Sample records for year energy sources

  1. Energy Sources: Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | DepartmentSource |  Why Hydrogen? * Fossil

  2. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy, a growing source of clean, renewable American power. October 17, 2014 Passive solar design uses carefully designed overhangs and reflective coatings on windows, exterior...

  3. Computerized Energy Information Sources

    E-Print Network [OSTI]

    Gordon, D.

    1979-01-01T23:59:59.000Z

    Many computerized files of energy- and energy conservation-related information are currently available through commercial and governmental sources such as Lockheed Information Systems, System Development Corporation, and DOE/RECON. Private...

  4. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    its final 90-day report on recommendations to reduce the environmental impacts from shale gas production to Energy Secretary Steven Chu. Earlier this year, President Obama...

  5. Energy sources for Nigeria

    SciTech Connect (OSTI)

    Okoroji, C.E.I.

    1982-09-01T23:59:59.000Z

    A public consensus has developed on the need for national energy policies and better planning in the utilization of energy resources in Nigeria. A look at Nigeria's energy future is timely as a period of rapid technological growth and industrial development begins. At the present time, Nigeria exports a relatively high percentage (92%) of the petroleum produced annually. In addition, about 95% of all produced natural gas is flared. Only a relatively minor fraction of the coal produced is used and the rest exported to West African countries. Water power in Nigeria is not yet fully developed. Although the deposits of uranium and oil sand may be substantial, the reserves are not currently known. The proportions in which mineral fuels are used are not related to their relative abundance. Based on present production rates, domestic reserves of petroleum will last 20 years, those of natural gas 63 years, and those of coal 1503 years. Nigeria is not currently and is not likely to become self-sufficient in terms of energy requirements. During the past decade, Nigeria's population has increased by 28.4%. Of vital concern for the immediate future in Nigeria are the demands on energy consumption and mineral resources resulting from increasing population pressure.

  6. Alternative Energy Sources -- An Interdisciplinary Module for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Energy Sources -- An Interdisciplinary Module for Energy Education Alternative Energy Sources -- An Interdisciplinary Module for Energy Education Find activities...

  7. Department of Energy - Energy Sources

    Broader source: Energy.gov (indexed) [DOE]

    295 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

  8. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    has launched the Energy Data Initiative (EDI). May 17, 2012 The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. |...

  9. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 13, 2013 Energy Analysis Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy...

  10. Alternative Energy Sources Myths and Realities

    E-Print Network [OSTI]

    Youngquist, Walter

    1998-01-01T23:59:59.000Z

    Alternative Energy Sources - Myths and Realities Walterneed to think about alternative energy sources; the worlddepletion of oil? Alternative energy sources can be divided

  11. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    means strengthening the economy while protecting the environment. This activity book for all ages promotes energy awareness, with facts on different types of energy and a...

  12. THE ONLY SOURCE OF ENERGY

    E-Print Network [OSTI]

    Calvin, Genevieve J.

    2011-01-01T23:59:59.000Z

    past due that we use the sun's energy on a current basis andof photosynthesis of energy (the sun) still of mil Teniaenergy farm" with the sunshine as the source. The sugar cane captures the sun,

  13. Alternate sources of energy

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    Eleven papers are included. A separate abstract was prepared for each for Energy Research Abstracts (ERA); seven were selected for Energy Abstracts for Policy Analysis (EAPA).

  14. Alternative Energy Sources - An Interdisciplinary Module for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources - An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy Education Below is information about the...

  15. Energy Sources | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease

  16. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    of the "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, 2008 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI)...

  17. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    Of the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association...

  18. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-4078P. Renewable Systems & Energy Infrastructure | Solar Programs Sandia mechanical technologist...

  19. Program Year 2008 State Energy Program Formula

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) State Energy Program (SEP), SEP Program Guidance Fiscal Year 2008, Program Year 2008, energy efficiency and renewable energy programs in the states, DOE Office of Energy Efficiency and Renewable Energy

  20. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 inJohn Schueler John SchuelerDepartment ofof the

  1. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 inJohn Schueler John SchuelerDepartment ofof theOf

  2. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewableIndustrialenergy

  3. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: SOURCE CATALOG

    SciTech Connect (OSTI)

    Wright, E. L.; Chen, X. [UCLA Physics and Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States); Odegard, N.; Hill, R. S.; Weiland, J. L. [Adnet Systems, Inc., 7515 Mission Dr., Suite A100, Lanham, MD 20706 (United States); Bennett, C. L.; Gold, B.; Larson, D. [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Hinshaw, G.; Wollack, E.; Kogut, A. [Code 665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jarosik, N.; Page, L.; Dunkley, J. [Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544-0708 (United States); Komatsu, E. [Department of Astronomy, University of Texas, Austin, 2511 Speedway, RLM 15.306, Austin, TX 78712 (United States); Nolta, M. R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George St., Toronto, ON M5S 3H8 (Canada); Spergel, D. N. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544-1001 (United States); Halpern, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Limon, M. [Columbia Astrophysics Laboratory, 550 W. 120th St., Mail Code 5247, New York, NY 10027-6902 (United States); Meyer, S. S. [Departments of Astrophysics and Physics, KICP and EFI, University of Chicago, Chicago, IL 60637 (United States)], E-mail: wright@astro.ucla.edu (and others)

    2009-02-15T23:59:59.000Z

    We present the list of point sources found in the Wilkinson Microwave Anisotropy Probe (WMAP) five-year maps. The technique used in the first-year and three-year analyses now finds 390 point sources, and the five-year source catalog is complete for regions of the sky away from the Galactic plane to a 2 Jy limit, with SNR >4.7 in all bands in the least covered parts of the sky. The noise at high frequencies is still mainly radiometer noise, but at low frequencies the cosmic microwave background (CMB) anisotropy is the largest uncertainty. A separate search of CMB-free V-W maps finds 99 sources of which all but one can be identified with known radio sources. The sources seen by WMAP are not strongly polarized. Many of the WMAP sources show significant variability from year to year, with more than a 2:1 range between the minimum and maximum fluxes.

  4. 10 years and 20,000 sources: the offsite source recovery project

    SciTech Connect (OSTI)

    Whitworth, Julia R [Los Alamos National Laboratory; Abeyta, Cristy L [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Sealed source recovery was initially considered a waste management activity, as evidenced by its initial organization under the Department of Energy's (DOE's) Environmental Management (EM) program. After the terrorist attacks of 2001, however, the interagency community began to recognize the threat posed by excess and unwanted radiological material, particularly those that could not be disposed at the end of their useful life. After being transferred to the National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might be a 'national security consideration.' This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as cooperative projects with the Council on Radiation Control Program Directors (CRCPD) and involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed.

  5. Alternative Energy Sources -- An Interdisciplinary Module for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources - An Interdisciplinary Module for Energy Education Grades: 5-8 Topic: Energy Basics, Wind Energy, Solar Owner: Earth Science Department at the University of Northern...

  6. E Source | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open EnergyProjectDraper,NCNH)E ON Jump to:Source

  7. Offsite source recovery project - ten years of sealed source recovery and disposal

    SciTech Connect (OSTI)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Mike [Los Alamos National Laboratory; Witkowski, Ioana [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Cuthbertson, A [NNSA

    2010-01-01T23:59:59.000Z

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources (this number has since increased to more than 23,000). This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their special form certifications or fall out of regular use. As OSRP has collected and stored sealed sources, initially using 'No Path Forward' waste exemptions for storage within the Department of Energy (DOE) complex, it has consistently worked to create disposal pathways for the material it has recovered. The project was initially restricted to recovering sealed sources that would meet the definition of Greater-than-Class-C (GTCC) low-level radioactive waste, assisting DOE in meeting its obligations under the Low-level Radioactive Waste Policy Act Amendments (PL 99-240) to provide disposal for this type of waste. After being transferred from DOE-Environmental Management (EM) to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as GTCC when it became waste, but also any other materials that might constitute a 'national security consideration.' It was recognized at the time that the GTCC category was a waste designation having to do with environmental consequence, rather than the threat posed by deliberate or accidental misuse. The project faces barriers to recovery in many areas, but disposal continues to be one of the more difficult to overcome. This paper discusses OSRP's disposal efforts over its 10-year history. For sources meeting the DOE definition of 'transuranic,' OSRP has achieved many milestones, including defense determinations for various isotopes, a WIPP RCRA permit modification to accommodate headspace gas sampling requirements, and approval of a peer-reviewed non-assay radiological characterization methodology. For non-transuranic sources, which OSRP began to recover in 2004, OSRP has achieved NEP A coverage for storage and implemented consolidated storage at both DOE and commercial locations, as well as completing several specific disposal operations. The closure of the Barnwell low-level waste disposal site in 2008 has left 36 states with absolutely no commercial disposal pathway for most sealed sources, increasing the demands on OSRP. This and other current challenges and future work will also be discussed.

  8. BrightSource Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind- GeradoraBorealBradBrightSource

  9. Office of Energy Efficiency and Renewable Energy Fiscal Year...

    Energy Savers [EERE]

    Energy Saving Homes, Buildings, and Manufacturing Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Energy Saving Homes, Buildings, and...

  10. Office of Energy Efficiency and Renewable Energy Fiscal Year...

    Office of Environmental Management (EM)

    Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation Office of Energy Efficiency and...

  11. Energy Secretary Highlights One-Year Anniversary of the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Highlights One-Year Anniversary of the Energy Policy Act of 2005 at Iowa Wind Turbine Facility Energy Secretary Highlights One-Year Anniversary of the Energy Policy Act of 2005 at...

  12. RENEWABLE ENERGY SOURCES Antonia V. Herzog

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , Geothermal Energy, Hydropower, Wind Energy, Climate Change, Clean Energy Technologies, Learning Curve, Market Impacts 5.5. Conclusions 6. Geothermal Energy 6.1. Introduction 6.2. Capacity and Potential 61 RENEWABLE ENERGY SOURCES Antonia V. Herzog Timothy E. Lipman Daniel M. Kammen Energy

  13. Lesson 2: Energy Sources Overview

    E-Print Network [OSTI]

    Chen, Po

    Earth's internal heat; solar energy from the Sun; gravitaDonal energy nuclear fusion in the Sun that strikes the Earth; )dal energy; external gravitaDonal energy associated with the movement of planetary bodies in the Sun

  14. Sources: Energy Information Administration, Form EIA-182,

    U.S. Energy Information Administration (EIA) Indexed Site

    Sources: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report"; Form EIA-856, "Monthly Foreign Crude Oil Acquisition Report"; and Form EIA-14,...

  15. Projet TESEER Thermoelectric micro Energy Source

    E-Print Network [OSTI]

    Baudoin, Genevive

    Projet TESEER Thermoelectric micro Energy Source Enhanced by Electromagnetic Radiation Participants of silicon to be used as a hot-spot for a thermoelectric element. Applications also exists for PV cells) Thermoelectric micro Energy Source Enhanced by Electromagnetic Radiation Objectifs Le projet TESEER consiste

  16. Power conditioning system for energy sources

    DOE Patents [OSTI]

    Mazumder, Sudip K. (Chicago, IL); Burra, Rajni K. (Chicago, IL); Acharya, Kaustuva (Chicago, IL)

    2008-05-13T23:59:59.000Z

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  17. THE ONLY SOURCE OF ENERGY

    E-Print Network [OSTI]

    Calvin, Genevieve J.

    2011-01-01T23:59:59.000Z

    ocean thermal gradients); on absorptive materials (solar cells and similar collectors); and that unparallei led factory for energy conversion,

  18. THE ONLY SOURCE OF ENERGY

    E-Print Network [OSTI]

    Calvin, Genevieve J.

    2011-01-01T23:59:59.000Z

    ocean thermal gradients); on absorptive materials (solar cells and similar collectors); and that unparallei led factory for energy

  19. Calendar Year 2009 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    on the Audit of National Security Technologies, LLC Costs Claimed under Department of Energy Contract No. DE-AC52-06NA25946 for Fiscal Year 2007 May 6, 2009 Audit Report: IG-0815...

  20. Calendar Year 1997 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 1, 1997 Audit Report: CR-FS-97-02 Audit of the Department of Energy's Consolidated Financial Statements for Fiscal Year 1996 April 24, 1997 Audit Report: WR-FS-97-04 Report on...

  1. Particle production sources at LHC energies

    E-Print Network [OSTI]

    Georg Wolschin

    2013-02-18T23:59:59.000Z

    Particle production sources at RHIC and LHC energies are investigated in pseudorapidity space. A nonequilibrium-statistical relativistic diffusion model (RDM) with three sources is applied to the analysis of charged-hadron distributions in AuAu collisions at RHIC energies, in PbPb collisions at the current LHC energy of 2.76 TeV, in pPb at 5.02 TeV, and in pp. The size of the midrapidity source relative to the fragmentation sources in heavy-ion collisions is investigated as function of the incident energy. At LHC energies, the midrapidity value is mostly determined by particle production from gluon-gluon collisions.

  2. Energy sources: conservation and renewables

    SciTech Connect (OSTI)

    Hafemeister, D.; Kelly, H.; Levi, B. (eds.)

    1985-01-01T23:59:59.000Z

    The physics community conducted a summer study at Princeton University on the efficient use of energy during the summer of 1974; the AIP book containing this study (AIP 25, 1975) has been the largest selling AIP Conferences Series book to date. The subject 1985 AIP conference proceedings is published under the following headings: technical progress and policy options (5 chapters); energy and buildings (7 chapters), windows, lighting, appliances, and HVAC (5 chapters); industrial and automotive (2 chapters), and electricity and renewables (9 chapters). Also, 10 appendices relevant to the subject are included. A separate abstract was prepared for each of the 28 chapters for the Energy Data Base (EDB); 10 are included in Energy Research Abstracts (ERA) and 21 in Energy Abstracts for Policy Analysis (EAPA).

  3. Energy sources for a secure (?) and clean (?) energy future

    E-Print Network [OSTI]

    Hughes, Larry

    , International Energy Outlook 2008 #12;Where will the oil come from? By 2015 the world will need another four: Pesticides Plastics Cosmetics Asphalt Source: IEA, Key World Energy Statistics, 2006 #12;Oil production 2005 2006 2007 Billion(109)barrels Production Consumption Source: BP Statistical Review of World Energy

  4. SourceGas- Energy Efficiency Programs (Arkansas)

    Broader source: Energy.gov [DOE]

    SourceGas offers its Arkansas residential and commercial customers mail-in rebates to help replace old, out-dated equipment with new energy- and natural gas-saving equipment. Customers must...

  5. Strategic Sourcing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochasticPlan FY14-FY18StrategicLizIII

  6. Renewable energy generation sources have

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliability Technology earnsRememberingFeature energy

  7. Alternative Energy Sources Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,EnergyInfrastructure | OpenServices Jump to:City,

  8. Source Selection | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite ScreeningSound Oil CompanySelection

  9. Photovoltaic energy: Contract list, fiscal year 1990

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    The federal government has conducted the National Photovoltaics Program since 1975. Its purpose is to provide focus, direction, and funding for the development of terrestrial photovoltaic technology as an energy option for the United States. In the past, a summary was prepared each year to provide an overview of the government-funded activities within the National Photovoltaics Program. Tasks conducted in-house by participating national laboratories or under contract by industrial, academic, and other research institutes were highlighted. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed by Sandia National Laboratory or the Solar Energy Research Institute during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory, projects are listed alphabetically by project area and then by subcontractor name.

  10. Understanding Earth's Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18 MillionPresident Obama's FY 2013 Budget

  11. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect (OSTI)

    Obozov, A.J. [Project KUN (Kyrgyzstan); Loscutoff, W.V. [National Renewable Energy Lab., Golden, CO (United States)

    1998-07-01T23:59:59.000Z

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  12. Keynote Address National Seminar on Alternative Energy Sources

    E-Print Network [OSTI]

    Banerjee, Rangan

    Keynote Address National Seminar on Alternative Energy Sources Prof. Rangan Banerjee Energy Systems that there is a real need for alternative energy sources. What do we understand by Alternative Energy Sources? In order Consumption 1997-98 Keynote address at Two days National Seminar on Alternative Energy Sources, 27-28 Aug

  13. Publication of "Year in Review 2010: Energy Infrastructure Events...

    Energy Savers [EERE]

    Publication of "Year in Review 2010: Energy Infrastructure Events and Expansions" Publication of "Year in Review 2010: Energy Infrastructure Events and Expansions" August 31, 2011...

  14. Year-in-Review: 2014 Energy Infrastructure Events and Expansions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Year-in-Review: 2014 Energy Infrastructure Events and Expansions Report Now Available (May 2015) Year-in-Review: 2014 Energy Infrastructure Events and Expansions Report Now...

  15. New Years Revolutions | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-ZeroNew Wave Power ProjectTom WalshYears

  16. Property:EndYear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolveRtoSpp Jump to:Ease of ApplicationEndYear Jump

  17. Oil shale as an energy source in Israel

    SciTech Connect (OSTI)

    Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-01-01T23:59:59.000Z

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  18. Assessment of emerging energy sources. Summary report

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    This report summarizes the results of a broad review and analysis of the commercialization potential for eight emerging sources of energy: tight gas sands; heavy oil; methane from geopressured aquifers; oil shale; enhanced oil recovery; advanced coal mining technologies; and underground coal gasification. Each source of energy or technology was evaluated with respect to six factors affecting commercialization: size and characteristics of resource; technical and economic performance; relevant energy market growth rates; logistical considerations; development lead times; and regulatory and institutional factors. The evaluation was based on a review of existing literature, extensive interviews with industry experts and Booz-Allen and Hamilton's overall assessment of the degree to which these factors would constrain commercial development. In addition estimates were made of supply potential from each emerging energy. This report summarizes Booz Allen's findings with respect to these factors.

  19. U.S. energy independence in 15 years

    SciTech Connect (OSTI)

    Rose, Chris R [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Establish U.S. energy independence within 15 years -- This is a enormous systems engineering challenge to thoroughly analyze the present mix of power generation, energy consumption in all sectors such as transportation, industrial, commercial and residential, and devise new technologies to assist the process to independence. At this level, all citizens will be affected, requiring not only effective technologies, but superior cost/benefit ratios and effective free market interactions. With U.S. energy independence, world markets will be influenced. It will be necessary to develop or modify new energy sources, possibly including storage, and adjust or modify energy consumption profiles. Figure 1 shows the expected transition from present-day energy consumption based on both domestic and imported energy. During the 15 year period, the U.S. transitions to energy independence, eliminating imports, and perhaps reduces total energy consumption due to increased efficiency. In the future, U.S. energy consumption is able to grow in accordance with national policies and enhanced domestic capabilities. At the present time, the primary energy import is hydrocarbon products -- primarily oil. Of that imported oil, most of it is used for transportation. In order to reduce the need for imported oil, the U.S. will need to revamp its energy supply and energy consumption mixes. This change in business and usage in the U.S. will require enonnous effort on the part of many organizations and individuals. Los Alamos National Laboratory (LANL) will take the technological lead on this grand challenge. Nearly all directorates, technical, planning and policy capabilities will be brought together and focused on this objective. A simplified chart of the interactions within LANL is shown in Figure 3. Given the enonnous undertaking of U.S. energy independence, the vast engineering, technological and science-based capabilities of LANL will work together performing systems engineering, applied research and development, while working with policy makers, taking into account environmental, free market, and climate issues and constraints.

  20. ORIGINAL ARTICLE Pneumatic Energy Sources for Autonomous

    E-Print Network [OSTI]

    Wood, Robert

    research projects using combustion (methane and butane) and monopropellant decomposition (hydrogen per extensive system-level development. Hydrogen peroxide decomposition requires not only few additional parts mobile robotics grows, the most common energy source remains a tether to a sta- tionary compressor. While

  1. Energy Sources Used for Fusion Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Energy Sources Used for Fusion Welding Thomas W. Eagar, Massachusetts Institute of Technology reliability. The Section "Fusion Welding Processes" in this Volume provides details about equipment and systems for the major fusion welding proc- esses. The purpose of this Section of the Volume is to discuss

  2. U.S. Energy Information Administration (EIA) - Source

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Source - Middle Atlantic XLS Table 2.3. Energy Consumption by Sector and Source - East North Central XLS Table 2.4. Energy Consumption by Sector and Source - West North Central...

  3. Source Selection Guide | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverview - 2015 Source

  4. ThermaSource Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands, Texas: EnergyThermaSource Inc

  5. Optimal Power Allocation for Renewable Energy Source

    E-Print Network [OSTI]

    Sinha, Abhinav

    2011-01-01T23:59:59.000Z

    Battery powered transmitters face energy constraint, replenishing their energy by a renewable energy source (like solar or wind power) can lead to longer lifetime. We consider here the problem of finding the optimal power allocation under random channel conditions for a wireless transmitter, such that rate of information transfer is maximized. Here a rechargeable battery, which is periodically charged by renewable source, is used to power the transmitter. All of above is formulated as a Markov Decision Process. Structural properties like the monotonicity of the optimal value and policy derived in this paper will be of vital importance in understanding the kind of algorithms and approximations needed in real-life scenarios. The effect of curse of dimensionality which is prevalent in Dynamic programming problems can thus be reduced. We show our results under the most general of assumptions.

  6. Kansas Energy Sources: A Geological Review

    SciTech Connect (OSTI)

    Merriam, Daniel F., E-mail: dmerriam@kgs.ku.edu [University of Kansas (United States); Brady, Lawrence L.; Newell, K. David [University of Kansas, Kansas Geological Survey (United States)

    2012-03-15T23:59:59.000Z

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U.S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer.

  7. Ten Year Site Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewable Energy, U.S. DepartmentTechnology Ten Year Site Plans Ten

  8. Electric Power From Ambient Energy Sources

    SciTech Connect (OSTI)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03T23:59:59.000Z

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  9. Open Source Software Update | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergyOn OctoberOpen Source Software

  10. Power Sources Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental Market Size HomeSources Inc Jump

  11. Property:HeatSource | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate Jump to:Property Edit withpurpose ofHeatSource

  12. NRG Energy, Inc. (BrightSource) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    jobs. Impact When completed in late 2013, Ivanpah will nearly double the amount of solar thermal energy produced in the U.S. in previous years. By harnessing the Mojave Desert's...

  13. Energy Infrastructure Events and Expansions Year-in-Review 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Events and Expansions Year-in-Review 2011 Available (April 2012) Energy Infrastructure Events and Expansions Year-in-Review 2011 Available (April 2012) May 1, 2012 -...

  14. Calendar Year 2010 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    over the Department of Energy's American Recovery and Reinvestment Act - Michigan State Energy Program September 23, 2010 Audit Report: IG-0840 The Department of Energy's Audit...

  15. Calendar Year 2013 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy's Management of Contractor Responsibility Determinations August 26, 2013 Audit Report: DOEIG-0892 The Department of Energy's Administration of Energy Savings...

  16. State Energy Program Fiscal Year 2006 Formula Grant Guidance

    Broader source: Energy.gov (indexed) [DOE]

    STATE ENERGY PROGRAM NOTICE 06-1 EFFECTIVE DATE: January 6, 2006 SUBJECT: PROGRAM YEAR 2006 STATE ENERGY PROGRAM FORMULA GRANT GUIDANCE PURPOSE To establish grant guidance and...

  17. State Energy Program Formula Grant Guidance Program Year 2007

    Broader source: Energy.gov (indexed) [DOE]

    STATE ENERGY PROGRAM FORMULA GRANT GUIDANCE PROGRAM YEAR 2007 STATE ENERGY PROGRAM NOTICE 07-01 EFFECTIVE DATE: April 3, 2007 PURPOSE To establish grant guidance and management...

  18. New Year, New Certification Opportunities for Home Energy Workers...

    Broader source: Energy.gov (indexed) [DOE]

    today to find out how to get certified as a BPI home energy professional. Addthis Related Articles New Year, New Certification Opportunities for Home Energy Workers Accredited...

  19. Year-in-Review: 2012 Energy Infrastructure Events and Expansions...

    Broader source: Energy.gov (indexed) [DOE]

    in the face of both manmade and natural disasters, visit the Energy Assurance page. Year-in-Review: 2012 Energy Infrastructure Events and Expansions More Documents &...

  20. Year-in-Review: 2013 Energy Infrastructure Events and Expansions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Infrastructure Events and Expansions Now Available (May 2014) Year-in-Review: 2013 Energy Infrastructure Events and Expansions Now Available (May 2014) May 12, 2014 -...

  1. Year-in-Review: 2012 Energy Infrastructure Events and Expansions...

    Energy Savers [EERE]

    2 Energy Infrastructure Events and Expansions Now Available (July 2013) Year-in-Review: 2012 Energy Infrastructure Events and Expansions Now Available (July 2013) July 26, 2013 -...

  2. Crops sought as high chemical energy source

    SciTech Connect (OSTI)

    Rawls, R.

    1983-08-29T23:59:59.000Z

    The U.S. Dept of Agriculture's Agricultural Research Service is searching for native plants that are not now being grown as commercial crops but that could be grown profitably to produce easily extractable, high-energy organic products. Usually these products are hydrocarbons or whole plant oils; protein content and plant fiber content are also considered. One such plant being investigated is smooth sumac, a woody perennial that is native to North America and is a particularly good source of polyphenols, resins and oils.

  3. State Energy Program Program Year 2014 Administrative and Legal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center State Energy Program (SEP) Program Year 2014 Formula Awards SEP-ALRD-2014 CFDA Number: 81.041, State Energy Program Issue Date: 3192014 SEP Program Year Ending...

  4. Year-in-Review: 2011 Energy Infrastructure Events and Expansions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Energy Infrastructure Events and Expansions (April 2012) Year-in-Review: 2011 Energy Infrastructure Events and Expansions (April 2012) The 2011 Year-in-Review (YIR) provides a...

  5. "Turn-Key" Open Source Software Solutions for Energy Management...

    Energy Savers [EERE]

    "Turn-Key" Open Source Software Solutions for Energy Management of Small to Medium Sized Buildings (DE-FOA-0000822) "Turn-Key" Open Source Software Solutions for Energy Management...

  6. U.S. Energy Information Administration (EIA) - Source

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    XLS Table 18.3. Energy-Related Carbon Dioxide Emissions by Sector and Source - East North Central XLS Table 18.4. Energy-Related Carbon Dioxide Emissions by Sector and Source...

  7. Energy Recovery Linacs for Light Source Applications

    SciTech Connect (OSTI)

    George Neil

    2011-04-01T23:59:59.000Z

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  8. Fusion: an energy source for synthetic fuels

    SciTech Connect (OSTI)

    Fillo, J A; Powell, J; Steinberg, M

    1980-01-01T23:59:59.000Z

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  9. First Year Analysis of Industrial Energy Conservation in Texas A&M's Energy Analysis and Diagnostic Center Program

    E-Print Network [OSTI]

    Grubb, M. K.; Heffington, W. M.

    energy and, where appropriate, the use of alternate (less expensive) energy sources in the operation of small- and medium-size manufacturing The Energy Analysis and Diagnostic Center program is financially supported by the Office of Industrial...FIRST YEAR ANALYSIS OF INIXJSTRIAL ENERGY crNSERVATIOO IN TEXAS A&M' S ENERGY ANALYSIS AND DIAEnergy Analysis and Diagnostic Center Mechanical Engineering Department Texas A&M University COllege Station...

  10. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    E-Print Network [OSTI]

    Anders, Andre

    2010-01-01T23:59:59.000Z

    a high current ion source for ultra-low energy ions has beenthe Department of Energy ULTRA-LOW-ENERGY HIGH-CURRENT IONedited by A. Anders. ULTRA-LOW-ENERGY HIGH-CURRENT ION

  11. Property:EnergyAccessPowerSource | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolveRtoSpp Jump to:Ease ofEnergyAccessPowerSource

  12. Wonder Source Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba,WisconsinWonder Source Energy

  13. Calendar Year 2011 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Department of Energy's American Recovery and Reinvestment Act - California State Energy Program July 21, 2011 Audit Report: OAS-RA-L-11-10 Department of Energy's Controls...

  14. Calendar Year 2012 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels April 23, 2012 Audit Report: OAS-RA-12-09 The Department of Energy's Energy Efficiency and Conservation...

  15. Calendar Year 2010 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Uranium Enrichment Workers: Questions Regarding Equity in Pension Benefits July 1, 2010 Audit Report: IG-0835 The Department of Energy's Opportunity for Energy Savings Through...

  16. Calendar Year 2012 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Report: IG-0866 Integrated Safety Management at Sandia National Laboratories May 25, 2012 Audit Report: IG-0865 Efforts by the Department of Energy to Ensure Energy-Efficient...

  17. Calendar Year 1996 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Department of Energy's User Facilities August 19, 1996 Audit Report: IG-0394 Special Audit of Pension Plans for Department of Energy Contract Employees of the University of...

  18. An Evaluation of State Energy Program Accomplishments: 2002 Program Year

    SciTech Connect (OSTI)

    Schweitzer, M.

    2005-07-13T23:59:59.000Z

    The U.S. Department of Energy's (DOE's) State Energy Program (SEP) was established in 1996 by merging the State Energy Conservation Program (SECP) and the Institutional Conservation Program (ICP), both of which had been in existence since 1976 (U.S. DOE 2001a). The SEP provides financial and technical assistance for a wide variety of energy efficiency and renewable energy activities undertaken by the states and territories. SEP provides money to each state and territory according to a formula that accounts for population and energy use. In addition to these ''Formula Grants'', SEP ''Special Project'' funds are made available on a competitive basis to carry out specific types of energy efficiency and renewable energy activities (U.S. DOE 2003c). The resources provided by DOE typically are augmented by money and in-kind assistance from a number of sources, including other federal agencies, state and local governments, and the private sector. The states SEP efforts include several mandatory activities, such as establishing lighting efficiency standards for public buildings, promoting car and vanpools and public transportation, and establishing policies for energy-efficient government procurement practices. The states and territories also engage in a broad range of optional activities, including holding workshops and training sessions on a variety of topics related to energy efficiency and renewable energy, providing energy audits and building retrofit services, offering technical assistance, supporting loan and grant programs, and encouraging the adoption of alternative energy technologies. The scope and variety of activities undertaken by the various states and territories is extremely broad, and this reflects the diversity of conditions and needs found across the country and the efforts of participating states and territories to respond to them. The purpose of this report is to present estimates of the energy and cost savings and emissions reductions associated with SEP activities performed by the states during the 2002 program year, based on primary data provided by the states themselves. This is the second systematic evaluation of SEP accomplishments performed by Oak Ridge National Laboratory (ORNL) for DOE. A report documenting the findings of the first study was published in January 2003 (Schweitzer et.al., 2003).

  19. Peat as an alternaive energy source

    SciTech Connect (OSTI)

    Punwani, D.V.; Mensinger, M.C.

    1981-01-05T23:59:59.000Z

    Peat remains a virtually unexploited energy source in the US in spite of large resources and a long history of use as a fuel in other countries. Areas that lack other fossil fuels are often the site of large peat lands. US resources are estimated at 1443 quadrillion Btus, with over half located in Alaska outside the permanent frostline. The Soviet Union, with over four times the US resource, is the largest commercial user. Harvesting techniques include dry and wet methods that utilize both thermal and mechanical dewatering. Peat is well suited for gasification by several processes, including the PEAT GAS process now being tested. Harvested peatlands can be made into productive farm and forest land if proper techniques are used to preserve water and air quality. (DCK)

  20. Calendar Year 2009 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Audit Letter Report: OAS-L-09-12 Agreed-Upon Procedures for Federal Payroll July 20, 2009 Audit Report: IG-0817 The Department of Energy's Opportunity for Energy Savings Through...

  1. Calendar Year 2011 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Department of Energy's American Recovery and Reinvestment Act - New JerseyState Energy Program April 1, 2011 Audit Report: OAS-RA-L-11-06 Department's Management of Cloud...

  2. Calendar Year 2011 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3, 2011 Audit Report: IG-0849 The Department of Energy's Loan Guarantee Program for Clean Energy Technologies March 2, 2011 Audit Report: OAS-RA-L-11-04 The Department's...

  3. Calendar Year 2012 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Department of Energy's American Recovery and Reinvestment Act - Missouri State Energy Program July 20, 2012 Audit Report: OAS-L-12-08 Y-12 National Security Complex's...

  4. Energy Procurement Strategies in the Presence of Intermittent Sources

    E-Print Network [OSTI]

    Nair, Jayakrishnan U.

    Energy Procurement Strategies in the Presence of Intermittent Sources Jayakrishnan Nair Computing for the optimal energy procurement strategy and study the impact of increasing renewable penetration, 91125, adamw@caltech.edu The increasing penetration of intermittent, unpredictable renewable energy

  5. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01T23:59:59.000Z

    energy demand. The energy consumption mix i n China'sstructure and product mix in energy-intensive industries;Table 4). The sector's mix of energy sources that year was

  6. Definition et unites Sources d'energie primaire

    E-Print Network [OSTI]

    Ravelet, Florent

    Definition et unites Sources d'energie primaire L'energie dans une perspective historique Etat Laboratoire DynFluid, Arts et Metiers-ParisTech 19 fevrier 2014 F. Ravelet Energies #12;Definition et unit Energies #12;Definition et unites Sources d'energie primaire L'energie dans une perspective historique

  7. International Nuclear Energy Research Initiative, Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hyun Chul Lee, Korea Atomic Energy Research Institute Collaborators: Seoul National University Program Area: Reactor Concepts RD&D Project Start Date: October 2008 Project...

  8. Calendar Year 1997 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Site's Quality Control Program for Groundwater Sampling May 7, 1997 Audit Report: IG-0404 Audit of Department of Energy Contractor Occupational Injury and Illness Reporting...

  9. Calendar Year 2000 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Implementation of Integrated Business Information Systems Within the Department of Energy March 23, 2000 Audit Report: WR-B-00-04 Staff Augmentation Workers at Sandia...

  10. Calendar Year 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 7, 2014 Audit Report: DOEIG-0909 Implementation of Recommendations from the January 2012 Independent Consultant's Review of the Department of Energy Loan and Loan Guarantee...

  11. Calendar Year 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Implementation of Voice over Internet Protocol Telecommunications Networks June 17, 2014 Audit Report: OAS-RA-14-04 Selected Activities of the Office of Energy Efficiency and...

  12. Calendar Year 2001 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    December 21, 2001 Special Report: IG-0538 Management Challenges at the Department of Energy December 21, 2001 Audit Report: IG-0537 Telecommunications Infrastructure December 20,...

  13. Three Year Rolling Timeline | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48HPublicforManagement andEnergy Three

  14. Alternative Energy Sources Myths and Realities

    E-Print Network [OSTI]

    Youngquist, Walter

    1998-01-01T23:59:59.000Z

    Tidal power Fusion Ocean thermal energy conversion Need Forelectricity. Ocean Thermal energy Conversion (OTEC) Within

  15. IPCC Special Report on Renewable Energy Sources and Climate Change

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Chapter 4 Geothermal Energy Chapter 5 Hydropower Chapter 6 Ocean Energy Chapter 7 Wind Energy Chapter 8#12;IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Edited Summary Chapter 1 Renewable Energy and Climate Change Chapter 2 Bioenergy Chapter 3 Direct Solar Energy

  16. Photovoltaic Energy Program overview, fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

  17. Calendar Year Reports | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisition »Department

  18. Calendar Year 1998 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 3, 1998 Audit Report: IG-0426 Disposal of Low-Level and Low-Level Mixed Waste August 20, 1998 Audit Report: IG-0425 The U.S. Department of Energy's Facility Reuse at the...

  19. Calendar Year 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2014 Audit Report: OAS-M-14-08 Management of Selected Advanced Research Projects Agency-Energy Projects August 6, 2014 Audit Report: DOEIG-0917 Management of the National...

  20. Calendar Year 1999 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of the U.S. Department of Energy's Counterintelligence Implementation Plan July 12, 1999 Audit Report: WR-B-99-05 Management of Laboratory Directed Research and Development at the...

  1. Calendar Year 2010 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Records August 27, 2010 Audit Letter Report: OAS-RA-L-10-09 Office of Science's Energy Frontier Research Centers August 23, 2010 Audit Report: OAS-L-10-08 National...

  2. Calendar Year 1999 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1999 Inspection Report: IG-0442 Inspection of Selected Issues Regarding the Department of Energy Accident Investigation Program March 16, 1999 Audit Report: WR-FS-99-01 Report On...

  3. Calendar Year 2007 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    INS-O-07-01 Review of Status of Prior Export Control Recommendations at the Departmentof Energy May 18, 2007 Audit Report: IG-0765 Voluntary Separation Program at the Idaho...

  4. Calendar Year 2003 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 2, 2003 Audit Report: OAS-L-03-17 Audit of the Distributed Energy Resources Program April 28, 2003 Audit Report: IG-0598 Status of the National Ignition Facility Project April...

  5. Calendar Year 2010 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Special Nuclear Material from Sandia National Laboratories-New Mexico January 8, 2010 Audit Report: OAS-L-10-01 Seismic Design of Nuclear Facilities within the Department of Energy...

  6. Calendar Year 2001 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fiber Optics October 15, 2001 Audit Report: CR-B-02-01 Fixed-Price Contracting for Department of Energy Cleanup Activities October 5, 2001 Audit Report: IG-0528 Stockpile...

  7. Calendar Year 1998 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Statistics Reporting and Presentation April 1, 1998 Audit Report: WR-B-98-02 The U.S Department Of Energy's Management Of Associated Western Universities Grant Program April...

  8. State Energy Program Formula Grant Guidance Program Year 2007

    Broader source: Energy.gov [DOE]

    This document provides instructions to the states for program year 2007 about how they should administer their DOE grants provided through the State Energy Program.

  9. Property:StartYear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon Twitter

  10. Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense New Ventures #12;What is OTEC? OTEC B fiOTEC Benefits: Large Renewable Energy Source 3-5 Terawatts Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion

  11. Multi-Year Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology Project OfficerTheasHow important0,Table

  12. Property:YearFounded | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This propertyVolume Jump to:s) JumpProperty Edit

  13. Alternative Carriers For Remote Renewable Energy Sources Using...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure...

  14. VOLTTRONTM as an Open Source Platform for Energy Management Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Tech VOLTTRON TM as an Open Source Platform for Energy Management Applications HVAC Controllers Lighting Controllers Lighting circuit(s) Plug load Controllers July 23,...

  15. Photovoltaic energy program overview: Fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

  16. National Renewable Energy Laboratory: 35 Years of Innovation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This brochure is an overview of NREL's innovations over the last 35 years. It includes the lab's history and a description of the laboratory of the future. The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE) primary national laboratory for renewable energy and energy efficiency. NREL's work focuses on advancing renewable energy and energy efficiency technologies from concept to the commercial marketplace through industry partnerships. The Alliance for Sustainable Energy, LLC, a partnership between Battelle and MRIGlobal, manages NREL for DOE's Office of Energy Efficiency and Renewable Energy.

  17. Calendar Year 2001 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar Year

  18. Calendar Year 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar Year2

  19. Calendar Year 2003 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar Year23

  20. Calendar Year 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical13 Calendar Year

  1. Calendar Year 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical13 Calendar Year4

  2. Secretary Moniz's First Year | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle SchoolPhysicsDeliveryforDepartmentAcademy ofFirst Year

  3. Energy projections to the year 2000

    SciTech Connect (OSTI)

    Not Available

    1981-07-01T23:59:59.000Z

    To supplement its national energy policy plan, DOE projected world and US energy supply, demand, and price through 2000. The three most important assumptions affecting DOE's predictions are world oil prices ($37-50/bbl in 1985, $41-68 in 1990, and $50-95 in 2000), US economic growth (2.3-3.8%/yr in 1985, 2.1-3.6% in 1990, and 2.0-3.0% in 2000), and the numerous factors that influence domestic production of various fuels. Compared with previous assessments, DOE's forecast is bright, with conservation cutting demand more effectively than expected. The study predicts steady increases in domestic production through 2000 and a gradual decline in net oil imports after 1985. DOE places total US gas supply (conventional, unconventional, and manufactured, plus net imports) at 19.9 trillion CF in 1985, 20.9 TCF in 1990, and 21.0 in 2000.

  4. altervative energy sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    altervative energy sources First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Lesson 2: Energy Sources...

  5. alternative energy sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy sources First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 An Alternative Source for Dark Energy...

  6. Advanced Photon Source Upgrade Project - Energy

    ScienceCinema (OSTI)

    Gibson, Murray; Chamberlain, Jeff; Young, Linda

    2013-04-19T23:59:59.000Z

    An upgrade to the Advanced Photon Source (announced by DOE - http://go.usa.gov/ivZ) will help scientists better understand complex environments such as in catalytic reactions.

  7. Energy-Efficient Sensing and Communication of Parallel Gaussian Sources

    E-Print Network [OSTI]

    Erkip, Elza

    Energy-Efficient Sensing and Communication of Parallel Gaussian Sources Xi Liu, Osvaldo Simeone to be operated in an energy-efficient manner in order to attain a satisfactory lifetime. Energy consumption efficiency [2] [3]. We refer to the energy cost associated with measurements and compression of information

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR7

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43 YEAR

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144 YEAR

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 2013

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 20138

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 201387

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558563

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR85573380 YEAR

  19. Sandia National Laboratories: domestic energy sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel and grid-scale energy applications offers several advantages over above-ground storage, says a recent Sandia study sponsored by the DOE Fuel Cell Technologies...

  20. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978) | Open EnergyPumps

  1. Electric Transmission One Year after the Energy Bill

    SciTech Connect (OSTI)

    Gray, Ed

    2006-08-15T23:59:59.000Z

    The Energy Policy Act of 2005 embodies numerous provisions that will increase investment in the electric transmission grid. Many actions have occurred in the first year of implementation that should strengthen the transmission system in the United States. (author)

  2. National Renewable Energy Laboratory 10 Year Site Plan FY 2007...

    Broader source: Energy.gov (indexed) [DOE]

    National Renewable Energy Laboratory 10 Year Site Plan FY 2007 - FY 2018 More Documents & Publications Facilities and Infrastructure Program FY 2016 Budget At-A-Glance EA-1440-S1:...

  3. SOURCE?

    Energy Savers [EERE]

    Department of Energy (DOE) in partnership with Lawrence Berkeley National Laboratory (LBNL), is an open-source code package designed to be a common, low-cost, standardized tool...

  4. Gamma Ray Bursts as Possible High Energy Sources

    E-Print Network [OSTI]

    Charles D. Dermer

    2005-12-06T23:59:59.000Z

    Gamma-ray bursts are known to be sources of high-energy gamma rays, and are likely to be sources of high-energy cosmic rays and neutrinos. Following a short review of observations of GRBs at multi-MeV energies and above, the physics of leptonic and hadronic models of GRBs is summarized. Evidence for two components in BATSE and EGRET/TASC data suggest that GRBs are sources of high-energy cosmic rays. GLAST observations will reveal the high-energy gamma-ray power and energy releases from GRBs, and will provide detailed knowledge of anomalous high-energy emission components, but confirmation of cosmic ray acceleration must await 100 TeV -- PeV neutrino detection from GRBs.

  5. Fossil Energy Fiscal Year 2012 Budget Request | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget Fossil Energy's

  6. Energy Production Over the Years | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | DocumentsElements ofin LogEnergy Production

  7. US Energy Production over the Years Data | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries | Department ofDepartmentChinaUPDATE:US Energy

  8. Save Energy at This Year's Family Reunion | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - Policy Advisor, Energy DepartmentAssessment ReportSiteEnergy

  9. Contributions of Renewable Energy Resources to Re-source Diversity

    E-Print Network [OSTI]

    Gross, George

    1 Contributions of Renewable Energy Resources to Re- source Diversity George Gross, Fellow, IEEE Resources, Environmental Attributes of Renewable Resources PANEL PRESENTATION SUMMARY HE myriad changes of renewable energy resources in meeting future energy needs. The dwindling oil supplies and their in- creasing

  10. 1 INTRODUCTION Alternative energy sources have increasingly gained

    E-Print Network [OSTI]

    Sandborn, Peter

    1 INTRODUCTION Alternative energy sources have increasingly gained the interest for governments it is required, is a major concern for alternative energy systems. Profits and environmental benefits, research institutes, academia, and industry in order to advance the penetration of sustainable energy

  11. BrightSource | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative Energy Technologies | OpenBrigham

  12. LightSource Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTNLianyungang

  13. Source Selection Guide | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely DeliveringSolid-State Lighting Recovery Chapter

  14. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978) | Open

  15. Blue Source LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotion Energy Jump to:Ng

  16. Colorado Nonpoint Source Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:Governor s Energy Office Jump to:

  17. Green Source Consulting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGoldenarticle isinEnergy,Green Shakti

  18. Agri Source Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills, California:

  19. Controlled Source Audio MT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|

  20. History of energy sources and their utilization in Nigeria

    SciTech Connect (OSTI)

    Ogunsola, O.I. (Dept. of Petroleum Engineering, Univ. of Port Harcourt, Port Harcourt (NG))

    1990-01-01T23:59:59.000Z

    Nigeria, a major oil producer, is rich in other energy sources. These include wood, coal, gas, tar sands, and hydro power. Although oil has been the most popular, some other energy sources have a longer history. This article discusses the historical trends in the production and utilization of Nigerian energy sources. Wood has the longest history. However,its utilization was limited to domestic cooking. Imported coal was first used in 1896, but it was not discovered in Nigeria until 1909 and was first produced in 1916. Although oil exploration started in 1901, it was first discovered in commercial quantity in 1956 and produced in 1958. Oil thereafter took over the energy scene from coal until 1969, when hydro energy was first produced. Energy consumption has been mainly from hydro. Tar sands account for about 55% of total proven non-renewable reserves.

  1. Resolve to Save Energy This Year | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| DepartmentReduce Hot Water UseComplexResolve to

  2. Property:EnergyAccessYearInitiated | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolveRtoSpp Jump to:EaseEnergyAccessWebsite

  3. Blind and non-blind source detection in WMAP 5-year maps

    E-Print Network [OSTI]

    M. Massardi; M. Lpez-Caniego; J. Gonzlez-Nuevo; D. Herranz; G. De Zotti; J. L. Sanz

    2008-10-14T23:59:59.000Z

    We have analyzed the efficiency in source detection and flux density estimation of blind and non-blind detection techniques exploiting the MHW2 filter applied to the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year maps. A comparison with the AT20G Bright Source Sample (Massardi et al. 2008), with a completeness limit of 0.5 Jy and accurate flux measurements at 20 GHz, close to the lowest frequency of WMAP maps, has allowed us to assess the completeness and the reliability of the samples detected with the two approaches, as well as the accuracy of flux and error estimates, and their variations across the sky. The uncertainties on flux estimates given by our procedure turned out to be about a factor of 2 lower than the rms differences with AT20G measurements, consistent with the smoothing of the fluctuation field yielded by map filtering. Flux estimates were found to be essentially unbiased except that, close to the detection limit, a substantial fraction of fluxes are found to be inflated by the contribution of underlying positive fluctuations. This is consistent with expectations for the Eddington bias associated to the true errors on flux density estimates. The blind and non-blind approaches are found to be complementary: each of them allows the detection of sources missed by the other. Combining results of the two methods on the WMAP 5-year maps we have expanded the non-blindly generated New Extragalactic WMAP Point Source (NEWPS) catalogue (Lopez-Caniego et al. 2007) that was based on WMAP 3-year maps. After having removed the probably spurious objects not identified with known radio sources, the new version of the NEWPS catalogue, NEWPS_5yr comprises 484 sources detected with a signal-to-noise ratio SNR>5.

  4. An Alternative Source for Dark Energy

    E-Print Network [OSTI]

    Wanas, M I

    2008-01-01T23:59:59.000Z

    In the present work, an alternative interpretation of the source of accelerated expansion of the Universe is suggested. A probable candidate is the interaction between the quantum spin of a moving particle and the torsion of space-time, produced by the background gravitational field of the Universe. This interaction has been suggested by the author in a previous work, with some experimental and observational evidences for its existence. It has been shown that this interaction gives rise to a repulsive force. The accelerated expansion of the Universe may give a further evidence on the existence of this interaction on the cosmological scale.

  5. An Alternative Source for Dark Energy

    E-Print Network [OSTI]

    M. I. Wanas

    2007-04-27T23:59:59.000Z

    In the present work, an alternative interpretation of the source of accelerated expansion of the Universe is suggested. A probable candidate is the interaction between the quantum spin of a moving particle and the torsion of space-time, produced by the background gravitational field of the Universe. This interaction has been suggested by the author in a previous work, with some experimental and observational evidences for its existence. It has been shown that this interaction gives rise to a repulsive force. The accelerated expansion of the Universe may give a further evidence on the existence of this interaction on the cosmological scale.

  6. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    total supply of petroleum and other liquids. 7. Changing structure of the refining industry Petroleum-based liquid fuels represent the largest source of U.S. energy consumption,...

  7. A Technology Assessment System Of The Alternative Energy Sources...

    Open Energy Info (EERE)

    System Of The Alternative Energy Sources (Sun And Wind) For Rural Communities In Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: A...

  8. SourceGas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SourceGas offers the Excess is Out Program for residential customers in Colorado. The Excess is Out Program offers various rebates for the installation of energy efficient equipment.

  9. SourceGas- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SourceGas offers the Excess is Out Program for commercial customers in Colorado. The Excess is Out Program offers various rebates for the installation of energy efficient equipment.

  10. United States and world energy sources

    SciTech Connect (OSTI)

    Berg, L.L.; Baird, L.M.; Varanini, E.E. III (eds.)

    1982-01-01T23:59:59.000Z

    This volume examines the economic, political, and social implications of the oil-dependence dilemma facing the United States. Most of the contributors are energy consultants in the public or private sector. Their analyses of the changing oil situation and its impact on other energy policies reflect either an international, national, or regional perspective with a unique combination of pragmatic insights and academic analyses of these complex issues. While examining the various aspects of the energy dependence dilemma presented here, one critical theme will probably recur to the reader. That is, given the inadequate nature of the US response to the 1973 and 1979 shortfalls in foreign oil supplies, how will we manage the projected future shortages in foreign oil supplies. The 18 papers of this volume were presented at a conference at Los Angeles in July 1980 and cosponsored by the University of Southern California and the California Energy Commission; a separate abstract was prepared for each paper. See also EAPA 7:3231 and Energy Research Abstracts (ERA) 6:18036.

  11. alternative energy source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative energy source First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 An Alternative Source for...

  12. alternate energy sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternate energy sources First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 An Alternative Source for Dark...

  13. Energy-Neutral Source-Channel Coding in Energy-Harvesting Wireless Sensors

    E-Print Network [OSTI]

    Zemen, Thomas

    , New Jersey, USA Dept. of ECE, Polytechnic Inst. of NYU, New York, USA Abstract--This work addresses1 Energy-Neutral Source-Channel Coding in Energy-Harvesting Wireless Sensors P. Castiglione, O the problem of energy alloca- tion over source processing and transmission for a single energy- harvesting

  14. Energy-Neutral Source-Channel Coding in Energy-Harvesting Wireless Sensors

    E-Print Network [OSTI]

    Simeone, Osvaldo

    , New Jersey, USA Dept. of ECE, Polytechnic Inst. of NYU, New York, USA Abstract--This work addressesEnergy-Neutral Source-Channel Coding in Energy-Harvesting Wireless Sensors P. Castiglione, O the problem of energy allo- cation over source compression and transmission for a single energy

  15. Capital Sources and Providers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom: UtilizingDepartment62-LNG -First12

  16. Transportation Energy Futures (TEF) Data and Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Toolsearch keywordsclear search show

  17. Property:File/Source | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation, search Property Name EzfeedflagDescription

  18. GEO SOURCE ONE, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm IncLSE COMP POST 2005GEO

  19. Ground Source Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformationMagnetics Jump to:Ground

  20. Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly

    E-Print Network [OSTI]

    Kornhuber, Ralf

    Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly important in recent years. Proper design of a geothermal system, be it for deep or for shallow

  1. Solid Waste as an Energy Source

    E-Print Network [OSTI]

    Erlandsson, K. I.

    1979-01-01T23:59:59.000Z

    at industrial plants, where using the solid waste as a fuel also alleviates a waste disposal problem. This paper describes presently available and operating equipment, which can convert solid waste into energy in usable forms, such as hot water or steam...

  2. Energy Production Over the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs,EnergyAugustPublic Law of

  3. Fossil Energy Fiscal Year 2011 Budget Request | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE HydrogenPlans |FormerofDepartment3Fossil51

  4. Health, safety, and environmental risks from energy production: A year-long reality check

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    and environmental risks from energy production: A year-longbroader picture of energy production. Over the last year,to accidents involving energy production from every major

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826 YEAR

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 2014

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 201434

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43417

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434170

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR 2012

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR424

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR4247

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42478

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR40

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR4096

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR17

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008748611196 YEAR

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males16

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144707

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 201447072540

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 563

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 5637831

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378318

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 28

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 2801

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280192

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733

  4. Methods of performing downhole operations using orbital vibrator energy sources

    DOE Patents [OSTI]

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17T23:59:59.000Z

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  5. Low energy spread ion source with a coaxial magnetic filter

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

    2000-01-01T23:59:59.000Z

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  6. Solar Influences Light from the Sun is the largest source of energy for Earth's

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Solar Influences Light from the Sun is the largest source of energy for Earth's atmosphere. The Solar Influences group at LASP studies the light from the Sun and how it interacts with the Earth) How and why light from the Sun varies in time from seconds to months to years to centuries How solar

  7. Imaging of granular sources in high energy heavy ion collisions

    E-Print Network [OSTI]

    Zhi-Tao Yang; Wei-Ning Zhang; Lei Huo; Jing-Bo Zhang

    2008-11-13T23:59:59.000Z

    We investigate the source imaging for a granular pion-emitting source model in high energy heavy ion collisions. The two-pion source functions of the granular sources exhibit a two-tiered structure. Using a parametrized formula of granular two-pion source function, we examine the two-tiered structure of the source functions for the imaging data of Au+Au collisions at Alternating Gradient Synchrotron (AGS) and Relativistic Heavy Ion Collider (RHIC). We find that the imaging technique introduced by Brown and Danielewicz is suitable for probing the granular structure of the sources. Our data-fitting results indicate that there is not visible granularity for the sources at AGS energies. However, the data for the RHIC collisions with the selections of $40 < {\\rm centrality} < 90%$ and $0.20source has more parameters than the simple Gaussian, hence can describe more complicated shapes.

  8. Methods for point source analysis in high energy neutrino telescopes

    E-Print Network [OSTI]

    Jim Braun; Jon Dumm; Francesco De Palma; Chad Finley; Albrecht Karle; Teresa Montaruli

    2008-01-10T23:59:59.000Z

    Neutrino telescopes are moving steadily toward the goal of detecting astrophysical neutrinos from the most powerful galactic and extragalactic sources. Here we describe analysis methods to search for high energy point-like neutrino sources using detectors deep in the ice or sea. We simulate an ideal cubic kilometer detector based on real world performance of existing detectors such as AMANDA, IceCube, and ANTARES. An unbinned likelihood ratio method is applied, making use of the point spread function and energy distribution of simulated neutrino signal events to separate them from the background of atmospheric neutrinos produced by cosmic ray showers. The unbinned point source analyses are shown to perform better than binned searches and, depending on the source spectral index, the use of energy information is shown to improve discovery potential by almost a factor of two.

  9. Sources: Energy Information Administration, Form EIA-182,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million2,116 3,110IIF

  10. Department of Energy's Implementation of Strategic Sourcing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D * A L ALGALImplementation of

  11. Source Selection Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite ScreeningSound Oil CompanySelection Guide

  12. abundant energy source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abundant energy source First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The SolarWiki Solar energy is...

  13. Introduction Radiation is the primary energy source and the

    E-Print Network [OSTI]

    Haak, Hein

    18 Introduction Radiation is the primary energy source and the ultimate energy sink for the Earth in the Earth's atmosphere and can be used for the evaluation and improvement of models designed for weather research was the primary reason for the joint scientific committee of the World Climate Research Programme

  14. Property:Buildings/ModelYear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar GroupInformationInformationYearConstruction1ModelNameModelYear Jump

  15. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect (OSTI)

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15T23:59:59.000Z

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  16. Resolve to Save Energy This Year | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9,Award RecipientsActMission toResearchResolve to Save Energy This

  17. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    SciTech Connect (OSTI)

    None

    2005-03-01T23:59:59.000Z

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R&D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R&D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan.

  18. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect (OSTI)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

    2007-07-01T23:59:59.000Z

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  19. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect (OSTI)

    Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

    2010-08-24T23:59:59.000Z

    This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

  20. Proceedings of the conference on alternative energy sources for Texas

    SciTech Connect (OSTI)

    Rothman, I.N. (ed.)

    1981-01-01T23:59:59.000Z

    Four primary areas of study for alternative energy sources for Texas are considered. These are: energy demand supply and economics; prospects for energy resources (oil, lignite, coal, nuclear, goethermal and solar) and conservation; financial and technical constraints; and future planning. The following papers are presented: US energy outlook to 1990; energy supply and demand projections; comparative economics of solar energy in the generation of big power; gas present and future prospects; prospects for enhanced recovery of oil in Texas; the outlook for coal in USA; implementation of nuclear power in Texas; future outlook - geopressured-geothermal energy for Texas; future prospects for conservation and solar energy; financing and money supply constraints; technical constraints to energy supply increase; planning for the future - the crisis that drones on. Two papers have been abstracted separately.

  1. "50" Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    Classified US Program on Controlled Thermonuclear Fusion (Project Sherwood) carried out until 1958 when"50" Years of Fusion Research Dale Meade Fusion Innovation Research and Energy Princeton, NJ Fi P th SFusion Fire Powers the Sun "W d t if k f i k ""We need to see if we can make fusion work

  2. 50 Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    , .... Controlled Thermonuclear Fusion had great potential Uncontrolled Thermonuclear fusion demonstrated in 19521 50 Years of Fusion Research Dale Meade Fusion Innovation Research and Energy Princeton, NJ SOFE 2009 June 1, 2009 San Diego, CA 92101 #12;2 #12;2 #12;3 Fusion Prior to Geneva 1958 A period of rapid

  3. Utility-Scale Solar through the Years | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idahothe NewUtility-Scale Solar through the Years

  4. A Stochastic Calculus for Network Systems with Renewable Energy Sources

    E-Print Network [OSTI]

    Wu, Kui; Marinakis, Dimitri

    2011-01-01T23:59:59.000Z

    We consider the performance modeling and evaluation of network systems powered with renewable energy sources such as solar and wind energy. Such energy sources largely depend on environmental conditions, which are hard to predict accurately. As such, it may only make sense to require the network systems to support a soft quality of service (QoS) guarantee, i.e., to guarantee a service requirement with a certain high probability. In this paper, we intend to build a solid mathematical foundation to help better understand the stochastic energy constraint and the inherent correlation between QoS and the uncertain energy supply. We utilize a calculus approach to model the cumulative amount of charged energy and the cumulative amount of consumed energy. We derive upper and lower bounds on the remaining energy level based on a stochastic energy charging rate and a stochastic energy discharging rate. By building the bridge between energy consumption and task execution (i.e., service), we study the QoS guarantee under...

  5. A compact, versatile low-energy electron beam ion source

    SciTech Connect (OSTI)

    Zschornack, G., E-mail: g.zschornack@hzdr.de [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany); Knig, J.; Schmidt, M.; Thorn, A. [DREEBIT GmbH, 01109 Dresden (Germany)] [DREEBIT GmbH, 01109 Dresden (Germany)

    2014-02-15T23:59:59.000Z

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  6. Year

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444 U.S.Working and.

  7. Aparna Renewable Energy Sources Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAgua Caliente SolarAltenoASESAora Energy

  8. EnergySource formerly Char LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESL Jump

  9. Wuxi Guofei Green Energy Source Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxi Guofei Green Energy

  10. 1 | Fuel Cell Technologies Program Source: US DOE 2/3/2014 eere.energy.gov Nancy L. Garland, Ph.D.

    E-Print Network [OSTI]

    in manufacturing clean energy products. Investment in clean energy has grown nearly fivefold in recent years from $54B in 2004 to $269B in 2012. Trillions will be invested in the decades to come. The clean energy Source: US DOE 2/3/2014 eere.energy.gov Clean Energy Patents Reflect Emerging Growth Clean Energy Patent

  11. Solar thermal energy contract list, fiscal year 1990

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

  12. Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    for electricity generation; worldwide ~ 66% for electricity use (~75% by 2025) ! Coal Consumption (Billion Tons is imported ­ almost completely relying on world energy supply. · Taiwan electricity supply: ~75% by fossil · How will Taiwan get adequate energy supply? - Taiwan government aims to achieve ~30% energy supply

  13. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6% of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the US public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99% of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98%. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future US energy markets. 7 figs.

  14. Property:Building/YearConstruction1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar GroupInformationInformationYearConstruction1 Jump to: navigation,

  15. Property:Building/YearConstruction2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar GroupInformationInformationYearConstruction1 Jump to:

  16. Cost of alternative sources of energy -- Early outlook approach

    SciTech Connect (OSTI)

    Samid, G. [Virginia Technology Corp., McLean, VA (United States); Samid, A. [AGS Technologies, Inc., Tel-Aviv (Israel)

    1996-11-01T23:59:59.000Z

    This paper discusses the difficulties of developing cost projections for alternative energy source projects. The authors offer their ideas for a standardized cost framework with which to compare competing ideas. The topics of the paper include surveying relevant literature, searching for the right approach, binary polling scenario analysis and its application, and a project view of research and development.

  17. EarthSource Energy Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformation Ireland) Jump|

  18. Search for extraterrestrial point sources of high energy neutrinos with AMANDA-II using data collected in 2000-2002

    SciTech Connect (OSTI)

    Ackermann, M.; Bernardini, E.; Boersma, D.J.; Boeser, S.; Hauschildt, T.; Kowalski, M.; Leich, H.; Leuthold, M.; Nahnhauer, R.; Resconi, E.; Schlenstedt, S.; Spiering, C.; Steffen, P.; Sulanke, K. H.; Tarasova, O.; Walter, M.; Wischnewski, R.; Wissing, H. [DESY, D-15735, Zeuthen (Germany); Ahrens, J.; Becka, T. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany)] [and others

    2005-04-01T23:59:59.000Z

    The results of a search for point sources of high energy neutrinos in the northern hemisphere using data collected by AMANDA-II in the years 2000, 2001, and 2002 are presented. In particular, a comparison with the single-year result previously published shows that the sensitivity was improved by a factor of 2.2. The muon neutrino flux upper limits on selected candidate sources, corresponding to an E{sub {nu}}{sup -2} neutrino energy spectrum, are included. Sky grids were used to search for possible excesses above the background of cosmic ray induced atmospheric neutrinos. This search reveals no statistically significant excess for the three years considered.

  19. Air-Source Heat Pumps | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1A Potential PathAddingAhorreLeaksAir-Source

  20. EA-164 Constellation Power Source, Inc | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide Constellation Power Source, Inc More

  1. EA-164-A Constellation Power Source, Inc | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide Constellation Power Source, Inc More-A

  2. Multi-source energy harvester to power sensing hardware on rotating structures

    SciTech Connect (OSTI)

    Schlichting, Alezander D [Los Alamos National Laboratory; Ouellette, Scott [Los Alamos National Laboratory; Carlson, Clinton P [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) proposes to meet 20% of the nation's energy needs through wind power by the year 2030. To accomplish this goal, the industry will need to produce larger (> 100m diameter) turbines to increase efficiency and maximize energy production. It will be imperative to instrument the large composite structures with onboard sensing to provide structural health monitoring capabilities to understand the global response and integrity of these systems as they age. A critical component in the deployment of such a system will be a robust power source that can operate for the lifespan of the wind turbine. In this paper we consider the use of discrete, localized power sources that derive energy from the ambient (solar, thermal) or operational (kinetic) environment. This approach will rely on a multi-source configuration that scavenges energy from photovoltaic and piezoelectric transducers. Each harvester is first characterized individually in the laboratory and then they are combined through a multi-source power conditioner that is designed to combine the output of each harvester in series to power a small wireless sensor node that has active-sensing capabilities. The advantages/disadvantages of each approach are discussed, along with the proposed design for a field ready energy harvester that will be deployed on a small-scale 19.8m diameter wind turbine.

  3. Wind energy as a significant source of electricity

    SciTech Connect (OSTI)

    Nix, R.G.

    1995-01-01T23:59:59.000Z

    Wind energy is a commercially available renewable energy source, with state-of-the-art wind plants producing electricity at about $0.05 per kWh. However, even at that production cost, wind-generated electricity is not yet fully cost-competitive with coal- or natural-gas-produced electricity for the bulk electricity market. The wind is a proven energy source; it is not resource-limited in the US, and there are no insolvable technical constraints. This paper describes current and historical technology, characterizes existing trends, and describes the research and development required to reduce the cost of wind-generated electricity to full competitiveness with fossil-fuel-generated electricity for the bulk electricity market. Potential markets are described.

  4. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    Energy. 1996a. Annual energy outlook 1996 with projectionsEnergy. 1996b. Annual energy outlook 1997 with projectionsof Energy. 1997. Annual energy outlook 1998 with projections

  5. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, GregoryK

    2010-01-01T23:59:59.000Z

    Energy. 1996a. Annual energy outlook 1996 with projectionsEnergy. 1996b. Annual energy outlook 1997 with projectionsof Energy. 1997. Annual energy outlook 1998 with projections

  6. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, Gregory K

    2011-01-01T23:59:59.000Z

    Energy. 1996a. Annual energy outlook 1996 with projectionsEnergy. 1996b. Annual energy outlook 1997 with projectionsof Energy. 1997. Annual energy outlook 1998 with projections

  7. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 29 NU (TechAdmin Support) 5 YEAR 2014 American Indian...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 9 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 22 NN (Engineering) 23 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  14. Reaching Underground Sources (from MIT Energy Initiative's Energy Futures,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery,AssistanceRareRavi CheemaRaymond

  15. Harvesting Energy from Abundant, Low Quality Sources of Heat - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soil HanfordHappyHarold PaulHarry

  16. Alternative Energy Sources - An Interdisciplinary Module for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -Alicia Moulton About UsAll27, 2013Education |

  17. Alternative Energy Sources - An Interdisciplinary Module for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -Alicia Moulton About UsAll27, 2013Education

  18. Alternative Energy Sources -- An Interdisciplinary Module for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -Alicia Moulton About UsAll27,

  19. Plant Energy Benchmarking: A Ten Year Retrospective of the ENERGY STAR Energy Performace Indicators (ES-EPI)

    E-Print Network [OSTI]

    Boyd, G.; Tunnessen, W.

    2013-01-01T23:59:59.000Z

    Over the past several years, there has been growing interest among policy makers and others in the role that benchmarking industrial energy efficiency can play in climate, air, and other potential regulatory actives. For over ten years, the US EPA...

  20. Health, safety, and environmental risks from energy production: A year-long reality check

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    and environmental risks from energy production: A year-longaddition to the risks of the existing energy infrastructureto minimize HSE risk related to the world's existing energy

  1. Directory of financing sources for foreign energy projects

    SciTech Connect (OSTI)

    La Ferla, L. [La Ferla Associates, Washington, DC (United States)

    1995-09-01T23:59:59.000Z

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  2. FTCP Annual Plan - Fiscal Year 2002 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAM DOEFindingsNewsFROM:Issue2

  3. FTCP Annual Plan - Fiscal Year 2003 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAM DOEFindingsNewsFROM:Issue23

  4. FTCP Annual Plan - Fiscal Year 2004 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAM

  5. FTCP Annual Plan - Fiscal Year 2005 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAMFTCP Annual Plan - Fiscal

  6. FTCP Annual Report - Calendar Year 2007 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAMFTCP Annual Plan -

  7. FTCP Annual Report - Calendar Year 2008 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAMFTCP Annual Plan -Report -

  8. FTCP Annual Report - Fiscal Year 2002 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAMFTCP Annual Plan -Report -2

  9. FTCP Annual Report - Fiscal Year 2004 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAMFTCP Annual Plan -Report -24

  10. Six-Year Review of Covered Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle|SecurityDepartmentShawn WangSiouxEnergySix-Year

  11. Natural Gas Year-in-Review - Energy Information Administration

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,1958 200988

  12. Fiscal Year 2013 President's Budget Request | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdfFerrinMarketAugustShipmentFiscal Year 2013

  13. Fiscal Year 2013 President's Budget Request | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdfFerrinMarketAugustShipmentFiscal Year 2013Senate

  14. GreenSource Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,IISrl JumpGreenSource Solutions LLC

  15. Property:File/SourceURL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation, search Property Name EzfeedflagDescriptionSourceURL Jump to:

  16. Controlled Source Frequency-Domain Magnetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Exploration Technique: Controlled Source

  17. Luoyang Century New Source Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation, searchCentury New Source Group Co

  18. Montana Nonpoint Source FAQs Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse JumpNonpoint Source FAQs

  19. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    conditioning, ASHP = air source heat pump, HP = heat pump,Heating and Cooling -Air Source Heat Pump -Geothermal HeatHVAC program covers air-source heat pumps (ASHP), boilers (

  20. Establishing Standard Source Energy and Emission Factors for Energy Use in Buildings

    SciTech Connect (OSTI)

    Deru, M.

    2007-01-01T23:59:59.000Z

    This procedure provides source energy factors and emission factors to calculate the source (primary) energy and emissions from a building's annual site energy consumption. This report provides the energy and emission factors to calculate the source energy and emissions for electricity and fuels delivered to a facility and combustion of fuels at a facility. The factors for electricity are broken down by fuel type and presented for the continental United States, three grid interconnections, and each state. The electricity fuel and emission factors are adjusted for the electricity and the useful thermal output generated by combined heat and power (CHP) plants larger than one megawatt. The energy and emissions from extracting, processing, and transporting the fuels, also known as the precombustion effects, are included.

  1. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, Gregory K

    2011-01-01T23:59:59.000Z

    covers central air conditioners and heat pumps with up toconditioning, ASHP = air source heat pump, HP = heat pump,Conditioners and Air-Source Heat Pumps Commercial Fryers

  2. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, GregoryK

    2010-01-01T23:59:59.000Z

    covers central air conditioners and heat pumps with up toconditioning, ASHP = air source heat pump, HP = heat pump,Conditioners and Air-Source Heat Pumps Commercial Fryers

  3. Improved design of proton source and low energy beam transport line for European Spallation Source

    SciTech Connect (OSTI)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy)] [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dellInformazione, delle Infrastrutture e dellEnergia Sostenibile, Universit Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden)] [European Spallation Source ESS AB, Lund (Sweden); Galat, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'universit 2, 35020 Legnaro (Italy)] [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'universit 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'universit 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Universit degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15T23:59:59.000Z

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  4. YEAR

    National Nuclear Security Administration (NNSA)

    2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 13 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 59 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 3 YEAR 2014 American...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  9. Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

    E-Print Network [OSTI]

    M. G. Aartsen; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; M. Ahrens; D. Altmann; T. Anderson; C. Arguelles; T. C. Arlen; J. Auffenberg; X. Bai; S. W. Barwick; V. Baum; J. J. Beatty; J. Becker Tjus; K. -H. Becker; S. BenZvi; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; D. Z. Besson; G. Binder; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; D. Bose; S. Bser; O. Botner; L. Brayeur; H. -P. Bretz; A. M. Brown; J. Casey; M. Casier; D. Chirkin; A. Christov; B. Christy; K. Clark; L. Classen; F. Clevermann; S. Coenders; D. F. Cowen; A. H. Cruz Silva; M. Danninger; J. Daughhetee; J. C. Davis; M. Day; J. P. A. M. de Andr; C. De Clercq; S. De Ridder; P. Desiati; K. D. de Vries; M. de With; T. DeYoung; J. C. D\\'\\iaz-Vlez; M. Dunkman; R. Eagan; B. Eberhardt; B. Eichmann; J. Eisch; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; J. Feintzeig; J. Felde; T. Feusels; K. Filimonov; C. Finley; T. Fischer-Wasels; S. Flis; A. Franckowiak; K. Frantzen; T. Fuchs; T. K. Gaisser; J. Gallagher; L. Gerhardt; D. Gier; L. Gladstone; T. Glsenkamp; A. Goldschmidt; G. Golup; J. G. Gonzalez; J. A. Goodman; D. Gra; D. T. Grandmont; D. Grant; P. Gretskov; J. C. Groh; A. Gro; C. Ha; C. Haack; A. Haj Ismail; P. Hallen; A. Hallgren; F. Halzen; K. Hanson; D. Hebecker; D. Heereman; D. Heinen; K. Helbing; R. Hellauer; D. Hellwig; S. Hickford; G. C. Hill; K. D. Hoffman; R. Hoffmann; A. Homeier; K. Hoshina; F. Huang; W. Huelsnitz; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; E. Jacobi; J. Jacobsen; K. Jagielski; G. S. Japaridze; K. Jero; O. Jlelati; M. Jurkovic; B. Kaminsky; A. Kappes; T. Karg; A. Karle; M. Kauer; J. L. Kelley; A. Kheirandish; J. Kiryluk; J. Kls; S. R. Klein; J. -H. Khne; G. Kohnen; H. Kolanoski; A. Koob; L. Kpke; C. Kopper; S. Kopper; D. J. Koskinen; M. Kowalski; A. Kriesten; K. Krings; G. Kroll; J. Kunnen; N. Kurahashi; T. Kuwabara; M. Labare; D. T. Larsen; M. J. Larson; M. Lesiak-Bzdak; M. Leuermann; J. Leute; J. Lnemann; O. Mac\\'\\ias; J. Madsen; G. Maggi; R. Maruyama; K. Mase; H. S. Matis; F. McNally; K. Meagher; A. Meli; T. Meures; S. Miarecki; E. Middell; E. Middlemas; N. Milke; J. Miller; L. Mohrmann; T. Montaruli; R. Morse; R. Nahnhauer; U. Naumann; H. Niederhausen; S. C. Nowicki; D. R. Nygren; A. Obertacke; S. Odrowski; A. Olivas; A. Omairat; A. O'Murchadha; T. Palczewski; L. Paul; . Penek; J. A. Pepper; C. Prez de los Heros; C. Pfendner; D. Pieloth; E. Pinat; J. Posselt; P. B. Price; G. T. Przybylski; J. Ptz; M. Quinnan; L. Rdel; M. Rameez; K. Rawlins; P. Redl; I. Rees; R. Reimann; E. Resconi; W. Rhode; M. Richman; B. Riedel; S. Robertson; J. P. Rodrigues; M. Rongen; C. Rott; T. Ruhe; B. Ruzybayev; D. Ryckbosch; S. M. Saba; H. -G. Sander; M. Santander; S. Sarkar; K. Schatto; F. Scheriau; T. Schmidt; M. Schmitz; S. Schoenen; S. Schneberg; A. Schnwald; A. Schukraft; L. Schulte; O. Schulz; D. Seckel; Y. Sestayo; S. Seunarine; R. Shanidze; C. Sheremata; M. W. E. Smith; D. Soldin; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; N. A. Stanisha; A. Stasik; T. Stezelberger; R. G. Stokstad; A. Stl; E. A. Strahler; R. Strm; N. L. Strotjohann; G. W. Sullivan; H. Taavola; I. Taboada; A. Tamburro; A. Tepe; S. Ter-Antonyan; A. Terliuk; G. Tei?; S. Tilav; P. A. Toale; M. N. Tobin; D. Tosi; M. Tselengidou; E. Unger; M. Usner; S. Vallecorsa; N. van Eijndhoven; J. Vandenbroucke; J. van Santen; M. Vehring; M. Voge; M. Vraeghe; C. Walck; M. Wallraff; Ch. Weaver; M. Wellons; C. Wendt; S. Westerhoff; B. J. Whelan; N. Whitehorn; C. Wichary; K. Wiebe; C. H. Wiebusch; D. R. Williams; H. Wissing; M. Wolf; T. R. Wood; K. Woschnagg; D. L. Xu; X. W. Xu; J. P. Yanez; G. Yodh; S. Yoshida; P. Zarzhitsky; J. Ziemann; S. Zierke; M. Zoll

    2014-07-02T23:59:59.000Z

    A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of $10^{-8}\\, \\mathrm{GeV}\\, \\mathrm{cm}^{-2}\\, \\mathrm{s}^{-1}\\, \\mathrm{sr}^{-1}$ per flavor and reject a purely atmospheric explanation for the combined 3-year data at $5.7 \\sigma$. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year dataset, with a livetime of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy neutrino interaction ever observed.

  10. The dynamic energy source of the Sun and the duplicity of the stellar energy production

    E-Print Network [OSTI]

    Attila Grandpierre

    1998-03-04T23:59:59.000Z

    Some possible ways of the energy production with fusion reactions in the Sun was explored theoretically in the first half of this century. Nowadays it is a standard view that the Sun produces its energy on a uniform level. I point out, that in the stellar and solar energy production a dynamic energy source is necessarily present behind the uniform one, and generates a direct connection between the core and the surface layers through tunnels.

  11. Fermi Gamma-ray Space Telescope: High-Energy Results from the First Year

    E-Print Network [OSTI]

    Peter F. Michelson; William B. Atwood; Steven Ritz

    2010-11-02T23:59:59.000Z

    The Fermi Gamma-ray Space Telescope (Fermi) was launched on June 11, 2008 and began its first year sky survey on August 11, 2008. The Large Area Telescope (LAT), a wide field-of-view pair-conversion telescope covering the energy range from 20 MeV to more than 300 GeV, is the primary instrument on Fermi. While this review focuses on results obtained with the LAT, the Gamma-ray Burst Monitor (GBM) complements the LAT in its observations of transient sources and is sensitive to X-rays and gamma-rays with energies between 8 keV and 40 MeV. During the first year in orbit, the Fermi LAT has observed a large number of sources that include active galaxies, pulsars, compact binaries, globular clusters, supernova remnants, as well as the Sun, the Moon and the Earth. The GBM and LAT together have uncovered surprising characteristics in the high-energy emission of gamma-ray bursts (GRBs) that have been used to set significant new limits on violations of Lorentz invariance. The Fermi LAT has also made important new measurements of the Galactic diffuse radiation and has made precise measurements of the spectrum of cosmic-ray electrons and positrons from 20 GeV to 1 TeV.

  12. Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected to grow over the next

    E-Print Network [OSTI]

    Kusiak, Andrew

    Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements for the Certificate in Wind Energy

  13. Multi-wavelength identification of high-energy sources

    E-Print Network [OSTI]

    Mignani, R P

    2009-01-01T23:59:59.000Z

    The nature of most of the ~300 high-energy gamma-ray sources discovered by the EGRET instrument aboard the Gamma-ray Observatory (GRO) between 1991 and 1999 is one of the greatest enigmas in high-energy astrophysics. While about half of the extragalactic sources have been optically identified with Active Galactic Nuclei (AGN), only a meagre 10% of the galactic sources have a reliable identification. This low success rate has mainly to be ascribed to the local crowding of potential optical counterparts and to the large gamma-ray error boxes (of the order of one degree in radius) which prevented a straightforward optical identification. Indeed, a multi-wavelength identification strategy, based on a systematic coverage of the gamma-ray error boxes, has been the only do-able approach. The situation is now greatly improving thanks to the observations performed by the Fermi Gamma-ray Space Telescope which, thanks to the LAT instrument, provides a factor of 50 improvement in sensitivity and a factor of 10 improvemen...

  14. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01T23:59:59.000Z

    of wind energy even under a stable policy environmentwind year. and ensured that the overall energy policy did

  15. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensity Energy intensity (measured

  16. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensity Energy intensity (measuredfull report

  17. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensity Energy intensity (measuredfull

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number of2.4

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.4

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.41

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.413

  3. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.4133

  4. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4

  5. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number of

  6. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number of9

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number of91

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number3

  10. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number30.5

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number30.57

  12. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47

  13. Electron energy recovery system for negative ion sources

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN); Stirling, William L. (Oak Ridge, TN)

    1982-01-01T23:59:59.000Z

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  14. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJEK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 25 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native...

  15. Estimation of Energy Savings Resulting From the BestPractices Program, Fiscal Year 2002

    SciTech Connect (OSTI)

    Truett, LF

    2003-09-24T23:59:59.000Z

    Within the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy (EERE) has a vision of a future with clean, abundant, reliable, and affordable energy. Within EERE, the Industrial Technologies Program (ITP), formerly the Office of Industrial Technologies, works in partnership with industry to increase energy efficiency, improve environmental performance, and boost productivity. The BestPractices (BP) Program, within ITP, works directly with industries to encourage energy efficiency. The purpose of the BP Program is to improve energy utilization and management practices in the industrial sector. The program targets distinct technology areas, including pumps, process heating, steam, compressed air, motors, and insulation. This targeting is accomplished with a variety of delivery channels, such as computer software, printed publications, Internet-based resources, technical training, technical assessments, and other technical assistance. A team of program evaluators from Oak Ridge National Laboratory (ORNL) was tasked to evaluate the fiscal year 2002 (FY02) energy savings of the program. The ORNL assessment enumerates levels of program activity for technology areas across delivery channels. In addition, several mechanisms that target multiple technology areas--e.g., Plant-wide Assessments (PWAs), the ''Energy Matters'' newsletter, and special events--are also evaluated for their impacts. When possible, the assessment relies on published reports and the Industrial Assessment Center (IAC) database for estimates of energy savings that result from particular actions. Data were also provided by ORNL, Lawrence Berkeley National Laboratory (LBNL) and Project Performance Corporation (PPC), the ITP Clearinghouse at Washington State University, the National Renewable Energy Laboratory (NREL), Energetics Inc., and the Industrial Technologies Program Office. The estimated energy savings in FY02 resulting from activities of the BP Program are almost 81.9 trillion Btu (0.0819 Quad), which is about 0.25% of the 32.5 Quads of energy consumed during FY02 by the industrial sector in the United States. The technology area with the largest estimated savings is steam, with 32% of the total energy savings. The delivery mechanism with the largest savings is that of software systems distribution, encompassing 44% of the total savings. Training results in an energy savings of 33%. Energy savings from PWAs and PWA replications equal 10%. Sources of overestimation of energy savings might derive from (1) a possible overlap of energy savings resulting from separate events (delivery channels) occurring in conjunction with one another (e.g., a training event and CTA at the same plant), and (2) a possible issue with the use of the average CTA value to assess savings for training and software distribution. Any overestimation attributable to these sources probably is outweighed by underestimations caused by the exclusion of savings resulting from general awareness workshops, data not submitted to the ITP Tracking Database, omission of savings attributable to web downloads of publications, use of BP products by participants over multiple years, and the continued utilization of equipment installed or replaced in previous years. Next steps in improving these energy savings estimates include continuing to enhance the design of the ITP Tracking Database and to improve reporting of program activities for the distribution of products and services; obtaining more detailed information on implementation rates and savings estimates for software training, tools, and assessments; continuing attempts to quantify savings based on Qualified Specialist activities; defining a methodology for assessing savings based on web downloads of publications; establishing a protocol for evaluating savings from other BP-sponsored events and activities; and continuing to refine the estimation methodology and reduction factors.

  16. LBNL SEED: Why Open Source Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM to 2:05PMDOE-STD-1107-97LSEED: Why Open Source

  17. Current Source Inverters for HEVs and FCVs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts forHeavy-Duty DieselCurrent Source

  18. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2Air-Source Heat Pump Basics

  19. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, GregoryK

    2010-01-01T23:59:59.000Z

    heating, ventilation and air conditioning (HVAC) equipment. The residential HVAC program covers air-source heat pumps (

  20. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, Gregory K

    2011-01-01T23:59:59.000Z

    heating, ventilation and air conditioning (HVAC) equipment. The residential HVAC program covers air-source heat pumps (

  1. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    Heating and Cooling -Air Source Heat Pump -Geothermal Heatgeothermal heat pumps, and programmable thermostats. For heating and cooling

  2. PSCAD/EMTDC-Based Modeling and Analysis of a Microgrid with Renewable Energy Sources

    E-Print Network [OSTI]

    Chu, Zhengguo

    2010-07-14T23:59:59.000Z

    . The proposed microgrid system includes fundamental power system component models, two renewable energy source models (wind and solar) and one energy storage source model. Different case studies were conducted. The results from the simulation case studies...

  3. PSCAD/EMTDC-Based Modeling and Analysis of a Microgrid with Renewable Energy Sources

    E-Print Network [OSTI]

    Chu, Zhengguo

    2010-07-14T23:59:59.000Z

    . The proposed microgrid system includes fundamental power system component models, two renewable energy source models (wind and solar) and one energy storage source model. Different case studies were conducted. The results from the simulation case studies...

  4. Wind Farms through the Years | Department of Energy

    Office of Environmental Management (EM)

    the Years 1975 Start Slow Stop Year Wind Farms Homes Powered Added Current Year 833 Wind Farms Online. Enough to Power 15 M Homes Data provided by the EIA. The number of...

  5. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    using the energy consumption test data collected by theon manufacturer energy consumption test data for qualifiedTo date, energy consumption test data for non-qualified

  6. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, GregoryK

    2010-01-01T23:59:59.000Z

    EIA-0314(93). Energy Information Administration, Office ofEIA-0383(96). Energy Information Administration. Washington,EIA-0383(97). Energy Information Administration. Washington,

  7. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, Gregory K

    2011-01-01T23:59:59.000Z

    EIA- 0314(93). Energy Information Administration, Office ofEIA-0383(96). Energy Information Administration. Washington,EIA-0383(97). Energy Information Administration. Washington,

  8. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    EIA-0314(93). Energy Information Administration, Office ofEIA-0383(96). Energy Information Administration. Washington,EIA-0383(97). Energy Information Administration. Washington,

  9. Prospects for future projections of the basic energy sources in Turkey

    SciTech Connect (OSTI)

    Sozen, A.; Arcaklioglu, E. [Gazi University, Ankara (Turkey). Technical Education Facility

    2007-07-01T23:59:59.000Z

    The main goal of this study is to develop the energy sources estimation equations in order to estimate the future projections and make correct investments in Turkey using artificial neural network (ANN) approach. It is also expected that this study will be helpful in demonstrating energy situation of Turkey in amount of EU countries. Basic energy indicators such as population, gross generation, installed capacity, net energy consumption, import, export are used in input layer of ANN. Basic energy sources such as coal, lignite, fuel-oil, natural gas and hydro are in output layer. Data from 1975 to 2003 are used to train. Three years (1981, 1994 and 2003) are only used as test data to confirm this method. Also, in this study, the best approach was investigated for each energy sources by using different learning algorithms (scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM)) and a logistic sigmoid transfer function in the ANN with developed software. The statistical coefficients of multiple determinations (R{sup 2}-value) for training data are equal to 0.99802, 0.99918, 0.997134, 0.998831 and 0.995681 for natural gas, lignite, coal, hydraulic, and fuel-oil, respectively. Similarly, these values for testing data are equal to 0.995623, 0.999456, 0.998545, 0.999236, and 0.99002. The best approach was found for lignite by SCG algorithm with seven neurons so mean absolute percentage error (MAPE) is equal to 1.646753 for lignite. According to the results, the future projections of energy indicators using ANN technique have been obviously predicted within acceptable errors. Apart from reducing the whole time required, the importance of the ANN approach is possible to find solutions that make energy applications more viable and thus more attractive to potential users.

  10. From Energy Audits to Home Performance: 30 Years of Articles in Home Energy Magazine

    SciTech Connect (OSTI)

    Meier, Alan

    2014-08-11T23:59:59.000Z

    Home Energy Magazine has been publishing articles about residential energy efficiency for 30 years. Its goal has been to disseminate technically reliable and neutral information to the practitioners, that is, professionals in the business of home energy efficiency. The articles, editorials, letters, and advertisements are a kind of window on the evolution of energy conservation technologies, policies, and organizations. Initially, the focus was on audits and simple retrofits, such as weatherstripping and insulation. Instrumentation was sparse sometimes limited to a ruler to measure depth of attic insulation and a blower door was exotic. CFLs were heavy, awkward bulbs which might, or might not, fit in a fixture. Saving air conditioning energy was not a priority. Solar energy was only for the most adventurous. Thirty years on, the technologies and business have moved beyond just insulating attics to the larger challenge of delivering home performance and achieving zero net energy. This shift reflects the success in reducing space heating energy and the need to create a profitable industry by providing more services. The leading edge of the residential energy services market is becoming much more sophisticated, offering both efficiency and solar systems. The challenge is to continue providing relevant and reliable information in a transformed industry and a revolutionized media landscape.

  11. Energy recovery linacs as synchrotron radiation sources ,,invited... Sol M. Grunera)

    E-Print Network [OSTI]

    Gruner, Sol M.

    , Cornell University, Ithaca, New York 14853 Don Bilderback Cornell High Energy Synchrotron Source York 14853 Ken Finkelstein Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, Ithaca, New York 14853 Qun Shen Cornell High Energy Synchrotron Source and Department of Materials

  12. High-Powered Dark Energy Camera Can See Billions of Light Years...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Powered Dark Energy Camera Can See Billions of Light Years Away High-Powered Dark Energy Camera Can See Billions of Light Years Away August 21, 2014 - 10:19am Addthis Stars...

  13. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, GregoryK

    2010-01-01T23:59:59.000Z

    air cleaners Room air conditioners Scanners Servers Set-topBoilers Central Air Conditioners and Air-Source HeatHeat Pump -Central Air Conditioner -Gas Furnace -Oil

  14. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  15. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602ExecutiveMarket Trendsfull

  16. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    Characteristics. DOE/EIA-0314(93). Energy Informationprojections to 2015. DOE/EIA-0383(96). Energy Informationprojections to 2015. DOE/EIA-0383(97). Energy Information

  17. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, Gregory K

    2011-01-01T23:59:59.000Z

    Characteristics. DOE/EIA- 0314(93). Energy Informationprojections to 2015. DOE/EIA-0383(96). Energy Informationprojections to 2015. DOE/EIA-0383(97). Energy Information

  18. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, GregoryK

    2010-01-01T23:59:59.000Z

    Characteristics. DOE/EIA-0314(93). Energy Informationprojections to 2015. DOE/EIA-0383(96). Energy Informationprojections to 2015. DOE/EIA-0383(97). Energy Information

  19. A Method to Search for Local Sources of Short Duration Bursts of Superhigh Energy Gamma Rays

    E-Print Network [OSTI]

    E. N. Alexeyev; D. D. Djappuev; A. U. Kudjaev; S. Kh. Ozrokov

    2001-04-09T23:59:59.000Z

    A method of a search for local sources of superhigh energy gamma rays is described in the paper.It is shown that the method is more effective then the usually used method extracting excess from total intensity if gamma ray burst durations are short.Using the suggested method,the information detected with the Baksan installation ``Carpet'' during 1992-1996 years was analyzed.An excess of event numbers was found at the confidence level of 6.5$\\sigma$ in the direction to Mrk 501.

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A7948 27069

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A7948

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A79482693

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A7948269300

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826930002

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826930002

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861119

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008748611196

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111969

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111969

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861119695

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008748611196957

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861119695789

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.

  20. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Lee, R W

    2007-10-19T23:59:59.000Z

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a more detailed plans for experiments (Ch. VI), highlighting the uniqueness the HEDS endstation will play in providing mission-relevant HED data and in the development of the field. One of the more exciting aspects of NNSA-relevant experiments on LCLS is that, given the extraordinary investment and consequent advances in accurate atomic-scale simulations of matter (to a large extent via the Accelerated Scientific Computing program sponsored by NNSA), the facility will provide a platform that, for the first time, will permit experiments in the regimes of interest at the time and spatial scales of the simulations. In Chapter III, the report places the potential of LCLS with an HED science endstation in the context of science required by NNSA, as well as explicating the relationship of NNSA and HED science in general. Chapter IV discusses 4th-generation light sources, like LCLS, in the context of other laboratory technologies presently utilized by NNSA. The report concludes, noting that an HED endstation on LCLS can provide access to data in regimes that are relevant to NNSA needs but no mechanism exists for providing such data. The endstation will also serve to build a broad-based community in the 'X-Games' of physics. The science generated by the facility will be a collaboration of NNSA-based laboratory scientists and university-based researchers. The LCLS endstation fulfills the need for an intermediate-scale facility capable of delivering fundamental advances and mission-relevant research in high energy density science.

  1. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect (OSTI)

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01T23:59:59.000Z

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  2. Complementary Effect of Wind and Solar Energy Sources in a Microgrid

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Complementary Effect of Wind and Solar Energy Sources in a Microgrid M. A. Barik, Student Member. Index Terms--Microgrid, renewable energy sources, reactive power mismatch, solar integration, voltage-mass energy, etc. Of them wind and solar energy is broadly used for their characteristics. This paper presents

  3. Program Year 2013 State Energy Program Formula Grant Guidance

    Broader source: Energy.gov [DOE]

    This document contains State Energy Program Formula grant guidance for 2013, effective April 16, 2013.

  4. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Winchester, W.W. [ed.; Duchane, D.V.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180{degrees}C (356{degrees}F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  5. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Duchane, D.V.; Winchester, W.W.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  6. A low energy ion source for electron capture spectroscopy

    SciTech Connect (OSTI)

    Tusche, C., E-mail: tusche@mpi-halle.mpg.de [Max-Planck-Institut fr Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Kirschner, J. [Max-Planck-Institut fr Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Naturwissenschaftliche Fakultt II, Martin-Luther-Universitt Halle-Wittenberg, 06120 Halle (Germany)

    2014-06-15T23:59:59.000Z

    We report on the design of an ion source for the production of single and double charged Helium ions with kinetic energies in the range from 300 eV down to 5 eV. The construction is based on a commercial sputter ion gun equipped with a Wien-filter for mass/charge separation. Retardation of the ions from the ionizer potential (2 keV) takes place completely within the lens system of the sputter gun, without modification of original parts. For 15 eV He{sup +} ions, the design allows for beam currents up to 30 nA, limited by the space charge repulsion in the beam. For He{sup 2+} operation, we obtain a beam current of 320?pA at 30 eV, and 46 pA at 5 eV beam energy, respectively. In addition, operating parameters can be optimized for a significant contribution of metastable He*{sup +}(2s) ions.

  7. Energy Sources for Yotta-TeV Iceberg Showers

    SciTech Connect (OSTI)

    MacAyeal, Douglas [University of Chicago

    2013-05-01T23:59:59.000Z

    In late February of 2002, warming climate along the Antarctic Peninsula triggered a macroscopic particle acceleration event that smashed a 350 Gkg floating ice shelf, called the Larsen B. The particle shower released by the acceleration involved on the order of >10^6 iceberg particles accelerated to an aggregate total kinetic energy of ~10^17 J (100 Mt TNT equivalent). The explosion was so extreme that it caught glaciological science by surprise (an injury to the egos of glaciologists worldwide) and caused glaciers of the Antarctic Peninsula formerly buttressed by the missing ice shelf to surge (yielding a small increment to sea level rise). In this presentation, I shall describe research, both experimental and field oriented, that has revealed the energy source for this explosive event. I shall also describe how climate warming has the capacity to trigger this type of ice-shelf collapse. A review of the geologic record of ice-rafted debris on the ocean floor suggests that extreme, explosive ice-shelf collapse may be a ubiquitous catastrophe that has happened regularly in the past as part of glacial/interglacial climate cycles.

  8. Natural Gas Year-in-Review - Energy Information Administration

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1 | Release Date: July 10, 2012 | Next Release Date: July 2013 Previous editions Year: 2010 2009 2008 2007 2006 Go Highlights Continued growth in production, relatively low prices,...

  9. Energy policies and their consequences after 25 years

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01T23:59:59.000Z

    Hans Landsberg and Sam Schurr each led research teams that produced two important energy futures policy studies that were published in 1979. The conclusions, policy recommendations, and energy demand, supply, and price ...

  10. Energy Smart Industrial: five years of enormous savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Washougal, Wash. Through energy efficiency measures and upgrades to chillers, air compressors and lighting, Fitesa Washougal Inc. cut its energy use by about 19 percent, or 2.5...

  11. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01T23:59:59.000Z

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  12. Lockheed Martin Energy Systems, Inc., Groundwater Program Office. Annual report for fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1994-09-30T23:59:59.000Z

    This edition of the Lockheed Martin Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems Groundwater Program Office (GWPO) for fiscal year (FY) 1994. The GWPO is responsible for coordination and oversight for all components of the groundwater programs at the three Oak Ridge facilities [Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants (PGDP and PORTS, respectively.) This report describes the administrative framework of the GWPO including staffing, organization, and funding sources. In addition, summaries are provided of activities involving the Technical Support staff at the five facilities. Finally, the results of basic investigations designed to improve our understanding of the major processes governing groundwater flow and contaminant migration on the Oak Ridge Reservation (ORR) are reported. These investigations are conducted as part of the Oak Ridge Reservation Hydrology and Geology Studies (ORRHAGS) program. The relevance of these studies to the overall remediation responsibilities of Energy Systems is discussed.

  13. NREL's Record-Setting Year Highlights Clean Energy Innovation and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7ProcessesDepartment of EnergyNORTHEAST HOME HEATING

  14. Forest biomass as a source of renewable energy in Turkey

    SciTech Connect (OSTI)

    Tuerker, M.F.; Ayaz, H.; Kaygusuz, K. [Karadeniz Technical Univ., Trabzon (Turkey)

    1999-10-01T23:59:59.000Z

    In Turkey illegal cutting takes place, which cannot be controlled. Legal cuttings have also been done by several state forest enterprises. As a result, the amount of wood raw material produced by forest enterprises legally and by forest villagers illegally has exceeded the potential capacity of the forest. According to the research related to Macka and other Turkish state forests, the state forests have been decreasing day by day. This is because the amount of wood raw material taken from the forests has exceeded the production potential of the forest. That study concluded that the Macka and other Turkish forests will be exhausted after 64 and 67 years, respectively. This study also examined both establishing and exploiting energy forests near the forest villages and producing fuel briquettes manufactured using the residues of agriculture, forestry, and stock breeding to diminish the demand for illegal fuel wood cutting from the state forests.

  15. ATNI Mid-Year Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment of EnergyEnergyProposed -Systems10Services

  16. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect (OSTI)

    Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

    2008-10-31T23:59:59.000Z

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

  17. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    increasing market penetration of ENERGY STAR HVAC and anyHVAC is expressed in million square feet 7) Roofing is expressed in billion square feet 8) PC market

  18. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, GregoryK

    2010-01-01T23:59:59.000Z

    increasing market penetration of ENERGY STAR HVAC and anyHVAC is expressed in million square feet 7) Roofing is expressed in billion square feet 8) PC market

  19. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, GregoryK

    2010-01-01T23:59:59.000Z

    probability sample survey that the US EIA conductsof the EIA Commercial Building Energy Consumption Survey (consumption survey 1993: Housing Characteristics. DOE/EIA-

  20. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, Gregory K

    2011-01-01T23:59:59.000Z

    probability sample survey that the US EIA conductsof the EIA Commercial Building Energy Consumption Survey (consumption survey 1993: Housing Characteristics. DOE/EIA-

  1. Fiscal Year 2011 Congressional Budget | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OFProvides an overviewOpening in Texas | Energy11

  2. Fiscal Year 2012 Congressional Budget | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OFProvides an overviewOpening in Texas | Energy11The22

  3. Department of Energy's Fiscal Year 2014 Consolidated Financial Statements

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof aDepartment oftheAL 2010-5 Rev1Department

  4. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01T23:59:59.000Z

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  5. Large-Scale Integration of Deferrable Demand and Renewable Energy Sources

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou. In order to accurately assess the impacts of renewable energy integration and demand response integration model for assessing the impacts of the large-scale integration of renewable energy sources

  6. A Look Back: Four Years with Dr. Chu | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Back: Four Years with Dr. Chu A Look Back: Four Years with Dr. Chu April 22, 2013 - 5:32pm Addthis Amanda Scott Amanda Scott Former Managing Editor, Energy.gov April Saylor April...

  7. Techno-economic analysis of renewable energy source options for a district heating project

    SciTech Connect (OSTI)

    Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [University of British Columbia, Vancouver

    2009-09-01T23:59:59.000Z

    With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/ backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base-load system. The energy options for the base-load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25-year service life of the systems, considering depreciation and salvage as a negative cost item. It was shown that the wood pellet heat producing technologies provided less expensive energy followed by the sewer heat recovery, geothermal and natural gas systems. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for more than 40% of the heat production cost for the considered district heating center. This is mainly due to the high natural gas prices which cause high operating costs over the service life of the district heating system. Variations in several economic inputs did not change the ranking of the technology options in the sensitivity analysis. However, it was found that the results were more sensitive to changes in operating costs of the system than changes in initial investment. It is economical to utilize wood pellet boilers to provide the base-load energy requirement of district heating systems Moreover, the current business approach to use natural gas systems for peaking and backup in district heating systems could increase the cost of heat production significantly.

  8. Energy Division progress report, fiscal years 1994--1995

    SciTech Connect (OSTI)

    Moser, C.I. [ed.

    1996-06-01T23:59:59.000Z

    At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

  9. Classification CommuniQué - Year: 2013 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock &EnergyDepartmentCityClark3

  10. Classification CommuniQué - Year: 2014 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock &EnergyDepartmentCityClark34

  11. EERE's Fiscal Year 2004 Budget in Brief | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah RiverSustainabilityEnergyDownload4

  12. Federal Energy Regulatory Commission's Fiscal Year 2010 Financial Statement Audit

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NAUse this form9, 2010

  13. Federal Energy Regulatory Commission's Fiscal Year 2014 Financial Statement Audit

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NAUse this form9,

  14. Federal Government's Energy Consumption Lowest in Almost 40 Years |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A

  15. Fiscal Year 2010 Agency Financial Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 FederalofE:FinancingFinding

  16. Fiscal Year 2012 ASCEM Annual Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 FederalofE:FinancingFinding0 Budget-in-Brief2 ASCEM

  17. Fiscal Year 2013 ASCEM Annual Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 FederalofE:FinancingFinding0 Budget-in-Brief2 ASCEM23

  18. Fiscal Year 2013 Budget Request Briefing | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 FederalofE:FinancingFinding0 Budget-in-Brief2

  19. Fiscal Year 2014 ASCEM Status Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 FederalofE:FinancingFinding0 Budget-in-Brief2Report4

  20. One Year Anniversary, Office of the Ombudsman | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergyOn October 18th,Energy One

  1. Best of 2014: Our Year in Review | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisition » BalancedBest of 2014: Our

  2. Black Friday Savings All Year 'Round | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisition » BalancedBest of 2014:

  3. Mentor and Protege of the Year | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek Join usProject »March 31,Mentor and

  4. Vampire Power Is Scary All Year Round | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idahothe NewUtility-Scale Solar through theVampire

  5. Wind Farm Growth Through the Years | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhat is the FOIA ? What isWhy You MightFarm

  6. Wind Farms through the Years | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhat is the FOIA ? What isWhy You

  7. Home Performance with ENERGY STAR -- 10 Years of Continued Growth! |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist,theA12345

  8. Presentation: JCESR: One Year Later | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment of EnergyPresentation: DOE Office ofJCESR: One

  9. 2015 NCAI Mid-Year Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment of EnergyEnergy Systems2015 Forum on2015 NCAI

  10. 10 Years after the 2003 Northeast Blackout | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OF ENERGY'Elise FoxEnergy with Author10

  11. EERE's Fiscal Year 2004 Budget in Brief | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to export|EERE FY 2016GuidanceOffice of

  12. EERE's Fiscal Year 2005 Budget in Brief | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to export|EERE FY 2016GuidanceOffice ofThis

  13. HIGH-ENERGY PARTICLE COLLIDERS: PAST 20 YEARS, NEXT 20 YEARS, AND BEYOND

    SciTech Connect (OSTI)

    Shiltsev, V.

    2013-09-25T23:59:59.000Z

    Particle colliders for high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the colliding beam method and the history of colliders, discusses the development of the method over the last two decades in detail, and examines near-term collider projects that are currently under development. The paper concludes with an attempt to look beyond the current horizon and to find what paradigm changes are necessary

  14. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Bath County","Pumped Storage","Virginia Electric & Power Co",3003 2,"North...

  15. NiSource Energy Technologies: Optimizing Combined Heat and Power Systems

    SciTech Connect (OSTI)

    Not Available

    2003-01-01T23:59:59.000Z

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  16. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  17. Energy Recovered Light Source Technology at TJNAF | U.S. DOE...

    Office of Science (SC) Website

    Energy Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  18. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...

    Office of Science (SC) Website

    Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  19. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01T23:59:59.000Z

    schemes in the European electricity market. Scheer H. , ThePromoting electricity from renewable energy sources 2001 on the promotion of electricity produced from renewable

  20. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    SciTech Connect (OSTI)

    Lippmann, M.J.; Antunez, E.

    1996-01-01T23:59:59.000Z

    In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

  1. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    SciTech Connect (OSTI)

    Lippmann, Marcelo J.; Antunez, Emilio u.

    1996-01-24T23:59:59.000Z

    In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

  2. Northwest public utilities, BPA top five-year energy savings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    less than the cost of power from a new gas-fired plant. So without energy efficiency, the region would need to generate enough additional electricity to power 3.6 million Northwest...

  3. Media Briefing: Fiscal Year 2012 Budget | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    some in Congress might make the argument that as you're increasing these fossil fuel subsidies, the price of energy can go up and there's a reasonable argument that as we...

  4. Property:NrelPartnerYear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon Twitter icon

  5. Energy Management: A Corporate Objective in the Five-Year Business Plan

    E-Print Network [OSTI]

    Mulhern, T. A.

    1982-01-01T23:59:59.000Z

    This paper presents the Energy Management Program developed by the Western Electric Company. The program includes managerial accountabilities; administrative and technical activities; and a most recently implemented comprehensive five-year energy...

  6. Energy Management: A Corporate Objective in the Five-Year Business Plan

    E-Print Network [OSTI]

    Mulhern, T. A.

    1982-01-01T23:59:59.000Z

    This paper presents the Energy Management Program developed by the Western Electric Company. The program includes managerial accountabilities; administrative and technical activities; and a most recently implemented comprehensive five-year energy...

  7. Proceedings: Twenty years of energy policy: Looking toward the twenty-first century

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    In 1973, immediately following the Arab Oil Embargo, the Energy Resources Center, University of Illinois at Chicago initiated an innovative annual public service program called the Illinois Energy Conference. The objective was to provide a public forum each year to address an energy or environmental issue critical to the state, region and nation. Twenty years have passed since that inaugural program, and during that period we have covered a broad spectrum of issues including energy conservation nuclear power, Illinois coal, energy policy options, natural gas, alternative fuels, new energy technologies, utility deregulation and the National Energy Strategy.

  8. Comprehensive program and plan for federal energy education, extension, and information activities: Fiscal Year 1981. Fifth report to congress

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    The activities conducted solely in Fiscal Year (FY) 1981 in the areas of Federal energy education, extension service, and information dissemination are reported. The broad purpose of the FY 1981 activities addressed has been to inform governmental and private sectors about the methods and technologies to conserve energy and to utilize renewable energy sources. With the increase in awareness on the part of energy users and decisionmakers, as well as additional information sources available from the private sector, the emphasis of the various Federal energy information activities is being focused on reporting results of Federal programs. The course of activities related to conservation and renewable energy information has been one of consolidation, both in terms of programmatic substance and methods. The practical impetus has been the redirection of Federal progrms and related budgetary revisions for FY 1981 and FY 1982. Further, products conveying information on conservation and renewable energy technologies have been examined extensively, pursuant to the Administration's directive in April 1981 on elimination of wasteful spending on periodicals, audiovisuals and similar materials. Efforts in coordination of conservation and renewable energy information activities of the Department of Energy (DOE) as well as other Federal agencies have adjusted to timetables for review and redirection of programs initially planned for FY 1981. Mechanisms to coordinate existing Federal energy information activities employed in previous fiscal years were continued in FY 1981 to the extent applicable under current Administration policy and the above-noted circumstances of redirection. Coordinating actions requiring convening of groups were held in abeyance pending resolution of programmatic issues.

  9. Ris Energy Report 5 Wind 2 In the past 20 years wind energy has proved itself as a

    E-Print Network [OSTI]

    Ris Energy Report 5 Wind 2 6.1 Status In the past 20 years wind energy has proved itself all these achievements, wind energy remains on the fringes of power generation. For people working ignorance and emo- tional opposition. Wind energy is far from having been proved to lay people, large

  10. WIPP Marks 12 Years of Operations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director of TransmissionMedia Contact DebofU.S. DOE

  11. West Valley Accomplishments: Year in Review | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe& FederalPleasePhotoWest KYA waste

  12. Sandia Energy - Black Engineer of the Year Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6AndyBenjamin KarlsonBiofuelsBlack

  13. Sandia Energy - CSP Mid-Year FY12 AOP Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong Lifetime of Key Species CRF:CSP

  14. Federal Geothermal Research Program Update - Fiscal Year 2004 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°, -89.4742177° Show MapSubsidies Jump

  15. Facility Representative of the Year Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy Score Maturity Value TargetFacility

  16. Property:Building/YearConstruction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar GroupInformationInformation

  17. Property:Buildings/PublicationYear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType Jump to: navigation, search This is a property

  18. Property:RenewableFuelStandard/Year | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/Positionmaterial Jump to:Property Edit

  19. 10 Years after the 2003 Northeast Blackout | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you're a homeZappos.com Innovative R R eTheEnergy

  20. India's 11th Five-year Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to:Efficiencypub

  1. Federal Government's Energy Consumption Lowest in Almost 40 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf MoreEnergy Government Support for Fuel

  2. Home Performance with ENERGY STAR -- 10 Years of Continued Growth!

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p pof Energy Home

  3. Best of 2014: Our Year in Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergy CommitteeDepartment of EnergyProgram AreasBestBestBest

  4. Property:Incentive/SWHComYears | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize Jump to:PVNPFitDolKWhPolicyType

  5. New Year, New Certification Opportunities for Home Energy Workers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof EnergyBulbs |ReactorsEnergyWorld

  6. Multi-Year Analysis of Renewable Energy Impacts in California: Results from the Renewable Portfolio Standards Integration Cost Analysis; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Shiu, H.; Kirby, B.; Jackson, K.

    2006-08-01T23:59:59.000Z

    California's Renewable Portfolio Standard (RPS, Senate Bill 1078) requires the state's investor-owned utilities to obtain 20% of their energy mix from renewable generation sources. To facilitate the imminent increase in the penetration of renewables, the California Energy Commission (CEC), in support of the California Public Utility Commission (CPUC), initiated a study of integration costs in the context of RPS implementation. This effort estimated the impact of renewable generation in the regulation and load-following time scales and calculated the capacity value of renewable energy sources using a reliability model. The analysis team, consisting of researchers from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL) and the California Wind Energy Collaborative (CWEC), performed the study in cooperation with the California Independent System Operator (CaISO), the Pacific Gas and Electric Company (PG&E), and Southern California Edison (SCE). The study was conducted over three phases and was followed by an analysis of a multi-year period. This paper presents results from the multi-year analysis and the Phase III recommendations.

  7. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Seabrook","Nuclear","NextEra Energy Seabrook LLC",1246.2 2,"Granite Ridge","Natural Gas","Granite...

  8. Integration of renewable energy sources: reliability-constrained power system planning and operations using computational intelligence

    E-Print Network [OSTI]

    Wang, Lingfeng

    2009-05-15T23:59:59.000Z

    Renewable sources of energy such as wind turbine generators and solar panels have attracted much attention because they are environmentally friendly, do not consume fossil fuels, and can enhance a nations energy security. As a result, recently more...

  9. The need of mineral resources driven by the energy transition for the next 40 years

    E-Print Network [OSTI]

    Canet, Lonie

    increase in the share of solar and wind energy Evolution of hydro, solar and wind energy production remote and metal grades decline, the increasing cost of mining and increasing energy demands will limitThe need of mineral resources driven by the energy transition for the next 40 years Olivier Vidal

  10. FACTSHEET: Energy Department Launches Open-Source Online Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    housing energy efficiency, offering a host of interactive lessons for today's energy audit and weatherization experts. Since 2009, these efforts have helped the Obama...

  11. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear nonproliferation controls. To...

  12. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Demand exec summary Executive Summary The rate of growth in energy use slows over the projection period, reflecting moderate population growth, an extended economic...

  13. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    section For commercial buildings, pace of decline in energy intensity depends on technology.... Read full section Greatest reduction in energy intensity is in commercial...

  14. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    section For commercial buildings, pace of decline in energy intensity depends on technology.... Read full section Efficiency standards reduce electric energy intensity in...

  15. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    Read full section Mkt trends Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use.... Read full section Growth in industrial energy...

  16. U.S. Energy Information Administration (EIA) - Source

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Mkt trends Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use.... Read full section Manufacturing heat and power energy consumption...

  17. U.S. Energy Information Administration (EIA) - Source

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    declines from 2010 to 2040 ...Read full section Industrial and commercial sectors lead U.S. growth in primary energy use ...Read full section Renewable energy courses lead...

  18. January 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Energy Consortium of New York Photovoltaic Research and Development Center Klein, Petra M. A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation Terry Battiest...

  19. Urban Consortium Energy Task Force - Year 21 Final Report

    SciTech Connect (OSTI)

    NONE

    2003-04-01T23:59:59.000Z

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  20. The Planck energy-mass source as an alternative to the Big Bang

    E-Print Network [OSTI]

    Serge F. Timashev

    2008-04-17T23:59:59.000Z

    The general theory of relativity is used to show that the total energy-mass of the visible Universe could be produced by an energy-mass source with the Planck power. The source was supposedly born at the phase of cosmic inflation and acts continuously throughout the lifetime of our Universe. The model allows one to treat dark energy as a real form of energy without using the hypothesis of anti-gravity.