 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 59 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 3 YEAR 2014 American...

  6. AN APPLICATION OF URBANSIM TO THE AUSTIN, TEXAS REGION: INTEGRATED-MODEL FORECASTS FOR THE YEAR 2030

    E-Print Network [OSTI]

    Kockelman, Kara M.

    , as well as energy consumption and greenhouse gas emissions. This work describes the modeling of year-2030 policies significantly impact the region's future land use patterns, traffic conditions, greenhouse gas (emitting over 6 billion metric tons of CO2-equivalents annually, and accounting for 22.2% of the world

  7. Fermi Large Area Telescope Operations: Progress Over 4 Years

    SciTech Connect (OSTI)

    Cameron, Robert A.; /SLAC

    2012-06-28T23:59:59.000Z

    The Fermi Gamma-ray Space Telescope was launched into orbit in June 2008, and is conducting a multi-year gamma-ray all-sky survey, using the main instrument on Fermi, the Large Area Telescope (LAT). Fermi began its science mission in August 2008, and has now been operating for almost 4 years. The SLAC National Accelerator Laboratory hosts the LAT Instrument Science Operations Center (ISOC), which supports the operation of the LAT in conjunction with the Mission Operations Center (MOC) and the Fermi Science Support Center (FSSC), both at NASA's Goddard Space Flight Center. The LAT has a continuous output data rate of about 1.5 Mbits per second, and data from the LAT are stored on Fermi and transmitted to the ground through TDRS and the MOC to the ISOC about 10 times per day. Several hundred computers at SLAC are used to process LAT data to perform event reconstruction, and gamma-ray photon data are subsequently delivered to the FSSC for public release with a few hours of being detected by the LAT. We summarize the current status of the LAT, and the evolution of the data processing and monitoring performed by the ISOC during the first 4 years of the Fermi mission, together with future plans for further changes to detected event data processing and instrument operations and monitoring.

  8. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  9. 5-9035-01-P4 4-YEAR PAVEMENT MANAGEMENT PLAN (WITH

    E-Print Network [OSTI]

    Texas at Austin, University of

    5-9035-01-P4 4-YEAR PAVEMENT MANAGEMENT PLAN (WITH PROPOSITION 12 PROJECTS): ANALYSIS REPORT Implementation of a Web-based GIS System to Provide Information for Pavement Maintenance Decision-Making DECEMBER Table of Contents Section 1. Pavement Management Plan Executive Summary

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR7

  12. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  13. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations – the Southern Study Area

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30T23:59:59.000Z

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP)--Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute – 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 – 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 – 3 hours.

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43 YEAR

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144 YEAR

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 2013

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 20138

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 201387

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558563

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR85573380 YEAR

  3. Geothermal wells: a forecast of drilling activity

    SciTech Connect (OSTI)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01T23:59:59.000Z

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4

  5. Year

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444 U.S.Working and.

  6. On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 4,

    E-Print Network [OSTI]

    Denver, University of

    On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 4, November 2002 Gary A Sensing of Automobile Emissions in the Phoenix Area: Year 4 1 EXECUTIVE SUMMARY The University of Denver #12;On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 4 2 by 5 years

  7. Online Forecast Combination for Dependent Heterogeneous Data

    E-Print Network [OSTI]

    Sancetta, Alessio

    the single individual forecasts. Several studies have shown that combining forecasts can be a useful hedge against structural breaks, and forecast combinations are often more stable than single forecasts (e.g. Hendry and Clements, 2004, Stock and Watson, 2004... in expectations. Hence, we have the following. Corollary 4 Suppose maxt?T kl (Yt, hwt,Xti)kr ? A taking expectation on the left hand side, adding 2A ? T and setting ? = 0 in mT (?), i.e. TX t=1 E [lt (wt)? lt (ut...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826 YEAR

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 2014

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 201434

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43417

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434170

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR 2012

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR424

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR4247

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42478

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR40

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR4096

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR17

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008748611196 YEAR

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males16

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144707

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 201447072540

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 563

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 5637831

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378318

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 28

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 2801

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280192

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733

  6. Solid low-level waste forecasting guide

    SciTech Connect (OSTI)

    Templeton, K.J.; Dirks, L.L.

    1995-03-01T23:59:59.000Z

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford`s experience within the last six years. Hanford`s forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford`s annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford`s forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data.

  7. Technology data characterizing lighting in commercial buildings: Application to end-use forecasting with commend 4.0

    SciTech Connect (OSTI)

    Sezgen, A.O.; Huang, Y.J.; Atkinson, B.A.; Eto, J.H.; Koomey, J.G.

    1994-05-01T23:59:59.000Z

    End-use forecasting models typically utilize technology tradeoff curves to represent technology options available to consumers. A tradeoff curve, in general terms, is a functional form which relates efficiency to capital cost. Each end-use is modeled by a single tradeoff curve. This type of representation is satisfactory in the analysis of many policy options. On the other hand, for policies addressing individual technology options or groups of technology options, because individual technology options are accessible to the analyst, representation in such reduced form is not satisfactory. To address this and other analysis needs, the Electric Power Research Institute (EPRI) has enhanced its Commercial End-Use Planning System (COMMEND) to allow modeling of specific lighting and space conditioning (HVAC) technology options. This report characterizes the present commercial floorstock in terms of lighting technologies and develops cost-efficiency data for these lighting technologies. This report also characterizes the interactions between the lighting and space conditioning end uses in commercial buildings in the US In general, lighting energy reductions increase the heating and decrease the cooling requirements. The net change in a building`s energy requirements, however, depends on the building characteristics, operating conditions, and the climate. Lighting/HVAC interactions data were generated through computer simulations using the DOE-2 building energy analysis program.

  8. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 29 NU (TechAdmin Support) 5 YEAR 2014 American Indian...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 22 NN (Engineering) 23 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  13. Oregon 4-H Leaders of the Year 2009 2010

    E-Print Network [OSTI]

    Tullos, Desiree

    with another livestock club. He takes a week off from his job to help 100 youth each summer at the tri-county 4 county Extension office receives a certificate to acknowledge their outstanding contributions. Lana Drew, Yamhill County Wendy McPherson, Morrow County Kelly Makinson, Lane County Judy Thomsen, Gilliam County

  14. BFA IN STUDIO ART Area of Emphasis: Interior Design Suggested 4 Year Curriculum Internship Option

    E-Print Network [OSTI]

    Arnold, Jonathan

    BFA IN STUDIO ART Area of Emphasis: Interior Design Suggested 4 Year Curriculum Internship Option Internship 3 hours FOURTH YEAR First semester Area Hours Must Second semester Area Hours ARID 3220 /3210

  15. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 13 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  17. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01T23:59:59.000Z

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  18. OKLAHOMA 4-H ANNUAL REPORT 2008 The Four H's for 99 Years.

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA 4-H ANNUAL REPORT · 2008 The Four H's for 99 Years. HEAD. HEART. HANDS. HEALTH. #12;Question: I'd like to plan now to leave a gift to the Oklahoma 4-H Program upon my passing. What do I need(suchasafarm,residence,vacationhome,orvacantlot) ·orapercentageofyouroverallestatethatwillgototheOklahoma4-HFounda- tiontobenefittheOklahoma4-HProgram. 3.YoucannametheOklahoma4

  19. Facility stabilization project, fiscal year 1998 -- Multi-year workplan (MYWP) for WBS 1.4

    SciTech Connect (OSTI)

    Floberg, W.C.

    1997-09-30T23:59:59.000Z

    The primary Facility Stabilization mission is to provide minimum safe surveillance and maintenance of facilities and deactivate facilities on the Hanford Site, to reduce risks to workers, the public and environment, transition the facilities to a low cost, long term surveillance and maintenance state, and to provide safe and secure storage of special nuclear materials, nuclear materials, and nuclear fuel. Facility Stabilization will protect the health and safety of the public and workers, protect the environment and provide beneficial use of the facilities and other resources. Work will be in accordance with the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), local, national, international and other agreements, and in compliance with all applicable Federal, state, and local laws. The stakeholders will be active participants in the decision processes including establishing priorities, and in developing a consistent set of rules, regulations, and laws. The work will be leveraged with a view of providing positive, lasting economic impact in the region. Effectiveness, efficiency, and discipline in all mission activities will enable Hanford Site to achieve its mission in a continuous and substantive manner. As the mission for Facility Stabilization has shifted from production to support of environmental restoration, each facility is making a transition to support the Site mission. The mission goals include the following: (1) Achieve deactivation of facilities for transfer to EM-40, using Plutonium Uranium Extraction (PUREX) plant deactivation as a model for future facility deactivation; (2) Manage nuclear materials in a safe and secure condition and where appropriate, in accordance with International Atomic Energy Agency (IAEA) safeguards rules; (3) Treat nuclear materials as necessary, and store onsite in long-term interim safe storage awaiting a final disposition decision by US Department of Energy; (4) Implement nuclear materials disposition directives. In the near term these are anticipated to mostly involve transferring uranium to other locations for beneficial use. Work will be in accordance with the Tri-Party Agreement, and other agreements and in compliance with all applicable Federal, state and local laws. The transition to deactivation will be accomplished through a phased approach, while maintaining the facilities in a safe and compliant configuration. In addition, Facility Stabilization will continue to maintain safe long-term storage facilities for Special Nuclear Material (SNM), Nuclear Material (NM), and Nuclear Fuel (NF). The FSP deactivation strategy aligns with the deactivate facilities mission outlined in Hanford Site SE documentation. Inherent to the FSP strategies are specific Hanford Strategic Plan success indicators such as: reduction of risks to workers, the public and environment; increasing the amount of resources recovered for other uses; reduction/elimination of inventory and materials; and reduction/elimination of costly mortgages.

  20. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJEK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 25 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native...

  1. Forecasted Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorkingEnergyGo modelP eForForAForecasted

  2. Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price.................................................................................................................................. 27 INTRODUCTION The Council prepares and periodically updates a 20-year forecast of wholesale to forecast wholesale power prices. AURORAxmp® provides the ability to inco

  3. Price forecasting for U.S. cattle feeders: which technique to apply?

    E-Print Network [OSTI]

    Hicks, Geoff Cody

    1997-01-01T23:59:59.000Z

    both feeder cattle costs and corn costs, and maximizing fed cattle prices. This research strives to evaluate the accuracy of six distinct price forecasting techniques over an eleven year period. The forecast techniques selected for this analysisare...

  4. Technology Forecasting Scenario Development

    E-Print Network [OSTI]

    Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

  5. Rainfall-River Forecasting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

  6. Taking a Look at 4.57 Billion Year Old Space Objects

    Broader source: Energy.gov [DOE]

    Researchers at the Energy Department's Lawrence Livermore National Laboratory and NASA's Johnson Space Center are investigating objects some 4.57 billion years old in order to better understand how our solar system developed.

  7. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01T23:59:59.000Z

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  8. YEAR

    National Nuclear Security Administration (NNSA)

    2012 2013 SES 2 1 -50.00% EJEK 10 9 -10.00% EN 04 27 24 -11.11% NN (Engineering) 28 24 -14.29% NQ (ProfTechAdmin) 31 29 -6.45% NU (TechAdmin Support) 4...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A7948 27069

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A7948

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A79482693

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A7948269300

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826930002

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826930002

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861119

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008748611196

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111969

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111969

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861119695

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008748611196957

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861119695789

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.

  9. Year Budget Period 1 5/1/2012 4/30/2013

    E-Print Network [OSTI]

    Kay, Mark A.

    /1/2014 ­ 4/30/2015 Year Budget Period 4 5/1/2015 date of the budget period funded by the FY15 funds � The Final Financial of the end date of the last budget period funded by the FY14 funds � Departments

  10. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 15 SEPTEMBER 28, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  11. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 27 OCTOBER 10, 2013

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  12. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 16 AUGUST 29, 2013

    E-Print Network [OSTI]

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  13. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 3 AUGUST 16, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  14. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 12 OCTOBER 25, 2012

    E-Print Network [OSTI]

    Gray, William

    to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined This is the fourth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for individual event parameters such as named storms and hurricanes. We issue forecasts for ACE using three

  15. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 28 OCTOBER 11, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  16. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 13 SEPTEMBER 26, 2013

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  17. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 18 AUGUST 31, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  18. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 11 OCTOBER 24, 2013

    E-Print Network [OSTI]

    Gray, William

    to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for individual event parameters such as named storms and hurricanes. We issue forecasts for ACE using three

  19. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 2 AUGUST 15, 2013

    E-Print Network [OSTI]

    Gray, William

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  20. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 31 SEPTEMBER 13, 2012

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  1. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 17 AUGUST 30, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  2. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 29 OCTOBER 12, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  3. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 11 SEPTEMBER 24, 2014

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the sixth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  4. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 30 SEPTEMBER 12, 2013

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  5. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 31 SEPTEMBER 13, 2011

    E-Print Network [OSTI]

    Birner, Thomas

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the third year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  6. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 28 SEPTEMBER 10, 2014

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the sixth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  7. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 13 OCTOBER 26, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  8. Probabilistic manpower forecasting

    E-Print Network [OSTI]

    Koonce, James Fitzhugh

    1966-01-01T23:59:59.000Z

    PROBABILISTIC MANPOWER FORECASTING A Thesis JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1966 Major Subject...: Computer Science and Statistics PROBABILISTIC MANPOWER FORECASTING A Thesis By JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas A@M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May...

  9. 300 Area D4 Project Fiscal Year 2009 Building Completion Report

    SciTech Connect (OSTI)

    B. J. Skwarek

    2010-01-27T23:59:59.000Z

    This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.

  10. UPF Forecast | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium Processing Facility UPF Forecast UPF Forecast UPF Procurement provides the following forecast of subcontracting opportunities. Keep in mind that these requirements may be...

  11. Long Term Forecast ofLong Term Forecast of TsunamisTsunamis

    E-Print Network [OSTI]

    : ImproveImprove NOAANOAA''ss understandingunderstanding and forecast capabilityand forecast capability inin

  12. 300 Area D4 Project Fiscal Year 2008 Building Completion Report

    SciTech Connect (OSTI)

    R. A. Westberg

    2009-01-15T23:59:59.000Z

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of eighteen buildings in the 300 Area of the Hanford Site that were demolished in Fiscal Year 2008. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  13. An econometric analysis and forecasting of Seoul office market

    E-Print Network [OSTI]

    Kim, Kyungmin

    2011-01-01T23:59:59.000Z

    This study examines and forecasts the Seoul office market, which is going to face a big supply in the next few years. After reviewing several previous studies on the Dynamic model and the Seoul Office market, this thesis ...

  14. 5-9035-01-P3 4-YEAR PAVEMENT MANAGEMENT PLAN

    E-Print Network [OSTI]

    Texas at Austin, University of

    5-9035-01-P3 4-YEAR PAVEMENT MANAGEMENT PLAN: ANALYSIS REPORT Authors: Zhanmin Zhang Michael R to Provide Information for Pavement Maintenance Decision-Making OCTOBER 2009 Performing Organization: Center and the Federal Highway Administration. #12;#12;iii Table of Contents Section 1. Pavement Management Plan

  15. Statistical analysis of 4-year observations of aerosol sizes in a semi-rural continental environment

    E-Print Network [OSTI]

    Lee, Shan-Hu

    Statistical analysis of 4-year observations of aerosol sizes in a semi-rural continental. Introduction Formation of new aerosol particles via gas-to-particle conver- sion is an important process, which to understanding how new particle formation (NPF) processes lead to formation of cloud condensation nuclei (CCN

  16. On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 4

    E-Print Network [OSTI]

    Denver, University of

    of the internal combustion engine and causes of pollutants in the exhaust see Heywood2 . Properly operating modern for water and any excess oxygen not involved in combustion. Mass emissions per mass or volume of fuel canOn-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 4 Sajal S. Pokharel, Gary

  17. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  18. Steam System Forecasting and Management

    E-Print Network [OSTI]

    Mongrue, D. M.; Wittke, D. O.

    1982-01-01T23:59:59.000Z

    '. This and the complex and integrated nature of the plants energy balance makes steam system forecasting and management essential for optimum use of the plant's energy. This paper discusses the method used by Union carbide to accomplish effective forecasting...

  19. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  20. Improving Inventory Control Using Forecasting

    E-Print Network [OSTI]

    Balandran, Juan

    2005-12-16T23:59:59.000Z

    EMGT 835 FIELD PROJECT: Improving Inventory Control Using Forecasting By Juan Mario Balandran jmbg@hotmail.com Master of Science The University of Kansas Fall Semester, 2005 An EMGT Field Project report submitted...............................................................................................................................................10 Current Inventory Forecast Process ...........................................................................................10 Development of Alternative Forecast Process...

  1. timber quality Modelling and forecasting

    E-Print Network [OSTI]

    Forest and timber quality in Europe Modelling and forecasting yield and quality in Europe Forest and timber quality in Europe Modelling and forecasting yield and quality in Europe M E F Y Q U E #12;Valuing and the UK ­ are working closely together to develop a model to help forecast timber growth, yield, quality

  2. I strongly urge that the forecasts recognize the high oil prices and gas prices experienced in 2008 and not treat them as an unusual occurrence in the next 20 years. In the long term with cap and

    E-Print Network [OSTI]

    I strongly urge that the forecasts recognize the high oil prices and gas prices experienced in 2008 and the development of carbon capture and storage applied to new coal fired generating stations, gas prices will only go up. Gas from the Rockies will move east as quickly as transport is available. To the extent

  3. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary and interpretation of information from National Weather Service watches and warnings by10 decision makers such an outlier to the regional severe weather climatology. An analysis of the synoptic and13 mesoscale

  4. Fuel Price Forecasts INTRODUCTION

    E-Print Network [OSTI]

    Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price because oil, coal, and natural gas are potential fuels for electricity generation. Natural gas

  5. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    Quantifying PV power output variability,” Solar Energy, vol.each solar sen at node i, P(t) the total power output of theSolar Forecasting Historically, traditional power generation technologies such as fossil and nu- clear power which were designed to run in stable output

  6. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  7. Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick James

    2013-01-01T23:59:59.000Z

    Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Ed.. Editor: Jan

  8. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  9. J2.6 A SPATIAL DATA MINING APPROACH FOR VERIFICATION AND UNDERSTANDING OF ENSEMBLE PRECIPITATION FORECASTING

    E-Print Network [OSTI]

    Gruenwald, Le

    FORECASTING Xuechao Yu* 1,2 and Ming Xue 2,3 1 NOAA/NWS/WDTB Cooperative Institute for Mesoscale is placed on meso- scale ensemble forecasting in recent years [e.g., the Storm and Mesoscale Ensemble complicated for mesoscale quantitative precipitation forecast (QPF), since QPF is a discontinuous field. Em

  10. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  11. Forecasting oilfield economic performance

    SciTech Connect (OSTI)

    Bradley, M.E. (Univ. of Chicago, IL (United States)); Wood, A.R.O. (BP Exploration, Anchorage, AK (United States))

    1994-11-01T23:59:59.000Z

    This paper presents a general method for forecasting oilfield economic performance that integrates cost data with operational, reservoir, and financial information. Practices are developed for determining economic limits for an oil field and its components. The economic limits of marginal wells and the role of underground competition receive special attention. Also examined is the influence of oil prices on operating costs. Examples illustrate application of these concepts. Categorization of costs for historical tracking and projections is recommended.

  12. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01T23:59:59.000Z

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  13. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  14. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

  15. Stretched Exponential Decline Model as a Probabilistic and Deterministic Tool for Production Forecasting and Reserve Estimation in Oil and Gas Shales

    E-Print Network [OSTI]

    Akbarnejad Nesheli, Babak

    2012-07-16T23:59:59.000Z

    stabilized production forecast than traditional DCA models and in this work it is shown that it produces unchanging EUR forecasts after only two-three years of production data are available in selected reservoirs, notably the Barnett Shale...

  16. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2003-12-01T23:59:59.000Z

    This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

  17. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  18. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  19. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  20. NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    · NATIONAL AND GLOBAL FORECASTS · WEST VIRGINIA PROFILES AND FORECASTS · ENERGY · HEALTHCARE Research West Virginia University College of Business and Economics P.O. Box 6527, Morgantown, WV 26506 EXPERT OPINION PROVIDED BY Keith Burdette Cabinet Secretary West Virginia Department of Commerce

  1. Conservation The Northwest ForecastThe Northwest Forecast

    E-Print Network [OSTI]

    & Resources Creating Mr. Toad's Wild Ride for the PNW's Energy Efficiency InCreating Mr. Toad's Wild RideNorthwest Power and Conservation Council The Northwest ForecastThe Northwest Forecast ­­ Energy EfficiencyEnergy Efficiency Dominates ResourceDominates Resource DevelopmentDevelopment Tom EckmanTom Eckman

  2. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06T23:59:59.000Z

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  3. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  4. Mathematical Forecasting Donald I. Good

    E-Print Network [OSTI]

    Boyer, Robert Stephen

    Mathematical Forecasting Donald I. Good Technical Report 47 September 1989 Computational Logic Inc the physical behavior of computer programs can reduce these risks for software engineering in the same way that it does for aerospace and other fields of engineering. Present forecasting capabilities for computer

  5. Regional-seasonal weather forecasting

    SciTech Connect (OSTI)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01T23:59:59.000Z

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  6. 2010-11 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems

    E-Print Network [OSTI]

    Zhang, Junshan

    2010-11 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems NOTE 1: The program in Electrical Engineering requires a total of 15 hours of technical

  7. 2011-12 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems

    E-Print Network [OSTI]

    Zhang, Junshan

    2011-12 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems NOTE 1: The program in Electrical Engineering requires a total of 15 hours of technical

  8. INTERACTIVE READING EXPERIENCES OF AFRICAN AMERICAN FATHERS AND SOCIAL FATHERS AND THEIR 4-AND 5-YEAR-OLD CHILDREN

    E-Print Network [OSTI]

    JACKSON, CLARISSA RENEE'

    2012-08-31T23:59:59.000Z

    The purpose of this mixed-methods study was to investigate the patterns of book choice and interaction during book reading sessions of six African American fathers and social fathers and their 4- to 5-year-old children. ...

  9. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  10. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 1 SEPTEMBER 14, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all are not developing any new tropical cyclones after Earl and Fiona. We expect Earl to generate large amounts of ACE This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting

  11. Short Term Hourly Load Forecasting Using Abductive Networks R. E. Abdel-Aal

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi for forecasting next-day hourly loads have been developed. Evaluated on data for the 6th year, the models give. INTRODUCTION Accurate load forecasting is a key requirement for the planning and economic and secure operation

  12. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  13. NEW VIEW of the young earth covered in oceans of liquid water as early as 4.4 billion years ago

    E-Print Network [OSTI]

    Carlson, Anders

    sun. Averaging 75 times the speed of sound, each impactor scorched the surface--shattering, meltingNEW VIEW of the young earth covered in oceans of liquid water as early as 4.4 billion years ago into a crust, before continents could form, be- fore the dense, steamy atmosphere could pool as liquid water

  14. BS in Environmental Science: Typical Program of Study1 4 year (2011 Catalog) Fall Quarter Winter Quarter Spring Quarter

    E-Print Network [OSTI]

    Carter, John

    BS in Environmental Science: Typical Program of Study1 ­ 4 year (2011 Catalog) Fall Quarter Sciences (5) Core (5)4 ENSC 100Introduction to Environmental Science (2)5 Core (5) Sophomore BIOL) 1 In order to earn a Bachelor of Science in Environmental Science, a student must complete 180

  15. FEBRUARY 1999 119O ' C O N N O R E T A L . Forecast Verification for Eta Model Winds Using Lake Erie

    E-Print Network [OSTI]

    FEBRUARY 1999 119O ' C O N N O R E T A L . Forecast Verification for Eta Model Winds Using Lake. The in- crease in computer power in recent years and advances in numerical mesoscale models of both ocean Forecasting System (GLCFS) can be used to validate wind forecasts for the Great Lakes using observed

  16. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 4: Appendix IV

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  17. 300 Area D4 Project Fiscal Year 2010 Building Completion Report

    SciTech Connect (OSTI)

    Skwarek, B. J.

    2011-01-27T23:59:59.000Z

    This report summarizes the deactiviation, decontamination, decommissioning, and demolition activities of facilities in the 300 Area of the Hanford Site in fiscal year 2010.

  18. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project

  19. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

  20. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01T23:59:59.000Z

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  1. Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting

    E-Print Network [OSTI]

    Goto, Susumu

    2007-01-01T23:59:59.000Z

    This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

  2. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  3. CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE -APRIL 2014

    E-Print Network [OSTI]

    de Lijser, Peter

    CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE - APRIL 2014 Anil Puri, Ph.D. -- Director-year increase in the debt ceiling -- both of which proceeded without the usual drama. Second, the private sector, corporate coffers are flush with cash, and low US energy prices have dramatically improved the global

  4. Error growth in poor ECMWF forecasts over the contiguous United States

    E-Print Network [OSTI]

    Modlin, Norman Ray

    1993-01-01T23:59:59.000Z

    are found to have the majority of RMS growth on day I while poor forecasts do not experience rapid error growth until days 3 and 4. For poor forecasts, the leading EOFs reveal a wave pattern down stream of the Rocky Mountains. This pattern evolves...

  5. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01T23:59:59.000Z

    This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.

  6. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) Target 1Annual Waste Forecast and Funding

  7. 300 Area D4 Project Fiscal Year 2007 Building Completion Report

    SciTech Connect (OSTI)

    R. A. Westberg

    2009-01-15T23:59:59.000Z

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  8. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25T23:59:59.000Z

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is ³delayed² and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  9. 2009-10 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems

    E-Print Network [OSTI]

    Zhang, Junshan

    2009-10 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems NOTE 1: The program in Electrical Engineering requires a total of 15 hours of technical (N), 498 (N) Elec EEE 333 [prereq EEE101,120] ........... Power, 498 (N) Solar Energy Note: Prereq

  10. 2007-2008 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems

    E-Print Network [OSTI]

    Zhang, Junshan

    2007-2008 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems NOTE 1: The program in Electrical Engineering requires a total of 15 hours of technical Energy Note: Prereq for Computer Engineering: EEE203 Computer Engineering EEE404 (S), CSE420 (F, S

  11. 2008-09 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems

    E-Print Network [OSTI]

    Zhang, Junshan

    2008-09 Electrical Engineering BSE/EPES 4-year Flow Chart Concentration in Electrical Power and Energy Systems NOTE 1: The program in Electrical Engineering requires a total of 15 hours of technical (N), 498 (N) Elec EEE 333 [prereq EEE101,120] ........... Power, 498 (N) Solar Energy Note: Prereq

  12. High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics

    E-Print Network [OSTI]

    Baum, Bryan A.

    High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics) ABSTRACT This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging

  13. Forecasting consumer products using prediction markets

    E-Print Network [OSTI]

    Trepte, Kai

    2009-01-01T23:59:59.000Z

    Prediction Markets hold the promise of improving the forecasting process. Research has shown that Prediction Markets can develop more accurate forecasts than polls or experts. Our research concentrated on analyzing Prediction ...

  14. Massachusetts state airport system plan forecasts.

    E-Print Network [OSTI]

    Mathaisel, Dennis F. X.

    This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

  15. Management Forecast Quality and Capital Investment Decisions

    E-Print Network [OSTI]

    Goodman, Theodore H.

    Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

  16. Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations

    E-Print Network [OSTI]

    Kemner, Ken

    forecasting methods and better integration of advanced wind power forecasts into system and plant operations and wind power plants) ­ Review and assess current practices Propose and test new and improved approachesWind Power Forecasting andWind Power Forecasting and Electricity Market Operations Audun Botterud

  17. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  18. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  19. 300 Area D4 Project 3rd Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect (OSTI)

    D. S. Smith

    2006-09-25T23:59:59.000Z

    This report documents the deactivation, decontamination, decommissioning, and demolition of five buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  20. GenForecast(26yr)(avg).PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLCAIP Historical & Forecast Generation at Plant Total Range of Hydrology 0 2,000,000,000 4,000,000,000 6,000,000,000 8,000,000,000 10,000,000,000 12,000,000,000 1 9 7 0 1 9 7 2 1...

  1. THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD

    E-Print Network [OSTI]

    energy-using devices in the average U.S. household that used over 4,700 kWh of electricity, natural gas-using devices to energy price, household income, and the cost of these devices. This analysis findsTHE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD ENERGY SERVICES by Steven Groves BASc

  2. air pollution forecast: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air pollution forecast First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ENVIRONMENTAL INFORMATION SYSTEM...

  3. 300 Area D4 Project 1st Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect (OSTI)

    David S. Smith

    2006-04-20T23:59:59.000Z

    This report documents the deactivation, decontamination, decommissioning, and demolition of the MO-052, 3225, 334, 334A, and 334-TF Buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  4. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  5. Calculator simplifies field production forecasting

    SciTech Connect (OSTI)

    Bixler, B.

    1982-05-01T23:59:59.000Z

    A method of forecasting future field production from an assumed average well production schedule and drilling schedule has been programmed for the HP-41C hand-held programmable computer. No longer must tedious row summations be made by hand for staggered well production schedules. Details of the program are provided.

  6. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations – the Northern Study Area.

    SciTech Connect (OSTI)

    Finley, Cathy [WindLogics

    2014-04-30T23:59:59.000Z

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times. A comprehensive analysis of wind energy forecast errors for the various model-based power forecasts was presented for a suite of wind energy ramp definitions. The results compiled over the year-long study period showed that the power forecasts based on the research models (ESRL_RAP, HRRR) more accurately predict wind energy ramp events than the current operational forecast models, both at the system aggregate level and at the local wind plant level. At the system level, the ESRL_RAP-based forecasts most accurately predict both the total number of ramp events and the occurrence of the events themselves, but the HRRR-based forecasts more accurately predict the ramp rate. At the individual site level, the HRRR-based forecasts most accurately predicted the actual ramp occurrence, the total number of ramps and the ramp rates (40-60% improvement in ramp rates over the coarser resolution forecast

  7. Microsoft PowerPoint - Lubin.ARM_Year4_Talk.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G. VanIn thisMagnitude

  8. EM Contractors' Donations Support 4-Year Engineering Degree at USC Aiken

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office ofEnergyFinalEnergy Boosts Efforts to Help Japan| Department of

  9. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  10. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    transport and  numerical weather modeling.   J.  Applied cross correlations.    Weather and Forecasting, 8:4, 401?of radiation for numerical weather prediction and climate 

  11. Environmental support FY 1995 multi-year program plan/fiscal year work plan WBS 1.5.2/7.4.11

    SciTech Connect (OSTI)

    Moore, D.A.

    1994-09-01T23:59:59.000Z

    The multi-Year Program Plan (MYPP) is the programmatic planning baseline document for technical, schedule, and cost data. The MYPP contains data by which all work is managed, performed and controlled. The integrated planning process, defined by RL, is redicted on establishment of detailed data in the MYPP. The MYPP includes detailed information for the data elements including Level II critical path schedules, cost estimate detail, and updated technical data to be done annually. There will be baseline execution year and out year approval with work authorization for execution. The MYPP will concentrate on definition of the scope, schedule, cost and program element level critical path schedules that show the relationship of planned activities. The Fiscal Year Work Plan (FYWP) is prepared for each program to provide the basis for authorizing fiscal year work. The MYPP/FYWP will be structured into three main areas: (1) Program Overview; (2) Program Baselines; (3) Fiscal Year Work Plan.

  12. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers use

  13. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09T23:59:59.000Z

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  14. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to global

  15. Make Model SPECS ACURA ILX (Model Year 2013) 2.0L 4, auto stk [P] ULEV II / Bin 5 45

    E-Print Network [OSTI]

    II / Bin 5 42 BMW 328i (Model Year 2013) 2.0L 4, auto stk [P] Bin 5 / ULEV II 42 BMW 328i (Model Year 2013) 2.0L 4, manual [P] ULEV II / Bin 5 43 BMW 328i XDRIVE (Model Year 2013) 2.0L 4, auto stk Awd [P] ULEV II / Bin 5 41 BMW 335i (Model Year 2013) 3.0L 6, auto stk [P] ULEV II / Bin 5 41 BMW 528i (Model

  16. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    collects data on a variety of physical processes that impact the wind forecasts used by wind farms, system operators and other industry professionals. By having access to...

  17. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    collects data on a variety of physical processes that impact the wind forecasts used by wind farms, system operators and other industry professionals. By having access to...

  18. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Forecasting Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American...

  19. Transition projects FY 1995 Multi-Year Program Plan (MYPP)/Fiscal Year Work Plan (FYWP) WBS 1.3.1 and 7.1. Volume 4

    SciTech Connect (OSTI)

    Cartmell, D.B.

    1994-09-01T23:59:59.000Z

    This reference contains information about the deactivation of the Purex Process Plant located on the Hanford Reservation. This document consists of a tabular schedule of events covering the next three years.

  20. U-M Construction Forecast December 15, 2011 U-M Construction Forecast

    E-Print Network [OSTI]

    Kamat, Vineet R.

    U-M Construction Forecast December 15, 2011 U-M Construction Forecast Spring ­ Fall 2012 As of December 15, 2011 Prepared by AEC Preliminary & Advisory #12;U-M Construction Forecast December 15, 2011 Overview · Campus by campus · Snapshot in time ­ Not all projects · Construction coordination efforts

  1. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01T23:59:59.000Z

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  2. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    has developed longterm forecasts of transportation energy demand as well as projected ranges of transportation fuel and crude oil import requirements. The transportation energy demand forecasts makeCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY

  3. Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting

    E-Print Network [OSTI]

    Plale, Beth

    Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting Nithya N. Vijayakumar {rramachandran, xli}@itsc.uah.edu Abstract-- Mesoscale meteorology forecasting as a data driven application Triggers, Data Mining, Stream Processing, Meteorology Forecasting I. INTRODUCTION Mesoscale meteorologists

  4. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisiaFlorida:Forecast Energy Jump to:

  5. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Office of Environmental Management (EM)

    The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

  6. Alternative methods for forecasting GDP Dominique Gugan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    analysis. Better forecast performance for macroeconomic variables will lead to Paris School of Economics the speed of computers that can develop search algorithms from appropriate selection criteria, Devroye. 1 Introduction Forecasting macroeconomic variables such as GDP and inflation play an important role

  7. A NEW APPROACH FOR EVALUATING ECONOMIC FORECASTS

    E-Print Network [OSTI]

    Vertes, Akos

    APPROACH FOR EVALUATING ECONOMIC FORECASTS Tara M. Sinclair , H.O. Stekler, and Warren Carnow Department of Economics The George Washington University Monroe Hall #340 2115 G Street NW Washington, DC 20052 JEL Codes, Mahalanobis Distance Abstract This paper presents a new approach to evaluating multiple economic forecasts

  8. 2013 Midyear Economic Forecast Sponsorship Opportunity

    E-Print Network [OSTI]

    de Lijser, Peter

    2013 Midyear Economic Forecast Sponsorship Opportunity Thursday, April 18, 2013, ­ Hyatt Regency Irvine 11:30 a.m. ­ 1:30 p.m. Dr. Anil Puri presents his annual Midyear Economic Forecast addressing and Economics at California State University, Fullerton, the largest accredited business school in California

  9. Dynamic Algorithm for Space Weather Forecasting System

    E-Print Network [OSTI]

    Fischer, Luke D.

    2011-08-08T23:59:59.000Z

    /effective forecasts, and we have performed preliminary benchmarks on this algorithm. The preliminary benchmarks yield surprisingly effective results thus far?forecasts have been made 8-16 hours into the future with significant magnitude and trend accuracy, which is a...

  10. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  11. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  12. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-02-01T23:59:59.000Z

    This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  13. Forecasting project progress and early warning of project overruns with probabilistic methods

    E-Print Network [OSTI]

    Kim, Byung Cheol

    2008-10-10T23:59:59.000Z

    , the critical path method (CPM) and earned value management (EVM) are deterministic and fail to account for the inherent uncertainty in forecasting and project performance. The objective of this dissertation is to improve the predictive capabilities....4.1 Earned Value Management ................................................... 14 2.4.2 CPM ...................................................................................... 20 2.4.3 Monte Carlo Simulation...

  14. Hybrid methodology for hourly global radiation forecasting in Mediterranean area

    E-Print Network [OSTI]

    Voyant, Cyril; Paoli, Christophe; Nivet, Marie Laure

    2012-01-01T23:59:59.000Z

    The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) model. While ANN by its non-linear nature is effective to predict cloudy days, ARMA techniques are more dedicated to sunny days without cloud occurrences. Thus, three hybrids models are suggested: the first proposes simply to use ARMA for 6 months in spring and summer and to use an optimized ANN for the other part of the year; the second model is equivalent to the first but with a seasonal learning; the last model depends on the error occurred the previous hour. These models were used to forecast the hourly global radiation for five places in Mediterranean area. The forecasting performance was compared among several models: the 3 above mentioned models, the best ANN and ARMA for each location. In t...

  15. P9.137 The SPC Storm-Scale Ensemble of Opportunity: Overview and Results from the 2012 Hazardous Weather Testbed Spring Forecasting Experiment

    E-Print Network [OSTI]

    P9.137 The SPC Storm-Scale Ensemble of Opportunity: Overview and Results from the 2012 Hazardous) available to forecasters at the Storm Prediction Center (SPC) has been increasing over the past few years to examine and scrutinize the data in creating a forecast has not changed. Thus, the concept of the SPC Storm

  16. Intra-day variability observations of S5 0716+714 over 4.5 years at 4.8 GHz

    E-Print Network [OSTI]

    Liu, X; Marchili, N; Liu, B -R; Liu, J; Krichbaum, T P; Fuhrmann, L; Zensus, J A

    2012-01-01T23:59:59.000Z

    We aim to search for evidence of annual modulation in the time scales of the BL Lac object S5 0716+714. The intra-day variability (IDV) observations were carried out monthly from 2005 to 2009, with the Urumqi 25m radio telescope at 4.8 GHz. The source has shown prominent IDV as well as long-term flux variations. The IDV time scale does show evidence in favor of an annual modulation, suggesting that the IDV of 0716+714 is dominated by interstellar scintillation. The source underwent a strong outburst phase between mid-2008 and mid-2009; a second intense flare was observed in late 2009, but no correlation between the total flux density and the IDV time scale is found, implying that the flaring state of the source does not have serious implications for the general characteristics of its intra-day variability. However, we find that the inner-jet position angle is changing throughout the years, which could result in an annual modulation noise in the anisotropic ISS model fit. There is also an indication that the l...

  17. A Distributed Modeling System for Short-Term to Seasonal Ensemble Streamflow Forecasting in Snowmelt Dominated Basins

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Gill, Muhammad K.; Coleman, Andre M.; Prasad, Rajiv; Vail, Lance W.

    2007-12-01T23:59:59.000Z

    This paper describes a distributed modeling system for short-term to seasonal water supply forecasts with the ability to utilize remotely-sensed snow cover products and real-time streamflow measurements. Spatial variability in basin characteristics and meteorology is represented using a raster-based computational grid. Canopy interception, snow accumulation and melt, and simplified soil water movement are simulated in each computational unit. The model is run at a daily time step with surface runoff and subsurface flow aggregated at the basin scale. This approach allows the model to be updated with spatial snow cover and measured streamflow using an Ensemble Kalman-based data assimilation strategy that accounts for uncertainty in weather forecasts, model parameters, and observations used for updating. Model inflow forecasts for the Dworshak Reservoir in northern Idaho are compared to observations and to April-July volumetric forecasts issued by the Natural Resource Conservation Service (NRCS) for Water Years 2000 – 2006. October 1 volumetric forecasts are superior to those issued by the NRCS, while March 1 forecasts are comparable. The ensemble spread brackets the observed April-July volumetric inflows in all years. Short-term (one and three day) forecasts also show excellent agreement with observations.

  18. Fact #871: May 4, 2015 Most Manufacturers Have Positive CAFE Credit Balances at the End of Model Year 2013 – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Most Manufacturers Have Positive CAFE Credit Balances at the End of Model Year 2013

  19. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    procurement process at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather

  20. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    and water pumping sectors. Mark Ciminelli forecasted energy for transportation, communication and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast

  1. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  2. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  3. Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak

    E-Print Network [OSTI]

    Islam, M. Saif

    Page 1 Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey

  4. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

  5. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)

    Reports and Publications (EIA)

    1998-01-01T23:59:59.000Z

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  6. Economic transition FY 1995 Multi-Year Program Plan (MYPP)/Fiscal Year Work Plan (FYWP) WBS 7.4.9

    SciTech Connect (OSTI)

    Schwenk, R.M.

    1994-09-01T23:59:59.000Z

    The mission of the WHC Economic Transition Center is to support Hanford`s cleanup mission and to leverage the assets of that mission to promote diversification and long-term sustainability of the regional economy and workforce. Conducting an economic transition program is imperative at sites such as Hanford, which are faced with transition from a defense production mission to a massive cleanup mission, followed by rampdown and site closure. At issue are the human and physical resources of the Site and the final disposition of those resources. Without an effective economic transition program, the federal government will have invested billions of dollars to achieve environmental regulatory compliance without generating any greater return on investment. With an effective economic transition program, the potential exists to redeploy the highly skilled, well-trained, and educated workforce developed and utilized during the Site`s cleanup mission and find productive uses for land, facilities, and equipment. The Economic Transition Center has been divided into the following business areas: outsourcing; spinoffs; technology acquisition; technology transfer; conversion; and cross-cutting partnerships. A work package has been developed for each of these business areas in this Fiscal Year Work Plan.

  7. An adaptive neural network approach to one-week ahead load forecasting

    SciTech Connect (OSTI)

    Peng, T.M. (Pacific Gas and Electric Co., San Francisco, CA (United States)); Hubele, N.F.; Karady, G.G. (Arizona State Univ., Tempe, AZ (United States))

    1993-08-01T23:59:59.000Z

    A new neural network approach is applied to one-week ahead load forecasting. This approach uses a linear adaptive neuron or adaptive linear combiner called Adaline.'' An energy spectrum is used to analyze the periodic components in a load sequence. The load sequence mainly consists of three components: base load component, and low and high frequency load components. Each load component has a unique frequency range. Load decomposition is made for the load sequence using digital filters with different passband frequencies. After load decomposition, each load component can be forecasted by an Adaline. Each Adaline has an input sequence, an output sequence, and a desired response-signal sequence. It also has a set of adjustable parameters called the weight vector. In load forecasting, the weight vector is designed to make the output sequence, the forecasted load, follow the actual load sequence; it also has a minimized Least Mean Square error. This approach is useful in forecasting unit scheduling commitments. Mean absolute percentage errors of less than 3.4 percent are derived from five months of utility data, thus demonstrating the high degree of accuracy that can be obtained without dependence on weather forecasts.

  8. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    supervised data preparation. Steven Mac and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Cynthia Rogers generation, conservation, energy efficiency, climate zone, investorowned, public, utilities, additional

  9. Wind Speed Forecasting for Power System Operation 

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  10. STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

  11. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  12. Potential Economic Value of Seasonal Hurricane Forecasts

    E-Print Network [OSTI]

    Emanuel, Kerry Andrew

    This paper explores the potential utility of seasonal Atlantic hurricane forecasts to a hypothetical property insurance firm whose insured properties are broadly distributed along the U.S. Gulf and East Coasts. Using a ...

  13. Text-Alternative Version LED Lighting Forecast

    Broader source: Energy.gov [DOE]

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  14. Essays in International Macroeconomics and Forecasting

    E-Print Network [OSTI]

    Bejarano Rojas, Jesus Antonio

    2012-10-19T23:59:59.000Z

    This dissertation contains three essays in international macroeconomics and financial time series forecasting. In the first essay, I show, numerically, that a two-country New-Keynesian Sticky Prices model, driven by monetary and productivity shocks...

  15. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01T23:59:59.000Z

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  16. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    gas price forecasts with contemporaneous natural gas pricesreference-case natural gas price forecast, and that have notof AEO 2009 Natural Gas Price Forecast to NYMEX Futures

  17. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Gas Price Forecast W ith natural gas prices significantlyof AEO 2006 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEO

  18. Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-01-01T23:59:59.000Z

    to accurately forecast natural gas prices. Many policyseek alternative methods to forecast natural gas prices. Thethe accuracy of forecasts for natural gas prices as reported

  19. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    gas price forecasts with contemporaneous natural gas pricesreference-case natural gas price forecast, and that have notof AEO 2008 Natural Gas Price Forecast to NYMEX Futures

  20. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    the base-case natural gas price forecast, but to alsogas price forecasts with contemporaneous natural gas pricesof AEO 2010 Natural Gas Price Forecast to NYMEX Futures

  1. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Natural Gas Price Forecast Although natural gas prices areof AEO 2007 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEO

  2. Solar Power Forecasting at UC San Diego Jan Kleissl, Dept of Mechanical & Aerospace Engineering, UCSD

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    show 2 cloud layers. Vaisala Fig. 4: Observed solar power output (black line) and simulation (Fig. 4). Tier 3: Power output forecast As cloud related solar radiation reductions are observed algorithm to determine actual expected solar power output at each PV array over the hour ahead. #12;

  3. Bivariate Splines for Hurricane Path Forecasting Bree Ettinger and Ming-Jun Lai

    E-Print Network [OSTI]

    Lai, Ming-Jun

    Bivariate Splines for Hurricane Path Forecasting Bree Ettinger and Ming-Jun Lai 1 Introduction Every year, hurricanes cause a lot of damage, especially, when they hit cities along the coast line. A notorious example is Hurricane Katrina in 2005 which hit New Orleans and damaged the city significantly

  4. Forecasting of preprocessed daily solar radiation time series using neural networks

    E-Print Network [OSTI]

    Boyer, Edmond

    Forecasting of preprocessed daily solar radiation time series using neural networks Christophe prediction of global solar radiation on a horizontal surface. First results are promising with nRMSE ~ 21 t or at day d and year y d H0 Extraterrestrial solar radiation coefficient for day d [MJ/m²] xt, xd,y Time

  5. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01T23:59:59.000Z

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  6. Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration celebrates big windy milestone and researchers SLAC National Accelerator Laboratory study the surfaces of 2,500 year old Greek pottery -- all in this week's Geek-Up.

  7. A comparative study of teacher playground behavior and the levels of play in 4 and 5 year-old children

    E-Print Network [OSTI]

    Viruru, Radhika

    1990-01-01T23:59:59.000Z

    A COMPARATIVE STUDY OF TEACHER PLAYGROUND BEHAVIOR AND THE LEVELS OF PLAY IN FOUR AND FIVE YEAR-OLD CHILDREN A Thesis by Approved as to style and content by: Do glas C. Godwin ( Chair of Committee ) David G. Armstron ( Member ) Walter F.... Stenning ( Member ) William H. Peters ( Head of Department ) May 1990 A Comparative Study of Teacher Playground Behavior and the Levels of Play in Four and Five Year-Old Children. (May 1990) Radhika Viruru, BA. (Hons. ), Banaras Hindu University...

  8. HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL...

    National Nuclear Security Administration (NNSA)

    HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST CATEGORY Total Procurement Total SB Small Disad. Bus Woman-Owned SB Hub-Zone SB...

  9. Oak Ridge National Laboratory [ORNL] Review, Vol. 25, Nos. 3 and 4, 1992 [The First Fifty Years

    DOE R&D Accomplishments [OSTI]

    Krause, C.(ed.)

    1992-00-00T23:59:59.000Z

    In observation of the 50th anniversary of Oak Ridge National Laboratory, this special double issue of the Review contains a history of the Laboratory, complete with photographs, drawings, and short accompanying articles. Table of contents include: Wartime Laboratory; High-flux Years; Accelerating Projects; Olympian Feats; Balancing Act; Responding to Social Needs; Energy Technologies; Diversity and Sharing; Global Outreach; Epilogue

  10. CONCLUSIONS AND RECOMMENDATIONS This report summarizes the findings of a four-year research effort involving more than 4,000

    E-Print Network [OSTI]

    -year research effort involving more than 4,000 wind turbines, and aimed at better understanding bird mortality at the world's largest wind farm, the Altamont Pass Wind Resource Area. Yet, as with most research efforts, we finished with many questions remaining unanswered about the factors associated with fatalities at wind

  11. What does it take to earn a BS degree in Electrical Engineering? A BS degree in Electrical Engineering is earned through a 4-year program involving a fundamental

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    What does it take to earn a BS degree in Electrical Engineering? A BS degree in Electrical Engineering is earned through a 4-year program involving a fundamental understanding of electrical and electronic circuits and systems. Electrical engineers get to work with microscopic circuit components

  12. Request to be registered for Thompson School Courses Request form for 4 year students to request to be registered for Thompson School courses. Please read and fill

    E-Print Network [OSTI]

    New Hampshire, University of

    Request to be registered for Thompson School Courses Request form for 4 year students to request to be registered for Thompson School courses. Please read and fill out this form in its entirety and sign available in the course. *Make sure you request a section that is not restricted to Thompson School students

  13. Request to be registered for Thompson School Courses Request form for 4-year students to request to be registered for Thompson School courses. Please read and fill

    E-Print Network [OSTI]

    Pohl, Karsten

    Request to be registered for Thompson School Courses Request form for 4-year students to request to be registered for Thompson School courses. Please read and fill out this form in its entirety and sign available in the course. *Make sure you request a section that is not restricted to Thompson School students

  14. Andreja Sarlah Research interests I have been involved in physical research for 4 years now. In that time I have been work-

    E-Print Network [OSTI]

    Sarlah, Andreja

    . In that time I have been work- ing in the field of liquid crystals. My main research interest has been. This is what in my opinion makes the research work interesting and what gives the assuranceAndreja Sarlah ­ Research interests I have been involved in physical research for 4 years now

  15. Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast Role of the Economic Forecast..................................................................................................................................... 2 Economic Growth Assumptions

  16. Viability, Development, and Reliability Assessment of Coupled Coastal Forecasting Systems

    E-Print Network [OSTI]

    Singhal, Gaurav

    2012-10-19T23:59:59.000Z

    disaster, Cook Inlet (CI) and Prince William Sound (PWS) are regions that suffer from a lack of accurate wave forecast information. This dissertation develops high- resolution integrated wave forecasting schemes for these regions in order to meet...

  17. Potential to Improve Forecasting Accuracy: Advances in Supply Chain Management

    E-Print Network [OSTI]

    Datta, Shoumen

    2008-07-31T23:59:59.000Z

    Forecasting is a necessity almost in any operation. However, the tools of forecasting are still primitive in view of the great strides made by research and the increasing abundance of data made possible by automatic ...

  18. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts

  19. The effect of multinationality on management earnings forecasts

    E-Print Network [OSTI]

    Runyan, Bruce Wayne

    2005-08-29T23:59:59.000Z

    This study examines the relationship between a firm??s degree of multinationality and its managers?? earnings forecasts. Firms with a high degree of multinationality are subject to greater uncertainty regarding earnings forecasts due...

  20. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01T23:59:59.000Z

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  1. Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1

    E-Print Network [OSTI]

    1 Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1 1 Great Lakes forecasts in operational hydrology builds a sample of possibilities for the future, of climate series from-parametric method can be extended into a new weighted parametric hydrological forecasting technique to allow

  2. A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION

    E-Print Network [OSTI]

    Boyer, Edmond

    1 A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving. The very first results show an improvement brought by this approach. 1. INTRODUCTION Solar radiation

  3. FORECASTING SOLAR RADIATION PRELIMINARY EVALUATION OF AN APPROACH

    E-Print Network [OSTI]

    Perez, Richard R.

    FORECASTING SOLAR RADIATION -- PRELIMINARY EVALUATION OF AN APPROACH BASED UPON THE NATIONAL, and undertake a preliminary evaluation of, a simple solar radiation forecast model using sky cover predictions forecasts is 0.05o in latitude and longitude. Solar Radiation model: The model presented in this paper

  4. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  5. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural dedicated models to forecast the 12 individual months directly. Results indicate better performance is superior to naïve forecasts based on persistence and seasonality, and is better than results quoted

  6. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    requirements. The transportation energy demand forecasts make assumptions about fuel price forecastsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY ENERGY COMMISSION Gordon Schremp, Jim Page, and Malachi Weng-Gutierrez Principal Authors Jim Page Project

  7. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

  8. Savings at the pump help push U.S. gasoline demand to 8-year...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    U.S. gasoline demand to 8-year high U.S. gasoline consumption this year is expected to top 9 million barrels per day for the first time since 2007. In its new monthly forecast,...

  9. What Constrains Spread Growth in Forecasts Initialized from Ensemble Kalman Filters?

    E-Print Network [OSTI]

    Hamill, Tom

    1 What Constrains Spread Growth in Forecasts Initialized from Ensemble Kalman Filters? Thomas M workshop on 4D-Var and Ensemble Kalman Filter Intercomparisons (Herschel Mitchell, editor) 24 August 2010 of weather predictions initialized from an ensemble Kalman filter may grow slowly relative to other methods

  10. What Constrains Spread Growth in Forecasts Initialized from Ensemble Kalman Filters?

    E-Print Network [OSTI]

    Hamill, Tom

    1 What Constrains Spread Growth in Forecasts Initialized from Ensemble Kalman Filters? Thomas M workshop on 4D-Var and Ensemble Kalman Filter Intercomparisons (Herschel Mitchell, editor) 27 May 2010 of weather predictions initialized from an ensemble Kalman filter may grow slowly relative to other methods

  11. Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas

    E-Print Network [OSTI]

    Mosier, Richard Matthew

    2011-02-22T23:59:59.000Z

    .1.6 Comparison to Previous Studies......................................................................59 3.2 VII Forecast Method...............................................................................................61 3.2.1 Percentile Value...) percentile values for the entire dataset (1997-2006) when considering only cells with a minimum track count of 2.......................................................................... 117 3.5 Same as Figure 3.4 for the POD values...

  12. Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model

    E-Print Network [OSTI]

    Lang, K.

    1982-01-01T23:59:59.000Z

    capital requirements and research and development programs in the alum inum industry. : CONCLUSIONS Forecasting the use of conservation techndlo gies with a market penetration model provides la more accountable method of projecting aggrega...

  13. Spent nuclear fuels project: FY 1995 multi-year program plan, WBS {number_sign}1.4

    SciTech Connect (OSTI)

    Denning, J.L.

    1994-09-01T23:59:59.000Z

    The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan.

  14. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    , Gary Occhiuzzo, and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Don Schultz and Doug Kemmer developed. California Energy Commission, Electricity Supply Analysis Division. Publication Number: CEC2002012001CMFVI

  15. Facebook IPO updated valuation and user forecasting

    E-Print Network [OSTI]

    Facebook IPO ­ updated valuation and user forecasting Based on: Amendment No. 6 to Form S-1 (May 9. Peter Cauwels and Didier Sornette, Quis pendit ipsa pretia: facebook valuation and diagnostic Extreme Growth JPMPaper Cauwels and Sornette 840 1110 1820 S1- filing- May 9 2012 1006 1105 1371 Facebook

  16. Modeling of Uncertainty in Wind Energy Forecast

    E-Print Network [OSTI]

    regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

  17. Segmenting Time Series for Weather Forecasting

    E-Print Network [OSTI]

    Sripada, Yaji

    for generating textual summaries. Our algorithm has been implemented in a weather forecast generation system. 1 presentation, aid human understanding of the underlying data sets. SUMTIME is a research project aiming turbines. In the domain of meteorology, time series data produced by numerical weather prediction (NWP

  18. Forecasting sudden changes in environmental pollution patterns

    E-Print Network [OSTI]

    Olascoaga, Maria Josefina

    Forecasting sudden changes in environmental pollution patterns María J. Olascoagaa,1 and George of Mexico in 2010. We present a methodology to predict major short-term changes in en- vironmental River's mouth in the Gulf of Mexico. The resulting fire could not be extinguished and the drilling rig

  19. New Concepts in Wind Power Forecasting Models

    E-Print Network [OSTI]

    Kemner, Ken

    New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind characteristics (mainly speed and direction) in wind parks connected to a power grid. Renyi's Entropy is combined

  20. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  1. SIMULATION AND FORECASTING IN INTERMODAL CONTAINER TERMINAL

    E-Print Network [OSTI]

    Gambardella, Luca Maria

    SIMULATION AND FORECASTING IN INTERMODAL CONTAINER TERMINAL Luca Maria Gambardella1 , Gianluca@idsia.ch 2 LCST, La Spezia Container Terminal, La Spezia (IT) 3 DSP, Data System & Planning sa, Manno (CH working in intermodal container terminals. INTRODUCTION The amount of work a container terminal deals

  2. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  3. Forecast Technical Document Felling and Removals

    E-Print Network [OSTI]

    of local investment and business planning. Timber volume production will be estimated at sub. Planning of operations. Control of the growing stock. Wider reporting (under UKWAS). The calculation fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan

  4. Forecasting Turbulent Modes with Nonparametric Diffusion Models

    E-Print Network [OSTI]

    Tyrus Berry; John Harlim

    2015-01-27T23:59:59.000Z

    This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.

  5. Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power

    E-Print Network [OSTI]

    Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price as traded on the wholesale, short-term (spot) market at the Mid-Columbia trading hub. This price represents noted. BASE CASE FORECAST The base case wholesale electricity price forecast uses the Council's medium

  6. Steam System Forecasting and Management 

    E-Print Network [OSTI]

    Mongrue, D. M.; Wittke, D. O.

    1982-01-01T23:59:59.000Z

    process unit is not operating (down) is specified. If the process will be operating for the entire period, the word "LP" is displayed. PRODUCTION SCHEDULE 2/20/92 - 5/20/82 UNIT 1 A UP 2 B UP D 2./20-3./15 D 4.19. TO- 3 C D 2./20-3./15 D 4..../9. TO- 4 D 5 E D 4./15 TO- UP 6 F D 2./20-2./21 7 G UP 9 I UP 8 H D 2./20-3./13 D 3./27 TO- 10 J 11 K D 2./20 TO- 12 L UP 13 M UP UP 15 0 14 N UP D 2./20-2./24 D 3./7.-3./17 D 3./28 TO- 16 P 17 G D 4./1. TO- 19 R II 3...

  7. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18T23:59:59.000Z

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  8. Spent nuclear fuel project multi-year work plan WBS {number_sign}1.4.1

    SciTech Connect (OSTI)

    Wells, J.L.

    1997-03-01T23:59:59.000Z

    The Spent Nuclear Fuel (SNF) Project Multi-Year Work Plan (MYWP) is a controlled living document that contains the current SNF Project Technical, Schedule and Cost Baselines. These baselines reflect the current Project execution strategies and are controlled via the change control process. Other changes to the MYWP document will be controlled using the document control process. These changes will be processed as they are approved to keep the MYWP a living document. The MYWP will be maintained continuously as the project baseline through the life of the project and not revised annually. The MYWP is the one document which summarizes and links these three baselines in one place. Supporting documentation for each baseline referred to herein may be impacted by changes to the MYWP, and must also be revised through change control to maintain consistency.

  9. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01T23:59:59.000Z

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  10. Depression in Mexican-American youth: a 4-year follow-up of drug abuse prevention clients

    E-Print Network [OSTI]

    Smith, Stephanie Suesan

    1989-01-01T23:59:59.000Z

    and should lower the quality of parental interaction, thus increasing the possibility that children will have difficulties in coping while growing up (Barnett & Gotlib, 1988; Lopez, 1986). Maternal depression might also be a result of despair over a child... the pattern of drug involvement at follow-up, ranging from: 1) no drugs, 2) marijuana only, 3) hard drugs (heroin, cocaine, etc. ), and 4) hard drugs used intravenously. The rationale for this measure was that drug use has been found to be a continuum...

  11. Test application of a semi-objective approach to wind forecasting for wind energy applications

    SciTech Connect (OSTI)

    Wegley, H.L.; Formica, W.J.

    1983-07-01T23:59:59.000Z

    The test application of the semi-objective (S-O) wind forecasting technique at three locations is described. The forecasting sites are described as well as site-specific forecasting procedures. Verification of the S-O wind forecasts is presented, and the observed verification results are interpreted. Comparisons are made between S-O wind forecasting accuracy and that of two previous forecasting efforts that used subjective wind forecasts and model output statistics. (LEW)

  12. California's Electricity Supply and Demand Balance Over the Next Five Years

    E-Print Network [OSTI]

    and Northwest over the past two years by about 8,000 megawatts. Natural gas prices have declined from the high the resources of the system. The Commission's 2003 Baseline Demand forecast assumes the following assumptions September October 1 CEC 2003 Baseline Demand Forecast (1-in-2 Weather)1, 2 3

  13. Enhanced Short-Term Wind Power Forecasting and Value to Grid Operations: Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Clark, C.; Cline, J.; Benjamin, S.; Wilczak, J.; Marquis, M.; Finley, C.; Stern, A.; Freedman, J.

    2012-09-01T23:59:59.000Z

    The current state of the art of wind power forecasting in the 0- to 6-hour time frame has levels of uncertainty that are adding increased costs and risk on the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: 1) a 1-year field measurement campaign within two regions; 2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and 3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provides an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis.

  14. The impact of forecasted energy price increases on low-income consumers

    SciTech Connect (OSTI)

    Eisenberg, Joel F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-10-31T23:59:59.000Z

    The Department of Energy’s Energy Information Administration (EIA) recently released its short term forecast for residential energy prices for the winter of 2005-2006. The forecast indicates significant increases in fuel costs, particularly for natural gas, propane, and home heating oil, for the year ahead. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation’s low-income households by primary heating fuel type, nationally and by Census Region. The statistics are intended for the use of policymakers in the Department of Energy’s Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2006 fiscal year.

  15. Forecasting hotspots using predictive visual analytics approach

    DOE Patents [OSTI]

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30T23:59:59.000Z

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  16. Mira Kobold and Kay Suelj Hydrology and Earth System Sciences, 9(4), 322332 (2005) EGU

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mira Kobold and Kay Suelj 322 Hydrology and Earth System Sciences, 9(4), 322332 (2005) © EGU Precipitation forecasts and their uncertainty as input into hydrological models Mira Kobold and Kay Suelj the weather forecasts with the information on catchment conditions and a hydrological forecasting model can

  17. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23T23:59:59.000Z

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  18. Using Wikipedia to forecast diseases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUserHadoop SCP/SFTP

  19. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  20. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13T23:59:59.000Z

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

  1. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19T23:59:59.000Z

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  2. Weather Forecast Data an Important Input into Building Management Systems

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01T23:59:59.000Z

    it can generate as much or more energy that it needs ? Building activities need N kWhrs per day (solar panels, heating, etc) ? Harvested from solar panels & passive solar. Amount depends on weather ? NWP models forecast DSWRF @ surface (MJ/m2...://collaboration.cmc.ec.gc.ca/cmc/cmoi/SolarScribe/SolarScribe/ CMC NWP datasets for Day 2 Forecasts ? Regional Deterministic Prediction System (RDPS) ? RDPS raw model data ? 10 km resolution, North America, 000-054 forecasts ? Data at: http...

  3. Forecasting model of the PEPCO service area economy. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1984-03-01T23:59:59.000Z

    Volume III describes and documents the regional economic model of the PEPCO service area which was relied upon to develop many of the assumptions of future values of economic and demographic variables used in the forecast. The PEPCO area model is mathematically linked to the Wharton long-term forecast of the U.S. Volume III contains a technical discussion of the structure of the regional model and presents the regional economic forecast.

  4. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01T23:59:59.000Z

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  5. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Environmental Management (EM)

    Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf More Documents & Publications Computational Advances in Applied...

  6. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Richard A. Berk; Brian Kriegler; Jong-Ho Baek

    2011-01-01T23:59:59.000Z

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  7. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Berk, Richard; Kriegler, Brian; Baek, Jong-Ho

    2005-01-01T23:59:59.000Z

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  8. Forecasting the underlying potential governing climatic time series

    E-Print Network [OSTI]

    Livina, V N; Mudelsee, M; Lenton, T M

    2012-01-01T23:59:59.000Z

    We introduce a technique of time series analysis, potential forecasting, which is based on dynamical propagation of the probability density of time series. We employ polynomial coefficients of the orthogonal approximation of the empirical probability distribution and extrapolate them in order to forecast the future probability distribution of data. The method is tested on artificial data, used for hindcasting observed climate data, and then applied to forecast Arctic sea-ice time series. The proposed methodology completes a framework for `potential analysis' of climatic tipping points which altogether serves anticipating, detecting and forecasting climate transitions and bifurcations using several independent techniques of time series analysis.

  9. Sandia National Laboratories: Solar Energy Forecasting and Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource Assessment, provides an authoritative voice on the...

  10. analytical energy forecasting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMISSION Tom Gorin Lynn Marshall Principal Author Tom Gorin Project 11 Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Computer Technologies and...

  11. Econometric model and futures markets commodity price forecasting

    E-Print Network [OSTI]

    Just, Richard E.; Rausser, Gordon C.

    1979-01-01T23:59:59.000Z

    Versus CCll1rnercial Econometric M:ldels." Uni- versity ofWorking Paper No. 72 ECONOMETRIC ! 'econometric forecasts with the futures

  12. Optimization Online - Data Assimilation in Weather Forecasting: A ...

    E-Print Network [OSTI]

    M. Fisher

    2007-02-14T23:59:59.000Z

    Feb 14, 2007 ... Data Assimilation in Weather Forecasting: A Case Study in PDE-Constrained Optimization. M. Fisher(Mike.Fisher ***at*** ecmwf.int)

  13. Weather-based yield forecasts developed for 12 California crops

    E-Print Network [OSTI]

    Lobell, David; Cahill, Kimberly Nicholas; Field, Christopher

    2006-01-01T23:59:59.000Z

    RESEARCH ARTICLE Weather-based yield forecasts developed fordepend largely on the weather, measurements from existingpredictions. We developed weather-based models of statewide

  14. Using Customers' Reported Forecasts to Predict Future Sales

    E-Print Network [OSTI]

    Gordon, Geoffrey J.

    Using Customers' Reported Forecasts to Predict Future Sales Nihat Altintas , Alan Montgomery , Michael Trick Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213. nihat

  15. LANL JOWOG 31 2012 Forecast

    SciTech Connect (OSTI)

    Vidlak, Anton J. II [Los Alamos National Laboratory

    2012-08-08T23:59:59.000Z

    Joint Working Group (JOWOG) 31, Nuclear Weapons Engineering, has a particularly broad scope of activities within its charter which emphasizes systems engineering. JOWOG 31 brings together experts from AWE and the national laboratories to address engineering issues associated with warhead design and certification. Some of the key areas of interaction, as addressed by the HOCWOGs are: (1) Engineering Analysis, (2) Hydrodynamic Testing, (3) Environmental Testing, and (4) Model Based Integrated Toolkit (MBIT). Gas Transfer Systems and Condition Monitoring interaction has been moved back to JOWOG 31. The regularly scheduled JOWOG 31 activities are the General Sessions, Executive Sessions, Focused Exchanges and HOCWOGs. General Sessions are scheduled every 12-18 months and are supported by the four design laboratories (AWE, LANL, LLNL, and SNL). Beneficial in educating the next generation of weapons engineers and establishing contacts between AWE and the US laboratory personnel. General Sessions are based on a blend of presentations and workshops centered on various themed subjects directly related to Stockpile Stewardship. HOCWOG meetings are more narrowly focused than the General Sessions. They feature presentations by experts in the field with a greater emphasis on round table discussions. Typically about 20 people attend. Focused exchanges are generally the result of interactions within JOWOG general sessions or HOCWOG meetings. They generally span a very specific topic of current interest within the US and UK.

  16. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06T23:59:59.000Z

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  17. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01T23:59:59.000Z

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  18. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01T23:59:59.000Z

    of two methods to forecast natural gas prices: using theof two methods to forecast natural gas prices is performed:accurate average forecast of natural gas prices than the

  19. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01T23:59:59.000Z

    Gas Price Forecast With natural gas prices significantlyto the EIA’s natural gas price forecasts in AEO 2004 and AEOon the AEO 2005 natural gas price forecasts will likely once

  20. Evaluation of forecasting techniques for short-term demand of air transportation

    E-Print Network [OSTI]

    Wickham, Richard Robert

    1995-01-01T23:59:59.000Z

    Forecasting is arguably the most critical component of airline management. Essentially, airlines forecast demand to plan the supply of services to respond to that demand. Forecasts of short-term demand facilitate tactical ...

  1. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01T23:59:59.000Z

    revisions to the EIA’s natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  2. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  3. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23T23:59:59.000Z

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  4. 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q24.0

  5. 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

  6. Renewable Forecast Min-Max2020.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewable EnergyForecast of

  7. 2007 Wholesale Power Rate Case Final Proposal : Market Price Forecast Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01T23:59:59.000Z

    This study presents BPA's market price forecasts for the Final Proposal, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's power rates. AURORA was used as the primary tool for (a) estimating the forward price for the IOU REP Settlement benefits calculation for fiscal years (FY) 2008 and 2009, (b) estimating the uncertainty surrounding DSI payments and IOU REP Settlements benefits, (c) informing the secondary revenue forecast and (d) providing a price input used for the risk analysis. For information about the calculation of the secondary revenues, uncertainty regarding the IOU REP Settlement benefits and DSI payment uncertainty, and the risk run, see Risk Analysis Study WP-07-FS-BPA-04.

  8. 2007 Wholesale Power Rate Case Initial Proposal : Market Price Forecast Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01T23:59:59.000Z

    This chapter presents BPA's market price forecasts, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's rates. AURORA is used as the primary tool for (a) calculation of the demand rate, (b) shaping the PF rate, (c) estimating the forward price for the IOU REP settlement benefits calculation for fiscal years 2008 and 2009, (d) estimating the uncertainty surrounding DSI payments, (e) informing the secondary revenue forecast and (f) providing a price input used for the risk analysis.

  9. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    to  predict daily solar radiation.   Agriculture and Forest and Chuo, S.   2008.  Solar radiation forecasting using Short?term forecasting of solar radiation:   A statistical 

  10. Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

    2014-10-27T23:59:59.000Z

    In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing “quasi-deterministic” components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

  11. Short term forecasting of solar radiation based on satellite data

    E-Print Network [OSTI]

    Heinemann, Detlev

    Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer University, D-26111 Oldenburg Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance

  12. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime meteorological data from sites upwind of wind farms can be efficiently used to improve short-term forecasts acknowledges the support of PPM Energy, Inc. The data used in this work were obtained from Oregon State

  13. Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa

    E-Print Network [OSTI]

    Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity 1997 FORE08.DOC Page 1 CALIFORNIA ENERGY COMMISSION ELECTRICITY ANALYSIS OFFICE REVISED 1997 RETAIL ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

  14. A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size

    E-Print Network [OSTI]

    Hansens, Jim

    A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size Andrew. R.Lawrence@ecmwf.int #12;Abstract An ensemble-based data assimilation approach is used to transform old en- semble. The impact of the transformations are propagated for- ward in time over the ensemble's forecast period

  15. RESERVOIR INFLOW FORECASTING USING NEURAL NETWORKS CHANDRASHEKAR SUBRAMANIAN

    E-Print Network [OSTI]

    Manry, Michael

    a mixture of hydroelectric and non- hydroelectric power, the economics of the hydroelectric plants depend, and to economically allocate the load between various non-hydroelectric plants. Neural networks provide an attractive technology for inflow forecasting, because of (1) their success in power load forecasting 1- 6 , and (2

  16. Introducing the Canadian Crop Yield Forecaster Aston Chipanshi1

    E-Print Network [OSTI]

    Miami, University of

    for crop yield forecasting and risk analysis. Using the Census Agriculture Region (CAR) as the unit Climate Decision Support and Adaptation, Agriculture and Agri-Food Canada, 1011, Innovation Blvd, Saskatoon, SK S7V 1B7, Canada The Canadian Crop Yield Forecaster (CCYF) is a statistical modelling tool

  17. Wind-Wave Probabilistic Forecasting based on Ensemble

    E-Print Network [OSTI]

    have to be jointly taken into account in some decision-making problems, e.g. offshore wind farmWind-Wave Probabilistic Forecasting based on Ensemble Predictions Maxime FORTIN Kongens Lyngby 2012.imm.dtu.dk IMM-PhD-2012-86 #12;Summary Wind and wave forecasts are of a crucial importance for a number

  18. Wind Power Forecasting: State-of-the-Art 2009

    E-Print Network [OSTI]

    Kemner, Ken

    Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power................................................ 14 2.2.3 Critical Processes for Wind Forecast

  19. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012 includes three full scenarios: a high energy demand case, a low energy demand case, and a mid energy demand

  20. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST, and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption STAFFFINALREPORT NOVEMBER 2007 CEC-200-2007-015-SF2 Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY

  1. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  2. Distribution Based Data Filtering for Financial Time Series Forecasting

    E-Print Network [OSTI]

    Bailey, James

    recent past. In this paper, we address the challenge of forecasting the behavior of time series using@unimelb.edu.au Abstract. Changes in the distribution of financial time series, particularly stock market prices, can of stock prices, which aims to forecast the future values of the price of a stock, in order to obtain

  3. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co for the modeled wind- CAES system would not cover annualized capital costs. We also estimate market prices-ahead market is roughly $100, with large variability due to electric power prices. Wind power forecast errors

  4. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the planning process. Electricity demand is forecast to grow from 20,080 average megawatts in 2000 to 25 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  5. FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS

    E-Print Network [OSTI]

    Keller, Arturo A.

    resources resulting in water stress. Effective water management ­ a solution Supply side management Demand side management #12;Developing a regression equation based on cluster analysis for forecasting waterFORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil

  6. Forecasting Uncertainty Related to Ramps of Wind Power Production

    E-Print Network [OSTI]

    Boyer, Edmond

    - namic reserve quantification [8], for the optimal oper- ation of combined wind-hydro power plants [5, 1Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power

  7. Impact of PV forecasts uncertainty in batteries management in microgrids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -- Photovoltaic systems, Batteries, Forecasting I. INTRODUCTION This paper presents first results of a study Energies and Energy Systems Sophia Antipolis, France andrea.michiorri@mines-paristech.fr Abstract production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size

  8. Forecasting Building Occupancy Using Sensor Network James Howard

    E-Print Network [OSTI]

    Hoff, William A.

    of the forecasting algorithm for the different conditions. 1. INTRODUCTION According to the U.S. Department of Energy could take advantage of times when electricity cost is lower, to chill a cold water storage tankForecasting Building Occupancy Using Sensor Network Data James Howard Colorado School of Mines

  9. Prostate-Specific Antigen at 4 to 5 Years After Low-Dose-Rate Prostate Brachytherapy Is a Strong Predictor of Disease-Free Survival

    SciTech Connect (OSTI)

    Lo, Andrea C. [Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia (Canada); Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (Canada); Morris, W. James, E-mail: JMorris@bccancer.bc.ca [Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia (Canada); Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (Canada); Lapointe, Vincent [Department of Medical Physics, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia (Canada); Hamm, Jeremy [Department of Population Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia (Canada); Keyes, Mira; Pickles, Tom; McKenzie, Michael [Department of Radiation Oncology, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia (Canada); Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (Canada); Spadinger, Ingrid [Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (Canada); Department of Medical Physics, British Columbia Cancer Agency Vancouver Centre, Vancouver, British Columbia (Canada)

    2014-01-01T23:59:59.000Z

    Purpose: To determine (1) the prognostic utility of prostate-specific antigen (PSA) concentration at 45 to 60 months (48mPSA) after low-dose-rate prostate brachytherapy (LDR-PB); (2) the predictors of 48mPSA; and (3) the prognostic utility of directional trends between PSA levels at 24, 36, and 48 months after LDR-PB. Methods and Materials: Between 1998 and 2008, 2223 patients with low- and intermediate-risk prostate cancer received LDR-PB monotherapy. A cohort of 1434 of these patients was identified with a documented 48mPSA and no evidence of disease relapse prior to the 48mPSA. In addition, a subset of this cohort (n=585) was identified with ?72 months of follow-up and documented PSA values at both 24 and 36 months after implantation. Results: Median follow-up time was 76 months. Eight-year Kaplan-Meier disease-free survival (DFS) rates were 100% vs 73.4% for patients with 48mPSA ?0.2 vs those with >0.2 ng/mL; 99.1% versus 53.8% for a 48mPSA threshold of ?0.4 versus >0.4 ng/mL, respectively; and 97.3% versus 0% for a threshold of ?1.0 versus >1.0 ng/mL, respectively. On multivariate analysis, the only factor predictive of DFS was 48mPSA (P<.0001). On subset analysis (n=585), 29 patients had a PSA rise (defined as >0.2 ng/mL) between 24 and 36 months, 24 patients had a rise between 36 and 48 months, and 11 patients had rises over both intervals. Failure rates in these patients were 52%, 79%, and 100%, respectively. On multivariate analysis, initial PSA, androgen deprivation therapy, and dose to 90% of the prostate significantly correlated with 48mPSA but together accounted for only ?5% of its total variance. Conclusions: The 48mPSA after LDR-PB is highly predictive of long-term DFS. Patients with 48mPSA ?0.4 ng/mL had a <1% risk of disease relapse at 8 years, whereas all patients with 48mPSA >1.0 ng/mL relapsed. Consecutive PSA rises of >0.2 ng/mL from 24 to 36 months and from 36 to 48 months were also highly predictive of subsequent failure.

  10. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01T23:59:59.000Z

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  11. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01T23:59:59.000Z

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  12. Verification of hourly forecasts of wind turbine power output

    SciTech Connect (OSTI)

    Wegley, H.L.

    1984-08-01T23:59:59.000Z

    A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

  13. NatioNal aNd Global Forecasts West VirGiNia ProFiles aNd Forecasts

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    · NatioNal aNd Global Forecasts · West VirGiNia ProFiles aNd Forecasts · eNerGy · Healt Global Insight, paid for by the West Virginia Department of Revenue. 2013 WEST VIRGINIA ECONOMIC OUTLOOKWest Virginia Economic Outlook 2013 is published by: Bureau of Business & Economic Research West

  14. LNG to the year 2000

    SciTech Connect (OSTI)

    Davenport, S.T.

    1984-04-01T23:59:59.000Z

    By 2000, about 190 MM metric-tpy of LNG will be moving in world trade, with Asia-Pacific as the dominant producer By the year 2000, approximately 190 million metric tons per year of LNG will be moving in worldwide trade. Production of LNG will be spread throughout most of the world, with Asia-Pacific as the dominant producer. LNG will be delivered only to the heavily industrialized areas of North America, Europe and Asia-Pacific. The success of any LNG project will be dependent on its individual economics, market needs, financial planning, and governmental permit processes. We hope industry will be able to put together the LNG projects required to meet the quanitities of production forecast here for the year 2000.

  15. Incorporating Forecast Uncertainty in Utility Control Center

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09T23:59:59.000Z

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  16. November 14, 2000 A Quarterly Forecast of U.S. Trade

    E-Print Network [OSTI]

    Shyy, Wei

    November 14, 2000 A Quarterly Forecast of U.S. Trade in Services and the Current Account, 2000 of Forecast*** We forecast that the services trade surplus, which declined from 1997 to 1998 and edged upward. That is, from a level of $80.6 billion in 1999, we forecast that the services trade surplus will be $80

  17. Smard Grid Software Applications for Distribution Network Load Forecasting Eugene A. Feinberg, Jun Fei

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    of the distribution network. Keywords: load forecasting, feeder, transformer, load pocket, SmartGrid I. INTRODUCTION

  18. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

  19. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01T23:59:59.000Z

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  20. USING BOX-JENKINS MODELS TO FORECAST FISHERY DYNAMICS: IDENTIFICATION, ESTIMATION, AND CHECKING

    E-Print Network [OSTI]

    ~ is illustrated by developing a model that makes monthly forecasts of skipjack tuna, Katsuwonus pelamis, catches

  1. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Broader source: Energy.gov [DOE]

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  2. ASSESSING THE QUALITY AND ECONOMIC VALUE OF WEATHER AND CLIMATE FORECASTS

    E-Print Network [OSTI]

    Katz, Richard

    INFORMATION SYSTEM · Forecast -- Conditional probability distribution for event Z = z indicates forecast tornado #12;(1.2) FRAMEWORK · Joint Distribution of Observations & Forecasts Observed Weather = Forecast probability p (e.g., induced by Z) · Reliability Diagram Observed weather: = 1 (Adverse weather occurs) = 0

  3. 4/11/12 1:50 PMNobel Prizes: Year In Review 2010 --Britannica Online Encyclopedia Page 1 of 1http://www.britannica.com/EBchecked/topic/1719562/Nobel-Prizes-Year...-Review-2010/296811/Prize-for-Chemistry?sections=296811&view=print

    E-Print Network [OSTI]

    Berry, R. Stephen

    4/11/12 1:50 PMNobel Prizes: Year In Review 2010 -- Britannica Online Encyclopedia Page 1 of 1http://www.britannica.com/EBchecked/topic/1719562/Nobel-Prizes-Year...-Review-2010/296811/Prize-for-Chemistry?sections=296811&view=print Prize

  4. Weather Forecast Data an Important Input into Building Management Systems 

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01T23:59:59.000Z

    GEPS 21 members ? Provides probabilistic forecasts ? Can give useful outlooks for longer term weather forecasts ? Scribe matrix from GDPS ? includes UMOS post processed model data ? Variables like Temperature, humidity post processed by UMOS ? See...://collaboration.cmc.ec.gc.ca/cmc/cmoi/cmc-prob-products/ ? Link to experimental 3-day outlook of REPS quilts ? http://collaboration.cmc.ec.gc.ca/cmc/cmoi/cmc-prob-products.reps Users can also make their own products from ensemble forecast data? Sample ascii matrix of 2m temperature could be fed...

  5. Natural Priors, CMSSM Fits and LHC Weather Forecasts

    E-Print Network [OSTI]

    Allanach, B C; Cranmer, Kyle; Lester, Christopher G; Weber, Arne M

    2007-08-07T23:59:59.000Z

    ar X iv :0 70 5. 04 87 v3 [ he p- ph ] 5 J ul 20 07 Preprint typeset in JHEP style - HYPER VERSION DAMTP-2007-18 Cavendish-HEP-2007-03 MPP-2007-36 Natural Priors, CMSSM Fits and LHC Weather Forecasts Benjamin C Allanach1, Kyle Cranmer2... ’s likely discoveries. There are big differences between nature of the questions answered by a forecast, and the ques- tions that will be answered by the experiments themselves when they have acquired compelling data. A weather forecast predicting “severe...

  6. Dragon Year

    E-Print Network [OSTI]

    Hacker, Randi

    2012-01-11T23:59:59.000Z

    Broadcast Transcript: Can you believe it? It's New Year again. It seems like only yesterday we were celebrating the advent of the year of the Rabbit and now, here it is, the year of the Dragon. January 22nd is New Year's ...

  7. Solid waste 30-year volume summary

    SciTech Connect (OSTI)

    Valero, O.J.; Armacost, L.L.; DeForest, T.J.; Templeton, K.J.; Williams, N.C.

    1994-06-01T23:59:59.000Z

    A 30-year forecast of the solid waste volumes to be generated or received at the US Department of Energy Hanford Site is described in this report. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste that will require treatment, storage, and disposal at Hanford`s Solid Waste Operations Complex (SWOC) during the 30-year period from FY 1994 through FY 2023. The data used to complete this document were collected from onsite and offsite waste generators who currently, or are planning to, ship solid wastes to the Hanford Site. An analysis of the data suggests that over 300,000 m{sup 3} of LLMW and TRU/TRUM waste will be managed at Hanford`s SWOC over the next 30 years. An extensive effort was made this year to collect this information. The 1993 solid waste forecast was used as a starting point, which identified approximately 100,000 m{sup 3} of LLMW and TRU/TRUM waste to be sent to the SWOC. After analyzing the forecast waste volume, it was determined that additional waste was expected from the tank waste remediation system (TWRS), onsite decontamination and decommissioning (D&D) activities, and onsite remedial action (RA) activities. Data presented in this report establish a starting point for solid waste management planning. It is recognized that forecast estimates will vary (typically increasing) as facility planning and missions continue to change and become better defined, but the information presented still provides useful insight into Hanford`s future solid waste management requirements.

  8. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23T23:59:59.000Z

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  9. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R. [and others

    1995-12-01T23:59:59.000Z

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  10. Optimally controlling hybrid electric vehicles using path forecasting

    E-Print Network [OSTI]

    Katsargyri, Georgia-Evangelina

    2008-01-01T23:59:59.000Z

    Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

  11. Recently released EIA report presents international forecasting data

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

  12. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

    2015-03-29T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  13. OCTOBER-NOVEMBER FORECAST FOR 2014 CARIBBEAN BASIN HURRICANE ACTIVITY

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    and hurricanes, but instead predicts both hurricane days and Accumulated Cyclone Energy (ACE). Typically, while) tropical cyclone (TC) activity. We have decided to issue this forecast, because Klotzbach (2011) has

  14. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07T23:59:59.000Z

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  15. A methodology for forecasting carbon dioxide flooding performance

    E-Print Network [OSTI]

    Marroquin Cabrera, Juan Carlos

    1998-01-01T23:59:59.000Z

    A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

  16. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01T23:59:59.000Z

    Agency: 1982-2005a, Annual Energy Outlook, EIA, Washington,Agency: 2004, Annual Energy Outlook Forecast Evaluation,Agency: 2005b, Annual Energy Outlook, EIA, Washington, D.C.

  17. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01T23:59:59.000Z

    2005a, Annual Energy Outlook, EIA, Washington, D.C. Energy2005b, Annual Energy Outlook, EIA, Washington, D.C. Granger,Paper ???? The Rationality of EIA Forecasts under Symmetric

  18. Forecasting and strategic inventory placement for gas turbine aftermarket spares

    E-Print Network [OSTI]

    Simmons, Joshua T. (Joshua Thomas)

    2007-01-01T23:59:59.000Z

    This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

  19. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

  20. Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1

    E-Print Network [OSTI]

    Levinson, David M.

    Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1 David Levinson 2 February, the assumed networks to the actual in-place networks and other travel behavior assumptions that went

  1. africa conditional forecasts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts had the potential to improve resource management but instead played only a marginal role in real-world decision making. 1 A widespread perception that the quality of the...

  2. accident risk forecasting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts had the potential to improve resource management but instead played only a marginal role in real-world decision making. 1 A widespread perception that the quality of the...

  3. Forecasting Volatility in Stock Market Using GARCH Models

    E-Print Network [OSTI]

    Yang, Xiaorong

    2008-01-01T23:59:59.000Z

    Forecasting volatility has held the attention of academics and practitioners all over the world. The objective for this master's thesis is to predict the volatility in stock market by using generalized autoregressive conditional heteroscedasticity(GARCH...

  4. Forecasting Returns and Volatilities in GARCH Processes Using the Bootstrap

    E-Print Network [OSTI]

    Romo, Juan

    Forecasting Returns and Volatilities in GARCH Processes Using the Bootstrap Lorenzo Pascual, Juan generated by GARCH processes. The main advantage over other bootstrap methods previously proposed for GARCH by having conditional heteroscedasticity. Generalized Autoregressive Conditionally Heteroscedastic (GARCH

  5. Adaptive sampling and forecasting with mobile sensor networks

    E-Print Network [OSTI]

    Choi, Han-Lim

    2009-01-01T23:59:59.000Z

    This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

  6. Dispersion in analysts' forecasts: does it make a difference? 

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30T23:59:59.000Z

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  7. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  8. Variable Selection and Inference for Multi-period Forecasting Problems

    E-Print Network [OSTI]

    Pesaran, M Hashem; Pick, Andreas; Timmermann, Allan

    Variable Selection and Inference for Multi-period Forecasting Problems? M. Hashem Pesaran Cambridge University and USC Andreas Pick De Nederlandsche Bank and Cambridge University, CIMF Allan Timmermann UC San Diego and CREATES January 26, 2009...

  9. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    Bel, G; Toots, M; Bandi, M M

    2015-01-01T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  10. Dispersion in analysts' forecasts: does it make a difference?

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30T23:59:59.000Z

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  11. Mesoscale predictability and background error convariance estimation through ensemble forecasting

    E-Print Network [OSTI]

    Ham, Joy L

    2002-01-01T23:59:59.000Z

    Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties associated with the best...

  12. Model independent foreground power spectrum estimation using WMAP 5-year data Tuhin Ghosh,1,* Rajib Saha,1,2,3,4,

    E-Print Network [OSTI]

    Souradeep, Tarun

    Saha,1,2,3,4, Pankaj Jain,4, and Tarun Souradeep1,x 1 IUCAA, Post Bag 4, Ganeshkhind, Pune-411007 of CMB power spectrum estimation was proposed by Saha et al. 2006. This methodology demonstrates

  13. Subhourly wind forecasting techniques for wind turbine operations

    SciTech Connect (OSTI)

    Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

    1984-08-01T23:59:59.000Z

    Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

  14. Streamflow forecasting for large-scale hydrologic systems

    E-Print Network [OSTI]

    Awwad, Haitham Munir

    1991-01-01T23:59:59.000Z

    STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1991 Major Subject: Civil Engineering STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Approved as to style and content by: uan B. Valdes (Chair of Committee) alph A. Wurbs (Member) Marshall J. Mc...

  15. A model for short term electric load forecasting

    E-Print Network [OSTI]

    Tigue, John Robert

    1975-01-01T23:59:59.000Z

    A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

  16. Busted Butte Unsaturated Zone Transport Test: Fiscal Year 1998 Status Report Yucca Mountain Site Characterization Program Deliverable SPU85M4

    SciTech Connect (OSTI)

    Bussod, G.Y.; Turin, H.J.; Lowry, W.E.

    1999-11-01T23:59:59.000Z

    This report describes the status of the Busted Butte Unsaturated Zone Transport Test (UZTT) and documents the progress of construction activities and site and laboratory characterization activities undertaken in fiscal year 1998. Also presented are predictive flow-and-transport simulations for Test Phases 1 and 2 of testing and the preliminary results and status of these test phases. Future anticipated results obtained from unsaturated-zone (UZ) transport testing in the Calico Hills Formation at Busted Butte are also discussed in view of their importance to performance assessment (PA) needs to build confidence in and reduce the uncertainty of site-scale flow-and-transport models and their abstractions for performance for license application. The principal objectives of the test are to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain, as identified by the PA working group in February 1997. These include but are not restricted to: (1) The effect of heterogeneities on flow and transport in unsaturated and partially saturated conditions in the Calico Hills Formation. In particular, the test aims to address issues relevant to fracture-matrix interactions and permeability contrast boundaries; (2) The migration behavior of colloids in fractured and unfractured Calico Hills rocks; (3) The validation through field testing of laboratory sorption experiments in unsaturated Calico Hills rocks; (4) The evaluation of the 3-D site-scale flow-and-transport process model (i.e., equivalent-continuum/dual-permeability/discrete-fracture-fault representations of flow and transport) used in the PA abstractions for license application; and (5) The effect of scaling from lab scale to field scale and site scale.

  17. Growing Up in Scotland: Sweep 2 - Issues of Child Health and Development at Ages 1-2 and 3-4 Years 

    E-Print Network [OSTI]

    Government, Scottish

    2008-02-18T23:59:59.000Z

    Research findings (of four) accompanying the full research report on Sweep 2 findings of the Growing Up in Scotland study Year 2....

  18. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

  19. Probabilistic wind power forecasting -European Wind Energy Conference -Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Probabilistic wind power forecasting - European Wind Energy Conference - Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting based on kernel density estimators J´er´emie Juban jeremie.juban@ensmp.fr; georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting tools

  20. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01T23:59:59.000Z

    vs. AEO 2001 Price Forecast Natural Gas Price (nominal $/if forwards forecasts) or natural gas-fired generation (ifs reference case forecast of natural gas prices delivered to

  1. A Breakout Year Propels New Jersey Economy into 2005

    E-Print Network [OSTI]

    A Breakout Year Propels New Jersey Economy into 2005 A t the end of 2003, we tiptoed out on the forecasting limb and asserted that if the 2004 national economy were a movie, it would be titled "Showtime." We also opined that if the 2004 New Jersey economy were a movie, it would be titled "The Sweet Smell

  2. California climate change, hydrologic response, and flood forecasting

    SciTech Connect (OSTI)

    Miller, Norman L.

    2003-11-11T23:59:59.000Z

    There is strong evidence that the lower atmosphere has been warming at an unprecedented rate during the last 50 years, and it is expected to further increase at least for the next 100 years. Warmer air mass implies a higher capacity to hold water vapor and an increased likelihood of an acceleration of the global water cycle. This acceleration is not validated and considerable new research has gone into understanding aspects of the water cycle (e.g. Miller et al. 2003). Several significant findings on the hydrologic response to climate change can be reported. It is well understood that the observed and expected warming is related to sea level rise. In a recent seminar at Lawrence Berkeley National Laboratory, James Hansen (Director of the Institute for Space Studies, National Aeronautics and Space Administration) stressed that a 1.25 Wm{sup -2} increase in radiative forcing will lead to an increase in the near surface air temperature by 1 C. This small increase in temperature from 2000 levels is enough to cause very significant impacts to coasts. Maury Roos (Chief Hydrologist, California Department of Water Resources) has shown that a 0.3 m rise in sea level shifts the San Francisco Bay 100-year storm surge flood event to a 10-year event. Related coastal protection costs for California based on sea level rise are shown. In addition to rising sea level, snowmelt-related streamflow represents a particular problem in California. Model studies have indicated that there will be approximately a 50% decrease in snow pack by 2100. This potential deficit must be fully recognized and plans need to be put in place well in advance. In addition, the warmer atmosphere can hold more water vapor and result in more intense warm winter-time precipitation events that result in flooding. During anticipated high flow, reservoirs need to release water to maintain their structural integrity. California is at risk of water shortages, floods, and related ecosystem stresses. More research needs to be done to further improve our ability to forecast weather events at longer time scales. Seasonal predictions have been statistical and only recently have studies begun to use ensemble simulations and historical observations to constrain such predictions. Understanding the mechanisms of large-scale atmospheric dynamics and its local impacts remain topics of intensive research. The ability to predict extreme events and provide policy makers with this information, along with climate change and hydrologic response information, will help to guide planning to form a more resilient infrastructure in the future.

  3. The effect of omega-3 and omega-6 polyunsaturated fatty acids on illness in children up to 4 years of age

    E-Print Network [OSTI]

    Foiles, Amanda

    2011-05-01T23:59:59.000Z

    OBJECTIVES: Supplementation of omega-3 (n-3) and omega-6 (n-6) long-chain polyunsaturated fatty acids (LCPUFA) during the first year of life has been associated with a decreased incidence of illness in children. The need ...

  4. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01T23:59:59.000Z

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  5. The International Workshop on Wave Hindcasting and Forecasting and the Coastal Hazards Symposium

    E-Print Network [OSTI]

    Breivik, Øyvind; Babanin, Alexander; Horsburgh, Kevin

    2015-01-01T23:59:59.000Z

    Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection.

  6. Short-term planning and forecasting for petroleum. Master's thesis

    SciTech Connect (OSTI)

    Elkins, R.D.

    1988-06-01T23:59:59.000Z

    The Defense Fuel Supply Center (DFSC) has, in recent past, been unable to adequately forecast for short-term petroleum requirements. This has resulted in inaccurate replenishment quantities and required short-notice corrections, which interrupted planned resupply methods. The relationship between the annual CINCLANTFLT DFM budget and sales from the the Norfolk Defense Fuel Support Point (DFSP) is developed and the past sales data from the Norfolk DFSP is used to construct seasonality indices. Finally, the budget/sales relationship is combined with the seasonality indices to provide a new forecasting model. The model is then compared with the current one for FY-88 monthly forecasts. The comparison suggests that the new model can provide accurate, timely requirements data and improve resupply of the Norfolk Defense Fuel Support Point.

  7. 168 JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, DECEMBER 2004, Vol. 10, No. 4 Thirty-Year Durability of a 20-Mil PVC Geomembrane

    E-Print Network [OSTI]

    of a 20-Mil PVC Geomembrane E. J. NEWMAN and T. D. STARK* Department of Civil & Environmental Engineering, Michigan. The 30.5-m-diameter re- search ponds were lined using a 0.51-mm-thick fish-grade PVC geomembrane behavior of the nearly 30-year-old PVC geomembrane is within current specifications for new 0.51-mm

  8. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    and validation.   Solar Energy.   73:5, 307? Perez, R. , forecast database.   Solar Energy.   81:6, 809?812.  forecasts in the US.   Solar Energy.   84:12, 2161?2172.  

  9. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean...

  10. Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs

    E-Print Network [OSTI]

    Statton, James Cody

    2012-07-16T23:59:59.000Z

    . This study suggests a type curve is most useful when 24 months or less is available to forecast. The SEPD model generally provides more conservative forecasts and EUR estimates than Arps' model with a minimum decline rate of 5%....

  11. SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS Annette governing the insolation, forecasting of solar radiation makes the description of development of the cloud

  12. Sixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast

    E-Print Network [OSTI]

    ............................................................................................................................... 12 Oil Price Forecast Range. The price of crude oil was $25 a barrel in January of 2000. In July 2008 it averaged $127, even approachingSixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast Introduction

  13. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01T23:59:59.000Z

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  14. Solar Variability and Forecasting Jan Kleissl, Chi Chow, Matt Lave, Patrick Mathiesen,

    E-Print Network [OSTI]

    Homes, Christopher C.

    Forecasting Benefits Use of state-of-art wind and solar forecasts reduces WECC operating costs by up to 14/MWh of wind and solar generation). WECC operating costs could be reduced by an additional $500 million

  15. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  16. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  17. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  18. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  19. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01T23:59:59.000Z

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  20. Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General Circulation Models

    E-Print Network [OSTI]

    Arumugam, Sankar

    Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater

  1. Earnings Management Pressure on Audit Clients: Auditor Response to Analyst Forecast Signals

    E-Print Network [OSTI]

    Newton, Nathan J.

    2013-06-26T23:59:59.000Z

    This study investigates whether auditors respond to earnings management pressure created by analyst forecasts. Analyst forecasts create an important earnings target for management, and professional standards direct auditors to consider how...

  2. Forecasting the demand for electric vehicles: accounting for attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    prediction, transportation, attitudes and perceptions, hybrid choice models, fractional factorial design: survey design, model estimation and forecasting. We develop a stated preferences (SP) survey with issues related to the application of models designed to forecast demand for new alternatives, most

  3. Streamflow Forecasting Based on Statistical Applications and Measurements Made with Rain Gage and Weather Radar

    E-Print Network [OSTI]

    Hudlow, M.D.

    Techniques for streamflow forecasting are developed and tested for the Little Washita River in Oklahoma. The basic input for streamflow forecasts is rainfall. the rainfall amounts may be obtained from several sources; however, this study...

  4. Appendix A: Fuel Price Forecast Introduction..................................................................................................................................... 1

    E-Print Network [OSTI]

    (LNG) imports. With the higher natural gas prices of recent years and technological improvements in drilling, nonconventional supplies of natural gas have expanded rapidly. A significant amount of LNG import

  5. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01T23:59:59.000Z

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  6. NUCLEAR ENGINEERING Four Year Plan

    E-Print Network [OSTI]

    Tullos, Desiree

    ;Nuclear Engineering Four Year Plan Starting Fall 2009 FALL Year 1 Credits WINTER Year 1 Credits SPRINGNUCLEAR ENGINEERING Four Year Plan Fall 2009 Nuclear Engineering (67 hrs) CH Grade Perspectives (15 I NE 452 3 Neutronic Analysis II NE 457 2 Nuclear Reactor Lab Western Culture (3): NE 467 4 Nucl

  7. Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields

    E-Print Network [OSTI]

    Kolter, J. Zico

    -Gaussian case using the copula transform. On a wind power forecasting task, we show that this probabilisticLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random high-dimensional conditional Gaussian distributions to forecasting wind power and extend it to the non

  8. EUROBRISA: A EURO-BRazilian Initiative for improving South American seasonal forecasts

    E-Print Network [OSTI]

    EUROBRISA: A EURO-BRazilian Initiative for improving South American seasonal forecasts by Caio A. S. van Oldenborgh, 2006: Towards an integrated seasonal forecasting system for South America. J. Climate and promote exchange of expertise and information between European and South American seasonal forecasters

  9. Hourly Temperature Forecasting Using Abductive Networks R. E. Abdel-Aal

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    ANNGSF) and for forecasting the one-hour-ahead heat load for a district heat load network (Seppälä et al and network analysis functions in power utilities. Since high-low temperature forecasts are usually provided-Rohani & Maratukulam, 1998). In other agricultural and environmental applications, even high-low temperature forecasts

  10. Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting

    E-Print Network [OSTI]

    can the forecasts completely cover the evolution of earthquake-generated tsunami waves: generationDevelopment, testing, and applications of site-specific tsunami inundation models for real and applications of site-specific tsunami inundation models (forecast models) for use in NOAA's tsunami forecast

  11. Forecast of the electricity consumption by aggregation of specialized experts; application to Slovakian and French

    E-Print Network [OSTI]

    Forecast of the electricity consumption by aggregation of specialized experts; application-term forecast of electricity consumption based on ensemble methods. That is, we use several possibly independent´erieure and CNRS. hal-00484940,version1-19May2010 #12;Forecast of the electricity consumption by aggregation

  12. 2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA

    E-Print Network [OSTI]

    Perez, Richard R.

    2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA J models 1 INTRODUCTION Solar radiation and PV production forecasts are becoming increasingly important/) three teams of experts are benchmarking their solar radiation forecast against ground truth data

  13. Robust Pareto Optimum Routing of Ships Deterministic and Ensemble Weather Forecasts

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Robust Pareto ­ Optimum Routing of Ships utilizing Deterministic and Ensemble Weather Forecasts the SEAROUTES project, who provided me with exquisite weather forecasts, and who inspired me to apply ensemble ship operation. The more reliable weather forecasts and performance simulation of ships in a seaway

  14. Daily pollution forecast using optimal meteorological data at synoptic and local scales

    E-Print Network [OSTI]

    Russo, Ana; Raischel, Frank; Trigo, Ricardo; Mendes, Manuel

    2014-01-01T23:59:59.000Z

    We present a simple framework to easily pre-select the most essential data for accurately forecasting the concentration of the pollutant PM$_{10}$, based on pollutants observations for the years 2002 until 2006 in the metropolitan region of Lisbon, Portugal. Starting from a broad panoply of different data sets collected at several meteorological stations, we apply a forward stepwise regression procedure that enables us not only to identify the most important variables for forecasting the pollutant but also to rank them in order of importance. We argue the importance of this variable ranking, showing that the ranking is very sensitive to the urban spot where measurements are taken. Having this pre-selection, we then present the potential of linear and non-linear neural network models when applied to the concentration of pollutant PM$_{10}$. Similarly to previous studies for other pollutants, our validation results show that non-linear models in average perform as well or worse as linear models for PM$_{10}$. F...

  15. Forecasting potential project risks through leading indicators to project outcome

    E-Print Network [OSTI]

    Choi, Ji Won

    2007-09-17T23:59:59.000Z

    , the Construction Industry Institute (CII) formed a research team to develop a new tool that can forecast the potential risk of not meeting specific project outcomes based on assessing leading indicators. Thus, the leading indicators were identified and then the new...

  16. Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets Qun Zhou--In current restructured wholesale power markets, the short length of time series for prices makes are fitted between D&O and wholesale power prices in order to obtain price scenarios for a specified time

  17. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28T23:59:59.000Z

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  18. Classification of Commodity Price Forecast With Random Forests and Bayesian

    E-Print Network [OSTI]

    de Freitas, Nando

    economy. Commodity prices are key economical20 drivers in the market. Raw products such as oil, gold 15 1 Introduction16 17 1.1 Forecasting the commodities market18 The commodities market focuses of prices in both the short and long-term view25 point to help market participants gage a greater

  19. Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract

    E-Print Network [OSTI]

    Dalang, Robert C.

    Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract] Nicolas Gast EPFL, IC generation. The use of energy storage compensates to some extent these negative effects; it plays a buffer role between demand and production. We revisit a model of real storage proposed by Bejan et al.[1]. We

  20. The Galactic Center Weather Forecast M. Moscibrodzka1

    E-Print Network [OSTI]

    Gammie, Charles F.

    The Galactic Center Weather Forecast M. Mo´scibrodzka1 , H. Shiokawa2 , C. F. Gammie2,3 , J*. The > 3M cloud will #12;­ 2 ­ interact strongly with gas near nominal pericenter at rp 300AU 8000GM/c2 transient phase while the flow circularizes-- accompanied by transient emission--it is natural to think

  1. WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1

    E-Print Network [OSTI]

    WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1 , Henrik Madsen1 , Torben Skov Nielsen1. In this paper we address the problems of (i) transforming the mete- orological ensembles to wind power ensembles the uncertainty which follow from historical (climatological) data. However, quite often the actual wind power

  2. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01T23:59:59.000Z

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  3. URBAN OZONE CONCENTRATION FORECASTING WITH ARTIFICIAL NEURAL NETWORK IN CORSICA

    E-Print Network [OSTI]

    Boyer, Edmond

    Perceptron; Ozone concentration. 1. Introduction Tropospheric ozone is a major air pollution problem, both, Ajaccio, France, e-mail: balu@univ-corse.fr Abstract: Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air

  4. Navy Mobility Fuels Forecasting System. Phase I report

    SciTech Connect (OSTI)

    Davis, R.M.; Hadder, G.R.; Singh, S.P.N.; Whittle, C.

    1985-07-01T23:59:59.000Z

    The Department of the Navy (DON) requires an improved capability to forecast mobility fuel availability and quality. The changing patterns in fuel availability and quality are important in planning the Navy's Mobility Fuels R and D Program. These changes come about primarily because of the decline in the quality of crude oil entering world markets as well as the shifts in refinery capabilities domestically and worldwide. The DON requested ORNL's assistance in assembling and testing a methodology for forecasting mobility fuel trends. ORNL reviewed and analyzed domestic and world oil reserve estimates, production and price trends, and recent refinery trends. Three publicly available models developed by the Department of Energy were selected as the basis of the Navy Mobility Fuels Forecasting System. The system was used to analyze the availability and quality of jet fuel (JP-5) that could be produced on the West Coast of the United States under an illustrative business-as-usual and a world oil disruption scenario in 1990. Various strategies were investigated for replacing the lost JP-5 production. This exercise, which was strictly a test case for the forecasting system, suggested that full recovery of lost fuel production could be achieved by relaxing the smoke point specifications or by increasing the refiners' gate price for the jet fuel. A more complete analysis of military mobility fuel trends is currently under way.

  5. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    the chance of winds high enough to pose dangers for boats or aircraft. In situations calling for a cost/loss analysis, the probabilities of different outcomes need to be known. For wind speed, this issue often arisesProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc

  6. Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems

    E-Print Network [OSTI]

    Shenoy, Prashant

    Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

  7. Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,

    E-Print Network [OSTI]

    Shenoy, Prashant

    Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

  8. Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales

    E-Print Network [OSTI]

    Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales Alec N. Kercheval describe how the histori- cal data can first be GARCH filtered and then used to calibrate parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Data and Stylized Facts . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 GARCH Filter

  9. Forecasting Hospital Bed Availability Using Simulation and Neural Networks

    E-Print Network [OSTI]

    Kuhl, Michael E.

    Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels, NY 14623 Elisabeth Hager Hager Consulting Pittsford, NY 14534 Abstract The availability of beds is a critical factor for decision-making in hospitals. Bed availability (or alternatively the bed occupancy

  10. Short-Term Solar Energy Forecasting Using Wireless Sensor Networks

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

  11. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

  12. Development and Deployment of an Advanced Wind Forecasting Technique

    E-Print Network [OSTI]

    Kemner, Ken

    findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power and applications of power market simulation models around the world. Argonne's software tools are used extensively

  13. Integrating agricultural pest biocontrol into forecasts of energy biomass production

    E-Print Network [OSTI]

    Gratton, Claudio

    Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T), University of Lome, 114 Rue Agbalepedogan, BP: 20679, Lome, Togo e Center for Agricultural & Energy Policy model of potential biomass supply that incorporates the effect of biological control on crop choice

  14. Radiation fog forecasting using a 1-dimensional model

    E-Print Network [OSTI]

    Peyraud, Lionel

    2001-01-01T23:59:59.000Z

    The importance of fog forecasting to the aviation community, to road transportation and to the public at large is irrefutable. The deadliest aviation accident in history was in fact partly a result of fog back on 27 March 1977. This has, along...

  15. Classification and forecasting of load curves Nolwen Huet

    E-Print Network [OSTI]

    Cuesta, Juan Antonio

    Classification and forecasting of load curves Nolwen Huet Abstract The load curve, which gives of electricity customer uses. This load curve is only available for customers with automated meter reading. For the others, EDF must estimate this curve. Usually a clustering of the load curves is performed, followed

  16. What constrains spread growth in forecasts ini2alized from

    E-Print Network [OSTI]

    Hamill, Tom

    1 What constrains spread growth in forecasts ini2alized from ensemble Kalman filters? Tom from manner in which ini2al condi2ons are generated, some due to the model (e.g., stochas2c physics as error; part of spread growth from manner in which ini2al condi2ons are generated, some due

  17. Exploiting weather forecasts for sizing photovoltaic energy bids

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    1 Exploiting weather forecasts for sizing photovoltaic energy bids Antonio Giannitrapani, Simone for a photovoltaic (PV) power producer taking part into a competitive electricity market characterized by financial set from an Italian PV plant. Index Terms--Energy market, bidding strategy, photovoltaic power

  18. Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    1 Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids Yogesh Simmhan, prasanna}@usc.edu I. INTRODUCTION Smart Power Grids exemplify an emerging class of Cyber Physical-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor

  19. TRANSPORTATION ENERGY FORECASTS AND ANALYSES FOR THE 2009

    E-Print Network [OSTI]

    Page Manager FOSSIL FUELS OFFICE Mike Smith Deputy Director FUELS AND TRANSPORTATION DIVISION Melissa, Weights and Measurements/Gary Castro, Allan Morrison, John Mough, Ed Williams Clean Energy FuelsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS AND ANALYSES FOR THE 2009 INTEGRATED

  20. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    bid is computed by exploiting the forecast energy price for the day ahead market, the historical wind renewable energy resources, such as wind and photovoltaic, has grown rapidly. It is well known the problem of optimizing energy bids for an independent Wind Power Producer (WPP) taking part