National Library of Energy BETA

Sample records for xfel light sources

  1. XFEL 2004 - Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Registration | Payment | Housing | Social Program | Tourism | First Announcement | Attendee List | Photos ICFA Future Light Sources Subpanel Miniworkshop on XFEL Short Bunch...

  2. Using the X-FEL as a source to investigate photo-pumped X-ray...

    Office of Scientific and Technical Information (OSTI)

    Title: Using the X-FEL as a source to investigate photo-pumped X-ray lasers Authors: Nilsen, J ; Scott, H A Publication Date: 2010-07-27 OSTI Identifier: 1119910 Report Number(s): ...

  3. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Light Source Data and Analysis Framework at NERSC Jack Deslippe, Shane Canon, Eli Dart, Abdelilah Essiari, Alexander Hexemer, Dula Parkinson, Simon Patton, Craig Tull + Many More The ALS Data Needs September 21, 2010 - NIST (MD) Light source data volumes are growing many times faster than Moore's law. ● Light source luminosity ● Detector resolution & rep-rates ● Sample automation BES user facilities serve 10,000 scientists and engineers every year. Mostly composed of many small

  4. Linac Coherent Light Source Monte Carlo Simulation

    Energy Science and Technology Software Center (OSTI)

    2006-03-15

    This suite consists of codes to generate an initial x-ray photon distribution and to propagate the photons through various objects. The suite is designed specifically for simulating the Linac Coherent Light Source, and x-ray free electron laser (XFEL) being built at the Stanford Linear Accelerator Center. The purpose is to provide sufficiently detailed characteristics of the laser to engineers who are designing the laser diagnostics.

  5. On the single-photon-counting (SPC) modes of imaging using an XFEL source

    SciTech Connect (OSTI)

    Wang, Zhehui

    2015-12-14

    In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybrid planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.

  6. On the single-photon-counting (SPC) modes of imaging using an XFEL source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Zhehui

    2015-12-14

    In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybridmore » planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.« less

  7. Light-Source Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Light Source Facilities America ALS - Advanced Light Source, USA APS - Advanced Photon Source, USA CAMD - Center for Advanced Microstructures & Devices, USA CHESS - Cornell High Energy Synchrotron Source, USA CLS - Canadian Light Source, Canada CTST - UCSB Center for Terahertz Science and Technology, USA DFELL - Duke Free Electron Laser Laboratory, USA Jlab - Jefferson Lab, USA LCLS - Linear Coherent Light Source, USA LNLS - Laboratorio Nacional de Luz Sincrotron, Brazil NSLS -

  8. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  9. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  10. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  11. The European XFEL Free Electron Laser at DESY

    ScienceCinema (OSTI)

    Weise, Hans [Deutsches Elektronen-Synchrotron, Germany

    2009-09-01

    The European X-ray Free-Electron laser Facility (XFEL) is going to be built in an international collaboration at the Deutsches Elektronen-Synchrotron (DESY), Germany, and the Technical Design Report was published in 2006. The official project is expected for summer 2007. This new facility will offer photon beams at wavelengths as short as 1 angstrom with highest peak brilliance being more than 100 million times higher than present day synchrotron radiation sources. The radiation has a high degree of transverse coherence and the pulse duration is reduced from {approx}100 picoseconds (typ. for SR light sources) down to the {approx}10 femtosecond time domain. The overall layout of the XFEL will be described. This includes the envisaged operation parameters for the linear accelerator using superconducting TESLA technology. The complete design is based on the actually operated FLASH free-electron laser at DESY. Experience with the operation during first long user runs at wavelengths from 30 to 13 nm will be described in detail.

  12. Linac Coherent Light Source Overview

    ScienceCinema (OSTI)

    None

    2013-05-29

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  13. Linac Coherent Light Source Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  14. Presentation: Synchrotron Radiation Light Sources

    Broader source: Energy.gov [DOE]

    A briefing to the Secretary's Energy Advisory Board on Synchrotron Radiation Light Sources delivered by Patricia Dehmer, U.S. Department of Energy

  15. The Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  16. Installing a Light Source 'Racetrack'

    Broader source: Energy.gov [DOE]

    This month, workers at Brookhaven National Laboratory’s National Synchrotron Light Source II (NSLS-II), the half-mile electron racetrack for one of the world’s most advanced light sources, will begin filling the facility’s steel and concrete shell.

  17. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  18. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

  19. National Synchrotron Light Source II

    ScienceCinema (OSTI)

    Steve Dierker

    2010-01-08

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  20. National Synchrotron Light Source Activity Report 1998

    SciTech Connect (OSTI)

    Rothman, Eva

    1999-05-01

    National Synchrotron Light Source Activity Report for period October 1, 1997 through September 30, 1998

  1. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the scientific needs into the technical performance requirements. Feedback from these workshops will provide important input for advancing the design of the facility. Workshops are planned in the following areas Fundamental Atomic, Molecular, Optical Physics & Combustion Dynamics Mon. Aug. 20 - Tues. Aug 21, 2012 Physical

  2. XFEL diffraction: Developing processing methods to optimize data...

    Office of Scientific and Technical Information (OSTI)

    XFEL diffraction: Developing processing methods to optimize data quality Citation Details In-Document Search Title: XFEL diffraction: Developing processing methods to optimize data...

  3. Driver circuit for solid state light sources

    DOE Patents [OSTI]

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  4. MaRIE Undulator & XFEL Systems

    SciTech Connect (OSTI)

    Nguyen, Dinh Cong; Marksteiner, Quinn R.; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen

    2015-03-23

    The 22 slides in this presentation treat the subject under the following headings: MaRIE XFEL Performance Parameters, Input Electron Beam Parameters, Undulator Design, Genesis Simulations, Risks, and Summary It is concluded that time-dependent Genesis simulations show the MaRIE XFEL can deliver the number of photons within the required bandwidth, provided a number of assumptions are met; the highest risks are associated with the electron beam driving the XFEL undulator; and risks associated with the undulator and/or distributed seeding technique may be evaluated or retired by performing early validation experiments.

  5. Laser-Compton Light Source Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mega ray Laser-Compton Light Source Technology Laser-Compton light source technology enables production of mono-energetic gamma rays and x rays. In the gamma-ray regime, these sources enable new, isotope-specific nuclear materials detection systems and photon-based study of nuclear processes (nuclear photonics). Laser-Compton light sources and related nuclear missions concepts were conceived of and realized over the course of the last decade at LLNL. Created by Compton scattering short-duration

  6. National Synchrotron Light Source II (NSLS-II) Project | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Synchrotron Light Source II (NSLS-II) Project National Synchrotron Light Source II (NSLS-II) Project National Synchrotron Light Source II (NSLS-II) Project Frank ...

  7. Building the World's Most Advanced Light Source

    SciTech Connect (OSTI)

    2012-08-03

    View this time-lapse video showing construction of the National Synchrotron Light Source II at Brookhaven National Laboratory. Construction is shown from 2009-2012.

  8. Astronomy Particle Physics Light Sources Genomics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - 2 Astronomy Particle Physics Light Sources Genomics Climate * Big Data Software - Broad ecosystem of capabilities and technologies - Research and evaluate - Customize and...

  9. Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne

    SciTech Connect (OSTI)

    Nilsen, J; Rohringer, N

    2011-08-30

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

  10. Microwave-driven ultraviolet light sources

    DOE Patents [OSTI]

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  11. Seeding Coherent Radiation Sources with Sawtooth Modulation ...

    Office of Scientific and Technical Information (OSTI)

    HARMONICS; INSTABILITY; MODULATION; PERFORMANCE; PHASE SPACE; POLARIZATION; RADIATION SOURCES; SATURATION; SEEDS; WAVE FORMS; WAVELENGTHS Accelerators,ACCPHY, SYNCHRAD, XFEL

  12. Advanced Light Source Activity Report 2000

    SciTech Connect (OSTI)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  13. National Synchrotron Light Source annual report 1988

    SciTech Connect (OSTI)

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  14. Advanced Light Source Activity Report 2002

    SciTech Connect (OSTI)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  15. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the

  16. Light sources based on semiconductor current filaments

    DOE Patents [OSTI]

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  17. Infrared light sources with semimetal electron injection

    DOE Patents [OSTI]

    Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  18. High gradient accelerators for linear light sources

    SciTech Connect (OSTI)

    Barletta, W.A.

    1988-09-26

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs.

  19. Tunable pulsed narrow bandwidth light source

    DOE Patents [OSTI]

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  20. An Upgrade for the Advanced Light Source

    SciTech Connect (OSTI)

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-09-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

  1. Rf capacitively-coupled electrodeless light source

    DOE Patents [OSTI]

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.; Fugitt, Jock A.

    2000-01-01

    An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical coupler and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.

  2. Astronomy Particle Physics Light Sources Genomics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - 2 Astronomy Particle Physics Light Sources Genomics Climate * Big Data Software - Broad ecosystem of capabilities and technologies - Research and evaluate - Customize and optimize for NERSC/HPC platforms - Deploy and maintain * Engaging NERSC Users - Broad user base support - 1-1 in-depth engagement - 3 - Systems DAS Services DAS Tools Capabilities Transfer Processing Storage/ Management Analytics/ Visualisation Burst Buffer Parallel Filesystem Interactive Nodes Compute Nodes GridFtp NEWT

  3. Backscatter absorption gas imaging systems and light sources therefore

    DOE Patents [OSTI]

    Kulp, Thomas Jan; Kliner, Dahv A. V.; Sommers, Ricky; Goers, Uta-Barbara; Armstrong, Karla M.

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  4. Plasma-based EUV light source

    DOE Patents [OSTI]

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  5. Status of the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  6. LCLS Parameters Update | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Parameters Update The Linac Coherent Light Source (LCLS) has demonstrated FEL operations over the energy range 280 eV to 11.2 keV using the fundamental with pulse energies of at least 1-3 mJ depending on the pulse duration and photon energy (please note that operation above 10 keV requires special accelerator conditions that may not be available at all times). Third harmonic radiation is available up to 25 keV at about 1% of the fundamental pulse energy. The pulse length can be varied from

  7. Advanced Light Source: Activity report 1993

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  8. Energy Recovery Linacs for Light Source Applications

    SciTech Connect (OSTI)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  9. Status of the SAGA Light Source

    SciTech Connect (OSTI)

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S.

    2010-06-23

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installed in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.

  10. LED intense headband light source for fingerprint analysis

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  11. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect (OSTI)

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  12. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect (OSTI)

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  13. Short-term Human Vision Protection from Intense Light Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short-term Human Vision Protection from Intense Light Sources The primary objective of this invention is to minimize the sensitivity of the human eye to intense visible light by ...

  14. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  15. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  16. Overview of Light Sources (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Overview of Light Sources Authors: Wootton, Kent ; SLAC Publication Date: 2016-02-08 OSTI Identifier: 1237935 Report Number(s): ...

  17. Homegrown solution for synchrotron light source | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and powerful facility. Concerned that this would leave him without the low-energy light source he needed to study the electronic properties of new materials, he improvised,...

  18. Low Emittance Electron Gun for XFEL Application

    SciTech Connect (OSTI)

    Gough, C.; Paraliev, M.; Ivkovic, S.

    2009-08-04

    The Paul Scherrer Institute (PSI) in Switzerland is planning to build a cost-effective X-ray Free Electron Laser (XFEL) facility for 0.1-10 nm wavelength and 10-100 fsec pulse length, requiring only 6 GeV electron energy. The facility will consist of a Low Emittance electron Gun (LEG) with high gradient acceleration and advanced accelerator technology for preserving the emittance during acceleration and bunch compression. To demonstrate feasibility of the project, a 4 MeV test stand followed by a new 250 MeV test stand will be used at PSI. An emittance of <0.1 mm-mrad is desired, and this extreme value has prompted the development of several novel features: gated field emitting array, a pulsed high gradient gun, combined photo-field emission, pulsed solenoid focusing and a two-frequency cavity. The LEG should give stable emission of >200 pC, with >700 keV energy and >125 MV/m gradient.

  19. Study for a proposed Phase I Energy Recovery Linac (ERL) Synchrotron Light Source at Cornell University

    SciTech Connect (OSTI)

    Sol M. Gruner and Maury Tigner, eds.; Ivan Bazarov; Sergey Belomestnykh; Don Bilderback; Ken Finkelstein; Ernie Fontes; Steve Gray; Sol M. Gruner; Geoff Krafft; Lia Merminga; Hasan Padamsee; Ray Helmke; Qun Shen; Joe Rogers; Charles Sinclair; Richard Talman; Maury Tigner

    2001-07-01

    Synchrotron radiation (SR) has become an essential and rapidly growing tool across the sciences and engineering. World-wide, about 70 SR sources are in various stages of operation, construction, or planning, representing a cumulative investment on many billions of dollars and serving a growing research community well in excess of 10,000 scientists. To date, all major SR x-ray facilities are based on electron (or positron) storage rings. Given the expected continued growth, importance and expense of SR sources, it is important to ask if there are alternatives to the storage ring SR source which offer advantages of capability or cost. A step in this direction is being taken by the SR community with the proposed developments of linac-based x-ray free-electron lasers (XFELs) utilizing the self-amplified spontaneous emission process (SASE). However, the versatility of modern developments in accelerator physics, as applied to synchrotron radiation, is not limited to storage rings or XFELs. New developments in laser driven photoinjectors and superconducting linac technology open new and exciting possibilities for novel SR-generating machines which offer extraordinary capabilities and promise to catalyze whole new areas of SR-based science.

  20. Phosphor-Free Solid State Light Sources

    SciTech Connect (OSTI)

    Jeff E. Nause; Ian Ferguson; Alan Doolittle

    2007-02-28

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  1. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect (OSTI)

    ROTHMAN,E.

    1999-05-01

    thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

  2. A new storage-ring light source

    SciTech Connect (OSTI)

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  3. Synchronization System for Next Generation Light Sources

    SciTech Connect (OSTI)

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  4. Lighting system combining daylight concentrators and an artificial source

    DOE Patents [OSTI]

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  5. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  6. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  7. Future Synchrotron Light Sources Based on Ultimate Storage Rings...

    Office of Scientific and Technical Information (OSTI)

    It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users ...

  8. Science and Technology of Future Light Sources

    SciTech Connect (OSTI)

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  9. Science and Technology of Future Light Sources

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Sthr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  10. New Directions in X-Ray Light Sources

    ScienceCinema (OSTI)

    Falcone, Roger

    2010-01-08

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  11. Passivation of quartz for halogen-containing light sources

    DOE Patents [OSTI]

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  12. Light source employing laser-produced plasma

    DOE Patents [OSTI]

    Tao, Yezheng; Tillack, Mark S

    2013-09-17

    A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).

  13. National Synchrotron Light Source annual report 1991

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  14. X-Ray Light Sources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    X-Ray Light Sources Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Advanced Light Source (ALS) Advanced Photon Source (APS) Linac Coherent Light Source (LCLS) National Synchrotron Light Source II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities

  15. Linac Coherent Light Source (LCLS) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linac Coherent Light Source (LCLS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Advanced Light Source (ALS) Advanced Photon Source (APS) Linac Coherent Light Source (LCLS) National Synchrotron Light Source II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  16. Fifth-Generation Free-Electron Laser Light Sources

    SciTech Connect (OSTI)

    Pellegrini, Claudio

    2011-03-02

    During the past few years, the Linac Coherent Light Source (LCLS) and the Free-Electron Laser in Hamburg (FLASH) have demonstrated the outstanding capability of free-electron lasers (FELs) as sources of coherent radiation in the soft and hard x-ray region. The high intensity, tens of GW, short pulses (few to less than 100 femtoseconds, and the unique transverse coherence properties are opening a new window to study the structure and dynamics of atomic and molecular systems. The LCLS, FLASH, and the other FELs now under construction are only the beginning of the development of these light sources. The next generations will reach new levels of performance: terawatt, atto-second, ultra-small line-width, high repetition rate, full longitudinal and transverse coherence. These future developments and the R&D needed to successfully build and operate the next generation of FEL light sources will be discussed.

  17. Tunable light source for use in photoacoustic spectrometers

    DOE Patents [OSTI]

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  18. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect (OSTI)

    Albert, F; Thomas, A G; Mangles, S P; Banerjee, S; Corde, S; Flacco, A; Litos, M; Neely, D; Viera, J; Najmudin, Z; Bingham, R; Joshi, C; Katsouleas, T

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future eff orts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefi eld accelerators for these specifi c applications.

  19. High efficiency light source using solid-state emitter and down-conversion material

    DOE Patents [OSTI]

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  20. Superconducting RF Linac Technology for ERL Light Sources

    SciTech Connect (OSTI)

    Chris Tennant

    2005-08-01

    Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity???????¢????????????????s Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

  1. Advanced Light Source Activity Report 1997/1998

    SciTech Connect (OSTI)

    Greiner, Annette

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  2. Compact X-ray Light Source Workshop Report

    SciTech Connect (OSTI)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  3. Light Sources Help Discover New Drug Against Melanoma | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Help Discover New Drug Against Melanoma Light Sources Help Discover New Drug Against Melanoma July 18, 2011 - 12:07pm Addthis The new anti-cancer drug, vemurafenib, is the green honeycomb structure at middle left. Four dotted red lines show where it attaches to a target area in the mutated enzyme, disabling it from promoting the growth of tumors. | Image courtesy of Plexxikon Inc. The new anti-cancer drug, vemurafenib, is the green honeycomb structure at middle left. Four

  4. Phase II beam lines at the National Synchrotron Light Source

    SciTech Connect (OSTI)

    Thomlinson, W.

    1984-06-01

    The expansion of the National Synchrotron Light Source has been funded by the US Department of Energy. The Phase II program consists of both increased conventional facilities and six new beam lines. In this paper, an overview of the six beam lines which will be constructed during Phase II is presented. For five of the lines special radiation sources are necessary and the designs of four of the devices are complete. The relevant parameters of the insertion devices under construction and development are presented.

  5. Cathode R&D for Future Light Sources

    SciTech Connect (OSTI)

    Dowell, D.H.; Bazarov, I.; Dunham, B.; Harkay, K.; Hernandez-Garcia; Legg, R.; Padmore, H.; Rao, T.; Smedley, J.; Wan, W.

    2010-05-26

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  6. X-ray detectors at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; et al

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  7. X-ray detectors at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  8. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    SciTech Connect (OSTI)

    Stohr, J

    2011-11-16

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only

  9. STANFORD SYNCHROTRON RADIATION LIGHTSOURCE LINAC COHERENT LIGHT SOURCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STANFORD SYNCHROTRON RADIATION LIGHTSOURCE LINAC COHERENT LIGHT SOURCE INTERNATIONAL USER GROUP FOREIGN PRINCIPAL PARTY IN INTEREST (FPPI) / U.S. AGENT I, _______________________________on behalf of ___________________________________, (Name, Authorized Representative for Int'l User Group) (Name of Int'l User Group Organization) the Foreign Principal Party in Interest, that is subject to the jurisdiction of __________________________________ and having an office and place of business at (Name of

  10. LCLS Users' Organization Executive Committee | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Organization Executive Committee SAVE THE DATE: SSRL/LCLS Users' Conference and Workshops, October 5-7, 2016 Read summary of 2015 users' conference. During the annual meeting, users also have the opportunity to vote for their Users Executive Committee Representatives. The LCLS Users' Organization (LCLS UO) provides an organized framework and independent vehicle for interaction between the scientists who are interested in using the Linac Coherent Light Source (the users) and LCLS/SLAC

  11. The linac coherent light source single particle imaging road map

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; et al

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  12. Light source comprising a common substrate, a first led device and a second led device

    DOE Patents [OSTI]

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  13. X-Ray Light Sources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The APS is one of only four third-generation, hard x-ray synchrotron radiation light ... Stanford Synchrotron Radiation Light Source (SSRL) at SLAC National Accelerator Laboratory ...

  14. Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same

    DOE Patents [OSTI]

    Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-03-28

    A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

  15. Revised accident source terms for light-water reactors

    SciTech Connect (OSTI)

    Soffer, L.

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  16. Ultrabright Laser-based MeV-class Light Source

    SciTech Connect (OSTI)

    Albert, F; Anderson, G; Anderson, S; Bayramian, A; Berry, B; Betts, S; Dawson, J; Ebbers, C; Gibson, D; Hagmann, C; Hall, J; Hartemann, F; Hartouni, E; Heebner, J; Hernandez, J; Johnson, M; Messerly, M; McNabb, D; Phan, H; Pruet, J; Semenov, V; Shverdin, M; Sridharan, A; Tremaine, A; Siders, C W; Barty, C J

    2008-04-02

    We report first light from a novel, new source of 10-ps 0.776-MeV gamma-ray pulses known as T-REX (Thomson-Radiated Extreme X-rays). The MeV-class radiation produced by TREX is unique in the world with respect to its brightness, spectral purity, tunability, pulse duration and laser-like beam character. With T-REX, one can use photons to efficiently probe and excite the isotope-dependent resonant structure of atomic nucleus. This ability will be enabling to an entirely new class of isotope-specific, high resolution imaging and detection capabilities.

  17. Optical laser systems at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; et al

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  18. Broadband visible light source based on AllnGaN light emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  19. Advanced Light Source (ALS) | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    The Advanced Light Source (ALS) exterior dome at the Lawrence Berkeley National Laboratory. (Source: ALS) Location Berkeley, California Start of Operations 1993 Number of Users ...

  20. Refrigeration options for the Advanced Light Source Superbend Dipole Magnets

    SciTech Connect (OSTI)

    Green, M.A.; Hoyer, E.H.; Schlueter, R.D.; Taylor, C.E.; Zbasnik, J.; Wang, S.T.

    1999-07-09

    The 1.9 GeV Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) produces photons with a critical energy of about 3.1 kev at each of its thirty-six 1.3 T gradient bending magnets. It is proposed that at three locations around the ring the conventional gradient bending magnets be replaced with superconducting bending magnets with a maximum field of 5.6 T. At the point where the photons are extracted, their critical energy will be about 12 keV. In the beam lines where the SuperBend superconducting magnets are installed, the X ray brightness at 20 keV will be increased over two orders of magnitude. This report describes three different refrigeration options for cooling the three SuperBend dipoles. The cooling options include: (1) liquid helium and liquid nitrogen cryogen cooling using stored liquids, (2) a central helium refrigerator (capacity 70 to 100 W) cooling all of the SuperBend magnets, (3) a Gifford McMahon (GM) cryocooler on each of the dipoles. This paper describes the technical and economic reasons for selecting a small GM cryocooler as the method for cooling the SuperBend dipoles on the LBNL Advanced Light Source.

  1. Energy Secretary Moniz Dedicates the World’s Brightest Synchrotron Light Source

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Secretary Ernest Moniz today dedicated the world’s most advanced light source, the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL).

  2. X-ray Optics for BES Light Source Facilities

    SciTech Connect (OSTI)

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-03-27

    potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of

  3. Semiconductor light source with electrically tunable emission wavelength

    DOE Patents [OSTI]

    Belenky, Gregory; Bruno, John D.; Kisin, Mikhail V.; Luryi, Serge; Shterengas, Leon; Suchalkin, Sergey; Tober, Richard L.

    2011-01-25

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  4. NATIONAL SYNCHROTRON LIGHT SOURCE MEDICAL PERSONNEL PROTECTION INTERLOCK

    SciTech Connect (OSTI)

    BUDA,S.; GMUR,N.F.; LARSON,R.; THOMLINSON,W.

    1998-11-03

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated.

  5. The Development of the Linac Coherent Light Source RF Gun

    SciTech Connect (OSTI)

    Dowell, David H.; Jongewaard, Erik; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling; /SLAC

    2008-09-24

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. Section 1.1.5 describes the modeling used to compute and correct the gun RF fields and Section 1.1.6 describes the use of these fields in the electron beam simulations. The magnetic design and measurements of

  6. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  7. Energy Recovered Light Source Technology at TJNAF | U.S. DOE...

    Office of Science (SC) Website

    Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ... Applications of Nuclear Science Archives Energy Recovered Light Source Technology at TJNAF ...

  8. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    SciTech Connect (OSTI)

    Jing, C.; Power, J.; Zholents, A. )

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  9. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  10. Polymer and small molecule based hybrid light source

    DOE Patents [OSTI]

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  11. Microsoft Word - Science and Technology of Future Light Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Drivers for Future X-Ray Sources ...... 15 A. Understanding and Controlling Electronic, Atomic, and Molecular Dynamics on ...

  12. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  13. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  14. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  15. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  16. In situ calibration of a light source in a sensor device

    DOE Patents [OSTI]

    Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.

    2015-12-29

    A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.

  17. Science at the Speed of Light: Advanced Photon Source

    ScienceCinema (OSTI)

    Murray Gibson

    2010-01-08

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

  18. A SYNCHRONIZED FIR/VUV LIGHT SOURCE AT JEFFERSON LAB

    SciTech Connect (OSTI)

    Stephen Benson, David Douglas, George Neil, Michelle D. Shinn, Gwyn Williams

    2012-07-01

    We describe a dual free-electron laser (FEL) configuration on the UV Demo FEL at Jefferson Lab that allows simultaneous lasing at FIR/THz and UV wavelengths. The FIR/THz source would be an FEL oscillator with a short wiggler providing nearly diffraction-limited pulses with pulse energy exceeding 50 microJoules. The FIR source would use the exhaust beam from a UVFEL. The coherent harmonics in the VUV from the UVFEL are out-coupled through a hole. The FIR source uses a shorter resonator with either hole or edge coupling to provide very high power FIR pulses. Simulations indicate excel-lent spectral brightness in the FIR region with over 100 W/cm-1 output.

  19. Assessing the Performance of 5mm White LED Light Sources forDeveloping-Country Applications

    SciTech Connect (OSTI)

    Mills, Evan

    2007-05-03

    Some white light-emitting diode (LED) light sources haverecently attained levels of efficiency and cost that allow them tocompete with fluorescent lighting for off-grid applications in thedeveloping world. Additional attributes (optics, size, ruggedness, andservice life) make them potentially superior products. Enormousreductions in energy use and greenhouse-gas emissions are thus possible,and system costs can be much lower given the ability to downsize thecharging and energy storage components compared to a fluorescentstrategy. However, there is a high risk of "market-spoiling" if inferiorproducts are introduced and result in user dissatisfaction. Completesystems involve the integration of light sources and optics, energysupply, and energy storage. A natural starting point for evaluatingproduct quality is to focus on the individual light sources. This reportdescribes testing results for batches of 10 5mm white LEDs from 26manufacturers. Efficacies and color properties are presented.

  20. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  1. Project planning workshop 6-GeV synchrotron light source: Volume 2

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    A series of work sheets, graphs, and printouts are given which detail the work breakdown structure, cost, and manpower requirements for the 6 GeV Synchrotron Light Source. (LEW)

  2. Science and Technology of Future Light Sources: A White Paper

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, a= Janos; Long, Gabrielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Shenoy, Gopal; Schoenlein, Bob; Shen, Qun; /Argonne /Brookhaven /LBL, Berkeley /SLAC, SSRL

    2009-02-03

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter

  3. Volume-scalable high-brightness three-dimensional visible light source

    DOE Patents [OSTI]

    Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

    2014-02-18

    A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

  4. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, Alan M.; Edwards, William R.

    1983-01-01

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  5. Luminescent light source for laser pumping and laser system containing same

    DOE Patents [OSTI]

    Hamil, Roy A.; Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.

    1994-01-01

    The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.

  6. The Nanoscience Beamline (I06) at Diamond Light Source

    SciTech Connect (OSTI)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-06-23

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A {approx}5 {mu}m ({sigma}) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  7. GAMMA-RAY COMPTON LIGHT SOURCE DEVELOPMENT AT LLNL

    SciTech Connect (OSTI)

    Hartemann, F V; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Jovanovic, I; Messerly, M J; Pruet, J A; Shverdin, M Y; Tremaine, A M; McNabb, D P; Siders, C W; Barty, C J

    2007-08-15

    A new class of tunable, monochromatic {gamma}-ray sources capable of operating at high peak and average brightness is currently being developed at LLNL for nuclear photoscience and applications. These novel systems are based on Compton scattering of laser photons by a high brightness relativistic electron beam produced by an rf photoinjector. A prototype, capable of producing > 10{sup 8} 0.7 MeV photons in a single shot, with a fractional bandwidth of 1%, and a repetition rate of 10 Hz, is currently under construction at LLNL; this system will be used to perform nuclear resonance fluorescence experiments. A new symmetrized S-band rf gun, using a Mg photocathode, will produce up to 1 nC of charge in an 8 ps bunch, with a normalized emittance modeled at 0.8 mm.mrad; electrons are subsequently accelerated up to 120 MeV to interact with a 500 mJ, 10 ps, 355 nm laser pulse and generate {gamma}-rays. The laser front end is a fiber-based system, using corrugated-fiber Bragg gratings for stretching, and drives both the frequency-quadrupled photocathode illumination laser and the Nd:YAG interaction laser. Two new technologies are used in the laser: a hyper-Michelson temporal pulse stacker capable of producing 8 ps square UV pulses, and a hyper-dispersion compressor for the interaction laser. Other key technologies, basic scaling laws, and recent experimental results will also be presented, along with an overview of future research and development directions.

  8. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOE Patents [OSTI]

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  9. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOE Patents [OSTI]

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  10. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    SciTech Connect (OSTI)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; Wark, Justin S.; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C.; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B.; Schroer, Christian G.

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  11. Workshop: New Advances in Crystallography with Synchrotrons and X-FELs |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource New Advances in Crystallography with Synchrotrons and X-FELs Tuesday, October 25, 2011 - 8:00am 2011 SSRL/LCLS Annual Users Conference This workshop, part of the 2011 SSRL/LCLS Annual Users Conference, will describe resources and results from synchrotron-based micro crystallography and X-FEL-based nanocrystallography, and explore the future of these tools in producing important scientific results

  12. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect (OSTI)

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  13. EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 E-mail: dave.osugi@sso.science.doe.gov

  14. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    SciTech Connect (OSTI)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-02-03

    Miniature (light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  15. Solid-state radioluminescent zeolite-containing composition and light sources

    DOE Patents [OSTI]

    Clough, Roger L.; Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.; Shepodd, Timothy J.; Smith, Henry M.

    1992-01-01

    A new type of RL light source consisting of a zeolite crystalline material, the intralattice spaces of which a tritiated compound and a luminophore are sorbed, and which material is optionally further dispersed in a refractive index-matched polymer matrix.

  16. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, A.M.; Edwards, W.R.

    1983-10-11

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.

  17. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, A.M.; Edwards, W.R.

    1982-03-23

    A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  18. Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keedy, Daniel A.; Kenner, Lillian R.; Warkentin, Matthew; Woldeyes, Rahel A.; Hopkins, Jesse B.; Thompson, Michael C.; Brewster, Aaron S.; Van Benschoten, Andrew H.; Baxter, Elizabeth L.; Uervirojnangkoorn, Monarin; et al

    2015-09-30

    Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences ofmore » these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.« less

  19. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOE Patents [OSTI]

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  20. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    SciTech Connect (OSTI)

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  1. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect (OSTI)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  2. Evaluating Light Source Color Rendition using the IES TM-30-15 Method

    SciTech Connect (OSTI)

    Houser, Kevin W.; Royer, Michael P.; David, Aurelien

    2015-11-30

    A system for evaluating the color rendition of light sources was recently published as IES TM-30-15 IES Method for Evaluating Light Source Color Rendition. The system includes a fidelity index (Rf) to quantify similarity to a reference illuminant, a relative-gamut index (Rg) to quantify saturation relative to a reference illuminant, and a color vector icon that visually presents information about color rendition. The calculation employs CAM02-UCS and uses a newly-developed set of reflectance functions, comprising 99 color evaluation samples (CES). The CES were down-selected from 105,000 real object samples and are uniformly distributed in color space (fairly representing different colors) and wavelength space (avoiding artificial increase of color rendition values by selective optimization).

  3. Linac Coherent Light Source (LCLS) Bunch-Length Monitor using Coherent Radiation

    SciTech Connect (OSTI)

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. One of the most critical diagnostic devices is the bunch length monitor (BLM), which is to be installed right after each compressor utilizing coherent radiation from the last bending magnet. We describe the components and the optical layout of such a BLM. Based on the setup geometry, we discuss some issues about the coherent radiation signal.

  4. SciDAC advances in beam dynamics simulation: from light sources to colliders

    SciTech Connect (OSTI)

    Qiang, Ji; Qiang, J.; Borland, M.; Kabel, A.; Li, R.; Ryne, R.; Stern, E.; Wang, Y.; Wasserman, H.; Zhang, Y.

    2008-06-16

    In this paper, we report on progress that has been made in beam dynamics simulation, from light sources to colliders, during the first year of SciDAC-II accelerator project,"Community Petascale Project for Accelerator Science and Simulation (ComPASS)." Several parallel computational tools for beam dynamics simulation will be described. A number of applications in current and future accelerator facilities, e.g., LCLS, RHIC, Tevatron, LHC, ELIC, are presented.

  5. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    SciTech Connect (OSTI)

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-10-12

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm{sup {minus}1} (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated.

  6. Energy Recovered Light Source Technology at TJNAF | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  7. OSTIblog Articles in the National Synchrotron Light Source II Topic | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Synchrotron Light Source II Topic Solving the mystery of superconductivity by Kathy Chambers 17 Oct, 2013 in Products and Content 9539 yongchu.jpg Solving the mystery of superconductivity Read more about 9539 At the legendary 1987 American Physical Society conference, sometimes called the "Woodstock of physics", thousands of physicists descended upon a New York Hilton ballroom to hear about the discovery of

  8. Radioluminescent light sources, tritium containing polymers, and methods for producing the same

    DOE Patents [OSTI]

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1989-12-26

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  9. Radioluminescent light sources, tritium containing polymers, and methods for producing the same

    DOE Patents [OSTI]

    Jensen, George A. (Richland, WA); Nelson, David A. (Richland, WA); Molton, Peter M. (Richland, WA)

    1989-01-01

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

  10. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  11. Improved crystal orientation and physical properties from single-shot XFEL stills

    SciTech Connect (OSTI)

    Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.; Echols, Nathaniel; Zwart, Petrus H.; Adams, Paul D.

    2014-11-28

    X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.

  12. Improved crystal orientation and physical properties from single-shot XFEL stills

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.; Echols, Nathaniel; Zwart, Petrus H.; Adams, Paul D.

    2014-11-28

    X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model themore » diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less

  13. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; et al

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less

  14. Design parameters and commissioning of vertical inserts used for testing the XFEL superconducting cavities

    SciTech Connect (OSTI)

    Schaffran, J.; Bozhko, Y.; Petersen, B.; Meissner, D.; Chorowski, M.; Polinski, J.

    2014-01-29

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2015 on, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The superconducting XFEL linear accelerator consists of 100 accelerator modules with more than 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF). This paper gives an overview of the design parameters and the commissioning of the vertical insert, used in two cryostats (XATC) of the AMTF-hall. The Insert serves as a holder for 4 nine-cell cavities. This gives the possibility to cool down 4 cavities to 2K in parallel and, consequently, to reduce the testing time. The following RF measurement, selected as quality check, will be done separately for each cavity. Afterwards the cavities will be warmed up again and will be sent to the accelerator module assembly.

  15. Improved crystal orientation and physical properties from single-shot XFEL stills

    SciTech Connect (OSTI)

    Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Brewster, Aaron S.; Echols, Nathaniel; Zwart, Petrus H.; Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-12-01

    X-ray free-electron laser crystallography relies on the collection of still-shot diffraction patterns. New methods are developed for optimal modeling of the crystals orientations and mosaic block properties. X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Braggs law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.

  16. Lighting

    Broader source: Energy.gov [DOE]

    One of the simplest ways to save energy and money is to switch to energy-efficient lights. Learn about your lighting choices that can save you money.

  17. 7 Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    SciTech Connect (OSTI)

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

    2014-06-09

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

  18. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect (OSTI)

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member

  19. Development of the IES method for evaluating the color rendition of light sources

    SciTech Connect (OSTI)

    David, Aurelien; Fini, Paul T.; Houser, Kevin W.; Ohno, Yoshi; Royer, Michael P.; USA, Richland Washington; Smet, Kevin A. G.; Whitehead, Lorne

    2015-06-08

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score Rf is an improved version of the CIE color rendering index. The color gamut score Rg is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).

  20. Development of the IES method for evaluating the color rendition of light sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    David, Aurelien; Fini, Paul T.; Houser, Kevin W.; Ohno, Yoshi; Royer, Michael P.; USA, Richland Washington; Smet, Kevin A. G.; Wei, Minchen; Whitehead, Lorne

    2015-06-08

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score Rf is an improved version of themore » CIE color rendering index. The color gamut score Rg is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).« less

  1. Electron beam diagnostics using synchrotron radiation at the Advanced Light Source

    SciTech Connect (OSTI)

    Keller, R.; Renner, T.; Massoletti, D.J.

    1996-05-01

    Synchrotron light emitted from a bend magnet is being used to diagnose the electron beam stored in the main accelerator of the Advanced Light Source (ALS) at Berkeley Lab. The radiation has maximum intensity in the soft X-ray region and is imaged by a Kirkpatrick-Baez mirror pair from the source point inside the ring onto a Bismuth/Germanium-Oxide (BGO) crystal, converted into visible light and magnified by an attached microscope. The final image is captured by a TV camera-tube and digitized by a frame- grabber device to obtain records of parameters such as beam size, center location and profile. Data obtained from this Diagnostic Beam Line have been very useful in day-to-day operation of the ALS storage ring to assess the quality and repeatability of the stored beam. The line has further been utilized in several dedicated research activities to measure bunch lengths under various conditions and observe transverse beam instabilities. A summary of obtained results is given in this paper , together with a description of the technical features of the Diagnostic Beam Line.

  2. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    SciTech Connect (OSTI)

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-23

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  3. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect (OSTI)

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  4. Microsoft Word - Science and Technology of Future Light Sources.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08/39 BNL-81895-2008 LBNL-1090E-2009 SLAC-R-917 Science and Technology of Future Light Sources A White Paper Report prepared by scientists from ANL, BNL, LBNL and SLAC. The coordinating team consisted of Uwe Bergmann, John Corlett, Steve Dierker, Roger Falcone, John Galayda, Murray Gibson, Jerry Hastings, Bob Hettel, John Hill, Zahid Hussain, Chi-Chang Kao, Janos Kirz, Gabrielle Long, Bill McCurdy, Tor Raubenheimer, Fernando Sannibale, John Seeman, Z.-X. Shen, Gopal Shenoy, Bob Schoenlein, Qun

  5. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOE Patents [OSTI]

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  6. Advanced Light Source Compendium of User Abstracts andTechnical Reports 1997

    SciTech Connect (OSTI)

    Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.; editors

    1998-07-01

    The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998.

  7. Philips Light Sources & Electronics is Developing an Efficient, Smaller, Cost-Effective Family of LED Drivers

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Philips Light Sources & Electronics is developing a new family of LED drivers that are more efficient and cost-effective as well as smaller in size than currently available drivers. The new drivers are switch-mode power supplies that are similar to today's drivers, but with an improved design. In addition, they have a different topology—boost plus LLC—for wattages of 40W and above, but they retain the commonly used flyback topology at lower wattages.

  8. Lattice Design for PEP-X Ultimate Storage Ring Light Source

    SciTech Connect (OSTI)

    Bane, K.L.F.; Cai, Y.; Nosochkov, Y.; Wang, M.-H.; Hettel, R.O.; /SLAC

    2011-12-13

    SLAC expertise in designing and operating high current storage rings and the availability of the 2.2-km PEP-II tunnel present an opportunity for building a next generation light source - PEP-X - that would replace the SPEAR3 storage ring in the future. The PEP-X 'baseline' design, with 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. As a next step, a so-called 'ultimate' PEP-X lattice, reducing the emittance to 11 pm-rad at zero current, has been designed. This emittance approaches the diffraction limited photon emittance for multi-keV photons, providing near maximum photon brightness and high coherence. It is achieved by using 7-bend achromat cells in the ring arcs and a 90-m damping wiggler in one of the 6 long straight sections. Details of the lattice design, dynamic aperture, and calculations of the intra-beam scattering effect and Touschek lifetime at a nominal 0.2 A current are presented. Accelerator-based light sources are in high demand for many experimental applications. The availability of the 2.2-km PEP-II tunnel at SLAC presents an opportunity for building a next generation light source - PEP-X - that would replace the existing SPEAR3 light source in the future. The PEP-X study started in 2008, and the 'baseline' design, yielding 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. This relatively conservative design can be built using existing technology. However, for a long term future, it is natural to investigate a more aggressive, so-called 'ultimate' ring design. The goal is to reduce the electron emittance in both x and y planes to near the diffraction limited photon emittance of 8 pm-rad at hard X-ray photon wavelength of 0.1 nm. This would provide a near maximum photon brightness and significant increase in photon coherence. This study was motivated by the advances in low emittance design at MAX-IV. The latter was used as a starting point for the PEP-X arc lattice

  9. OSTIblog Articles in the Linac Coherent Light Source Topic | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy Office of Scientific and Technical Information Linac Coherent Light Source Topic Free-Electron Lasers move discovery into warp speed by Kathy Chambers 26 Mar, 2013 in Products and Content 5445 121212-cosmic-chandra_caption.jpg Free-Electron Lasers move discovery into warp speed Read more about 5445 Scientific research being performed today using free-electron lasers could be fodder for the next James Bond or Star Wars movie but it is way better than science fiction and it is real.

  10. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles; Coffee, Ryan; Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; et al

    2015-05-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  11. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  12. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; et al

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  13. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    SciTech Connect (OSTI)

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  14. Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source

    SciTech Connect (OSTI)

    Warwick, T.; Padmore, H.; Ade, H.; Hitchcock, A.P.; Rightor, E.G.; Tonner, B.P.

    1996-08-01

    Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities.

  15. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  16. Beyond crystallography: Diffractive imaging using coherent x-ray light sources

    SciTech Connect (OSTI)

    Miao, J.; Ishikawa, T.; Robinson, I. K.; Murnane, M. M.

    2015-04-30

    X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century.

  17. National synchrotron light source annual report 1987: For the period of October 1, 1986--September 30, 1987

    SciTech Connect (OSTI)

    White-DePace, S.; Gmur, N.F.; Thomlinson, W.

    1987-10-01

    This report contains the reports and operational information of the National Synchrotron Light source facility for 1987. The reports are grouped mainly under VUV research and x-ray research. (LSP)

  18. EA-1321: Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to upgrade the facilities of the U.S. Department of Energy's National Synchrotron Light Source Complex, namely the National Synchrotron...

  19. A transverse bunch by bunch feedback system for Pohang Light Source upgrade

    SciTech Connect (OSTI)

    Lee, E.-H.; Kim, D.-T.; Huang, J.-Y.; Shin, S.; Nakamura, T.; Kobayashi, K.

    2014-12-15

    The Pohang Light Source upgrade (PLS-II) project has successfully upgraded the Pohang Light Source (PLS). The main goals of the PLS-II project are to increase the beam energy to 3 GeV, increase the number of insertion devices by a factor of two (20 IDs), increase the beam current to 400 mA, and at the same time reduce the beam emittance to below 10 nm by using the existing PLS tunnel and injection system. Among 20 insertion devices, 10 narrow gap in-vacuum undulators are in operation now and two more in-vacuum undulators are to be installed later. Since these narrow gap in-vacuum undulators are most likely to produce coupled bunch instability by the resistive wall impedance and limit the stored beam current, a bunch by bunch feedback system is implemented to suppress coupled bunch instability in the PLS-II. This paper describes the scheme and performance of the PLS-II bunch by bunch feedback system.

  20. SciDAC Advances in Beam Dynamics Simulation: From Light Sources to Colliders

    SciTech Connect (OSTI)

    Qiang, J.; Borland, M.; Kabel, A.; Li, R.; Ryne, R.; Stern, E.; Wang, Y.; Wasserman, H.; Zhang, Y.; /SLAC

    2011-11-14

    In this paper, we report on progress that has been made in beam dynamics simulation, from light sources to colliders, during the first year of the SciDAC-2 accelerator project 'Community Petascale Project for Accelerator Science and Simulation (ComPASS).' Several parallel computational tools for beam dynamics simulation are described. Also presented are number of applications in current and future accelerator facilities (e.g., LCLS, RHIC, Tevatron, LHC, and ELIC). Particle accelerators are some of most important tools of scientific discovery. They are widely used in high-energy physics, nuclear physics, and other basic and applied sciences to study the interaction of elementary particles, to probe the internal structure of matter, and to generate high-brightness radiation for research in materials science, chemistry, biology, and other fields. Modern accelerators are complex and expensive devices that may be several kilometers long and may consist of thousands of beamline elements. An accelerator may transport trillions of charged particles that interact electromagnetically among themselves, that interact with fields produced by the accelerator components, and that interact with beam-induced fields. Large-scale beam dynamics simulations on massively parallel computers can help provide understanding of these complex physical phenomena, help minimize design cost, and help optimize machine operation. In this paper, we report on beam dynamics simulations in a variety of accelerators ranging from next generation light sources to high-energy ring colliders that have been studied during the first year of the SciDAC-2 accelerator project.

  1. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    SciTech Connect (OSTI)

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

  2. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; et al

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  3. A BEAMLINE FOR HIGH PRESSURE STUDIES AT THE ADVANCED LIGHT SOURCE WITH A SUPERCONDUCTING BENDING MAGNET AS THE SOURCE

    SciTech Connect (OSTI)

    Kunz, M; MacDowell, A A; Caldwell, W A; Cambie, D; Celestre, R S; Domning, E E; Duarte, R M; Gleason, A; Glossinger, J; Kelez, N; Plate, D W; Yu, T; Zaug, J M; Padmore, H A; Jeanloz, R; Alivisatos, A P; Clark, S M

    2005-04-19

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/{Delta}E {approx} 7000) and a W/B{sub 4}C multilayer (E/{Delta}E {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  4. Accident source terms for Light-Water Nuclear Power Plants. Final report

    SciTech Connect (OSTI)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

  5. Third user workshop on high-power lasers at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    2016-03-24

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less

  6. Second user workshop on high-power lasers at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 new experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.

  7. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    SciTech Connect (OSTI)

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  8. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  9. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect (OSTI)

    Einfeld, D.; Hasnain, S.S.; Sayers, Z.; Schopper, H.; Winick, H.; Al-Dmour, E.

    2004-05-12

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference {approx}125m). About 40% of the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.

  10. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light ...

  11. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    SciTech Connect (OSTI)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-09-24

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

  12. Matter under extreme conditions experiments at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; Nagler, B.; Alonso-Mori, R.; Barbrel, B.; Brown, S. B.; Chapman, D. A.; Chen, Z.; Curry, C. B.; et al

    2016-04-22

    The matter in extreme conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump–probe measurements for studying the physical properties of matter in the high-energy density (HED) physics regime. This instrument combines the world's brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. Moreover, these lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. Inmore » the first experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering measurements on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. These complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness x-rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. Likewise, these studies have demonstrated our ability to measure fundamental thermodynamic properties that determine the state of matter in the HED physics regime.« less

  13. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    SciTech Connect (OSTI)

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander; Sheffield, Richard L.

    2015-05-04

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of the different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.

  14. Design and commissioning of vertical test cryostats for XFEL superconducting cavities measurements

    SciTech Connect (OSTI)

    Polinski, J.; Chorowski, M.; Duda, P.; Bozhko, Y.; Petersen, B.; Schaffran, J.

    2014-01-29

    The European X-ray Free Electron Laser (XFEL), now under construction at DESY in Hamburg, will make an extensive use of 1.3 GHz superconducting cavities aimed at accelerating the electrons to the energy of 17.5 GeV. The cavities will be operated at 2 K with the use of saturated HeII. Prior to their assembly in accelerator cryomodules, the RF performance of the cavities will be cold-tested in two dedicated vertical cryostats. Each cryostat allows a simultaneous testing of 4 cavities mounted on a dedicated insert. The cryostats are equipped with external lines allowing their supply with liquid helium and further conversion of the helium into superfluid He II. The paper describes the test stand flow scheme, the technical key elements, including a recuperative heat exchanger, and the cold commissioning. The thermodynamic analysis of the cryostat cool down and steady-state operation is given. A Second Law of Thermodynamics based theoretical model of the heat exchanger performance, and the model experimental validation, is presented.

  15. Cryogenic refrigeration requirements for superconducting insertion devices in a light source

    SciTech Connect (OSTI)

    Green, Michael A.; Green, Michael A.; Green, Michael A.

    2003-08-15

    This report discusses cryogenic cooling superconducting insertion devices for modern light sources. The introductory part of the report discusses the difference between wiggler and undulators and how the bore temperature may affect the performance of the magnets. The steps one would take to reduce the gap between the cold magnet pole are discussed. One section of the report is devoted to showing how one would calculate the heat that enters the device. Source of heat include, heat entering through the vacuum chamber, heating due to stray electrons and synchrotron radiation, heating due to image current on the bore, heat flow by conduction and radiation, and heat transfer into the cryostat through the magnet leads. A section of the report is devoted to cooling options such as small cryo-cooler and larger conventional helium refrigerators. This section contains a discussion as to when it is appropriate to use small coolers that do not have J-T circuits. Candidate small cryo-coolers are discussed in this section of the report. Cooling circuits for cooling with a conventional refrigerator are also discussed. A section of the report is devoted to vibration isolation and how this may affect how the cooling is attached to the device. Vibration isolation using straps is compared to vibration isolation using helium heat pipes. The vibration isolation of a conventional refrigeration system is also discussed. Finally, the cool down of an insertion device is discussed. The device can either be cooled down using liquid cryogenic nitrogen and liquid helium or by using the cooler used to keep the devices cold over the long haul.

  16. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    SciTech Connect (OSTI)

    Boutet, Sebastien; Williams, Garth J.; ,

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  17. CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science

    SciTech Connect (OSTI)

    Grazioli, C.; Gauthier, D.; Ivanov, R.; De Ninno, G.; Elettra Sincrotrone Trieste, Trieste ; Callegari, C.; Spezzani, C.; Ciavardini, A.; Coreno, M.; Institute of Inorganic Methodologies and Plasmas , Montelibretti, Roma ; Frassetto, F.; Miotti, P.; Poletto, L.; Golob, D.; Kivimäki, A.; Mahieu, B.; Service des Photons Atomes et Molécules, Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, Bâtiment 522, 91191 Gif-sur-Yvette ; Bučar, B.; Merhar, M.; Polo, E.; Ressel, B.

    2014-02-15

    We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse that generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.

  18. High-Energy Density science at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-03-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. Recently, our experiments have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on amore » scattering length comparable to the screening length. Moreover, this technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.« less

  19. Applications of the Advanced Light Source to problems in the earth, soil, and environmental sciences report of the workshop

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report discusses the following topics: ALS status and research opportunities; advanced light source applications to geological materials; applications in the soil and environmental sciences; x-ray microprobe analysis; potential applications of the ALS in soil and environmental sciences; and x-ray spectroscopy using soft x-rays: applications to earth materials.

  20. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hastings, J.B.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  1. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect (OSTI)

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS

  2. Solid core dipoles and switching power supplies: Lower cost light sources?

    SciTech Connect (OSTI)

    Benesch, Jay; Philip, Sarin

    2015-05-05

    As a result of improvements in power semiconductors, moderate frequency switching supplies can now provide the hundreds of amps typically required by accelerators with zero-to-peak noise in the kHz region ~ 0.06% in current or voltage mode. Modeling was undertaken using a finite electromagnetic program to determine if eddy currents induced in the solid steel of CEBAF magnets and small supplemental additions would bring the error fields down to the 5ppm level needed for beam quality. The expected maximum field of the magnet under consideration is 0.85 T and the DC current required to produce that field is used in the calculations. An additional 0.1% current ripple is added to the DC current at discrete frequencies 360 Hz, 720 Hz or 7200 Hz. Over the region of the pole within 0.5% of the central integrated BdL the resulting AC field changes can be reduced to less than 1% of the 0.1% input ripple for all frequencies, and a sixth of that at 7200 Hz. Doubling the current, providing 1.5 T central field, yielded the same fractional reduction in ripple at the beam for the cases checked. A small dipole was measured at 60, 120, 360 and 720 Hz in two conditions and the results compared to the larger model for the latter two frequencies with surprisingly good agreement. Thus, for light sources with aluminum vacuum vessels and full energy linac injection, the combination of solid core dipoles and switching power supplies may result in significant cost savings.

  3. Structurally Integrated Photoluminescence-Based Lactate Sensor Using Organic Light Emitting Devices (OLEDs) as the Light Source

    SciTech Connect (OSTI)

    Chengliang Qian

    2006-08-09

    Multianalyte bio(chemical) sensors are extensively researched for monitoring analytes in complex systems, such as blood serum. As a step towards developing such multianalyte sensors, we studied a novel, structurally integrated, organic light emitting device (OLED)-based sensing platform for detection of lactate. Lactate biosensors have attracted numerous research efforts, due to their wide applications in clinical diagnosis, athletic training and food industry. The OLED-based sensor is based on monitoring the oxidation reaction of lactate, which is catalyzed by the lactate oxidase (LOX) enzyme. The sensing component is based on an oxygen-sensitive dye, Platinum octaethyl porphyrin (PtOEP), whose photoluminescence (PL) lifetime {tau} decreases as the oxygen level increases. The PtOEP dye was embedded in a thin film polystyrene (PS) matrix; the LOX was dissolved in solution or immobilized in a sol-gel matrix. {tau} was measured as a function of the lactate concentration; as the lactate concentration increases, {tau} increases due to increased oxygen consumption. The sensors performance is discussed in terms of the detection sensitivity, dynamic range, and response time. A response time of {approx}32 sec was achieved when the LOX was dissolved in solution and kept in a closed cell. Steps towards development of a multianalyte sensor array using an array of individually addressable OLED pixels were also presented.

  4. Breakthroughs in Practical-Sized, High Quality OLED Light Panel Source

    Office of Energy Efficiency and Renewable Energy (EERE)

    General Electric Global Research has achieved a major breakthrough, developing a fully functional 2 ft. x 2 ft. light panel that produces more than 1200 lumens of quality white light with an efficacy of 15 lumens per watt. This device offers 50% better energy performance than their previous device, breaking two world records.

  5. Development of a CW Superconducting RF Booster Cryomodule for Future Light Sources

    SciTech Connect (OSTI)

    Grimm, Terry L; Bogle, Andrew; Deimling, Brian; Hollister, Jerry; II, Randall Jecks; Kolka, Ahren; Romel, Chandra

    2009-04-13

    Future light sources based on seeded free electron lasers (FEL) have the potential to increase the soft xray flux by several orders of magnitude with short bunch lengths to probe electron structure and dynamics. A low emittance, high rep-rate radio frequency (RF) photocathode electron gun will generate the electron beam that will require very stringent beam control and manipulation through the superconducting linear accelerator to maintain the high brightness required for an x-ray FEL. The initial or booster cavities of the superconducting radio frequency (SRF) linear accelerator will require stringent control of transverse kicks and higher order modes (HOM) during the beam manipulation and conditioning that is needed for emittance exchange and bunch compression. This SBIR proposal will develop, fabricate and test a continuous-wave SRF booster cryomodule specifically for this application. Phase I demonstrated the technical feasibility of the project by completing the preliminary SRF cavity and cryomodule design and its integration into an R&D test stand for beam studies at Lawrence Berkeley National Laboratory (LBNL). The five-cell bulk niobium cavities operate at 750 MHz, and generate 10 MV each with strong HOM damping and special care to eliminate transverse kicks due to couplers. Due to continuous-wave operation at fairly modest beam currents and accelerating gradients the complexity of the two cavity cryomodule is greatly reduced compared to an ILC type system. Phase II will finalize the design, and fabricate and test the booster cryomodule. The cryomodule consists of two five-cell cavities that will accelerate megahertz bunch trains with nano-coulomb charge. The accelerating gradient is a very modest 10 MV/m with peak surface fields of 20 MV/m and 42.6 mT. The cryogenic system operates at 2 K with a design dynamic load of 20 W and total required cryogenic capacity of 45 W. The average beam current of up to 1 mA corresponds to a beam power of 10 kW per 5- cell

  6. National Synchrotron Light Source II (NSLS-II) | U.S. DOE Office...

    Office of Science (SC) Website

    Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light ... and with the ultra-high sensitivity required to probe materials function at atomic-scale. ...

  7. Microsoft Word - SPPS_report05.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Thus the atoms will initially sample the new potential energy surface with a velocity ... a capability that will be essential to many proposed experiments at XFEL light sources. ...

  8. Environmental chamber studies of atmospheric reactivities of volatile organic compounds: Effects of varying chamber and light source

    SciTech Connect (OSTI)

    Carter, W.; Luo, D.; Malkina, I.; Pierce, J.

    1995-05-01

    Photochemical oxidant models are essential tools for assessing effects of emissions changes on ground-level ozone formation. Such models are needed for predicting the ozone impacts of increased alternative fuel use. The gas-phase photochemical mechanism is an important component of these models because ozone is not emitted directly, but is formed from the gas-phase photochemical reactions of the emitted volatile organic compounds (VOCs) and oxides of nitrogen (NO{sub x}) in air. The chemistry of ground level ozone formation is complex; hundreds of types of VOCs being emitted into the atmosphere, and most of their atmospheric reactions are not completely understood. Because of this, no chemical model can be relied upon to give even approximately accurate predictions unless it has been evaluated by comparing its predictions with experimental data. Therefore an experimental and modeling study was conducted to assess how chemical mechanism evaluations using environmental chamber data are affected by the light source and other chamber characteristics. Xenon arc lights appear to give the best artificial representation of sunlight currently available, and experiments were conducted in a new Teflon chamber constructed using such a light source. Experiments were also conducted in an outdoor Teflon Chamber using new procedures to improve the light characterization, and in Teflon chambers using blacklights. These results, and results of previous runs other chambers, were compared with model predictions using an updated detailed chemical mechanism. The magnitude of the chamber radical source assumed when modeling the previous runs were found to be too high; this has implications in previous mechanism evaluations. Temperature dependencies of chamber effects can explain temperature dependencies in chamber experiments when Ta-300{degree}K, but not at temperatures below that.

  9. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  10. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    SciTech Connect (OSTI)

    Sizyuk, Tatyana; Hassanein, Ahmed [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-15

    Photon sources produced by laser beams with moderate laser intensities, up to 10{sup 14?}W/cm{sup 2}, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5%??1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6. nm wavelengths, and water-window microscopy utilizing 2.48?nm (La-?) and 2.88?nm (He-?) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.?nm sources.

  11. Mixed-Source EGR for Enabling High Efficiency Clean Combustion Modes in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Han, Manbae; Wagner, Robert M; Sluder, Scott

    2008-01-01

    The source of exhaust gas recirculation (EGR), and consequently composition and temperature, has a significant effect on advanced combustion modes including stability, efficiency, and emissions. The effects of high-pressure loop EGR (HPL EGR) and low-pressure loop EGR (LPL EGR) on achieving high efficiency clean combustion (HECC) modes in a light-duty diesel engine were characterized in this study. High dilution operation is complicated in real-world situations due to inadequate control of mixture temperature and the slow response of LPL EGR systems. Mixed-source EGR (combination of HPL EGR and LPL EGR) was investigated as a reasonable approach for controlling mixture temperature. The potential of mixed-source EGR has been explored using LPL EGR as a 'base' for dilution rather than as a sole source. HPL EGR provides the 'trim' for controlling mixture temperature and has the potential for enabling precise control of dilution targets. This approach also has a benefit where LPL EGR does not provide sufficient dilution for achieving conditions appropriate for HECC operation. The balance of the required dilution could be achieved with HPL EGR mitigating the need for throttling or a LPL EGR pump. The results of this investigation revealed significant differences in engine-out emissions and performance for various EGR sources.

  12. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; Mitra, Ankush; Swiggers, Michele; Noonan, Peter; Curiel, G. Ivan; Holmes, Michael

    2015-04-11

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm⁻¹ electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  13. Bright, Coherent, Ultrafast Soft X-Ray Harmonics Spanning the Water Window from a Tabletop Light Source

    SciTech Connect (OSTI)

    Chen, M.-C.; Arpin, P.; Popmintchev, T.; Gerrity, M.; Zhang, B.; Seaberg, M.; Popmintchev, D.; Murnane, M. M.; Kapteyn, H. C.

    2010-10-22

    We demonstrate fully phase-matched high harmonic emission spanning the water window spectral region important for nano- and bioimaging and a breadth of materials and molecular dynamics studies. We also generate the broadest bright coherent bandwidth ({approx_equal}300 eV) to date from any light source, small or large, that is consistent with a single subfemtosecond burst. The harmonic photon flux at 0.5 keV is 10{sup 3} higher than demonstrated previously. This work extends bright, spatially coherent, attosecond pulses into the soft x-ray region for the first time.

  14. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; et al

    2015-04-11

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm? electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  15. New Directions in X-Ray Light Sources or Fiat Lux: what's under the dome and watching atoms with x-rays (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Falcone, Roger

    2011-04-28

    Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  16. The X-ray PumpProbe instrument at the LinacCoherent Light Source

    SciTech Connect (OSTI)

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T.; Feng, Yiping; Glownia, James M.; Langton, J. Brian; Nelson, Silke; Ramsey, Kelley; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Stefanescu, Daniel; Srinivasan, Venkat; Zhu, Diling; Lemke, Henrik T.; Fritz, David M.

    2015-04-21

    The X-ray PumpProbe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 424 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  17. The X-ray Pump–Probe instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T.; Feng, Yiping; Glownia, James M.; Langton, J. Brian; Nelson, Silke; et al

    2015-04-21

    The X-ray Pump–Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4–24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  18. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  19. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Weng, Tsu -Chien; Bergmann, Uwe

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.

  20. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; et al

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  1. THE COUNTERJET OF HH 30: NEW LIGHT ON ITS BINARY DRIVING SOURCE

    SciTech Connect (OSTI)

    Estalella, Robert; Lopez, Rosario; Riera, Angels; Anglada, Guillem; Carrasco-Gonzalez, Carlos

    2012-08-15

    We present new [S II] images of the Herbig-Haro (HH) 30 jet and counterjet observed in 2006, 2007, and 2010 that, combined with previous data, allowed us to measure with improved accuracy the positions and proper motions of the jet and counterjet knots. Our results show that the motion of the knots is essentially ballistic, with the exception of the farthest knots, which trace the large-scale 'C'-shape bending of the jet. The observed bending of the jet can be produced by a relative motion of the HH 30 star with respect to its surrounding environment, caused either by a possible proper motion of the HH 30 star, or by the entrainment of environment gas by the red lobe of the nearby L1551-IRS5 outflow. Alternatively, the bending can be produced by the stellar wind from a nearby classical T Tauri star, identified in the Two Micron All Sky Survey catalog as J04314418+181047. The proper motion velocities of the knots of the counterjet show more variations than those of the jet. In particular, we identify two knots of the counterjet that have the same kinematic age but whose velocities differ by almost a factor of two. Thus, it appears from our observations that counterjet knots launched simultaneously can be ejected with very different velocities. We confirm that the observed wiggling of the jet and counterjet arises from the orbital motion of the jet source in a binary system. Precession, if present at all, is of secondary importance in shaping the jet. We derive an orbital period of {tau}{sub o} = 114 {+-} 2 yr and a mass function of m{mu}{sup 3}{sub c} = 0.014 {+-} 0.006 M{sub Sun }. For a mass of the system of m = 0.45 {+-} 0.04 M{sub Sun} (the value inferred from observations of the CO kinematics of the disk), we obtain a mass of m{sub j} = 0.31 {+-} 0.04 M{sub Sun} for the jet source, a mass of m{sub c} = 0.14 {+-} 0.03 M{sub Sun} for the companion, and a binary separation of a = 18.0 {+-} 0.6 AU. This binary separation coincides with the value required to account

  2. light-emitting diode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost The high-brightness, rapidly pulsed, multicolor light-emitting diode (LED) driver delivers lighting performance that exceeds that of conventional (laserarc-light) sources ...

  3. Optical reaction cell and light source for 18F! fluoride radiotracer synthesis

    DOE Patents [OSTI]

    Ferrieri, Richard A. (Patchogue, NY); Schlyer, David (Bellport, NY); Becker, Richard J. (Islip, NY)

    1998-09-15

    Apparatus for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-.sup.18 F!fluoro-2-deoxy-D-glucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of .sup.18 F!-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-.sup.18 F!fluoro-2-deoxy-D-glucose in higher yields than previously possible.

  4. Optical reaction cell and light source for [18F] fluoride radiotracer synthesis

    DOE Patents [OSTI]

    Ferrieri, R.A.; Schlyer, D.; Becker, R.J.

    1998-09-15

    An apparatus is disclosed for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-[{sup 18}F]fluoro-2-deoxy-Dglucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of [{sup 18}F]-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose in higher yields than previously possible. 4 figs.

  5. Optical reaction cell and light source for ›18F! fluoride radiotracer synthesis

    DOE Patents [OSTI]

    Ferrieri, Richard A.; Schlyer, David; Becker, Richard J.

    1998-09-15

    Apparatus for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of ›.sup.18 F!-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose in higher yields than previously possible.

  6. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect (OSTI)

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  7. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Not Available

    2011-06-22

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

  8. Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source

    SciTech Connect (OSTI)

    Zaid, Ghufron; Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

    2010-12-10

    We present an experimental realization of differential spectral responsivity measurement by using a light-emitting diode (LED)-based integrating sphere source. The spectral irradiance responsivity is measured by a Lambertian-like radiation field with a diameter of 40mm at the peak wavelengths of the 35 selectable LEDs covering a range from 280 to 1550nm. The systematic errors and uncertainties due to lock-in detection, spatial irradiance distribution, and reflection from the test detector are experimentally corrected or considered. In addition, we implemented a numerical procedure to correct the error due to the broad spectral bandwidth of the LEDs. The overall uncertainty of the DSR measurement is evaluated to be 2.2% (k=2) for Si detectors. To demonstrate its application, we present the measurement results of two Si photovoltaic detectors at different bias irradiance levels up to 120mW/cm{sup 2}.

  9. Demonstration of simultaneous experiments using thin crystal multiplexing at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Y.; Alonso-Mori, R.; Barends, T. R. M.; Blank, V. D.; Botha, S.; Chollet, M.; Damiani, D. S.; Doak, R. B.; Glownia, J. M.; Koglin, J. M.; et al

    2015-04-10

    Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using amore » dedicated beam, with no significant differences in quality.« less

  10. Demonstration of simultaneous experiments using thin crystal multiplexing at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Feng, Y.; Alonso-Mori, R.; Barends, T. R. M.; Blank, V. D.; Botha, S.; Chollet, M.; Damiani, D. S.; Doak, R. B.; Glownia, J. M.; Koglin, J. M.; Lemke, H. T.; Messerschmidt, M.; Nass, K.; Nelson, S.; Schlichting, I.; Shoeman, R. L.; Shvyd'ko, Yu. V.; Sikorski, M.; Song, S.; Stoupin, S.; Terentyev, S.; Williams, G. J.; Zhu, D.; Robert, A.; Boutet, S.

    2015-04-10

    Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using a dedicated beam, with no significant differences in quality.

  11. Vertically polarizing undulator with the dynamic compensation of magnetic forces for the next generation of light sources

    SciTech Connect (OSTI)

    Strelnikov, N.; Trakhtenberg, E.; Vasserman, I.; Xu, J.; Gluskin, E.

    2014-11-15

    A short prototype (847-mm-long) of an Insertion Device (ID) with the dynamic compensation of ID magnetic forces has been designed, built, and tested at the Advanced Photon Source (APS) of the Argonne National Laboratory. The ID magnetic forces were compensated by the set of conical springs placed along the ID strongback. Well-controlled exponential characteristics of conical springs permitted a very close fit to the ID magnetic forces. Several effects related to the imperfections of actual springs, their mounting and tuning, and how these factors affect the prototype performance has been studied. Finally, series of tests to determine the accuracy and reproducibility of the ID magnetic gap settings have been carried out. Based on the magnetic measurements of the ID B{sub eff}, it has been demonstrated that the magnetic gaps within an operating range were controlled accurately and reproducibly within 1 ?m. Successful tests of this ID prototype led to the design of a 3-m long device based on the same concept. The 3-m long prototype is currently under construction. It represents R and D efforts by the APS toward APS Upgrade Project goals as well as the future generation of IDs for the Linac Coherent Light Source (LCLS)

  12. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    SciTech Connect (OSTI)

    Advanced Light Source; Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Padmore, Howard A.; Ustundag, Ersan; Yashchuk, Valeriy V.

    2009-03-24

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  13. SOURCE?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the direction and maintanence of the core code * The code base is platform- neutral ... Its core function is to allow users to merge multiple sources of building energy data into ...

  14. Disentangling formation of multiple-core holes in aminophenol molecules exposed to bright X-FEL radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhaunerchyk, V.; Kaminska, M.; Mucke, M.; Squibb, R. J.; Eland, J. H. D.; Piancastelli, M. N.; Frasinski, L. J.; Grilj, J.; Koch, M.; McFarland, B. K.; et al

    2015-10-28

    Competing multi-photon ionization processes, some leading to the formation of double core hole states, have been examined in 4-aminophenol. The experiments used the linac coherent light source (LCLS) x-ray free electron laser, in combination with a time-of-flight magnetic bottle electron spectrometer and the correlation analysis method of covariance mapping. Furthermore, the results imply that 4-aminophenol molecules exposed to the focused x-ray pulses of the LCLS sequentially absorb more than two x-ray photons, resulting in the formation of multiple core holes as well as in the sequential removal of photoelectrons and Auger electrons (so-called PAPA sequences).

  15. Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source

    SciTech Connect (OSTI)

    Thompson, Neil

    2010-10-20

    The Next Generation Light Source (NGLS) is a high repetition rate free-electron laser facility proposed by Lawrence Berkeley National Laboratory (LBNL). The proposed facility will provide multiple FEL lines with varying spectral characteristics to satisfy a broad soft X-ray physics programme. At this stage of the project a number of FEL technologies and concepts are being investigated for possible implementation on the facility. In this report we consider a free-electron laser seeded by a Higher Harmonic Generation (HHG) source in which a high power (and consequently relatively low repetition rate) laser pulse is injected into a chamber of inert gas. Through a process of ionisation and recombination coherent higher harmonics of the laser are emitted from the gas and can be injected into an FEL system as a seed field. Further harmonic upconversion can be done within the FEL system to enable temporally coherent FEL output at wavelengths much shorter than, and pulse energies orders of magnitude higher than, the HHG source emission. The harmonic conversion within the FEL works in the following way. The seed field induces an energy modulation within the electron bunch at the start of the modulator. This energy modulation grows within the modulator due to the FEL interaction and starts to convert into a density modulation, or bunching, at the seed wavelength. However, this bunching also has components at higher harmonics which retain the longitudinal coherence of the initial seed. The beam passes through a magnetic chicane, which shears the longitudinal phase space to maximise the bunching at the required harmonic, then a further undulator which is tuned to this harmonic. If this second undulator is short it acts as a further modulator, and because the beam is pre-bunched at the modulator resonance there is a strong coherent burst of radiation which acts to modulate the electron beam energy in much the same way the input laser seed field acted in the first modulator

  16. Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... sun is shining, and wind turbines are only productive when ...

  17. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Current: 0.00 mA Beam Status: Down Loss Rate: 0.00 mA/min SPEAR Plot SPEAR Operator Messages No operator message. SSRL BEAMLINES Beamline Steering Periods Gap(mm) Field(T) K Pwr(W) Yield(Ah) 1 Closed Fault - 48.0 0.000 - 0 0.00 2 Open Fault - 48.0 0.000 - 0 0.00 4 Open - 10 168.0 0.117 2.52 0 0.00 5 Open - 14 120.0 0.017 0.22 0 0.00 6 Open Fault 27 176.0 0.061 0.40 0 0.00 7 Open - 10 167.6 0.118 2.53 0 0.00 8 Open Fault - 48.0 0.000 - 0 0.00 9 Open - 8 191.5 0.125 3.22 0 0.00 10 Open Fault

  18. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detailed Accelerator and Beam Line Information Vacuum SPEAR Beamlines Temperatures Beamlines Accelerator Info Operations Controls Accelerator Physics Picture1 Picture2 Dedication video SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of Science Content Owner: Clemens Wermelskirchen | Privacy Notice, Security Notice, and Terms of Use | Page Updated: [an error occurred while

  19. Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety safety-for-staff Safety for Staff In Case of Emergency Resources Acronyms Multimedia Employment staff-intranet Staff Intranet Site Map Contact Digg: ...

  20. LINAC Coherent Light Source

    Broader source: Energy.gov [DOE]

    Forty years after the Stanford Linear Accelerator Center (now the SLAC National Accelerator Laboratory) developed its two-mile-long linear accelerator (linac), it received approval from the...

  1. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    SciTech Connect (OSTI)

    Eakins, D. E. Chapman, D. J.

    2014-12-15

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  2. A Beamline for High-Pressure Studies at the Advanced Light Sourcewith a Superconducting Bending Magnet as the Source

    SciTech Connect (OSTI)

    Kunz, Martin; MacDowell, Alastair A.; Caldwell, Wendel A.; Cambie, Daniella; Celestre, Richard S.; Domning, Edward E.; Duarte,Robert M.; Gleason, Arianna E.; Glossinger, James M.; Kelez, Nicholas; Plate, David W.; Yu, Tony; Zaug, Joeseph M.; Padmore, Howard A.; Jeanloz,Raymond; Alivisatos, A. Paul; Clark, Simon M.

    2005-06-30

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/DE {approx}7000) and a W/B4C multilayers (E/DE {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  3. One-dimensional array of point-like light sources based on gold nanoparticles and tetracene: Preparation and possible operation mechanisms

    SciTech Connect (OSTI)

    Cherepanov, V. V.; Fedorovich, R. D.; Kiyayev, O. E.; Naumovets, A. G.; Nechytaylo, V. B. Tomchuk, P. M.; Viduta, L. V.

    2014-11-10

    A method of preparation of a linear close-packed array of point-like light sources based on a nanocomposite of gold nanoparticles and tetracene is proposed. Ordered system of microleads to the light sources with packing density up to 1000 mm{sup −1} consists of linear conducting chains of cobalt nanoparticles self-assembled in a magnetic field. The electroluminescence from the gold-tetracene nanocomposite occurs in the visible range typical of organic light-emitting field-effect transistors based on tetracene. A theoretical substantiation of the possibility of excitation of tetracene molecules by hot electrons emitted from the gold nanoparticles is suggested and compared with other possible physical mechanisms.

  4. Research and development toward a 4.5-1.5{angstrom} linac coherent light source (LCLS) at SLAC

    SciTech Connect (OSTI)

    Tatchyn, R.; Arthur, J.; Baltay, M.

    1995-12-31

    In recent years significant studies have been initiated on the theoretical and technical feasibility of utilizing a portion of the 3km S-band accelerator at the Stanford Linear Accelerator Center (SLAC) to drive a short wavelength (4.5-1.5 {Angstrom}) Linac Coherent Light Source (LCLS), a Free-Electron Laser (FEL) operating in the Self-Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation include: (1) a peak current in the 3-7 kA range, (2) a relative energy spread of <0.05%, ad (3) a transverse emittance, {epsilon}{le}{lambda}/4{pi}, where {lambda}[m] is the output wavelength. Requirements on the insertion device include field error levels of 0.1-0.2% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 4-8 m for inhibiting the dilution of its transverse density. Although much progress techniques necessary for LCLS operation down to {approximately}20 {angstrom}, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 {angstrom} LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas. These include the construction and operation of a linac test stand for developing laser-driven photocathode rf guns with normalized emittances approaching 1 mm-mr; development of advanced beam compression, stability, an emittance control techniques at multi-GeV energies; the construction and operation of a FEL Amplifier Test Experiment (FATE) for theoretical and experimental studies of SASE at IR wavelengths; an undulator development program to investigate superconducting, hybrid/permanent magnet (hybrid/PM), and pulsed-Cu technologies; theoretical and computational studies of high-gain FEL physics and LCLS component designs.

  5. XFEL diffraction: Developing processing methods to optimize data quality

    SciTech Connect (OSTI)

    Sauter, Nicholas K.

    2015-01-29

    Serial crystallography, using either femtosecond X-ray pulses from free-electron laser sources or short synchrotron-radiation exposures, has the potential to reveal metalloprotein structural details while minimizing damage processes. However, deriving a self-consistent set of Bragg intensities from numerous still-crystal exposures remains a difficult problem, with optimal protocols likely to be quite different from those well established for rotation photography. Here several data processing issues unique to serial crystallography are examined. It is found that the limiting resolution differs for each shot, an effect that is likely to be due to both the sample heterogeneity and pulse-to-pulse variation in experimental conditions. Shots with lower resolution limits produce lower-quality models for predicting Bragg spot positions during the integration step. Also, still shots by their nature record only partial measurements of the Bragg intensity. An approximate model that corrects to the full-spot equivalent (with the simplifying assumption that the X-rays are monochromatic) brings the distribution of intensities closer to that expected from an ideal crystal, and improves the sharpness of anomalous difference Fourier peaks indicating metal positions.

  6. XFEL diffraction: Developing processing methods to optimize data quality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sauter, Nicholas K.

    2015-01-29

    Serial crystallography, using either femtosecond X-ray pulses from free-electron laser sources or short synchrotron-radiation exposures, has the potential to reveal metalloprotein structural details while minimizing damage processes. However, deriving a self-consistent set of Bragg intensities from numerous still-crystal exposures remains a difficult problem, with optimal protocols likely to be quite different from those well established for rotation photography. Here several data processing issues unique to serial crystallography are examined. It is found that the limiting resolution differs for each shot, an effect that is likely to be due to both the sample heterogeneity and pulse-to-pulse variation in experimental conditions. Shotsmore » with lower resolution limits produce lower-quality models for predicting Bragg spot positions during the integration step. Also, still shots by their nature record only partial measurements of the Bragg intensity. An approximate model that corrects to the full-spot equivalent (with the simplifying assumption that the X-rays are monochromatic) brings the distribution of intensities closer to that expected from an ideal crystal, and improves the sharpness of anomalous difference Fourier peaks indicating metal positions.« less

  7. Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.

    SciTech Connect (OSTI)

    Salay, Michael; Gauntt, Randall O.; Lee, Richard Y.; Powers, Dana Auburn; Leonard, Mark Thomas

    2011-01-01

    Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

  8. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect (OSTI)

    Wilson, Daniel; Rudolf, Denis Juschkin, Larissa; Weier, Christian; Adam, Roman; Schneider, Claus M.; Winkler, Gerrit; Frmter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grtzmacher, Detlev

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  9. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Gullikson, Eric M.; Heimann, Philip; Yashchuk, Valerie V.; McKinney, Wayne R.; Schlotter, William F.; Rowen, Michael

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on allmore » SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  10. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect (OSTI)

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.