National Library of Energy BETA

Sample records for year actual peakload

  1. peak_load_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Noncoincident Peak Load, by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Megawatts) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 NPCC 44,116 46,594 43,658 46,706 47,581 47,705 45,094 49,269 49,566 52,855

  2. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  3. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect (OSTI)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  4. Use of Residential Smart Appliances for Peak-Load Shifting and Spinning Reserves Cost/Benefit Analysis

    SciTech Connect (OSTI)

    Sastry, Chellury; Pratt, Robert G.; Srivastava, Viraj; Li, Shun

    2010-12-01

    In this report, we present the results of an analytical cost/benefit study of residential smart appliances from a utility/grid perspective in support of a joint stakeholder petition to the ENERGY STAR program within the Environmental Protection Agency (EPA) and Department of Energy (DOE). The goal of the petition is in part to provide appliance manufacturers incentives to hasten the production of smart appliances. The underlying hypothesis is that smart appliances can play a critical role in addressing some of the societal challenges, such as anthropogenic global warming, associated with increased electricity demand, and facilitate increased penetration of renewable sources of power. The appliances we consider include refrigerator/freezers, clothes washers, clothes dryers, room air-conditioners, and dishwashers. The petition requests the recognition that providing an appliance with smart grid capability, i.e., products that meet the definition of a smart appliance, is at least equivalent to a corresponding five percent in operational machine efficiencies. It is then expected that given sufficient incentives and value propositions, and suitable automation capabilities built into smart appliances, residential consumers will be adopting these smart appliances and will be willing participants in addressing the aforementioned societal challenges by more effectively managing their home electricity consumption. The analytical model we utilize in our cost/benefit analysis consists of a set of user-definable assumptions such as the definition of on-peak (hours of day, days of week, months of year), the expected percentage of normal consumer electricity consumption (also referred to as appliance loads) that can shifted from peak hours to off-peak hours, the average power rating of each appliance, etc. Based on these assumptions, we then formulate what the wholesale grid operating-cost savings, or benefits, would be if the smart capabilities of appliances were invoked, and

  5. How People Actually Use Thermostats

    SciTech Connect (OSTI)

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  6. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    69 YEAR 2014 Males 34 Females 35 YEAR 2014 SES 5 EJEK 1 EN 05 8 EN 04 5 NN (Engineering) 27 NQ (ProfTechAdmin) 22 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    42 YEAR 2014 Males 36 Females 6 PAY PLAN YEAR 2014 SES 2 EJEK 5 EN 05 7 EN 04 6 EN 03 1 NN (Engineering) 15 NQ (ProfTechAdmin) 6 YEAR 2014 American Indian Alaska Native Male...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 65 Females 29 YEAR 2012 SES 3 EJEK 5 EN 04 3 NN (Engineering) 21 NQ (ProfTechAdmin) 61 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 5 YEAR 2011 American Indian Male 0 American...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    92 YEAR 2012 Males 52 Females 40 YEAR 2012 SES 1 EJEK 7 EN 04 13 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 38 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    558 YEAR 2013 Males 512 Females 46 YEAR 2013 SES 2 EJEK 2 EN 04 1 NN (Engineering) 11 NQ (ProfTechAdmin) 220 NU (TechAdmin Support) 1 NV (Nuc Mat Courier) 321 YEAR 2013...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    11 YEAR 2012 Males 78 Females 33 YEAR 2012 SES 2 EJEK 9 EN 05 1 EN 04 33 NN (Engineering) 32 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 2...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    300 YEAR 2011 Males 109 Females 191 YEAR 2011 SES 9 EJEK 1 NN (Engineering) 2 NQ (ProfTechAdmin) 203 NU (TechAdmin Support) 38 NF (Future Ldrs) 47 YEAR 2011 American Indian...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    02 YEAR 2011 Males 48 Females 54 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 13 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 0 American Indian...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2012 Males 84 Females 32 YEAR 2012 SES 26 EJEK 2 EN 05 9 NN (Engineering) 39 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 10 YEAR 2012 American Indian Male 0 American...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    34 YEAR 2012 Males 66 Females 68 YEAR 2012 SES 6 NN (Engineering) 15 NQ (ProfTechAdmin) 110 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 1 American Indian Female 2...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    86 YEAR 2012 Males 103 Females 183 YEAR 2012 SES 7 EJEK 1 NN (Engineering) 1 NQ (ProfTechAdmin) 202 NU (TechAdmin Support) 30 NF (Future Ldrs) 45 YEAR 2012 American Indian Male...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    80 YEAR 2012 Males 51 Females 29 YEAR 2012 SES 1 EJEK 22 EN 04 21 NN (Engineering) 14 NQ (ProfTechAdmin) 21 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2012 Males 30 Females 11 YEAR 2012 SES 1 EN 05 1 EN 04 11 NN (Engineering) 9 NQ (ProfTechAdmin) 17 NU (TechAdmin Support) 2 YEAR 2012 American Indian Male 0 American...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2012 Males 19 Females 12 YEAR 2012 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 16 NQ (ProfTechAdmin) 115 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 1 American Indian...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    00 YEAR 2012 Males 48 Females 52 YEAR 2012 SES 5 EJEK 1 NN (Engineering) 11 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 0 American Indian...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    137 YEAR 2013 Males 90 Females 47 YEAR 2013 SES 2 SL 1 EJEK 30 EN 04 30 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 45 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    of Employees 14 GENDER YEAR 2012 Males 9 Females 5 YEAR 2012 SES 2 EJEK 2 NN (Engineering) 4 NQ (ProfTechAdmin) 6 YEAR 2012 American Indian Male 0 American Indian Female 0...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2012 Males 21 Females 22 YEAR 2012 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0 American...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    Males 139 Females 88 YEAR 2012 SES 13 EX 1 EJEK 8 EN 05 23 EN 04 20 EN 03 2 NN (Engineering) 91 NQ (ProfTechAdmin) 62 NU (TechAdmin Support) 7 YEAR 2012 American Indian...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American ...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2012 Males 518 Females 45 YEAR 2012 SES 1 EJEK 2 EN 04 1 EN 03 1 NN (Engineering) 12 NQ (ProfTechAdmin) 209 NU (TechAdmin Support) 2 NV (Nuc Mat Courier) 335 YEAR 2012...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2012 Males 64 Females 33 YEAR 2012 SES 2 EJEK 3 EN 05 1 EN 04 30 EN 03 1 NN (Engineering) 26 NQ (ProfTechAdmin) 32 NU (TechAdmin Support) 2 YEAR 2012 American Indian...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 37 Females 7 YEAR 2012 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 17 NQ (ProfTechAdmin) 6 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 2...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2011 Males 38 Females 9 YEAR 2011 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 19 NQ (ProfTechAdmin) 7 NU (TechAdmin Support) 1 YEAR 2011 American Indian Male 2...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    6 YEAR 2012 Males 64 Females 32 YEAR 2012 SES 1 EJEK 5 EN 05 3 EN 04 23 EN 03 9 NN (Engineering) 18 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 4 YEAR 2012 American Indian...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    78 YEAR 2012 Males 57 Females 21 YEAR 2012 SES 2 SL 1 EJEK 12 EN 04 21 EN 03 2 NN (Engineering) 12 NQ (ProfTechAdmin) 24 NU (TechAdmin Support) 4 YEAR 2012 American Indian Male...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    2012 Males 149 Females 115 YEAR 2012 SES 17 EX 1 EJEK 7 EN 05 2 EN 04 9 EN 03 2 NN (Engineering) 56 NQ (ProfTechAdmin) 165 NU (TechAdmin Support) 4 GS 13 1 YEAR 2012 American...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 22 NN (Engineering) 23 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 13 Hispanic Female (H F) 10 White Male (W M) 43 White Female (W F) 11

  3. YEAR

    National Nuclear Security Administration (NNSA)

    2 YEAR 2014 Males 57 Females 25 PAY PLAN YEAR 2014 SES 3 EJ/EK 4 EN 04 2 NN (Engineering) 20 NQ (Prof/Tech/Admin) 53 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 9 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 3 Hispanic Female (H F) 5 White Male (W M) 43 White Female (W F) 10 DIVERSITY TOTAL WORKFORCE

  4. YEAR

    National Nuclear Security Administration (NNSA)

    93 YEAR 2014 Males 50 Females 43 PAY PLAN YEAR 2014 EJ/EK 3 NN (Engineering) 13 NQ (Prof/Tech/Admin) 74 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 5 African American Female (AA F) 6 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 6 Hispanic Female (H F) 14 White Male (W M) 39 White Female (W F) 21 DIVERSITY

  5. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 Males 11 Females 2 PAY PLAN YEAR 2014 SES 2 EJ/EK 1 EN 04 1 NN (Engineering) 5 NQ (Prof/Tech/Admin) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 10 White Female (W F) 2 DIVERSITY TOTAL WORKFORCE GENDER

  6. YEAR

    National Nuclear Security Administration (NNSA)

    9 YEAR 2014 Males 9 Females 10 YEAR 2014 SES 7 ED 1 EJ/EK 1 EN 05 1 NQ (Prof/Tech/Admin) 8 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 5 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 3 White Male (W M) 7 White Female (W F) 1 PAY PLAN DIVERSITY TOTAL

  7. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 92 Females 43 YEAR 2014 SES 8 EX 1 EJ/EK 4 EN 05 9 EN 04 12 EN 03 2 NN (Engineering) 57 NQ (Prof/Tech/Admin) 42 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 9 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 12 Hispanic Female (H F) 7 White Male (W M) 66 White Female (W F) 22 PAY PLAN

  8. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2014 Males 517 Females 46 PAY PLAN YEAR 2014 SES 2 EJ/EK 2 EN 04 1 NN (Engineering) 11 NQ (Prof/Tech/Admin) 218 NU (Tech/Admin Support) 2 NV (Nuc Mat Courier) 327 YEAR 2014 American Indian Alaska Native Male (AIAN M) 14 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 18 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 8 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 76 Hispanic Female (H F) 21 White Male

  9. YEAR

    National Nuclear Security Administration (NNSA)

    89 YEAR 2014 Males 98 Females 91 PAY PLAN YEAR 2014 SES 14 EX 1 EJ/EK 3 EN 05 1 EN 04 4 EN 03 1 NN (Engineering) 32 NQ (Prof/Tech/Admin) 130 NU (Tech/Admin Support) 2 GS 15 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 5 African American Female (AA F) 14 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 7 Hispanic Male (H M) 7 Hispanic Female (H F) 10 White Male

  10. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 162 Females 81 PAY PLAN YEAR 2014 SES 26 EJ/EK 3 EN 05 7 NN (Engineering) 77 NQ (Prof/Tech/Admin) 108 NU (Tech/Admin Support) 22 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 0 White Male (W M) 154 White Female (W F)

  11. YEAR

    National Nuclear Security Administration (NNSA)

    74 YEAR 2014 Males 96 Females 78 PAY PLAN YEAR 2014 SES 8 EJ/EK 4 EN 04 11 EN 03 1 NN (Engineering) 34 NQ (Prof/Tech/Admin) 113 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 5 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 25 Hispanic Female (H F) 25 White Male (W M) 61 White

  12. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2014 Males 7 Females 7 PAY PLAN YEAR 2014 SES 1 NQ (Prof/Tech/Admin) 7 GS 15 1 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 3 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 4 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER

  13. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2014 Males 72 Females 144 PAY PLAN YEAR 2014 SES 8 EJ/EK 1 NQ (Prof/Tech/Admin) 198 NU (Tech/Admin Support) 9 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 10 African American Female (AA F) 38 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 3 Hispanic Male (H M) 15 Hispanic Female (H F) 33 White Male (W M) 44 White Female (W F) 68 DIVERSITY TOTAL

  14. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJ/EK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (Prof/Tech/Admin) 44 NU (Tech/Admin Support) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 68 White

  15. YEAR

    National Nuclear Security Administration (NNSA)

    446 YEAR 2014 Males 1626 Females 820 YEAR 2014 SES 97 EX 2 ED 1 SL 1 EJ/EK 84 EN 05 38 EN 04 162 EN 03 18 NN (Engineering) 427 NQ (Prof/Tech/Admin) 1216 NU (Tech/Admin Support) 66 NV (Nuc Mat Courier) 327 GS 15 2 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 27 American Indian Alaskan Native Female (AIAN F) 24 African American Male (AA M) 90 African American Female (AA F) 141 Asian American Pacific Islander Male (AAPI M) 63 Asian American Pacific Islander Female

  16. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (Prof/Tech/Admin) 29 NU (Tech/Admin Support) 5 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 12 Hispanic Female (H F) 12 White Male (W M) 34 White Female

  17. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (Prof/Tech/Admin) 9 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 4 African American Female (AA F) 4 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5

  18. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 20 PAY PLAN YEAR 2014 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 1 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 4 Hispanic Female (H F) 7 White Male (W M) 13 White Female (W F) 11

  19. YEAR

    National Nuclear Security Administration (NNSA)

    White Male (W M) 26 White Female (W F) 16 DIVERSITY TOTAL WORKFORCE GENDER Livermore Field ... YEARS OF FEDERAL SERVICE SUPERVISOR RATIO AGE Livermore Field Office As of March 22, 2014 ...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (Prof/Tech/Admin) 13 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City

  1. YEAR

    National Nuclear Security Administration (NNSA)

    9 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (Prof/Tech/Admin) 27 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 21 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 5 Hispanic Female (H F) 3 White Male (W M) 26 White Female (W F) 16

  2. YEAR

    National Nuclear Security Administration (NNSA)

    17 Females 18 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 NQ (Prof/Tech/Admin) 30 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 6 White Male (W M) 10 White Female (W F) 3 DIVERSITY TOTAL WORKFORCE GENDER Associate

  3. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (Prof/Tech/Admin) 25 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 46 White Female (W F) 13

  4. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV (Nuc Mat Courier) 321...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    Females 942 YEAR 2012 SES 108 EX 4 SL 1 EJEK 96 EN 05 45 EN 04 196 EN 03 20 NN (Engineering) 452 NQ (ProfTechAdmin) 1291 NU (TechAdmin Support) 106 NV (Nuc Mat Courier) 335...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  8. Could Material Defects Actually Improve Solar Cells?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Material Defects Actually Improve Solar Cells? Could Material Defects Actually Improve Solar Cells? March 21, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124 NRELsolarcell Scientists at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) are using supercomputers to study what may seem paradoxical: certain defects in silicon solar cells may actually improve their performance. The findings, published January 11, 2016 in Applied Physics Letters,

  9. FY 2013 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 DARM ...

  10. FY 2012 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 DARM ...

  11. Table 13. Coal Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO

  12. Table 22. Energy Intensity, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / $Billion 2005 Chained GDP)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.89145253,10.73335719,10.63428655,10.48440125,10.33479508,10.20669515,10.06546105,9.94541493,9.822393757,9.707148466,9.595465524,9.499032573,9.390723436,9.29474735,9.185496812,9.096176848,9.007677565,8.928276581 "AEO

  13. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect (OSTI)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  14. FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 DARM Transmittal Letter and Attachment Final.pdf (406.93 KB) More Documents & Publications FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement Real Property Maintenance Reporting Requirement Memorandum (July 13, 2010)

  15. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  16. FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 DARM Transmittal Letter and Attachment Final.pdf (541.36 KB) More Documents & Publications FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY_09_DM_RM_AM_Reporting_Memo_and_attachment_072009.pdf Real Property Maintenance Reporting Requirement

  17. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Megawatts and 2008 ...

  18. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 ...

  19. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 ...

  20. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 ...

  1. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 ...

  2. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 ...

  3. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base ...

  4. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 ...

  5. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,201...

  6. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  7. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2...

  8. Table 10. Natural Gas Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,...

  9. "Table 7b. Natural Gas Price, Electric Power Sector, Actual...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,200...

  10. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 19.87 20.21 20.64 20.99 ...

  11. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  12. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 ...

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Electric Utility Demand-Side Management Programs Actual Peakload Reductions Total, 1989-2010 Actual Peakload Reductions, 2010 Energy Savings, 1989-2010 Electric Utility Costs,¹ 1989-2010 266 U.S. Energy Information Administration / Annual Energy Review 2011 1 Program costs consist of all costs associated with providing the various Demand-Side Management (DSM) programs or measures. The costs of DSM programs fall into these major categories: customer rebates/incentives,

  14. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per barrel in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,16.69,16.42999,16.9899,17.66,18.28,19.0599,19.89,20.72,21.65,22.61,23.51,24.29,24.9,25.6,26.3,27,27.64,28.16

  15. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO

  16. Table 6. Petroleum Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2934.6,3201.05,3361.65,3504,3657.3,3737.6,3879.95,3993.1,4098.95,4212.1,4303.35,4398.25,4474.9,4540.6,4584.4,4639.15,4668.35,4672 "AEO

  17. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  18. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  19. Table 12. Total Coal Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO

  20. Table 12. Total Coal Consumption, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 1094 1103 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041

  1. Table 13. Coal Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 999 1021 1041 1051 1056 1066 1073 1081 1087 1098 1107 1122 1121 1128 1143 1173 1201 1223 AEO 1995 1006 1010 1011 1016 1017 1021 1027 1033 1040 1051 1066 1076 1083 1090 1108 1122 1137 AEO 1996 1037 1044 1041 1045 1061 1070 1086 1100 1112 1121 1135 1156 1161 1167 1173 1184 1190 1203 1215 AEO 1997 1028 1052 1072 1088

  2. Table 15. Total Electricity Sales, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual" "Projected" " (billion kilowatt-hours)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2843,2891,2928,2962,3004,3039,3071,3112,3148,3185,3228,3263,3298,3332,3371,3406,3433,3469 "AEO 1995",,2951,2967,2983,3026,3058,3085,3108,3134,3166,3204,3248,3285,3321,3357,3396,3433,3475 "AEO

  3. Table 15. Total Electricity Sales, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual Projected (billion kilowatt-hours) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2843 2891 2928 2962 3004 3039 3071 3112 3148 3185 3228 3263 3298 3332 3371 3406 3433 3469 AEO 1995 2951 2967 2983 3026 3058 3085 3108 3134 3166 3204 3248 3285 3321 3357 3396 3433 3475 AEO 1996 2973 2998 3039 3074 3106 3137 3173 3215 3262 3317 3363 3409 3454 3505 3553 3604 3660 3722 3775 AEO 1997 3075

  4. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 7632 7676 AEO 1997 6636 6694

  5. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 2018 2055 AEO 1997 2362 2307

  6. Table 6. Petroleum Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 4347 4344 AEO 1997 3099 3245 3497

  7. Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

    2012-10-01

    Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under

  8. Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources

    SciTech Connect (OSTI)

    Eddlemon, G.K.; Webb, J.W.; Hunsaker, D.B. Jr.; Miller, R.L.

    1993-03-15

    To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE`s requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

  9. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO

  10. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Consumption, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",19.87,20.21,20.64,20.99,21.2,21.42,21.6,21.99,22.37,22.63,22.95,23.22,23.58,23.82,24.09,24.13,24.02,24.14 "AEO 1995",,20.82,20.66,20.85,21.21,21.65,21.95,22.12,22.25,22.43,22.62,22.87,23.08,23.36,23.61,24.08,24.23,24.59 "AEO

  11. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Megawatts and 2003 Base Year)",,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,..."Texas Power ...

  12. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Megawatts and 2004 Base Year)",,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,..."Texas Power ...

  13. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  14. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  15. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63

  16. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  17. Table 10. Natural Gas Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.02 2.40 2.66 2.74 2.81 2.85 2.89 2.93 2.95 2.97 3.00 3.16 3.31 3.50 3.57 3.63 3.74 3.85 AEO 1995 2.46 2.54 2.80 2.87 2.87 2.89 2.90 2.90 2.92 2.95 2.97 3.00 3.03 3.19 3.35 3.51 3.60 AEO 1996 2.56 2.75 2.85 2.88 2.93 2.98 3.02 3.06 3.07 3.09 3.12 3.17 3.23 3.29 3.37 3.46 3.56 3.68 3.79 AEO 1997 2.82 2.96

  18. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  19. Table 22. Energy Intensity, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / $Billion 2005 Chained GDP) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.9 10.7 10.6 10.5 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 AEO 1995 10.5 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 AEO 1996 10.4 10.3 10.1 10.0 9.8 9.7 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.5 AEO 1997 10.0 9.9 9.8 9.7 9.6 9.5 9.4

  20. Table 9. Natural Gas Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68

  1. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Megawatts and 2003 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,..."Texas Power Grid","Western ...

  2. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Megawatts and 2004 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,..."Texas Power Grid","Western ...

  3. Combined Fiscal Year (FY) 2006 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report presents the goals, objectives, and strategies for measuring the OIG's FY 2006 actual performance and FY 2007 planned activities. Combined Fiscal Year (FY) 2006 Annual ...

  4. Combined Fiscal Year (FY) 2011 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report presents the goals, objectives, and strategies for measuring the OIG's FY 2011 actual performance and FY 2012 planned activities. Combined Fiscal Year (FY) 2011 Annual ...

  5. Combined Fiscal Year (FY) 2010 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report presents the goals, objectives, and strategies for measuring the OIG's FY 2010 actual performance and FY 2011 planned activities. Combined Fiscal Year (FY) 2010 Annual ...

  6. Combined Fiscal Year (FY) 2009 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report presents the goals, objectives, and strategies for measuring the OIG's FY 2009 actual performance and FY 2010 planned activities. Combined Fiscal Year (FY) 2009 Annual ...

  7. Combined Fiscal Year (FY) 2007 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report presents the goals, objectives, and strategies for measuring the OIG's FY 2007 actual performance and FY 2008 planned activities. Combined Fiscal Year (FY) 2007 Annual ...

  8. Actual Scale MOX Powder Mixing Test for MOX Fuel Fabrication Plant in Japan

    SciTech Connect (OSTI)

    Osaka, Shuichi; Kurita, Ichiro; Deguchi, Morimoto; Ito, Masanori; Goto, Masakazu

    2007-07-01

    Japan Nuclear Fuel Ltd. (hereafter, JNFL) promotes a program of constructing a MOX fuel fabrication plant (hereafter, J-MOX) to fabricate MOX fuels to be loaded in domestic light water reactors. Since Japanese fiscal year (hereafter, JFY) 1999, JNFL, to establish the technology for a smooth start-up and the stable operation of J-MOX, has executed an evaluation test for technology to be adopted at J-MOX. JNFL, based on a consideration that J-MOX fuel fabrication comes commercial scale production, decided an introduction of MIMAS technology into J-MOX main process, from powder mixing through pellet sintering, well recognized as mostly important to achieve good quality product of MOX fuel, since it achieves good results in both fuel production and actual reactor irradiation in Europe, but there is one difference that JNFL is going to use Japanese typical plutonium and uranium mixed oxide powder converted with the micro-wave heating direct de-nitration technology (hereafter, MH-MOX) but normal PuO{sub 2} of European MOX fuel fabricators. Therefore, in order to evaluate the suitability of the MH-MOX powder for the MIMAS process, JNFL manufactured small scale test equipment, and implemented a powder mixing evaluation test up until JFY 2003. As a result, the suitability of the MH-MOX powder for the MIMAS process was positively evaluated and confirmed It was followed by a five-years test named an 'actual test' from JFY 2003 to JFY 2007, which aims at demonstrating good operation and maintenance of process equipment as well as obtaining good quality of MOX fuel pellets. (authors)

  9. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jaunary 2010" ,"Next Update: October 2010" ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected ...

  10. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014" ,"(Thousands of Megawatthours and ...

  11. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2008 through 2012 " ,"(Thousands of Megawatthours and ...

  12. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and ...

  13. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 3.09 3.15 2.86 2.78 2.73 2.65 2.62 2.60 2.56 2.53 2.52 2.49 2.45 2.41 2.40 2.36 2.32 2.29 AEO 1995 3.66 2.77 2.53 2.71 2.67 2.61 2.55 2.48 2.46 2.45 2.45 2.43 2.39 2.35 2.31 2.27 2.24 AEO 1996 2.61

  14. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  15. Y YEAR

    National Nuclear Security Administration (NNSA)

    2 40 -4.76% YEAR 2013 2014 Males 37 35 -5.41% Females 5 5 0% YEAR 2013 2014 SES 2 2 0% EJEK 5 4 -20.00% EN 05 5 7 40.00% EN 04 6 6 0% EN 03 1 1 0% NN...

  16. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 67 -15.19% YEAR 2013 2014 Males 44 34 -22.73% Females 35 33 -5.71% YEAR 2013 2014 SES 6 4 -33.33% EJEK 1 1 0% EN 05 9 8 -11.11% EN 04 6 5 -16.67% NN...

  17. Y YEAR

    National Nuclear Security Administration (NNSA)

    7 35 -5.41% ↓ YEAR 2013 2014 Males 27 25 -7.41% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 11 10 -9.09% ↓ NN (Engineering) 8 8 0% / NQ (Prof/Tech/Admin) 14 15 7.14% ↑ NU (Tech/Admin Support) 2 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 3 3 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  18. Y YEAR

    National Nuclear Security Administration (NNSA)

    5 79 -7.06% ↓ YEAR 2013 2014 Males 59 57 -3.39% ↓ Females 26 22 -15.38% ↓ YEAR 2013 2014 SES 1 0 -100% ↓ EJ/EK 4 3 -25.00% ↓ EN 05 3 2 -33.33% ↓ EN 04 22 22 0% / EN 03 8 8 0% / NN (Engineering) 16 15 -6.25% ↓ NQ (Prof/Tech/Admin) 28 26 -7.14% ↓ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 5 4 -20.00% ↓ African American Female (AA,F) 3 2

  19. Y YEAR

    National Nuclear Security Administration (NNSA)

    91 81 -10.99% ↓ YEAR 2013 2014 Males 67 56 -16.42% ↓ Females 24 25 4.17% ↑ YEAR 2013 2014 SES 1 2 100% ↑ EJ/EK 9 8 -11.11% ↓ EN 04 25 22 -12.00% ↓ NN (Engineering) 24 20 -16.67% ↓ NQ (Prof/Tech/Admin) 29 26 -10.34% ↓ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 3 3 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 0 0 0% / Asian American Pacific Islander

  20. Y YEAR

    National Nuclear Security Administration (NNSA)

    21 -4.55% ↓ YEAR 2013 2014 Males 10 8 -20.00% ↓ Females 12 13 8.33% ↑ YEAR 2013 2014 SES 10 7 -30.00% ↓ EX 0 2 100% ↑ EJ/EK 1 1 0% / EN 05 0 1 100% ↑ EN 04 0 1 100% ↑ NQ (Prof/Tech/Admin) 9 8 -11.11% ↓ NU (Tech/Admin Support) 1 1 0% / ED 00 1 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 2 1 -50.00% ↓ African American Male (AA,M) 1 1 0% / African American Female (AA,F) 5 4 -20.00% ↓ Asian

  1. Y YEAR

    National Nuclear Security Administration (NNSA)

    41 155 9.93% ↑ YEAR 2013 2014 Males 92 106 15.22% ↑ Females 49 49 0% / YEAR 2013 2014 SES 8 8 0% / EX 1 1 0% / EJ/EK 4 4 0% / EN 05 11 10 -9.09% ↓ EN 04 11 14 27.27% ↑ EN 03 2 5 150% ↑ NN (Engineering) 60 63 5.00% ↑ NQ (Prof/Tech/Admin) 44 50 13.64% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 7 10 42.86% ↑ African American Female (AA,F) 13 11 -15.38% ↓ Asian American

  2. Y YEAR

    National Nuclear Security Administration (NNSA)

    563 560 -0.53% ↓ YEAR 2013 2014 Males 518 514 -0.77% ↓ Females 45 46 2.22% ↑ YEAR 2013 2014 SES 2 2 0% / EJ/EK 2 2 0% / EN 04 1 1 0% / NN (Engineering) 11 11 0% / NQ (Prof/Tech/Admin) 218 221 1.38% ↑ NU (Tech/Admin Support) 1 2 100% ↑ NV (Nuc Mat Courier) 328 321 -2.13% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 15 15 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 19 18 -5.26% ↓ African American Female (AA,F) 1 1 0% /

  3. Y YEAR

    National Nuclear Security Administration (NNSA)

    97 180 -8.63% ↓ YEAR 2013 2014 Males 105 89 -15.24% ↓ Females 92 91 -1.09% ↓ YEAR 2013 2014 SES 14 13 -7.14% ↓ EX 1 1 0% / EJ/EK 3 3 0% / EN 05 1 1 0% / EN 04 4 2 -50.00% ↓ EN 03 1 1 0% / EN 00 0 3 100% ↑ NN (Engineering) 35 27 -22.86% ↓ NQ (Prof/Tech/Admin) 135 126 -6.67% ↓ NU (Tech/Admin Support) 2 2 0% / GS 15 0 1 100% ↑ GS 13 1 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 1 -50.00% ↓ American Indian Alaskan Native Female (AIAN,F) 0 0 0% /

  4. Y YEAR

    National Nuclear Security Administration (NNSA)

    *Total number of Employees 122 112 -8.20% ↓ YEAR 2013 2014 Males 90 84 -6.67% ↓ Females 32 28 -12.50% ↓ YEAR 2013 2014 SES 26 24 -7.69% ↓ EJ/EK 3 3 0% / EN 05 8 9 12.50% ↑ NN (Engineering) 48 47 -2.08% ↓ NQ (Prof/Tech/Admin) 30 26 -13.33% ↓ NU (Tech/Admin Support) 7 3 -57.14% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 3 3 0% / African American Female (AA,F) 7 6 -14.29%

  5. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 79 -5.95% ↓ YEAR 2013 2014 Males 59 55 -6.78% ↓ Females 25 24 -4.00% ↓ YEAR 2013 2014 SES 3 3 0% / EJ/EK 4 4 0% / EN 04 2 1 -50.00% ↓ NN (Engineering) 20 20 0% / NQ (Prof/Tech/Admin) 55 51 -7.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 10 10 0% / African American Female (AA,F) 9 8 -11.11% ↓ Asian American Pacific Islander Male (AAPI,M) 2 2 0% / Asian American Pacific

  6. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 87 -1.14% ↓ YEAR 2013 2014 Males 46 46 0% / Females 42 41 -2.38% ↓ YEAR 2013 2014 SES 1 0 -100% ↓ EJ/EK 4 2 -50.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 68 70 2.94% ↑ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 5 5 0% / African American Female (AA,F) 5 6 20.00% ↑ Asian American Pacific Islander Male (AAPI,M) 0 0 0% / Asian

  7. Y YEAR

    National Nuclear Security Administration (NNSA)

    1 14 27.27% ↑ YEAR 2013 2014 Males 9 12 33.33% ↑ Females 2 2 0% / YEAR 2013 2014 SES 2 2 0% / EJ/EK 1 1 0% / EN 04 0 1 100% ↑ EN 00 0 1 100% ↑ NN (Engineering) 5 5 0% / NQ (Prof/Tech/Admin) 3 4 33.33% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 0 0 0% / Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific

  8. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 164 -8.38% ↓ YEAR 2013 2014 Males 100 92 -8.00% ↓ Females 79 72 -8.86% ↓ YEAR 2013 2014 SES 8 8 0% / EJ/EK 4 3 -25.00% ↓ EN 04 11 11 0% / EN 03 1 1 0% / EN 00 0 2 100% ↑ NN (Engineering) 39 32 -17.95% ↓ NQ (Prof/Tech/Admin) 111 104 -6.31% ↓ NU (Tech/Admin Support) 5 3 -40.00% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 2 100% ↑ American Indian Alaskan Native Female (AIAN,F) 2 1 -50.00% ↓ African American Male (AA,M) 4 3 -25.00% ↓ African American

  9. Y YEAR

    National Nuclear Security Administration (NNSA)

    40 36 -10.00% ↓ YEAR 2013 2014 Males 18 18 0% / Females 22 18 -18.18% ↓ YEAR 2013 2014 SES 3 2 -33.33% ↓ EJ/EK 1 1 0% / EN 03 1 1 0% / NN (Engineering) 3 3 0% / NQ (Prof/Tech/Admin) 30 27 -10.00% ↓ NU (Tech/Admin Support) 2 2 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 1 1 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  10. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 30 -11.76% ↓ YEAR 2013 2014 Males 16 14 -12.50% ↓ Females 18 16 -11.11% ↓ YEAR 2013 2014 SES 1 1 0% / EJ/EK 3 1 -66.67% ↓ NQ (Prof/Tech/Admin) 29 27 -6.90% ↓ NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 3 3 0% / African American Female (AA,F) 7 6 -14.29% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific Islander

  11. Y YEAR

    National Nuclear Security Administration (NNSA)

    9 209 -8.73% ↓ YEAR 2013 2014 Males 76 76 0% / Females 153 133 -13.07% ↓ YEAR 2013 2014 SES 9 6 -33.33% ↓ EJ/EK 1 1 0% / NQ (Prof/Tech/Admin) 208 194 -6.73% ↓ NU (Tech/Admin Support) 11 8 -27.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 3 2 -33.33% ↓ African American Male (AA,M) 10 10 0% / African American Female (AA,F) 39 36 -7.69% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American

  12. Y YEAR

    National Nuclear Security Administration (NNSA)

    7 80 -8.05% ↓ YEAR 2013 2014 Males 62 57 -8.06% ↓ Females 25 23 -8.00% ↓ YEAR 2013 2014 SES 1 1 0% / EJ/EK 3 3 0% / EN 05 1 1 0% / EN 04 27 24 -11.11% ↓ EN 03 1 0 -100% ↓ NN (Engineering) 26 25 -3.85% ↓ NQ (Prof/Tech/Admin) 26 24 -7.69% ↓ NU (Tech/Admin Support) 2 2 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 3 2 -33.33% ↓ African American Female (AA,F) 3 3 0% / Asian

  13. Y YEAR

    National Nuclear Security Administration (NNSA)

    502 2381 -4.84% ↓ YEAR 2013 2014 Males 1663 1593 -4.21% ↓ Females 839 788 -6.08% ↓ YEAR 2013 2014 SES 104 90 -13.46% ↓ EX 2 4 100% ↑ SL 1 0 -100% ↓ EJ/EK 88 73 -17.05% ↓ EN 05 40 41 2.50% ↑ EN 04 169 157 -7.10% ↓ EN 03 18 21 100% ↑ EN 00 0 6 100% ↑ NN (Engineering) 441 416 -5.67% ↓ NQ (Prof/Tech/Admin) 1239 1190 -3.95% ↓ NU (Tech/Admin Support) 66 57 -13.64% ↓ NV (Nuc Mat Courier) 328 321 -2.13% ↓ GS 15 1 2 100% ↑ GS 13 2 2 0% / GS 10 3 1 -66.67% ↓ YEAR 2013

  14. Y YEAR

    National Nuclear Security Administration (NNSA)

    80 83 3.75% ↑ YEAR 2013 2014 Males 48 50 4.17% ↑ Females 32 33 3.13% ↑ YEAR 2013 2014 SES 2 1 -50.00% ↓ EJ/EK 8 7 -12.50% ↓ EN 04 11 9 -18.18% ↓ EN 03 1 1 0% / NN (Engineering) 24 27 12.50% ↑ NQ (Prof/Tech/Admin) 32 33 3.13% ↑ NU (Tech/Admin Support) 2 5 150% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 3 3 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 2 2 0% / Asian American

  15. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 27 -3.57% ↓ YEAR 2013 2014 Males 18 17 -5.56% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 4 3 -25.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 9 9 0% / NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 4 4 0% / African American Female (AA,F) 3 4 33.33% ↑ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian

  16. Year Modules

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual photovoltaic module shipments, 2004-2014 (peak kilowatts) Year Modules 2004 143,274 2005 204,996 2006 320,208 2007 494,148 2008 920,693 2009 1,188,879 2010 2,644,498 2011 3,772,075 2012 4,655,005 2013 4,984,881 2014 6,237,524 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Includes both U.S. Shipments and Exports.

  17. Year Modules

    U.S. Energy Information Administration (EIA) Indexed Site

    dollars per peak watt) Year Modules 2004 $2.99 2005 $3.19 2006 $3.50 2007 $3.37 2008 $3.49 2009 $2.79 2010 $1.96 2011 $1.59 2012 $1.15 2013 $0.75 2014 $0.87 Table 4. Average value of photovoltaic modules, 2004-2014 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Dollars are not adjusted for inflation.

  18. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  19. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    6" ,"Released: February 7, 2008" ,"Next Update: October 2008" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  20. Making appropriate comparisons of estimated and actual costs of reducing SO{sub 2} emissions under Title IV

    SciTech Connect (OSTI)

    Smith, A.E.

    1998-12-31

    A current sentiment within some parts of the environmental policy community is that market-based regulatory approaches such as emissions trading have proven so effective that actual costs will be only a small fraction of what ex ante cost estimation procedures would project. With this line of reasoning, some have dismissed available cost estimates for major proposed new regulations, such as the new PM and ozone NAAQS, as not meaningful for policy decisions. The most commonly used evidence in support of this position is the experience with SO{sub 2} reductions under Title IV of the 1990 Clean Air Act Amendments. In Title IV, a market for emissions allowances has been used to achieve reductions in sulfur dioxides (SO{sub 2}) to ameliorate acid rain. It is commonly asserted today that the cost of achieving the SO{sub 2} emissions reductions has been only one-tenth or less of what Title IV was originally expected to cost. This paper demonstrates that, to the contrary, actual costs for SO{sub 2} reductions remain roughly in line with original estimates associated with Title IV. Erroneous conclusions about Title IV`s costs are due to inappropriate comparisons of a variety of different measures that appear to be comparable only because they are all stated in dollars per ton. Program cost estimates include the total costs of a fully-implemented regulatory program. The very low costs of Title IV that are commonly cited today are neither directly reflective of a fully implemented Title IV, (which is still many years away) nor reflective of all the costs already incurred. Further, a careful review of history finds that the initial cost estimates that many cite were never associated with Title IV. Technically speaking, people are comparing the estimated control costs for the most-costly power plant associated with earlier acid rain regulatory proposals with prices from a market that do not directly reflect total costs.

  1. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    SciTech Connect (OSTI)

    Dell`Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-02-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species.

  2. Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Peeler, D.K.; Gilliam, T.M.; Bleier, A.; Spence, R.D.

    1996-05-06

    Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.

  3. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  4. Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

    2009-03-09

    .A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  5. Table 8.13 Electric Utility Demand-Side Management Programs, 1989-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Electric Utility Demand-Side Management Programs, 1989-2010 Year Actual Peakload Reductions 1 Energy Savings Electric Utility Costs 4 Energy Efficiency 2 Load Management 3 Total Megawatts Million Kilowatthours Thousand Dollars 5 1989 NA NA 12,463 14,672 872,935 1990 NA NA 13,704 20,458 1,177,457 1991 NA NA 15,619 24,848 1,803,773 1992 7,890 9,314 17,204 35,563 2,348,094 1993 10,368 12,701 23,069 45,294 2,743,533 1994 11,662 13,340 25,001 52,483 2,715,657 1995 13,212 16,347 29,561 57,421

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 8.13 Electric Utility Demand-Side Management Programs, 1989-2010 Year Actual Peakload Reductions 1 Energy Savings Electric Utility Costs 4 Energy Efficiency 2 Load Management 3 Total Megawatts Million Kilowatthours Thousand Dollars 5 1989 NA NA 12,463 14,672 872,935 1990 NA NA 13,704 20,458 1,177,457 1991 NA NA 15,619 24,848 1,803,773 1992 7,890 9,314 17,204 35,563 2,348,094 1993 10,368 12,701 23,069 45,294 2,743,533 1994 11,662 13,340 25,001 52,483 2,715,657 1995 13,212 16,347 29,561

  7. TESTING OF THE SPINTEK ROTARY MICROFILTER USING ACTUAL HANFORD WASTE SAMPLES

    SciTech Connect (OSTI)

    HUBER HJ

    2010-04-13

    The SpinTek rotary microfilter was tested on actual Hanford tank waste. The samples were a composite of archived Tank 241-AN-105 material and a sample representing single-shell tanks (SST). Simulants of the two samples have been used in non-rad test runs at the 222-S laboratory and at Savannah River National Laboratory (SRNL). The results of these studies are compared in this report. Two different nominal pore sizes for the sintered steel rotating disk filter were chosen: 0.5 and 0.1 {micro}m. The results suggest that the 0.5-{micro}m disk is preferable for Hanford tank waste for the following reasons: (1) The filtrate clarity is within the same range (<<4 ntu for both disks); (2) The filtrate flux is in general higher for the 0.5-{micro}m disk; and (3) The 0.1-{micro}m disk showed a higher likelihood of fouling. The filtrate flux of the actual tank samples is generally in the range of 20-30% compared to the equivalent non-rad tests. The AN-105 slurries performed at about twice the filtrate flux of the SST slurries. The reason for this difference has not been identified. Particle size distributions in both cases are very similar; comparison of the chemical composition is not conclusive. The sole hint towards what material was stuck in the filter pore holes came from the analysis of the dried flakes from the surface of the fouled 0.1-{micro}m disk. A cleaning approach developed by SRNL personnel to deal with fouled disks has been found adaptable when using actual Hanford samples. The use of 1 M nitric acid improved the filtrate flux by approximately two times; using the same simulants as in the non-rad test runs showed that the filtrate flux was restored to 1/2 of its original amount.

  8. Method and apparatus for distinguishing actual sparse events from sparse event false alarms

    DOE Patents [OSTI]

    Spalding, Richard E.; Grotbeck, Carter L.

    2000-01-01

    Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

  9. What do the DOE Zero Energy Ready Home Program Specs Actually Require?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternate HVAC Systems & the Need to Use a Credentialed HVAC Contractor What do the DOE Zero Energy Ready Home Program Specs Actually Require? The DOE Zero Energy Ready Home program frequently receives inquiries about the need for qualifying projects to use an HVAC contractor who is certified by an H-QUITO 1 . The DOE Zero Energy Ready Home program incorporates all of the ENERGY STAR Homes provisions. While commissioning is important for all HVAC systems, Versions 3 and 3.1 of the ENERGY

  10. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    SciTech Connect (OSTI)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was

  11. Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

    2009-02-20

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

  12. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  13. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    SciTech Connect (OSTI)

    Laali, A.R.; Meyer, J.L.; Bellot, C.; Louche, A.

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  14. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    SciTech Connect (OSTI)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  15. The primary test of measuremental system for the actual emittance of relativistic electron beams

    SciTech Connect (OSTI)

    Liang Fu; Tai-bin Du; Xin Chen

    1995-12-31

    Recent, a new measuremental system has been established basically in Tsinghua University PRA. This system is able to measure the lower emittance of the electron beams from the RF accelerators for the FEL. It consists of a scanning magnetic field, a slit, a fluorescent screen, and a TV camera, an image processing system, a CAD 386 computer. Using it an actual phase diagram is obtained for 4-10 Mev electron beams, The principle and structure of the facility were reported in the Proceeding of the 15th FEL Conference. This paper describes the performance of the main components and the results of first measurement for the electron gun and 4Mev standing wave LINAC, Some new suggests are related too.

  16. An insight into actual energy use and its drivers in high-performance buildings

    SciTech Connect (OSTI)

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accurately indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are

  17. An insight into actual energy use and its drivers in high-performance buildings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  18. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect (OSTI)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  19. Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts

    SciTech Connect (OSTI)

    John Smart; Thomas Bradley; Stephen Schey

    2014-04-01

    In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles. Using data collected from Volts enrolled in The EV Project, this paper compares the real-world UF of two groups of Chevrolet Volts to estimated UF's based on J2841. The actual observed fleet utility factors (FUF) for the MY2011/2012 and MY2013 Volt groups studied were observed to be 72% and 74%, respectively. Using the EPA CD ranges, the method prescribed by J2841 estimates a FUF of 65% and 68% for the MY2011/2012 and MY2013 Volt groups, respectively. Volt drivers achieved higher percentages of distance traveled in EV mode for two reasons. First, they had fewer long-distance travel days than drivers in the national travel survey referenced by J2841. Second, they charged more frequently than the J2841 assumption of once per day - drivers of Volts in this study averaged over 1.4 charging events per day. Although actual CD range varied widely as driving conditions varied, the average CD ranges for the two Volt groups studied matched the EPA CD range estimates, so CD range variation did not affect FUF results.

  20. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of IO Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for...

  1. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  2. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  3. FRACTIONAL CRYSTALLIZATION LABORATORY TESTING FOR INCLUSION & COPRECIPITATION WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    WARRANT, R.W.

    2006-12-11

    Fractional crystallization is being considered as a pretreatment method to support supplemental treatment of retrieved single-shell tank (SST) saltcake waste at the Hanford Site. The goal of the fractional crystallization process is to optimize the separation of the radioactivity (radionuclides) from the saltcake waste and send it to the Waste Treatment and Immobilization Plant and send the bulk of the saltcake to the supplemental treatment plant (bulk vitrification). The primary factors that influence the separation efficiency are (1) solid/liquid separation efficiency, (2) contaminant inclusions, and (3) co-precipitation. This is a report of testing for factors (2) and (3) with actual tank waste samples. For the purposes of this report, contaminant inclusions are defined as the inclusion of supernatant, containing contaminating radionuclides, in a pocket within the precipitating saltcake crystals. Co-precipitation is defined as the simultaneous precipitation of a saltcake crystal with a contaminating radionuclide. These two factors were tested for various potential fractional crystallization product salts by spiking the composite tank waste samples (SST Early or SST Late, external letter CH2M-0600248, ''Preparation of Composite Tank Waste Samples for ME-21 Project'') with the desired target salt and then evaporating to precipitate that salt. SST Early represents the typical composition of dissolved saltcake early in the retrieval process, and SST Late represents the typical composition during the later stages of retrieval.

  4. Relationship between self-reported activity levels and actual heart rates in teenagers

    SciTech Connect (OSTI)

    Terblanche, A.P.S.; Ozkaynak, H.; Spengler, J.D.; Butler, D.A. )

    1991-08-01

    A study was designed to explore the relationship between self-reported activity levels and actual heart rate (HR) as measured by a portable heart rate monitor. Twenty-two teenagers (8 boys, 14 girls, median age of 16) from Watertown High School, Massachusetts participated in this pilot study which involved continuous monitoring of HR during normal daily activities and simultaneous completion of a time-activity diary. There were 31 successful monitoring sessions ranging from 1.9 to 17 hours with a median monitoring time of 12.6 hours. Four unsuccessful monitoring sessions were experienced due to equipment failure. Apart from participant cooperation, the single most important factor affecting the feasibility of continuous heart rate monitoring was found to be equipment design. Th overall average heart rate observed was 88.4 bpm (SD = 24.3). An individual's correlation coefficient for perceived activity level (documented in half-hour intervals) and heart rate (averaged over the half-hour intervals) varied from 0.24 to 0.89. More than half of the correlation coefficients were below 0.40. There was a significant difference between average heart rate for time spent indoors (90 bpm) versus outdoors (103 bpm) even after correcting for sleeping time. It is concluded that continuous HR monitoring with simultaneous completion of a time/activity dairy is feasible and is a promising source of information for studies on exposure to air pollutants.

  5. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  6. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In this project, the Building America CARB team evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  7. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Thousands of Megawatthours and 2004 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,..."Texas Power ...

  8. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Thousands of Megawatthours and 2003 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,..."Texas Power ...

  9. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of I/O Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for each year between storage and network destinations (systems within and outside of NERSC). Traffic for the current year is an estimate derived by scaling the known months traffic up to 12 months. The years shown are calendar years. The first graph shows the overall growth in network traffic to storage over the years.

  10. ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-07-10

    In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

  11. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    SciTech Connect (OSTI)

    Burket, P

    2009-02-24

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  12. Final Report. LAW Glass Formulation to Support AP-101 Actual Waste Testing, VSL-03R3470-2, Rev. 0

    SciTech Connect (OSTI)

    Muller, I. S.; Pegg, I. L.; Rielley, Elizabeth; Carranza, Isidro; Hight, Kenneth; Lai, Shan-Tao T.; Mooers, Cavin; Bazemore, Gina; Cecil, Richard; Kruger, Albert A.

    2015-06-22

    The main objective of the work was to develop and select a glass formulation for vitrification testing of the actual waste sample of LAW AP-101 at Battelle - Pacific Northwest Division (PNWD). Other objectives of the work included preparation and characterization of glasses to demonstrate compliance with contract and processing requirements, evaluation of the ability to achieve waste loading requirements, testing to demonstrate compatibility of the glass melts with melter materials of construction, comparison of the properties of simulant and actual waste glasses, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  13. 50 Years of Space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 Years of Space science-innovationassetsimagesicon-science.jpg 50 Years of Space Since 1943, some of the world's smartest and most dedicated technical people have ...

  14. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    SciTech Connect (OSTI)

    Brown, G.N.; Bontha, J.R.; Carlson, C.D.

    1995-09-01

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal.

  15. 70 years after Trinity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70 years after Trinity 70 years after Trinity Though the world has seen many changes since Trinity, one thing has remained constant: Los Alamos remains essential to our nation's ...

  16. Secretary Moniz's First Year

    Broader source: Energy.gov [DOE]

    We're looking back at some of the biggest moments from Energy Secretary Ernest Moniz's first year in office.

  17. Fiscal Year Ended

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year Ended September 30, 2014 Report to Congress July 2016 United States Department of Energy Washington, DC 20585 Department of Energy | July 2016 Report on Uncosted Balances for Fiscal Year Ended 2014| Page iii Executive Summary As required by the Energy Policy Act of 1992 (Public Law 102-486), the Department of Energy is submitting a Report on Uncosted Balances for Fiscal Year Ended 2014. This report presents the results of the Department's annual analysis of uncosted obligation

  18. 2013 Year in Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Year in Review i 2013 YIR May 2014 Year-in-Review: 2013 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy DOE / 2013 Year in Review ii 2013 YIR For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific

  19. Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year 2007 Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year 2007 Department of Energy Report and Agency ...

  20. Final Year Project Report

    SciTech Connect (OSTI)

    Hubsch, Tristan

    2013-06-20

    In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.

  1. Technique of estimation of actual strength of a gas pipeline section at its deformation in landslide action zone

    SciTech Connect (OSTI)

    Tcherni, V.P.

    1996-12-31

    The technique is given which permits determination of stress and strain state (SSS) and estimation of actual strength of a section of a buried main gas pipeline (GP) in the case of its deformation in a landslide action zone. The technique is based on the use of three-dimensional coordinates of axial points of the deformed GP section. These coordinates are received by a full-scale survey. The deformed axis of the surveyed GP section is described by the polynomial. The unknown coefficients of the polynomial can be determined from the boundary conditions at points of connection with contiguous undeformed sections as well as by use of minimization methods in mathematical processing of full-scale survey results. The resulting form of GP section`s axis allows one to determine curvatures and, accordingly, bending moments along all the length of the considered section. The influence of soil resistance to longitudinal displacements of a pipeline is used to determine longitudinal forces. Resulting values of bending moments and axial forces as well as the known value of internal pressure are used to analyze all necessary components of an actual SSS of pipeline section and to estimate its strength by elastic analysis.

  2. Allocation Year Rollover process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allocatio Year Rollover process Allocation Year Rollover process December 23, 2013 by Francesca Verdier Allocation Year 2013 (AY13) ends at 23:59:59 on Monday, January 13, 2014. AY14 runs from Tuesday, January 14, 2014 through Monday, January 12, 2015. The major features of the rollover are: charging acroess the AY boundary: All batch jobs will continue running during the rollover. Time accrued before midnight will be charged to AY13 repos; time accrued after midnight will be charged to AY14

  3. Welcome Year in Review

    National Nuclear Security Administration (NNSA)

    Training Meeting Orlando, Florida-May 23-25, 2006 Sponsored by the U.S. Department of Energy & the U.S. Nuclear Regulatory Commission Welcome & Year In Review Peter Dessaules...

  4. Year 2000 awareness

    SciTech Connect (OSTI)

    Holmes, C.

    1997-11-01

    This report contains viewgraphs on the challenges business face with the year 2000 software problem. Estimates, roadmaps, virtual factory software, current awareness, and world wide web references are given.

  5. YEAR IN REVIEW

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amped Up Newsletter Volume 1, No. 1 | February 2015 2014 ANNUAL REPORT 2014 YEAR IN REVIEW Volume 1, No. 1, January/February 2015 What's Happening @ EERE IN THIS ISSUE A Message from Dave.......................................... 2 EERE All Hands Meeting ..................................... 3 Staffing Update ..................................................... 4 2014 Success Stories .......................................... 6 Sustainable Transportation ............................ 6 Renewable

  6. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid...

    U.S. Energy Information Administration (EIA) Indexed Site

    2008 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous...

  7. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid...

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous...

  8. Combined Fiscal Year (FY) 2002 Annual Performance Report and FY 2003 Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Plan | Department of Energy 2 Annual Performance Report and FY 2003 Annual Performance Plan Combined Fiscal Year (FY) 2002 Annual Performance Report and FY 2003 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2002 actual performance and FY 2003 planned activities. Combined Fiscal Year (FY) 2002 Annual Performance Report and FY 2003 Annual Performance Plan (3.03 MB) More Documents & Publications Annual Performance

  9. Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Performance Plan | Department of Energy 9 Annual Performance Results and FY 2010 Annual Performance Plan Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2009 actual performance and FY 2010 planned activities. Combined Fiscal

  10. Combined Fiscal Year (FY) 2010 Annual Performance Results and FY 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Performance Plan | Department of Energy 0 Annual Performance Results and FY 2011 Annual Performance Plan Combined Fiscal Year (FY) 2010 Annual Performance Results and FY 2011 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2010 Annual Performance Results and FY 2011 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2010 actual performance and FY 2011 planned activities. Combined Fiscal

  11. Combined Fiscal Year (FY) 2011 Annual Performance Results and FY 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Performance Plan | Department of Energy 1 Annual Performance Results and FY 2012 Annual Performance Plan Combined Fiscal Year (FY) 2011 Annual Performance Results and FY 2012 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2011 Annual Performance Results and FY 2012 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2011 actual performance and FY 2012 planned activities. Combined Fiscal

  12. Combined Fiscal Year (FY) 2012 Annual Performance Results and FYs 2013 and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Annual Performance Plan | Department of Energy 2 Annual Performance Results and FYs 2013 and 2014 Annual Performance Plan Combined Fiscal Year (FY) 2012 Annual Performance Results and FYs 2013 and 2014 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2012 Annual Performance Results and FYs 2013 and 2014 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2012 actual performance and FYs 2013

  13. Combined Fiscal Year (FY) 2013 Annual Performance Results and FYs 2014 and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Annual Performance Plan | Department of Energy 3 Annual Performance Results and FYs 2014 and 2015 Annual Performance Plan Combined Fiscal Year (FY) 2013 Annual Performance Results and FYs 2014 and 2015 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2013 Annual Performance Results and FYs 2014 and 2015 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2013 actual performance and FYs 2014

  14. Combined Fiscal Year (FY) 2014 Annual Performance Results and FYs 2015 and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 Annual Performance Plan | Department of Energy 4 Annual Performance Results and FYs 2015 and 2016 Annual Performance Plan Combined Fiscal Year (FY) 2014 Annual Performance Results and FYs 2015 and 2016 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2014 Annual Performance Results and FYs 2015 and 2016 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2014 actual performance and FYs 2015

  15. Combined Fiscal Year (FY) 2015 Annual Performance Results and FYs 2016 and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2017 Annual Performance Plan | Department of Energy 5 Annual Performance Results and FYs 2016 and 2017 Annual Performance Plan Combined Fiscal Year (FY) 2015 Annual Performance Results and FYs 2016 and 2017 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2015 Annual Performance Results and FYs 2016 and 2017 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2015 actual performance and FYs 2016

  16. Fiscal year 1990 Rocky Flats Plant Environmental Restoration program Current-Year Work Plan

    SciTech Connect (OSTI)

    Nielsen, T. ); Waage, E.; Miller, D. Corp., Boulder, CO )

    1990-01-01

    The Rocky Flats Plant (RFP) is a nuclear weapons manufacturing facility currently operated by EG G for the US Department of Energy (DOE). RFP is located at the foot of the Rocky Mountains in Jefferson Country, Colorado. The Fiscal Year 1990 (FY90) Current-Year Work Plan (CYWP) is intended to serve as a guidance document for the Environmental Restoration (ER) and RCRA Compliance programs that will be implemented at RFP. The CYWP provides in one document any cross-references necessary to understand the interrelationships between the CYWP and the DOE Five-Year Plan (FYP), Site-Specific Plan (SSP), and other related documents. The scope of this plan includes comparison of planned FY90 ER activities to those actually achieved. The CYWP has been updated to include Colorado Department of Health (CDH), US Environmental Protection Agency (EPA), and DOE Inter-Agency Agreement ER activities. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. The CYWP also addresses facilities and sites contaminated with or used in management of those wastes.

  17. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily...

  18. Planning for Years to Come

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning for Years to Come Planning for Years to Come LANL's Governing Policy on the Environment August 1, 2013 Water sampling tour for the Association of Experiential Education ...

  19. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  20. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area," ,"1990-2010 Actual, 2011-2015 Projected" ,"(Thousands of Megawatthours)" ,"Interconnection","NERC Regional Assesment Area" ,,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"2011E","2012E","2013E","2014E","2015E" ,"Eastern

  1. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  2. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Aggregate Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate

  3. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Concurrent Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage

  4. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  5. 60 Years of Computing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60 Years of Computing 60 Years of Computing

  6. WIPP_Marks_12_Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marks 12 Years of Operations CARLSBAD, N.M., March 28, 2011 - On Saturday, March 26, 2011, ... It has now been 12 years since WIPP received its first shipment of transuranic (TRU) ...

  7. 2013 Director's New Year Address

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has in store for the ALS. An immediate answer is - a celebration - as the ALS marks its 20th year of operation. We'll spend some time this year looking back at what we've...

  8. Transfer Activity Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Historical Yearly Peak Transfer Activity Historical Yearly Peak The plots below show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for the current year shows the data for the year-to-date peak. Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In

  9. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER Savannah ...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City Field ...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 46 White Female (W F) 13 DIVERSITY TOTAL WORKFORCE GENDER Nevada ...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 13 Hispanic Female (H F) 10 White Male (W M) 43 White Female (W F) 11 DIVERSITY TOTAL WORKFORCE GENDER Los ...

  13. Year

    U.S. Energy Information Administration (EIA) Indexed Site

    Note: Total may not equal sum of components because of independent rounding. Source: U.S. Department of Labor, Mine Safety and Health Administration, Form 7000-2, 'Quarterly Mine ...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    2012 2013 SES 2 1 -50.00% EJEK 10 9 -10.00% EN 04 27 24 -11.11% NN (Engineering) 28 24 -14.29% NQ (ProfTechAdmin) 31 29 -6.45% NU (TechAdmin Support) 4...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    SES 1 2 100.00% EJEK 2 2 0.00% EN 04 1 1 0.00% EN 03 1 0 -100.00% NN (Engineering) 12 11 -8.33% NQ (ProfTechAdmin) 216 218 0.93% NU (TechAdmin Support) 2...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    2013 SES 2 2 0.00% EJEK 7 8 14.29% EN 04 11 11 0.00% EN 03 1 1 0.00% NN (Engineering) 23 24 4.35% NQ (ProfTechAdmin) 35 32 -8.57% NU (TechAdmin Support) 3 2...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 12 Hispanic Female (H F) 12 White Male (W M) 34 White Female ...

  18. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  19. 2015 Year-in-Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Year-in-Review i 2015 YIR May 2016 Year-in-Review: 2015 Energy Infrastructure Events and Expansions Office of Electricity Delivery and Energy Reliability U.S. Department of Energy DOE / 2015 Year-in-Review ii 2015 YIR For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and Devon Streit, Deputy Assistant Secretary. Specific questions about this report may be directed to John

  20. Weldon spring site environmental report for calendar year 1996. Revision 0

    SciTech Connect (OSTI)

    1997-07-23

    This Site Environmental Report for Calendar Year 1996 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels and regulations, and to summarize trends and/or changes in contaminant concentrations identified through environmental monitoring.

  1. NETL: The First 100 Years

    SciTech Connect (OSTI)

    2015-07-21

    The National Energy Technology Laboratory celebrates 100 years of innovative energy technology development. NETL has been a leader in energy technology development. This video takes a look back at the many accomplishments over the past 100 years. These advances benefit the American people, enhance our nation's energy security and protect our natural resources.

  2. Good Year - Bad Year Financial Planning Workshop handout - April...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unit's financial reserve balance at the end of a year or be used as an input for a TPP assessment. This metric is the most direct measure of BPA's ability to pay Treasury....

  3. Visualizing Twenty Years of Applications

    SciTech Connect (OSTI)

    Potel, Mike; Wong, Pak C.

    2014-11-01

    This issue of IEEE Computer Graphics and Applications marks the 20th anniversary of the Applications department as a regular feature of the magazine. We thought it might be interesting to look back at the 20 years of Applications department articles to assess its evolution over that time. By aggregating all twenty years of articles and applying a little statistical and visual analytics, we’ve uncovered some interesting characteristics and trends we thought we’d share to mark this 20 year milestone.

  4. Year's End 2012 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual photovoltaic module shipments, 2004-2014 (peak kilowatts) Year Modules 2004 143,274 2005 204,996 2006 320,208 2007 494,148 2008 920,693 2009 1,188,879 2010 2,644,498 2011 3,772,075 2012 4,655,005 2013 4,984,881 2014 6,237,524 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Includes both U.S. Shipments and Exports.

    Year's End 2012 Year's End 2012 September 27, 2012 Throughout history, civilizations have developed

  5. Microsoft Word - The Oppenheimer Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oppenheimer Years 1943-1945 At 5:29:45 am MWT on July 16, 1945, the world's first atomic ... Oppenheimer wanted to attend graduate school in Great Britain, where he hoped to study ...

  6. Richland Operations Office's Fiscal Year...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fiscal year 2015) Basis of Evaluation: Performance Evaluation and Measurement Plan (PEMP) Award Fee Available: 10,899,475 Award Fee Earned: 10,591,975 Award Fee Area ...

  7. Twenty Years of Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twenty Years of Clean Energy For more information contact: George Douglas (303) 275-4096 ... the floors of U.S. forests is converted into clean-burning ethanol to power cars. ...

  8. PORTSMOUTH 2015 YEAR IN REVIEW

    Office of Environmental Management (EM)

    PORTSMOUTH 2015 YEAR IN REVIEW At the Portsmouth site this year, it was critical to have alignment among regulatory decisions and agreements, deactivation, shipping, and preliminary work on the on-site waste disposal facility. In 2015, we made significant progress in all of those areas. Our workforce performed admirably in 2015 and we look forward to continuing our momentum in 2016." - Dr. Vincent Adams, Portsmouth Site Director, DOE Portsmouth/Paducah Project Office KEY ACCOMPLISHMENTS 

  9. Multi-Year Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy’s Building Technologies Office’s (BTO’s) Multi-Year Program Plan (MYPP) for Fiscal Years 2016-2020 provides a broad overview of the energy use in the buildings sector, the opportunities for cost-effective energy savings, the barriers to their achievement, and BTO’s strategies and goals for achieving significant reductions in building energy use intensity.

  10. Draft dry year tools (generation/planning)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA White Book Dry Year Tools Firstgov Dry Year Tools November 9, 2006 - Final Dry Year Guide: The Final Dry Year Guide (PDF, 5 pages, 44 kb) and Figure 1 - Dry Year Strategy (PDF,...