Powered by Deep Web Technologies
Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

25 Year Lifetime for Flexible Buildings Integrated Photovoltaics  

SciTech Connect

Although preliminary proof-of-principle of the efficacy of barrier materials and processes, first developed by Battelle at PNNL and commercialized by Vitex, has been demonstrated at the laboratory scale, there are several challenges to the practical commercial implementation of these developments in the Buildings Integrated Photovoltaics (BIPV) market. Two important issues that are addressed in this project are identifying a low cost substrate material that can survive in the outside environment (rain, heat, dust, hail, etc.) for 25 years and developing an encapsulation method for the photovoltaic (PV) cells that can meet the required barrier performance without driving the cost of the total barrier package out of range (remaining below $3.00/Wp). Without these solutions, current encapsulation technologies will limit the use of PV for BIPV applications. Flexible, light-weight packaging that can withstand 25 years in the field is required for a totally flexible integrated PV package. The benefit of this research is to make substantial progress in the development of a cost-effective, viable thin film barrier package which will be a critical enabling technology to meet the Solar America Initiative cost and device reliability goals, and to make photovoltaics (PV) more cost-competitive with electricity generated using fossil fuels. Increased PV installations will enable increased US electrical capacity and reduce dependence on imported oil through increased utilization of a widely abundant source of renewable energy (sunlight).

Gross, Mark E.

2010-07-10T23:59:59.000Z

2

Norwegian National Program for Lifetime Commissioning and Energy Efficient Operation of Buildings  

E-Print Network (OSTI)

The project “Life-Time Commissioning for Energy Efficient Operation of Buildings” is actually a network of industrial companies, private and public entities, and R&D organizations. The overall objective of the project is to contribute to the implementation of life-long commissioning of building HVAC systems, so that this becomes a standardized way of building, operating and maintaining the HVAC systems in Norway. The project is organized as an industry research program with minimum duration of five years. Project members pay an annual membership fee. The main goal for the project is to develop, verify, document and implement suitable tools for functional control of energy and indoor environment in buildings under continuous operation during the entire operational life of the building. This will improve energy efficiency and ensure a rational use of energy and a sound indoor environment. All achievements concerning energy improvement will also contribute to the decrease of CO2 emissions.

Novakovic, V.; Djuric, N.; Holst, J.; Frydenlund, F.

2006-01-01T23:59:59.000Z

3

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

4

1999 Commercial Buildings Characteristics--Year Constructed  

U.S. Energy Information Administration (EIA) Indexed Site

Year Constructed Year Constructed Year Constructed More than one-third (37 percent) of the floorspace in commercial buildings was constructed since 1980 and more than one-half (55 percent) after 1969 (Figure 1). Less than one-third of floorspace was constructed before 1960. Detailed tables Figure 1. Distribution of Floorspace by Year Constructed, 1999 Figure 1. Distribution of Floorspace by Year Constructed, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Overall, relatively more buildings than floorspace were represented in the older age categories and more floorspace than buildings in the newer categories (see graphical comparison) because older buildings were smaller than more recently constructed buildings (Figure 2). Buildings constructed prior to 1960 were 11,700 square feet in size on average while those constructed after 1959 were 37 percent larger at 16,000 square feet per building.

5

Property:Building/YearConstruction | Open Energy Information  

Open Energy Info (EERE)

YearConstruction YearConstruction Jump to: navigation, search This is a property of type Date. Year of construction Pages using the property "Building/YearConstruction" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2003 + Sweden Building 05K0002 + 1999 + Sweden Building 05K0003 + 1960 + Sweden Building 05K0004 + 1914 + Sweden Building 05K0005 + 1940 + Sweden Building 05K0006 + 1995 + Sweden Building 05K0007 + 1900 + Sweden Building 05K0008 + 1997 + Sweden Building 05K0009 + 1980 + Sweden Building 05K0010 + 1777 + Sweden Building 05K0011 + 1995 + Sweden Building 05K0012 + 2000 + Sweden Building 05K0013 + 1850 + Sweden Building 05K0014 + 1650 + Sweden Building 05K0015 + 1878 + Sweden Building 05K0016 + 1700 + Sweden Building 05K0017 + 1987 +

6

Property:Building/YearConstruction2 | Open Energy Information  

Open Energy Info (EERE)

YearConstruction2 YearConstruction2 Jump to: navigation, search This is a property of type Date. Year of construction 2 (Year of construction) Pages using the property "Building/YearConstruction2" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1921 + Sweden Building 05K0002 + 1999 + Sweden Building 05K0003 + 1960 + Sweden Building 05K0004 + 1914 + Sweden Building 05K0005 + 1940 + Sweden Building 05K0006 + 1995 + Sweden Building 05K0007 + 1900 + Sweden Building 05K0008 + 1997 + Sweden Building 05K0009 + 1980 + Sweden Building 05K0010 + 1777 + Sweden Building 05K0011 + 1995 + Sweden Building 05K0012 + 2000 + Sweden Building 05K0013 + 1850 + Sweden Building 05K0014 + 1650 + Sweden Building 05K0015 + 1878 + Sweden Building 05K0016 + 1700 +

7

A Sensitivity Study of Building Performance Using 30-Year Actual...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Media Contacts A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual...

8

Property:Building/YearConstruction1 | Open Energy Information  

Open Energy Info (EERE)

YearConstruction1 YearConstruction1 Jump to: navigation, search This is a property of type Date. Year of construction 1 (taxation year) Subproperties This property has the following 1 subproperty: S Sweden Building 05K0004 Pages using the property "Building/YearConstruction1" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2003 + Sweden Building 05K0002 + 27 June 2013 21:11:42 + Sweden Building 05K0003 + 27 June 2013 21:10:49 + Sweden Building 05K0005 + 27 June 2013 21:11:38 + Sweden Building 05K0006 + 1995 + Sweden Building 05K0007 + 1972 + Sweden Building 05K0008 + 1997 + Sweden Building 05K0009 + 1980 + Sweden Building 05K0010 + 2004 + Sweden Building 05K0011 + 1995 + Sweden Building 05K0012 + 2000 + Sweden Building 05K0013 + 1992 +

9

Buildings*","Year Constructed"  

U.S. Energy Information Administration (EIA) Indexed Site

B8. Year Constructed, Number of Buildings for Non-Mall Buildings, 2003" B8. Year Constructed, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2003" "All Buildings* ...............",4645,330,527,562,579,731,707,876,334 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,174,315,331,298,350,438,481,165 "5,001 to 10,000 ..............",889,71,107,90,120,180,98,158,66 "10,001 to 25,000 .............",738,55,64,90,95,122,103,151,58 "25,001 to 50,000 .............",241,19,23,26,33,48,32,39,21

10

Better Buildings Initiative Highlights First-Year Successes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Initiative Highlights First-Year Successes Better Buildings Initiative Highlights First-Year Successes Better Buildings Initiative Highlights First-Year Successes December 11, 2012 - 5:04pm Addthis Last week, Better Buildings Challenge partners and others discussed how these organizations are successfully making energy efficiency a key part of how they do business. | Photo courtesy of Monica Neukomm, Energy Department. Last week, Better Buildings Challenge partners and others discussed how these organizations are successfully making energy efficiency a key part of how they do business. | Photo courtesy of Monica Neukomm, Energy Department. Maria Tikoff Vargas Director, Department of Energy Better Buildings Challenge What are the key facts? The Better Buildings Challenge helps America's commercial and

11

A soft computing method for detecting lifetime building thermal insulation failures  

Science Conference Proceedings (OSTI)

The detection of thermal insulation failures in buildings in operation responds to the challenge of improving building energy efficiency. This multidisciplinary study presents a novel four-step soft computing knowledge identification model called IKBIS ...

Javier Sedano; Leticia Curiel; Emilio Corchado; Enrique de la Cal; José R. Villar

2010-04-01T23:59:59.000Z

12

Better Buildings Challenge Reports First Year's Savings; Partners on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge Reports First Year's Savings; Partners Better Buildings Challenge Reports First Year's Savings; Partners on Track to Meet 2020 Goal Better Buildings Challenge Reports First Year's Savings; Partners on Track to Meet 2020 Goal May 22, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, Energy Secretary Ernest Moniz recognized the Administration's Better Buildings Challenge partners for the first year's progress toward our goal of making American commercial and industrial buildings 20 percent more energy efficient by 2020. Today's announcement builds upon Secretary Moniz's first speech as Secretary at the 2013 Energy Efficiency Global Forum yesterday which focused on his commitment to saving energy. New data submitted by the Challenge partners shows that they have improved

13

Particle Lifetimes  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviewing Particle Lifetimes Reviewing Particle Lifetimes The lifetimes of elementary particles are statistical in nature. In a given sample, one particle might decay immediately, another in 1 nanosecond, yet another after 10 milliseconds, and still another in 50 years. What we call the lifetime is the time it takes for a sample to decay so 1/e (~30%) of the sample is left; after 2 lifetimes, 1/e2 of the sample is left, and so on. Take, for example, a sample of cosmic ray muons produced in the upper atmosphere. These muons, when observed at (relative) rest in the laboratory, have a mean lifetime T. Now, since particle decay is statistical in nature, the number of undecayed particles after a given time is a negative exponential function: N(t) = No e-t/T where N(t) is the number of muons at time t, No is the initial number of

14

Table B8. Year Constructed, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

B8. Year Constructed, Number of Buildings, 1999" B8. Year Constructed, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999" "All Buildings ................",4657,419,499,763,665,774,846,690 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,227,270,359,321,367,413,390 "5,001 to 10,000 ..............",1110,107,102,240,166,193,156,145 "10,001 to 25,000 .............",708,63,90,97,84,130,179,65 "25,001 to 50,000 .............",257,13,20,39,53,44,43,44 "50,001 to 100,000 ............",145,7,9,19,24,26,33,27

15

Better Buildings Challenge Reports First Year's Savings; Partners on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenge Reports First Year's Savings; Partners Challenge Reports First Year's Savings; Partners on Track to Meet 2020 Goal Better Buildings Challenge Reports First Year's Savings; Partners on Track to Meet 2020 Goal May 22, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, Energy Secretary Ernest Moniz recognized the Administration's Better Buildings Challenge partners for the first year's progress toward our goal of making American commercial and industrial buildings 20 percent more energy efficient by 2020. Today's announcement builds upon Secretary Moniz's first speech as Secretary at the 2013 Energy Efficiency Global Forum yesterday which focused on his commitment to saving energy. New data submitted by the Challenge partners shows that they have improved facility energy efficiency by more than 2.5 percent per year on average

16

Buildings","Year Constructed"  

U.S. Energy Information Administration (EIA) Indexed Site

B9. Year Constructed, Floorspace, 1999" B9. Year Constructed, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999" "All Buildings ................",67338,4034,6445,9127,10866,11840,13931,11094 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,655,798,1025,928,1056,1153,1159 "5,001 to 10,000 ..............",8238,791,776,1777,1165,1392,1150,1188 "10,001 to 25,000 .............",11153,972,1504,1488,1267,2045,2767,1110 "25,001 to 50,000 .............",9311,489,673,1343,1987,1587,1594,1638

17

Property:Buildings/ModelYear | Open Energy Information  

Open Energy Info (EERE)

Buildings/ModelYear Buildings/ModelYear Jump to: navigation, search This is a property of type Date. Pages using the property "Buildings/ModelYear" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami Low Plug Load Baseline + 2009 +

18

Building Energy Software Tools Directory: Weather Year for Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Year for Energy Calculations 2 Year for Energy Calculations 2 Weather Year for Energy Calculations 2 logo. Contains typical year hourly weather data for 77 locations in the United States and Canada. The Weather Year for Energy Calculations 2 (WYEC2) format updates and replaces the earlier WYEC format weather data files and was developed specifically for use with building energy simulation programs. A manual for the WYEC2 weather files and the software toolkit for manipulating and viewing the data is provided. Create multiple reports using a software toolkit on the CD-ROM. WYEC2 weather files consist of 8760 or 8784 identical fixed format records, one for each hour of a 365 or 366 day year. Each record is 116 characters in length. The WYEC2 format is derived from the NOAA TD 9734 Typical Meteorological

19

B Lifetime  

NLE Websites -- All DOE Office Websites (Extended Search)

B Lifetime Equation Back to Finding B Lifetime Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: June, 2001 http:...

20

A Sensitivity Study of Building Performance Using 30-Year Actual Weather  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity Study of Building Performance Using 30-Year Actual Weather Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Publication Type Conference Paper Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Date Published 05/2013 Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Traditional energy performance calculated using building simulation with the typical meteorological year (TMY) weather data represents the energy performance in a typical year but not necessarily the average or typical energy performance of a building in long term. Furthermore, the simulated results do not provide the range of variations due to the change of weather, which is important in building energy management and risk assessment of energy efficiency investment. This study analyzes the weather impact on peak electric demand and energy use by building simulation using 30-year actual meteorological year (AMY) weather data for three types of office buildings at two design efficiency levels across all 17 climate zones. The simulated results from the AMY are compared to those from TMY3 to determine and analyze the differences. It was found that yearly weather variation has significant impact on building performance especially peak electric demand. Energy savings of building technologies should be evaluated using simulations with multi-decade actual weather data to fully consider investment risk and the long term performance.

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Better Buildings Challenge Reports First Year's Savings; Partners...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, Energy Secretary Ernest Moniz recognized the Administration's Better Buildings Challenge partners for the first...

22

Building Energy Software Tools Directory : Weather Year for Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Year for Energy Calculations 2 Back to Tool Screenshot for Weather Year for Energy Calculations 2...

23

B Lifetime  

NLE Websites -- All DOE Office Websites (Extended Search)

Lifetime Lifetime Lifetime is similar to half-life, which you may have studied in radioactivity. More details on lifetime. Lifetime is the average time between creation and decay of a particle, which cannot be predicted for an individual particle, so we use the average time. The lifetime is the time when e-1 (or 37%) of them have survived. Derivation of equation To simplify calculations, we will use only the information in a plane perpendicular (transverse) to the beams, that is, in the x-y plane. The lifetime of B mesons is t = d/v (since velocity = distance/time) The velocity can be determined from the momentum. However, we cannot use the usual equation p = mv These particles are moving at velocities close to the speed of light, c. Here the correct formula is (Do you find the usual formula for p if v is much smaller than c?)

24

Better Buildings Challenge Reports First Year's Savings; Partners...  

NLE Websites -- All DOE Office Websites (Extended Search)

organizations in the Better Buildings Challenge include: Kohl's: With a 112 million square foot commitment and more than 1,000 stores in the United States, Kohl's has achieved a...

25

Multi-Year Program Plan, Building Regulatory Programs: 2010-2015  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-Year Program Plan Multi-Year Program Plan - Building Regulatory Programs - U.S. Department of Energy - Energy Efficiency and Renewable Energy - Building Technologies Program - October 2010 [This plan will be updated based on actual appropriations, future budget requests and other program developments; the next significant revision is expected to be completed by spring 2011] 1 Building Regulatory Programs Multi Year Program Plan ďż˝ Contents 1. Executive Summary ...................................................................................................................................................... 7 - 2. Introduction ...................................................................................................................................................................14

26

Building Energy Software Tools Directory: Weather Year for Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculations 2 Weather Year for Energy Calculations 2 logo. Contains typical year hourly weather data for 77 locations in the United States and Canada. The Weather Year for Energy...

27

B Lifetime  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Extra Project Find B lifetime. Found info: Source 5 Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: January 10,...

28

Five-Year NRHP Re-Evaluation of Historic Buildings Assessment  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory (LLNL) 'Draft Programmatic Agreement among the Department of Energy and the California State Historic Preservation Officer Regarding Operation of Lawrence Livermore National Laboratory' requires a review and re-evaluation of the eligibility of laboratory properties for the National Register of Historic Places (NRHP) every five years. The original evaluation was published in 2005; this report serves as the first five-year re-evaluation. This re-evaluation includes consideration of changes within LLNL to management, to mission, and to the built environment. it also determines the status of those buildings, objects, and districts that were recommended as NRHP-eligible in the 2005 report. Buildings that were omitted from the earlier building list, those that have reached 50 years of age since the original assessment, and new buildings are also addressed in the re-evaluation.

Ullrich, R A; Heidecker, K R

2011-09-12T23:59:59.000Z

29

Win ENERGY STAR Partner of the Year | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Win ENERGY STAR Partner of the Year Win ENERGY STAR Partner of the Year Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

30

Five Years of Building the Next Generation of Reactors | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five Years of Building the Next Generation of Reactors Five Years of Building the Next Generation of Reactors Five Years of Building the Next Generation of Reactors August 15, 2012 - 5:17pm Addthis Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). Doug Kothe Director, Consortium for Advanced Simulation of Light Water Reactors What are the key facts? CASL has the virtual capability to look closely at reactor core models. These models operate with 193 fuel assemblies, nearly 51,000 fuel rods, and about 18 million fuel pellets.

31

Partner of the Year profiles in leadership | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

» Partner of the Year profiles in leadership » Partner of the Year profiles in leadership Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition ENERGY STAR Partner of the Year Award

32

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

SciTech Connect

California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

2010-05-14T23:59:59.000Z

33

300 Area D4 Project Fiscal Year 2009 Building Completion Report  

SciTech Connect

This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.

B. J. Skwarek

2010-01-27T23:59:59.000Z

34

Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection  

SciTech Connect

Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

Choi, J.; Ludwig, P.; Brand, L.

2013-08-01T23:59:59.000Z

35

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

36

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

3E 3E Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings S. Kiliccote, M.A. Piette, J. Mathieu, K. Parrish Environmental Energy Technologies Division May 2010 Presented at the 2010 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August 15-20, 2010, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

37

Test Reference Year (TRY). Final report. [Weather data collection for building energy demand calculations  

SciTech Connect

The Test Reference Year (TRY) for a specified location is a data collection consisting of 8760 sets of hourly weather data. Its main objective is to provide data for computerized calculations regarding energy conservation, energy consumption in buildings, and indoor climate. This report recommends a suitable format for such a TRY, describes which weather data are mandatory for such a TRY to meet the main objective, and recommends how it can be published. The report does not recommend any specific procedure for generating or selecting a TRY for a given location.

1977-08-01T23:59:59.000Z

38

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

SciTech Connect

China's 11th Five-Year Plan (FYP) sets an ambitious target to reduce the energy intensity per unit of gross domestic product (GDP) by 20% from 2005 to 2010 (NDRC, 2006). In the building sector, the primary energy-saving target allocated during the 11 FYP period is 100 Mtce. Savings are expected to be achieved through the strengthening of enforcement of building energy efficiency codes, existing building retrofits and heat supply system reform, followed by energy management of government office buildings and large scale public buildings, adoption of renewable energy sources. To date, China has reported that it achieved the half of the 20% intensity reduction target by the end of 2008, however, little has been made clear on the status and the impact of the building programs. There has also been lack of description on methodology for calculating the savings and baseline definition, and no total savings that have been officially reported to date. This paper intends to provide both quantitative and qualitative assessment of the key policies and programs in building sector that China has instituted in its quest to fulfill the national goal. Overall, this paper concludes that the largest improvement for building energy efficiency were achieved in new buildings; the program to improve the energy management in government and large scale public buildings are in line with the target; however the progress in the area of existing building retrofits, particularly heating supply system reform lags behind the stated goal by a large amount.

Zhou, Nan; Mcneil, Michael; Levine, Mark

2011-03-01T23:59:59.000Z

39

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

SciTech Connect

China's 11th Five-Year Plan (FYP) sets an ambitious target to reduce the energy intensity per unit of gross domestic product (GDP) by 20% from 2005 to 2010 (NDRC, 2006). In the building sector, the primary energy-saving target allocated during the 11 FYP period is 100 Mtce. Savings are expected to be achieved through the strengthening of enforcement of building energy efficiency codes, existing building retrofits and heat supply system reform, followed by energy management of government office buildings and large scale public buildings, adoption of renewable energy sources. To date, China has reported that it achieved the half of the 20% intensity reduction target by the end of 2008, however, little has been made clear on the status and the impact of the building programs. There has also been lack of description on methodology for calculating the savings and baseline definition, and no total savings that have been officially reported to date. This paper intends to provide both quantitative and qualitative assessment of the key policies and programs in building sector that China has instituted in its quest to fulfill the national goal. Overall, this paper concludes that the largest improvement for building energy efficiency were achieved in new buildings; the program to improve the energy management in government and large scale public buildings are in line with the target; however the progress in the area of existing building retrofits, particularly heating supply system reform lags behind the stated goal by a large amount.

Zhou, Nan; Mcneil, Michael; Levine, Mark

2011-03-01T23:59:59.000Z

40

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

SciTech Connect

China's 11th Five-Year Plan (FYP) sets an ambitious target to reduce the energy intensity per unit of gross domestic product (GDP) by 20% from 2005 to 2010 (NDRC, 2006). In the building sector, the primary energy-saving target allocated during the 11 FYP period is 100 Mtce. Savings are expected to be achieved through the strengthening of enforcement of building energy efficiency codes, existing building retrofits and heat supply system reform, followed by energy management of government office buildings and large scale public buildings, adoption of renewable energy sources. To date, China has reported that it achieved the half of the 20% intensity reduction target by the end of 2008, however, little has been made clear on the status and the impact of the building programs. There has also been lack of description on methodology for calculating the savings and baseline definition, and no total savings that have been officially reported to date. This paper intend to provide both quantitative and qualitative assessment of the key policies and programs in building sector that China has instituted in its quest to fulfill the national goal. Overall, this paper concludes that the largest improvement for building energy efficiency were achieved in new buildings; the program to improve the energy management in government and large scale public buildings are in line with the target; however the progress in the area of existing building retrofit particularly heat supply system reform lags the stated goal by a large amount.

Zhou, Nan; McNeil, Michael; Levine, Mark

2010-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Design and prototype of a partial window replacement to improve the energy efficiency of 90-year-old MIT buildings  

E-Print Network (OSTI)

The existing windows of the 90-year-old buildings on the main MIT campus are not energy efficient and compromise comfort levels. The single panes of glass allow too much heat transfer and solar heat gain. In addition, the ...

Chen, YunJa

2007-01-01T23:59:59.000Z

42

Four Years of On-Going Commissioning in CTEC-Varennes Building with a BEMS Assisted CX Tool  

E-Print Network (OSTI)

The development of Building Energy Management Systems (BEMS) offers new opportunities to automate some aspects of commissioning. Reduction of process cost and manual effort on site, transformation of a one time application to a continuous process generating benefits over the entire life of a building, development of a detail systematic approach to improve quality assurance process and integration of energy audit capabilities to improve the overall performance of buildings are some of them. This paper presents the four years result of an on-going commissioning project performed in the CANMET Energy Technology Centre - Varennes (CETC-V) building that has generated 35 % reduction in the energy used. An ongoing BEMS assisted commissioning tool, DABO, developed under IEA Annex 40 by the Canadian team has largely contributed in the verification and optimisation of the performance of the building.

Choiniere, D.

2004-01-01T23:59:59.000Z

43

Abstract--We present new approaches for building yearly and seasonal models for 5-minute ahead electricity load  

E-Print Network (OSTI)

electricity load forecasting. They are evaluated using two full years of Australian electricity load data. We first analyze the cyclic nature of the electricity load and show that the autocorrelation function to building a single yearly model. I. INTRODUCTION PREDICTING the future electricity demand, also called

Koprinska, Irena

44

Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry  

SciTech Connect

The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

1999-10-01T23:59:59.000Z

45

Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry  

DOE Green Energy (OSTI)

The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

NONE

1999-10-01T23:59:59.000Z

46

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example, a third of the large office buildings constructed today will survive 92 years later. EIA, Assumptions for the Annual Energy Outlook 2011, July 2011, Table 5.2, p. 40; EIA, Model Documentation Report: Commercial Sector 'Demand Module of the National Energy Modeling System, May 2010, p. 30-35; and PNNL, Memorandum: New Construction in the Annual Energy Outlook 2003, Apr. 24,

47

Energy consumption evaluation of United States Navy LEED certified buildings for fiscal year 2009 .  

E-Print Network (OSTI)

??As of October 1, 2008, the Department of the Navy inserted the requirement that all new buildings constructed for the United States Navy and United… (more)

Mangasarian, Seth

2010-01-01T23:59:59.000Z

48

CURRENT YEAR BUILDING DEPRECIATION AS OF JUNE 30, 2012 (if building is not listed, please contact Shelia Fisher at 515-8808 for assistance)  

E-Print Network (OSTI)

HEALTH SERVICES CENTER 284,707.99 065 MAIN DISTRIBUTION FRAME 4,092.80 067 GARDNER HALL 17,026.38 067A SCIENCE TEACHING LABORATORY 445,935.32 077 FIRST YEAR COLLEGE COMMONS 145,687.99 078 NELSON HALL 306 BUILDING 303,633.72 121 ADMINISTRATIVE SERVICES II 27,693.44 122 ADMINISTRATIVE SERVICES I 54,358.20 123

49

Public Affairs Office: Livermore Lab Physicist Dates Lifetime of Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Dating the Solar System: Where Were You When the Solar System Was Being Formed? Dating the Solar System: Where Were You When the Solar System Was Being Formed? Chemistry & Materials Science Directorate, LLNL Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions Nature, April 21, 2005 Building Planets at PSI: The Origin of the Solar System Planetary Science Institute Social Media Logos Follow LLNL on YouTube Subscribe to LLNL's RSS feed Follow LLNL on Facebook Follow LLNL on Twitter Follow LLNL on Flickr Contact: Anne M. Stark Phone: (925) 422-9799 E-mail: stark8@llnl.gov FOR IMMEDIATE RELEASE April 20, 2005 NR-05-04-02 Livermore Lab physicist dates lifetime of solar nebula at two million years LIVERMORE, Calif. - The oxygen and magnesium content of some of the oldest objects in the universe are giving clues to the lifetime of the

50

SigmaLifetime  

NLE Websites -- All DOE Office Websites (Extended Search)

uncertainty relation Et h4 and their measured energy spread E. STUDENT LEARNING OBJECTIVES 1. Lifetime of moving particles is related to track length in a bubble...

51

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

E-Print Network (OSTI)

buildings can reduce peak demand from 5 to 15% with anof events. We benchmark the peak demand of this sample ofyears. This is done with peak demand intensities and load

Kiliccote, Sila

2010-01-01T23:59:59.000Z

52

Over the energy edge: Results from a seven year new commercial buildings research and demonstration project  

SciTech Connect

Edge was a research oriented demonstration project that began in 1985. Twenty-eight commercial buildings were designed and constructed to use 30% less electricity than a hypothetical simulated baseline building. Average savings from the 18 buildings evaluated with post-occupancy, ``tuned`` simulation models were less, at 17%. The cost-effectiveness of the energy-efficiency measures at six of the 18 projects met the target cost-of-conserved (CCE) energy of 5.6cent/kWh for the total package of measures. The most important reason energy savings were not as great as predicted is that the actual, installed energy-efficiency measures and building characteristics changed from the design assumptions. The cost effectiveness of the measures would have been greater if the baseline was common practice rather than assumptions based on the regional building code. For example, the Energy Edge small offices use about 30% to 50% less energy than comparable new buildings. Savings also would have been greater if commissioning had been included within the program. Future projects should consider lower-cost ``hands-on`` evaluation techniques that provide direct feedback on measure performance based on functional and diagnostic testing, with annual check-ups to ensure persistence of savings.

Piette, M.A.; Nordman, B.; deBuen, O.; Diamond, R. [Lawrence Berkeley Lab., CA (United States); Codey, B. [Bonneville Power Administration, Portland, OR (United States)

1994-08-01T23:59:59.000Z

53

Soiling patterns on a tall limestone building: Changes over 60 years  

SciTech Connect

Soiling of limestone caused by air pollution has been studied at the Cathedral of Learning on the University of Pittsburgh campus. The Cathedral was constructed in the 1930s during a period of heavy pollution in Pittsburgh, PA. Archival photographs show that the building became soiled while it was still under construction. Reductions in air pollutant concentrations began in the late 1940s and 1950s and have continued to the present day. Concurrent with decreasing pollution, soiled areas of the stone have been slowly washed by rain, leaving a white, eroded surface. The patterns of white areas in archival photographs of the building are consistent with computer modeling of rain impingement showing greater wash off rates at higher elevations and on the corners of the building. Winds during the rainstorms are predominantly form the quadrant SW to NW at this location, and wind speeds as well as rain intensities are greater when winds are from this quadrant as compared with other quadrants; the sides of the building facing these directions are much less soiled than the opposing sides. Overall, these results suggest that rain washing of soiled areas on buildings occurs over a period of decades, in contrast to the process of soiling that occurs much more rapidly.

Davidson, C.I.; Tang, W.; Finger, S.; Etyemezian, V.; Striegel, M.F.; Sherwood, S.I.

2000-02-15T23:59:59.000Z

54

Energy management in residential and small commercial buildings. Annual report, fiscal year 1976  

DOE Green Energy (OSTI)

The goal of the present program is to develop the technical basis for efficient energy use in space heating of residential and small commercial buildings. Efficiency measurements performed on conventional residential oil-fired hot water heating equipment, including both steady state and cyclic (part load) efficiency determinations are described. A list of preliminary recommendations for retrofit actions to improve efficiency is provided. A summary of work carried out in the areas of thermal storage media, fenestration, and building thermal dynamics is also presented.

Batey, J.; Gazerro, V.; Salzano, F.J.; Berlad, A.L.

1976-07-01T23:59:59.000Z

55

300 Area D4 Project Fiscal Year 2007 Building Completion Report  

SciTech Connect

This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

R. A. Westberg

2009-01-15T23:59:59.000Z

56

Continuous Energy Management of the HVAC&R System in an Office Building System Operation and Energy Consumption for the Eight Years after Building Completion  

E-Print Network (OSTI)

The authors continuously studied the energy consumption of a heating, ventilating, air- conditioning and refrigerating (HVAC&R) system in an office for the operation of the system in terms of its expected performance. A fault in the system control setting was detected, and the system performance improved significantly as a result of correcting the fault. Recently, however, problematic issues, such as the malfunction of chillers and deteriorated performance of the heat exchangers, have emerged, resulting in the degradation of overall system performance. This paper describes (a) changes in the energy consumption of the building over a period of eight years during which the HVAC&R system was operated, and (b) problematic issues that arose during system operation in order to identify the energy-saving effects of the system found when energy management of the building is continuously practiced. In this HVAC&R system, about 25% of electric power consumption for wintertime could be saved by checking the system operation during the first two years. After that, the electric power consumption gradually increased due to the system deterioration until 2004, but it decreased again by properly dealing with the problems.

Akashi, Y.; Shinozaki, M.; Kusuda, R.; Ito, S.

2006-01-01T23:59:59.000Z

57

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

China. ” Energy& Buildings 40 (12): 2121-2127. Zhou N. ,Scenarios of Commercial Building Energy Consumption inbuilding energy retrofits, and building energy control

Zhou, Nan

2011-01-01T23:59:59.000Z

58

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

China. ” Energy& Buildings 40 (12): 2121-2127. Zhou N. ,Scenarios of Commercial Building Energy Consumption inbuilding energy retrofits, and building energy control

Zhou, Nan

2010-01-01T23:59:59.000Z

59

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

conservation management in government office buildings and large-scale public buildingsPublic Buildings. Heat supply system measurement and energy conservation

Zhou, Nan

2011-01-01T23:59:59.000Z

60

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

conservation managementin government office buildings and large-scale public buildingsPublic Buildings. Heat supply system measurement and energy conservation

Zhou, Nan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

Commercial Building Energy Consumption in China. ” Energy&China Building Energy Consumption: Situation, Challenges andOverview Building energy consumption accounts for 25% of the

Zhou, Nan

2010-01-01T23:59:59.000Z

62

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

Commercial Building Energy Consumption in China. ” Energy&China Building Energy Consumption: Situation, Challenges and2. Overview Building energy consumption accounts for 25% of

Zhou, Nan

2011-01-01T23:59:59.000Z

63

Ralph Holman Lifetime Achievement Award  

Science Conference Proceedings (OSTI)

Significant lifetime and meritorious achievements in areas of interest to the Health and Nutrition Division of AOCS are recognized with the Ralph Holman Lifetime Achievement Award. Ralph Holman Lifetime Achievement Award Divisions achievement agri

64

300 Area D4 Project Fiscal Year 2010 Building Completion Report  

SciTech Connect

This report summarizes the deactiviation, decontamination, decommissioning, and demolition activities of facilities in the 300 Area of the Hanford Site in fiscal year 2010.

Skwarek, B. J.

2011-01-27T23:59:59.000Z

65

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

66

Ten Years at the Calif. Energy Commission White Roofs to Cool your Building, your City and  

E-Print Network (OSTI)

Efficiency Improvements Savings calculated 10 years after standard takes effect. Calculations provided=100) Effective Dates of National Standards = Effective Dates of State Standards = Refrigerators Central A/C Gas Federal Standard Estimated Standby Power (per house) 2007 STD. #12;The residential energy consumption due

Kammen, Daniel M.

67

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

of Architectural Energy-Saving in China. ” http://Assessment of Building Energy- Saving Policies and Programsi Assessment of Building Energy-Saving Policies and Programs

Zhou, Nan

2011-01-01T23:59:59.000Z

68

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Â… Energy Saving Homes, Buildings, and Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kathleen Hogan, Deputy Assistant Secretary Kathleen Hogan, Deputy Assistant Secretary May 1, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Energy Saving Homes, Buildings, and Manufacturing 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation * Enhancing energy security by reducing our dependence on foreign oil and gas * Saving money by cutting energy costs for American

69

Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)  

Science Conference Proceedings (OSTI)

In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

2012-08-01T23:59:59.000Z

70

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

include three tasks: building insulation, indoor heatingcompared to buildings without insulation. For existingbuilding design and construction enterprises and respective supervisory units are responsible for obtaining energy labeling certification, verification of construction completion and insulation

Zhou, Nan

2010-01-01T23:59:59.000Z

71

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

include three tasks: building insulation, indoor heatingcompared to buildings without insulation. For existingbuilding design and construction enterprises and respective supervisory units are responsible for obtaining energy labeling certification, verification of construction completion and insulation

Zhou, Nan

2011-01-01T23:59:59.000Z

72

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

heating Special fund for demonstration projects of renewable energy in buildings Subsidy for demonstration projects of solar

Zhou, Nan

2010-01-01T23:59:59.000Z

73

B Lifetimes and Mixing  

SciTech Connect

The Tevatron experiments, CDF and D0, have produced a wealth of new B-physics results since the start of Run II in 2001. We've observed new B-hadrons, seen new effects, and increased many-fold the precision with which we know the properties of b-quark systems. In these proceedings, we will discuss two of the most fruitful areas in the Tevatron B-physics program: lifetimes and mixing. We'll examine the experimental issues driving these analyses, present a summary of the latest results, and discuss prospects for the future.

Evans, Harold G.; /Indiana U.

2009-05-01T23:59:59.000Z

74

Buildings*","Year Constructed"  

U.S. Energy Information Administration (EIA) Indexed Site

"District Heat ...",5166,"Q",1203,661,786,573,780,691,"Q" "Boilers ...",20423,1926,2744,3081,2957,3339,2803,2257,1316 "Packaged...

75

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

retrofit in northern area district heating Special fund forbuildings that have district heating system (Wu, 2009). Thein heating load is assumed for buildings using district

Zhou, Nan

2011-01-01T23:59:59.000Z

76

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

retrofit in northern area district heating Special fund forbuildings that have district heating system (Wu, 2009). Thein heating load is assumed for buildings using district

Zhou, Nan

2010-01-01T23:59:59.000Z

77

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

of Architectural Energy-Saving in China. ” http://Assessment of Building Energy- Saving Policies and Programssector, the primary energy-saving target allocated during

Zhou, Nan

2010-01-01T23:59:59.000Z

78

Desjarlais received Lifetime Achievement Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Andr Desjarlais received a Lifetime Achievement Award from the Polyisocyanurate Insulation Manufacturers Association (PIMA) during the group's 25th Anniversary celebration...

79

Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint  

SciTech Connect

ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

Judkoff, R.; Neymark, J.

2013-07-01T23:59:59.000Z

80

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

of the inspection or energy audit are borne by the centralstatistics, performing energy audits, and certifying theMOHURD also carried out an energy audit of 768 buildings and

Zhou, Nan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

of the inspection or energy audit are borne by the centralstatistics, performing energy audits, and certifying theMOHURD also carried out an energy audit of 768 buildings and

Zhou, Nan

2011-01-01T23:59:59.000Z

82

YEAR  

National Nuclear Security Administration (NNSA)

1 1 YEAR 2011 Males 18 Females 23 YEAR 2011 SES 2 EJ/EK 2 NQ (Prof/Tech/Admin) 35 NU (Tech/Admin Support) 2 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 9 Asian Male 0 Asian Female 0 Hispanic Male 2 Hispanic Female 6 White Male 12 White Female 6 DIVERSITY Workforce Diversity Associate Administrator for Information Management & Chief Information Officer, NA-IM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 18 43.9% 23 56.1% Gender Males Females 4.9% 4.9% 85.4% 4.9% Pay Plan SES EJ/EK NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 2.4% 4.9% 7.3% 22.0% 0.0% 0.0% 4.9% 14.6% 29.3% 14.6% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

83

YEAR  

National Nuclear Security Administration (NNSA)

4 4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 31 NU (Tech/Admin Support) 5 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 2 Asian Male 1 Asian Female 1 Hispanic Male 6 Hispanic Female 10 White Male 13 White Female 10 DIVERSITY Workforce Diversity Office of General Counsel, NA-GC As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 21 47.7% 23 52.3% Gender Males Females 6.8% 2.3% 2.3% 6.8% 70.5% 11.4% Pay Plan SES EJ/EK EN 03 NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.0% 0.0% 2.3% 4.5% 2.3% 2.3% 13.6% 22.7% 29.5% 22.7% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

84

YEAR  

National Nuclear Security Administration (NNSA)

6 6 YEAR 2011 Males 7 Females 9 YEAR 2011 SES 1 NQ (Prof/Tech/Admin) 9 GS 15 2 GS 13 2 GS 12 1 GS 11 1 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 3 Asian Male 1 Asian Female 0 Hispanic Male 1 Hispanic Female 0 White Male 4 White Female 6 DIVERSITY Workforce Diversity Associate Administrator of External Affairs, NA-EA As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 7 43.8% 9 56.3% Gender Males Females 6.3% 56.3% 12.5% 12.5% 6.3% 6.3% Pay Plan SES NQ (Prof/Tech/Admin) GS 15 GS 13 GS 12 GS 11 0.0% 0.0% 6.3% 18.8% 6.3% 0.0% 6.3% 0.0% 25.0% 37.5% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male Hispanic Female White Male White Female FY11 Workforce Diversity

85

YEAR  

National Nuclear Security Administration (NNSA)

40 40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJ/EK 1 NN (Engineering) 16 NQ (Prof/Tech/Admin) 115 NU (Tech/Admin Support) 3 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 7 Asian Male 4 Asian Female 0 Hispanic Male 25 Hispanic Female 26 White Male 35 White Female 37 DIVERSITY Workforce Diversity Associate Administrator for Acquistion & Project Management, NA-APM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 68 48.6% 72 51.4% Gender Males Females 3.6% 0.7% 11.4% 82.1% 2.1% Pay Plan SES EJ/EK NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.7% 1.4% 2.1% 5.0% 2.9% 0.0% 17.9% 18.6% 25.0% 26.4% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male

86

Years  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology in and Technology in the National Interest 60 Years of Excellence Lawrence Livermore National Laboratory FY 2012 Annual Report About the Cover: Lawrence Livermore National Laboratory (LLNL) engineers Chris Spadaccini (left) and Eric Duoss are shown experimenting with direct ink-writing to create micro- to macroscale structures with extreme precision. The Laboratory is advancing this process and other additive manufacturing technologies to develop new materials with extraordinary properties for use in a wide range of national-security and other applications. About the Laboratory: Lawrence Livermore National Laboratory was founded in 1952 to enhance the security of the United States by advancing nuclear weapons science and technology. With a talented and dedicated workforce and

87

Runtime verification of object lifetime specifications  

E-Print Network (OSTI)

This thesis reports on the implementation of a runtime verification system for object lifetime specifications. This system is used to explore and evaluate the expressiveness object lifetime specifications. Object lifetime ...

Benjamin, Zev (Zev A.)

2009-01-01T23:59:59.000Z

88

Better Buildings | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over 400 billion. These buildings...

89

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

90

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

91

Costs and benefits from utility-funded commissioning of energy- efficiency measures in 16 buildings  

SciTech Connect

This paper describes the costs and savings of commissioning of energy- efficiency measures in 16 buildings. A total of 46 EEMs were commissioned for all 16 buildings and 73 deficiencies were corrected. On average, commissioning was marginally cost effective on energy savings alone, although the results were mixed among all 16 buildings. When considered as a stand-alone measure, the median simple payback time of 6.5 years under the low energy prices in the Pacific Northwest. Under national average prices the median payback time is about three years. In estimating the present value of the energy savings from commissioning we considered low and high lifetimes for the persistence of savings from deficiency corrections. Under the low- lifetime case the average present value of the energy savings ($0. 21/ft{sup 2}) were about equal to the average commissioning costs ($0. 23/ft{sup 2}). Under the high-lifetime case the savings ($0.51/ft{sup 2}) were about twice the costs. Again, the savings would be about twice as large under national average prices. The results are subject to significant uncertainty because of the small sample size and lack of metered data in the evaluation. However, the findings suggest that investments in commissioning pay off. Building owners want buildings that work as intended, and are comfortable, healthy, and efficient. It is likely that the non-energy benefits, which are difficult to quantify, are larger than the energy-savings benefits.

Piette, M.A.; Nordman, B.

1995-10-01T23:59:59.000Z

92

Electron Beam Polarization Measurement Using Touschek Lifetime Technique  

SciTech Connect

Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

2012-08-24T23:59:59.000Z

93

Multi-Building Microgrids for a Distributed Energy Future in Portugal  

E-Print Network (OSTI)

Efficiency (%) Heat to Power Ratio Lifetime (years) Portuguese market context, of the continuous solar thermal

Mendes, Goncalo

2013-01-01T23:59:59.000Z

94

Recreational Marine Industry Over 30 years of FRP boat building experience stands behind today's pleasure boats. Complex  

E-Print Network (OSTI)

; Vlosky 2002 #12;s The first MDF plant started up four years ago and now there are 3 or 4, so furniture for exotic wood veneer layup. Pressing veneer on MDF will give the most defect-free, flat and smooth surface

Colton, Jonathan S.

95

Quantum Dot Fluorescence Lifetime Engineering with DNA ...  

Science Conference Proceedings (OSTI)

Quantum Dot Fluorescence Lifetime Engineering with DNA Origami ... such as metal nanoparticles and semiconductor quantum dots – is challenging ...

96

Lifetime Prediction for Supercapacitor-powered Wireless Sensor Nodes  

E-Print Network (OSTI)

Lifetime Prediction for Supercapacitor-powered Wireless Sensor Nodes Christian Renner, J step towards reaching this goal: It explores discharging-characteristics of supercapacitors, discusses-ion polymers, supercapacitors can last for 10 years or even more. Superca- pacitors do not need a complex

Turau, Volker

97

Lifetime Extension of the Phenix Plant  

SciTech Connect

The French fast reactor prototype Phenix was put into commercial operation in 1974. The total time of power operation of the plant is [approximately]100000 h representing 3860 equivalent fuel power days (EFPD). With the initial objective of the demonstration of fast breeder reactors achieved, since the early 1990s, the role of the reactor as an irradiation facility has been emphasized, particularly in support of the Commissariat a l'Energie Atomique research and development program on long-lived radioactive waste transmutation. This new objective required an extension of the planned reactor lifetime. A major renovation program was carried out in the plant from 1994 to 2003, involving safety upgrading, component inspections and repairs, and the 10-yr statutory maintenance. The main work consisted of the addition of a backup control rod to the reactor; improvement of earthquake protection by reinforcement of buildings and components and replacement of the emergency water cooling circuit; improvement of protection against sodium fire by partitioning the secondary sodium circuit in the steam generator building, reinforcement of steam generator casing, and installation of an antiwhip system on the high-pressure steam pipes; replacement of hot parts of the 321 stainless steel secondary loops and steam generator modules, affected by delayed reheat cracking; special inspections of the reactor internal structures to demonstrate their good condition. An extensive plant requalification program was carried out following the renovation work, and the plant resumed power operation in June 2003. Six operating cycles are planned, representing a total irradiation time of 720 EFPD equivalent to [approximately]5.5 yr of operation.

Guidez, J. [Commissariat a l'Energie Atomique (France); Le Coz, P. [Commissariat a l'Energie Atomique (France); Martin, L. [Commissariat a l'Energie Atomique (France); Mariteau, P. [Electricite de France (France); Dupraz, R. [Framatome-ANP (France)

2005-04-15T23:59:59.000Z

98

Better Methods for Predicting Lifetimes of Seal Materials  

Science Conference Proceedings (OSTI)

We have been working for many years to develop better methods for predicting the lifetimes of polymer materials. Because of the recent interest in extending the lifetimes of nuclear weapons and the importance of environmental seals (o-rings, gaskets) for protecting weapon interiors against oxygen and water vapor, we have recently turned our attention to seal materials. Perhaps the most important environmental o-ring material is butyl rubber, used in various military applications. Although it is the optimum choice from a water permeability perspective, butyl can be marginal from an aging point-of-view. The purpose of the present work was to derive better methods for predicting seal lifetimes and applying these methods to an important butyl material, Parker compound B6 12-70.

Celina, M.; Gillen, K.T.; Keenan, M.R.

1999-03-16T23:59:59.000Z

99

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

100

Solar buildings. Overview: The Solar Buildings Program  

DOE Green Energy (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PEVELOPMENT OF FLUORESCENCE LIFETIME DIAGNOSTIC  

Office of Scientific and Technical Information (OSTI)

4 4 PEVELOPMENT OF FLUORESCENCE LIFETIME DIAGNOSTIC w I Project Accomplishments Summary (Attachment I) CRADA NO. TSB-1449-97 Date: U 1 8 1 9 8 Revision: 1 A . Parties The project is a relationship between the Lawrence Livennore National Laboratoq (LLNL) and Optiphase, Inc. University of California Lawrence Livermore National Laboratory 7000 East Avenue, L-399 Livermore, CA 94550 Optiphase, h c 7652 Haskell Ave. Van Nuys, CA 91406 Technical Contact - D r . Pepe Davis (8 18)782-0997ext 1 12 B . Background Fiber-optic-based sensors are excellent candidates for detecting the presence and monitoring the levels of degradation products in stockpiled weapons. Specifically, fl uorescence-based sensors are extremely sensitive, can have high specificity for compounds of interest, and are "e~ectrically

102

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

103

Building Scale DC Microgrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale DC Microgrids Title Building Scale DC Microgrids Publication Type Conference Proceedings LBNL Report Number LBNL-5729E Year of Publication 2012 Authors Marnay, Chris, Steven...

104

Measurement of the $?$-lepton lifetime at Belle  

E-Print Network (OSTI)

The lifetime of the $\\tau$-lepton is measured using the process $e^+e^-\\rightarrow\\tau^+\\tau^-$, where both $\\tau$-leptons decay to $3\\pi\

Belle Collaboration; K. Belous; M. Shapkin; A. Sokolov; I. Adachi; H. Aihara; D. M. Asner; V. Aulchenko; A. M. Bakich; A. Bala; B. Bhuyan; A. Bobrov; A. Bondar; G. Bonvicini; A. Bozek; M. Bra?ko; T. E. Browder; D. ?ervenkov; V. Chekelian; A. Chen; B. G. Cheon; K. Chilikin; R. Chistov; K. Cho; V. Chobanova; Y. Choi; D. Cinabro; J. Dalseno; Z. Doležal; D. Dutta; S. Eidelman; D. Epifanov; H. Farhat; J. E. Fast; T. Ferber; V. Gaur; S. Ganguly; A. Garmash; R. Gillard; Y. M. Goh; B. Golob; J. Haba; T. Hara; K. Hayasaka; H. Hayashii; Y. Hoshi; W. -S. Hou; T. Iijima; K. Inami; A. Ishikawa; R. Itoh; T. Iwashita; I. Jaegle; T. Julius; E. Kato; H. Kichimi; C. Kiesling; D. Y. Kim; H. J. Kim; J. B. Kim; M. J. Kim; Y. J. Kim; K. Kinoshita; B. R. Ko; P. Kodyš; S. Korpar; P. Križan; P. Krokovny; T. Kuhr; A. Kuzmin; Y. -J. Kwon; J. S. Lange; S. -H. Lee; J. Libby; D. Liventsev; P. Lukin; D. Matvienko; H. Miyata; R. Mizuk; G. B. Mohanty; T. Mori; R. Mussa; Y. Nagasaka; E. Nakano; M. Nakao; M. Nayak; E. Nedelkovska; C. Ng; N. K. Nisar; S. Nishida; O. Nitoh; S. Ogawa; S. Okuno; S. L. Olsen; W. Ostrowicz; G. Pakhlova; C. W. Park; H. Park; H. K. Park; T. K. Pedlar; R. Pestotnik; M. Petri?; L. E. Piilonen; M. Ritter; M. Röhrken; A. Rostomyan; S. Ryu; H. Sahoo; T. Saito; Y. Sakai; S. Sandilya; D. Santel; L. Santelj; T. Sanuki; V. Savinov; O. Schneider; G. Schnell; C. Schwanda; D. Semmler; K. Senyo; O. Seon; V. Shebalin; C. P. Shen; T. -A. Shibata; J. -G. Shiu; B. Shwartz; A. Sibidanov; F. Simon; Y. -S. Sohn; S. Stani?; M. Stari?; M. Steder; T. Sumiyoshi; U. Tamponi; G. Tatishvili; Y. Teramoto; K. Trabelsi; T. Tsuboyama; M. Uchida; S. Uehara; T. Uglov; Y. Unno; S. Uno; Y. Usov; S. E. Vahsen; C. Van Hulse; P. Vanhoefer; G. Varner; K. E. Varvell; A. Vinokurova; V. Vorobyev; M. N. Wagner; C. H. Wang; P. Wang; M. Watanabe; Y. Watanabe; K. M. Williams; E. Won; J. Yamaoka; Y. Yamashita; S. Yashchenko; Y. Yook; C. Z. Yuan; Z. P. Zhang; V. Zhilich; A. Zupanc

2013-10-31T23:59:59.000Z

105

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

106

Building Green in Greensburg: Business Incubator Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

107

Better Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over $400 billion. These buildings and operations can be made much more efficient using a variety of cost effective efficiency improvements while creating jobs and building a stronger economy. We have similar opportunities in our homes. In February 2011, President Obama, building upon the investments of the American Recovery and Reinvestment Act, announced the Better Buildings Initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years and accelerate private sector investment in energy efficiency. Better Buildings strategies include: Last year, commercial and industrial buildings used roughly 50% of the

108

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

109

HWVP melter lifetime prediction letter  

SciTech Connect

Preliminary predictions were made of the time to reach hypothesized operational limits of the HWVP melter due to build up of a noble metals sludge layer on the melter floor. Predictions were made with the TEMPEST computer program, Version T2.9h, for use in the MPA activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort. The NWEST computer program (Trent and Eyler 1993) is a PNL-MA-70/Part 2 -- Good Practices Standard (QA Level III) research and development software tool.

Eyler, L.L.; Mahoney, L.A.; Elliott, M.L.

1996-03-01T23:59:59.000Z

110

1999 Commercial Buildings Characteristics--Trends in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace The addition of commercial buildings and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty years of CBECS. Each year more buildings are added to the sector (new construction or conversion of pre-existing buildings to commercial activity) than are removed (demolition or conversion to non-commercial activity). The definition for the commercial buildings population was changed for the 1995 CBECS which resulted in a slightly smaller buildings population and accounts for the data break in both Figures 1 and 2 (see report "Trends in the Commercial Buildings Sector" for complete details). Figure 1. Total Commercial Buildings, 1979 to 1999

111

Building Airtightness: Research and Practice  

NLE Websites -- All DOE Office Websites (Extended Search)

Fiscal Year 2014. Title Building Airtightness: Research and Practice Publication Type Book Chapter LBNL Report Number LBNL-53356 Year of Publication 2003 Authors Sherman, Max H.,...

112

Health Care Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Health Care Health Care Characteristics by Activity... Health Care Health care buildings are those used as diagnostic and treatment facilities for both inpatient and outpatient care. Doctor's and dentist's offices are considered health care if they use any type of diagnostic medical equipment and office if they do not. Skilled nursing or other residential care buildings are categorized as lodging. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Health Care Buildings... Health care buildings in the South tended to be smaller and were more numerous than those in other regions of the country. Buildings on health care complexes tended to be newer than those not on multibuilding facilities. The median age for buildings on health care complexes was 9.5 years, compared to 29.5 years for health care buildings not on a multibuilding facility.

113

Three-dimensional fluorescence lifetime tomography  

Science Conference Proceedings (OSTI)

Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.

Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J. [327 Votey Building, Department of Computer Science, University of Vermont, Burlington, Vermont 05405 (United States); 1011 Richardson Building, Photon Migration Laboratories, Texas A and M University, College Station, Texas 77843 (United States); 327 Votey Building, Department of Computer Science, University of Vermont, Burlington, Vermont 05405 (United States)

2005-04-01T23:59:59.000Z

114

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

115

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

116

A methodology to assess the influence of local wind conditions and building orientation on the convective heat transfer at building surfaces  

Science Conference Proceedings (OSTI)

Information on the statistical mean convective heat transfer coefficient (CHTC"S"M) for a building surface, which represents the temporally-averaged CHTC over a long time span (e.g. the lifetime of the building), could be useful for example for the optimisation ... Keywords: Building facade, Building orientation, CFD, Convective heat transfer coefficient, Low-Reynolds number modelling, RANS, Wind climate

Thijs Defraeye; Jan Carmeliet

2010-12-01T23:59:59.000Z

117

Using National Survey Data to Estimate Lifetimes of Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Survey Data to Estimate Lifetimes of Residential Appliances Title Using National Survey Data to Estimate Lifetimes of Residential Appliances Publication Type Journal...

118

High-Tech Buildings - Market Transformation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech Buildings - Market Transformation Project Title High-Tech Buildings - Market Transformation Project Publication Type Report LBNL Report Number LBNL-49112 Year of Publication...

119

Building Energy Retrofit Research: Multifamily Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Retrofit Research: Multifamily Sector Title Building Energy Retrofit Research: Multifamily Sector Publication Type Report Year of Publication 1985 Authors Diamond,...

120

Energy Information Administration (EIA)- Commercial Buildings...  

U.S. Energy Information Administration (EIA) Indexed Site

information for that building such as building size, year constructed, type of energy used, energy-using equipment, and conservation features. The smallest level of...

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Summary of Prinicpal Building Activities in Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

Age (years) Average Hours Open per Week Total Energy Consumption (trillion Btu) Total Energy Expenditures (million dollars) All Commercial Buildings 30.5 62 5,321 69,618 Building...

122

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

123

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

124

Reduction of Statistical Power Per Event Due to Upper Lifetime Cuts in Lifetime Measurements  

E-Print Network (OSTI)

A cut on the maximum lifetime in a lifetime fit not only reduces the number of events, but also, in some circumstances dramatically, decreases the statistical significance of each event. The upper impact parameter cut in the hadronic B trigger at CDF, which is due to technical limitations, has the same effect. In this note we describe and quantify the consequences of such a cut on lifetime measurements. We find that even moderate upper lifetime cuts, leaving event numbers nearly unchanged, can dramatically increase the statistical uncertainty of the fit result.

Jonas Rademacker

2005-02-25T23:59:59.000Z

125

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

126

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

127

Commercial Building Partnership  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

128

Commercial Building Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

129

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

130

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

131

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

132

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

133

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

134

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

135

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

136

Martzloff Cited for Lifetime Achievement by IEEE Standards ...  

Science Conference Proceedings (OSTI)

Martzloff Cited for Lifetime Achievement by IEEE Standards Association. From NIST Tech Beat: December 12, 2012. ...

2013-05-21T23:59:59.000Z

137

Mixing and Lifetimes of b-hadrons  

Science Conference Proceedings (OSTI)

We review the status of mixing and lifetimes of b-hadrons. We will show that {delta}{gamma}/{delta}M, a{sub sl} and {phi} are better suited to search for new physics effects than {delta}M alone, because of our poor knowledge of the decay constants. The theoretical precision in the determination of {gamma}{sub 12}/M{sub 12}--which contains all information on {delta}{gamma}/{delta}M, a{sub sl} and {phi}--can be tested directly by investigating the lifetimes of b-hadrons, because both quantities rely on the same theoretical footing. In particular we will also present a numerical estimate for the lifetime of the {xi}{sub b}-baryon.

Lenz, Alexander J. [Fakultaet fuer Physik, Universitaet Regensburg, 93040 Regensburg (Germany)

2008-07-02T23:59:59.000Z

138

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

139

Prompt Neutron Lifetime for the NBSR Reactor  

SciTech Connect

In preparation for the proposed conversion of the National Institute of Standards and Technology (NIST) research reactor (NBSR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, certain point kinetics parameters must be calculated. We report here values of the prompt neutron lifetime that have been calculated using three independent methods. All three sets of calculations demonstrate that the prompt neutron lifetime is shorter for the LEU fuel when compared to the HEU fuel and longer for the equilibrium end-of-cycle (EOC) condition when compared to the equilibrium startup (SU) condition for both the HEU and LEU fuels.

Hanson, A.L.; Diamond, D.

2012-06-24T23:59:59.000Z

140

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of Building Types Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings Trend—Detail Commercial Floorspace Trend—Detail Background: Adjustment to data Trends in Buildings and Floorspace Each year buildings are added to and removed from the commercial buildings sector. Buildings are added by new construction or conversion of existing buildings from noncommercial to commercial activity. Buildings are removed by demolition or conversion from commercial to noncommercial activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the United States; by 1992, the number increased 27 percent to 4.8 million (an average annual increase of 1.8%) (Figure 1). In 1995, the estimated number declined to 4.6 million buildings, but it is unlikely that there was an actual decline in the number of buildings. To understand the apparent decline, two factors should be considered—the change in the way that the target population of commercial buildings was defined in 1995 and the uncertainty of estimates from sample surveys:

142

Table 2.10 Commercial Buildings Energy Consumption and Expenditure ...  

U.S. Energy Information Administration (EIA)

Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003: Energy Source and Year: Building Characteristics

143

buildings | OpenEI  

Open Energy Info (EERE)

buildings buildings Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2

144

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

145

Materials Education: Opportunities over a Lifetime  

SciTech Connect

A report, in the form of abbreviated notes, of the 17th Biennial Conference on National Materials Policy ''Materials Education: Opportunities over a Lifetime'' held May 20-21, 2002 in College Park, MD, sponsored by the Federation of Materials Societies and the University Materials Council.

Anderson, Iver E.; Schwartz, Lyle H.; Faber, Katherine T.; Cargill III, G. Slade; Houston, Betsy

2003-10-28T23:59:59.000Z

146

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

147

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

148

Solar Buildings: Transpired Air Collectors  

DOE Green Energy (OSTI)

Transpired air collectors preheat building ventilation air by using the building's ventilation fan to draw fresh air through the system. The intake air is heated as it passes through the perforated absorber plate and up the plenum between the absorber and the south wall of the building. Reduced heating costs will pay for the systems in 3--12 years.

NONE

1998-11-24T23:59:59.000Z

149

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

150

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

151

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

152

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

153

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

154

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

155

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Consumption Survey (CBECS) > Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 and 2003 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

156

Environmental Assessment for the Proposed Upgrade and Operation of the CEBAF and FEL Accelerators and Construction and Use of Buildings Associated with the 2005 Ten-Year Site Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment Proposed Upgrade and Operation of the CEBAF and FEL Accelerators and Construction and Use of Buildings Associated with the 2005 Ten-Year Site Plan at the Thomas Jefferson National Accelerator Facility Newport News, Virginia January 2007 U. S. Department of Energy Thomas Jefferson Site Office Newport News, VA DOE/EA-1534 January 2007 C:\TRANSFER\JANUARY 26 Final EA-1534-012607 (2).doc i TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................... 1 1.0 INTRODUCTION ...........................................................................................11 1.1 PREVIOUS ACTIONS....................................................................................11 1.2 SCOPE OF THIS PROPOSED ACTION .......................................................11

157

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

158

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

159

ICALEPCS Lifetime Achievement Award to Martin Kraimer  

NLE Websites -- All DOE Office Websites (Extended Search)

Cockroaches Advance Student's Study of Ancient Life Cockroaches Advance Student's Study of Ancient Life Bringing Fruit Flies in from the Cold DOE Environmental Sustainability Award to Three from APS 2009 Chemistry Nobel to APS Users The First Experiment at the LCLS APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed ICALEPCS Lifetime Achievement Award to Martin Kraimer OCTOBER 28, 2009 Bookmark and Share Left to right: Ryotaro Tanaka (ICALEPCS2009 Chair), Jeffrey O. Hill, Martin R. Kraimer, Bob Daleisio, and In Soo Ko (ICALEPCS ISAC Chair), October 15, 2009, Kobe Japan. Martin R. Kraimer, formerly of the Controls Group in the Argonne APS Engineering Support Division, is one of three recipients of the first Lifetime Achievement Award presented by the ICALEPCS International

160

Mass and Lifetime Measurements in Storage Rings  

Science Conference Proceedings (OSTI)

Masses of nuclides covering a large area of the chart of nuclides can be measured in storage rings where many ions circulate at the same time. In this paper the recent progress in the analysis of Schottky mass spectrometry data is presented as well as the technical improvements leading to higher accuracy for isochronous mass measurements with a time-of-flight detector. The high sensitivity of the Schottky method down to single ions allows to measure lifetimes of nuclides by observing mother and daughter nucleus simultaneously. In this way we investigated the decay of bare and H-like 140Pr. As we could show the lifetime can be even shortened compared to those of atomic nuclei despite of a lower number of electrons available for internal conversion or electron capture.All these techniques will be implemented with further improvements at the storage rings of the new FAIR facility at GSI in the future.

Weick, H.; Beckert, K.; Beller, P.; Bosch, F.; Dimopoulou, C.; Kozhuharov, C.; Kurcewicz, J.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Steck, M.; Sun, B.; Winkler, M. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); Brandau, C.; Chen, L.; Geissel, H.; Knoebel, R.; Litvinov, S. A.; Litvinov, Yu. A.; Scheidenberger, C. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); II. Phys. Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany)] (and others)

2007-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

162

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

163

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

164

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

165

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

166

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

167

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

168

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

169

B mixing and lifetimes at the Tevatron  

SciTech Connect

The Tevatron collider at Fermilab provides a very rich environment for the study of b-hadrons. Both the D0 and CDF experiments have collected a sample of about 1 fb{sup -1}. they report results on three topics: b-hadron lifetimes, polarization amplitudes and the decay width difference in B{sub s}{sup 0} {yields} J/{psi}{phi}, and B{sub s}{sup 0} mixing.

Gomez-Ceballos, G.; /Cantabria Inst. of Phys.; Piedra, J.; /Paris U., VI-VII

2006-04-01T23:59:59.000Z

170

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

171

Message from Dean As I come close to my one year Anniversary at CSU, we continue with the goal of building the leading Natural Resource program in the  

E-Print Network (OSTI)

for a position as Associate Dean of Research and Engagement. A new Director for the Colorado Natural Heritage renovation that will start sometime in the next two years. This should include not only complete electrical renovation, aesthetic and architectural upgrades. Renovations of labs and electrical and cooling upgrades

172

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

173

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

174

Building Energy Software Tools Directory: BuildingSim  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingSim BuildingSim BuildingSim logo BuildingSim allows users to model a building and analyze the heating and cooling energy costs in any climate. Users can create any building—from a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90 climates around the world to numerically solve the full thermodynamic differential equations every minute of the year, giving the user the actual energy use down to the cent. The simulation algorithm fully accounts for thermostat and HVAC controls, allowing the user to analyze the effects of different thermostat algorithms (programmable thermostats, setback, split-zone, etc.) on the energy costs for a specific building and climate. Screen Shots

175

The California Healthy Buildings Study  

NLE Websites -- All DOE Office Websites (Extended Search)

The California Healthy Buildings Study The California Healthy Buildings Study Buildings can cause health problems - that relationship is well-known. When asked to fill out questionnaires, occupants of office buildings often report that symptoms such as eye and nose irritation, headache, fatigue, and itchy skin are more frequent or severe when they are inside rather than outside their offices. In "sick" buildings, the frequency of these symptoms becomes unusually high. Typically, health officials deal reactively with complaints in office buildings by investigating only the sick building. They interview employees, measure indoor pollutant concentrations, and inspect ventilation systems. However, in many buildings, these measures fail to identify the causes of health complaints. During the past five years, researchers have started to use cross-sectional

176

Buildings Energy Data Book: 1.6 Embodied Energy of Building Assemblies  

Buildings Energy Data Book (EERE)

6 6 Embodied Energy of Commercial Interior Wall Assemblies in the U.S. Embodied Energy CO2 Equivalent Interior Wall Type (2) (MMBtu/SF) (1) Emissions (lbs/SF) 2x4 wood stud (16" OC) + gypsum board (3) 0.03 2.84 2x4 wood stud (24" OC) + gypsum board (3) 0.03 2.78 2x4 wood stud (24" OC) + 2 gypsum boards (4) 0.04 4.45 Steel stud (16" OC) + gypsum board (4) 0.04 3.99 Steel stud (24" OC) + gypsum board (4) 0.04 3.64 Steel stud (24" OC) + 2 gypsum boards 0.05 5.31 6" Concrete block + gypsum board 0.21 34.02 6" Concrete block 0.19 32.34 Clay brick (4") unpainted 0.05 6.97 Note(s): Source(s): Assumptions: Values are general estimations for the U.S. 60 year building lifetime. Low rise building. 1) Embodied Energy: Energy use includes extraction, processing, transportation, construction, and disposal of each material. 2) All interior walls include two coats of latex paint

177

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

178

Microsoft Word - 2.12 Building Managers and Emergency Teams 0913...  

NLE Websites -- All DOE Office Websites (Extended Search)

First Aid (every 2 years) * EHS 123 Adult CPR (every 2 years) * EHS 154 Building Emergency Team Training (renew every 2 years) * EHS 155 Building Emergency Team Seminars...

179

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

180

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

182

Measurement of Beam Lifetime and Applications for SPEAR3  

SciTech Connect

Beam lifetime studies for the SPEAR3 storage ring are presented. The three lifetime components are separated with lifetime measurements under various combinations of beam currents and fill patterns and vertical scraper scans. Touschek lifetime is studied with rf voltage scans and with the horizontal or vertical scrapers inserted. The measurements are explained with calculations based on the calibrated lattice model. Quantum lifetime measurements are performed with reduced longitudinal and horizontal apertures, respectively, from which we deduce the radiation energy loss down to a few keV per revolution and the horizontal beam size.

Huang, Xiaobiao; Corbett, Jeff; /SLAC

2011-04-05T23:59:59.000Z

183

Final report on reliability and lifetime prediction.  

Science Conference Proceedings (OSTI)

This document highlights the important results obtained from the subtask of the Goodyear CRADA devoted to better understanding reliability of tires and to developing better lifetime prediction methods. The overall objective was to establish the chemical and physical basis for the degradation of tires using standard as well as unique models and experimental techniques. Of particular interest was the potential application of our unique modulus profiling apparatus for assessing tire properties and for following tire degradation. During the course of this complex investigation, extensive relevant information was generated, including experimental results, data analyses and development of models and instruments. Detailed descriptions of the findings are included in this report.

Gillen, Kenneth Todd; Wise, Jonathan; Jones, Gary D.; Causa, Al G. [Goodyear Tire and Rubber Co., Akron, OH; Terrill, Edward R. [Goodyear Tire and Rubber Co., Akron, OH; Borowczak, Marc [Goodyear Tire and Rubber Co., Akron, OH

2012-12-01T23:59:59.000Z

184

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

185

On maximizing lifetime of a sensor cluster  

E-Print Network (OSTI)

We consider the energy consumed in radio transmission of a set of sensors forming a data gathering wireless network. Our objective is to enhance the lifetime of such networks by exploiting three system-level opportunities. Firstly, the number of bits to be transmitted can be reduced by taking advantage of the redundancy induced by spatio-temporal correlation in sensor data. Secondly, channel coding allows us to reduce transmission energy at the cost of increased transmission time. Thirdly, sensor nodes can be expected to operate collaboratively, allowing optimal management of distributed energy resources. Our main contribution lies in providing a framework to merge these ideas for energy conscious networking. We pose the problem of maximizing network lifetime as an optimal scheduling problem. We first consider a special case where data rate is linearly proportional to received signal power. In this scenario, we investigate both static and dynamic scheduling strategies. The optimal static schedule turns out to have a very simple form. For the dynamic case, we obtain an integer linear program formulation to find the optimal strategy. We then propose an efficient algorithm that exploits the special nature of the problem setting to quickly find the optimal solution. Finally, we consider the general case where data rates and signal power need not be linearly related and propose an algorithm to find the optimal transmission times subject to the deadline constraint imposed by the system. 1

Samar Agnihotri; Pavan Nuggehalli; H. S. Jamadagni

2005-01-01T23:59:59.000Z

186

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

187

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

188

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

189

Energy Demands and Efficiency Strategies in Data Center Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demands and Efficiency Strategies in Data Center Buildings Title Energy Demands and Efficiency Strategies in Data Center Buildings Publication Type Thesis Year of...

190

Building Energy-Efficiency Best Practice Policies and Policy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy-Efficiency Best Practice Policies and Policy Packages Title Building Energy-Efficiency Best Practice Policies and Policy Packages Publication Type Report Year of...

191

Gauging Improvements in Urban Building Energy Policy in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Gauging Improvements in Urban Building Energy Policy in India Title Gauging Improvements in Urban Building Energy Policy in India Publication Type Conference Proceedings Year of...

192

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

193

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

194

Building Technologies Program Planning Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Program Planning Summary Building Technologies Program Planning Summary Introduction The U.S. Department of Energy's (DOE) Building Technologies Program (BTP) works in partnership with industry, state, municipal, and other federal organizations to achieve the goals of marketable net-zero energy buildings. Such buildings are extremely energy efficient, ideally producing as much energy as they use over the course of a year. BTP also works with stakeholders and federal partners to meet any remaining energy needs for their buildings through on-site renewable energy systems. Drivers Population growth and economic expansion, along with an accompanying increase in energy demand, are expected to drive energy consumption in buildings to more than 50 quadrillion Btu (quads)

195

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

196

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

197

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

198

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

199

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

200

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

202

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

203

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

204

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

205

Siting Bio-Samplers in Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Siting Bio-Samplers in Buildings Title Siting Bio-Samplers in Buildings Publication Type Journal Article Year of Publication 2007 Authors Sohn, Michael D., and David M. Lorenzetti...

206

Radiation in Building Materials  

E-Print Network (OSTI)

After years of studies and experiments scientists know that Radon is everywhere but found in high concentrations particularly in rocks and soil enriched in uranium Many of these rocks and soils are treated and compacted to create everyday building materials that are found in homes in which we live and work. A new

Iap Assignment; Katharine Chu

2007-01-01T23:59:59.000Z

207

Lifetime Evaluation of Elastomeric Polymers for Storage of Nuclear ...  

Science Conference Proceedings (OSTI)

Presentation Title, Lifetime Evaluation of Elastomeric Polymers for Storage of Nuclear Materials. Author(s), Elizabeth Hoffman, Eric Skidmore. On-Site Speaker  ...

208

New Tool Quantitatively Maps Minority-Carrier Lifetime of Multicrystal...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Integration Laboratory (PDIL) to generate quantitative minority-carrier lifetime maps of multicrystalline silicon (mc-Si) bricks. This feat has been accomplished by using...

209

Using National Survey Data to Estimate Lifetimes of Residential Appliances  

E-Print Network (OSTI)

Life of Residential Appliances,” in ACEEE Summer Study onWhen do energy-efficient appliances generate energy savings?points. Assuming unchanging appliance lifetimes expands and

Lutz, James D.

2013-01-01T23:59:59.000Z

210

Sustainable Building Design Training | Open Energy Information  

Open Energy Info (EERE)

Sustainable Building Design Training Sustainable Building Design Training Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Building Design Training Agency/Company /Organization: United States Department of Energy Focus Area: Buildings Resource Type: Training materials Website: www1.eere.energy.gov/femp/program/sustainable_training.html References: Sustainable Building Design Training[1] Logo: Sustainable Building Design Training This training, sponsored by FEMP and other organizations, provides Federal agencies the essential information and skills needed to plan, implement, and manage sustainable buildings and sites. Overview "Sustainable Design Training Opportunities to learn more about sustainable design are available throughout the year. This training, sponsored by FEMP

211

1999 Commercial Buildings Characteristics--CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of CBECS Building Types Description of CBECS Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the sub-categories were combined into the more general categories that are found in the detailed tables. These categories are consistent with prior years.

212

Building parallel to the Nile  

E-Print Network (OSTI)

This thesis will be an exploration of the issues of building in the Egyptian landscape. Human inhabitation of the Egyptian landscape has for many thousands of years been centred within the zone of the Nile River valley. ...

Boutros-Ghali, Perihan S. (Perihan Safeya)

1990-01-01T23:59:59.000Z

213

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Measured Performance of Building Integrated Photovoltaic Panels. Round 2. Measured Performance of Building Integrated Photovoltaic Panels. ...

214

Stream data gathering in wireless sensor networks within expected lifetime  

Science Conference Proceedings (OSTI)

Sensor networks aim at collecting important sensor data for environment monitoring, e-health or hazardous conditions. Some applications do not need sensor networks with a long lifetime, such as monitoring an erupting volcano or monitoring hazardous conditions. ... Keywords: expected lifetime, sensor network, stream data gathering

Lei Shu; Zhangbing zhou; Antonio Aguilar; Manfred Hauswirth

2007-08-01T23:59:59.000Z

215

Lifetime embrittlement of reactor core materials  

DOE Green Energy (OSTI)

Over a core lifetime, the reactor materials Zircaloy-2, Zircaloy-4, and hafnium may become embrittled due to the absorption of corrosion- generated hydrogen and to neutron irradiation damage. Results are presented on the effects of fast fluence on the fracture toughness of wrought Zircaloy-2, Zircaloy-4, and hafnium; Zircaloy-4 to hafnium butt welds; and hydrogen precharged beta treated and weld metal Zircaloy-4 for fluences up to a maximum of approximately 150 x 10{sup 24} n/M{sup 2} (> 1 Mev). While Zircaloy-4 did not exhibit a decrement in K{sub IC} due to irradiation, hafnium and butt welds between hafnium and Zircaloy-4 are susceptible to embrittlement with irradiation. The embrittlement can be attributed to irradiation strengthening, which promotes cleavage fracture in hafnium and hafnium-Zircaloy welds, and, in part, to the lower chemical potential of hydrogen in Zircaloy-4 compared to hafnium, which causes hydrogen, over time, to drift from the hafnium end toward the Zircaloy-4 end and to precipitate at the interface between the weld and base-metal interface. Neutron radiation apparently affects the fracture toughness of Zircaloy-2, Zircaloy-4, and hafnium in different ways. Possible explanations for these differences are suggested. It was found that Zircaloy-4 is preferred over Zircaloy-2 in hafnium-to- Zircaloy butt-weld applications due to its absence of a radiation- induced reduction in K{sub IC} plus its lower hydrogen absorption characteristics compared with Zircaloy-2.

Kreyns, P.H..; Bourgeois, W.F.; Charpentier, P.L.; Kammenzind, B.F.; Franklin, D.G. [Bettis Atomic Power Lab., West Mifflin, PA (United States); White, C.J. [Knolls Atomic Power Lab., Schenectady, NY (United States)

1994-08-01T23:59:59.000Z

216

Homepage | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Save the Date! May 7-9, 2014 For the first time, Better Buildings Challenge Partners, Better Buildings Alliance members, and Better Buildings Better Plants Partners will be coming together for the U.S. Department of Energy's annual Better Buildings Summit. Learn more about this distinguished conference. Real-time Energy Management: Improving Energy Efficiency Every 15 Minutes Organizations traditionally rely on monthly utility bills to track whole-building energy use and to benchmark against previous year's usage or other buildings. Tracking energy use at a more granular level can help isolate usage issues and correct them more quickly. Register here. Take the Food Service Energy and Water Survey Complete the survey to help develop an ENERGY STAR 1-100 score for

217

commercial buildings | OpenEI  

Open Energy Info (EERE)

buildings buildings Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2

218

Neutron lifetime measurements using gravitationally trapped ultracold neutrons  

E-Print Network (OSTI)

Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.

A. P. Serebrov; V. E. Varlamov; A. G. Kharitonov; A. K. Fomin; Yu. N. Pokotilovski; P. Geltenbort; I. A. Krasnoschekova; M. S. Lasakov; R. R. Taldaev; A. V. Vassiljev; O. M. Zherebtsov

2007-02-06T23:59:59.000Z

219

Better Buildings Summit  

NLE Websites -- All DOE Office Websites (Extended Search)

EERE Home | Programs & Offices | Consumer Information EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Summit Recognition photo with Kristen Taddonio and Kathleen Hogan Recognition photo with Kristen Taddonio and Kathleen Hogan Recognition photo with Kristen Taddonio and Kathleen Hogan Save the Date! DOE Better Buildings Summit May 7-May 9, 2014 Washington, D.C. The U.S. Department of Energy (DOE) is holding a national Summit to catalyze investment in energy efficiency across the public, private, commercial, industrial, and multifamily sectors. We look forward to recognizing leaders and highlighting innovative market solutions and best practices. Registration will be opening in February 2014. See what attendees had to say about last year's event: "I was very impressed with the amount of practical information that was

220

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

222

Development of a high average current polarized electron source with long cathode operational lifetime  

SciTech Connect

Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

2007-02-01T23:59:59.000Z

223

Hayward's Green Building Ordinance  

E-Print Network (OSTI)

Please accept on behalf of the City of Hayward this request for California Energy Commission (CEe) review and approval of Hayward's Green Building Ordinance.and related energy cost effectiveness study, which will mandate exceeding the 2008 Energy Code standards. As we have discussed previously, Hayward adopted a Green Building Ordinance last fall (see attached Tab 1). The Ordinance requires that new construction and non-residential development exceeding 1,000 square feet comply with the City's green building ordinance standards (described below), if a permit application is submitted for such developments after August 1 of this year, or after the CEC and Building Standards Commission (BSe) approve such standards. Hayward's ordinance indicates that new residential development shall be GreenPaint Rated, meaning achieving energy efficiency at least 15 % above State standards. Build It Green staff, who oversee the GreenPaint Rated program, have indicated that their new standards/guidelines will require projects Rated to exceed 2008 State energy efficiency standards by at least 15 % in order to be GreenPoint Rated. Their current standards require exceeding 2005 State energy efficiency standards by at least 15%. For non-residential development, certain standards related to energy efficiency need to be met in one of three ways: the lighting load for fixtures shall be reduced by at least 15 % below 2008 Title 24

Joe Loyer

2009-01-01T23:59:59.000Z

224

Hydrolysis Kinetics and Lifetime Prediction for Polycarbonate ...  

Science Conference Proceedings (OSTI)

... Typical Meteorological Year (TMY) data http://rredc.nrel.gov/solar/old_data/ ... activation energy (E a ) ... EK Euranto and NJ Cleve, Acta Chem. ...

2013-03-15T23:59:59.000Z

225

High Performance and Sustainable Buildings Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

(2006) 2 , and (ii) 15- percent of the existing Federal capital asset building inventory of the agency as of the end of fiscal year 2015 incorporates the sustainable...

226

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

7.1 National Legislation 7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 7 outlines national climate change legislation, tax incentives, Federal regulations, and State programs that have influenced building energy consumption. Section 7.1 summarizes the past 40 years of national energy legislation beginning with the Clean Air Act of 1970. Section 7.2 describes the energy efficiency-related Federal tax incentives created in the last 5 years. Sections 7.3 through 7.7 describe the energy and water efficiency standards currently or soon to be in effect for residential and commercial HVAC equipment, appliances, lighting, and water-consuming products. Section 7.8 covers building energy codes. Following is a summary of the energy legislation discussed in this chapter:

227

LIFETIME PREDICTION FOR MODEL 9975 O-RINGS IN KAMS  

SciTech Connect

The Savannah River Site (SRS) is currently storing plutonium materials in the K-Area Materials Storage (KAMS) facility. The materials are packaged per the DOE 3013 Standard and transported and stored in KAMS in Model 9975 shipping packages, which include double containment vessels sealed with dual O-rings made of Parker Seals compound V0835-75 (based on Viton{reg_sign} GLT). The outer O-ring of each containment vessel is credited for leaktight containment per ANSI N14.5. O-ring service life depends on many factors, including the failure criterion, environmental conditions, overall design, fabrication quality and assembly practices. A preliminary life prediction model has been developed for the V0835-75 O-rings in KAMS. The conservative model is based primarily on long-term compression stress relaxation (CSR) experiments and Arrhenius accelerated-aging methodology. For model development purposes, seal lifetime is defined as a 90% loss of measurable sealing force. Thus far, CSR experiments have only reached this target level of degradation at temperatures {ge} 300 F. At lower temperatures, relaxation values are more tolerable. Using time-temperature superposition principles, the conservative model predicts a service life of approximately 20-25 years at a constant seal temperature of 175 F. This represents a maximum payload package at a constant ambient temperature of 104 F, the highest recorded in KAMS to date. This is considered a highly conservative value as such ambient temperatures are only reached on occasion and for short durations. The presence of fiberboard in the package minimizes the impact of such temperature swings, with many hours to several days required for seal temperatures to respond proportionately. At 85 F ambient, a more realistic but still conservative value, bounding seal temperatures are reduced to {approx}158 F, with an estimated seal lifetime of {approx}35-45 years. The actual service life for O-rings in a maximum wattage package likely lies higher than the estimates due to the conservative assumptions used for the model. For lower heat loads at similar ambient temperatures, seal lifetime is further increased. The preliminary model is based on several assumptions that require validation with additional experiments and longer exposures at more realistic conditions. The assumption of constant exposure at peak temperature is believed to be conservative. Cumulative damage at more realistic conditions will likely be less severe but is more difficult to assess based on available data. Arrhenius aging behavior is expected, but non-Arrhenius behavior is possible. Validation of Arrhenius behavior is ideally determined from longer tests at temperatures closer to actual service conditions. CSR experiments will therefore continue at lower temperatures to validate the model. Ultrasensitive oxygen consumption analysis has been shown to be useful in identifying non-Arrhenius behavior within reasonable test periods. Therefore, additional experiments are recommended and planned to validate the model.

Hoffman, E.; Skidmore, E.

2009-11-24T23:59:59.000Z

228

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

229

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

230

Commercial Building Energy Asset Score Sample Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMERCIAL BUILDING COMMERCIAL BUILDING ENERGY ASSET SCORE 1 SUMMARY BUILDING INFORMATION Example Building 2000 A St., Chicago, IL 60601 Building Type: Mixed-Use Gross Floor Area: 140,000 ft 2 Year Built: 2005 Office: 100,000 ft 2 Retail: 40,000 ft 2 Report #: IL-1234567 Score Date: 02/2013 Building ID #: XXXXX ASSET SCORE DATA LEVEL: ¨ Simple Score ¨ Advanced Score ¨ Verified Advanced Score Current Score Potential Score BUILDING USE TYPES: This report includes a Score for the entire building as well as individual Scores for each of the separate use types. CONTENTS BUILDING ASSET SCORE: * Summary.......................................................... Page 1 * Score................................................................ Pages 2-4 * Upgrade Opportunities

231

Trends in Commercial Buildings--Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial > Commercial Buildings Home > Special Home > Commercial > Commercial Buildings Home > Special Reports > Trends in Commercial Buildings Trends: Buildings and Floorspace Energy Consumption and Energy Sources Overview: The Commercial Buildings Energy Consumption Survey (CBECS) Trends in the Commercial Buildings Sector Since 1978, the Energy Information Administration has collected basic statistical information from three of the major end-use sectors— residential, and industrial— periodic energy consumption surveys. Each survey is a snapshot of how energy is used in the year of the survey; the series of surveys in each sector reveals the trends in energy use for the sector. Introduction The Commercial Buildings Energy Consumption Survey (CBECS) collects data from a sample of buildings representative of the commercial buildings

232

Commercial Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and...

233

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

234

48 the building is.  

U.S. Energy Information Administration (EIA)

48 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

235

59 the building is.  

U.S. Energy Information Administration (EIA)

59 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

236

83 the building is.  

U.S. Energy Information Administration (EIA)

83 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

237

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

238

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Events on Twitter Bookmark Building Technologies Office: Events on Google Bookmark Building Technologies Office: Events on Delicious Rank Building Technologies...

239

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

240

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

242

Better Buildings Neighborhood Program: Better Buildings Partners...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Partners Gather to Plan for the Future to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners Gather to Plan for the Future...

243

Building Technologies Office: Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by...

244

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

for technical information on building products, materials, new technologies, business management, and housing systems. DOE's Residential Building Energy Codes - Resource for...

245

Building Technologies Office: Commercial Building Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

246

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Technologies Office Search Search Help Building Technologies Office HOME...

247

Building Technologies Office: Building Energy Software Tools...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Links This directory provides information on 404 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools...

248

Building Technologies Office: Building America Research Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

249

Building Technologies Office: Building Envelope Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building...

250

Building Technologies Office: Contact the Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

251

Lifetime of solar flare particles in coronal storage regions  

Science Conference Proceedings (OSTI)

Most discussions of lifetime of flare particles in the solar corona have ... However, it is quite possible that the solar cosmic rays are not imbedded in I0 a K coronal.

252

Lifetime of the Highly Efficient H- Ion Sources  

Science Conference Proceedings (OSTI)

Factors limiting the operating lifetime of Compact Surface Plasma Sources (CSPS) are analyzed and possible treatments for lifetime enhancement are considered. Noiseless discharges with lower gas and cesium densities are produced in experiments with modified discharge cells. With these discharge cells it is possible to increase the emission aperture and extract the same beam with a lower discharge current and with correspondingly increased source lifetime. A design of an advanced CSPS is presented. Optimization of the discharge cells in a Penning H{sup -} ion source is a viable method for increasing the phase space of the stable region for noiseless discharge production. With this method, cesium usage would be decreased, potentially resulting in longer source lifetimes.

Bollinger, D.S.; /Fermilab; Dudnikov, V.G.; /MUONS Inc., Batavia; Faircloth, D.C.; Lawrie, S.R.; /Rutherford

2012-05-01T23:59:59.000Z

253

Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock  

E-Print Network (OSTI)

We study experimentally the application of a class of entangled states, squeezed spin states, to the improvement of atomic-clock precision. In the presence of anisotropic noise, the entanglement lifetime is strongly dependent ...

Leroux, Ian Daniel

254

Measurement of the lifetimes of B meson mass eigenstates  

E-Print Network (OSTI)

In this dissertation, we present the results of the average lifetime measurements in ..., ..., and ... decays, as well as the results of a time-dependent angular analysis of ... and ... decays. The time-dependent angular ...

Anikeev, Konstantin

2004-01-01T23:59:59.000Z

255

Long lifetime operation of an ArF-excimer laser  

Science Conference Proceedings (OSTI)

lifetime of a discharge-excited ArF-excimer laser is pre- sented. The three ... are CF4 generation in the laser gas, color-center forma- tion in the optics and input ...

256

Office of Energy Efficiency and Renewable Energy Fiscal Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Saving Homes, Buildings, and Manufacturing Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Energy Saving Homes, Buildings, and...

257

Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock  

E-Print Network (OSTI)

We study experimentally the lifetime of a special class of entangled states in an atomic clock, squeezed spin states. In the presence of anisotropic noise, their lifetime is strongly dependent on squeezing orientation. We measure the Allan deviation spectrum of a clock operated with a phase-squeezed input state. For integration times up to 50 s the squeezed clock achieves a given precision 2.8(3) times faster than a clock operating at the standard quantum limit.

Ian D. Leroux; Monika H. Schleier-Smith; Vladan Vuleti?

2010-04-10T23:59:59.000Z

258

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

259

Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes  

E-Print Network (OSTI)

The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

Hidetoshi, Yamaguchi

2003-01-01T23:59:59.000Z

260

Design & Construct New Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design & Construct New Buildings Design & Construct New Buildings Design & Construct New Buildings Photo of NREL's Research Support Facility under construction, with two workers straddling I-beams. Establishing and implementing aggressive energy performance goals during the design and construction of new commercial buildings is important to achieving those goals over the lifetime of the building. Energy efficiency measures can be applied in various stages of the design and construction process, including scoping and design, procurement, codes and standards compliance, construction and commissioning. Energy savings through these measures can be significant and will have lasting positive impacts on the overall energy use of the building. For example, using technologies and concepts such as radiant heating and cooling, precast concrete insulated

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

commercial building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description Source EERE Date Released September 27th, 2010 (4 years ago) Date Updated September 27th, 2010 (4 years ago) Keywords buildings commercial building DOE energy use Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon New construction (xlsx, 391.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Post-1980 construction (in or after 1980) (xlsx, 391.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Pre-1980 construction (xlsx, 367.5 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

262

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ... structures; thermal response; flameproofing; radiative ...

263

84 the building is.  

U.S. Energy Information Administration (EIA)

84 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA009449 Keywords:

264

87 the building is.  

U.S. Energy Information Administration (EIA)

87 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: STRO000469 Keywords:

265

80 the building is.  

U.S. Energy Information Administration (EIA)

80 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

266

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC400003 Keywords:

267

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

268

97 the building is.  

U.S. Energy Information Administration (EIA)

97 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

269

78 the building is.  

U.S. Energy Information Administration (EIA)

78 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC200470 Keywords:

270

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Emergency Response Operations ... Safety Investigation of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ...

271

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... rise buildings; building collapse; disasters; fire safety ... structural analysis; structural damage; structural response ...

272

Safety of Building Occupants  

Science Conference Proceedings (OSTI)

... systems have evolved in response to specific ... behavior, needs of emergency responders, or ... behavior during building emergencies, the Building ...

2013-07-17T23:59:59.000Z

273

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... systems; surface temperature; deflection; insulation; thermometers; structural ... effects of fires in buildings, for use ... the analysis of building response to ...

274

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building materials; thermal conductivity; databases; insulation; building technology; density; fibrous glass; guarded hot plate; heat flow; insulation ...

275

Energy conservation standards for new federal residential buildings: A decision analysis study using relative value discounting  

SciTech Connect

This report presents a reassessment of the proposed standard for energy conservation in new federal residential buildings. The analysis uses the data presented in the report, Economic Analysis: In Support of Interim Energy Conservation Standards for New Federal Residential Buildings (June 1988)-to be referred to as the EASIECS report. The reassessment differs from that report in several respects. In modeling factual information, it uses more recent forecasts of future energy prices and it uses data from the Bureau of the Census in order to estimate the distribution of lifetimes of residential buildings rather than assuming a hypothetical 25-year lifetime. In modeling social preferences decision analysis techniques are used in order to examine issues of public values that often are not included in traditional cost-benefit analyses. The present report concludes that the public would benefit from the proposed standard. Several issues of public values regarding energy use are illustrated with methods to include them in a formal analysis of a proposed energy policy. The first issue places a value on costs and benefits that will occur in the future as an irreversible consequence of current policy choices. This report discusses an alternative method, called relative value discounting which permits flexible discounting of future events-and the possibility of placing greater values on future events. The second issue places a value on the indirect benefits of energy savings so that benefits accrue to everyone rather than only to the person who saves the energy. This report includes non-zero estimates of the indirect benefits. The third issue is how the costs and benefits discussed in a public policy evaluation should be compared. In summary, selection of individual projects with larger benefit to cost ratios leads to a portfolio of projects with the maximum benefit to cost difference. 30 refs., 6 figs., 16 tabs. (JF)

Harvey, C. (Houston Univ., TX (USA). Coll. of Business Administration); Merkhofer, M.M.; Hamm, G.L. (Applied Decision Analysis, Inc., Menlo Park, CA (USA))

1990-07-02T23:59:59.000Z

276

National Green Building Standard Analysis  

SciTech Connect

DOE's Building America Program is a research and development program to improve the energy performance of new and existing homes. The ultimate goal of the Building America Program is to achieve examples of cost-effective, energy efficient solutions for all U.S. climate zones. Periodic maintenance of an ANSI standard by review of the entire document and action to revise or reaffirm it on a schedule not to exceed five years is required by ANSI. In compliance, a consensus group has once again been formed and the National Green Building Standard is currently being reviewed to comply with the periodic maintenance requirement of an ANSI standard.

NAHB Research Center, Upper Marlboro, Maryland

2012-07-01T23:59:59.000Z

277

State building energy codes status  

Science Conference Proceedings (OSTI)

This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

NONE

1996-09-01T23:59:59.000Z

278

Table 2.9 Commercial Buildings Consumption by Energy Source ...  

U.S. Energy Information Administration (EIA)

Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year

279

Green Building- Efficient Life Cycle  

E-Print Network (OSTI)

Energy saving does not just apply to traffic, production or agriculture. Buildings are also contributing to the climate change. The focus here is on the energy they use and on their CO2 emissions. Each year, Siemens invests more than two billion euros in the appropriate research and development. For customers, this means that Siemens is already providing them with energy efficient solutions that save resources and reduce emissions. Siemens Real Estate (SRE) has taken on the task of ensuring that Siemens AG will become 20 percent more energy efficient by 2011, and it has turned an efficiency program for existing real estate, which has been in existence since 2005, into an integrated green building initiative. This initiative comprises the components “Sustainable Building Design”, “Life Cycle Cost Analysis”, “Green Building Certification” and “Natural Resources Management”. These components are deliberately arranged around the life cycle of the real estate concerned. This allows a different emphasis to be placed on the different questions in each project phase and each phase of a building’s life and for them to be answered in a targeted manner. “Sustainable Building Design” comes into effect during the tasking and preliminary planning phase of a building project; and, by providing a specially developed sustainability manual, it helps with the definition of target values and the drawing up of efficiency strategies for the planning of the building. The manual epitomizes, and sets out clearly, the attitude of SRE to all building-specific sustainability matters. In addition, it is used in the offering of rewards for project competitions. As a result, through a selection of different energy-efficiency measures that have been roughly conceived beforehand, the primary energy consumption can already be restricted in the project definition phase. “Life Cycle Cost Analysis” comes into effect when the blueprint for buildings is being drawn up. Up to now, when components and systems were being chosen, the main focus was usually on the investment costs involved. By using a cost tool developed specifically to meet the needs of the company, SRE will in future be able to estimate the component-specific utilization costs – such as cleaning, maintenance, and the use of energy – at an early planning stage. “Green Building Certification” is used in building projects during the planning and implementation phase, and it thus ensures the quality of the new real estate over the long term. Siemens is implementing the Green Building Program of the European Commission in new building projects and renovation work in EU countries. In all other countries that are not taking part in the EU Green Building Program, SRE uses certification in accordance with LEED (Leadership in Energy and Environmental Design). In the LEED certification, a transparent and easy-to-use catalog of criteria is employed to make an assessment of the use of energy and other aspects of sustainability, such as the selection of the plot of land, the efficient use of water, the quality of air within buildings, and the selection of materials. This ensures that a neutral and independent assessment is made of all new building and large-scale renovation projects. The action program “Natural Resources Management” rounds off the range of measures in the area of existing real estate. The aim of the program is to identify and highlight all latent efficiency potential in existing buildings. This includes, for instance, modernizing the control equipment used for the heating and ventilation systems. This entails replacing electrical power units with more efficient models, and retrofitting fans and pumps with frequency converters. Sixty buildings have now been inspected, and savings of almost eight million Euros have been achieved. The average payback period is less than two years. One example of this is an old Siemens building from the 1970s at the Munich-Perlach site. Through energy optimization, it has been possible to cu

Kohns, R.

2008-10-01T23:59:59.000Z

280

Commercial Building National Accounts | Open Energy Information  

Open Energy Info (EERE)

Commercial Building National Accounts Commercial Building National Accounts Jump to: navigation, search National Accounts is part of DOE's Net-Zero Energy Commercial Building Initiative (CBI), which was mandated by the 2007 Energy Independence and Security Act (EISA). EISA enabled DOE to bring together parties from the private sector, DOE national labs, other federal agencies and nongovernmental organizations to advance research into low- and zero-net-energy buildings. CBI's goal is to develop market-ready, net zero-energy commercial buildings by 2025. A net zero-energy building makes as much energy as it uses over a year[1] [2]. As of 2009, estimates indicated that retail and office buildings consume 18 percent of the nation's total energy and half of nation's overall building energy (including homes, schools, and other structures). The program

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Buildings and Climate Change | Open Energy Information  

Open Energy Info (EERE)

Buildings and Climate Change Buildings and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Buildings and Climate Change Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policies/deployment programs, Pathways analysis Resource Type: Publications, Lessons learned/best practices Website: www.unep.org/sbci/pdfs/SBCI-BCCSummary.pdf Buildings and Climate Change Screenshot References: Buildings and Climate Change[1] "This report - Buildings & Climate Change: A Summary for Decision-makers draws together the findings of three years of research by UNEP's Sustainable Buildings & Climate Initiative (SBCI) and it's partners. It sets out priority actions that can be taken by policy makers and industry

282

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Montana Program Type Building Energy Code Provider Building Codes Bureau ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The energy codes are reviewed on a three-year cycle corresponding to the adoption of new versions of the International Code Conference (ICC) Uniform

283

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

284

Los Alamos National Laboratory W76 Pit Tube Lifetime Study  

SciTech Connect

A metallurgical study was requested as part of the Los Alamos National Laboratory (LANL) W76-1 life-extension program (LEP) involving a lifetime analysis of type 304 stainless steel pit tubes subject to repeat bending loads during assembly and disassembly operations at BWXT/Pantex. This initial test phase was completed during the calendar years of 2004-2006 and the report not issued until additional recommended tests could be performed. These tests have not been funded to this date and therefore this report is considered final. Tubes were reportedly fabricated according to Rocky Flats specification P14548 - Seamless Type 304 VIM/VAR Stainless Steel Tubing. Tube diameter was specified as 0.125 inches and wall thickness as 0.028 inches. A heat treat condition is not specified and the hardness range specification can be characteristic of both 1/8 and 1/4 hard conditions. Properties of all tubes tested were within specification. Metallographic analysis could not conclusively determine a specified limit to number of bends allowable. A statistical analysis suggests a range of 5-7 bends with a 99.95% confidence limit. See the 'Statistical Analysis' section of this report. The initial phase of this study involved two separate sets of test specimens. The first group was part of an investigation originating in the ESA-GTS [now Gas Transfer Systems (W-7) Group]. After the bend cycle test parameters were chosen (all three required bends subjected to the same amount of bend cycles) and the tubes bent, the investigation was transferred to Terri Abeln (Metallurgical Science and Engineering) for analysis. Subsequently, another limited quantity of tubes became available for testing and were cycled with the same bending fixture, but with different test parameters determined by T. Abeln.

Abeln, Terri G. [Los Alamos National Laboratory

2012-04-25T23:59:59.000Z

285

Energy Department Launches Better Buildings Workforce Guidelines Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Workforce Guidelines Better Buildings Workforce Guidelines Project Energy Department Launches Better Buildings Workforce Guidelines Project September 26, 2013 - 2:38pm Addthis The Energy Department today announced the Better Buildings Workforce Guidelines project to improve the quality and consistency of commercial building workforce training and certification programs for five key energy-related jobs: Energy Auditor, Commissioning Professional, Building/Stationary Engineer, Facility Manager, and Energy Manager. These voluntary workforce guidelines will support the Better Buildings Initiative goal of making commercial buildings 20% more energy efficient over the next 10 years, while helping businesses and communities save money by saving energy and creating new clean energy jobs across the country.

286

Better Buildings Federal Award 2012 Competition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Federal Award 2012 Competition Better Buildings Federal Award 2012 Competition Better Buildings Federal Award 2012 Competition October 24, 2013 - 1:51pm Addthis The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis. The Federal building that achieves the greatest percentage energy intensity savings for that year wins. 2012 Competition Thank you to all the participants of the 2012 Better Buildings Federal Award competition and congratulations to this year's winner, the U.S. Department of Interior's Brackish Groundwater National Desalination Research Facility! The building achieved an impressive 53.6% reduction in building energy intensity over its September 2011 baseline.

287

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

288

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

289

Ensure Long Lifetimes from Electrolytic Capacitors: a Case Study in LED Light Bulbs  

E-Print Network (OSTI)

Abstract: Electrolytic capacitors are notorious for short lifetimes in high-temperature applications such as LED light bulbs. The careful selection of these devices with proper interpretation of their specifications is essential to ensure that they do not compromise the life of the end product. This application note discusses this problem with electrolytic capacitors in LED light bulbs and provides an analysis that shows how it is possible to use electrolytics in such products. A similar version of this article appeared on EDN, April 6, 2013. Hot LEDs and Short-Lived Electrolytic Capacitors Several years ago, I worked on a few designs for LED light bulbs. Very early on, it became clear that the temperatures of components in such light bulbs can get quite high. I personally measured component temperatures as high as +130°C in light bulbs purchased at local retail stores. Now admittedly, these were early LED bulb designs. Manufacturers now understand that, even though these LED bulbs consume substantially lower power than those they would replace, they still must have good thermal engineering. This is the only way to get the lifetime of the electronics to match the lifetime of the LEDs themselves. I found it disturbing that many of these hot designs contained electrolytic capacitors, which are notorious

Mark Fortunato; Senior Principal; Member Technical Staff

2013-01-01T23:59:59.000Z

290

Measurement of D0 lifetime with the BaBar detector  

SciTech Connect

This work is the result of the researchers carried out during a three years Ph.D. period in the BABAR experiment. The first chapter consists in an introduction to the theoretical aspects of the D{sup 0} meson lifetime determination and CP violation parameters, as well as an overview of the CP violation in the B sector, which is the main topic of the experiment. The description of the experimental apparatus follows with particular attention to the Silicon Vertex Tracker detector, the most critical detector for the determination of decay vertices and thus of lifetimes and time dependent CP violation asymmetries. In the fourth chapter the operation and running of the vertex detector is described, as a result from the experience as Operation Manager of the SVT, with particular attention to the safety of the device and the data quality assurance. The last chapter is dedicated to the determination of the D{sup 0} meson lifetime with the BABAR detector, which is the main data analysis carried out by the candidate. The analysis is characterized by the selection of an extremely pure sample of D{sup 0} mesons for which the decay flight length and proper time is reconstructed. The description of the unbinned maximum likelihood fit follows, as well as the discussion of the possible sources of systematic uncertainties. In the appendix is also presented a preliminary study of a possible development regarding the determination of mixing and CP violation parameters for the D{sup 0} meson.

Simi, Gabriele; /Pisa U. /SLAC

2009-12-17T23:59:59.000Z

291

Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

2013-06-01T23:59:59.000Z

292

Building America  

Science Conference Proceedings (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

293

Beam lifetime and limitations during low-energy RHIC operation  

SciTech Connect

The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam {gamma} = 6.1 and {gamma} = 4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.

Fedotov, A.V.; Bai, M.; Blaskiewicz, M.; Fischer, W.; Kayran, D.; Montag, C.; Satogata, T.; Tepikian, S.; Wang, G.

2011-03-28T23:59:59.000Z

294

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

295

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

296

Berkeley Lab to Help Build Straw Bale Building  

DOE Green Energy (OSTI)

The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

Worsham, S.A.; Van Mechelen, G.

1998-12-01T23:59:59.000Z

297

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

298

Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates  

SciTech Connect

This report addresses the effects of spectrum loading on lifetime and residual strength of a typical fiberglass laminate configuration used in wind turbine blade construction. Over 1100 tests have been run on laboratory specimens under a variety of load sequences. Repeated block loading at two or more load levels, either tensile-tensile, compressive-compressive, or reversing, as well as more random standard spectra have been studied. Data have been obtained for residual strength at various stages of the lifetime. Several lifetime prediction theories have been applied to the results. The repeated block loading data show lifetimes that are usually shorter than predicted by the most widely used linear damage accumulation theory, Miner's sum. Actual lifetimes are in the range of 10 to 20 percent of predicted lifetime in many cases. Linear and nonlinear residual strength models tend to fit the data better than Miner's sum, with the nonlinear providing a better fit of the two. Direct tests of residual strength at various fractions of the lifetime are consistent with the residual strength models. Load sequencing effects are found to be insignificant. The more a spectrum deviates from constant amplitude, the more sensitive predictions are to the damage law used. The nonlinear model provided improved correlation with test data for a modified standard wind turbine spectrum. When a single, relatively high load cycle was removed, all models provided similar, though somewhat non-conservative correlation with the experimental results. Predictions for the full spectrum, including tensile and compressive loads were slightly non-conservative relative to the experimental data, and accurately captured the trend with varying maximum load. The nonlinear residual strength based prediction with a power law S-N curve extrapolation provided the best fit to the data in most cases. The selection of the constant amplitude fatigue regression model becomes important at the lower stress, higher cycle loading cases. The residual strength models may provide a more accurate estimate of blade lifetime than Miner's rule for some loads spectra. They have the added advantage of providing an estimate of current blade strength throughout the service life.

WAHL, NEIL K.; MANDELL, JOHN F.; SAMBORSKY, DANIEL D.

2002-03-01T23:59:59.000Z

299

Building Technologies Office: Subscribe to Building America Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

300

Comparison of Building Energy Modeling Programs: Building Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Building Energy Modeling Programs: Building Loads Title Comparison of Building Energy Modeling Programs: Building Loads Publication Type Report LBNL Report Number...

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes Resource Guide: COMMERCIAL BUILDINGS for Architects Prepared by: Building Energy Codes Program (BECP) and the American...

302

Energy Efficiency Standards for Federal Buildings | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Site Map Printable Version Development Adoption Compliance Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards...

303

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

304

Thick Buildings [Standards  

E-Print Network (OSTI)

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

305

Buildings Performance Database | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database Buildings Performance Database Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV Source Department of Energy's Buildings Performance Database Date Released July 09th, 2012 (2 years ago) Date Updated Unknown Keywords Buildings Performance Database Dayton Electricity Gainesville Natural Gas open data Residential Data application/zip icon BPD Dayton and Gainesville Residential csv files in a zip file (zip, 2.8 MiB) text/csv icon BPD Dayton and Gainesville Residential Building Characteristics data (csv, 1.4 MiB) text/csv icon BPD Dayton and Gainesville Residential data headers (csv, 5.8 KiB)

306

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

307

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Planning for Construction and Building R&D. National Planning for Construction and Building R&D. (576 K) Wright ...

308

Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Kristen Taddonio DOEEEREBTOCommercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office...

309

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

310

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events ICMA 99th Annual Conference September 22-25, 2013 Register Now for the 2013...

311

Food Sales Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings, though they comprised only 1 percent of commercial floorspace. Their total energy intensity was the third highest of all the building types, and their electricity...

312

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was just slightly below the commercial average. Public assembly buildings...

313

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of this building in two challenging North American climates. ... building in its native climate were performed ... were formulated-a single-zone model with ...

314

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... These estimates, and other analyses of energy consumption in office buildings, are based on building energy analysis programs such as DOE-2. ...

315

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... keynote address entitled "Green Buildings - The White House Perspective ... in the areas of building materials, lighting, and indoor air ... Selected Papers. ...

316

Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United...

317

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

318

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... will build an instrument that will provide the building industry with better measurement capabilities to judge the effectiveness of thermal insulation ...

319

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

320

The Cost of Enforcing Building Energy Codes: Phase 1  

NLE Websites -- All DOE Office Websites (Extended Search)

of Enforcing Building Energy Codes: Phase 1 Title The Cost of Enforcing Building Energy Codes: Phase 1 Publication Type Report LBNL Report Number LBNL-6181E Year of Publication...

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sustainable Building in China-A Green Leap Forward?  

NLE Websites -- All DOE Office Websites (Extended Search)

Building in China-A Green Leap Forward? Title Sustainable Building in China-A Green Leap Forward? Publication Type Journal Article Year of Publication 2013 Authors Diamond, Richard...

322

Assessment of Building Energy-Saving Policies and Programs in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan Title Assessment of Building Energy-Saving Policies and Programs in China During...

323

Assessment of Building Energy-Saving Policies and Programs in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan Title Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five...

324

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

325

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

326

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

327

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

328

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

329

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

330

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

331

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

332

Lighting Controls in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Controls in Commercial Buildings Lighting Controls in Commercial Buildings Title Lighting Controls in Commercial Buildings Publication Type Report Year of Publication 2012 Authors Williams, Alison A., Barbara A. Atkinson, Karina Garbesi, Erik Page, and Francis M. Rubinstein Series Title The Journal of the Illuminating Engineering Society of North America Volume 8 Document Number 3 Pagination 161-180 Date Published January ISBN Number 1550-2716 Keywords controls, daylighting, energy, occupancy sensors, tuning. Abstract Researchers have been quantifying energy savings from lighting controls in commercial buildings for more than 30 years. This study provides a meta-analysis of lighting energy savings identified in the literature-240 savings estimates from 88 papers and case studies, categorized into daylighting strategies, occupancy strategies, personal tuning, and institutional tuning. Beginning with an overall average of savings estimates by control strategy, successive analytical filters are added to identify potential biases introduced to the estimates by different analytical approaches. Based on this meta-analysis, the bestestimates of average lighting energy savings potential are 24 percent for occupancy, 28 percent for daylighting, 31 percent for personal tuning, 36 percent for institutional tuning, and 38 percent for multiple approaches. The results also suggest that simulations significantly overestimate (by at least 10 percent) the average savings obtainable from daylighting in actual buildings.

333

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... economic analysis; energy conservation; energy economics; life cycle cost analysis; public buildings; renewable energy; water conservation ...

334

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: roofs; building integrated photovoltaics; photovoltaic cells; renewable energy; single-crystalline; solar energy Abstract: ...

335

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building technology; concretes; durability; effective medium theory; electrical conductivity; interfacial zone; mortar; percolation; fluid flow; sand ...

336

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: building technology; brazed plate; compact heat exchanger; evaporator; condenser; gravity Abstract: This study ...

337

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Results discussed include whole building air change rates, energy consumption and contaminant concentrations. The ...

338

Building Songs 3  

E-Print Network (OSTI)

. Sman shad building song 3.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 2.WAV Title of track Building Songs 3 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

339

Building Songs 2  

E-Print Network (OSTI)

. Sman shad building song 2.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 3.WAV Title of track Building Songs 2 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

340

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management systems. GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ...

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal insulation; building technology; guarded hot plate; thermal conductivity; thermal resistance; uncertainty; transmission; mathematical models ...

342

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... heaters; water heaters; blowing agents; insulation; residential buildings; physical properties; thermal conductivity; polyurethane foams Abstract: ...

343

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... computer simulation; technology utilization; insulation; thermal resistance; evaluation ... to the widespread use of building integrated photovoltaic ...

344

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

345

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

346

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

347

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

348

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

349

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

350

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

351

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

352

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

353

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

354

DOE - Better Building  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

355

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

356

Better Buildings Challenge - Lend Lease Commitment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Challenge Buildings Challenge Lend Lease Commitment Krista Sprenger, VP-Director Sustainability, Americas Duncan Prahl, Research Architect, IBACOS March, 2012 Goals of the Better Buildings Challenge Make buildings 20% more efficient by 2020; save $40 billion annually for US organizations; create American jobs  Overcoming market barriers/persistent obstacles with replicable, marketplace solutions  Market leaders stepping forward to share data and real solutions  Demonstrating leadership  Showcasing real solutions  Connecting the market  Partnering with industry leaders to better understand policy and technical opportunities 3 More Than 50 Years' Property Experience *Areas of operation highlighted in green Lend Lease  Creating innovative property and infrastructure

357

Federal Energy Management Program: Better Buildings Federal Award  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on a year-over-year basis. The Federal building that achieves the greatest percentage energy intensity savings for that year wins. 2013 Competition The 2013 competition is on...

358

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

359

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

360

Better Buildings for a Brighter Future  

NLE Websites -- All DOE Office Websites (Extended Search)

million annually on their energy bills Building a Brighter Future The average American household spends nearly 2,000 per year on energy used in the home, but 200 to 400 of...

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building Energy Software Tools Directory: CELLAR  

NLE Websites -- All DOE Office Websites (Extended Search)

from a rectangular building with a foundation of the cellar type with constant insulation thickness at the floor and the wall. Both the heat loss variation during the year,...

362

Building Energy Standards (Vermont) | Open Energy Information  

Open Energy Info (EERE)

and fuel bills by an average of 25% in the housing units served; To reduce total fossil fuel consumption across all buildings by an additional 0.5% each year, leading to a total...

363

Building Energy Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel bills by an average of 25% in the housing units served; * To reduce total fossil fuel consumption across all buildings by an additional 0.5% each year, leading to a total...

364

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

365

Online Prediction of Battery Lifetime for Embedded and Mobile Devices  

E-Print Network (OSTI)

This paper presents a novel, history-based, statistical technique for online battery lifetime prediction. The approach first takes a one-time, full cycle, voltage measurement of a constant load, and uses it to transform the partial voltage curve of the current workload into a form with robust predictability. Based on the transformed history curve, we apply a statistical method to make a lifetime prediction. We investigate the performance of the implementation of our approach on a widely used mobile device (HP iPAQ) running Linux, and compare it to two similar battery prediction technologies: ACPI and Smart Battery. We employ twenty-two constant and variable workloads to verify the effcacy of our approach. Our results show that this approach is efficient, accurate, and able to adapt to different systems and batteries easily.

Ye Wen; Rich Wolski; Chandra Krintz

2003-01-01T23:59:59.000Z

366

Hot ion buildup and lifetime in LITE. Final report  

DOE Green Energy (OSTI)

An experimental investigation of hot ion buildup and lifetime in a small scale mirror device (LITE) is described. Hot ions were produced by 27 kV neutral beam injection into laser produced LiH plasmas and H plasmas produced by a washer gun. Hot H ion (12 kV) densities of approx. = 10/sup 12/ cm/sup -3/ were produced with the LiH target plasmas and densities an order of magnitude lower were produced with the washer gun target plasmas. Hot ion dominant plasmas were not achieved in LITE. The experimental measurements and subsequent analysis using numerical models of the plasma buildup indicate that in small, unshielded mirror plasmas, careful control must be maintained over the transient background gas density in the vicinity of the plasma surface. The hot ion lifetime in LITE was set by the transient cold neutral background resulting from the washer gun of reflux from the target plasma striking the adjacent surfaces.

Not Available

1978-09-01T23:59:59.000Z

367

A Measurement of the D+(s) lifetime  

SciTech Connect

A high statistics measurement of the D{sub s}{sup +} lifetime from the Fermilab fixed-target FOCUS photoproduction experiment is presented. They describe the analysis of the two decay modes, D{sub s}{sup +} {yields} {phi}(1020){pi}{sup +} and D{sub s}{sup +} {yields} {bar K}*(892){sup 0}K{sup +}, used for the measurement. The measured lifetime is 507.4 {+-} 5.5(stat.) {+-} 5.1(syst.) is using 8961 {+-} 105 D{sub s}{sup +} {yields} {phi}(1020){pi}{sup +} and 4680 {+-} 90 D{sub s}{sup +} {yields} {bar K}*(892){sup 0} K{sup +} decays. This is a significant improvement over the present world average.

Link, J.M.; Yager, P.M.; /UC, Davis; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferi, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; /Rio de Janeiro, CBPF; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; /CINVESTAV, IPN; Agostino, L.; Cinquini, L.; Cumalat, J.P. /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Rio de Janeiro, Pont. U. Catol. /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison

2005-04-01T23:59:59.000Z

368

Building Technologies Office: About the Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

and others to implement real-world energy saving opportunities. Commercial Building Basics Federal, state, and local governments as well as private companies, own, operate...

369

Better Buildings Partners: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Network The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the...

370

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable...

371

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial...

372

Building Technologies Office: Commercial Building Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

373

Building Technologies Office: About the Buildings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

374

Building Technologies Office: High Performance Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

375

Building Technologies Program: Building America Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

search Most Popular Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report) The addition of insulation to the exterior of buildings is an effective...

376

Better Buildings Partners: Better Buildings Residential Network...  

NLE Websites -- All DOE Office Websites (Extended Search)

work they are doing to advance energy efficiency. AFC First Alabama Energy Doctors Austin Energy BC Hydro Boulder County, Colorado Building Sustainable Solutions, LLC California...

377

A detailed loads comparison of three building energy modeling programs:  

NLE Websites -- All DOE Office Websites (Extended Search)

detailed loads comparison of three building energy modeling programs: detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Title A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Publication Type Journal Year of Publication 2013 Authors Zhu, Dandan, Tianzhen Hong, Da Yan, and Chuang Wang Date Published 05/2013 Keywords building energy modeling program, building thermal loads, comparison, dest, DOE-2.1E, energyplus Abstract Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results from different building energy modeling programs (BEMPs). This leads many users and stakeholders

378

Pressurized Water Reactor AgInCd Control Rod Lifetime  

Science Conference Proceedings (OSTI)

Swelling of the lower end tip of AgInCd (AIC) absorber rods is one of the lifetime limiting phenomena for PWR control rods. Understanding the relationship between swelling and accumulated fluence is crucial to predicting the service life of these components. This report presents the initial results and analyses from a control rod absorber research program led by the EPRI Fuel Reliability Program, in close collaboration with Westinghouse Electric Company and AREVA NP. The goals of the program are to chara...

2009-08-27T23:59:59.000Z

379

Lifetime statistics of quantum chaos studied by a multiscale analysis  

SciTech Connect

In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.

Di Falco, A.; Krauss, T. F. [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Fratalocchi, A. [PRIMALIGHT, Faculty of Electrical Engineering, Applied Mathematics and Computational Science, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

2012-04-30T23:59:59.000Z

380

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Michigan Program Type Building Energy Code Provider Michigan Department of Labor and Economic Growth ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code. The state energy code is evaluated for revisions or modifications every three years. The new code requirements are adopted at the beginning of each state building code cycle (which corresponds with the three-year cycle of

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

382

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

383

Lifetime of high-k gate dielectrics and analogy with strength of quasibrittle structures  

E-Print Network (OSTI)

The two-parameter Weibull distribution has been widely adopted to model the lifetime statistics of dielectric breakdown under constant voltage, but recent lifetime testing for high-k gate dielectrics has revealed a systematic ...

Le, Jia-Liang

384

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

385

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

386

Findings from Seven Years of Field Performance Data for Automated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings Title Findings from Seven Years of Field Performance Data for Automated Demand Response...

387

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

388

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

389

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

390

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

391

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

392

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

393

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

394

Using Remaining Battery lifetime information and Relaying to decrease Outage Probability of a Mobile  

E-Print Network (OSTI)

Using Remaining Battery lifetime information and Relaying to decrease Outage Probability is to demonstrate that by employing relaying and using the remaining battery lifetime information of Mobile is determined based on the remaining battery lifetime of the MT. We assume a linear relationship between

Singh, Suresh

395

Constrained multiple deployment problem in wireless sensor networks with guaranteed lifetimes  

Science Conference Proceedings (OSTI)

We aimed to deploy wireless sensor networks with guaranteed lifetimes for outdoor monitoring projects. The provision of a guaranteed lifetime has rarely been studied in previous deployment problems. The use of battery packs as the power source for sensors ... Keywords: Deployment problem, Guaranteed lifetime, Sensor network

Chun-Han Lin; Chung-Ta King; Ting-Yi Chen

2011-02-01T23:59:59.000Z

396

From link dynamics to path lifetime and packet-length optimization in MANETs  

Science Conference Proceedings (OSTI)

We present an analytical framework and statistical models to accurately characterize the lifetime of a wireless link and multi-hop paths in mobile ad hoc networks (MANET). We show that the lifetimes of links and paths can be computed through a two-state ... Keywords: Analytical mobility modeling, Link dynamics, Markov model, Optimal information segmentation, Path lifetime

Xianren Wu; Hamid R. Sadjadpour; J. J. Garcia-Luna-Aceves

2009-07-01T23:59:59.000Z

397

Comparison of Building Energy Modeling Programs: HVAC Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Programs: HVAC Systems Title Comparison of Building Energy Modeling Programs: HVAC Systems Publication Type Report LBNL Report Number LBNL-6432E Year of Publication 2013...

398

Applications of Optimal Building Energy System Selection and...  

NLE Websites -- All DOE Office Websites (Extended Search)

for several years. Given load curves for energy services requirements in a building microgrid (grid), fuel costs and other economic inputs, and a menu of available...

399

ENERGY STAR National Building Competition: 2012 competitor listing...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the ENERGY STAR National Building Competition and worked off their waste through energy-saving improvements. The results over one year were impressive View this list to...

400

Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)  

SciTech Connect

This fact sheet describes the Small Buildings and Small Portfolios roadmap, which outlines approaches and strategic priorities for the U.S. Department of Energy's Building Technologies Office to pursue over the next three to five years that will support the implementation of high-potential energy efficiency opportunities for small business and building owners and operators.

Not Available

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building America Research Benchmark Definition: Updated December 19, 2008  

SciTech Connect

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams.

Hendron, R.

2008-12-01T23:59:59.000Z

402

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

403

City of Scottsdale - Green Building Policy for Public Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings City of Scottsdale - Green Building Policy for Public Buildings City of Scottsdale - Green Building Policy for...

404

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

405

Building Energy Software Tools Directory: SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox SIMBAD Building and HVAC Toolbox logo. Performs transient simulations of HVAC plants with short time steps. SIMBAD Building and HVAC Toolbox is the...

406

Building Energy Software Tools Directory : SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox Back to Tool Screenshot for SIMBAD Building and HVAC Toolbox. Screenshot for SIMBAD Building and HVAC Toolbox...

407

Building America Top Innovations 2013 Profile - Building America...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Building America Top Innovations 2013 Profile - Building America Solution Center PNNL set up the framework for the Building America Solution Center, a web tool connecting...

408

Energy Efficiency and Green Building Standards for State Buildings...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

409

High-Performance Building Requirements for State Buildings (South...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

410

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in...

411

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

412

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

413

Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings  

SciTech Connect

Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

2012-06-01T23:59:59.000Z

414

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

415

Change in historic buildings  

E-Print Network (OSTI)

Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

Yin, Chien-Ni

1992-01-01T23:59:59.000Z

416

Building condition monitoring  

E-Print Network (OSTI)

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

417

BUILDING PROCTOR December 2009  

E-Print Network (OSTI)

­ 1 Facilities Management Directory.......................................................................Maintenance ...............................................Maintenance ­ 15 Building Audit System to Facilities Management Dispatch Office (491-0077) who, in turn, addresses the maintenance needs. The building

418

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

419

Building, landscape and section  

E-Print Network (OSTI)

All buildings have in their section a relationship to the landscape on which they are sited. Therefore we as inhabitants of these buildings may or may not have a relationship with the landscape. It is the supposition of ...

Johnson, Daniel B. (Daniel Bryant)

1992-01-01T23:59:59.000Z

420

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

City of Cincinnati - Property Tax Abatement for Green Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Cincinnati - Property Tax Abatement for Green Buildings City of Cincinnati - Property Tax Abatement for Green Buildings City of Cincinnati - Property Tax Abatement for Green Buildings < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate For buildings with permits received on or before January 31, 2013: $562,792 maximum improved market value for residential buildings except no limitation with LEED Platinum certification (the maximum incentive increases by 3% every year) For buildings with permits received after January 31, 2013:

422

Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings  

SciTech Connect

2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.

Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

2010-06-01T23:59:59.000Z

423

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

424

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Cost-Effective Responses to Terrorist Risks in Constructed Facilities. ... building economics; disaster mitigation; economic analysis; homeland security ...

425

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... to the World Trade Center Disaster. ... World Trade Center; disasters; building collapse ... fires; flameproofing; steels; evacuation; response time; roofs ...

426

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... State Solar Energy Legislation of 1976: A Review of Statutes Relating to Buildings. Final Report. State Solar Energy Legislation ...

427

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ANSI/ASHRAE Standard 135-1995, BACnet. ...

428

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... office buildings; air intake; systems engineering; maintenance; occupants; air flow; diffusers; air quality; ventilation systems; ASHRAE 62-2007 ...

429

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use. Investigation of the Impact ...

430

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of Entombment as a Decommission Option. ... Safety of Existing Federal Buildings: A Handbook. ... Madrzykowski, D. Manual of Evaluation Procedures ...

431

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Armed Forces Scientific Institute for Protection Technologies in the Field ... National Institute of Standards and Technology. ... Energy and Buildings, Vol. ...

432

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... in Operations, Maintenance, and Energy Costs for ... Strengthening, and Repair Technologies for Buildings ... Combustion Science and Technology, Vol. ...

433

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... residential energy consumption. Field Study of the Effect of Wall Mass on the Heating and Cooling Loads of Residential Buildings. ...

434

Construction and Building  

Science Conference Proceedings (OSTI)

... in building sector energy consumption by improving ... housing construction: improving energy efficiency and ... Reinforced Soil Bridge Pier Load Test ...

2000-03-07T23:59:59.000Z

435

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management system. Friend or Foe? ... Bushby, ST; Information Model for Building Automation Systems. Automation in Construction, Vol. ...

436

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... insulation technologies are being developed in order to meet increasing stringent minimum efficiency standards for appliances and building ...

437

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Unfortunately, the equipment used to determine the thermal resistance of traditional building, insulation materials is not well suited for measuring ...

438

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal conductance; thermal insulation; test methods Abstract: Calibration measurements of thin heat flux sensors for building applications are ...

439

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Thermal Expansion 17th Symposium. Proceedings. Chapter 2: Building Insulation Materials. June 24-27, 2007, Birmingham ...

440

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... sprinklers; egress; fire spread; fire models; polyurethane foams; pyrotechnics; smoke; insulation; death; fire fatalities; building codes; fire codes ...

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Institute of Standards and Technology is building an advanced ... thermal transmission properties for specimens of thermal insulation 500 mm ...

442

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... 1993. Journal of Thermal Insulation and Building Environments, Vol. 17, 330-350, April 1994. Keywords: polyisocyanurate ...

443

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

444

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... emergency plans. Stairwell Evacuation From Buildings: What We Know We Don't Know. NIST TN 1624; NIST Technical ...

445

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... F. NISTIR 7193; Appendix F; January 2005.Workshop to Define Information Needed by Emergency Responders During Building Emergencies. ...

446

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

447

Real-time Building Energy Simulation using EnergyPlus and the Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-time Building Energy Simulation using EnergyPlus and the Building Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Title Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Publication Type Conference Proceedings LBNL Report Number LBNL-5390E Year of Publication 2011 Authors Pang, Xiufeng, Prajesh Bhattacharya, Zheng O'Neill, Philip Haves, Michael Wetter, and Trevor Bailey Conference Name Proc. of the 12th IBPSA Conference Pagination p. 2890-2896 Date Published 11/2011 Conference Location Sydney, Australia Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

448

Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings  

Science Conference Proceedings (OSTI)

This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

Hunt, W. D.

2008-05-14T23:59:59.000Z

449

Building Songs 1  

E-Print Network (OSTI)

. Sman shad building song 1.WAV Length of track 00:01:36 Related tracks (include description/relationship if appropriate) Sman shad building song 2 Title of track Building Songs Translation of title Description (to be used in archive entry...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

450

Axioms of affine buildings  

E-Print Network (OSTI)

We prove equivalence of certain axiom sets for affine buildings. Along the lines a purely combinatorial proof of the existence of a spherical building at infinity is given. As a corollary we obtain that ``being an affine building'' is independent of the metric structure of the space.

Schwer, Petra N

2009-01-01T23:59:59.000Z

451

Building application stack (BAS)  

Science Conference Proceedings (OSTI)

Many commercial buildings have digital controls and extensive sensor networks that can be used to develop novel applications for saving energy, detecting faults, improving comfort, etc. However, buildings are custom designed, leading to differences in ... Keywords: building applications, controls, energy efficiency

Andrew Krioukov; Gabe Fierro; Nikita Kitaev; David Culler

2012-11-01T23:59:59.000Z

452

Better Buildings Federal Award 2013 Guidelines for Entering | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Guidelines for Entering 2013 Guidelines for Entering Better Buildings Federal Award 2013 Guidelines for Entering October 7, 2013 - 4:40pm Addthis Have Questions? A list of frequently asked questions contains answers to a variety of Better Buildings Federal Award queries. The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy intensity (Btu per square foot of facility space) on a year-over-year basis. The winner is the Federal building that reduces its energy intensity the most as compared to the previous year. Selecting Applicants Agencies should consider nominating a building based on how well it expects the building to perform in 2013 as compared to 2012, taking into account a wide range of innovative or comprehensive energy management practices being

453

Leading by Example: Better Buildings Challenge Partners Cut Energy Use |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leading by Example: Better Buildings Challenge Partners Cut Energy Leading by Example: Better Buildings Challenge Partners Cut Energy Use Leading by Example: Better Buildings Challenge Partners Cut Energy Use May 22, 2013 - 12:00pm Addthis New infographic breaks down the data companies submitted for the first year of the Better Buildings Challenge. | Infographic by Sarah Gerrity, Energy Department. New infographic breaks down the data companies submitted for the first year of the Better Buildings Challenge. | Infographic by Sarah Gerrity, Energy Department. Maria Tikoff Vargas Director, Department of Energy Better Buildings Challenge What are the key facts? New data that Better Buildings Challenge partners submitted shows they improved their energy intensity by more than 2.5 percent a year on average. Those improvements equal about a savings of $58 million and 8.5

454

Energy Information Administration (EIA)- About the Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

About the Commercial Buildings Energy Consumption Survey About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, their energy-related building characteristics, and their energy consumption and expenditures. Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential, industrial, or agricultural, so they include building types that might not traditionally be considered "commercial," such as schools, correctional institutions, and buildings used for religious worship. The CBECS was first conducted in 1979; the tenth, and most recent survey, will be fielded starting in April 2013 to provide data for calendar year

455

U.S. DOE Commercial Building Energy Asset Score  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Building Energy Asset Score Commercial Building Energy Asset Score Quick Start Guide To create a Commercial Building Energy Asset Score (Asset Score) for your building you need to complete the following six (6) steps using the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool). Although you are not required to carry out these steps in a specific order, the following sequence will most likely save you time. Input Basic Building Information * Click the New Building button to begin. * Enter building name, location, gross floor area, and year of construction. * Click the button to continue. Identify Building Use Type(s) * Select all applicable use types. * Choose from a variety of options including office, retail, multi-family, education, and

456

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

Wall, L.W.

2009-01-01T23:59:59.000Z

457

Buildings Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Buildings Blog RSS November 5, 2013 The Building Technologies Office's Emerging Technologies Program works to advance new commerical building technologies that are expected to...

458

Buildings News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings News Buildings News RSS November 6, 2013 Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge National Program to Reduce Energy Use and Save...

459

California commercial building energy benchmarking  

E-Print Network (OSTI)

querying (building type, climate zone, etc) sufficient forBuilding Type Floor Area Climate Zone Building Age Heatingtype, and zip code/climate zone. A memo describing the

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

460

Building Technologies Program: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Program: ENERGY STAR on Google Bookmark Building Technologies Program: ENERGY STAR on Delicious Rank Building...

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building Technologies Office: News Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

News Archives on Twitter Bookmark Building Technologies Office: News Archives on Google Bookmark Building Technologies Office: News Archives on Delicious Rank Building...

462

Building Technologies Office: Schedule Setting  

NLE Websites -- All DOE Office Websites (Extended Search)

Schedule Setting on Twitter Bookmark Building Technologies Office: Schedule Setting on Google Bookmark Building Technologies Office: Schedule Setting on Delicious Rank Building...

463

Building Technologies Office: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Office: ENERGY STAR on Google Bookmark Building Technologies Office: ENERGY STAR on Delicious Rank Building...

464

Building Technologies Program: Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Peer Review on Twitter Bookmark Building Technologies Program: Peer Review on Google Bookmark Building Technologies Program: Peer Review on Delicious Rank Building...

465

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building...

466

Building Technologies Office: Process Rule  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Process Rule on Twitter Bookmark Building Technologies Office: Process Rule on Google Bookmark Building Technologies Office: Process Rule on Delicious Rank Building...

467

Building Technologies Office: Bookmark Notice  

NLE Websites -- All DOE Office Websites (Extended Search)

in Commercial Buildings Commercial Building Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Energy Asset Score Building...

468

Building Insulation | Open Energy Information  

Open Energy Info (EERE)

Building Insulation Jump to: navigation, search TODO: Add description List of Building Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleBuildingInsulat...

469

Tools for Assessing Building Energy Use in Industrial Plants  

E-Print Network (OSTI)

This presentation will cover a brief history of building energy measures savings potential for industrial plants and briefly characterize building energy measures and their savings identified over approximately the past 15 years in energy audits. The nature and extent of building energy assessment tools will then be profiled, and the beneficial use of an appropriate subset of these tools for assessing energy savings in buildings at industrial plants will be described. Possible future tools that may be useful will also be mentioned.

Martin, M.; MacDonald, M.

2007-01-01T23:59:59.000Z

470

Recombination Lifetimes Using the RCPCD Technique: Comparison with Other Methods  

DOE Green Energy (OSTI)

The theory and operation of the resonance-coupled photoconductive decay (RCPCD) technique is described. Examples are presented of data measured on a wide variety of sample types. The RCPCD technique has been applied to a variety of wafer and thin-film materials. Using this technique, we can measure recombination lifetime over at least three decades of injection level. We can also measure relative values of minority-carrier mobility and diffusion length. By scanning the excitation wavelength, we can measure spectral response and photoconductive excitation spectra. Deep-level impurities have been detected by several variations of RCPCD.

Ahrenkiel, R.K.; Johnston, S.W.; Dashdorj, J.

2005-01-01T23:59:59.000Z

471

Determination of the b_s lifetime using hadronic decays  

SciTech Connect

The authors present a measurement of the B{sub s}{sup 0} meson lifetime using fully and partially reconstructed hadronic decays B{sub s}{sup 0} {yields} D{sub s}{sup -} {pi}{sup +}(X) followed by D{sub s}{sup -} {yields} {phi}{pi}{sup -}. The data sample was recorded with the CDF II detector at the Fermilab Tevatron and corresponds to an integrated luminosity of 1.3 fb{sup -1} from p{bar p} collisions at {radical}s = 1.96 TeV.

Deisher, A.J.; /LBL, Berkeley

2008-07-01T23:59:59.000Z

472

309 Building transition plan  

Science Conference Proceedings (OSTI)

The preparation for decontamination and decommissioning (transition) of the 309 Building is projected to be completed by the end of the fiscal year (FY) 1998. The major stabilization and decontamination efforts include the Plutonium Recycle Test Reactor (PRTR), fuel storage and transfer pits, Transfer Waste (TW) tanks and the Ion Exchange Vaults. In addition to stabilizing contaminated areas, equipment, components, records, waste products, etc., will be dispositioned. All nonessential systems, i.e., heating, ventilation, and air conditioning (HVAC), electrical, monitoring, fluids, etc., will be shut down and drained/de-energized. This will allow securing of the process, laboratory, and office areas of the facility. After that, the facility will be operated at a level commensurate with its surveillance needs while awaiting D&D. The implementation costs for FY 1995 through FY 1998 for the transition activities are estimated to be $1,070K, $2,115K, $2,939K, and $4,762K, respectively. Costs include an assumed company overhead of 20% and a 30% out year contingency.

Graves, C.E.

1994-08-31T23:59:59.000Z

473

The energy-savings potential of electrochromic windows in the US commercial buildings sector  

E-Print Network (OSTI)

and Renewable Energy's (EERE) Building Technologies Program.and Renewable Energy (EERE). For the fiscal year 2004 (FY04)

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-01-01T23:59:59.000Z

474

Chapter 3: Building Siting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

475

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

476

Better Buildings Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kristen Taddonio DOE/EERE/BTO/Commercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce building energy use by 50 percent, saving ~$2.2 trillion in energy-related costs. CBI Program Goals: New Buildings - Demonstrate 50% cost-effective savings at a convincing scale by 2020 (EISA 2007) - Demonstrate 100% cost-effective savings at a convincing scale by 2030 (EISA 2007) Existing Buildings

477

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

478

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

479

NREL: Buildings Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

480

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

Note: This page contains sample records for the topic "year building lifetime" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The City of Atlanta has committed 16 million square feet of public and private space to substantive upgrades as part of the Better Buildings Challenge. Credit: iStockphoto The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts.

482

Buildings*","Buildings Using Any Energy  

U.S. Energy Information Administration (EIA) Indexed Site

apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Other a " "All Buildings* ...",4645,4414,4404,2391,451,67,33,5...

483

Building Technologies Office: Existing Commercial Reference Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

You can also view related resources: an archive of past reference buildings files a ZIP file containing the TMY2 weather data that were used to generate the following...

484

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

In order to allow equivalent comparisons of buildings across the U.S., the Asset Scoring Tool applies a weather adjustment to those energy uses that depend on climate (e.g.,...

485

Building Technologies Office: Sensor Suitcase for Small Commercial Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Suitcase for Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project to someone by E-mail Share Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Facebook Tweet about Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Twitter Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Google Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Delicious Rank Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Digg

486

Building The last mile'  

SciTech Connect

Utilities may want to leverage the multibillion-dollar investment cable television is about to make. Virtually every utility has corporate objectives to focus more on the customer and change the way the customer is viewed. Utility supply strategy has been shifting away from building large, expensive power plants to making smaller investments with flexible options that can be adjusted to suit future conditions. This strategy is requisite to helping utilities keep and build their share of the market. One result is that utilities and regulators have adopted the concept of demand-side management (DSM) with enthusiasm. What's more, the last 10 years have brought new utility initiatives to explore customer value-oriented pricing structures that recognize the varying cost of production. These DSM opportunities and pricing initiatives require utilities to communicate with customers and help them manage their electricity use. New DSM programs that rely on communications technology include: (1) Providing real-time price signals for electricity-and eventually gas and water; (2) Implementing a direct- or shared-load control program for peak clipping or valley filling by interacting with properly equipped smart appliances; (3) Providing beyond-the-meter value-added services for residential customers, such as weather monitoring, video communications, home comfort automation, appliance monitoring and diagnostics, and energy efficiency tips; and (4) Obtaining detailed data on customers' electricity use patterns to develop new DSM programs. One action by the utility industry will determine whether this strategic vision is achieved: the establishment of a two-way, user-friendly, voice, data, and video communication path to the customer from the utility.

Gupta, P.C.; Bringenberg, J.

1994-03-15T23:59:59.000Z

487

Simplified Building Energy Model (SBEM): A Tool to Analyse Building...  

Open Energy Info (EERE)

list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes,...

488

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

489

Building Data Visualization  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Building Data Visualization contour plot Figure 1: Contour plot showing the various operating stages of occupancy sensors described in the case study. Data visualization for buildings is the display of a rich set of variables and parameters that managers can use to verify the energy savings of energy- efficient technology and identify malfunctions in building equipment or problems with operating strategies. Effective data visualization depends on having graphic presentation formats that reveal the phenomena relevant to the building's performance. A research project at the Center for Building Science is aimed at developing data visualization techniques for improved building management. Buildings with energy management control systems as well as dedicated monitoring equipment in the

490

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

491

Commercial Buildings Characteristics, 1992  

Science Conference Proceedings (OSTI)

Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

Not Available

1994-04-29T23:59:59.000Z

492

Building Green in Greensburg: Greensburg State Bank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg State Bank Greensburg State Bank When a tornado leveled 95% of Greensburg, the only thing left of Greensburg State Bank was the original vault. So the bank was rebuilt on its original site and re-opened for business just one year later. It was the second commercial building in Greensburg to do so. The new bank boasts a variety of green building features including an east-west building orientation that maximizes natural daylight inside, insulated concrete form (ICF) construction for an energy- efficient building envelope, and a high efficiency heating and cooling system. ENERGY EFFICIENCY FEATURES * An east-west building orientation maximizes natural daylighting in the interior and reduces the wall area on the east and west that the sun can heat up, decreasing the need for cooling

493

Building Energy Software Tools Directory: RESEM  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEM RESEM RESEM logo. A simulation-based tool developed to allow the DOE Institutional Conservation Program (ICP) staff and participants to reliably determine the energy savings directly attributable to ICP-supported retrofit measures implemented in a building. RESEM (Retrofit Energy Savings Estimation Model) calculates long-term energy savings directly from actual utility data, with corrections for weather and use variations between the pre-retrofit and post-retrofit utility data collection periods. Keywords retrofit, institutional buildings Validation/Testing N/A Expertise Required Moderate level of computer literacy; familiarity with building energy concepts. Users Over 50. Audience Building managers and energy retrofit engineers. Input Minimal required input includes: original year of building construction,

494

Diagnostics for building commissioning and operation  

SciTech Connect

The objective of this CIEE multi-year project is to develop and apply state-of-the-art continuous building performance measurement and supporting information processing and data visualization technologies. These technologies will diagnose problems in the performance of building energy systems and provide owners and managers with reliable, decision-oriented information. CIEE`s goal is to assist building owners and property managers in effectively reducing energy use through improving O and M practices and implementing opportunities for cost-effective investments in improved building energy systems. The system is being developed as a collaborative effort among researchers, building owners, utilities, and private industry. It will employ state of-the-art techniques for data collection, processing, analysis, presentation and interpretation.

Sebald, A. [Univ. of California, San Diego, CA (United States); Piette, M.A. [Lawrence Berkeley National Lab., CA (United States)

1997-12-01T23:59:59.000Z

495

Lifetime measurements in the transitional nucleus {sup 138}Gd  

Science Conference Proceedings (OSTI)

Lifetime measurements have been made in the ground-state band of the transitional nucleus {sup 138}Gd from coincidence recoil-distance Doppler-shift data. {sup 138}Gd nuclei were produced using the {sup 106}Cd ({sup 36}Ar, 2p2n) reaction with a beam energy of 190 MeV. Reduced transition probabilities have been extracted from the lifetime data collected with the Koeln plunger placed at the target position of the JUROGAM-II array. The B(E2) values have been compared with predictions from X(5) critical-point calculations, which describe the phase transition between vibrational and axially symmetric nuclear shapes, as well as with IBM-1 calculations at the critical point. While the excitation energies in {sup 138}Gd are consistent with X(5) predictions, the large uncertainties associated with the measured B(E2) values cannot preclude vibrational and rotational contributions to the low-lying structure of {sup 138}Gd. Although experimental knowledge for the low-lying {gamma} and {beta}-vibrational bands in {sup 138}Gd is limited, potential-energy surface calculations suggest an increase in {gamma} softness in the ground-state band. In order to more fully account for the effects of {gamma} softness, the X(5) and IBM-1 calculations need to be extended to include the {gamma} degree of freedom for {sup 138}Gd.

Procter, M. G.; Cullen, D. M.; Taylor, M. J. [Schuster Laboratory, University of Manchester, Manchester, M13 9PL (United Kingdom); Ruotsalainen, P.; Grahn, T.; Greenlees, P. T.; Hauschild, K.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Lopez-Martens, A.; Leino, M.; Nieminen, P.; Peura, P.; Rahkila, P.; Rinta-Antilla, S.; Sandzelius, M.; Saren, J. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland)

2011-08-15T23:59:59.000Z

496

Extending the lifetime of fuel cell based hybrid systems  

E-Print Network (OSTI)

Fuel cells are clean power sources that have much higher energy densities and lifetimes compared to batteries. However, fuel cells have limited load following capabilities and cannot be efficiently utilized if used in isolation. In this work, we consider a hybrid system where a fuel cell based hybrid power source is used to provide power to a DVFS processor. The hybrid power source consists of a room temperature fuel cell operating as the primary power source and a Li-ion battery (that has good load following capability) operating as the secondary source. Our goal is to develop polices to extend the lifetime of the fuel cell based hybrid system. First, we develop a charge based optimization framework which minimizes the charge loss of the hybrid system (and not the energy consumption of the DVFS processor). Next, we propose a new algorithm to minimize the charge loss by judiciously scaling the load current. We compare the performance of this algorithm with one that has been optimized for energy, and demonstrate its superiority. Finally, we evaluate the performance of the hybrid system under different system configurations and show how to determine the best combination of fuel cell size and battery capacity for a given embedded application.

Jianli Zhuo; Chaitali Chakrabarti; Naehyuck Chang; Sarma Vrudhula

2006-01-01T23:59:59.000Z

497

Digital buildings - Challenges and opportunities  

Science Conference Proceedings (OSTI)

This paper considers the wider implications of digital buildings (as currently exemplified by building information models) becoming the norm within the building construction sector. Current deployment is reviewed and the growing opportunity to better ... Keywords: BIM, Building, Digital, Futures, Sustainability

Alastair Watson

2011-10-01T23:59:59.000Z

498

Property:Building/Boundaries | Open Energy Information  

Open Energy Info (EERE)

Boundaries Boundaries Jump to: navigation, search This is a property of type String. Boundaries Pages using the property "Building/Boundaries" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Several buildings + Sweden Building 05K0002 + Part of a building + Sweden Building 05K0003 + One building + Sweden Building 05K0004 + One building + Sweden Building 05K0005 + One building + Sweden Building 05K0006 + Several buildings + Sweden Building 05K0007 + One building + Sweden Building 05K0008 + One building + Sweden Building 05K0009 + One building + Sweden Building 05K0010 + One building + Sweden Building 05K0011 + One building + Sweden Building 05K0012 + One building + Sweden Building 05K0013 + One building + Sweden Building 05K0014 + One building +

499

Building Technologies Office: Engaging Stakeholders  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Engaging Stakeholders on Google Bookmark Building Technologies Office: Engaging Stakeholders on Delicious Rank...

500

Federal Buildings Supplemental Survey 1993  

Gasoline and Diesel Fuel Update (EIA)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.25. Water-Heating Equipment in FBSS Buildings in Federal Region 3, Number of Buildings and...