Powered by Deep Web Technologies
Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Year Average Transportation Cost of Coal  

Gasoline and Diesel Fuel Update (EIA)

delivered costs of coal, by year and primary transport mode Year Average Transportation Cost of Coal (Dollars per Ton) Average Delivered Cost of Coal (Dollars per Ton)...

2

Natural radioactivity of Zambian coal and coal ash  

Science Journals Connector (OSTI)

226Ra and232Th specific activities in coal from Maamba Collieries in Zambia have been...?1..., respectively. These values are nearly two and a half times larger than the world average for coal an...

P. Hayumbu; M. B. Zaman; S. S. Munsanje

1995-11-01T23:59:59.000Z

3

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

4

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

5

Coal operators prepare for a prosperous new year  

SciTech Connect

Results are given of the Coal Age 2008 annual Forecast Survey of 17 coal mining executives which reinforces that 2008 could be a very good year. Coal operators are planning to invest in new equipment, development and new coal mine start-ups, based on a number of demand- and supply-side fundamentals. 71% of those surveyed thought coal production in 2008 would increase from 2007 levels and US exports are expected to climb due to the weak dollar. If the tax credit on synfuels expires on 31 December 2007 production of coal synfuel will likely cease. Asked about expensive planned purchases, companies answers ranged from $80,000 for an underground scoop to $500 m for a new mine installation. However, most producers admit they will not be able to operate at full capacity. 7 figs.

Fiscor, S.

2008-01-15T23:59:59.000Z

6

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

7

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start-up  

E-Print Network (OSTI)

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start approximately 370 million tons of coal reserves, Armstrong operates six active mines in Western Kentucky, along the U.S. Midwest and Southeast. Armstrong is fully committed to meeting strict environmental standards

Fisher, Kathleen

8

SUBSTITUTION OF NATURAL GAS FOR COAL: CLIMATIC EFFECTS OF UTILITY SECTOR EMISSIONS  

E-Print Network (OSTI)

SUBSTITUTION OF NATURAL GAS FOR COAL: CLIMATIC EFFECTS OF UTILITY SECTOR EMISSIONS KATHARINE HAYHOE. Substitution of natural gas for coal is one means of reducing carbon dioxide (CO2) emissions. However, natural of coal by natural gas are evaluated, and their modeled net effect on global mean-annual temperature

Jain, Atul K.

9

Environmental impact of natural radionuclides from a coal-fired power plant in Spain  

Science Journals Connector (OSTI)

......natural radionuclides from a coal-fired power plant in Spain...natural radionuclides of the coal. The three most important nuclides...20). Owing to considerable economic and environment importance and...from different processes of the coal industrial cycle. A radiological......

Elena Charro; Víctor Peña

2013-03-01T23:59:59.000Z

10

Prestigious Coal-Fired Project of the Year Award Goes to Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prestigious Coal-Fired Project of the Year Award Goes to Plant Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology December 16, 2010 - 12:00pm Addthis Washington, DC - An innovative project demonstrating DryFining™ technology, a more cost-effective way to control coal-based power plant emissions while improving fuel quality, has been named the 2010 Coal-Fired Project of the Year by the editors of Power Engineering magazine. The project, managed by the Office of Fossil Energy's National Energy Technology Laboratory, was developed with funding from the Department of Energy's Clean Coal Power Initiative and was originally implemented at Great River Energy's Coal Creek Station in Underwood, ND, in 2009. The

11

U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand: 2010 Year in Review U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Introduction Coal production in the United States in 2010 increased to a level of 1,085.3 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), an increase of 1.0 percent, or 10.4 million short tons above the 2009 level of 1,074.9 million short tons (Table 1). In 2010 U.S. coal consumption increased in all sectors except commercial and institutional while total coal stocks fell slightly for the year. Coal consumption in the electric power sector in 2010 was higher by 4.5 percent, while coking coal consumption increased by 37.9 percent and the other industrial sector increased by 7.1 percent. The commercial and

12

Forecast of Advanced Technology Adoption for Coal Fired Power Generation Towards the Year of 2050  

Science Journals Connector (OSTI)

The considered systems of coal fired power generation are Supercritical Unit, Ultra Supercritical Unit, ... . In order to compare with the natural gas case, Natural Gas Combined Cycle (NGCC) is included. Evaluati...

Keiji Makino

2013-01-01T23:59:59.000Z

13

Forecast of Advanced Technology for Coal Power Generation Towards the Year of 2050 in CO2 Reduction Model of Japan  

Science Journals Connector (OSTI)

Abstract In the fossil fuel, coal is enough to get easily because it has supply and price stability brought about its ubiquitously. Coal is used for power generation as the major fuel in the world. However it is true that control of global warming should be applied to coal power generations. Therefore, many people expect CO2 reduction by technical innovation such as efficiency improvement, Carbon dioxide Capture and Storage (CCS). In case of coal power plant are considered for improving efficiency. Some of them have already put into commercial operation but others are still under R&D stage. Especially, the technical development prospect of the power plant is very important for planning the energy strategy in the resource-importing country. Japan Coal Energy Center (JCOAL) constructed a program to forecast the share of advanced coal fired plants/natural gas power plants towards the year of 2050. Then, we simulated the future prediction about 2 cases (the Japanese scenario and the world scenario). The fuel price and the existence of CCS were considered in the forecast of the technical development of the thermal power generation. Especially in the Japanese scenario, we considered the CO2 reduction target which is 80% reduction in 1990. In the world scenario, coal price had almost no influence on the share of coal fired plant. However, when the gas price increased 1.5% or more, the share of coal fired plant increased. In that case, CO2 emissions increased because coal-fired plant increased. Compared with both cases, the amount of CO2 in 2050 without CCS case was 50% higher than that of with CCS case. In Japanese scenario, achievement of 80% CO2 reduction target is impossible without CCS. If CCS is introduced into all the new establishment coal fired plant, CO2 reduction target can be attained. In the Japanese scenario, the gas price more expensive than a coal price so that the amount of the coal fired plant does not decline. Since the reduction of the amount of CO2 will be needed in all over the world, introductory promotion and technical development of CCS are very important not only Japan but also all over the world.

Takashi Nakamura; Keiji Makino; Kunihiko Shibata; Michiaki Harada

2013-01-01T23:59:59.000Z

14

Modeling of a coal-fired natural circulation boiler  

SciTech Connect

Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.

Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N. [Indian Institute of Technology, Bombay (India). Dept. of Mechanical Engineering

2007-06-15T23:59:59.000Z

15

Advanced Coal-Extraction-Systems Project: report of activities for fiscal year 1980-1981. [By coal field and basin  

SciTech Connect

The Advanced Coal Extraction Systems Project completed several major accomplishments in the definition of target resources, definition of conceptual design requirements for Central Appalachia coals, and initiation of the conceptual design effort. Geologically and economically significant resources were characterized, resulting in recommendations for additional target resources; conceptual design requirements for Central Appalachia coals in the areas of production cost, safety, health, environmental impact, and coal conservation were formulated; and strategies for internal and external design efforts were defined. In addition, an in-depth health and safety evaluation of a modified tunnel borer design for coal mining was completed. At the end of fiscal year 1980-1981, the project was prepared to begin evolution and evaluation of conceptual designs for advanced coal mining systems. The selection of Central Appalachia as the target region automatically imposes certain restrictions and constraints, pertinent to the geology, geography, and other aspects of the operating environment. Requirements imposed by the target resource are summarized. Figure 2-1 presents an overview of the relationship between the conceptual design requirements and the constraints imposed by the Central Appalachian target resource.

Dutzi, E.J.

1982-03-15T23:59:59.000Z

16

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

17

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset  

Energy.gov (U.S. Department of Energy (DOE))

Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

18

The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil Point, California  

E-Print Network (OSTI)

area) are not well established, either globally or within strong source areas such as near Coal OilThe spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil hydrocarbon seepage from marine environments is an important source of methane and other gases

Washburn, Libe

19

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network (OSTI)

geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the worldORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field constructed from 3D seismic and well data allowed investigation of the relationship between the subsurface

Luyendyk, Bruce

20

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown  

Energy.gov (U.S. Department of Energy (DOE))

From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE-FE: 20th Year of University Coal Research Grants  

NLE Websites -- All DOE Office Websites (Extended Search)

May 5, 1999 May 5, 1999 DOE Funds 20th Year of University Coal Grants Students, Teachers Team to Explore Greenhouse Gas Reduction, Coal Science and Technologies for Pollution Free Power Plant The U.S. Department of Energy announced today that 17 university-proposed projects will share in $2.8 million in federal coal research funds - marking the 20th year of a program that combines science education for students with research that can reveal cleaner and more effective ways to use the nation's plentiful coal reserves. The winning colleges and universities include: Arizona State University Brigham Young University Brown University Carnegie Mellon University Clarkson University Colorado School of Mines Georgia Institute of Technology Kansas State University Ohio University

22

Variability of Natural Dust Erosion from a Coal Pile  

Science Journals Connector (OSTI)

A study of fugitive dust emissions from a pile of crushed coal revealed that, in addition to emitting dust to the atmosphere during periods of pile management (human) activity, dust is also emitted during periods without human activity. This “...

Stephen F. Mueller; Jonathan W. Mallard; Qi Mao; Stephanie L. Shaw

23

Coal Power Systems strategic multi-year program plans  

SciTech Connect

The Department of Energy's (DOE) Office of Fossil Energy (FE), through the Coal and Power Systems (C and PS) program, funds research to advance the scientific knowledge needed to provide new and improved energy technologies; to eliminate any detrimental environmental effects of energy production and use; and to maintain US leadership in promoting the effective use of US power technologies on an international scale. Further, the C and PS program facilitates the effective deployment of these technologies to maximize their benefits to the Nation. The following Strategic Plan describes how the C and PS program intends to meet the challenges of the National Energy Strategy to: (1) enhance American's energy security; (2) improve the environmental acceptability of energy production and use; (3) increase the competitiveness and reliability of US energy systems; and (4) ensure a robust US energy future. It is a plan based on the consensus of experts and managers from FE's program offices and the National Energy Technology Laboratory (NETL).

None

2001-02-01T23:59:59.000Z

24

Environmental trends in Asia are accelerating the introduction of clean coal technologies and natural gas  

SciTech Connect

This paper examines the changing energy mix for Asia to 2020, and impacts of increased coal consumption on Asia`s share of world SO{sub 2} and CO{sub 2} emissions. Stricter SO{sub 2} emissions laws are summarized for eight Asian economies along with implications for fuel and technology choices. The paper compares the economics of different technologies for coal and natural gas in 1997 and in 2007. Trends toward introducing clean coal technologies and the use of natural gas will accelerate in response to tighter environmental standards by 2000. The most important coal conversion technology for Asia, particularly China, in the long term is likely to be integrated gasification combined-cycle (IGCC), but only under the assumption of multiple products.

Johnson, C.J.

1997-09-01T23:59:59.000Z

25

Combustion of Illinois coals and chars with natural gas. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

Combined combustion of coal and natural gas offers advantages compared to burning coal or natural gas alone. For example, low volatile coals (or chars) derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Also, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. This research program addresses the contributions and the mechanisms of cofiring natural gas with Illinois coal through studies of particle ignition, burning rates and ash characterization.

Buckius, R.O.; Peters, J.E.; Krier, H. [Illinois Univ., Urbana-Champaign, IL (United States)

1992-12-31T23:59:59.000Z

26

Analyses of tipple and delivered samples of coal collected during fiscal year 1985  

SciTech Connect

This Department of Energy (DOE) publication updates a series of Topical Reports (formerly ''Reports of Investigation'') on the quality of coal purchases under specifications for government use. Listed in alphabetical order by state, county, town, and mine are analytical data on the composition and quality of tipple and delivered samples of coal collected during the fiscal year 1985. Tipple samples were collected by certified commercial laboratories in accordance with instructions given by the Analytical Research Branch (ARB), Coal Science Division (CSD). The delivered samples were collected at destination by installation personnel, and all samples were analyzed under the supervision of the DOE-CSD located at the Pittsburgh Energy Technology Center (PETC), Pittsburgh, Pennsylvania, or the US Army General Material and Petroleum Activity Laboratory, located at New Cumberland, Pennsylvania.

Schultz, H.; Retcofsky, H.L.; Davis, L.R.

1988-01-01T23:59:59.000Z

27

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

28

Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age  

E-Print Network (OSTI)

electricity, natural gas, or propane) were not associatedcoal, wood, natural gas, and propane for heating or cooking.fuel used for cooking Gas Propane Electricity Coal Wood

2006-01-01T23:59:59.000Z

29

Detection of natural oxidation of coking coal by TG-FTIR—mechanistic implications  

Science Journals Connector (OSTI)

The natural oxidation/weathering of coal continues to be a subject of interest both scientifically and industrially, in part due to the complexity of the molecular processes at hand as well as to the commercial implications involved. It is widely recognized that coking can be adversely affected by weathering whereas, combustion processes appear to be enhanced as result of oxidation. Combustion techniques are commonly used in the analysis of coal, and organic compounds in general, for the determination of elemental hydrogen, carbon and nitrogen. For oxygen, the method in common practice involves the determination by difference from directly determined values for moisture, ash, sulphur, hydrogen, carbon and nitrogen. This has led us to consider the use of thermogravimetry coupled to gas analysis by infrared spectroscopy (TG-FTIR) to measure organic oxygen in coal directly. Although this technique, developed by Solomon and coworkers, has been extensively used by our group and others, it appears not to have been considered for this particular purpose. Recently, we have shown that TG-FTIR is capable of measuring all the organic oxygen in both fresh and oxidized coal by simultaneous measurement of the three main oxygen-containing gases H2O, CO and CO2 evolved during rapid pyrolysis. This gives us a way of measuring quantitatively the oxygen introduced into the coal matrix during oxidation and at least a partial capability of establishing oxygen speciation. We have found, using TG-FTIR, that the early stages of coal oxidation results in the appearance of O-containing functional groups not present in the original coal. The nature of these functional groups is directly related to the oxidation reaction mechanism. These results will be presented and discussed in detail.

J.A. MacPhee; L. Giroux; J.-P. Charland; J.F. Gransden; J.T. Price

2004-01-01T23:59:59.000Z

30

Natural Gas 2007 Year-In-Review  

Annual Energy Outlook 2012 (EIA)

7 This report provides an overview of the natural gas industry and markets in 2007 with special focus on the first complete set of supply and disposition data for 2007 from the...

31

Natural Gas 2006 Year-In-Review  

Gasoline and Diesel Fuel Update (EIA)

6 This report provides an overview of the natural gas industry and markets in 2006 with special focus on the first complete set of supply and disposition data for 2006 from the...

32

Natural Gas Year-in-Review  

Annual Energy Outlook 2012 (EIA)

rose to 66.0 Bcf per day, with large increases coming from additional natural gas-fired power generation. Net imports decreased by 0.2 Bcf per day to 7.1 Bcf per day, the...

33

System and method for producing substitute natural gas from coal  

DOE Patents (OSTI)

The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

Hobbs, Raymond (Avondale, AZ)

2012-08-07T23:59:59.000Z

34

EIA - Natural Gas Year-In-Review 2009  

Annual Energy Outlook 2012 (EIA)

9 Natural Gas Year-In-Review 2009 Released: July 2010 Next Release: November 2011 This report provides an overview of the natural gas industry and markets in the United States in...

35

EIA - Natural Gas Year-In-Review 2008  

Annual Energy Outlook 2012 (EIA)

8 Natural Gas Year-In-Review 2008 Released: April 2009 Next Release: April 2010 This report provides an overview of the natural gas industry and markets in 2008 with special focus...

36

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by B&W Technical Services, Pantex and Pro2Serve October, 2011

37

An evaluation of Substitute natural gas production from different coal gasification processes based on modeling  

Science Journals Connector (OSTI)

Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro™. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared.

S. Karellas; K.D. Panopoulos; G. Panousis; A. Rigas; J. Karl; E. Kakaras

2012-01-01T23:59:59.000Z

38

Appalachian coal miner mortality study: a 14-year follow-up  

SciTech Connect

From 1963 to 1965, the U.S. Public Health Service examined 3,726 underground Appalachian bituminous coal miners who were living in 1962. Their vital status was verified on January 1, 1973 (10 years of follow-up) and again on January 1, 1976 (14 years of follow-up). Mortality was studied after 10 years and results were published by Ortmeyer (1974) and Costello (1974, 1975). The results of a study of the mortality after 14 years are the subject of this report. The cause of death was determined from the underlying cause recorded on the death certificate. Death from all causes, ischemic heart disease, non-malignant respiratory disease (NMRD), cancer of the trachea, bronchus, and lung, digestive cancer, and accidents were studied.

Amandus, H.

1982-06-08T23:59:59.000Z

39

Investigation on Life-cycle Cost of Coal-based Synthetic Natural Gas (SNG)  

Science Journals Connector (OSTI)

Abstract Coal-based synthetic natural gas (SNG) is considered to be a promising alternative of clean energy, especially for urban uses, to response to the insufficient supply of natural gas in China, In this paper, life cycle costing is conducted for SNG in three main urban applications: heating boiler use, residential use, and transit bus use, respectively. The results show that the SNG is competitive for residential use, while it is not as cost- effective as expected when used for heating boiler use or transit bus use. Major shortcoming of SNG is from the large environmental emissions in the production stage.

Jun Zhang; Hengchong Li; Siyu Yang; Xiuxi Li; Yu Qian

2014-01-01T23:59:59.000Z

40

Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050  

Science Journals Connector (OSTI)

Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in 2030–2050 found in the open literature is used. The basis for comparison is the production cost per t of high value chemicals (HVCs or light olefin-value equivalent). A Monte Carlo method was used to estimate the ranking of production costs of all 24 routes with 10,000 trials of varying energy prices and CO2 emissions costs (assumed to be within $0–100/t CO2; the total CO2 emissions, or cradle-to-grave CO2 emissions, were considered). High energy prices in the first three quarter of 2008 were tested separately. The main findings are:• Production costs: while the production costs of crude oil- and natural gas-based routes are within $500–900/t HVCs, those of coal- and biomass-based routes are mostly within $400–800/t HVCs. Production costs of coal- and biomass-based routes are in general quite similar while in some cases the difference is significant. Among the top seven most expensive routes, six are oil- and gas-based routes. Among the top seven least expensive routes, six are coal and biomass routes. • CO2 emissions costs: the effect of CO2 emissions costs was found to be strong on the coal-based routes and also quite significant on the biomass-based routes. However, the effect on oil- and gas-based routes is found to be small or relatively moderate. • Energy prices in 2008: most of the coal-based routes and biomass-based routes (particularly sugar cane) still have much lower production costs than the oil- and gas-based routes (even if international freight costs are included). To ensure the reduction of CO2 emissions in the long-term, we suggest that policies for the petrochemicals industry focus on stimulating the use of biomass as well as carbon capture and storage features for coal-based routes.

Tao Ren; Bert Daniëls; Martin K. Patel; Kornelis Blok

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

International Energy Outlook 2001 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal picture of a printer Printer Friendly Version (PDF) Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is expected to continue. Although 1999 world consumption, at 4.7 billion short tons,9 was 15 percent higher than coal use in 1980, it was lower than in any year since 1984 (Figure 51). The International Energy Outlook 2001 (IEO2001) reference case projects some growth in coal use between 1999 and 2020, at an average annual rate of 1.5 percent, but with considerable variation among regions.

42

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network (OSTI)

Mar Lett (2010) 30:331–338 Fig. 3 Coal Oil Point seep field,hydrocarbon seeps near Coal Oil Point, California. Marhydrocarbon seep emissions, Coal Oil Point seep field,

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z

43

U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information...  

Annual Energy Outlook 2012 (EIA)

Coal consumption in the electric power sector in 2010 was higher by 4.5 percent, while coking coal consumption increased by 37.9 percent and the other industrial sector...

44

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Facility 10-Year Natural Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final Results V. July 2010 Event VI. Emergency Planning VII.What's Next Pantex The Pantex Plant, located 17 miles northeast of Amarillo, Texas, in Carson County, is charged with maintaining the safety, security and reliability of the nation's nuclear weapons stockpile. Worked performed at Pantex supports three core missions. * Stockpile Stewardship * Nonproliferation and * Safeguards and Security Pantex (cont.) - Location Pantex (cont.) - Weather Patterns * Precipitation is typical for Southwest climate, mainly in the form of Spring and

45

Optimizing heat integration in a flexible coal–natural gas power station with CO2 capture  

Science Journals Connector (OSTI)

Abstract Computational optimization is used to simultaneously determine the design and planned operating profile of a flexible coal–natural gas power station with CO2 capture, under a CO2 emission performance standard. The facility consists of a coal-fired power station undergoing retrofit with CO2 capture. The CO2 capture energy demand is provided by a specially designed combined cycle gas turbine (CCGT). The heat recovery steam generator (HRSG) component of the CCGT is modeled and optimized in detail, with explicit treatment of the discrete aspects of the HRSG configuration, including the number and sequential arrangement of HRSG internal components. Variable facility operations are represented by discrete operating modes selected based on the electricity price–duration curve. Two objectives, the minimization of capital requirement and the maximization of net present value, are considered in a bi-objective mixed-integer nonlinear programming formulation. Pareto frontiers, which define the optimal tradeoffs between these two objectives, are generated for six scenarios constructed from recent historical data from West Texas, the United Kingdom, and India. For a 440 MW coal plant in a scenario based on 2011 West Texas data, the minimum effective net present cost required for the retrofit (which meets the CO2 emission performance standard) varies from $278 to 383 million, and the minimum total capital investment requirement ranges from $346 to 517 million. The variations in these optimized values correspond to the range of the Pareto frontier within the bounds of the problem. The net present cost of the retrofit is less than the present value of the existing coal plant, $476 million, indicating that a retrofit is preferred over decommissioning. In the case of very low energy prices, however, decommissioning is shown to be the preferred option. The UK and India scenarios demonstrate that optimal designs can vary greatly depending upon location-specific economic conditions.

Charles A. Kang; Adam R. Brandt; Louis J. Durlofsky

2014-01-01T23:59:59.000Z

46

Chemical Looping Combustion of Biomass/Coal with Natural Iron Ore as Oxygen Carrier in a Continuous Reactor  

Science Journals Connector (OSTI)

Chemical Looping Combustion of Biomass/Coal with Natural Iron Ore as Oxygen Carrier in a Continuous Reactor ... Chemical looping combustion (CLC) is a new innovative technology with inherent separation of CO2 without energy penalty. ... Experiments on chemical looping combustion of biomass/coal were conducted in a 1 kWth continuous reactor, and an Australia iron ore was selected as oxygen carrier. ...

Haiming Gu; Laihong Shen; Jun Xiao; Siwen Zhang; Tao Song

2010-12-21T23:59:59.000Z

47

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

48

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network (OSTI)

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

49

Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece  

SciTech Connect

West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra and {sup 232}Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for {sup 232}Th, {sup 228}Ra and {sup 40}K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R. [Technological Educational Institute (TEI) of West Macedonia, Department of Pollution Control Technologies, Koila, Kozani, 50100 (Greece)

2008-08-07T23:59:59.000Z

50

Economical production of transportation fuels from coal, natural gas, and other carbonaceous feedstocks  

SciTech Connect

The Nation`s economy and security will continue to be vitally linked to an efficient transportation system of air, rail, and highway vehicles that depend on a continuous supply of liquid fuels at a reasonable price and with characteristics that can help the vehicle manufacturers meet increasingly strict environmental regulations. However, an analysis of US oil production and demand shows that, between now and 2015, a significant increase in imported oil will be needed to meet transportation fuel requirements. One element of an overall Department of Energy`s (DOE) strategy to address this energy security issue while helping meet emissions requirements is to produce premium transportation fuels from non-petroleum feedstocks, such as coal, natural gas, and biomass, via Fischer-Tropsch (F-T) and other synthesis gas conversion technologies.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winslow, J.C.; Venkataraman, V.K.; Driscoll, D.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

1998-12-31T23:59:59.000Z

51

Where Appalachia Went Right: White Masculinities, Nature, and Pro-Coal Politics in an Era of Climate Change  

E-Print Network (OSTI)

Impacts of the Appalachian Coal Industry and Its Future inCommunity Economic Identity: The Coal Industry and IdeologyPress, 1882. “Citizens for Coal. ” Facebook. Accessed March

Schwartzman, Gabe

2013-01-01T23:59:59.000Z

52

Where Appalachia Went Right: White Masculinities, Nature, and Pro-Coal Politics in an Era of Climate Change  

E-Print Network (OSTI)

York. “Community Economic Identity: The Coal Industry andCurrent Economic Impacts of the Appalachian Coal Industrypolitical economic system of Appalachian coal mining since

Schwartzman, Gabe

2013-01-01T23:59:59.000Z

53

Losses and Costs Associated with Coal vs. Natural Gas Firing at Hanes Dye and Finishing.  

E-Print Network (OSTI)

??Due to decreasing production and rising coal prices, the engineering and management staff at Hanes Dye and Finishing in Winston Salem, NC have been investigating… (more)

Gibides, Justin Tyler

2009-01-01T23:59:59.000Z

54

COAL & POWER SYSTEMS  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL & POWER SYSTEMS COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM PLANS STRENGTH THROUGH SCIENCE... A "GREENER, SOONER" PHILOSOPHY Coal, natural gas, and oil fuel about 70 percent of the electricity generated in the United States. As promising as renewable and other alternative fuels are, it will be several decades before they can make significant energy contributions to the Nation's

55

Paradigm Shift: Burning Coal to Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paradigm Shift: Burning Coal Paradigm Shift: Burning Coal to Geothermal" November 20, 2012 jlowe@bsu.edu 765.285.2805 Ball State University Ball State University Administration Building 1899 Ball State 1920s Ball State University Ball State University (4) Coal Fired Boilers Installed 1941/1955 (3) Natural Gas Fired Boilers Installed in the 1970s Heat and Chilled Water Plant Operations Heat Plant: 4 Coal Fired Boilers 3 Natural Gas Fired Boilers 320,000 Lbs/Hr nameplate 240,000 Lbs/Hr current 700,000,000 Lbs/Year Chilled Water Plant: 5 Electrical Centrifugal Chillers 9,300 ton capacity 25,000,000 Ton Hours/Year Pollutants Produced from Burning 36,000 tons of Coal * Carbon Dioxide 85,000 tons (Global Warming)

56

Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant  

Science Journals Connector (OSTI)

The present work has been undertaken for energetic and exergetic analysis of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Comparative analysis has been conducted ...

V. Siva Reddy; S. C. Kaushik; S. K. Tyagi

2014-03-01T23:59:59.000Z

57

Berkeley Lab: Year of Science: Nature's Unending Surprises: the Neutrino  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics! Physics! Imagine a day without physics or technology? No thank you! That would mean giving up the computer you are using, the electricity that warmed your coffee this morning, and the weather satellite that informed your clothing choice. And March is a great month to celebrate Physics because 3/14 = Pi day and Albert Einstein's birthday! Year of Science tab February Evolution March Physics April Energy May Environment June Water August Climate September Conservation October Geosciences November Chemistry December Health Neutrino Science, Part One Neutrino Science, Part Two Nature's Unending Surprises: the Neutrino The first of two articles on neutrino science at Berkeley Lab By Paul Preuss Kevin Lesko image Neutrino hunter Kevin Lesko of Berkeley Lab's Nuclear Sciences Division holds a photomultiplier tube like those used in solving

58

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

of natural gas, along with the coal reserve base of 326s Fossil Fuel Reserve Base, 2007 Oil Natural Gas Coal 233ensured reserves”) of coal, oil and natural gas published in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

59

In situ gasification chemical looping combustion of a coal using the binary oxygen carrier natural anhydrite ore and natural iron ore  

Science Journals Connector (OSTI)

Abstract CaSO4 is an attractive oxygen carrier for Chemical–looping combustion (CLC), because of its high oxygen capacity and low price. But the utilization of CaSO4 oxygen carrier suffers the problems of low reactivity, deactivation caused by sulfur loss and the incomplete fuel conversion due to the thermodynamic limitations. To improve the stability and reactivity of CaSO4 oxygen carrier, a small amount of natural iron ore were added in. The kinetic behavior and thermodynamics of the reduction of the binary oxygen carrier by coal under steam atmosphere were investigated. The results show that Fe2O3 improves the performance of coal gasification and the subsequent conversion of coal syngas to CO2 and H2O. Besides, the addition of Fe2O3 reduces the chance of CaSO4 reduction to CaO by coal syngas, and the oxygen transfer capacity of CaSO4 is maintained. The optimal reaction conditions in fuel reactor are shifted from 950 °C without Fe2O3 to 900 °C with 7% Fe2O3. And the decreases in CO, SO2 and H2S environmental factors can be well up to 81.48%, 76.35% and 100%, respectively. Meanwhile, the CO2 concentration in the dry gas products increases from 81.63% up to 95.35%.

Min Zheng; Laihong Shen; Xiaoqiong Feng

2014-01-01T23:59:59.000Z

60

Chemical structure of coal tar during devolatilization  

SciTech Connect

Enormous progress has been made in coal pyrolysis research during the last two decades. Models of coal devolatilization have progressed from simple rate expressions based on total mass release to empirical relationships based on the elemental composition of the parent coal to models that attempt to describe the macromolecular network of the coal. In the last several years, advancements in chemical analysis techniques have allowed quantitative investigations of the chemical structure of both coal and its pyrolysis products, including the nature of the resulting char. A prominent research goal is to accurately predict the rates, yields, and products of devolatilization from measurements of the parent coal structure. The prediction of nitrogen species evolved during devolatilization is of current interest. These goals necessitate modeling the reaction processes on the molecular scale, with activation energies that relate to chemical bond breaking rather than to the mass of products released from the coal. Solid-state {sup 13}C NMR spectroscopy has proven particularly useful in obtaining average values of chemical structure features of coal and char, while liquid phase {sup 1}H NMR spectroscopy has been used to determine some of the chemical features of coal tar. Pyridine extract residues from coal and partially-pyrolyzed coal chars have also been analyzed by solid-state {sup 13}C NMR spectroscopy, and the extracts have been analyzed by {sup 1}H NMR spectroscopy.

Fletcher, T.H.; Watt, M. [Bringham Young Univ., Provo, UT (United States); Bai, S.; Solum, M.S. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

62

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA) Indexed Site

reports reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

63

Natural Gas Year-in-Review - Energy Information Administration  

Annual Energy Outlook 2012 (EIA)

Production lookback 2013 Released: January 16, 2014 U.S. natural gas production increases by 1% in 2013 Average dry natural gas production grew modestly in 2013, despite a 35%...

64

Chemicals from coal  

SciTech Connect

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

65

Industrial coking of coal batch without bituminous coal  

Science Journals Connector (OSTI)

For many years, Kuznetsk-coal batch has always included bituminous coal. Depending on the content of such coal, the batch may be characterized as lean ... classification was adopted by specialists of the Eastern

P. V. Shtark; Yu. V. Stepanov; N. K. Popova; D. A. Koshkarov…

2008-03-01T23:59:59.000Z

66

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

67

Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

2012-04-30T23:59:59.000Z

68

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

69

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

70

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

71

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

72

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

73

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

74

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

75

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis  

Science Journals Connector (OSTI)

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis ... This paper, which is the first part of a series of papers, introduces a hybrid coal, biomass, and natural gas to liquids (CBGTL) process that can produce transportation fuels in ratios consistent with current U.S. transportation fuel demands. ... Steady-state process simulation results based on Aspen Plus are presented for the seven process alternatives with a detailed economic analysis performed using the Aspen Process Economic Analyzer and unit cost functions obtained from literature. ...

Richard C. Baliban; Josephine A. Elia; Christodoulos A. Floudas

2010-07-19T23:59:59.000Z

76

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

77

Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options  

SciTech Connect

Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

2004-07-01T23:59:59.000Z

78

Two-billion-year-old nuclear reactors: Nature goes fission  

SciTech Connect

Once it was thought that the isotopic composition of natural uranium was invariant. It was thus surprising in 1972 when French scientists observed small but significant deficiencies of the minor isotope {sup 235}U in uranium ore. Subsequent investigations traced the isotopically anomalous material to the Oklo mine in the African Republic of Gabon. In the mine, cubic-dekametre-sized pods of rock were found to contain extraordinary concentrations of uranium, as much as 65%, with as little as half the normal isotopic abundance of {sup 235}U. In these rocks, neodymium was found to be deficient in the premordial isotope {sup 142}Nd and enriched in the fission-produced isotopes {sup 143-150}Nd. The presence of fission products was unambiguous evidence that the {sup 235}U deficiencies were the result of sustained nuclear fission. Within the heart of the natural reactors, the fission densities were on the order of 10{sup 20} fissions/cm{sup 3}, producing hundreds of megajoules of energy and tens of microwatts of power per gram of rock. Nature had forestalled man`s great discovery of energy production by nuclear fission.

Curtis, D.B. [Los Alamos National Lab., NM (US)

1992-12-31T23:59:59.000Z

79

Economic comparison between coal-fired and liquefied natural gas combined cycle power plants considering carbon tax: Korean case  

Science Journals Connector (OSTI)

Economic growth is main cause of environmental pollution and has been identified as a big threat to sustainable development. Considering the enormous role of electricity in the national economy, it is essential to study the effect of environmental regulations on the electricity sector. This paper aims at making an economic analysis of Korea's power plant utilities by comparing electricity generation costs from coal-fired power plants and liquefied natural gas (LNG) combined cycle power plants with environmental consideration. In this study, the levelized generation cost method (LGCM) is used for comparing economic analysis of power plant utilities. Among the many pollutants discharged during electricity generation, this study principally deals with control costs related only to CO2 and NO2, since the control costs of SO2 and total suspended particulates (TSP) are already included in the construction cost of utilities. The cost of generating electricity in a coal-fired power plant is compared with such cost in a LNG combined cycle power plant. Moreover, a sensitivity analysis with computer simulation is performed according to fuel price, interest rates and carbon tax. In each case, these results can help in deciding which utility is economically justified in the circumstances of environmental regulations.

Suk-Jae Jeong; Kyung-Sup Kim; Jin-Won Park; Dong-soon Lim; Seung-moon Lee

2008-01-01T23:59:59.000Z

80

Chemical-looping combustion of Victorian brown coal.  

E-Print Network (OSTI)

??Victoria has over 500 years of brown coal resources at present consumption rate. Current utilization of brown coal through conventional pulverized coal-fired power generation results… (more)

Saha, Chiranjib

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age  

E-Print Network (OSTI)

in the Czech setting, where coal is still com- monly used inwe found exposure to coal home heating and ETS increasewell studied, residential coal combustion in economically

2006-01-01T23:59:59.000Z

82

Coal market momentum converts skeptics  

SciTech Connect

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

83

Influence of coal nature and structure on ash size formation characteristic and related pollutant emissions during CFB combustion  

Science Journals Connector (OSTI)

The size distribution of coal particles in a Circulating Fluidized Bed (CFB) boiler plays a crucial role in the ... the variation of coal ash distributions and other CFB performance data due to the cyclone and...

Min Qian; Arnaud Boelle; Philippe Jaud; Yongjie Na…

2000-09-01T23:59:59.000Z

84

Where Appalachia Went Right: White Masculinities, Nature, and Pro-Coal Politics in an Era of Climate Change  

E-Print Network (OSTI)

to Surface Coal Mining in Appalachia. The University ofcoal mining town somewhere around 1905, part of the process that transformed Central Appalachiamining of more coal than anyone else in the history of central Appalachia,

Schwartzman, Gabe

2013-01-01T23:59:59.000Z

85

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power From Western Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Daniel C. Cicero Daniel C. Cicero Hydrogen & Syngas Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4826 daniel.cicero@netl.doe.gov Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Elaine Everitt Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4491 elaine.everitt@netl.doe.gov 4/2009 Hydrogen & Syngas Technologies Gasification Technologies Development of a HyDrogasification process for co-proDuction of substitute natural gas (sng) anD electric power from western coals Description In the next two decades, electric utilities serving the Western United States must install

86

Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and Performance Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia July 5, 2011 DOE/NETL- 2010/1402 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

87

Effect of petroleum coke addition on coal gasification  

Science Journals Connector (OSTI)

The main fuel for power generation is combustion of coal and/or natural gas. Natural gas is expensive but clean and less problematic whereas coal is the reverse of natural gas. Natural gas resources are expected to last until 2020 where else coal has another 200 years expectancy. To replace the natural gas synthetic gas (syngas) can be used as a substitute fuel. Syngas can be produced using coal as fuel. In this study we blend petcoke a cheap solid carboneous fuel as an alternative to coal for the production of syngas using a 30 Kwattheat bubbling fluidized bed gasifier. The equivalent ratio (ER) was set at 2.8 and a gasification temperature was maintained between 680 to 710°C by manipulating between the feed flow rates and fluidizing medium. This condition was chosen as it proved to be the optimum based on the work by the same group. Various blend of coal:petcoke between 0 to 100% was analyzed. It was found that a 20:80 petcoke to coal gives a good correlation with 100% coal gasification.

2014-01-01T23:59:59.000Z

88

The natural radioactivity contents in feed coals from the lignite-fired power plants in Western Anatolia, Turkey  

Science Journals Connector (OSTI)

......mineral matter contents than other Tertiary coals. Therefore, they have been consumed...total capacity of 1680 MW. The Soma coal basin is one of the largest economic lignite basins of western Turkey. Coal mining has been practised in this region......

N. Füsun Çam; Günseli Yaprak; Elif Eren

2010-12-01T23:59:59.000Z

89

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

90

The Asia-Pacific coal technology conference  

SciTech Connect

The Asia-Pacific coal technology conference was held in Honolulu, Hawaii, November 14--16, 1989. Topics discussed included the following: Expanded Horizons for US Coal Technology and Coal Trade; Future Coal-Fired Generation and Capacity Requirements of the Philippines; Taiwan Presentation; Korean Presentation; Hong Kong Future Coal Requirements; Indonesian Presentation; Electric Power System in Thailand; Coal in Malaysia -- A Position Paper; The US and Asia: Pacific Partners in Coal and Coal Technology; US Coal Production and Export; US Clean Coal Technologies; Developments in Coal Transport and Utilization; Alternative/Innovative Transport; Electricity Generation in Asia and the Pacific: Power Sector Demand for Coal, Oil and Natural Gas; Role of Clean Coal Technology in the Energy Future of the World; Global Climate Change: A Fossil Energy Perspective; Speaker: The Role of Coal in Meeting Hawaii's Power Needs; and Workshops on Critical Issues Associated with Coal Usage. Individual topics are processed separately for the data bases.

Not Available

1990-02-01T23:59:59.000Z

91

MS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

92

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals  

SciTech Connect

This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

93

Savannah River Site Retires Coal-Fired D-Area Powerhouse after Nearly 60 Years of Service  

Energy.gov (U.S. Department of Energy (DOE))

AIKEN, S.C. – The Savannah River Site (SRS) has shut down the massive, coal-powered D-Area powerhouse as the site turns to new, clean and highly efficient power generation technology.

94

Coal Gasification  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

95

Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale  

Science Journals Connector (OSTI)

Abstract Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from CBM samples) range from 50 to 100 ?g/L. Total dissolved organic carbon (TOC) in CBM produced water is generally in the 1–4 mg/L range. Excursions from this general pattern in produced waters from individual wells arise from contaminants introduced by production activities (oils, grease, adhesives, etc.). Organic substances in produced and formation water from gas shale unimpacted by production chemicals have a similar range of compound classes as CBM produced water, and TOC levels of about 8 mg/L. However, produced water from the Marcellus Shale using hydraulic fracturing has TOC levels as high as 5500 mg/L and a range of added organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at levels of 1000 s of ?g/L for individual compounds. Levels of these hydraulic fracturing chemicals and TOC decrease rapidly over the first 20 days of water recovery and some level of residual organic contaminants remain up to 250 days after hydraulic fracturing. Although the environmental impacts of the organics in produced water are not well defined, results suggest that care should be exercised in the disposal and release of produced waters containing these organic substances into the environment because of the potential toxicity of many of these substances.

William Orem; Calin Tatu; Matthew Varonka; Harry Lerch; Anne Bates; Mark Engle; Lynn Crosby; Jennifer McIntosh

2014-01-01T23:59:59.000Z

96

Investigations into coal coprocessing and coal liquefaction  

SciTech Connect

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

97

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

98

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

99

The relationship among oil, natural gas and coal consumption and economic growth in BRICTS (Brazil, Russian, India, China, Turkey and South Africa) countries  

Science Journals Connector (OSTI)

Abstract The causality relationship between economic growth and coal, natural gas and oil consumption was investigated using the ARDL (autoregressive distributed lag bounds) testing approach for the 1980–2011 period in Brazil, Russian, India, China, Turkey and South Africa. According to long-run and strong causality results, there is bi-directional causality between oil energy consumption and Y for all countries. The long-run causality and strong causality results between coal consumption and economic growth indicated that there is bi-directional causality for China and India. According to long-run causality results and a strong causality result, there are bi-directional causality relationships between NGC (natural gas energy consumption) and Y for Brazil, Russia and Turkey.

Melike E. Bildirici; Tahsin Bakirtas

2014-01-01T23:59:59.000Z

100

Applications for Coal and Natural Gas Power Plants in a Smart Grid Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Metrics and Benefits Analysis Metrics and Benefits Analysis for Smart Grid Field Projects Steve Bossart Energy Tech 2011 Cleveland, Ohio 2 Smart Grid Metrics & Benefits Topics * Value proposition * Field projects * Functions & applications * Metrics * Benefits * Metrics and benefits methodology * Non-metric results * Challenges 3 Value Proposition Cost to Modernize * $338-$476B over 20 years - $ 82-90 B for transmission - $232-$339 B for distribution - $24-46 B for consumer * $17-24 B per year Benefit of Modernization * $1294 - 2028 Billion * Overall benefit-to-cost ratio of 2.8 to 6.0 3 EPRI, 2011 Previous Studies Benefit to Cost Ratio for West Virginia of 5:1 Benefit to Cost Ratio for San Diego of 6:1 Benefit to Cost Ratio for EPRI (2004) 4:1-5:1 $165 B Cost $638 - $802 B Benefits 4 Smart Grid Field Projects

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

102

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

103

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Coal reports Coal reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

104

"Modern" Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

"Modern" Coal Plants "Modern" Coal Plants Nature Bulletin No. 331-A February 7, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation "MODERN" COAL PLANTS The Age of Cycads, when those strange tree-like plants predominated, began during the Triassic Period of the earth's geological history, reached its peak during the 60 million years of the Jurassic Period which followed, and ended during the first part of the Cretaceous Period that began about 95 million years ago. During the Jurassic, in addition to Cycades, there were also many species of ginkgos, and conifers which were the ancestors of our modern sequoias and pines. The ginkgo or "Maidenhair Tree", which we have imported from China and Japan, is the only one remaining of that tribe -- "a living fossil".

105

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2013-01-01T23:59:59.000Z

106

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2012-01-01T23:59:59.000Z

107

Fact #844: October 27, 2014 Electricity Generated from Coal has...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

108

Gasification of Coal and Oil  

Science Journals Connector (OSTI)

... , said the Gas Council is spending £120,000 this year on research into coal gasification, and the National Coal Board and the Central Electricity Generating Board £680,000 and ... coal utilization. The Gas Council is spending about £230,000 on research into the gasification of oil under a programme intended to contribute also to the improvement of the economics ...

1960-02-13T23:59:59.000Z

109

Solvent extraction of South African coal using a low volatile, coal-derived solvent / Eulouka Janse van Rensburg.  

E-Print Network (OSTI)

??Coal is an important fuel for countries with large coal reserves such as South Africa since it is expected that oil and natural gas prices… (more)

Van Rensburg, Eulouka Janse

2007-01-01T23:59:59.000Z

110

NETL: Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

111

Annual Coal Distribution Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

current Coal Distribution Report current Coal Distribution Report Annual Coal Distribution Report Release Date: November 7, 2012 | Next Release Date: November 2013 | full report Archive Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin Foreign distribution of U.S. coal by major coal-exporting States and destination Domestic distribution of U.S. coal by origin State, consumer, destination and method of transportation1 Domestic distribution of U.S. coal by destination State, consumer, destination and method of transportation1

112

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) CoalÂ’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

113

International Energy Outlook 2000 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Although coal use is expected to be displaced by natural gas in some parts of the world, Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1997. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union (FSU). In Western Europe, coal consumption declined by 33 percent between 1985 and 1997, displaced in considerable measure by

114

Coal within a revised energy perspective  

SciTech Connect

The author considers the use of coal within a revised energy perspective, focusing on the factors that will drive which fuels are used to generate electricity going forward. He looks at the world markets for fossil fuels and the difficulties of predicting oil and natural gas supply and prices, as demonstrated by the variability in projections from one year to another in the EIA's Annual Energy Outlook. 4 refs., 1 tab.

Darmstadter, J. [Resources for the Future (RFF), Washington, DC (United States)

2006-07-15T23:59:59.000Z

115

Year 2014 | Volume 12 | Health | Natural Science | Technology | Social Science | Humanities | Business Year 2014 | Volume 12 | upenn.edu/research  

E-Print Network (OSTI)

/ Anthropology / pgs 14­15 Eduardo Fernandez-Duque Natural Science / Astronomy / pg 16 Dark Energy Survey Natural 17 Dark Energy Survey Natural Science / Astronomy / bottom right / pg 17 Reidar Hahn of energy in the farthest reaches of space to liquid crystals at the nanoscale, researchers across

Sharp, Kim

116

4 - Coal resources and reserves  

Science Journals Connector (OSTI)

Abstract: Coal resources still make up a significant proportion of the world’s energy supplies. Coal resources are estimated to be 860 billion tonnes. These resources are geographically well distributed and current production provides fuel for 29% of the world’s primary energy consumption. The classification of coal resources and reserves has been redefined in recent years, with the standards and codes of practice adopted by the principal coal-producing countries being equated on a global basis. Details of the principal classifications are given, together with their international equivalents. Reporting of resources and reserves plus methods of calculation are also given, together with recent assessments of global coal reserves.

L.P. Thomas

2013-01-01T23:59:59.000Z

117

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

also be affected by higher coal prices. II "Current Factors$/year Change in Clean Coal Price, $/ton (FOB Plant) Cost ofcoal production capacities and coal prices. Coal Production

Ferrell, G.C.

2010-01-01T23:59:59.000Z

118

Coal: the cornerstone of America's energy future  

SciTech Connect

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

119

EIA - AEO2010 - Coal projections  

Gasoline and Diesel Fuel Update (EIA)

Coal Projections Coal Projections Annual Energy Outlook 2010 with Projections to 2035 Coal Projections Figure 88. Coal production by region, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 89. U.S. coal production in six cases, 2008, 2020, and 2035 Click to enlarge » Figure source and data excel logo Figure 90. Average annual minemouth coal prices by region, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 91. Average annual delivered coal prices in four cases, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 92. Change in U.S. coal consumption by end use in two cases, 2008-2035 Click to enlarge » Figure source and data excel logo Coal production increases at a slower rate than in the past In the AEO2010 Reference case, increasing coal use for electricity generation, along with the startup of several CTL plants, leads to growth in coal production averaging 0.2 percent per year from 2008 to 2035. This is significantly less than the 0.9-percent average growth rate for U.S. coal production from 1980 to 2008.

120

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

. Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

YEAR  

National Nuclear Security Administration (NNSA)

96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

122

Assumptions to the Annual Energy Outlook 1999 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal.gif (4423 bytes) coal.gif (4423 bytes) The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Model Documentation: Coal Market Module of the National Energy Modeling System, DOE/EIA-MO60. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

123

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

124

Definition: Coal | Open Energy Information  

Open Energy Info (EERE)

Coal Coal Jump to: navigation, search Dictionary.png Coal A combustible black or brownish-black sedimentary rock composed mostly of carbon and hydrocarbons. It is formed from plant remains that have been compacted, hardened, chemically altered, and metamorphosed by heat and pressure over geologic time (typically millions of years). It is the most abundant fossil fuel produced in the United States.[1][2] View on Wikipedia Wikipedia Definition Coal (from the Old English term col, which has meant "mineral of fossilized carbon" since the 13th century) is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers or veins called coal beds or coal seams. The harder forms, such as anthracite coal, can be regarded as metamorphic rock because of later

125

Cost and Performance Comparison Baseline for Fossil Energy Plants, Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline Baseline for Fossil Energy Plants Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity September 2011 DOE/NETL-2010/1399 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

126

Natural Gas Combined Cycle  

E-Print Network (OSTI)

The “Coal Ash Corrosion Resistant Materials Testing Program ” is being conducted by B&W at Reliant Energy’s Niles plant in Niles, Ohio. The total estimated cost of $1,864,603 is co-funded by DOE contributing 37.5%, OCDO providing 33.3 % and B&W providing 17%. The remaining 12 % is in-kind contributions by Reliant Energy and tubing suppliers. Materials development is important to the power industry, and to the use of coal. Figure 1 compares the cost of electricity for subcritical and supercritical coal-fired plants with a natural gas combined cycle (NGCC) plant based on an 85 % capacity factor. This shows that at $1.20/MBtu for fuel, coal is competitive with NGCC when gas is at $3.40/MBtu or higher. An 85 % capacity factor is realistic for a coal-fired plant, but NGCC plants are currently only achieving about 60%. This gives coal an advantage if compared on the basis of cost per kW generated per year. When subcritical and supercritical plants are compared,

Dennis K. Mcdonald; Subcritical Coal Plant; Supercritical Coal Plant

127

The Political Economy of Clean Coal .  

E-Print Network (OSTI)

??This dissertation investigates the nature of the political economy of Clean Coal. It begins by reviewing the literature of global warming and the current usage… (more)

Wu, Hao Howard

2010-01-01T23:59:59.000Z

128

The US coal industry 1996  

SciTech Connect

Several years ago a friend and former classmate, Dr. Doug Dahl, put the coal industry into perspective. At that time he worked for Consol, whose parent company was DuPont. I will use his story, but update it with today`s statistics. As can be seen in Figure 1, total US coal production continues to show healthy growth. In 1995 we produced 1,032,000,000 tons, and 1,046,000,000 tons are projected for 1996. Unfortunately as seen in Figure 2, the average price per ton of coal sold is still dropping. The coal industry is experiencing the unusual situation of falling coal prices with increasing coal demand! In 1994 (1995 data not available) the average price for a ton of coal was only $19.41. Multiplying the two numbers, yields the total sales value for our entire industry, $20.1 billion in 1994. That`s roughly half the approximately $40 billion per year sales value for a single chemical company, DuPont, Dr. Dahl`s parent company. As Dr. Dahl pointed out, the coal industry just isn`t that big. As we can see in Figure 3, the yearly trends show that the total value of the US coal production is shrinking. The total value has fallen through the 90`s and follows the average price per ton trend. Even increases in production have generally not been enough to offset the falling prices.

Campbell, J.A.L. [Custom Coals International, Inc., Oklahoma City, OK (United States)

1996-12-31T23:59:59.000Z

129

New developments in coal briquetting technology  

SciTech Connect

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

130

YEAR  

National Nuclear Security Administration (NNSA)

2540 YEAR 2013 Males 1677 Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV...

131

Adsorption and Strain: The CO2-Induced Swelling of Coal  

E-Print Network (OSTI)

.07.014 #12;Abstract Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal behavior (B), adsorp- tion, molecular simulations Methane production from unminable coal seams -denoted as Coal Bed Methane (CBM)- has amounted in 2008 to about 10% of the total natural gas production

Paris-Sud XI, Université de

132

CONSTRUCTION MATERIALS MADE WITH COAL COMBUSTION BY-PRODUCTS  

E-Print Network (OSTI)

ash and bottom ash are produced as by-products of coal-fired electricity generation. In many countries coal ashes are by-products of the coal combustion, their properties are influenced by the nature of understanding behavior of masonry products made from coal ashes. The objective of this research program

Wisconsin-Milwaukee, University of

133

EIA - Annual Energy Outlook 2008 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2008 with Projections to 2030 Coal Production Figure 93. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 94. U.S. coal production, 2006, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Western Coal Production Continues To Increase Through 2030 In the AEO2008 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 0.3 percent per year from 2006 to 2015, when total production is 24.5 quadrillion Btu. In the absence of restrictions on CO2 emissions, the growth in coal production

134

FE Clean Coal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems. January 4, 2011 DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy supported project. December 16, 2010 Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology

135

Coal conversion experimental methods for validation of pressurized entrained-flow gasifier simulation.  

E-Print Network (OSTI)

??Gasification of coal provides society with electricity, commodity chemicals, substitute natural gas, and consumer products. With the continued use of coal in the United States… (more)

Wagner, David Ray

2013-01-01T23:59:59.000Z

136

Estimating coal production peak and trends of coal imports in China  

SciTech Connect

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

137

Effects on Design and Operation of Coal-Fired Utility Boilers with Changes of Coal Qualities  

Science Journals Connector (OSTI)

In recent years, with the development of economic, large-scale coal-fired utility power plants got a rapid ... the situation for the transportation and supply of coal for power plants is still in tense. The actua...

Cao Yu-chun; Wang Zheng-wei

2013-01-01T23:59:59.000Z

138

Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years  

Energy.gov (U.S. Department of Energy (DOE))

In 2003 there were 1,097 natural gas refueling stations nationwide. By 2013, that number increased by about 25% to a total of 1,374 natural gas refueling stations. In 2003, there were six states...

139

Humanity's Top Ten Problems for next 50 years  

E-Print Network (OSTI)

& Tide -- not enough CHEMICAL · Natural Gas -- sequestration?, cost? · Clean Coal -- sequestration?, cost

McCready, Mark J.

140

Assumptions to the Annual Energy Outlook 2001 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2001, DOE/EIA-M060(2001) January 2001. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assumptions to the Annual Energy Outlook 2002 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2002, DOE/EIA-M060(2002) (Washington, DC, January 2002). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

142

Coal extraction  

SciTech Connect

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

143

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

2001-12-01T23:59:59.000Z

144

YEAR  

National Nuclear Security Administration (NNSA)

1 1 YEAR 2011 Males 18 Females 23 YEAR 2011 SES 2 EJ/EK 2 NQ (Prof/Tech/Admin) 35 NU (Tech/Admin Support) 2 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 9 Asian Male 0 Asian Female 0 Hispanic Male 2 Hispanic Female 6 White Male 12 White Female 6 DIVERSITY Workforce Diversity Associate Administrator for Information Management & Chief Information Officer, NA-IM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 18 43.9% 23 56.1% Gender Males Females 4.9% 4.9% 85.4% 4.9% Pay Plan SES EJ/EK NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 2.4% 4.9% 7.3% 22.0% 0.0% 0.0% 4.9% 14.6% 29.3% 14.6% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

145

YEAR  

National Nuclear Security Administration (NNSA)

4 4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 31 NU (Tech/Admin Support) 5 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 2 Asian Male 1 Asian Female 1 Hispanic Male 6 Hispanic Female 10 White Male 13 White Female 10 DIVERSITY Workforce Diversity Office of General Counsel, NA-GC As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 21 47.7% 23 52.3% Gender Males Females 6.8% 2.3% 2.3% 6.8% 70.5% 11.4% Pay Plan SES EJ/EK EN 03 NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.0% 0.0% 2.3% 4.5% 2.3% 2.3% 13.6% 22.7% 29.5% 22.7% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

146

YEAR  

National Nuclear Security Administration (NNSA)

6 6 YEAR 2011 Males 7 Females 9 YEAR 2011 SES 1 NQ (Prof/Tech/Admin) 9 GS 15 2 GS 13 2 GS 12 1 GS 11 1 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 3 Asian Male 1 Asian Female 0 Hispanic Male 1 Hispanic Female 0 White Male 4 White Female 6 DIVERSITY Workforce Diversity Associate Administrator of External Affairs, NA-EA As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 7 43.8% 9 56.3% Gender Males Females 6.3% 56.3% 12.5% 12.5% 6.3% 6.3% Pay Plan SES NQ (Prof/Tech/Admin) GS 15 GS 13 GS 12 GS 11 0.0% 0.0% 6.3% 18.8% 6.3% 0.0% 6.3% 0.0% 25.0% 37.5% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male Hispanic Female White Male White Female FY11 Workforce Diversity

147

YEAR  

National Nuclear Security Administration (NNSA)

40 40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJ/EK 1 NN (Engineering) 16 NQ (Prof/Tech/Admin) 115 NU (Tech/Admin Support) 3 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 7 Asian Male 4 Asian Female 0 Hispanic Male 25 Hispanic Female 26 White Male 35 White Female 37 DIVERSITY Workforce Diversity Associate Administrator for Acquistion & Project Management, NA-APM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 68 48.6% 72 51.4% Gender Males Females 3.6% 0.7% 11.4% 82.1% 2.1% Pay Plan SES EJ/EK NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.7% 1.4% 2.1% 5.0% 2.9% 0.0% 17.9% 18.6% 25.0% 26.4% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male

148

Particulate control for low rank coals  

SciTech Connect

The power generating system in Victoria currently comprises a total capacity of 6650 MW. Eighty percent of this capacity consists of base load stations in the Latrobe Valley using brown coal. The Latrobe Valley brown coals have unique characteristics with high moisture content ranging from 58 percent to 70 percent and an ash content which is relatively low but very variable in nature. These and other factors associated with the coal have caused special problems in handling and combustion of the coal and the de-dusting of the boiler flue gases. In recent years, this has been the basis for the design parameters adopted for all the plants in the system. With respect to flue gas de-dusting, the SECV has carried out extensive laboratory studies to characterize the different ashes obtained from the Latrobe Valley brown coals, including precipitability and aerodynamic tests. It also carried out full-scale tests on operating plants and pilot tests have been conducted on inertial collectors, precipitators and bag filters. The Environmental Protection Authority of Victoria has established a particulate emission level of 0.150 grams/m{sup 3} n.t.p. dry for recent Latrobe Valley boilers. However, the mandated emission level takes into account wide variations in operating conditions, and the plants normally achieve much lower emission levels. The Latrobe Valley plants presently in operation include Yallourn W (2x350 MW + 2x375 MW), Morwell (170 MW total and briquette factory), Hazelwood (8x200 MW) and Loy Yang (4x500 MW). The Yalloum W boilers are supplied with coal from the Yalloum Open Cut, the Morwell and Hazelwood boilers from the Morwell Open Cut and Loy Yang boilers from the Loy Yang Open Cut. All boilers are pulverized coal fired (PCF) and incorporate special firing equipment to enable the as-mined wet coal to be fired directly into the furnaces. All boilers are fitted with electrostatic precipitators. The locations of the stations and open cuts are shown.

Touzel, R.McD.

1993-12-31T23:59:59.000Z

149

Section 5 - Coal  

Science Journals Connector (OSTI)

Coal has the longest history of use among the fossil fuels, with use as a fuel dating to 3000 BC in China and Wales. Marco Polo’s “Description of the World” (1298) comments on many novel customs and practices of China, including the use of “stones that burn like logs” (coal). By the thirteenth century the mining of coal was widespread in England in regions such as Durham, Nottinghamshire, Derbyshire, Staffordshire, and North and South Wales. By the early seventeenth century nearly half of England’s maritime trade consisted of coal exports. Coal was the fuel that launched the Industrial Revolution in Europe and then the United States. By the late 1890s, the U.S. assumed the lead in world coal production. Britain now ranked second, after having been the world leader since the beginnings of the formal industry in the 1500s. Germany was third, an indication of its growing industrial power relative to continental rival France. Coal’s leading role in energy use peaked in the early twentieth century, after which it was supplanted by oil and natural gas. By the late twentieth century China’s rapid economic expansion, surging demand for electricity, and prodigious coal resources combined to propel it to become the world leader in production. Continuous improvements in coal mining technology have produced lower costs, improved safety, and greater labor productivity. John Buddle introduced the first air pump to ventilate coal mines (1803), followed shortly by the miner’s safety lamps that were developed independently by Sir Humphry Davy, William Clanny, and George Stephenson (1813-1816). Coal mining underwent a rapid transition in the 1880s to mechanical coal cutting in mines in the United Kingdom, the United States, and Russia. The St. Joseph Lead Company of Missouri (1900) invented the first underground mine roof bolts that became a key safety feature in underground coal mines. The first commercially successful bucket wheel excavator was used at the Luise Mine in Braunkohlemwerke, Germany (1925), followed by the first successful continuous miners in U.S. underground coal mining (1948). The first mechanized U.S. longwall mining system appeared in 1951, and was followed by the self-advancing hydraulic longwall support system that provided greater support for the roof of the mine. LeTourneau Technologies, Inc. of Texas manufactured the largest rubber tired front-end wheel loader in the world, the L-2350, which would play an important role in loading coal in Wyoming’s large surface mines (2005). Coal mining has always been a very hazardous occupation, and has produced some of history’s worst industrial disasters. The Courrières mine disaster, Europe's worst mining accident, caused the death of 1,099 miners in Northern France (1906). An explosion in a coal mine in Liaoning province in northeastern China killed more than 1,500 Chinese miners (1942), as did other major accidents in Ky?sh?, Japan (1914), Wankie, Rhodesia (1972), Wales (1913), Bihar, India (1965), and West Virginia, U.S. (1907), to name just a few. Legislation such as the Federal Coal Mine Health and Safety Act in the U.S. (1969) improved working conditions in many nations. The Great Smog of London (1952) occurred after an exceptionally cold winter forced homes and factories to burn large quantities of coal. A temperature inversion formed, trapping pollutants above the ground. More than 4,000 people died from respiratory ailments within the following week. The use of coal has been impacted by legislation to control the environmental impacts associated with its mining and combustion. The first known environmental regulation of coal dates to 1306 when King Edward II of England prohibited burning sea coal while Parliament was in session because of its offensive smoke. Sulfur dioxide from coal combustion was tied to acid rain in the 1960s, and carbon dioxide emissions became a concern beginning in the 1980s when climate change emerged as a critical environmental issue.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

150

Methane and Coal  

Science Journals Connector (OSTI)

... stored source of the energy supplies of the world ; every twenty years the world burns a volume of coal equivalent to the volume of Snowdon (a cone of base ... hole method being most in favour. This method is being applied in about twelve British pits. The amount of methane drawn off appears to depend on the movement of the ...

ALFRED EGERTON

1952-07-19T23:59:59.000Z

151

Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture  

Science Journals Connector (OSTI)

Abstract The energy saving mechanism and the potential of efficiency improvement for coal to synthetic/substitute natural gas and power plant with different schemes and CO2 capture is disclosed through exergy analysis, and the effects of key parameters on exergy losses and system performance are investigated. Scheme A represents the system without CO2 capture but with a full syngas component adjustment and partial recycle of the chemical unconverted gas, Scheme B represents the system without CO2 capture and syngas component adjustment but with partial recycle of the chemical unconverted gas, and Scheme C represents the SNG and power cogeneration with CO2 capture and partial recycle of the chemical unconverted gas but without syngas component adjustment. Results show that the exergy efficiencies of Scheme A, B and C range from 56% to 62%, 57% to 67%, 52% to 62%, respectively. Coal gasification, water–gas-shift process, SNG methanation, and fuel combustion in combined cycle are identified as the main sources of exergy losses. Compared with Scheme A, the exergy efficiency of Scheme B is higher due to the avoidance of exergy losses from syngas adjustment. Scheme C is less energy efficient than Scheme B because of the CO2 capture. Compared with single product systems, the total exergy input of Scheme A, B and C can be reduced by 7.0–11.0%, 14.0–19.0%, 15.0–21.0%, respectively assuming the same product output. The chemical to power output ratio (CPOR) will impact the exergy losses of the whole plant greatly. For all schemes, with the increasing CPOR, the exergy losses for chemical synthesis island will increase whereas the exergy losses for power island will decrease. Especially high CPOR will cause sharp exergy losses of chemical synthesis island. The coupling between exergy losses for chemical synthesis and power islands leads to an optimal CPOR making the total exergy losses of the plant minimal and the system efficiency maximized. The results presented in this paper can help to confirm the potential of system integration and can be a guide for system integration.

Sheng Li; Hongguang Jin; Lin Gao; Xiaosong Zhang

2014-01-01T23:59:59.000Z

152

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Quarterly Coal Distribution Report Quarterly Coal Distribution Report Release Date: October 01, 2013 | Next Release Date: January 3, 2014 | full report The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. Quarterly data for all years are preliminary and will be superseded by the release of the corresponding "Annual Coal Distribution Report." Highlights for the second quarter 2013: Total domestic coal distribution was an estimated 205.8 million short tons (mmst) in the second quarter 2013. This value is 0.7 mmst (i.e. 0.3 percent) higher than the previous quarter and 6.3 mmst (i.e. 3.1 percent) higher than the second quarter of 2012 estimates.

153

Annual Coal Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Report Annual Coal Report Release Date: December 12, 2013 | Next Release Date: November 2014 | full report Previous Annual Coal / Coal Industry Annual Reports historical data (PDF): 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 before 2001 Industry Annual 2000 1999 1998 1997 1996 1995 1994 Go The Annual Coal Report (ACR) provides annual data on U.S. coal production, number of mines, productive capacity, recoverable reserves, employment, productivity, consumption, stocks, and prices. All data for 2012 and prior years are final. Highlights for 2012: U.S. coal production decreased 7.2 percent from 2011, driven by lower electric power sector demand, to roughly 1.02 billion short tons. Productive capacity of U.S. coal mines decreased 3.5 percent to 1.28

154

Clean Coal Power Initiative  

SciTech Connect

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

155

Years  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology in and Technology in the National Interest 60 Years of Excellence Lawrence Livermore National Laboratory FY 2012 Annual Report About the Cover: Lawrence Livermore National Laboratory (LLNL) engineers Chris Spadaccini (left) and Eric Duoss are shown experimenting with direct ink-writing to create micro- to macroscale structures with extreme precision. The Laboratory is advancing this process and other additive manufacturing technologies to develop new materials with extraordinary properties for use in a wide range of national-security and other applications. About the Laboratory: Lawrence Livermore National Laboratory was founded in 1952 to enhance the security of the United States by advancing nuclear weapons science and technology. With a talented and dedicated workforce and

156

Natural Gas Income: Year-end strategies that can reduce the tax bite. Robin L. Kuleck, MSEd, CFCS  

E-Print Network (OSTI)

natural gas bonus payments, lease payments or royalty payments in 2008, this year's tax return payments and or royalty payments do you expect to receive by December 31, 2008? · Did you and/or your did you make? #12;Signing bonuses and lease payments receive different tax treatment from the royalty

Boyer, Elizabeth W.

157

PFBC presents its clean coal credentials  

SciTech Connect

Pressurized fluidized-bed combustion (PFBC) combined cycle deserves as much consideration as integrated gasification combined cycle as a foundation technology for advanced, clean coal-fired power generation. Although corporate issues and low natural gas prices stalled PFBC development for a time, technology at full scale has proved quite worthy in several respects in Europe and Japan over the past 10 years. The article describes how the PFBC system power cycle works, describes its competitive features and reports progress on development. 4 figs.

Makansi, J. [Pearl Street Inc. (United States)

2005-12-01T23:59:59.000Z

158

Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas  

Science Journals Connector (OSTI)

Abstract The thermodynamic analysis and the coupling and optimization between chemical synthesis and power generation in a polygeneration system are presented. Unlike full conversion of syngas into chemicals in the traditional SNG (synthetic natural gas) production system, by moderate conversion the sharp increase in energy consumption for SNG synthesis can be avoided in the new system. Also, by recovering the chemical unconverted gas for combined cycle, electricity is cogenerated efficiently. Results show that the overall efficiency of the novel system can be as high as 59%–65%. And compared to single production systems, the (energy saving ratio) ESR of the new system is over 11.0% and the energy consumption for SNG production can be decreased by around 12%. Sensitivity analysis shows that an optimized conversion ratio of SNG, (chemicals to power output ratio) CPOR, recycle ratio of the unconverted gas Ru, and pressure ratio of gas turbine can lead to the maximum of ESR. Abolishing the syngas composition adjustment and improving the inlet temperature of gas turbine both can help to enhance the system efficiency. Under low Ru, improving the H2/CO mole ratio in the syngas helps to improve system efficiency, while under high Ru, an optimized H2/CO can lead to the maximum of ESR.

Sheng Li; Hongguang Jin; Lin Gao

2013-01-01T23:59:59.000Z

159

Assumptions to the Annual Energy Outlook 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

160

High temperature properties and reactivity of coal and coke for ironmaking.  

E-Print Network (OSTI)

??Rapid growth of the steel industry in coming years will be strongly dependent upon coal. Understanding of coal behavior in current or emerging ironmaking processes… (more)

Kim, Byong-Chul

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of a coal reserve GIS model and estimation of the recoverability and extraction costs.  

E-Print Network (OSTI)

??The United States has the world largest coal resource and coal will serve as the major and dependable energy source in the coming 200 years… (more)

Apala, Chandrakanth, Reddy.

2009-01-01T23:59:59.000Z

162

Steam Plant Replaces Outdated Coal-Fired System | Department...  

Office of Environmental Management (EM)

Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The...

163

Ultimate bearing capacity of footings on coal ash  

Science Journals Connector (OSTI)

Coal ash is recognized as an alternative fill material to the conventional natural soils near a coal fired thermal power station where its large ... This paper presents experimental investigations on footings on

Ashutosh Trivedi; Vijay Kumar Sud

2005-11-01T23:59:59.000Z

164

coal | OpenEI  

Open Energy Info (EERE)

coal coal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

165

NETL: News Release - From Coal to Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

May 13, 2003 May 13, 2003 From Coal to Chemicals... Successful Clean Coal-to-Methanol Project Boosts Prospects For "Multi-Product" Coal Plant - The Liquid Phase Methanol Plant at the Eastman Chemicals-from-Coal Complex - The Kingsport, Tenn., clean coal project operated virtually flawlessly throughout its demonstration period and continues its steady operations today. - KINGSPORT, TN - It was 35 years ago that a single word in the smash hit, coming-of-age movie The Graduate made cinema history: "plastics." As a baby-faced Dustin Hoffman learned, the future was "plastics." Now, largely because of one of the Department of Energy's most successful Clean Coal Technology projects, in the next 35 years, the future may well be "plastics?from coal."

166

Planning the future of Botswana's coal  

Science Journals Connector (OSTI)

Botswana has vast proven deposits of steam coal, which, for a long time, the government has wanted to develop but without much success. The main objectives of this study are: to forecast possible coal exports from Botswana and the land routes for these exports; to determine the competitiveness of Botswana's coal in world steam coal trade; to make recommendations on the appropriate policy for the exploitation of this coal. To accomplish these objectives, we construct a model of the global steam coal trade and apply this model to forecast the likely optimal size of mine, timing of capacity, and choice of export port for the years 2005 and 2010 from a 2000 base forecast year. The results of our regional analysis suggest that Botswana's coal exports are competitive in Asia and Western Europe. These results are shown to be least sensitive to changes in rail transportation costs and marginal supply costs but more sensitive to changes in capital costs for mine development.

Khaulani Fichani; Walter C. Labys

2006-01-01T23:59:59.000Z

167

Conventional coal preparation in the United States  

SciTech Connect

Processing of bituminous and anthracite coal is widely practiced in the United States and, as mentioned earlier, about 80 percent of the production of these coals is processed as clean coal in preparation plants. Subbituminous coal is not widely processed, primarily because these low rank raw coals are low in sulfur (0.5 to 1.0 percent) and relatively low in ash (8 to 15 percent). They are also relatively low in heat content due to their high inherent moisture. Lignite coals, to the best of the authors{close_quote} knowledge, are not presently being processed in Conventional Coal Preparation plants. This is due to their unstable nature and putting them in water in a coal preparation plant is likely to cause severe degradation in particle size and add to their already high inherent moisture content. The following are the benefits of clean coal processing: produces a uniform product which can be utilized more efficiently; produces a higher quality product which results in higher efficiency at the power station or the steel mill; reduces sulfur dioxide and other adverse stack emissions during coal firing which is a very important environmental consideration; reduces ash or slag handling costs by the user; reduces shipping costs; and reduces handling and storage costs. Processing any stable raw coal in a coal preparation plant will always produce a higher grade product which is a more efficient and a more environmentally acceptable fuel for use at power stations, steel mills, home heating or industrial boilers.

Beck, M.K.; Taylor, B.

1993-12-31T23:59:59.000Z

168

Coal flows | OpenEI  

Open Energy Info (EERE)

Coal flows Coal flows Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

169

coal supply | OpenEI  

Open Energy Info (EERE)

coal supply coal supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 15, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal coal supply disposition. prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Supply, Disposition, and Prices- Reference Case (xls, 91.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

170

Today's high coal prices: correction or crisis?  

SciTech Connect

Eastern spot prices for coal have risen 25% since the start of 2004, reaching their highest levels in more than 25 years. This spike represents the second time in four years that coal prices have risen to more than double their pre-2000 price levels. Years of famine (from a coal producer's point of view) have been replaced by periods of plenty, with increasing consequences for coal's customers. How long will this spike last? This article, based on studies carried out by EPRI, attempts to answer this question. 3 figs., 1 tab.

Platt, J. [EPRI (US)

2005-06-01T23:59:59.000Z

171

Natural gas back in favour with US power companies  

Science Journals Connector (OSTI)

... Electric utilities in the United States are quietly shifting their sights from coal to natural ...naturalgas ...

Jeff Tollefson

2008-02-13T23:59:59.000Z

172

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

sulfur plus 10 to 40% of the coal ash. It also increases theto extract most of the coal ash. Heavy metals are alsotons of scrubber and coal ash sludge per year. By 1980, a

Ferrell, G.C.

2010-01-01T23:59:59.000Z

173

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

IISolvent Refining for Clean Coal Combustion,1I Walk, R. ,of Equipment (Percent of Clean Coal Produced) Year Type Jigs$1.50-$2.00 per ton of clean coal. In comparison, the cost

Ferrell, G.C.

2010-01-01T23:59:59.000Z

174

DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants  

Energy.gov (U.S. Department of Energy (DOE))

Affirms Commitment to Clean Coal Technology Investments; Requests $648 Million for Coal Research, Development and Deployment for FY09 Budget - Largest Coal Budget Request in more than 25 years...

175

Materials science aspects of coal  

Science Journals Connector (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber fossilized organic matter used for centuries for ornamentation.

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

176

Patterns of coal workers' pneumoconiosis in Appalachian former coal miners  

SciTech Connect

To aid in diagnostic chest film interpretation of coal workers' pneumoconiosis, a composite profile of common radiologic patterns was developed in 98 Appalachian former coal miners who were diagnosed as having coal miner's pneumoconiosis and who applied for black lung benefits. The mean age was 61 years, with a lifetime coal mine dust exposure of 18.7 years. Results showed that chest radiographs of coal workers' simple pneumoconiosis contained small irregular linear opacities more frequently (47%) than small rounded opacities. Sparse profusion of all small opacities was the rule. Small opacities involved two out of six lung zones simultaneously 39% of the time while other combinations occurred less frequently. Lower zones were involved more frequently than upper ones. Thickened pleura occurred in 18% of radiographs. Other frequent radiographic abnormalities were parenchymal calcifications (19%), marked emphysema (12%), and inactive tuberculosis (12%). Calcification of the aortic knob, a degenerative process reflecting age, occurred in 9%. Only one instance of complicated coal workers' pneumoconiosis (progressive massive fibrosis) was encountered (0.7%). Many of the descriptive features of coal workers' pneumoconiosis noted in the literature were not observed in this study. Only one instance of complicated pneumoconiosis was encountered.43 references.

Young, R.C. Jr.; Rachal, R.E.; Carr, P.G.; Press, H.C. (College of Pharmacy, Xavier University of Louisiana, New Orleans (United States))

1992-01-01T23:59:59.000Z

177

Coal and Coal-Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

178

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described earlier in an e-mail, in an  

E-Print Network (OSTI)

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described billion gallons of toxic coal sludge located directly above Marsh Fork Elementary School. (No word yet on their campus a couple of years ago. Underground Appalachian coal mining is being replaced in recent years

Hansen, James E.

179

Coal development plans in southeast Asia  

SciTech Connect

The author reviews coal production and consumption over recent years in Indonesia, Thailand and the Philippines. Projections of coal supply and demand for these countries to 1995 are also shown. Over-ambitious plans have been announced during the past 5 years, which have mostly been revised downwards. An attempt is made to provide realistic figures.

Lootens, D.J.

1985-09-01T23:59:59.000Z

180

NETL: Natural Gas Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Significant volumes of natural gas can also be produced from tight (low permeability) sandstone reservoirs and coal seams, both unconventional reservoir rocks. NETL...

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coal Ash Behavior in Reducing Environments (CABRE) III Year 6 - Activity 1.10 - Development of a National Center for Hydrogen  

SciTech Connect

The Energy & Environmental Research Center (EERC) has been conducting research on gasification for six decades. One of the objectives of this gasification research has been to maximize carbon conversion and the water–gas shift process for optimal hydrogen production and syngas quality. This research focus and experience were a perfect fit for the National Center for Hydrogen Technology ® (NCHT®) Program at the EERC for improving all aspects of coal gasification, which ultimately aids in the production and purification of hydrogen. A consortia project was developed under the NCHT Program to develop an improved predictive model for ash formation and deposition under the project entitled “Coal Ash Behavior in Reducing Environments (CABRE) III: Development of the CABRE III Model.” The computer-based program is now applicable to the modeling of coal and ash behavior in both entrained-flow and fluidized-bed gasification systems to aid in overall gasification efficiency. This model represents a significant improvement over the CABRE II model and runs on a Microsoft Windows PC platform. The major achievements of the CABRE III model are partitioning of inorganic transformations between various phases for specific gas cleanup equipment; slag property predictions, including standard temperature–viscosity curves and slag flow and thickness; deposition rates in gasification cleanup equipment; provision for composition analysis for all input and output streams across all process equipment, including major elements and trace elements of interest; composition analysis of deposit streams for various deposit zones, including direct condensation on equipment surfaces (Zone A), homogeneous particulate deposition (Zone B), and entrained fly ash deposition (Zone C); and physical removal of ash in cyclones based on D50 cut points. Another new feature of the CABRE III model is a user-friendly interface and detailed reports that are easily exportable into Word documents, Excel spreadsheets, or as pdf files. The user interface provides stepwise guides with built-in checks for efficient entry of required input data on fuels of interest to allow a successful execution of the model. The model was developed with data from several fuels selected by the sponsors, including bituminous coal, subbituminous coal, lignite, and petroleum coke (petcoke). The data from these fuels were obtained using small pilot-scale entrained-flow and fluidized-bed gasifiers at the Energy & Environmental Research Center (EERC). The CABRE III model is expected to further advance the knowledge base for the NCHT® Program and, more importantly, allow for prediction of the slagging and fouling characteristics of fuels in reducing environments. The information obtained from this program will potentially also assist in maintaining prolonged gasifier operation free from failure or facilitate troubleshooting to minimize downtime in the event of a problem.

Stanislowski, Joshua; Azenkeng, Alexander; McCollor, Donald; Galbreath, Kevin; Jensen, Robert; Lahr, Brent

2012-03-31T23:59:59.000Z

182

Quarterly Coal Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Quarterly Coal Report Quarterly Coal Report Release Date: October 02, 2013 | Next Release Date: December 2013 | full report Previous Quarterly Coal Data historical data (PDF): 1st quarter 2013 4th quarter 2012 3rd quarter 2012 2nd quarter 2012 1st quarter 2012 4th quarter 2011 3rd quarter 2011 2nd quarter 2011 1st quarter 2011 prior to 2011 Go The Quarterly Coal Report (QCR) provides detailed quarterly data on U.S. coal production, exports, imports, receipts, prices, consumption, quality, stocks, and refined coal. Data on U.S. coke production, consumption, stocks, imports, and exports are also provided. All data for 2011 and prior years are final. All data for 2012 and 2013 are preliminary. Highlights for second quarter 2013: U.S. coal production during second quarter 2013 totaled 243.1

183

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

184

Annual Energy Outlook with Projections to 2025-Market Trends - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Index (click to jump links) Coal Production and Prices Coal Mining Labor Productivity Coal Consumption Coal Production and Prices Emissions Caps Lead to More Use of Low-Sulfur Coal From Western Mines Continued improvements in mine productivity (which have averaged 5.9 percent per year since 1980) are projected to cause falling real minemouth prices throughout the forecast relative to historical levels. Higher electricity demand and lower prices, in turn, are projected to yield increasing coal demand, but the demand is subject to the overall sulfur emissions cap in the Clean Air Act Amendments of 1990, which encourages progressively greater reliance on the lowest sulfur coals (from Wyoming, Montana, Colorado, and Utah). Figure 106. Coal production by region, 1970-2025 (million short tons). Having problems, call our National Energy Information Center at 202-586-8800 for help.

185

Status of coal ash corrosion resistant materials test program  

SciTech Connect

In November of 1998, Babcock and Wilcox (B and W) began development of a system to permit testing of several advanced tube materials at metal temperatures typical of advanced supercritical steam conditions of 1100 F and higher in a boiler exhibiting coal ash corrosive conditions. The U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B and W, and First Energy's Ohio Edison jointly fund the project. CONSOL Energy Company is also participating as an advisor. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. The coal-ash corrosion resistant materials test program will provide full scale, in-situ testing of recently developed boiler superheater and reheater tube materials. These newer materials may be capable of operating at higher steam temperatures while resisting external/fire-side corrosion. For high sulfur coal applications, this is a key issue for advanced cycle pulverized coal-fired plants. Fireside corrosion is also a critical issue for many existing plants. Previous testing of high temperature materials in the United States has been based primarily on using laboratory test coupons. The test coupons did not operate at conditions representative of a high sulfur coal-fired boiler. Testing outside of the United States has been with low sulfur coal or natural gas firing and has not addressed corrosion issues. This test program takes place in an actual operating boiler and is expected to confirm the performance of these materials with high sulfur coal. The system consists of three identical sections, each containing multiple pieces of twelve different materials. They are cooled by reheater steam, and are located just above the furnace exit in Ohio Edison's Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. After one year of operation, the first section will be removed for thorough metallurgical evaluation. The second and third sections will operate for three and five years respectively prior to removal and evaluation. The objective is to determine how well each material resists corrosion at different operating temperatures and over different time periods and provide characteristic data. Selection of the test materials, system engineering, fabrication, installation and startup of this system is now completed and data acquisition is in progress. This paper gives an overview of the program and its objectives, explains the system, describes section fabrication, identifies the materials selected, and describes ORNL's experience in fabricating four of the advanced materials.

McDonald, D.K.; Meisenhelter, D.K.; Sikka, V.K.

1999-07-01T23:59:59.000Z

186

Review of underground coal gasification technologies and carbon capture  

Science Journals Connector (OSTI)

It is thought that the world coal reserve is close to 150?years, which only includes recoverable reserves using conventional techniques. Mining is the typical method of extracting coal, but it has been estimat...

Stuart J Self; Bale V Reddy; Marc A Rosen

2012-08-01T23:59:59.000Z

187

Clean Coal Diesel Demonstration Project  

SciTech Connect

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

188

User-Friendly Tool to Calculate Economic Impacts from Coal, Natural Gas, and Wind: The Expanded Jobs and Economic Development Impact Model (JEDI II); Preprint  

SciTech Connect

In this paper we examine the impacts of building new coal, gas, or wind plants in three states: Colorado, Michigan, and Virginia. Our findings indicate that local/state economic impacts are directly related to the availability and utilization of local industries and services to build and operate the power plant. For gas and coal plants, the economic benefit depends significantly on whether the fuel is obtained from within the state, out of state, or some combination. We also find that the taxes generated by power plants can have a significant impact on local economies via increased expenditures on public goods.

Tegen, S.; Goldberg, M.; Milligan, M.

2006-06-01T23:59:59.000Z

189

Annual Energy Outlook 2006 with Projections to 2030 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Annual Energy Outlook 2006 with Projections to 2030 Market Share of Western Coal Continues To Increase U.S. coal production has remained near 1,100 million tons annually since 1996. In the AEO2006 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 1.1 percent per year from 2004 to 2015, when total production is 1,272 million tons. The growth in coal production is even stronger thereafter, averaging 2.0 percent per year from 2015 to 2030, as substantial amounts of new coal-fired generating capacity are added, and several CTL plants are brought on line. Figure 97. Coal production by region, 1970-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800 for help.

190

Coal preparation: The essential clean coal technology  

SciTech Connect

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

191

Coal Mining Regulations (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Retail Supplier Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Kentucky Department for Energy Development and Independence Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state. The Department of Natural Resources under the authority of the Energy and Environment Cabinet is responsible for enforcing these laws and assuring compliance with the 1977 Federal Surface Mining Control Act (SMCRA). The Division of Mine Reclamation and Enforcement is responsible for inspecting

192

Coal liquefaction process streams characterization and evaluation  

SciTech Connect

CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1992-03-01T23:59:59.000Z

193

Coal Ash and Clean Coal  

Science Journals Connector (OSTI)

... IT is the normal view that the incombustible part of coal is not only a useless but even objectionable diluent. At times in the past, ... , familiar with the theory of contact catalysis of gas reactions, have speculated that the ash constituents might well play an active role in the processes of carbonisation and combustion. ...

H. J. HODSMAN

1926-09-04T23:59:59.000Z

194

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

195

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

196

Underground Coal Thermal Treatment  

SciTech Connect

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

197

JEDI II: Jobs and Economic Development Impacts from Coal, Naural Gas and Wind Power (Poster)  

Wind Powering America (EERE)

JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS FROM COAL, NATURAL GAS, AND WIND POWER Marshall Goldberg MRG & Associates Nevada City, California Suzanne Tegen National Renewable Energy Laboratory Golden, Colorado The information contained in this poster is subject to a government license. * WINDPOWER 2006 * Pittsburgh, PA * June 4-7, 2006 * NREL/PO-500-39908 Michael Milligan, Consultant National Renewable Energy Laboratory Golden, Colorado How does JEDI II work? The user enters data specific to the new coal, gas, or wind plant: * Year of installation * Size of the project * Location * Cost ($/kW) * Any other site-specific information

198

Clean coal  

SciTech Connect

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

199

X-ray Computed Tomography of coal: Final report  

SciTech Connect

X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

1986-12-01T23:59:59.000Z

200

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also given for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.

Edward Levy; Nenad Sarunac; Harun Bilirgen; Wei Zhang

2005-04-01T23:59:59.000Z

202

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

203

Coal industry annual 1993  

SciTech Connect

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

204

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...A. G. Horsler, Gas Counc. (Gt. Brit...England, 1962; Gas J. 312, 19 (1962...be-come overdependent on natural gas and oil to supply...gasifier at elevated pressure with a downward flow...operability on coals of high ash-fusion temperature...

Arthur M. Squires

1974-04-19T23:59:59.000Z

205

Coal conversion. 1979 technical report  

SciTech Connect

Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

None

1980-09-01T23:59:59.000Z

206

Appalachian coal awareness conference: promoting Eastern coal  

SciTech Connect

Promoting the development and use of coal, especially coal from the Appalachian region, was the focus of introductory and keynote speeches and a discussion by representatives of the Virginia Coal Council, mining engineers, industry, and the Edison Electric Institute. Governor Dalton's keynote address noted that both producers and consumers attending the conference should work together to promote coal as a solution to the US energy future, and reported the impact that a commitment to coal has had on Virginia's economic growth. Participants in the coal consumers panel discussion raised various economic and regulatory issues.

Not Available

1984-01-01T23:59:59.000Z

207

FE Clean Coal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal News Clean Coal News FE Clean Coal News RSS February 9, 2009 DOE Award Results in Several Patents, Potential Increased Coal Recovery A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. February 5, 2009 SECA Fuel Cell Program Moves Two Key Projects Into Next Phase The U.S. Department of Energy has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. February 3, 2009

208

Zero emission coal  

SciTech Connect

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

209

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

210

Clean Coal Power Initiative  

Energy.gov (U.S. Department of Energy (DOE))

"Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants.

211

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

212

Coal Characterization in Relation to Coal Combustion  

Science Journals Connector (OSTI)

Most coals are used worldwide for combustion today. Generally all kinds of coals are applicable for combustion. The major methods of burning are fixed bed firing, fluidized bed firing and suspension firing. Th...

Harald Jüntgen

1987-01-01T23:59:59.000Z

213

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

214

Chapter 10 - Coal and Coalbed Gas: Outlook  

Science Journals Connector (OSTI)

Abstract The future of coal and coalbed gas future is intertwined as source and reservoir rocks. Coal generates coalbed gas during coalification (e.g. thermogenic gas) and methanogenesis (biogenic gas). These gas types occur as singular and mixed accumulations. Accumulation of biogenic coalbed gas has received worldwide research and development interests on sustaining production. The new coal-to-biogenic coalbed gas technology centers on stimulating indigenous microbes in coal and associated groundwater with bioengineered nutrients and amendments to “farm” gas from abandoned wells and non-gas-producing coals. Coal mainly as a basic fuel for electric power generation since the Industrial Revolution continues to be utilized despite environmental concerns. The outlook of coal is dimmed in the United States where natural gas has replaced power generation. However, in Asia and Europe continued economic growth is going to be fueled by coal and coalbed gas as liquefied natural gas will rely on combustion from more efficient, high-temperature power plants in the future.

Romeo M. Flores

2014-01-01T23:59:59.000Z

215

Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumption to the Annual Energy Outlook Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2004, DOE/EIA-M060(2004) (Washington, DC, 2004). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

216

Coal liquefaction  

DOE Patents (OSTI)

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

217

Electricity from coal and utilization of coal combustion by-products  

SciTech Connect

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

218

Coal - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Coal Glossary › FAQS › Overview Data Summary Prices Reserves Consumption Production Stocks Imports, Exports & Distribution Coal Transportation Rates International All Coal Data Reports Analysis & Projections Most Requested Consumption Environment Imports & Exports Industry Characteristics Prices Production Projections Reserves Stocks All Reports EIA's latest Short-Term Energy Outlook for coal › image chart of U.S. Natural Gas Production and Imports projections as described in linked Short-Term Energy Outlook Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. U.S. coal production by quarter › Source: U.S. Energy Information Administration, Quarterly Coal Report. Quarterly data for coal shipments between states ›

219

Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology  

SciTech Connect

Air Products and Chemicals, Inc., is developing the sour pressure swing adsorption (PSA) technology which can be used to reject acid gas components (hydrogen sulfide [H{sub 2}S] and carbon dioxide [CO{sub 2}]) from sour syngas streams such as coal gasification syngas. In the current work, tests were conducted to investigate the impact of continuous exposure of real sour syngas and dilute levels of hydrochloric acid (HCl) and ammonia (NH{sub 3}) on the preferred adsorbent of that process. The results show a modest (~10%–15%) decrease in CO{sub 2} adsorption capacity after sour syngas exposure, as well as deposition of metals from carbonyl decomposition. Continuous exposure to HCl and NH{sub 3} yield a higher degree of CO{sub 2} capacity degradation (up to 25%). These tests represent worst-case approaches since the exposure is continuous and the HCl and NH{sub 3} levels are relatively high compare to an industrial sour syngas stream. Long-term PSA tests are needed to unequivocally evaluate the impact of cyclic exposure to these types of streams.

Dunham, Grant

2012-03-15T23:59:59.000Z

220

Table 11a. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " constant dollars per million Btu in ""dollar year"" specific to each...

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Measurement of natural radioactivity and assessment of associated radiation hazards in soil around Baoji second coal-fired thermal power plant, China  

Science Journals Connector (OSTI)

......10001 g) were sealed in gas-tight, radon-impermeable...concentrations of the natural radionuclides 226Ra...Comparative study of natural radioactivity levels...radioactive samples from Cyprus characteristic geological...Mechanisms of enrichment of natural radioactivity along the......

Xinwei Lu; Xiaoxue Li; Pujun Yun; Dacheng Luo; Lijun Wang; Chunhui Ren; Cancan Chen

2012-01-01T23:59:59.000Z

222

Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas  

E-Print Network (OSTI)

, given that natural gas from neighbouring Argentina is not longer available and LNG price projections, the most economic technologies define the system's development. Availability of natural gas from Argentina on import of natural gas from Argentina since 2004 created an unbalance in the Chilean electric market

Dixon, Juan

223

Coal ban could heat up electricity prices  

Science Journals Connector (OSTI)

Coal ban could heat up electricity prices ... The U.S. EPA’s new report on the economic impact of the bill suggests it would cost households $100?140 per year by 2030. ...

Janet Pelley

2009-05-13T23:59:59.000Z

224

Cooperative research in coal liquefaction  

SciTech Connect

Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

Huffman, G.P.; Sendlein, L.V.A. (eds.)

1991-05-28T23:59:59.000Z

225

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...superheating and water-heating sections of the boiler...percent on a higher heating value basis. Conclusions...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...

Arthur M. Squires

1974-04-19T23:59:59.000Z

226

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

227

Coal in the United States: A Status Report  

Science Journals Connector (OSTI)

...coal and lignite production, selected years...1981.(33). Production Year (thousands...192 1972 595,386 1973 591,000 1974 603...percent of total coal production (3). During the...years-from 15.6 tons per man-day in 1969 to a low...

Harry Perry

1983-10-28T23:59:59.000Z

228

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

229

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

230

FE Clean Coal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 10, 2012 December 10, 2012 DOE, Invensys Operations Management to Develop, Deploy Operator Training System for Supercritical Coal Power Plants A new U.S. Department of Energy cooperative research and development agreement to develop, test, and deploy a dynamic simulator and operator training system could eventually help commercialize important carbon capture technologies at the nation's power plants. December 10, 2012 DOE's AVESTAR Center to Expand Research, Training Opportunities A simulator that can provide future engineers with realistic, hands-on experience for operating advanced natural gas combined cycle power plants will soon be available at an innovative U.S. Department of Energy training center. November 19, 2012 Carbon Storage Partner Completes First Year of CO2 Injection Operations in

231

An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies  

SciTech Connect

This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

1997-12-31T23:59:59.000Z

232

Two-Dimensional EPR Spectroscopic Studies on the Radicals in Argonne Premium Coals  

Science Journals Connector (OSTI)

Two-Dimensional EPR Spectroscopic Studies on the Radicals in Argonne Premium Coals ... Both coals showed nuclear modulation effects due to1H and naturally abundant 13C nuclear spins. ...

Tadaaki Ikoma; Osamu Ito; Shozo Tero-Kubota; Kimio Akiyama

1998-07-11T23:59:59.000Z

233

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal  

E-Print Network (OSTI)

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal Gordon R. Holcomb · Joseph Tylczak the nature of coal ash deposits. Wigley and Goh [1] reported that particles in oxy-fired deposits, compared

Laughlin, David E.

234

U.S. Coal Supply and Demand  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous Editions 2009 Review 2008 Review 2007 Review 2006 Review 2005 Review 2004 Review 2003 Review 2002 Review 2001 Review 2000 Review 1999 Review Data for: 2010 Released: May 2011 Next Release Date: April 2012 Table 3. Electric Power Sector Net Generation, 2009-2010 (Million Kilowatthours) New England Coal 14,378 14,244 -0.9 Hydroelectric 7,759 6,861 -11.6 Natural Gas 48,007 54,680 13.9 Nuclear 36,231 38,361 5.9 Other (1) 9,186 9,063 -1.3 Total 115,559 123,210 6.6 Middle Atlantic Coal 121,873 129,935 6.6 Hydroelectric 28,793 26,463 -8.1 Natural Gas 89,808 104,341 16.2 Nuclear 155,140 152,469 -1.7

235

Coal: An energy bridge to the future  

SciTech Connect

For years, coal drove the transportation business in this country and it may be poised for a comeback when it comes to moving people and things. A hundred years ago, steam engines burned tons of coal as they pulled trains across the country. Now researchers are looking at converting that coal to liquid fuel that would fill up our gas tanks and move our cars and trucks. The technology already exists to transform coal into a liquid fuel. In fact, Pacific Northwest National Laboratory scientists and engineers have researched forms of coal and hydrocarbon gasification on and off for more than 30 years. But oil has never sustained a high enough price to kick start a coal-to-liquid fuel industry. That may be changing now. In addition to high crude oil prices, experts agree worldwide petroleum resources won’t last forever, and hydrocarbon resources like coal may be the only resource available, at a large enough scale, to off-set oil consumption, in the near term.

Bauer, Susan J.

2006-09-29T23:59:59.000Z

236

Surface Coal Mining and Reclamation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Coal Mining and Reclamation (Indiana) Surface Coal Mining and Reclamation (Indiana) Surface Coal Mining and Reclamation (Indiana) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State Indiana Program Type Environmental Regulations Provider Department of Natural Resources The Indiana Department of Natural Resources implements and enforces the federal Surface Mining Control and Reclamation Act of 1977, as well as a statewide program to protect society and the environment from the adverse effects of mining operations, and regulates coal mining operations to

237

Lead contents of coal, coal ash and fly ash  

Science Journals Connector (OSTI)

Flameless atomic absorption spectrometry is applied for the determination of Pb in coal, coal ash and fly ash. Lead concentrations in coal and coal ash ranging from respectively 7 to 110 µg...?1 and 120 to 450 µg...

C. Block; R. Dams

1975-12-01T23:59:59.000Z

238

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

239

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

240

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

242

Russian metallurgical coal supplies. A near-term perspective  

SciTech Connect

Calculations were made to estimate the changes in metallurgical coal supplies during the next 10 years. These calculations are based on three sets of data for the forecast period: (1) estimated changes in production at existing coal production and cleaning facilities in Kuznetsk, Pechora, and South Yakutsk basins; (2) production from new facilities as stipulated in licensing agreements for metallurgical coal production; and (3) Russian output of coke and washed coals. Estimates are given for two years: 2010 and 2015. A two-year base period of 2004 and 2005 was chosen because production was low in 2005 due to poor market conditions in the metal industry.

B.P. Kiselev; S.A. Liskovets [FGUP Eastern Coal Chemistry Research Institute (Russian Federation)

2007-01-15T23:59:59.000Z

243

Coal Severance Tax (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

244

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

High-Sulfur...FLUIDIZED-BED COMBUSTORS, COMBUSTION...MAY FLUE GAS DES S E...1971 ). High-sulfur...was brief. Natural gas became...overdependent on natural gas and oil to...elevated pressure with a downward...coals of high ash-fusion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

245

Upgraded Coal Interest Group  

SciTech Connect

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

246

Coal Bed Methane Protection Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Natural Resources and Conservation The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and water right holders for damage to land and to water quality and availability that is attributable to the development of coal bed methane wells. The Act aims to provide for

247

Surface Coal Mining Regulations (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Coal Mining Regulations (Mississippi) Surface Coal Mining Regulations (Mississippi) Surface Coal Mining Regulations (Mississippi) < Back Eligibility Commercial Construction Developer Industrial Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Department of Environmental Quality The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under special regulation due to their nature, and applies only to state lands. When applied to Coal with Carbon Capture and Storage projects the rules that would apply to a normal coal-mining project still apply. In addition to these measures, a CCS plant would need to adhere to all waste disposal requirements, water usage

248

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

249

U.S. Coal Supply and Demand: 2003 Review  

Gasoline and Diesel Fuel Update (EIA)

3 Review 3 Review 1 U.S. Coal Supply and Demand: 2003 Review by Fred Freme U.S. Energy Information Administration Overview U.S. coal production fell for the second year in a row in 2003, declining by 24.8 million short tons to end the year at 1,069.5 million short tons according to preliminary data from the Energy Information Administration (Table 1), down 2.3 percent from the 2002 level of 1,094.3 million short tons. (Note: All percentage change calculations are done at the short ton level.) Total U.S. coal consumption rose in 2003, with all coal-consuming sectors increasing or remaining stable for the year. Coal consumption in the electric power sector increased by 2.4 percent. However, there were only slight gains in consumption by the other sectors. U.S. coal exports rose in 2003 for the first time in

250

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

251

Microbial solubilization of coal  

DOE Patents (OSTI)

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

252

“From Coal to Coke”  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

253

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

254

Coal Distribution Database, 2008  

Annual Energy Outlook 2012 (EIA)

4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

255

Indonesian coal mining  

SciTech Connect

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

256

Coal: evolving supply and demand in world seaborne steam coal trade. [1975 to 1985; forecasting to 1995  

SciTech Connect

This paper describes the evolution of world seaborne steam coal trade since 1975. It highlights current trends and the historic and present sources of supply and demand and discusses selected factors that may affect future world trade patterns. It concludes with a general discussion on the prospects for United States participation in the growing world markets for steam coal. Worldwide seaborne steam coal trade is linked very closely to the generation of electricity and industrial use of process heat in cement and other manufacturing plants. The main factors that influence this trade are: economic growth, electricity demand, indigenous coal production (and degree of protection from lower cost coal imports), and the delivered costs of coal relative to other substitutable fuels. It may be of interest to know how these factors have changed seaborne steam coal trade in the past twelve years. In 1970, the total world use of steam coal was about two billion short tons. International trade in steam coal was only 80 million tons or about 4% of the total. Seaborne trade accounted for about 30% of international trade, or about 25 million tons. In 1982, the latest year for which good statistics are available, total world use of steam coal was about 3.6 billion tons. Seaborne steam coal trade was 110 million tons which is about 3% of the total and 37% of the international trade. 11 figs., 2 tabs.

Yancik, J.

1986-01-01T23:59:59.000Z

257

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

258

NETL: Coal Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

259

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

260

Ore components in coal  

SciTech Connect

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Pricing of Australia's coking coal exports: A regional hedonic analysis  

Science Journals Connector (OSTI)

Black coal is Australia's most important export commodity, but the profitability of the domestic coal industry has been low relative to the mining sector average. As a consequence, a key policy issue in Australia has been the extent to which Japan's coal pricing and investment policies have influenced coal market outcomes. In this paper, a regional hedonic pricing model of Australia's coking coal exports is estimated for the period JFY1989 to 1996. Non-Japan regional intercept dummy variables were found to be significantly different from zero, although these varied across coal categories and years. However, the empirical evidence indicates that Japan does not pay significantly lower prices relative to other major export markets for coking coal of a given quality.

Lindsay Hogan; Sally Thorpe; Anthony Swan; Simon Middleton

1999-01-01T23:59:59.000Z

262

CO2 Sequestration Potential of Texas Low-Rank Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Co Co 2 SequeStration Potential of texaS low-rank CoalS Background Fossil fuel combustion is the primary source of emissions of carbon dioxide (CO 2 ), a major greenhouse gas. Sequestration of CO 2 by injecting it into geologic formations, such as coal seams, may offer a viable method for reducing atmospheric CO 2 emissions. Injection into coal seams has the potential added benefit of enhanced coalbed methane recovery. The potential for CO 2 sequestration in low-rank coals, while as yet undetermined, is believed to differ significantly from that for bituminous coals. To evaluate the feasibility and the environmental, technical, and economic impacts of CO 2 sequestration in Texas low-rank coal beds, the Texas Engineering Experimental Station is conducting a four-year study

263

Natural Gas for Britain  

Science Journals Connector (OSTI)

... AT a time when the Government is exhorting the gas and other major industries concerned with ... and other major industries concerned with natural fuel resources to give a forward boost to coal mining by contracting an annual intake ...

1965-05-29T23:59:59.000Z

264

U.S. Coal Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Data - U.S. Energy Information Administration (EIA) Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

265

Coal Study Guide for Elementary School  

Energy.gov (U.S. Department of Energy (DOE))

Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

266

The status of coal briquetting technology in Korea  

SciTech Connect

Anthracite is the only indigenous fossil fuel resource produced in Korea and is an important main source of residential fuel. Due to its particular characteristics, the best way to use Korean coal is in the form of briquettes, called {open_quotes}Yontan.{close_quotes} The ability to use this coal as briquettes was a great discovery made nearly 50 years ago and since then, has made a great contribution to the energy consumption of low and middle income households. Korean anthracite in coal briquette form has been used widely for household heating purposes. Collieries in Korea produced no more than one million tons of anthracite annually in the 1960s. Production, however, increased substantially up to about 17 million tons per year in the mid-1970s. In 1986, Korea succeeded in raising its coal production to 24.2 million tons, which was the maximum production level achieved by the Korean coal industrial sector. Since then, anthracite production has fallen. In 1991, coal output dropped to 15.1 million tons, a decrease of 12.2 percent from the 17.2 million tons produced in 1990, due to falling coal demand and rising labor costs. The role of coal as an energy source will be more important in the future to meet projected economic growth in Korea. While the production of indigenous Korean anthracite is expected to decrease under a coal mining rationalization policy, imports of bituminous coal will increase rapidly and will be used as an oil substitute in industry and power generation. In this chapter, general aspects of the Korean coal industry and coal utilization for residential uses, especially the Yontan coal briquetting techniques, are discussed. In addition, coal briquetting technology applications suitable for the APEC region will be presented.

Choi, Woo-Zin

1993-12-31T23:59:59.000Z

267

College of Agriculture and Life Sciences -Department of Horticulture -Bachelor of Science in Landscape Contracting For students graduating calendar year 2012 MATH & NATURAL SCIENCE (18 CREDITS)  

E-Print Network (OSTI)

) Landscape Estab. & Maintenance (2) Landscape Construction (1) Horticulture Seminar (2) Landscape Contracting in Landscape Contracting For students graduating calendar year 2012 MATH & NATURAL SCIENCE (18 CREDITS) Biol Factors in Hort (3) Plant Propagation (3,3) Woody Landscape Plants (2,2) Herbaceous Landscape Plants (3

Virginia Tech

268

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

269

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

270

Bio-coal briquette  

SciTech Connect

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

271

NETL: IEP - Coal Utilization By-Products Current Regulations Governing Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Products Current Regulations Governing Coal Combustion By-Products - Database of State Regulations Database of State Regulations Affecting Disposal and Utilization of Coal Combustion By-Products A Summary Provided by the National Energy Technology Laboratory and the American Coal Ash Association Coal Combustion By-Products (CCBs) are generated when coal is used to generate electricity and power industrial processes. Tens of millions of tons of these materials are produced each year. Many uses of these byproducts are possible, but currently most of them wind up in landfills. Previous work at the National Energy Technology Laboratory (NETL) identified regulatory issues as one factor preventing more widespread reuse of CCBs. CCBs are generally regulated by state authorities, and the various states have developed widely differing rules. This web site was developed as one way to help CCB generators, users, and regulators share information across state boundaries.

272

CO2 Capture Options for an Existing Coal Fired Power Plant: O2/CO2 Recycle Combustion vs. Amine Scrubbing  

NLE Websites -- All DOE Office Websites (Extended Search)

OPTIONS FOR AN EXISTING COAL FIRED POWER PLANT: OPTIONS FOR AN EXISTING COAL FIRED POWER PLANT: O 2 /CO 2 RECYCLE COMBUSTION vs. AMINE SCRUBBING D. J. Singh (djsingh@uwaterloo.ca; +001-519-496-2064) E. Croiset 1 (ecroiset@uwaterloo.ca;+001-519-888-4567x6472) P.L. Douglas (pdouglas@uwaterloo.ca; +001-519-888-4567x2913) Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 M.A. Douglas (madougla@nrcan.gc.ca; +001-613 996-2761) CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Nepean, Ontario, Canada, K1A 1M1 Abstract The existing fleet of modern pulverized coal fired power plants represents an opportunity to achieve significant greenhouse gas (GHG) emissions in the coming years providing efficient and economical CO 2 capture technologies are available for retrofit.

273

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

274

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

275

Chemical comminution of coal  

SciTech Connect

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

276

Coal dust explosibility  

Science Journals Connector (OSTI)

This paper reports US Bureau of Mines (USBM) research on the explosibility of coal dusts. The purpose of this work is to improve safety in mining and other industries that process or use coal. Most of the tests were conducted in the USBM 20 litre laboratory explosibility chamber. The laboratory data show relatively good agreement with those from full-scale experimental mine tests. The parameters measured included minimum explosible concentrations, maximum explosion pressures, maximum rates of pressure rise, minimum oxygen concentrations, and amounts of limestone rock dust required to inert the coals. The effects of coal volatility and particle size were evaluated, and particle size was determined to be at least as important as volatility in determining the explosion hazard. For all coals tested, the finest sizes were the most hazardous. The coal dust explosibility data are compared to those of other hydrocarbons, such as polyethylene dust and methane gas, in an attempt to understand better the basics of coal combustion.

Kenneth L. Cashdollar

1996-01-01T23:59:59.000Z

277

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-10-20T23:59:59.000Z

278

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-08-04T23:59:59.000Z

279

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network (OSTI)

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

280

Coal as Raw Material for Carbon Production: Some New Aspects [and Discussion  

Science Journals Connector (OSTI)

20 March 1981 research-article Coal as Raw Material for Carbon Production...Characteristic changes in the constitution of hard coals (such as the nature and abundance of functional...bearing on the rational utilization of coal in the coke and carbon industries. For...

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Extraction, separation, and analysis of high sulfur coal. Final report  

SciTech Connect

The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. [comps.

1992-05-31T23:59:59.000Z

282

Extraction, separation, and analysis of high sulfur coal  

SciTech Connect

The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. (comps.)

1992-05-31T23:59:59.000Z

283

Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

Swanson, Michael; Henderson, Ann

2012-04-01T23:59:59.000Z

284

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

285

Surface Coal Mining Law (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Coal Mining Law (Missouri) Surface Coal Mining Law (Missouri) Surface Coal Mining Law (Missouri) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Missouri Program Type Environmental Regulations Provider Missouri Department of Natural Resources This law aims to provide for the regulation of coal mining in order to minimize or prevent its adverse effects, protect the environment to the extent possible, protect landowner rights, and prohibit coal mining in locations where reclamation is not feasible. The law aims to strike a balance between protection of the environment and agricultural productivity and the need for coal as an energy source. This law addresses the powers of

286

Determination of Coal Permeability Using Pressure Transient Methods  

SciTech Connect

Coalbed methane is a significant natural resource in the Appalachian region. It is believed that coalbed methane production can be enhanced by injection of carbon dioxide into coalbeds. However, the influence of carbon dioxide injection on coal permeability is not yet well understood. Competitive sorption of carbon dioxide and methane gases onto coal is a known process. Laboratory experiments and limited field experience indicate that coal will swell during sorption of a gas and shrink during desorption of a gas. The swelling and shrinkage may change the permeability of the coal. In this study, the permeability of coal was determined by using carbon dioxide as the flowing fluid. Coal samples with different dimensions were prepared for laboratory permeability tests. Carbon dioxide was injected into the coal and the permeability was determined by using pressure transient methods. The confining pressure was variedto cover a wide range of depths. The permeability was also determined as a function of exposure time of carbon dioxide while the confining stress was kept constant. CT scans were taken before and after the introduction of carbon dioxide. Results show that the porosity and permeability of the coal matrix was very low. The paper presents experimental data and theoretical aspects of the flow of carbon dioxide through a coal sample during pressure transient tests. The suitability of the pressure transient methods for determining permeability of coal during carbon dioxide injection is discussed in the paper.

McLendon, T.R.; Siriwardane, H. (West Virginia University, Morgantown, WV); Haljasmaa, I.V.; Bromhal, G.S.; Soong, Y.; Irdi, G.A.

2007-05-01T23:59:59.000Z

287

Novel injector techniques for coal-fueled diesel engines  

SciTech Connect

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

288

Modernization of Ohio's coal reserves, Phase 1  

SciTech Connect

The objectives of this project were to determine state-level totals of the estimated economic resource, minable reserve base, and recoverable coal in Ohio, allocated to specified ranges of sulfur and heat content. In addition, resources and reserves were to be categorized by mining methods (surface and underground). Land use and environmental restrictions, needed to determine remaining minable reserves, were to be delineated and percentages of restricted coal calculated. In context of a Phase 1, one-year project, the objectives of this project were to update Ohio's coal reserves and resources for as many counties as time allowed, and to deplete production tonnages to January 1, 1991, on the remaining coal-producing counties. For the depleted counties, only estimated economic resources were required or possible with the data available. 24 refs., 9 figs., 3 tabs.

Carlton, R.W.

1991-09-27T23:59:59.000Z

289

Influence of coal quality factors on seam permeability associated with coalbed methane production.  

E-Print Network (OSTI)

??Cleats are natural fractures in coal that serve as permeability avenues for darcy flow of gas and water to the well bore during production. Theoretically,… (more)

Wang, Xingjin

2007-01-01T23:59:59.000Z

290

Trends in U.S. Recoverable Coal Supply Estimates and Future Production Outlooks  

Science Journals Connector (OSTI)

are naturally occurring concentrations or deposits of coal in the Earth’s crust, in such forms and amounts that economic extraction is currently or potentially feasible.

Mikael Höök; Kjell Aleklett

2010-09-01T23:59:59.000Z

291

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

292

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

293

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

294

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

295

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

fixation in slag or bottom ash, coal gasification, or coallimestone and coal that form little fly ash and trap sulfurSulfate Organic Ash (%) "Organic Sulfur", in Wheelock, Coal

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

296

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

297

Pulverized Coal-Fired Boilers and Pollution Control  

Science Journals Connector (OSTI)

Fossil fuels, such as coal, natural gas, and fuel oil, are used to generate electric power for industrial, commercial, and residential use. ... production and approximately 41% of the world power generation was s...

David K. Moyeda

2013-01-01T23:59:59.000Z

298

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

299

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

300

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

302

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

303

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

304

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

305

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

306

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmal’ko; M. A. Solov’ev

2009-03-01T23:59:59.000Z

307

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

308

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

309

The Economic Impact of Coal Mining in New Mexico  

SciTech Connect

The economic impact of coal mining in New Mexico is examined in this report. The analysis is based on economic multipliers derived from an input-output model of the New Mexico economy. The direct, indirect, and induced impacts of coal mining in New Mexico are presented in terms of output, value added, employment, and labor income for calendar year 2007. Tax, rental, and royalty income to the State of New Mexico are also presented. Historical coal production, reserves, and price data are also presented and discussed. The impacts of coal-fired electricity generation will be examined in a separate report.

Peach, James; Starbuck, C.

2009-06-01T23:59:59.000Z

310

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

311

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

312

Weekly Coal Production Estimation Methodology  

NLE Websites -- All DOE Office Websites (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

313

Sandia National Laboratories: Clean Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

314

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

315

Coal extraction process  

SciTech Connect

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

316

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

317

Coal Development (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

318

Clean coal technology applications  

SciTech Connect

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

319

Spitsbergen Tertiary Coal Fossils  

Science Journals Connector (OSTI)

... grains and spores to be observed in coal deposits of Tertiary age in west Spitsbergen (Norsk Polarinstitutt, Med. 79, pp. 1-9; 1954; English summary).

1955-08-06T23:59:59.000Z

320

Coal Gasification Systems Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Coal liquefaction quenching process  

DOE Patents (OSTI)

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

322

Handbook of coal analysis  

SciTech Connect

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

323

US coal market softens  

SciTech Connect

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

324

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Distribution Report Release Date: December 19, 2013 | Next Release Date: December 12, 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report...

325

DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supported Coal Cleaning Technology Succeeds in Commercial Supported Coal Cleaning Technology Succeeds in Commercial Demonstration DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration January 4, 2011 - 12:00pm Addthis Washington, DC - A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia

326

Coal resource assessments: Calculating resources by GIS at the USGS  

SciTech Connect

Recent projections as to the future of coal are, for the most part, in general agreement that the production will continue to increase at approximately the current rate for the next 16 to 21 years. A very different view of the future resulted from recent analyses done by the EIA for the US House of Representatives Committee on Science. In these analyses the impacts of the Kyoto Protocol on US energy markets were modeled using six scenarios that reduced the carbon emission to varying levels below the reference case (carbon emissions in the reference case are 33% above the 1990 levels in 2020) The six scenarios resulted in projections that coal consumption in the US in 2010 would be reduced by between 18 and 77% with further significant decreases by 2020. This paper discusses national coal resource assessments by the USGS; coal resource data handling and analyses by GIS; coal assessments from resources to reserves; and coal resource information delivery.

Gluskoter, H.; Tewalt, S.J.; Levine, M.

1999-07-01T23:59:59.000Z

327

Cooperative coal marketing arrangement in eastern Kentucky: a feasibility report  

SciTech Connect

The purpose of this study is to assess the feasibility of establishing coal cooperatives in Appalachian Kentucky. To survive in today's coal market, the small independent sector of the coal industry, defined as operators producing no more than two-hundred thousand tons per year, must gain access to long-term contract markets and to economies of scale in coal transportation. In both of these areas, the larger coal producers enjoy a substantial competitive advantage. Also, the small operators must find ways of coping with drastically increased costs of permitting, production and reclamation. In recent years, cooperative marketing and production arrangements have increasingly been seen as possible mechanisms for enabling small operators to remain viable in today's coal market while retaining for the coal industry and the economy in general the independence, efficient production, recovery of coal from marginal deposits, and local orientation and entrepreneurship of the small operator. Although cooperative endeavors in permitting, meeting health and safety requirements, increasing mining efficiency, and joint purchase of materials and equipment can decrease costs for the small operator, the greatest need is for cooperative marketing mechanisms which will enable small operators to amass sufficient reserves and productive capacity to jointly gain large-volume, long-term sales contracts and to command the efficiencies and lower costs of coal shipment by unit train.

Not Available

1981-07-01T23:59:59.000Z

328

Cooperative research program in coal liquefaction  

SciTech Connect

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

329

Cooperative research program in coal liquefaction  

SciTech Connect

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

330

Panama coal to methanol project. Phase I. Feasibility Study. Technical progress report  

SciTech Connect

This Technical Progress Report contains the results of the investigations performed for the Panama Coal to Methanol Project: Technical efforts associated with the gasification technology evaluation; evaluation of other related process technologies; results of the venture analyses, including the efforts made for structuring the project; results of the ongoing financial analyses and cost projections, including potential and use applications of methanol in Japan primarily for combustion turbine-combined cycle steam/electric utilization. At this time, and for the next few years, the Panama-based methanol fuel is more expensive than oil. However, when measured in terms of KWH production cost in Japan, the use of methanol fuel in combustion turbine, combined-cycle operations appears to create less expensive electric power than that produced from conventional coal direct fired operations using imported coal. This cost advantage arises from significantly lower capital costs and enhanced performance efficiencies associated with combined cycle power generators as contrasted with conventional coal plants equipped with scrubbers. Environmental and social land-use benefits are also much greater for the methanol fuel plant. The cost of electricity from a methanol-fueled combined cycle plant is also expected to compare favorably in Japan with electrical costs from a future liquefied natural gas fired plant.

Not Available

1983-11-01T23:59:59.000Z

331

Illinois Coal Development Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

332

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

333

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

334

Progress in the China Shenhua coal liquefaction project  

SciTech Connect

Hydrocarbon Technologies, Inc. (HTI) signed an agreement with Shenhua Group, Ltd. (Shenhua) and China Coal Research Institute (CCRI) to conduct a feasibility study of a coal liquefaction commercial plant to be built in Shaanxi Province of People`s Republic of China. Coals produced in the Shenhua coal field, China`s largest developing coal field located in northern China, will be used as feedstock. HTI`s coal direct liquefaction process, HTI Coal, which incorporates a two-stage reactor system with interstage separator and an in-line fixed-bed hydrotreater, will be employed in the plant design. HTI`s proprietary iron-based catalyst, GelCat will be used in the process. The feasibility study includes two phases. Phase 1 work involves a bench-scale liquefaction testing of Shenhua coals from two seams and a preliminary economic evaluation. The results show that Shenhua coals, despite their low volatile matter and high inert macerals contents among the 14 Chinese coals studies by CCRI, demonstrated very good performance: fairly high coal conversions (up to 93%) and high distillate yields (63--68 wt%). Preliminary economic evaluation conducted on the basis of the bench-scale testing results and local economic data appear to be favorable. The Phase 2 work includes a 3--5 ton/day process development unit (PDU) testing Shenhua coals to confirm and improve the bench-scale performance, to collect a large product sample for refining studies, to obtain process data for an in-depth techno-economic analysis, and to provide engineering data for scale-up design. This run is scheduled in the middle of the year, and feed coal collection and run plan preparation are currently under way. The test results will be presented in this conference.

Zhou, P.; Popper, G.; Lee, L.K.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

1998-12-31T23:59:59.000Z

335

Iron Minerals in Coal, Weathered Coal and Coal Ash – SEM and Mössbauer Results  

Science Journals Connector (OSTI)

The aim of the present investigation was to identify and quantify the iron mineral phases present in South African coal from various coal fields and in coal ash, after industrial and laboratory combustion process...

F. B. Waanders; E. Vinken; A. Mans; A. F. Mulaba-Bafubiandi

336

METC research on coal-fired diesels  

SciTech Connect

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

337

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

338

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

339

EIA-Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2007 Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2007, DOE/EIA-M060(2007) (Washington, DC, 2007). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

340

EIA - Assumptions to the Annual Energy Outlook 2010 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2010 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2010, DOE/EIA-M060(2010) (Washington, DC, 2010). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, the cost of factor inputs (labor and fuel), and other mine supply costs.

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EIA - Assumptions to the Annual Energy Outlook 2008 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2008 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2008, DOE/EIA-M060(2008) (Washington, DC, 2008). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

342

Profitability analysis of non-coking coal preparation for power plants in India  

SciTech Connect

Currently coal-based power plants produce about 70% of the total electricity generated in India, where non-coking (steam) coals are utilized mostly without any preparation. A massive capacity addition of at least 140,000 MWe is required (over the 81,000 MWe of current installed capacity) during the next 15 years to meet growing energy demand. Such a rapid expansion of power generation capacity poses a serious challenge to the environment (at emission controls) and transportation infrastructure in India. Furthermore, the high ash content of indigenous coals and concentration of coal mines in central and northeastern India away from urban centers exacerbate the problem. Thus, coal preparation is envisioned to play a major role in shaping the energy future of India. Under the Indo-US Coal Preparation Program, the US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is coordinating coal preparation activities for the US Agency for International Development. In this context, a detailed analysis of the washability characteristics of non-coking coals was performed using the PETC Coal Preparation Plant Simulator (CPPS) to identify coal preparation strategies for India. Based on these strategies, a profitability analysis of non-coking coal preparation has been conducted considering coal preparation and transportation costs, and coal quality impacts on power plant operations. This paper summarizes the results of this analysis and quantifies the significance of coal preparation for the Indian power sector.

Gollakota, S.V.; Rao, S.N. [Burns and Roe Services Corp., Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Staats, G.E. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

1996-12-31T23:59:59.000Z

343

Coal Gasification in Australia  

Science Journals Connector (OSTI)

... P. S. Andrews gave a full account of the Federal project for the pressure gasification of non-coking coals for the combined purpose of town's gas ' and the ... of town's gas ' and the production of synthetic liquid fuel. Work on the gasification of brown coal in. Victoria was commenced in 1931 by the technical staff of ...

1955-06-11T23:59:59.000Z

344

Chemicals from Coal  

Science Journals Connector (OSTI)

...Mas-sachusetts Institute of Technology, 1974; J. B. Howard...Petras, in Coal Pro-cessing Technology (American Institute of Chem-ical...with the solidifcation of a fluid bituminous coal as it undergoes...Policy Analyst, Science and Technology Policy Office (Staff to the...

Arthur M. Squires

1976-02-20T23:59:59.000Z

345

Incentives boost coal gasification  

SciTech Connect

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16T23:59:59.000Z

346

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

347

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect

The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2003-07-01T23:59:59.000Z

348

Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991  

SciTech Connect

The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

Huffman, G.P. [ed.

1992-02-15T23:59:59.000Z

349

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

350

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

351

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

352

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

353

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

354

Coal in China  

SciTech Connect

The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

2005-07-01T23:59:59.000Z

355

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

356

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal  

Science Journals Connector (OSTI)

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal ... Ash with a low melting point causes slagging and fouling problems in pulverized coal combustion boilers. ... The ash composition in coal and operational conditions in boilers such as heat load greatly affect the ash deposition behavior. ...

Katsuya Akiyama; Haeyang Pak; Toshiya Tada; Yasuaki Ueki; Ryo Yoshiie; Ichiro Naruse

2010-07-22T23:59:59.000Z

357

Adsorption Behavior of CO2 in Coal and Coal Char  

Science Journals Connector (OSTI)

Coals of diverse characteristics have been chosen to provide a better understanding on the influence of various coal properties, such as maceral, volatile matter, and ash contents. ... In addition, char samples from two of these coals (a non-coking coal A and a coking coal B) were prepared by pyrolysis at 800 and 1000 °C in a nitrogen atmosphere and were tested for CO2 adsorption capacity. ... As stated earlier, virgin coal samples considered for the adsorption measurements include coals A, C, and D, which are of low-, high-, and medium-volatile sub-bituminous rank, respectively. ...

Shanmuganathan Ramasamy; Pavan Pramod Sripada; Md Moniruzzaman Khan; Su Tian; Japan Trivedi; Rajender Gupta

2014-07-01T23:59:59.000Z

358

Uncovering Coal's Secrets Through the University Coal Research Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

359

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

360

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

Sundaram, M.S.; Steinberg, M.

1985-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel Cell Technologies Program Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

creates significant greenhouse gases and is less efficient than the more direct chemical conversions of coal or natural gas to hydrogen. For areas where renewable or nuclear...

362

Energy Production Over the Years | Department of Energy  

Office of Environmental Management (EM)

an energy source Total Energy Produced Coal Crude Oil Natural Gas Total Renewable Energy Non-Biofuel Renewable Energy Biofuels Nuclear Power Source: EIA State Energy Data Systems...

363

Coal combustion by-products: State regulatory overview  

SciTech Connect

Coal combustion by-products (CCBs) are generated from the combustion of coal for energy production. Approximately 82 million tons of CCBs are produced each year by electric utilities. (1991 Coal Combustion By-Product Production and Use, American Coal Ash Association, 1992.) There are several common types of CCBs produced by coal combustion--fly ash, bottom ash, boiler slag, flue gas desulfurization material (FGD) and fluidized bed combustion byproducts (FBC). Some CCBs, such as fly ash, have pozzolanic properties and may have cementitious properties, both of which are advantageous for engineering, construction and waste remediation applications. The American Society for Testing Materials (ASTM) in ASTM C-618 has created two classifications of useful and quality coal ash, Class F ash and Class C ash. Each class of coal ash has different pozzolanic and cementitious characteristics. Coal ash can be utilized in many manufacturing, mining, agricultural, engineering, construction and waste remediation applications. This is a review by state of regulations concerning coal combustion by-products.

Jagiella, D. [Howard and Howard Attorneys, Peoria, IL (United States)

1996-11-01T23:59:59.000Z

364

Conditioner for flotation of coal  

SciTech Connect

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

365

Coal Science: Basic Research Opportunities  

Science Journals Connector (OSTI)

...carbon is arranged in coal becomes real. What...NMR experiments at high temperatures. This...of characterizing high-boiling coal "liquids" which...reactions. Coal mineral matter. Most U.S. coals...burned is called ash. Techniques are...

Martin L. Gorbaty; Franklin J. Wright; Richard K. Lyon; Robert B. Long; Richard H. Schlosberg; Zeinab Baset; Ronald Liotta; Bernard G. Silbernagel; Dan R. Neskora

1979-11-30T23:59:59.000Z

366

Measurements and Modeling of Coal Ash Deposition in an Entrained-Flow Reactor.  

E-Print Network (OSTI)

??Coal plays a significant role in meeting the world’s need for energy and will continue to do so for many years to come. Economic, environmental,… (more)

Blanchard, Ryan P 1980-

2008-01-01T23:59:59.000Z

367

Measurements and Modeling of Coal Ash Deposition in an Entrained-Flow Reactor.  

E-Print Network (OSTI)

??Coal plays a significant role in meeting the world's need for energy and will continue to do so for many years to come. Economic, environmental,… (more)

Blanchard, Ryan P.

2008-01-01T23:59:59.000Z

368

Planning and setup for the implementation of coal and wood co-fired boilers.  

E-Print Network (OSTI)

??Coal and wood co-fired boiler technology has been significantly advancing in the past years, but many of their capabilities remain unknown to much of the… (more)

Gump, Christopher D.

2007-01-01T23:59:59.000Z

369

Characterization of Pennsylvania Coal Combustion Products for Beneficial Use in Mine Land Reclamation.  

E-Print Network (OSTI)

??Over 130 million tons of coal combustion products (CCPs) are produced each year in the U.S. Less than half of these CCPs will be utilized… (more)

Braun, Gregory

2012-01-01T23:59:59.000Z

370

Curriculum Support Maps for the Study of Indiana Coal  

E-Print Network (OSTI)

": lignite, subbituminous, bituminous, and anthracite. Indiana coals are bituminous and composed of 55 to 79 nearly 17 billion tons is recoverable. These reserves could last another 585 years at the current rate

Polly, David

371

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...15.7 Nuclear 3.1 Geothermal Negligible 1973, use...home and commercial heating, transporta-tion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

372

Beluga Coal Gasification - ISER  

SciTech Connect

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31T23:59:59.000Z

373

Structure and thermoplasticity of coal  

SciTech Connect

Chapters cover: molecular structure and thermoplastic properties of coal; {sup 1}H-nmr study of relaxation mechanisms of coal aggregate; structural changes of coal macromolecules during softening; quantitative estimation of metaplsat in heat-treated coal by solvent extraction; effects of surface oxidation on thermoplastic properties of coal; analysis of dilatation and contraction of coal during carbonization; formation mechanisms of coke texture during resolidification; modified CPD model for coal devolatilization; mathematical modelling of coke mechanical structure; and simulating particulate dynamics in the carbonization process based on discrete element treatment.

Komaki, I.; Itagaki, S.; Miura, T. (eds.)

2004-07-01T23:59:59.000Z

374

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

Fernández-Juricic, Esteban

375

Environmental Implications of United States Coal Exports: A Comparative Life Cycle Assessment of Future Power System Scenarios  

Science Journals Connector (OSTI)

Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal ...

Barrett Bohnengel; Dalia Patiño-Echeverri; Joule Bergerson

2014-07-15T23:59:59.000Z

376

Multi-parameter on-line coal bulk analysis  

SciTech Connect

This was a four-year grant that was given a no cost extension for one more year. The purpose of the grant was to develop a pulsed neutron-based technique that could measure on-line all the major and minor elements in coal. Such measurements would allow the continuous monitoring of bulk parameters such as coal heating value (BTU/lb), volatile matter, moisture etc., deemed important to the coal industry. Such parameters, along with the continuous measurement of elements such as sulfur and sodium, are of major economic and environmental concern, and their measurement would assist in a more efficient use of the coal-fired boilers, as well as limiting emissions controlled by the 1990 Clean Air Act Amendments. It was hoped that this study would lead to the development of a technique able to create a marketable product, an On-Line Elemental Coal Analyzer. The study was separated in the following major parts: (1) Devise an efficient system for the detection of gamma rays; (2) Prior to experimentation, perform modeling and simulations for items such as detector shielding, coal sample configuration, and neutron tube collimation; (3) Develop a computer code for data reduction and analysis; (4) Measure the elemental composition of various coal samples; and (5) Design a prototype, on-line elemental coal analyzer, based on the PFTNA principle.

NONE

1999-02-01T23:59:59.000Z

377

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

378

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

379

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

380

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

June 2010 DOE/EIA-0121 (2010/01Q) June 2010 DOE/EIA-0121 (2010/01Q) Revised: July 2012 Quarterly Coal Report January - March 2010 June 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.gov/coal/production/quarterly/ _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

382

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

383

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

384

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Quarterly Coal Report January - March 2008 July 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

385

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2009 September 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

386

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

7/01Q) 7/01Q) Quarterly Coal Report January - March 2007 June 2007 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

387

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

388

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Quarterly Coal Report July - September 2008 December 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

389

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2008 September 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

390

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

8/04Q) 8/04Q) Quarterly Coal Report October - December 2008 March 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

391

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

392

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

393

Modelling coal gasification  

Science Journals Connector (OSTI)

Coal gasification processes in a slurry-feed-type entrained-flow gasifier are studied. Novel simulation methods as well as numerical results are presented. We use the vorticity-stream function method to study the characteristics of gas flow and a scalar potential function is introduced to model the mass source terms. The random trajectory model is employed to describe the behaviour of slurry-coal droplets. Very detailed results regarding the impact of the O2/coal ratio on the distribution of velocity, temperature and concentration are obtained. Simulation results show that the methods are feasible and can be used to study a two-phase reacting flow efficiently.

Xiang Jun Liu; Wu Rong Zhang; Tae Jun Park

2001-01-01T23:59:59.000Z

394

Coal liquefaction process  

DOE Patents (OSTI)

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

395

Coal liquefaction process  

DOE Patents (OSTI)

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

396

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

397

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

398

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

399

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

400

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Summary Summary The U.S. coal industry rebounded in 2010, with coal exports showing impressive gains and domestic production up over the previous year. Metallurgical coal export prices hit record levels as weather problems continued to plague Australian producers, and steel-hungry China and India continued to import relatively large amounts of metallurgical coal. U.S. domestic coal price increases moderated for the electric power sector and declined for industrial plants and for commercial and institutional users. Positive trends established in 2010 are expected to carry over to 2011. Domestic coal consumption as well as metallurgical coal exports are expected to increase as U.S. and most other industrial economies continue to grow. Coal prices should continue to increase at a moderate pace. As

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Exports and Imports Exports Total U.S. coal exports for 2010 increased by 38.3 percent to 81.7 million short tons (Figure 8). Figure Data This increase was largely due to two factors. First, heavy rains and flooding in Australia, Indonesia, and Colombia reduced world coal supply and forced many coal importing nations to look elsewhere, primarily to the United States, to fulfill their coal needs. In addition, the shortage of their own domestic coal in relation to growing needs, namely for China and India, provided ample opportunities for U.S. coal producers to export to these markets.

402

Discharge produces hydrocarbons from coal  

Science Journals Connector (OSTI)

Discharge produces hydrocarbons from coal ... Studies of the reactions of coal in electric discharges by two chemists at the U.S. Bureau of Mines' Pittsburgh Coal Research Center may lead to improved ways of producing acetylene and other useful chemicals from coal. ... Other workers have produced high yields of acetylene from coal by extremely rapid pyrolysis using energy sources such as plasma jets, laser beams, arc-image reactors, and flash heaters. ...

1968-01-22T23:59:59.000Z

403

Evolving performance characteristics of clean coal technologies  

SciTech Connect

The United States Department of Energy (US DOE) Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of {open_quotes}semicommercial{close_quotes} facilities. These demonstrations are on a scale large enough to generate all the data, from design, construction, and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies that will encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications. The innovative CCTs being demonstrated offer tremendous potential as solutions to many complex problems in a rapidly changing arena dominated by energy, economic, and environmental issues. These issues include the following: air quality; global climate change; energy security; international competitiveness; acid rain; power production; and technology awareness. These technologies are expected to be of particular importance to the utility industry. Power production in the United States, particularly in the form of electricity, is expected to increase rapidly during the next 20 years. The growth in electricity consumption between 1990 and 2000 translates into the need for at least an additional 200,000 MWe of capacity by 2010. The ability to continue to use coal to produce electricity and as a source of industrial heat and power is critical. In the United States approximately 86 percent of coal is critical. The CCT Program is developing through demonstration new power and steam production systems using coal-based technologies that will permit coal to be a clean, efficient, reliable source of affordable energy.

Miller, C.L.

1993-12-31T23:59:59.000Z

404

A Stoichiometric Analysis of Coal Gasification  

Science Journals Connector (OSTI)

A Stoichiometric Analysis of Coal Gasification ... Gasification of New Zealand Coals: A Comparative Simulation Study ... Gasification of New Zealand Coals: A Comparative Simulation Study ...

James Wei

1979-07-01T23:59:59.000Z

405

Pore Structure of the Argonne Premium Coals  

Science Journals Connector (OSTI)

Pore Structure of the Argonne Premium Coals ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

John W. Larsen; Peter Hall; Patrick C. Wernett

1995-03-01T23:59:59.000Z

406

Density Measurements of Argonne Premium Coal Samples  

Science Journals Connector (OSTI)

Density Measurements of Argonne Premium Coal Samples ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

He Huang; Keyu Wang; David M. Bodily; V. J. Hucka

1995-01-01T23:59:59.000Z

407

Clean Coal Power Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

408

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

12 2.6. International coal prices and18 International coal prices and trade In parallel with the2001, domestic Chinese coal prices moved from stable levels

Aden, Nathaniel

2010-01-01T23:59:59.000Z

409

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

Aden, Nathaniel

2010-01-01T23:59:59.000Z

410

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

411

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

412

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

413

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

to have indicated economic coal reserves of at least 15tonnes of indicated economic coal reserves. Map 1: Chinaand economic assessment of deploying advanced coal power in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

414

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

415

Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams  

Science Journals Connector (OSTI)

A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO2) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17 MPa to 1.56 MPa and the gas saturation increased up to 50% in 30 years for a 5.4 × 105 m2 of coal formation. For the CO2 sequestration process, the model prediction showed that the CO2 injection rate was first reduced and then slightly recovered over 3 to 13 years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO2 flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO2 could be about 11 × 103 m3 per day; the injected CO2 would reach the production well, which was separated from the injection well by 826 m, in about 30 years. During this period, about 160 × 106 m3 of CO2 could be stored within a 21.4 × 105 m2 of coal seam with a thickness of 3 m.

Ekrem Ozdemir

2009-01-01T23:59:59.000Z

416

Coal Utilization Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crosscutting Research » Coal Crosscutting Research » Coal Utilization Science Coal Utilization Science Computer scientists at FE's NETL study a visualization of a power plant component. Computer scientists at FE's NETL study a visualization of a power plant component. Traditionally the process of taking a new power plant system from the drawing board to a first-of-a-kind prototype has involved a series of progressively larger engineering test facilities and pilot plants, leading ultimately to a full-scale demonstration. The process can take over 20 years or more and cost billions of dollars. Because of the significant efforts by DOE in the design and construction of advanced energy systems, traditions have changed. Engineers using sophisticated computer modeling and simulation are capable of "engineering"

417

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

418

Coal Utilization Science Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

419

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology EIA uses the confidential version of the STB Waybill data, which includes actual revenue for shipments that originate and terminate at specific locations. The STB Waybill data are a sample of all rail shipments. EIA's 2011 report describes the sampling procedure. EIA aggregates the confidential STB data to three different levels: national, coal-producing basin to state, and state to state. EIA applies STB withholding rules to the aggregated data to identify records that must be suppressed to protect business-sensitive data. Also, EIA adds additional location fields to the STB data, identifying the mine from which the coal originates, the power plant that receives the coal, and, in some cases, an intermediate delivery location where coal is terminated by the initial carrier but then

420

Entrainment Coal Gasification Modeling  

Science Journals Connector (OSTI)

Entrainment Coal Gasification Modeling ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ...

C. Y. Wen; T. Z. Chaung

1979-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

On Coal-Gas  

Science Journals Connector (OSTI)

1860-1862 research-article On Coal-Gas W. R. Bowditch The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1860-01-01T23:59:59.000Z

422

Aqueous coal slurry  

DOE Patents (OSTI)

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

423

Clean Coal Technology (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

424

Quarterly coal report  

SciTech Connect

The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

Young, P.

1996-05-01T23:59:59.000Z

425

Rail Coal Transportation Rates  

Annual Energy Outlook 2012 (EIA)

Survey data. Each plant receiving CAPP or PRB coal in 2007 and 2010 were mapped and their data used to estimate costs for other cells by interpolating values based on inverse...

426

Clean Coal Research  

Energy.gov (U.S. Department of Energy (DOE))

DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

427

Proximate analysis of coal  

SciTech Connect

This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

Donahue, C.J.; Rais, E.A. [University of Michigan, Dearborn, MI (USA)

2009-02-15T23:59:59.000Z

428

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

with the steam cycle of coal-fired power plants offers the potential to convert 40% of solar energy into electricity. This compares to 13% for large-scale photovoltaic systems,...

429

Coal Supply Region  

Gasoline and Diesel Fuel Update (EIA)

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

430

The 2006-2011 world outlook for coal mining  

SciTech Connect

This study covers the world outlook for coal mining across more than 200 countries. For each year reported, estimates are given for the latent demand, or potential industry earnings (P.I.E.), for the country in question (in millions of U.S. dollars), the percent share the country is of the region and of the globe. These comparative benchmarks allow the reader to quickly gauge a country against others. Using econometric models which project fundamental economic dynamics within each country and across countries, latent demand estimates are created. This report does not discuss the specific players in the market serving the latent demand, nor specific details at the product level. The study, therefore, is strategic in nature, taking an aggregate and long-run view, irrespective of the players or products involved. This study does not report actual sales data. This study gives, however, estimates for the worldwide latent demand, or the P.I.E., for coal mining. It also shows how the P.I.E. is divided across the world's regional and national markets. For each country, estimates are given of how the P.I.E. grows over time (positive or negative growth).

Park, P.M. [INSEAD, Fontainebleau (France)

2006-10-15T23:59:59.000Z

431

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

11 (next release 2:00 p.m. on August 18) 11 (next release 2:00 p.m. on August 18) Natural gas spot prices exhibited increases in most locations this week (Wednesday - Wednesday, August 3 - 10) as demand responded to above average temperatures, high crude oil prices, and reduced coal deliveries, which added to demand for natural gas-fired power generation. The Henry Hub spot price increased 6 cents this week, or less than 1 percent, to $8.81 per MMBtu. The price of the NYMEX futures contract for September delivery increased 72 cents since last Wednesday (August 3) to settle yesterday at $9.071 per MMBtu. Natural gas in storage as of Friday, August 5, was 2,463 Bcf, which is 6.4 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil hit a record high yesterday of $64.80 per barrel ($11.17 per MMBtu) after increasing $4.04 per barrel (70 cents per MMBtu), or about 7 percent, on the week.

432

Coal-fueled diesels for modular power generation  

SciTech Connect

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

Wilson, R.P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, A.K. [Cooper-Bessemer Reciprocating, Grove City, PA (United States); Smith, W.C. [Department of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

1993-11-01T23:59:59.000Z

433

SNG Production from Coal: A Possible Solution to Energy Demand  

Science Journals Connector (OSTI)

Abstract In some areas of the world, natural gas demand cannot be fully satisfied either by domestic sources or foreign imports, while abundant coal resources are available. The conversion of coal to Substitute Natural Gas, SNG, by coal gasification and subsequent syngas methanation is one of the possible solutions to solve the problem. Foster Wheeler has developed a simple process for SNG production, named VESTA, utilizing catalysts from Clariant. The process concept has been proven by laboratory tests, and a demonstration unit will soon be completed. The VESTA process is very flexible and can handle syngas coming from several sources such as coal, biomass, petroleum coke and solid waste. In this paper our overview of the technology and its development status will be outlined.

Letizia Romano; Fabio Ruggeri; Robert Marx

2014-01-01T23:59:59.000Z

434

Table 7. U.S. Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Exports U.S. Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 7. U.S. Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 3,122,664 2,010,882 3,565,711 5,133,546 5,327,583 -3.6 Canada* 1,773,644 943,061 2,101,534 2,716,705 3,176,066 -14.5 Dominican Republic 51,792 211,736 124,720 263,528 312,741 -15.7 Honduras - 41,664 34,161 41,664 68,124 -38.8 Jamaica 25 36,311 - 36,336 33,585 8.2 Mexico 1,244,972 777,750 1,268,077 2,022,722 1,698,391 19.1 Other** 52,231 360 37,219 52,591 38,676 36.0 South America Total 2,945,181 3,368,119

435

Table 20. Coal Imports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Imports by Customs District Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 20. Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 469,878 331,008 156,004 800,886 350,124 128.7 Baltimore, MD - - 106,118 - 154,318 - Boston, MA 373,985 154,438 - 528,423 51,185 NM Buffalo, NY 44 - - 44 - - New York City, NY 1,373 1,402 487 2,775 507 447.3 Norfolk, VA - 68,891 - 68,891 35,856 92.1 Ogdensburg, NY - 1 12 1 12 -91.7 Portland, ME 42,428 44,547 - 86,975 - - Providence, RI 52,028 61,729 49,387 113,757 108,226 5.1 St. Albans, VT 20

436

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Coal Prices Coal Prices Figure DataIn 2010, most domestic coal prices continued to increase, rising for the seventh consecutive year. Spot coal prices declined sharply at the end of 2008 and early 2009. While there has been a steady increase in North and Central Appalachian coal spot prices ever since, these prices have recovered about half their drops from peak 2008 levels, and other coal spot prices have increased only slightly from recent bottoms. As contracts expire and are renegotiated, the prevailing spot price influences the price on new and renegotiated contracts. Recent rising spot prices have maintained upward pressure on contract prices. According to preliminary data for 2010, coal prices at electric utilities (a subset of the electric power sector) increased for a tenth consecutive year, to $45.09 per short

437

Fluidized bed combustion of low-rank coals: (Task 4. 1)  

SciTech Connect

Results obtained in the second year of a second three-year program are described. Two 1000-hour tests were completed to evaluate corrosion/erosion effects on boiler materials. The coals tested were Kentucky {number sign}9 from the Pyro mine and Gibbons Creek, Texas, lignite. Of the variety of stainless and carbon steels tested, several meet commercial requirements despite a wide range in ash compositions of the test coals. In Fluidized Bed Combustion characterization, the River King Illinois {number sign}6 and Jacobs Ranch, Wyoming, subbituminous coals were extensively tested under a wide range of operating conditions and with and without limestone addition. The Jacobs Ranch coal was also successfully and satisfactorily fired as a coal/water fuel slurry. The low-rank coal slurry provided excellent ignition and combustion efficiency, and without ash agglomeration or accumulation. Continued progress was made in expanding the data base on FBC of low- rank coals. 11 refs., 59 figs., 22 tabs.

Mann, M.D.; Hajicek, D.R.; Zobeck, B.J.; Kalmanovitch, D.P.; Potas, T.A.

1988-04-01T23:59:59.000Z

438

Coal liquefaction process  

DOE Patents (OSTI)

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

439

Development of Mesophase from a Low-Temperature Coal Tar Pitch  

Science Journals Connector (OSTI)

In this investigation, three distinctly different pitches (petroleum, low-temperature and high-temperature coal tar) have been used to study the influence of the nature and composition of the precursor pitch on the formation and development of mesophase. ... Special emphasis is placed on the low-temperature coal tar pitch in an attempt to study the influence of its unique chemical composition as compared to other conventional CM precursor pitches. ... Several carbonization conditions have been tested for the three pitches of different nature and origin:? CTP1 (low-temperature coal tar pitch), CTP2 (high-temperature coal tar pitch), and PP (petroleum pitch). ...

Roberto García; José L. Crespo; Shona C. Martin; Colin E. Snape; Sabino R. Moinelo

2003-01-28T23:59:59.000Z

440

Coal science for the clean use of coal  

SciTech Connect

Coal will need to be retained as a major source of energy in the next century. It will need to be used more effectively and more cleanly. In order to achieve this, it is necessary to introduce new technology supported by a local community of science and technology. Only in this way can the full benefits of international advances in coal utilization be fully achieved. It is important that full advantage be taken of the advances that have been achieved in laboratory techniques and in the better understanding of fundamental coal science. This paper reviews available technologies in power generation, industrial process heat, coal combustion, coal gasification, and coal analytical procedures.

Harrison, J.S. [Univ. of Leeds (United Kingdom)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table 10. Major U.S. Coal Producers, 2012 U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Major U.S. Coal Producers, 2012 Major U.S. Coal Producers, 2012 U.S. Energy Information Administration | Annual Coal Report 2012 Table 10. Major U.S. Coal Producers, 2012 U.S. Energy Information Administration | Annual Coal Report 2012 Rank Controlling Company Name Production (thousand short tons) Percent of Total Production 1 Peabody Energy Corp 192,563 18.9 2 Arch Coal Inc 136,992 13.5 3 Alpha Natural Resources LLC 104,306 10.3 4 Cloud Peak Energy 90,721 8.9 5 CONSOL Energy Inc 55,752 5.5 6 Alliance Resource Operating Partners LP 35,406 3.5 7 Energy Future Holdings Corp 31,032 3.1 8 Murray Energy Corp 29,216 2.9 9 NACCO Industries Inc 28,207 2.8 10 Patriot Coal Corp 23,946 2.4 11 Peter Kiewit Sons Inc 22,725 2.2 12 Westmoreland Coal Co 22,215 2.2 13 BHP Billiton Ltd 12,580 1.2 14 Walter Energy Inc 11,220 1.1 15 Cline Group (The) 9,230

442

DOE Award Results in Several Patents, Potential Increased Coal Recovery |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Award Results in Several Patents, Potential Increased Coal Award Results in Several Patents, Potential Increased Coal Recovery DOE Award Results in Several Patents, Potential Increased Coal Recovery February 9, 2009 - 12:00pm Addthis Washington, D.C. -- A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. Researchers at the Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Va., have developed and patented an advanced technology called a hyperbaric centrifuge that can successfully remove

443

DOE Award Results in Several Patents, Potential Increased Coal Recovery |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Award Results in Several Patents, Potential Increased Coal DOE Award Results in Several Patents, Potential Increased Coal Recovery DOE Award Results in Several Patents, Potential Increased Coal Recovery February 9, 2009 - 12:00pm Addthis Washington, D.C. -- A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. Researchers at the Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Va., have developed and patented an advanced technology called a hyperbaric centrifuge that can successfully remove

444

The development of Clean Coal Technology in China  

SciTech Connect

The resource conditions and energy structures of China determine that coal will continue to play a key role in the development of the electrical power industry in the coming years, thus it is necessary to develop clean coal technology in order to control the high consumption rate of energy and to control serious pollution. Clean coal technology focuses on improving the utilization rate of energy and on the control and reduction of emissions. Considering the condition of China, PC-FGD, supercritical units, CFBC, IGCC and PFBC-CC can be applied and developed under different conditions and in different periods with these technologies developing simultaneously and helping each other forward to improve clean coal technologies. China has broad development prospects and a large market for clean coal technologies. The authors hope to strengthen international exchange and cooperation in this field for the development of CCTs markets in China.

Jie, Z.; Chu, Z.X. [North China Electrical Power Design Inst., Beijing (China)

1996-10-01T23:59:59.000Z

445

AVESTAR® - Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator FutureGen 2.0 is a first-of-its-kind, near-zero emissions coal-fueled power plant using oxy-combustion technology to capture the plant's carbon emissions. To help meet the Nation's ever growing demand for clean energy, the FutureGen Industrial Alliance (Alliance) was formed to test and commercialize advanced coal-based systems fully integrated with carbon capture and geologic storage technologies. In cooperation with the U.S. Department of Energy (DOE), the Alliance and its project partners AirLiquide and Babcock & Wilcox, will upgrade an existing power plant in Meredosia, Illinois with oxy-coal carbon capture (OCCC) technology to capture and permanantly store approximately 1.0 million tonnes of CO2 each year.

446

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

447

Coal geology of the U.S. Gulf Coastal region  

SciTech Connect

The US Geological Survey (USGS) is conducting a comprehensive assessment of the major coal regions of the country. In this program, known as the National Coal Resource Assessment, the quantity and quality of coals that are expected to be mined during the next 30 years will be characterized. For the Gulf Coast region, the evaluation will include reviews of the stratigraphic setting, resource potential, and the quality of the lignites in four coal-producing areas. These areas are: the Sabine Uplift (including parts of Texas and Louisiana), Northeast Texas, Central Texas, and South Texas. The results of these efforts will be a series of digital Geographic Information System (GIS) maps, text, and tables that will be published in a CD-ROM format. These products, along with a national summary CD-ROM, are expected to be completed in 1999. This paper is to present a review of Gulf Coast coal geology and to outline the USGS assessment efforts for the Gulf Coast region. Most coal in the Gulf Coast area is produced from the Paleocene Wilcox Group, and minor amounts of coal are produced from the Ecocene Jackson and Claiborne Groups. Initial results indicate that for coals being mined in the Sabine Uplift, Northeast, and Central Texas areas mean moisture values are about 34%, mean ash yields range from 12 to 15%, and mean calorific values range from about 5,800 to 6,900 Btu/lb (all data are on an as-received basis). Detailed bed and zone analysis in all areas indicate that resource figures will be greater than previous estimates that have usually combined multiple coal horizons to estimate cumulative coal thicknesses for a formation. Ongoing research in the Sabine Uplift and Northeast study areas suggests that coal zones in both the upper and lower Wilcox may be more laterally extensive than previous studies indicate.

Warwick, P.D.; Aubourg, C.E.; Crowley, S.S. [and others

1999-07-01T23:59:59.000Z

448

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

449

E-Print Network 3.0 - accessing natural product Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

from Natural Gas Production and Use... that natural gas is significantly cleaner than coal in ... Source: Boyer, Elizabeth W. - School of Forest Resources, Pennsylvania State...

450

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-11-01T23:59:59.000Z

451

Coal-fueled diesel locomotive test  

SciTech Connect

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

452

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

453

Definition: Anthracite coal | Open Energy Information  

Open Energy Info (EERE)

coal Jump to: navigation, search Dictionary.png Anthracite coal A hard, brittle, and black lustrous coal, often referred to as hard coal; contains 86-97% carbon, and generally has...

454

STEO December 2012 - natural gas production  

U.S. Energy Information Administration (EIA) Indexed Site

2012 natural gas production seen at record 69 billion cubic feet per 2012 natural gas production seen at record 69 billion cubic feet per day U.S. natural gas production is expected to increase 4.5 percent this year to a record 69 billion cubic feet per day, according to the new monthly energy forecast from the U.S. Energy Information Administration. A big portion of that natural gas is going to the U.S. electric power sector, which is generating more electricity from gas in place of coal. Consumption of natural gas for power generation this year is forecast to jump by more than 21 percent. The growth in gas production is expected to slow in 2013. And while gas use by the electric power sector is expected to decline by about 10 percent next year, it will remain high by historical standards. These trends reflect a structural shift toward using more natural gas for U.S. power generation.

455

Potential benefits from and barriers against coal remining  

SciTech Connect

Coal has been mined commercially in the United States since the mid 1700s and strip mining of coal began in the in the late 1800S. However, until the past 15--20 years, the environmental effects of coal mining caused little concern. In the past, coal mining sites were abandoned for economic reasons or because the equipment in use at the time could not recover any additional coal. Many of these sites were left in an unsafe and unsightly condition, resulting in severe water quality problems and threats to public health and safety. In more recent times, the advent of more sophisticated equipment allowed operators to return to previously mined sites and recover additional coal. This practice, known as remining, is the subject of this paper. In the most general sense, remining is simply mining again at a site that had formerly been mined. Many of today`s coal mining activities take place entirely or partially at sites that were formerly mined and left unreclaimed, primarily because no laws existed requiring reclamation. This paper focuses on the subset of remining projects, which not only recover additional coal, but also reclaim or improve the condition of abandoned mine lands (AMLs), particularly improvements to water quality.

Veil, J.A.

1993-06-01T23:59:59.000Z

456

Blackout: coal, climate and the last energy crisis  

SciTech Connect

Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

Heinberg, R. [Post Carbon Institute in California, CA (United States)

2009-07-15T23:59:59.000Z

457

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

458

Method of extracting coal from a coal refuse pile  

DOE Patents (OSTI)

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

459

Coking properties of coal pitch in coal batch  

Science Journals Connector (OSTI)

The coking properties of coal pitch depend significantly on its fractional composition, ... : 2: 2. This is typical of coal pitch with a softening temperature of 75– ... Such pitch is the best clinkering additive...

S. G. Gagarin; Yu. I. Neshin

2011-09-01T23:59:59.000Z

460

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

Phadke, Amol

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

International Energy Outlook 1999 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natgas.jpg (4355 bytes) natgas.jpg (4355 bytes) Natural gas is the fastest growing primary energy source in the IEO99 forecast. Because it is a cleaner fuel than oil or coal and not as controversial as nuclear power, gas is expected to be the fuel of choice for many countries in the future. Prospects for natural gas demand worldwide remain bright, despite the impact of the Asian economic recession on near-term development. Natural gas consumption in the International Energy Outlook 1999 (IEO99) is somewhat increased from last yearÂ’s outlook, and the fuel remains the fastest growing primary energy source in the forecast period. Worldwide gas use more than doubles in the reference case projection, reaching 174 trillion cubic feet in 2020 from 82 trillion cubic feet in 1996 (Figure

462

Composition and properties of coals from the Yurty coal occurrence  

SciTech Connect

Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

2008-10-15T23:59:59.000Z

463

ARC-coal acetylene process development program. Phase 1B. Final technical progress report, 15 September 1979-31 September 1980  

SciTech Connect

For many years, acetylene was a major feedstock in the chemical industry, being used for the manufacture of such important large-volume chemicals as vinyl chloride, vinyl acetate, acrylonitrile, acetaldehyde, and several others chemicals. Since the mid-1960's, however, acetylene has been largely replaced by olefins like ethylene and propylene. These olefins, though sometimes less suitable as feedstocks than acetylene, became more economical as they became readily available at prices considerably lower than acetylene. The successful development of the Arc-Coal process appears to offer a new competitive option to ethylene while reducing the risk of feedstock shortage by relying on the vast coal resources within the US. The Arc-Coal Acetylene process has been tested successfully at both the 100 kW and 1 MW levels, clearly demonstrating that acetylene can be economically produced from coal in a one-step reaction, and that the current reactor design approach is capable of being scaled up to commercial size. The process is shown to be commercially competitive with the currently available process for acetylene manufacture and, more importantly, competes attractively with ethylene in the manufacture of vinyl chloride and vinyl acetate. With the commercial advent of the arc-coal acetylene process, it will become possible to manufacture acetylene more economically than by conventional process. Substantial ethylene price increases tied closely to, and driven by, higher crude oil and natural gas prices are a clear long-term trend which appears certain to continue well into the foreseeable future with periodic market variations. This situation will make the Arc-coal Acetylene process a leading contender for the production of chemicals such as vinyl chloride and vinyl acetate, substituting a coal feedstock process for the current liquid hydrocarbon-fed ethylene-to-vinyl monomers processes.

Not Available

1980-10-30T23:59:59.000Z

464

Development of an Ultra-fine Coal Dewatering Technology and an Integrated Flotation-Dewatering System for Coal Preparation Plants  

SciTech Connect

The project proposal was approved for only the phase I period. The goal for this Phase I project was to develop an industrial model that can perform continuous and efficient dewatering of fine coal slurries of the previous flotation process to fine coal cake of {approx}15% water content from 50-70%. The feasibility of this model should be demonstrated experimentally using a lab scale setup. The Phase I project was originally for one year, from May 2005 to May 2006. With DOE approval, the project was extended to Dec. 2006 without additional cost from DOE to accomplish the work. Water has been used in mining for a number of purposes such as a carrier, washing liquid, dust-catching media, fire-retardation media, temperature-control media, and solvent. When coal is cleaned in wet-processing circuits, waste streams containing water, fine coal, and noncombustible particles (ash-forming minerals) are produced. In many coal preparation plants, the fine waste stream is fed into a series of selection processes where fine coal particles are recovered from the mixture to form diluted coal fine slurries. A dewatering process is then needed to reduce the water content to about 15%-20% so that the product is marketable. However, in the dewatering process currently used in coal preparation plants, coal fines smaller than 45 micrometers are lost, and in many other plants, coal fines up to 100 micrometers are also wasted. These not-recovered coal fines are mixed with water and mineral particles of the similar particle size range and discharged to impoundment. The wasted water from coal preparation plants containing unrecoverable coal fine and mineral particles are called tailings. With time the amount of wastewater accumulates occupying vast land space while it appears as threat to the environment. This project developed a special extruder and demonstrated its application in solid-liquid separation of coal slurry, tailings containing coal fines mostly less than 50 micron. The extruder is special because all of its auger surface and the internal barrier surface are covered with the membranes allowing water to drain and solid particles retained. It is believed that there are four mechanisms working together in the dewatering process. They are hydrophilic diffusion flow, pressure flow, agitation and air purging. Hydrophilic diffusion flow is effective with hydrophilic membrane. Pressure flow is due to the difference of hydraulic pressure between the two sides of the membrane. Agitation is provided by the rotation of the auger. Purging is achieved with the air blow from the near bottom of the extruder, which is in vertical direction.

Wu Zhang; David Yang; Amar Amarnath; Iftikhar Huq; Scott O'Brien; Jim Williams

2006-12-22T23:59:59.000Z

465

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination, 2001 Coal-Exporting State and Destination Metallurgical Steam Total Alaska - 761 761 South Korea - 761 761 Alabama 4,667 167 4,834 Argentina 155 - 155 Belgium 989 - 989 Brazil 1,104 - 1,104 Bulgaria 82 - 82 Egypt 518 - 518 Italy 115 - 115 Netherlands 56 83 139 Spain 412 84 496 Turkey 581 - 581 United Kingdom 654 - 654 Kentucky 2,130 - 2,130 Canada 920 - 920 France 22 - 22 Iceland 9 - 9 Italy 430 - 430 Netherlands 417 - 417 Spain 9 - 9 United Kingdom 323 - 323 Pennsylvania 1,086 14,326 15,722 Belgium - 203 203 Brazil 372 - 373 Canada - 12,141 12,418 France - 84 84 Germany 495 165 661 Ireland - 136 136 Netherlands 219 879 1,097 Norway - - 7 Peru - - 21 Portugal - 634 634 United Kingdom - 85 85 Venezuela - - 3 Utah - 1,420 1,420 Japan - 1,334 1,334 Taiwan - 86 86 Virginia 4,531

466

Coal combustion system  

DOE Patents (OSTI)

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

467

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...  

Annual Energy Outlook 2012 (EIA)

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply...

468

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect

Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2004-01-01T23:59:59.000Z

469

Status of Coal Gasification: 1977  

Science Journals Connector (OSTI)

High-pressure technology is important to coal gasification for several reasons. When the end product ... of high pressures in all types of coal gasification reduces the pressure drop throughout the equipment,...

F. C. Schora; W. G. Bair

1979-01-01T23:59:59.000Z

470

Montana Coal Mining Code (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

471

Low-rank coal research  

SciTech Connect

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

472

2009 Coal Age Buyers Guide  

SciTech Connect

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2009-07-15T23:59:59.000Z

473

2008 Coal Age buyers guide  

SciTech Connect

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2008-07-15T23:59:59.000Z

474

Hydrogen from Coal Edward Schmetz  

E-Print Network (OSTI)

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

475

Dry cleaning of Turkish coal  

SciTech Connect

This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

476

Table A57. Capability to Switch from Coal to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

7. Capability to Switch from Coal to Alternative Energy Sources by" 7. Capability to Switch from Coal to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991 " " (Estimates in Thousand Short Tons)" " "," "," ", " "," "," Coal",,," Alternative Types of Energy(b)" " "," ","-","-","-------------","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","LPG","Other","Factors"

477

NETL: News Release - DOE, Jacksonville Utility Complete Major Clean Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2, 2005 August 2, 2005 DOE, Jacksonville Utility Complete Major Clean Coal Technology Project Eight Year Demonstration Project Results in One of World's Cleanest Coal-Based Power Plants WASHINGTON, DC - The U.S. Department of Energy and JEA, the public utility of Florida, have achieved a significant milestone in the DOE's Clean Coal Technology Demonstration Program by completing a project in which JEA's Northside Generating Station was converted into one of the cleanest burning coal-fired power plants in the world. MORE INFO Read the final project report [PDF-438KB] As part of the 8-year, $320 million cost-shared project, JEA installed state-of-the-art technology known as circulating fluidized bed combustion in a 300?megawatt combustor-triple the size of any previous

478

Moon Dust and Coal Ash  

Science Journals Connector (OSTI)

... SIR,-The similarity of the description of moon dust particles and that of pulverized coal ...coalash ...

D. J. THORNE; J. D. WATT

1969-09-27T23:59:59.000Z

479

Injury experience in coal mining, 1991  

SciTech Connect

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. Data used in compiling this report were reported by operators of coal mines and preparation plants on a mandatory basis as required under the Federal Mine Safety and Health Act of 1977, Public Law 91-173,as amended by Public Law 95-164. Since January 1, 1978, operators of mines or preparation plants or both which are subject to the Act have been required under 30 CFR, Part 50, to submit reports of injuries, occupational illnesses, and related data.

Not Available

1991-12-31T23:59:59.000Z

480

Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Report 2012 Annual Coal Report 2012 December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. iii U.S. Energy Information Administration | Annual Coal Report 2012 Contacts This publication was prepared by the U.S. Energy Information Administration (EIA). General information about the data in this report can be obtained from:

Note: This page contains sample records for the topic "year coal natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Coal | Open Energy Information  

Open Energy Info (EERE)

Coal Coal Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 101. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 15. Coal Supply, Disposition and Price Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South Central Table 27. Carbon Dioxide Emissions by Sector and Source - West South